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The book was developed by the international
scientific network of the German Center for
University Mathematics Education Research
(khdm) on the occasion of its 10th
anniversary. It is dedicated to Reinhard
Hochmuth in celebration of his 60th birthday.
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Chapter 1
Practice-Oriented Research in Tertiary
Mathematics Education – An Introduction

Rolf Biehler, Michael Liebendörfer , Ghislaine Gueudet,
Chris Rasmussen , and Carl Winsløw

Abstract This chapter first outlines the genesis of the book. We briefly describe the
development of university mathematics education as an international field of
research and development. This includes the role of the khdm (“Kompetenzzentrum
Hochschuldidaktik Mathematik”; Centre for Higher Mathematics Education) and
one of its founding directors, Reinhard Hochmuth, to whom this book is dedicated.

We then consider five practice-oriented topics for research in university mathe-
matics education: the secondary-tertiary transition, university students’ mathemati-
cal practices, teaching and curriculum design, university students’ mathematical
inquiry, and mathematics for non-specialists. These topics represent main areas of
recent research and development.

The five topics appear in the book as sections, each with several chapters. The
sections and their contents are introduced in the final parts of this first chapter. For
each section, we sketch the connection between its chapters and the specific field of
research. We further provide a brief description of each chapter in terms of theoret-
ical and methodological approaches, as well as of the results presented.
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In keeping with this orientation, the book presents practice-oriented research
covering a broad range of research topics in tertiary mathematics education. This
reflects vital international activities of a quickly developing field. It is meant to help
both researchers and practitioners to get inspiration on what good teaching and
learning may mean, and how it may happen. The forward-looking nature of this
volume has strong potential to influence the further development of the field. The
book is organized into the following five sections:

2 R. Biehler et al.

1.1 Context of This Book

This book is devoted to current practice-oriented research in tertiary mathematics
education. The birth of every book has its occasion, its reasons, and its history. The
occasion of this book consists of two anniversaries: 10 years of work at the
“Kompetenzzentrum Hochschuldidaktik Mathematik” (khdm; Centre for Higher
Mathematics Education) starting in the fall of 2010, and the 60th birthday of
Reinhard Hochmuth, one of the two founding directors of the khdm, in March
2021. We, as editors invited international colleagues, including persons from the
khdm, Reinhard’s and the khdm’s current international scientific network, and
beyond, to contribute to this volume. Transcending these occasions, the editorial
team discussed the specific orientation of the book, which should show a panorama
of current research that is practice-oriented and relevant for both university mathe-
matics teachers and scholars in the growing field of tertiary mathematics education
research.

Section 1: Research on the secondary-tertiary transition
Section 2: Research on university students’ mathematical practices
Section 3: Research on teaching and curriculum design
Section 4: Research on university students’ mathematical inquiry
Section 5: Research on mathematics for non-specialists.

Tertiary mathematics education has been thought about for as long as university
mathematics exists, and individuals have published research on issues in tertiary
mathematics education for decades. A crucial initial compilation of early work in
university mathematics education research is the edited volume on advanced math-
ematical thinking (Tall, 1991) and the result of an ICMI study (Holton & Artigue,
2001). However, when the khdm started its work in late 2010, the field of university
mathematics education as a large research community was still in its infancy in most
countries. An exception was the RUME community in the United States, whose
annual conferences started in the late 1990s.

Since 2010, national and international structures have emerged in which scholarly
exchange occurs. In Europe, working groups on tertiary mathematics education have
been present at the CERME conferences (held by ERME, The European Society for
Research in Mathematics Education) since 2005 (see Winsløw et al., 2018 for a more
detailed outline). In 2016, the International Network for Didactic Research in
University Mathematics (INDRUM), which is closely associated with ERME, held
its first conference devoted exclusively to the didactics of university mathematics.



Since 2015, the International Journal of Research in Undergraduate Mathematics
Education (IJRUME) has been published. It is the first journal with a focus on
undergraduate mathematics education research.
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In addition to these international activities, several national centers for tertiary
mathematics education have been established. In the United Kingdom, the SIGMA
Centre for Excellence in Teaching and Learning was founded in 2005 (https://www.
sigma-network.ac.uk/). In early 2000 the Mathematical Association of America
(MAA) formed the Special Interest Group of the MAA on Research in Undergrad-
uate Mathematics Education (SIGMAA on RUME). The MatRIC Center for
Research, Innovation, and Coordination of Mathematics Teaching was founded in
Norway in 2014.

The “Kompetenzzentrum Hochschuldidaktik Mathematik” (khdm; Center for
Higher Mathematics Education) was founded by Rolf Biehler and Reinhard
Hochmuth at the universities of Kassel and Paderborn in Germany in late 2010 by
winning a competition for grants from the Volkswagenstiftung and the Stiftung
Mercator. Today it is a joint scientific institution of the universities of Hannover,
Kassel, and Paderborn. One mission of the khdm was to establish a national research
network, relate it to international developments, and contribute to the development
of “Didactics of Mathematics in Higher Education as a Scientific Discipline,” as was
the title of the 2015 international khdm conference. The khdm organized national
conferences in Kassel 2011 (Bausch et al., 2014) and Paderborn 2013 (Hoppenbrock
et al., 2016) on tertiary mathematics education, and international conferences in
Oberwolfach 2014 (Biehler et al., 2014; Biehler & Hochmuth, 2017) and Hannover-
Herrenhausen 2015 (Göller et al., 2017).

Reinhard Hochmuth, to whom we dedicate this book on the occasion of his 60th
birthday, co-directed the khdm from the beginning. Reinhard, who also holds a
degree in psychology, was a professor of mathematics at Kassel University. Since
2014, he is a professor of mathematics education at the Leibniz University Hanno-
ver. He is currently co-directing the khdm with Andreas Eichler (Kassel University)
and Michael Liebendörfer (Paderborn University), who took over from Rolf Biehler
in 2020. Michael was the first doctoral student of Reinhard in the field of tertiary
mathematics education. Since its foundation, Reinhard Hochmuth has been one of
the khdm’s managing directors and has been intensely involved in the further
development of higher mathematics education and its national and international
structures, particularly through the activities of the khdm, mentioned above. In
addition, he has been involved in international conferences and networks in various
forms. For instance, he is the host for the INDRUM meeting 2022 at Hannover
(Germany).

Reinhard represents the collaboration of mathematics and mathematics education
research needed for the fruitful development of tertiary mathematics education. He
contributed valuable perspectives to the field, for example, on higher mathematics
beyond the first year of study (Hochmuth & Schreiber, 2016) and the role of society
for mathematics (Hochmuth & Schreiber, 2015): mathematics always takes place in
social structures and whoever deals with mathematics also always contributes a
piece to the reproduction or change of these structures. Reflecting on this

https://www.sigma-network.ac.uk/
https://www.sigma-network.ac.uk/


relationship to society is one of his particular perspectives (and will be reflected in
Chap. 3 of this book).

4 R. Biehler et al.

Thus, his activities and this book aim in the same direction. The book’s five
sections also reflect parts of Reinhard’s research contribution to the field. We point to
some exemplary contributions. Transition problems (section 1), especially the
design of mathematical bridging courses, were his early focus before the khdm
was founded (Biehler et al., 2012). Recently, the WiGeMath project, whose coordi-
nating director was Reinhard, made a comprehensive study of transition problems
and possible remedies by bridging courses, transition lectures, mathematics support
centers, and additional supporting measures such as e-learning elements (Hochmuth
et al., 2022). Students’ mathematical practices (section 2), in particular from the
perspective of the Anthropological Theory of the Didactic (ATD), have become a
major research topic of Reinhard (Hochmuth & Peters, 2021; Bosch et al., 2021).
Research on teaching and curriculum design (section 3) were in the center of the
LIMA and KLIMAGS project, where an innovative course for primary and second-
ary teacher students was developed with a specific focus on qualifying mathematical
tutors (Biehler et al., 2018; Hochmuth et al., 2021). Research on university students’
mathematical inquiry (section 4) was a focus of the Platinum Project that Reinhard
has been co-directing (Gómez-Chacón et al., 2021). Reinhard also did research on
mathematics for non-specialists (section 5): He co-directed the Kom@ING project
that analyzed the required and attained mathematical competencies in courses for
engineering students (Peters et al., 2017), where he was particularly interested in the
field of signal theory (Hochmuth et al., 2014, Hochmuth & Peters, 2020, 2021).

1.2 Overall Structure of the Book

The questions and methods of tertiary mathematics education are manifold. For a
long time now, the transition from school to university has been a major topic, often
experienced as particularly challenging in mathematics. For example, based on
psychological theories, researchers analyze how students experience and act in the
transition process. Universities have set up various support structures such as
bridging courses or learning support centers. A growing body of knowledge theo-
retically underpins the design of such structures and supplies instruments for eval-
uating their success.

In the transition and also later, another part of the research focuses on how to
support students in becoming an active part of mathematical practices. In addition to
focusing on mathematical concepts and mathematical theories, research focuses on
mathematical practices such as proving, which play a role both in the transition and
in later studies. While such research mainly analyzes existing courses and practices,
also many studies constructively design teaching scenarios and material and study
the learning processes that they initiate. These studies result in scientifically based
courses or curriculum conceptions. Inquiry-based approaches have been developed
that often challenge traditional teaching and learning models. We find experiments



that show us how we could radically transform traditional teaching. While current
research is mainly oriented toward future mathematicians or mathematics teachers,
research is also making remarkable progress in mathematics for non-specialists. At
many universities, the STEM (science, technology, engineering, and mathematics)
domains and economics are the domains where improved teaching and learning
processes can reach a much larger number of students than in the courses for
mathematics majors. The design of these courses poses new challenges because of
possible links to the workplace and different mathematical practices in the mathe-
matics courses and the engineering and economics courses.

1 Practice-Oriented Research in Tertiary Mathematics Education. . . 5

1.2.1 Section 1: Research on the Secondary-Tertiary
Transition

The transition from school to university involves many disruptions, such as study
goals, course designs, working techniques, the didactical contract, and the nature of
mathematics (Gueudet & Thomas, 2020). The problems only become visible at the
university, where innovative measures are often taken. To understand these transi-
tional difficulties, however, we need to look at both sides, school, and university.

This section starts with two chapters that deepen our understanding of the
students experiencing the secondary-tertiary transition. Göller and Rück (Chap. 2
of this book) examine first-year students’ achievement emotions and their interaction
with self-regulated learning. To this end, they first integrate both aspects into one
model showing the constant interaction of emotions and activity and their relation to
both mastery of the content and personal well-being. Based on 21 interviews with
first-year mathematics students, Göller and Rück illustrate the ways students expe-
rience important emotions like joy or hopelessness and their connections to self-
regulated learning. The chapter highlights the importance of students perceiving
control over their learning and valuing the new mathematics for not only mastery but
also well-being. Given the disruptions during the secondary-tertiary transition, it
seems typical to struggle with both points. The model can thus explain why students
start coping and adjust their own goals based on their emotional experiences. Göller
and Rück therefore open up a new and promising perspective on the secondary-
tertiary transition.

Ruge (Chap. 3 of this book) takes a critical perspective on the secondary-tertiary
transition for student teachers. She first outlines the subject-scientific approach
(Hochmuth, 2018; Holzkamp, 2013) that puts a strong emphasis on the societal
dimension of individual experiences and behavior. This approach is then used to
construct a perspective on students’ feelings about mathematics, society and the
teaching profession. Ruge draws on selected interview data with teacher students to
illustrate their unease with being identified as mathematicians and the current state of
academic mathematics. She also reports how the research community reacted to her
observations. This unease reveals a great learning potential and has been studied
primarily in belief research to date. Ruge argues for a different perspective based on



a subject-scientific reinterpretation of beliefs-research, conceiving beliefs less as an
individual trait and taking social and societal dimensions into account. She extends
the research of Skott (2019) and advocates the common goal of student teachers and
mathematics education scholars to promote a humane mathematics-society relation-
ship. This is discussed for universities regarded as both teacher education institutions
and research institutions on mathematics education.

6 R. Biehler et al.

The two other chapters focus on teaching in the secondary-tertiary transition.
Corriveau (Chap. 4 of this book) presents findings from an inter-level community
formed by mathematics teachers from secondary and post-secondary levels. The
community headed for developing practices that smoothen the transition. This
allowed comparing teachers’ways of doing using an ethnomethodological approach.
Firstly, the findings highlight two very distinct territories concerning the use of
contexts in secondary and post-secondary teaching. Secondary mathematics is
strongly contextualized, whereas post-secondary mathematics is only illustrated in
contexts. This affects both meaning and reasoning. It adds a new perspective on
differences in the ways mathematics is taught. The chapter further demonstrates the
power of cross-institutional collaborations to both understand and improve the
transition. Teachers from both territories could explicate the way they do mathemat-
ics and reflect on the others’ ways. This led to a collaboration that tackles the
transition problem from both sides. The chapter thus also provides a good way of
implementing a fruitful collaboration across the institutions.

Finally, Liebendörfer et al. (Chap. 5 of this book) present a framework developed
to describe the goals of support measures in the transition between school and
university. The underlying observation is that recent research has brought up various
measures like bridging courses, redesigned lectures, and mathematics learning sup-
port centers, which all address the transition problems in their own ways. A first step
to structuring and understanding this field is reconstructing the goals, which are often
implicit as staff may focus on their concrete actions in teaching and support. After
describing the framework, Liebendörfer et al. illustrate the goals of several
pre-university bridging courses, redesigned lectures, and mathematics learning sup-
port centers. This may clarify both the specific roles that these kinds of support
measures have and the variability within these categories. The framework thus helps
to understand the particular directions of support measures and compare or evaluate
them. It was developed in the WiGeMath project led by Reinhard Hochmuth.

1.2.2 Section 2: Research on University Students’
Mathematical Practices

The section deals with research studies that focus on mathematical practices. Prac-
tices can be understood as closely related to mathematical processes such as proving
and defining. A more comprehensive theoretical framework for studying practices in
mathematical institutions has been developed by the Anthropological Theory of the



Didactic (ATD). Its wider notion of praxeology includes the components theory,
technology, technique, and task. This and other theoretical frameworks are used in
this section.
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The first set of papers is concerned with reconstructing (problematic) practices of
students that have evolved in an institutional context and explaining these practices
by the implicit didactical contract of a lecture that may also be specified in expec-
tations of lectures and tasks assigned to the students. The second set of papers
focuses on the practices of proving and defining as characteristic processes of
university mathematics.

The section has epistemological, interventional, and observational studies that
characterize, reconstruct, observe or intervene to elaborate the participation in
advanced practices in institutional settings. Some of the studies are design studies
that address learning challenges and opportunities, while others are theoretical-
conceptual studies that present an a priori analysis of certain mathematical practices.

The first set of papers is concerned with reconstructing institutional practices
of mathematics that are relevant for developing students’ practices. Bašić and Šipuš
(Chap. 6 of this book) reconstruct the practices expected from students and the
didactical contract in a lecture on multivariable calculus from the perspectives of
ATD, the Theory of Didactical Situations, and the theory of the didactical contract,
studying students’ problem-solving results and related reflections on their difficulties
and problems of learning and understanding. Moreover, the authors conducted
related interviews with the lecturers. The implicit didactical contract is reconstructed
from both sources, and suggestions for improving the teaching-learning system are
developed. Broley and Hardy (Chap. 7 of this book) take a similar theoretical stance
using ATD and reconstruct students’ practices in a course on real analysis, using
various sources of observation, including assessment. They found a substantial
number of so-called non-mathematical practices related to students’ orientation to
minimal requirements for success and considering only superficial properties of
previous exercises. Discovering these practices is essential for improving teaching
and learning toward a deeper mathematical understanding.

The second set of papers is concerned with proving and defining the interrelation
between these mathematical practices and various educational levels: secondary
level graduates as beginning university students, students in their transition process
in the first semester, and practices relevant for more advanced students.
Lew, Fukawa-Connelly, and Weber (Chap. 8 of this book) argue in a theoretical
chapter that when mathematicians lecture, they not only cover mathematical content
but also model how students should learn mathematics. They analyze a corpus of
11 lectures in various advanced mathematics courses to investigate how mathema-
ticians present the definitions of concepts and gain insight into how mathematicians
may expect students to learn from lectures. They highlight how the instructors
modeled what it means to study a concept and its definition and argue that students
are expected to engage in independent study outside of class.

Ostsieker and Biehler (Chap. 9 of this book) focus on the concept of convergence,
where in a design study, students are supported in re-inventing this concept and its
definition. Meta-knowledge on defining is needed, and a substantial and rich concept



image of the convergence of a sequence. The research is situated on the transition
between school and university. The learning environment consists of examples and
non-examples of convergent sequences, a task, and expected obstacles with prepared
supports for each expected obstacle. The learning environment was developed in the
Design-Based Research paradigm, conducted twice, and analyzed and refined each
time. In this chapter, the analysis focuses on the changes in the formulation of the
initial task for the students, that were made based on the results of the analysis of the
first two implementations.
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Kempen (Chap. 10 of this book) investigates the practice and meta-knowledge on
proof and proving of 12 high-school graduates, with a view towards what proof
conceptions were developed in school mathematics and have to be taken into
account when beginning students at university are being introduced to the proving
practices at the university level. The author conducted task-based interviews focus-
ing on learners’ usage and assigned meaning of statements with regard to their
embeddedness in a local deductive organization, their epistemic values, and their
respective effects on the conclusion’s modal qualifier. While all graduates accept
definitions and rules for term manipulation, there is no consensus concerning the
statements involved. Furthermore, the individuals’ epistemic values concerning the
statements involved affect their usage in a chain of arguments and the individuals’
evaluation of the conclusion.

Whereas the preceding papers focus on defining or proving, a new analysis of the
interrelation between proving and defining on a general level in university mathe-
matical practices is the central focus of Durand-Guerrier’s (Chap. 11 of this book)
paper. The main goal of this chapter is to underline, from an epistemological point of
view, the relevance of engaging university students in intertwined proving and
defining practices. The chosen examples are real numbers and infinity. The
intertwined practices of proving and defining are taken from the case of the con-
struction of irrational numbers by Dedekind (1872) and Cantor (1874). Next, the
author presents an example of a situation involving R-completeness versus
Q-incompleteness that has the potential to foster students’ engagement in
intertwined proving and defining practices. These intertwined relationships are
further explored from a didactical point of view concerning the relation between
practices of enumeration, the definition of infinite sets, and diagonal proofs that the
set of rational numbers is denumerable while the set of irrational numbers is not.

1.2.3 Section 3: Research on Teaching and Curriculum
Design

Teaching at the university level is increasingly studied by researchers in mathematics
education (Biza et al., 2016). The first three chapters in this section present research
contributing to new understandings of university teachers’ practices and professional
development, drawing on a great variety of theoretical approaches and associated
methods.



1 Practice-Oriented Research in Tertiary Mathematics Education. . . 9

Jaworski and Potari (Chap. 12 of this book) use Activity Theory (Leont’ev, 1979)
to analyze the interactions between a tutor and her students in terms of tensions and
contradictions arising when the tutor tries to engage students in mathematics
meaning-making. The authors video-recorded and transcribed tutorial sessions for
first-year mathematics students in a university in the UK. The teacher was the first
author of the chapter (Jaworski) and was actively involved in the data analysis, and
this was essential for identifying her goals. This analysis leads to the observation of
different objectives of the teacher’s activity concerning desired students’ actions
(e.g., listen to each other and build on what another person expresses) or the
teacher’s own activity (e.g., listen to the students and discern meaning from what
they say). The authors observed positive outcomes for the students (e.g., expressing
their informal ideas or valuing the collaboration with peers). They also identified
tensions and related contradictions, e.g., between the teacher’s guidance (needed for
achieving the task) and students’ autonomy. These contradictions make the devel-
opment of inquiry-oriented practices challenging; the authors claim that facing this
challenge requires a continuous professional reflection of the teacher.

Mesa (Chap. 13 of this book) studies another aspect of university teachers’
professional activity: their lesson planning activity (in the context of their ordinary
professional activity for ‘traditional’ courses). The theoretical framework in this
chapter is the documentational approach to didactics (DAD, Trouche et al., 2020),
which introduces a difference between resources used by the teacher and documents
developed along with their activity. Mesa focuses in this chapter on the “lesson
notes” document. Twenty-one post-secondary teachers in 15 different universities in
the United States were interviewed about their use of resources for their lesson
planning activity (for calculus, linear algebra, or abstract algebra). During the
interviews, the teachers were asked to draw maps representing their resource system;
the author also collected resources they used and designed. Analyzing this data, the
author noted that the textbook played a significant role in the teacher’s lesson
planning activity; nevertheless, many other resources (material or non-material)
intervened in developing the ‘lecture notes’ document. While the resources influence
the teachers’ design of their lecture notes (‘instrumentation process,’ according to
DAD), the teacher’s operational invariants (propositions they consider true) also
influence their activity. Some teachers prioritize students’ meaning-making, and
search elements in the resources that can support it. Mesa suggests that this could
be an interesting orientation for textbooks authors.

Gabel and Dreyfus (Chap. 14 of this book) study a particular aspect of university
teachers’ practices, namely their teaching of proof. They introduce an original
theoretical concept, “the flow of proof,” building on an argumentation theory, “the
New Rhetoric” (Perelman & Olbrechts-Tyteca, 1969). The “flow of proof” com-
prises the logical structure of the proof and informal considerations about the
proving process within the presentation of a proof in a teaching context. The authors
illustrate the use of this theoretical construct by analyzing an introductory course on
set theory for first year prospective mathematics teachers in Israel. They observe the
lessons, audio-recorded and transcribed, and interview the teacher after each lesson.
This data is analyzed with a specific method, building on theoretical elements



coming from the “New Rhetoric.” In this chapter, the authors focus on an episode
where the teacher uses a cognitive conflict. Investigating the effects of this conflict,
they observe that it fosters the involvement of the students in the proof process. The
students experience a conflict (union and intersection for sets are analogous to
addition and multiplication for numbers; nevertheless, the distributivity properties
differ) which emphasizes the need for a proof as a tool for dissociating what is the
truth and what is an opinion. Using this conflict and solving it through this dissoci-
ation, the teacher created a shared “basis of agreement” with her students. Gabel and
Dreyfus claim that the “flow of proof” is not only a theory and an associated
methodology that can be used by researchers in mathematics education; it can also
be a pedagogical concept useful for teachers who want to develop their proof
teaching practices.
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The other theme in section 3 is curriculum design (closely connected with the
previous theme since curriculum design is often informed by research results about
teaching). The next four chapters address this theme.

Nardi and Biza (Chap. 15 of this book) present the design, implementation (by the
two authors, in their university in the UK), and assessment of two courses on
“Research in Mathematics Education,” one for education students and one for
mathematics students. Transitioning to Mathematics Education is a challenge for
these two kinds of students – and supporting this transition is a challenge for the
teachers. Nardi and Biza designed the courses and their assessment by drawing on
research literature about this transition, on the commognitive approach (Sfard,
2008), and a teacher education program (MathTASK). In this program, the authors
use what they call ‘mathtasks’: descriptions of classroom situations, including a
mathematical problem, answers from students, and reactions from the teacher. The
authors introduce four characteristics of the students’ discourse about the mathtasks
proposed in the courses: consistency, specificity, the reification of RME discourse,
and the reification of mathematical discourse. These four characteristics frame the
assessment of the two systems; more generally, they constitute tools for the teachers
to formatively evaluate their students’ progress. Examples of mathtasks and the
assessment frame are presented in the chapter. Nardi and Biza contend that such
courses provide opportunities for linking the communities of Mathematics, Educa-
tion, and RME.

The other chapters in section 3 concern curriculum design in mathematics.
Internationally, there is a growing interest in teaching practices fostering students’
active engagement. Research in mathematics education can support them by design-
ing relevant curricula, their dissemination, and associated professional development.
Nevertheless, contributing to the evolution of teaching practices at scale at the
university level remains challenging, and researchers also investigate levers for
this instructional change (Smith et al., 2021). These chapters reflect these tendencies;
the studies presented in these chapters propose and evaluate different kinds of
research-supported changes, with a common aim of students’ active learning.

Wawro, Andrews-Larson, Zandieh, and Plaxco (Chap. 16 of this book) present
design-based research in the context of the Inquiry-Oriented Linear Algebra (IOLA)
project in the United States. Drawing on Realistic Mathematics Education (RME,



Freudenthal, 1991), they propose a “design-based research spiral,” encompassing
five phases of design, implementation, and dissemination: Design; Paired Teaching
Experiment; Classroom Teaching Experiment; Online Work Group; and Web.
Along with the five phases, an increasing number of teachers (and students) get
involved in implementing the inquiry-oriented material designed; this enlargement
of the user’s group is essential in an instructional change perspective. The use of this
“design-based research spiral” is illustrated in the chapter through the example of the
IOLA unit on the concept of determinants. The authors argue that the “Online
Working Group” in particular plays an essential role in productively connecting
the three theories informing their project: RME, Inquiry-Oriented Instruction, and
Instructional Change. Indeed, this stage allows to consider teachers’ goals and
orientations (which can differ from the RME principles that informed the initial
design). This is crucial for the dissemination phase since it increases the potential of
adoption of the material designed within the project by teachers who were not
involved in its design and subsequent evolutions of their classroom practices.
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Wessel and Leuders (Chap. 17 of this book) analyze the design of a curriculum in
abstract algebra in a pre-service mathematics teacher education program in Ger-
many. Adopting a Didactical Design Research perspective, they combine different
theoretical elements to guide their design. The authors draw on categories introduced
by Prediger (2019) for answering what (related to the content) and how (associated
with the professional development course) questions about the theoretical elements
needed. For their course concerning abstract algebra and addressing prospective
teachers, the authors combine theoretical elements concerning teacher knowledge
(Ball et al., 2008) and results of previous research about abstract algebra (Larsen
et al., 2013). In the chapter, the authors present two successive design cycles
implemented. They constructed a course associating successive situations of ‘guided
reinvention’ with different approaches to abstract algebra. Inquiry-oriented tasks
were central in the course, particularly using the software GeoGebra and Cinderella.
The course was specifically tailored for prospective primary or secondary teachers –
the authors call it a ‘profession-specific’ course. The first implementation of the
course led them to observe that the inquiry-based tasks were too challenging for
some students. For the second design cycle, the authors made their expectations
more explicit and put an emphasis on the connections between abstract algebra and
school algebra. Wessel and Leuders foreground the contribution of their study in
terms of design principles for curricula at universities specific for prospective
teachers’ courses. Using such principles can foster the design of mathematics
courses relevant for their future school teaching experience.

Smith, Voigt, Martinez, Rasmussen, Funk, Webb, and Ström (Chap. 18 of this
book) pursue an objective of evolutions of the teaching practices toward active
learning and equity. They investigate changes at the level of mathematics depart-
ments that can contribute to improving calculus programs. Using a theory of change
perspective (Reinholz & Andrews, 2020), the authors focus on the drivers and
strategies related to this improvement objective. Smith et al. study in this chapter
the cases of three universities participating in the “Student Engagement in Mathe-
matics through an Institutional Network for Active Learning” (SEMINAL) network



in the United States. They visited each site and collected different kinds of data:
interviews with different actors, observation data, and visit reports in particular. The
analysis of this data allowed the authors to draw a “driver-strategy diagram” for each
university, related to the improvement aims, the drivers for change, and the strategies
used. Comparing the three cases, they observe that different strategies, depending on
local conditions, can contribute to the changes. Nevertheless, these changes always
require the involvement of many different actors: teachers, but also administrators,
and students. The authors identify the collective work within Networked Improve-
ment Communities (NICs, Bryk et al., 2015) as a crucial lever for change.
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All the chapters in this section present original practice-oriented research:
research about teaching practices and teachers’ work and design-based research
where the practice informs the design of innovative curricula. This section is closely
connected with section 4 since most chapters investigate inquiry-based courses or
the use of inquiry-oriented tasks.

1.2.4 Section 4: Research on University Students’
Mathematical Inquiry

Several studies of university mathematics education suggest that standard forms of
teaching at this level leave too little initiative to students and give them far too few
and limited experiences of mathematics as a creative endeavor. This is also a concern
of many university mathematics teachers, who are typically also researchers with
many such experiences from their own scholarly work. Indeed, what students meet
in most of their courses, is often tightly packed lectures, in which they learn results
and methods from mathematical research that was typically done several decades, if
not centuries, ago, along with more or less closed exercises of application. As
observed by Burton (2004, p. 198), there is thus a considerable “gap” between the
perspectives that learners and mathematicians may get on mathematics. Similar gaps
between students’ experiences of mathematics at university, and the needs they will
face in professions outside of the university after their studies, have been identified
by various scholars (e.g., Bergsten et al., 2015; Klein, 2016). When it comes to both
future mathematicians and future members of such professions, a general hypothesis
is that students need a more creative, autonomous, and conceptually oriented
relationship with mathematics than what is produced by classical coursework.

In view of these and other calls for reform in university mathematics education,
various methods to provide students with lively and inquiry-based approaches to
mathematics, even in large main core courses, are being experimented with and
implemented in universities worldwide. This section presents seven rigorous studies
of such efforts in Canada, Denmark, Finland, France, New Zealand, Spain, and the
United States.

Two chapters relate to inquiry in mathematics courses for students with specific
professional aims outside of the university; these are both based on the anthropological



theory of the didactic. The chapter by Bosch et al. (Chap. 19 of this book) investigates
the use of study and research paths in the teaching of statistics for business students, as
well as in teaching elasticity for engineering students; both areas involve mathematical
elements, but they are taught here, with specific applications and professional needs in
mind. Study and research paths begin with a “generating question” posed in an initial
situation, which stages the work and may also provide information such as data or
sources to consider. This situation and question form the basis of a longer inquiry
process for the students. It turns out that the professional character of the initial
situation, with its staging of both the question and the forms in which students are
to deliver their answers, can be very crucial to the dynamics of students’ inquiry, even
with the initial question being the same.
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Meanwhile, Barquero and Winsløw’s chapter (Chap. 25 of this book) studies
efforts to make students revisit more advanced aspects of the real numbers in the
context of a capstone course for future high school teachers. Here, students have
completed a sequence of standard bachelor’s courses in mathematics, and the course
aims to teach students how to use the mathematics learned there as a resource to
investigate high school mathematics, for instance, by interpreting surprising or
misleading graphs produced by a computer tool which is commonly used there.
The authors observe that even with careful task design, some students fail, as they
misread the requirements: either they consider that informal, “high school like”
methods suffice (while they do not), or they try to apply irrelevant advanced
methods. Others, indeed, succeed.

The remaining five chapters concern inquiry-type instruction in pure mathematics
courses that are not specifically directed towards certain professions. These chapters
employ a variety of theoretical frameworks for didactical design and for analyzing its
outcomes. Hausberger (Chap. 20 of this book) presents a didactical engineering
study carried out in the context of undergraduate abstract algebra. Didactical engi-
neering refers here to the French tradition of design-based research, dating back to
the 1980s, and often relying (as this chapter does in part) on the theory of didactical
situations. Students explore a problematique about seatings at a banquet. With only
elements of group theory as prerequisites, they are able to engage in creative
algebraic thinking, with a fertile interplay between intuitive and formal moves.
Also, more specific actions, proper to mathematical structuralism, such as classify-
ing, generalizing, and identifying, are developed by the students. In these and other
ways, they experience forms of interaction and thinking close to that of the mathe-
matical researcher.

With the chapter by Larsen, Elizondo, and Brown (Chap. 21 of this book), we
move to an inquiry-oriented instructional design in basic real analysis, drawing on
ideas and methods from Realistic Mathematics Education (RME). Students get to
reinvent fundamental ideas behind a classical proof of the intermediate value
theorem while developing, on the way, related results such as convergence of
monotone bounded sequences. Special attention is given to the generation of con-
jectures and sharing more or less correct proposals towards a proof. RME principles
are used to allow a classroom community to engage in a collective, authentic



mathematical activity in which classical proofs emerge from students’ exploration of
carefully designed questions.
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The Extreme Apprenticeship model focuses on developing generic skills through
inquiry-based university mathematics teaching. Rämö, Häsä, and Tuononen
(Chap. 22 of this book) begin their chapter by explaining how generic mathematical
skills and competencies have been theorized by previous research and how Extreme
Apprenticeship has been experimented with at the University of Helsinki as a
proposal for how to integrate their development in standard undergraduate and
graduate mathematics courses, ranging from linear algebra to advanced courses on
abstract algebra. They explain how the details of this proposal were developed over
several years in close connection with more sophisticated descriptions of generic
skills, which (when built into the curriculum) can provide more connectivity and
progression in a study program in mathematics.

Within the context of Calculus, Kondratieva (Chap. 23 of this book) explores
different levels of inquiry called for by student assignments, drawing on theoretical
ideas like the Herbartian schema and praxeologies from the Anthropological theory
of the Didactic. Taking as starting points specific tasks proposed in standard and
reform Calculus texts, she demonstrates how more advanced forms of guided student
inquiry can be generated through careful design of different kinds of activities
which, while based on standard tasks, leave progressively more room for students’
development of advanced forms of mathematical inquiry, such as posing derived
questions and investigating hypotheses that emerge from the initial question.

Finally, Kontorovich, L’Italien-Bruneau and Greenwood (Chap. 24 of this book)
analyze cases of students’ proving activity in an experimental graduate course on
topology based on the commognitive framework. The cases considered unfolding
more or less according to the “proving at the board” approach proposed by Texan
topologist Robert Lee Moore. The authors demonstrate how two individual students
present proofs in contexts such as the finite intersection property of a collection of
closed subsets of a compact set, and also how their commognitive actions in front of
the class reveal subtle differences in their relationship with proof narratives, which
should convince not only the prover but also a more or less concrete audience of the
validity of a given proposition.

To sum up the contributions of this section, we are presented with a wide variety
of cases and theoretical approaches to the highly complex notion of inquiry, as it is
currently conceived in the context of university mathematics education. While
classical “talk and chalk” lectures continue to be important in this context, the
chapters provide different kinds of evidence that lectures can be supplemented or
even replaced by more demanding forms of engaging students in mathematical
inquiry – as participants, rather than mere spectators.

1.2.5 Section 5: Research on Mathematics for Non-specialists

While mathematics for non-specialists has long been problematized, it is only within
the past two decades (or less) that the field has turned to systematically inquiring into



the curriculum, teaching, and learning of mathematics for non-specialists, with a
more focused examination of the mathematics service courses taken by engineering
students and the mathematics that students encounter in their engineering courses. In
the last several years alone, we have witnessed an increased interest in both of these
areas of interest. Hochmuth recently surveyed some of the recent literature on
Service-Courses in University Mathematics Education in the Encyclopedia of Math-
ematics Education (Hochmuth, 2020), and in 2021 the International Journal of
Research in Undergraduate Mathematics published a special issue on mathematics
in engineering education (Pepin et al., 2021). The chapters in this volume further
contribute to these lines of inquiry, covering both mathematics courses for engineer-
ing students and mathematics in engineering or science courses. As a whole, the
chapters in this section provide theoretically grounded insights into pedagogical,
curricular, epistemological challenges, and frameworks for analysis.
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The chapter by Romo Vázquez and Artigue (Chap. 26 of this book) provides an
overview of the field of engineering education by surveying the literature with the
goal of identifying how challenges have been dealt with over time and how they are
produced and re-produced alongside scientific and technological advances, societal
evolution, and emerging concerns. Their historical review includes the case of the
École Polytechnique in France and three International Commission for Mathematical
Instruction studies. Grounded in this historical overview, the authors then tender
examples selected from recent research and development work, illustrating the
progression of theoretical approaches, especially that of ATD, and the opportunities
for future research.

Following nicely from the ATD overview provided by Romo Vázquez and
Artigue, four chapters provide detailed ATD analyses of the praxeologies and
challenges that learners encounter in their mathematics, engineering, and science
courses as well as in the workplace.

In their chapter, González-Martín, Barquero, and Gueudet (Chap. 27 of this book)
demonstrate how ATD praxeological analyses can uncover differences in the way
mathematical tools are used in mathematics courses and engineering courses. They
tender two examples of the outcomes of transposition processes by examining
praxeologies involving mathematics in engineering courses. In the first example,
they review a study that analyzed and compared the use of the Laplace transform in a
mathematics course and in two control theory courses. In the second example, they
highlight the use of integrals in reference textbooks and teaching practices in two
engineering courses, on the strength of materials and electricity and magnetism.
Their chapter concludes with examples of the ATD innovative instructional
approach, study and research paths, aimed at reducing the gap between educational
and professional practices with respect to mathematics for engineers.

The chapter by Peters (Chap. 28 of this book) uses the context of a mathematics
service course for engineers with a focus on complex numbers. In contrast to the
more standard approaches to make mathematics service courses more salient for
engineering students (i.e., approaches that introduce engineering applications or
approaches that make use of innovative instructional strategies such as study and
research paths or project work), Peters presents a third approach, one that takes
mathematical exercises and focuses on establishing and promoting connections to



electrical engineering discourses within mathematical discourses. This is done
without also introducing the engineering context. At the core of this approach is
the ATD concept of institutional dependence of knowledge.
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Rønning (Chap. 29 of this book), in his chapter, reports on the redesign of a basic
course in mathematics for first-year students that is taught in close connection with a
course on electronic system design and analysis. Rønning uses ATD to interrogate
the discourses that develop with the aim of unpacking how the praxeologies in
mathematics and engineering influence and interact with each other. In particular, he
uses electric circuits as a concrete example to demonstrate how one can shift the
emphasis of specific topics as well as change the sequencing of the topics to better
meet the needs and interests of engineering students. Interviews with teachers in both
mathematics and electronics design course reveal the challenges and tensions that
both teachers face.

In contrast to the chapters by González-Martín et al., Peters, and Ronning, all of
which examine praxeologies in either mathematics service courses for engineers or
the mathematics in engineering or science courses, Castela and Romo Vázquez
(Chap. 30 of this book) focus on the opportunities and challenges of designing
teaching sequences based on authentic professional workplace situations. They
present an ATD analysis of praxeologies in three different professional workplace
situations: land surveying, automotive industry, and computer science. One of the
challenges they identify is the felt need to teach students more sophisticated math-
ematics than those employed in normal professional practices. Reasons for this
include the potential usefulness for career advance and the possible need to adapt
to future changes in professional practice.

Three additional papers report on empirical investigations that examine students’
understanding of mathematics that they encounter in their engineering courses. Each
of these papers offers fresh insights into the nuances of student thinking, and each
offers innovative frameworks of considerable potential for future research.

Hjalmarson, Nelson, Buck, and Wage (Chap. 31 of this book) examine students’
reasoning with conceptual problems in signals and systems, a subfield of electrical
engineering. Using student interview data from two different institutions, they
investigate how students interpret, describe, and reason with graphical representa-
tions of signals and systems problems. To do so, they adapt a framework originally
developed to interpret student understanding of derivatives that leverages the con-
structs of concept image and process-object pairs. Their analysis highlights both
students’ challenges and successes in thinking about and translating among multiple
representations of the same signal and opens up possibilities for further adaption of
the use of this framework in other contexts.

Kortemeyer and Biehler (Chap. 32 of this book), in their chapter, examine the
issue of how mathematics and what kind of mathematics is used and needed when
students are asked to solve problems in their engineering course. As a case study,
they analyze tasks on an end-of-year examination in a fundamentals of electrical
engineering course. Their analysis includes interviews with experts to identify the
expected competencies, both implicit and explicit, which were then used together
with theoretically informed approaches to develop an a priori student-expert



solution. This analysis culminated in a transferable framework for the analyses of
exercises, problem-solving strategies in engineering exercises, and typical sources of
errors.
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The penultimate chapter in this section by Jablonka and Bergsten (Chap. 33 of
this book) examines the social and cultural conditions and the institutional context
using student interview data from first-year engineering students. Their analysis,
which is grounded in Bourdieu’s notion of habitus and the dialectic between
experiences and perceptions, contributes to a deeper understanding of students’
appreciation of specificities of mathematical discourse encountered in the core
mathematics, students’ perceptions of the usefulness of mathematics, and their
experiences of studying mathematics as compared to other subjects. Their findings
reflect that success in the service courses depends on recognizing the criteria of pure
mathematics as opposed to mathematical applications or modeling. Their work also
contributes to a theoretically and empirically informed framing of four different
student-perceived modes of the usefulness of mathematics.

The final chapter by Fredriksen et al. (Chap. 34 of this book) is unique from the
previous chapters in that it provides an overview of several dissertations that have
been carried out under the Norwegian Centre for Excellence in Education (MatRIC).
The common focus across these dissertations is the teaching and learning of math-
ematics as a service subject. Indeed, the improvement of student success in these
courses across Norway is a foundational mission of MaTRIC. The research projects
highlighted in this chapter adopt a variety of approaches to address concerns about
teaching development (flipped classroom and blended learning approaches), short-
comings in students’ prior knowledge, use of digital technology in learning, math-
ematical modeling, and exposing causal relationships between learning approaches
and outcomes. Taken as a whole, the chapter sets forth a strong foundation for
continued research that aims to improve student success both in mathematics courses
for non-specialists and for the teaching and learning of mathematics within engi-
neering and science courses.

As the brief overview and highlights of the chapters in this section reveal, the
body of research focusing on mathematics for non-specialists is a rich and growing
domain. While much has been learned, there is clearly a continued need for further
theoretically informed innovations that build on the advances to date and address the
thorny and persistent epistemological, pedagogical, and curricular challenges.
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Chapter 2
Emotions in Self-Regulated Learning
of First-Year Mathematics Students

Robin Göller and Hans-Georg Rück

Abstract This contribution aims at describing and explaining relations between
emotions and self-regulated learning of first-year university mathematics students.
To this end, models of self-regulated learning are discussed considering empirical
findings on studying mathematics at university, emotions are introduced from the
perspective of control-value theory, and these two approaches are integrated in a
joint model of achievement emotions in self-regulated learning. Empirical findings
on the basis of problem-centered interviews with 21 first-year university mathemat-
ics students emphasize the importance of perceived control, but also the perceived
value of mathematical content and exercises for the arousal of emotions as well as
self-regulated learning. These findings contribute to new perspectives for
interpreting some phenomena of university mathematics education as well as for
evaluating the relevance and further development of already existing mathematics
support activities.
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2.1 Introduction: The Transition from School to University
in Mathematics

The transition from school to university in mathematics has become an increasingly
popular subject for research projects in recent years (e.g., Gueudet & Thomas, 2020,
for a short overview). In this context, particular attention is paid to differences
between mathematics at school and at university and the cognitive demands and,
in some cases, the motivational effects associated with these (Gueudet & Thomas,
2020; Liebendörfer & Schukajlow, 2017; Rach & Heinze, 2017; Rach & Ufer,
2020). Besides, it must be considered that the institutionally intended learning of
mathematics differs significantly between school and university. For example, the
time allocated to self-study is significantly higher at university than at school.
According to study regulations at German universities, about 60% of the study
time scheduled for mathematics courses is assigned to self-study.

In such institutional settings, the relevance of self-regulated learning is even
higher than at school. Self-regulated learning can be defined as “an active, construc-
tive process whereby learners set goals for their learning and then attempt to monitor,
regulate, and control their cognition, motivation, and behavior, guided and
constrained by their goals and the contextual features in the environment” (Pintrich,
2000, p. 453). Accordingly, goals, strategies, and the regulation of these strategies
with respect to goals and contextual conditions are essential components of self-
regulated learning that are elaborated differently in different theoretical models (e.g.,
Panadero, 2017 for an overview). The relevance of emotions for self-regulated
learning is included in most of these models, but is often not explicitly detailed
(see Muis et al., 2018 for an exception).

With regard to the learning of mathematics at university, in addition to the goals
of learning mathematical content or solving tasks, exam-related goals and goals
concerning students’ well-being can be identified, which in turn influence self-
regulated learning (Anastasakis et al., 2017; Göller, 2020). Moreover, research in
undergraduate mathematics education has provided important insights into students’
(and experts’) strategies, e.g., by investigating their problem-solving strategies (e.g.,
Pólya, 1945; Schoenfeld, 1985; Selden & Selden, 2013; Sommerhoff et al., 2021),
their activities learning new mathematics (Wilkerson-Jerde & Wilensky, 2011), or
different types of students’ engagement with proofs (Selden & Selden, 2017),
including students’ proof-reading strategies in detail using task-based interviews
(e.g., Weber, 2015) or eye-movement studies (e.g., Panse et al., 2018).

However, the goal to solve the problem, to learn new mathematics, or to com-
prehend a proof is given in these studies by study design. Accordingly, it is not clear
to what extent such strategies are used in “everyday” self-study, or whether they may
be displaced due to competing other goals. For example, there is evidence that
students do not only use such learning and problem-solving strategies, but also,
especially when solving exercises, work in groups, search for solutions on the
internet or in books, or copy solutions from other students (Göller, 2020; Gueudet
& Pepin, 2017, 2018; Haak et al., 2020; Kock & Pepin, 2018; Liebendörfer &
Göller, 2016; Stadler et al., 2013).
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In addition, there is evidence that the transition from school to university in
mathematics also challenges students from an emotional perspective (Hailikari et al.,
2016; Martínez-Sierra & García-González, 2016), for example, being perceived as
frustrating (Liebendörfer & Hochmuth, 2015; Sierpinska et al., 2008), and that such
emotions have an impact on students’ self-regulated learning (Göller & Gildehaus,
2021). In the present chapter, we will examine such interconnections between
emotions and self-regulated learning of first-year mathematics students.

2.2 Theory

In this paper, we aim to theoretically and qualitatively empirically identify relations
between emotions and self-regulated learning in undergraduate mathematics. To this
end, theoretical models of self-regulated learning are discussed in consideration of
empirical findings on studying mathematics at university (Sect. 2.2.1), emotions are
introduced from the perspective of control-value theory (Sect. 2.2.2), and these two
approaches are integrated in a joint model of achievement emotions in self-regulated
learning (Sect. 2.2.3).

2.2.1 Self-Regulated Learning in Undergraduate
Mathematics

Self-regulated learning is often described via cyclical phase models. Within a
forethought phase, students first construct a perception of a given learning occasion
which defines the task (Muis et al., 2018; Winne & Hadwin, 1998). This task
definition is influenced by context, behavior, cognition, motivation, and also emo-
tions (Muis et al., 2018). As a second step within the forethought phase, students set
goals and plan their strategies according to this task definition, which are influenced
by their motivational beliefs such as self-efficacy, outcome expectations, task inter-
est and value, and goal orientation (Zimmerman & Moylan, 2009). Within a
performance phase, these strategies are enacted, monitored and adapted if necessary
(Muis et al., 2018; Winne & Hadwin, 1998; Zimmerman & Moylan, 2009). Finally,
the outcomes of the preceding phases are evaluated in a self-reflection phase. These
evaluations in turn influence the task definition, goal setting and strategic planning of
the forethought phase (Muis et al., 2018; Winne & Hadwin, 1998; Zimmerman &
Moylan, 2009).

The dual processing self-regulation model of Boekaerts (2007, 2011) posits three
goals of self-regulated learning: Expanding one’s knowledge and skills, maintaining
well-being by preventing threat to self, and protecting one’s commitment to the
learning task. Students constantly appraise learning contents and learning tasks in
terms of these goals. If learning contents or tasks are in line with students’ values,



needs, and goals, students are on the “mastery path” (cf. Fig. 2.1), focus on
expanding their knowledge and skills, and use strategies to achieve their learning
goals. If the learning situation is appraised as threatening to well-being (e.g., because
the task is perceived as too complex or associated with negative emotions), there is a
mismatch between the task-intended learning goals and students’ values, needs, and
goals (e.g., feeling safe, respected, self-confident, protected), students’ focus is on
preventing threat to self, and they will use coping strategies like working harder,
focusing on the positive, seeking social support, avoidance, denial, giving up, or
distraction (Frydenberg, 2004) to maintain or restore well-being (“well-being path”).
Students on the mastery path may also appraise a task as threatening, which causes
them to switch towards the well-being path. In this case they can use volition
strategies (e.g., prioritizing goals, time and resource management, Boekaerts &
Corno, 2005) to protect their commitment to the learning task and switch back
onto the mastery path. Also students on the well-being path can use volition
strategies to get on the mastery path (see Boekaerts, 2007, 2011, for a detailed
description of the dual processing theory).
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While the mentioned phase models provide a suitable framework for categorizing
and describing students’ task-related beliefs, goals, strategies, and evaluations on the
mastery path, Boekaerts dual processing model enables a broader view on goals and
strategies which do not need to be exclusively related to learning new content or
solving a task. With regard to the study of mathematics, it can be seen as mentioned
above (Sect. 2.1) that, in addition to learning and problem-solving strategies,
students also use coping strategies, such as searching for exercise solutions on the
internet or copying exercise solutions from others (Göller, 2020; Gueudet & Pepin,
2018; Liebendörfer & Göller, 2016). In addition to these strategies, corresponding
goals can be identified, which are more accurately described in Boekaerts’ dual than
in the phase models described previously (Göller, 2020). Furthermore, there is some
evidence for the importance of emotions for self-regulated learning of mathematics
at university (Göller & Gildehaus, 2021), which will be considered in more detail in
this contribution.

2.2.2 Achievement Emotions and Control-Value Theory

The role of emotions in self-regulated learning has received little attention in
research on university mathematics. Emotions are defined as affective episodes
which constantly mediate between changing events, social contexts and the reactions
and experiences of individuals (Mulligan & Scherer, 2012). Such emotion episodes
comprise various components including appraisals of the situation, action prepara-
tion, physiological responses, expressive behavior, and subjective feelings (Scherer
& Moors, 2019).

Emotions can be characterized by their valence (positive – negative) and degree
of activation (Boekaerts & Pekrun, 2015): Examples of activating positive emotions
are joy and hope, whereas relief and relaxation are deactivating positive emotions.
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Fig. 2.1 An integrated model of achievement emotions and self-regulated learning



Examples of negative activating emotions are anger and anxiety, whereas hopeless-
ness and boredom are deactivating negative emotions. In this contribution, we focus
on joy, relief, anxiety, and hopelessness.
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There is some evidence that positive activating emotions (e.g., joy) induce
intrinsic motivation, focus attention on the learning task, and support flexible
learning strategies and academic performance, whereas positive deactivating emo-
tions (e.g., relief) can have diverse motivational effects, may lead to superficial
learning strategies, and thus variable academic performances (Boekaerts & Pekrun,
2015). Conversely, negative activating emotions (e.g., anxiety) undermine intrinsic
motivation, but can stimulate motivation to avoid failure and thus more rigid
learning strategies which may have different effects on academic performance.
Finally, negative deactivating emotions undermine motivation, are related to task
irrelevant thinking, shallow learning strategies, and thus weaker academic perfor-
mances (Boekaerts & Pekrun, 2015).

Emotions which refer to academic achievement activities (e.g., learning or study-
ing) or achievement outcomes (e.g., grades) are called achievement emotions. Joy,
relief, anxiety, and hopelessness are achievement emotions. The control-value
theory of achievement emotions (Pekrun, 2006) proposes that achievement emotions
are a multiplicative function of two groups of appraisals: (1) The subjectively
perceived control over achievement activities and their outcomes and (2) the sub-
jective values of these activities and outcomes. Both, subjective control and subjec-
tive values can refer prospectively and retrospectively to outcomes as well as to
activities and accordingly result in prospective outcome emotions, retrospective
outcome emotions, and activity emotions. Control describes the prospective, concur-
rent (in action), or retrospective subjective appraisal of how outcomes depend on
actions that can be or have been autonomously initiated and executed (Pekrun, 2006;
Weiner, 1985).

In control value theory, intrinsic and extrinsic values are distinguished. Intrinsic
values refer to the value of an outcome or activity per se, while extrinsic values refer
to the instrumental utility of outcomes or activities for achieving other goals. Out-
comes and activities in control-value theory can be negatively valued, e.g., in form of
the subjective value (respectively cost) of an outcome that is appraised as failure, or
when the effort required by an activity is experienced as unpleasant (Pekrun, 2006).

According to control value theory, joy as prospective outcome emotion is aroused
when subjective control and the value of success is high. As retrospective outcome
emotion, joy is the result of a positively valued outcome (independent of control, see
Fig. 2.1). If the value of failure is high (e.g., because a negative outcome threatens
passing an examination or (respectively, and thus) well-being), high control arouses
relief, medium control arouses anxiety, and low control arouses hopelessness.
Hopelessness is also aroused, when control is low, and the value of success is high
(Pekrun, 2006, or Fig. 2.1).
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2.2.3 An Integrated Model of Achievement Emotions
and Self-Regulated Learning

Figure 2.1 shows a model of self-regulated learning which integrates Boekaerts’
(2007, 2011) dual processing self-regulation model and Pekrun’s (2006) control-
value theory of achievement emotions. The model can also be seen as a cyclical
phase model (cf. Muis et al., 2018; Winne & Hadwin, 1998; Zimmerman &Moylan,
2009) with a forethought phase, in which students define their task and set their goals
according to external and internal conditions as well as their appraisal of the task, a
performance phase, in which learning, problem-solving and coping strategies are
enacted, and a self-reflection phase, in which outcomes are appraised.

( ) ( )

If learning content or tasks correspond to students’ values, needs, and goals, they
follow these phases on the mastery path and use learning or problem-solving
strategies to expand their knowledge and skills. In line with Boekaerts dual
processing self-regulation model, the model includes well-being goals which gain
primacy when a task is appraised to threaten well-being. In this case students use
coping-strategies to restore well-being (well-being path) rather than learning or
problem-solving strategies. Students can use volition strategies to stay or get on
the mastery path although a task is appraised to threaten well-being .

Control-value theory (Pekrun, 2006) enables the inclusion of achievement emo-
tions in this model by looking at perceived control and values of outcomes and
activities. For example, it is hypothesized that a student who expects the (successful)
outcome of a given task to be highly controllable and of high value will experience
(anticipatory) joy (as prospective outcome emotion) and aim at expanding her
knowledge and skills by completing the task. To do so, she will use learning or
problem-solving strategies and monitor her progress. While working on the task, the
task outcome may turn out to be more difficult to control (e.g., due to unexpected
problems) or she might lose interest (negative value). She will experience anger,
frustration, or boredom (respectively, see Fig. 2.1, for details) as activity emotion,
which may lead her to focus on reducing these negative emotions rather than
completing the task. She may use coping-strategies (e.g., seek social support) to
reduce her negative emotions (well-being path) or use volition strategies to stay on
the mastery path. In case of a positive (respectively negative) perceived outcome she
will experience joy (respectively sadness) as well as pride or gratitude (respectively
shame or anger) as retrospective outcome emotion, depending on whether she
attributes control to herself or to others (e.g., her social support). Such retrospective
outcome emotions are in turn assumed to influence internal conditions and thus the
appraisal of new tasks.

Conversely, for example, a student who expects the outcome of a given task to be
uncontrollable is assumed to experience hopelessness as a prospective outcome
emotion, both if the value of success or the value of failure is high. In this case,
the student will rather not try to solve the task using learning or problem-solving
strategies (since he does not expect to control the outcome autonomously with



these), but rather use coping strategies (e.g., seek social support, or give up) to
prevent threat to the self. Yet, the subsequent phases can proceed as in the first
example.
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These two examples serve to provide a brief impression of the possible connec-
tions between emotions and self-regulated learning. As Fig. 2.1 shows, many other
pathways are feasible. In particular, empirical research is needed to determine how,
e.g., anxiety (as activating negative prospective outcome emotion) or relief
(as deactivating positive prospective outcome emotion) influences self-regulated
learning. Hence, in the following we will qualitatively examine how joy, relief,
anxiety, and hopelessness interfere with self-regulated learning of mathematics
students within their first year of study.

2.3 Research Interest and Research Questions

The purpose of the present study is to examine interconnections of the achievement
emotions joy, relief, anxiety, and hopelessness with self-regulated learning of
university mathematics. For this purpose, the following research questions are
investigated:

RQ 1. In which contexts do mathematics students experience joy, relief, anxiety, or
hopelessness within their first year of study?

RQ 2. What roles do perceived control and subjective values play in the emergence
of joy, relief, anxiety, and hopelessness?

RQ 3. How do joy, relief, anxiety, and hopelessness interfere with self-regulated
learning of mathematics students within their first year of study?

2.4 Methods and Research Design

Since it is assumed that the institutional context influences achievement emotions
and self-regulated learning, the institutional settings of the study are presented first,
then the research design is outlined, and finally the data analysis methods are
described.

2.4.1 Institutional Context of the Study

The study was conducted at a German university. Like in many German universities,
the mathematics modules of the first semesters contained lectures and related
exercises, for several study programs (e.g., mathematics, physics, pre-service
teachers). The lectures introduce mathematical theory (e.g., Analysis like in Rudin,
2007), i.e., definitions, examples, theorems and their proofs are presented. Exercises



are handed out every week and have to be worked on by students in self-study.
Students’ solutions are submitted, get corrected and graded, and are discussed in a
separate lesson. In order to pass such a module, a certain number of exercises (often
50% of all exercises) has to be solved correctly and a written exam has to be passed.
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2.4.2 Data Collection

Empirical basis for the results of the present study are problem-centered interviews
(Witzel, 2000) on self-regulated learning with a total of 21 students (14 of whom
were female). Ten interviewees (9 female) were enrolled in a degree program for
mathematics teachers at upper secondary level (gymnasiales Lehramt), seven
(3 female) in the degree program Mathematics B.Sc., two (1 female) in the degree
program Physics B.Sc., and two (1 female) in a degree program for business
education with a minor in mathematics (no further socio-demographic data were
collected).

All interviewees were in their first year of study in their respective programs and
were interviewed up to four times. A first interview period was about 2 weeks before
the first lecture, a second about 4 weeks after the start of lectures, a third just before
the end of the first semester, and a fourth in the middle of the second semester. The
respective interviews had a duration of about 45 minutes. The interviewees were
asked about their strategies, goals, beliefs, and evaluations regarding their study of
mathematics (cf. Göller, 2020, for a detailed description). Emotions were not
explicitly addressed by the interviewer, but they were nevertheless reported by the
interviewees at some points. The interviews were conducted with two cohorts in two
consecutive years between October 2013 and June 2015.

2.4.3 Data Analysis

The interviews were audio-recorded and transcribed completely. To investigate the
research questions listed above, the transcripts were searched for word fragments in
order to identify text passages addressing joy, relief, anxiety, and hopelessness: Joy
was operationalized by the word fragments “freue/freut/freud” (German freuen/
Freude = to enjoy/joy) and “Spaß” (=fun). Anxiety was operationalized by the
word fragments “angst/ängstl” (German Angst/ängstlich = anxiety/anxious),
“panik” (= panic) and “sorge” (German sich sorgen = to worry). Hopelessness
was operationalized by the word fragments “hilfl” (German hilflos = helpless),
“verzw” (German verzweifeln/Verzweiflung = (to) despair), “depri” (German
deprimiert/deprimierend = depressed/depressing), and “frust” (=frustration). Relief
was operationalized by the word fragments “erleichter” (German Erleichterung/
erleichtert = relief(ed)), as well as by passages were students reported a reduction
of anxiety, stress, or hopelessness.
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The transcript passages (between two interview questions) that contained these
words were then analyzed in more detail using a mixed approach of concept-driven
and data-driven development of codes (Kuckartz, 2019). In this way, subcategories
of joy, relief, anxiety, and hopelessness were developed, with particular attention to
the context of these passages and connections to statements related to control and
value. To illustrate possible further steps in coding, some of the passages cited here
were coded deductively with these codes, resulting in codings that reached beyond
the keywords mentioned above. Finally, to approach RQ 3), overlaps of coping and
volition strategies given in the literature (Boekaerts, 2011; Boekaerts & Corno,
2005; Frydenberg, 2004) and found in previous analyses of the data (Göller, 2020,
2021, 2022; Göller & Gildehaus, 2021) were considered and discussed with regard
to theoretical implications and explanations by means of the integrated model of
achievement emotions and self-regulated learning (Sect. 2.2.3). The interview
excerpts presented here were translated from German by the authors.

2.5 Results

2.5.1 Joy, Relief, Anxiety, and Hopelessness in the First Year
of Study

To answer RQ 1), Table 2.1 provides an overview of the contexts in which joy,
relief, anxiety, and hopelessness were mainly reported by the interviewees.

Joy (as a retrospective outcome emotion) was primarily experienced when
students were able to solve an exercise task autonomously. Although joy was also
experienced in the context of evaluations by others, such as feedback on the
exercises (e.g., “I am always happy when I have more than 50 %.”) or the exam
(e.g., “I passed both exams last semester. I was very happy about that.”), both the
number of reports and the intensity experienced with regard to the joy of having
solved an exercise task successfully on one’s own were higher. In addition, students
seemed to have certain preferences in terms of their enjoyment of certain content or
tasks (cf. Sect. 2.5.2).

Reliefwas predominantly experienced in the second semester and was reported in
various forms by all students who participated in the interviews at that time. One
reason for this was that in the first semester, the anxiety of not being able to solve
50% of the exercises or not passing the exams was a prevalent emotion. At the same
time, many students experienced hopelessness when they feel unable to solve the
exercises autonomously (low control regarding the outcome of the exercises) and did
not know what to do to understand the content, or when solving the exercises and
understanding the content demanded too much time and other resources (overload).

A major factor for (exam) anxiety was the uncertainty of not being able to
determine which contents and skills are essential for the exam and further studies,
which makes everything seem important (overload). This can also explain the relief
in the second semester, after having experienced an exam. The following interview



excerpt provides good insight into this shift from anxiety to relief to joy by a
relatively successful (female mathematics major) student1:
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Table 2.1 Codes and example quotations of contexts joy, relief, anxiety, and hopelessness was
reported (searched keywords bold)

Code Example quotations

Joy success solving
a task

When I get something done, I’m happy, I cheer.
And then, bam, I had solved this task! And I was so happy that I got it right!
That’s cool, I really enjoy that.

Joy certain tasks/
content

For example, with these ranks, with the matrices and so on. I found that
really exciting. I had a lot of fun with it.

Relief exam
experience

After seeing the first exams, I thought to myself, okay, don’t stress so much.
So, these exams have really had a very big impact on me.

Relief strategies At the moment, I’m not afraid of not getting the 50 percent. If necessary, I
would copy [solutions], I have to admit. That’s clear. But I think now, it
should work out.

Anxiety exam I’m also pretty scared of the exam because I don’t know what to expect. . .

Anxiety exercises And now I’ve done maybe half of the tasks in three days. That’s when you
start to panic a bit.

Hopelessness low
control

. . . and then at some point you get frustrated, because it’s just stuff that
you don’t understand anymore.
It’s depressing when you’re about halfway somewhere in the middle of
nowhere and you don’t know what to do.

Hopelessness
overload

And just this inner voice that keeps saying: “Yes, you still have a whole
math exercise sheet, which takes forever.” that [. . .] somehow already
completely destroys me psychically, knowing that I still have such a huge
amount of work ahead of me that I somehow still have to do. So somehow
that already makes me psychologically totally unstable, unhappy, I don’t
know. It frustrates me.

Before the first exam, I didn’t know what I should learn. I didn’t know how I should prepare
myself, because somehow, I didn’t quite get to grips with proofs and how to come up with
such a proof.2 I was totally afraid that there would be a proof, because somehow, I didn’t
know at all what to expect.3 [. . .] And then I saw the first one [exam] and saw that I only had
to calculate.4 I had only one/ uh two proofs. [. . .] And when learning, I just took the old
exercise sheets and calculated them again, so the calculation tasks, where you could
imagine that they would come up. [...] And then I also looked at the smaller proofs. And,
yes, that went quite well. My proof was also completely correct. That was totally awesome.5

[. . .] That was quite funny, because I spontaneously started to prove it. And I looked
afterwards, and I had it just right, I thought: Yes! That’s how it should be. I was totally
happy about that.6

1Associated codes are given in the footnote. See ESM for the original in German.
2Hopelessness low control.
3Anxiety exam.
4Relief exam experience.
5Joy success solving a task.
6Joy success solving a task.
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The relief in the second semester can also be explained by the fact that students
apparently develop learning, problem-solving and coping strategies in order to be
able to cope with the demands more effectively (cf. Sect. 2.5.3). The following
interview excerpt illustrates the emotional roller coaster ride from the first to the
second semester:

It was an absolute torture for me [in the first semester]. It was just, you had to do these f***
exercises, and nothing worked.7 And now all of a sudden, it’s flying, and life is a lot easier
too.8 It’s no joke. [Before] You just handed in your homework on Thursdays, and you were
happy. You were happy as cheese.9 And then the next one came around.10 And now it’s just
that you think to yourself like this: Yes, good, the next exercise is here. Then I’ll start on it
soon. But it doesn’t weigh so heavily on your shoulders if you allow yourself a day to do
something other than homework.11 Before it was like this, I always had in the back of
my mind: Ha, I still have to do these stupid exercises. I still have a week, but it always takes
me so long12 and I can’t do it.13 And what if they are even harder than the last time?14

Because it doesn’t get easier and stuff. And I couldn’t sleep. I slept a maximum of three
hours at night, it was like that for weeks, before Christmas and even after Christmas, that I
just, I couldn’t sleep. [. . .] I always had everything in my head and yet at the same time I had
nothing in my head. I have always forgotten everything. [. . .] And now that I know that I’ll
probably be able to do it, I think to myself, okay. Then I’ll take three or four days for it, I’ll
manage that. [. . .] Then I can look forward to a weekend and just chill out with my boyfriend
and so on.15 Then I just start on Monday. And no more Saturday and Sunday evenings where
I sit there with my computer and stuff.16 That was really terrible. So that was really
disgraceful. And now that you know so much more and also remember it, it’s really fun
when you get a homework done. That’s really cool, yeah. That’s really good.17

2.5.2 The Roles of Perceived Control and Subjective Values
in the Emergence of Joy, Relief, Anxiety,
and Hopelessness

The previous subsection (Sect. 2.5.1) already demonstrated the importance of
perceived control for the emergence of joy, relief, anxiety, and hopelessness: Joy
was primarily aroused when a task was solved autonomously (positive outcome, and

7Hopelessness low control.
8Relief strategies.
9Joy success solving a task.
10Hopelessness overload.
11Relief strategies.
12Hopelessness overload.
13Hopelessness low control.
14Anxiety exercises.
15Relief strategies.
16Hopelessness overload.
17Joy success solving a task.



attribution of control to the self). Exam-related and exercise-related anxiety, as well
as hopelessness when students feel unable to solve the exercises autonomously or do
not know what to do to understand the content can likewise be seen as a lack of
perceived control regarding outcomes or strategies to influence these outcomes
positively. In the second semester, students felt more able to determine what content
and skills are essential (e.g., based on exam experience) and developed strategies to
better manage the demands of studying mathematics, which increased perceived
control and could explain relief. These patterns are in line with control-value theory,
since it can be assumed that passing exams and exercises has a high (extrinsic) value
for the students (value of success for joy, value of failure for relief, anxiety, and
hopelessness).
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In addition to these extrinsic values which are induced by the institutional setting,
at least three other values were found to influence the total value appraisal of
mathematical content and tasks: (1) the perceived difficulty, (2) the perceived utility
value, and (3) the intrinsic value of content and tasks.

The perceived difficulty of content and exercises in turn was influenced by the
social context.

Well, because you’re usually not the only one or the only one in math, who despairs, it is
actually okay. So as long as you have some kind of contact with your peers, it works. I mean,
you’re usually not alone. If an exercise is completely difficult, then there are at least five
other people you know who can’t do it either. And that’s always a little comfort. But of
course, it’s depressing when you see people who can do it easily.

In this social context, the difficulty of the content and exercises was considered
rather high, which increases the value of success and decreases the value of failure,
which in turn may explain relief (comfort) here. However, the fact that others could
solve exercises easily decreases the value of success and increases the value of
failure, which explains hopelessness (depressing) here. The generally perceived high
difficulty allows small successes to be valued highly, which increases joy:

And that, I think, is very difficult. Especially for students who have always been the best
[at school]. And always had good grades. And then when you come here, and you’ve only
got 50 % on your exercise sheet and everyone jumps for joy when they’ve got the 50 %.

The perceived utility value of mathematics content and tasks mattered to some
student teachers, who often considered it rather low when they did not see many
similarities between school and university mathematics (e.g., “I don’t see where I
could use this in school”).

The intrinsic value of content and tasks depended on individual preferences.
Evidently, there seem to exist differences in student preferences that do not change
much during the first year of study. Some students enjoyed calculations (and
mathematics that is familiar to them and similar to what they did in school) and
tended to dislike proofs:

What we’re doing right now is at least a little bit more fun because it’s the math that I
remember from school. You get your instruction, you get your rule, and then you calculate
according to it. That’s what I like about math. That’s why I wanted to study math, because I
enjoy it. Because once you can do it, you can do it. And then you can do the calculations. But
this proving, uh, I’m going crazy with it, really.
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Others rather preferred proofs and new content:

What I found really fun were some of the proofs. I liked them very, very much. I really
enjoyed them. I sat on one of those for quite a long time, because I really wanted to complete
it. I also had some problems, but I was happy. At the latest at the moment when you write
q.e.d. on it, you are just happy. Because then you have proven it, on your own, you have
thought about it, you have just proven something. And if it’s correct in the end, then it’s just
wonderful.

In addition, these quotes show that perceived control is also important for intrinsic
values.

2.5.3 Joy, Relief, Anxiety, Hopelessness, and Self-Regulated
Learning

As we have seen in the previous subsections (Sects. 2.5.1 and 2.5.2), perceived
control is a major concern in university mathematics education in terms of achieve-
ment emotions. In case of low perceived control, the exercises can be seen as a major
threat for students’ goals in the given institutional setting: both from an emotional
point of view (as anxiety and hopelessness are aroused) and with regard to the
success of the study as a whole (e.g., the long-term goal of passing the module or
study program). Accordingly, if perceived control is low, coping strategies (such as
working harder, focusing on the positive, seeking social support, avoidance, or
denial) or volition strategies (such as prioritizing goals, time and resource manage-
ment), are theoretically expected to be used to stay (at least partly) on the mastery
path, and protect the self and long-term goals. The interviews support this assump-
tion (cf. Table 2.2).

In terms of goals, this means: The institutionally predetermined goals (passing the
exam, achieving 50% of the exercise points) had the highest priority among the
students surveyed here (prioritizing goals). Thus, if perceived control is low and
these goals are threatened, subordinate goals (e.g., understanding lecture content,
solving exercises autonomously) are adjusted (e.g., to understanding only certain
parts, comprehending solutions to exercises).

In terms of strategies, this means: If perceived control is low and, for example, the
goal of achieving 50% of the exercise points is threatened, students will try to
complete exercises by working harder, seeking social support (which ranges from
working collaboratively with others on the exercises to copying exercise solutions
from others), searching for ideas or solutions in books, internet, etc., or (in most
cases) using all of these strategies together. The following interview excerpt pro-
vides a good illustration of this process:

Tuesday at noon we have two and a half hours off. All from my math crew. And then we
always sit together and try to solve the algebra exercises. After the two and a half hours we
usually realize that we have solved maybe one and a half problems and have no idea about
the rest. Since the submission deadline for the exercises is on Thursday [. . .], the panic
breaks out at the latest on Thursday morning, when we sit together for another two and a



half hours. Because still no one has a clue about two tasks. And then we talk or write to other
math people, where most of them have just as little idea as we do, and then at some point we
just send the solutions back and forth, copy them and hand them in.
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Table 2.2 Codes and example quotations of some coping and volition strategies

Code Example quotations

Working harder Monday I was really working on the exercise sheet until half past three in
the morning, because I had to hand it in on Tuesday.

Seeking social
support

Sometimes I also asked other students if I didn’t understand something.

Working
together

And then we talk about it and come up with the solution. Together.

Copying Because we have a study group now, and somebody always has the
solution. And most of the time I just copy them to get my admission [50%].

Resource
management

If I can’t get any further, I read in the book or on the internet and try to find
a solution.

Adjusting goals And I think that’s just the problem at the beginning, that you have to really
overpower yourself, but also accept that sometimes it doesn’t get better than
poor.

Focusing on the
positive

And then I think to myself, okay, I haven’t given up on it so far. That’s pretty
good.

Avoidance [trying to] sit down, understand everything again. I think that would just
frustrate me for the whole semester.

Although such coping strategies help to achieve institutionally predetermined goals,
they do not seem to be supportive of solving exercises autonomously, which in turn
is the main reason for joy (cf. Sect. 2.5.1). In this way, such strategies reflect back on
perceived control and thus on achievement emotions.

At this point, the importance of values for achievement emotions and self-
regulated learning becomes apparent: With a focus on the value of failure (e.g.,
not achieving 50%, or not passing the exam), most of the students interviewed here
had developed strategies for the second semester which increased their perceived
control over not reaching 50% of the exercise points or failing the exam. Accord-
ingly, there was a shift from anxiety and hopelessness towards relief (cf. Sect. 2.5.1).
With a focus on the value of success (e.g., understanding lecture content, solving
exercises autonomously), however, these strategies were not necessarily suitable to
control these positive outcomes. Additionally, some students rather did not value
lecture contents and exercises (cf. Sect. 2.5.2). As a result, some students did not
enjoy their mathematics study which impacted their motivation:

I can’t do anything, I don’t understand anything, it’s totally screwed up. I don’t have any
motivation anymore, it’s just gone down the drain, already last semester.

Others valued content and exercises and had developed strategies to control their
success:

This precision, however, is exactly why I started studying math, and now I see that it can be
done much more precisely. And I’m enjoying it even more. [. . .] I actually think Christmas
was one of those clicking moments. Before Christmas, I was so incredibly in despair. [. . .]
That was the moment when you realized: You are no longer in school here. When you



realized that this hasn’t much to do with school mathematics anymore, you should really get
rid of all that. And I think that was the moment when I could best get involved in the
mathematics that is here at the university. [. . .] And then all of a sudden, I started to
gradually understand more and more. And somehow also got better at the exercises and so
on. That has somehow given such a push forward.
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But even if students were not able to solve exercises autonomously, they could still
achieve positive emotions towards their mathematics studies by setting more con-
trollable goals. The following interview excerpt shows that this is possible even for
students who rather prefer calculations to proofs (if they are able to define goals that
they can value and control):

As I said, calculations with such things that you have to find somehow. That is, not to prove
or not to show, but to find. I’ve always enjoyed that. Or in general, that I still sit in the
lecture, although the lecture hall consists of 25 people, meaning all the others are no longer
there. And you sat in the first lectures, you were so desperate yourself. And then your friend
sits next to you and she’s writing with someone who’s also studying math, and she’s just
writing: “Yes, I’ve just dropped math, I’m doing a bachelor’s degree in biology now.”
Where you can think, oh God! Actually, you don’t understand anything too. But I’m still
somewhat proud of the fact that you’re doing what not everyone would do, that you’ve still
kept it up until now. I also know a lot of people who somehow learn with us or something like
that, who just copy. So, they really just sit with us. And then they wait until we’ve got
something worked out, written it down. Then they just copy it to get points again. And hand
that in. And they know that too. I don’t know how they want to write the exams. Because I am
somehow still proud of myself that I still understand everything that I have calculated so far.
I didn’t come up with it myself, but at least I understood the procedure. That’s why this
already gives me some joy somehow. [. . .] I still enjoy studying math, even though I don’t
keep up very well or can’t do everything myself.

Such emotions and adapted goals interfere with corresponding strategies.

2.6 Discussion

2.6.1 Discussion of Results

The results show that mathematics students experience achievement emotions in
sometimes very pronounced forms and that these emotions interact with self-
regulated learning in a way that should not be underestimated. They also show the
predominant importance of perceived control, but also of a positive valuation of
content and exercises for the arousal of such emotions as well as self-regulated
learning. The relationships found between perceived control, values, and achieve-
ment emotions are in line with control value theory (Pekrun, 2006).

The results also demonstrate the importance of considering volitional and coping
strategies (as, e.g., described in Boekaerts’ (2011) dual processing self-regulation
model), in addition to learning and problem-solving strategies, for a thorough
description and understanding of students’ strategies in their engagement with
first-year university mathematics. In summary, the model proposed in Sect. 2.2.3



(cf. Figure 2.1) seems to be well suited to describe the complex relationships
between perceived control, values, achievement emotions, and self-regulated learn-
ing in higher mathematics education. In particular, it can help to explain some
phenomena of university mathematics learning, such as:
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1. Seeking social support, which may range from solving exercises collaboratively
in study groups to copying exercise solutions from others (which are well-known
strategies used by mathematics students, Göller, 2020; Haak et al., 2020;
Liebendörfer & Göller, 2016; Stadler et al., 2013), can be seen as a consequence
of perceived too low control and thus as a coping strategy to reduce anxiety and
hopelessness. The same applies to the use of external resources, such as searching
for solutions in books or on the internet (Göller, 2020, 2021; Gueudet & Pepin,
2017, 2018; Kock & Pepin, 2018)

2. Conversely, while these coping strategies support the accomplishment of institu-
tional requirements, they do not necessarily support perceived control with
respect to autonomous solving of exercises or understanding lecture content. In
line with control-value theory, the results indicate that such coping strategies are
useful to reduce anxiety and hopelessness but rather not to increase joy. Given the
known difficulties of mathematics students in the transition from school to
university (Gueudet & Thomas, 2020), such results may contribute to the expla-
nation of the often observed decline of interest and motivation for mathematics in
the first semester (e.g., Kolter et al., 2016; Liebendörfer, 2018; Rach, 2014) and
the sometimes reported dissatisfaction of (especially teacher) mathematics stu-
dents with the mathematical content of their studies (e.g., Gildehaus &
Liebendörfer, 2021; Göller, 2020; Mischau & Blunck, 2006).

3. Joy is primarily experienced when students are able to solve exercises autono-
mously. A high value of autonomous exercise solutions (e.g., due to a high
intrinsic value, or because the difficulty of exercises is considered high the social
environment) provides a high level of joy when exercises can be solved auton-
omously. Thus, interventions ideally focus on improving both perceived control
and intrinsic value (cf. Sect. 2.6.2).

4. If exercises cannot be solved autonomously (low control), an adjustment of goals
(e.g., understanding exercise solutions instead of solving exercises oneself)
enables a positive valuation of outcomes that are easier to control. From the
theoretical perspective of this chapter such adjustments of goals can be
interpreted as emotion regulation strategies for a participation in university
mathematics that enable an arousal of joy and a reduction of frustration (Göller
& Gildehaus, 2021). In addition, from this perspective, a devaluation of university
mathematics (e.g., because of a perceived low utility value for future teachers,
which is sometimes reported, Gildehaus & Liebendörfer, 2021; Göller, 2020;
Wenzl et al., 2018) can be interpreted as an emotion regulation strategy to reduce
frustration (Göller & Gildehaus, 2021). Of course, such explanations cannot be
exhaustive, since, for example, personal values, goals, and sense of belonging,
the social environment, cultural expectations, and the like will also have an
influence (Bergey, 2021; Gildehaus & Liebendörfer, 2021; Lahdenperä &
Nieminen, 2020; Solomon, 2007).
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2.6.2 Implications, Limitations, and Outlook

Difficulties of mathematics students at the transition from school to university are
well documented (Gueudet & Thomas, 2020) with particular attention to differences
between mathematics at school and at university and the cognitive demands or, in
some cases, the motivational effects associated with these (Gueudet & Thomas,
2020; Liebendörfer & Schukajlow, 2017; Rach & Heinze, 2017; Rach & Ufer,
2020). The results of this chapter indicate that investigating emotions associated
with these difficulties can contribute to a better understanding of transition problems.

Implications of this work are, first, to raise awareness of the importance of
emotions in learning mathematics at university. From this perspective, strengthening
perceived control, which has to be newly established due to the difficulties in the
transition from school to university, would be a first starting point for interventions.
Possibly, this can be addressed in the design of courses by a stronger focus on
opportunities to increase perceived control or to enable experiences of success (e.g.,
by offering practice exams, or at least partially also exercises that can be solved by
many students). In addition, individual support, like it is offered in mathematics
support centers (e.g., Lawson et al., 2020; Schürmann et al., 2021), seems to be a
promising approach to promote the development of mathematics-specific learning
and problem-solving strategies, and thereby improve students’ control over their
learning progress by providing them with agency.

A second starting point, from this perspective, are the values related to university
mathematics. The institutional conditions existing in this study, in particular the
achievement of 50% of the exercises and the exams, act as a clear driver of students’
strategies and emotions in this study. They induce a high extrinsic value, which,
however, tends to emphasize the value of failure and thus (especially in the case of
low perceived control) rather arouses anxiety and hopelessness (cf. Sects. 2.2.2 and
2.2.3). There is some research on tasks to bridge the gap between school and
university mathematics and demonstrate connections, especially for pre-service
teachers (e.g., Bauer, 2013; Eichler & Isaev, 2017; Hoffmann, 2021; Neuhaus &
Rach, 2021). From the perspective of expectancy-value theory of motivation
(Wigfield et al., 2017), however, such tasks probably primarily address the utility
and attainment value of university mathematics, while their significance for intrinsic
values needs to be investigated in more detail. Overall, it is unclear how a positive
(intrinsic) valuation of university mathematics content can be achieved, as prefer-
ences appear to be relatively stable. However, perceived control apparently plays an
important role here as well (respectively the closely related concepts of perceived
competence and autonomy, Liebendörfer, 2018; Ryan & Deci, 2017).

When interpreting the results, the small sample size, the institutional setting, and
the theoretical framework must be taken into account. As was pointed out at several
places in the chapter, the institutional setting in which the study took place, and in
particular the institutionally set conditions (50% limit, exams, lectures, exercises,
etc.), but also the cultural context of the study, with explicit and implicit messages of
students’ school and university instructors, peers, the interviewer, and the broader



culture they all act in, probably had a significant influence on the results of the study.
Moreover, by searching for word fragments, the analysis for RQ 1 and RQ 2 focuses
on only part of the data, while the answers to RQ 3 proposed here are composed of
theoretical considerations and results of previous studies, which should be more
systematically verified and grounded in the data in future studies. The theoretical
perspective proposed here is, of course, only one of many possible ones for describ-
ing the phenomena presented here. Accordingly, further studies are desirable that
investigate relationships between achievement emotions and self-regulated learning
of undergraduate mathematics students in different institutional settings as well as
from different theoretical perspectives to reveal overarching relationships and pos-
sible approaches for the design of innovative mathematics courses or institutional-
ized individual support at university. In general, as the present study indicates, a
stronger inclusion of emotions in research on undergraduate mathematics education
seems to be a promising approach for explaining and understanding student learning
and performance of mathematics at university.
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Chapter 3
The Unease About the Mathematics-Society
Relation as Learning Potential

Johanna Ruge

Abstract In this contribution, I present an inquiry that was prompted by an empir-
ical observation that emerged in interviews with student-teachers: Speaking about
their beliefs about mathematics and its teaching and learning was disrupted by
expressions of unease about popular myths related to their future profession and
the current status of the relation between mathematics and society. Based on a
theoretical position of the subject-scientific approach, that also vague feelings –
such as unease – entail the potential to gain further insights into the object at stake, I
analysed its potential for learning. Since the unease is related to beliefs, I take a
closer look at, and formulate a critique of, current trends in belief research and their
practical implications. Instead of repeatedly designing more teaching interventions
for students to align with certain beliefs along the way, I propose to understand the
unease as a starting point for an intentional and collaborative learning process of
mathematics education scholars and students.

Keywords Mathematics teacher education · Subject-scientific approach · Critique
of belief-research · Reciprocal learning · Shared struggle · Mathematics-society
relation

[T]hinking is essentially the possibility of reproducing real contradictions in a
contradiction-free reasoning so that they can be recognized as aspects of reality and be
overcome in practice. [. . .], we ourselves are part of the society which we have to reproduce
in thinking. At first glance, this implies a kind of circle, but it is one that can be overcome by
epistemic distance (Holzkamp 2013a, p. 22).
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3.1 Prelude

For my research on learning experiences of pre-service mathematics teachers at the
university, I conducted interviews with student-teachers. In Germany, the initial
education of future teachers is split into two phases: The first phase is situated at the
university and the second phase takes place in school and in specific seminars
outside the university. In contrast to the second phase, the first phase does not
contain immediate vocational requirements and stands for the academic part of the
professional development: the socialisation into the respective academic field
(s) (Blömeke, 2001; Wenzl et al., 2018). My work is situated within the university
part of mathematics teacher education (the first phase) and addresses the
socialisation of student-teachers into the academic field of mathematics education.
This socialisation has to go beyond forming a solid understanding of the mathemat-
ics present in school, as teachers are also expected to be representatives of mathe-
matics as an academic subject. However, academic socialisation into mathematics
education is specific, and differs from socialisation into the two separate academic
disciplines of mathematics and education: the structure, rationale and interconnec-
tedness of the selected topics are of greater importance than their level of detail,
compared with studying a single discipline (Blömeke, 2001).

One important aspect of the socialisation of student-teachers of mathematics is
the negotiation of attitudes and beliefs towards the subject matter: mathematics and
its teaching and learning.1 In this chapter, I present an inquiry of the popular research
strand that focuses on attitudes and beliefs, known as belief research. This inquiry
was prompted by an empirical observation, which led to a theoretical reflection:
Student-teachers’ talk about beliefs about mathematics and its teaching and learning
was disrupted by expressions of unease about popular myths related to their future
profession, and linked to current struggles in forming the relation between mathe-
matics and society. My attempts to understand the implications of this unease for the
practice of mathematics teacher education have led me to pursue the following
question:

How can the unease with the relation between mathematics and society [in short:
mathematics-society relation] be understood as a learning object that holds a potential
[in short: learning potential] for, both, the further development of mathematics teacher
education and the academic discipline of mathematics education?

My pursuit of this issue led me to formulate a critique of belief research that goes
beyond an inner-scientific debate of adequate definitions and suggestions of refine-
ment to a critique of the practical implications of belief research. At the core of my
critique is the learning theory underlying current belief research, which forecloses
possibilities for, both, student-teachers’ learning and the development of the

1Because of the importance of interconnectedness for mathematics education, I consider both as
common subject matter.



academic discipline. In the discussion, I propose an alternative that is based on
understanding the unease as a shared learning potential.
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The chapter draws on empirical work and theoretical inquiry, which is reflected in
an alternative-to-the-usual text structure:

First, I introduce my theoretical positioning: the subject-scientific2 approach
[Subjektwissenschaft] (Sect. 3.2) and its categories (Sect. 3.2.1). This approach
offers an understanding of learning (Sect. 3.2.2) that integrates the societal dimen-
sion (Hochmuth, 2018; Holzkamp, 1995) and allows to relate learning to ongoing
social struggles, via the learning object at stake. Second, I present the empirical
observation of unease (see above). The unease – an initially language-less and rather
vague feeling – points to a societal dimension that relates to students’ learning
conditions and popular myths about mathematics (Sect. 3.3.1) and mathematical
ability (Sect. 3.3.2). Reactions at conferences regarding this empirical observation
(Sect. 3.3.3) have led to the third topic, an inquiry of the current belief research (Sect.
3.4). In Germany, belief research is often related to the double discontinuity (Klein,
1908) and linked to programmes situated at the beginning of university studies that
seek to foster a change in future teachers’ beliefs (Sect. 3.4.1). Internationally,
prospective teachers’ participation in their own professional development is of a
greater concern (Sect. 3.4.2). As a fourth topic, I interrogate the learning theory
underlying current belief research. A reformulation of the concern of belief research
allows me to understand the unease as common interest of belief research endeav-
ours and student-teachers (Sect. 3.5). Finally, this allows me to discuss practical
implications of understanding the unease as a learning potential, even though these
implications clash with current institutional learning conditions (Sect. 3.6).

3.2 Subject-Scientific Approach

The subject-scientific approach originated from a Marxist-oriented critique of psy-
chology and provides categories for analysing and understanding human actions
within capitalist societies (see Holzkamp, 1972, 1985; Markard, 2010).3 These
categories also allow to explicate current restrictions within societal and institutional
arrangements, e.g., university teacher education programmes, and
conceptualisations within theories, e.g., underlying learning theories. Furthermore,
they provide the potential to think beyond current restrictions by including a well-
formulated conception of humanity and social theory, which can only be hinted at in
the following.

2Here, ‘subject’ refers to human beings and their subjective perspectives, not to the subject of
mathematics.
3Introduction in Spanish: Vollmer and Holzkamp (2015); English introduction: Tolman (2013);
Selected writings in English: Schraube and Osterkamp (2013).
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3.2.1 Fundamental Assumptions and Subject-Scientific
Categories

A fundamental assumption is that “human beings [are] producers of the life conditions to
which they are simultaneously subject” (Holzkamp, 2013a, p. 20). Thus, the relation
between the individual and societal conditions is regarded as being dialectical. All
human actions are understood as societal-mediated, which opposes a view that assumes
that the individual is determined by the structure of society, or by immediate circum-
stances. This approach calls into question an external control over individuals and
criticises research endeavours that seek to provide knowledge for the manipulation,
management or operating of individuals or their psychological processes (Markard,
2010), which is partly also present within belief research (Sect. 3.5). Rather, the reasons
for and meanings of human practices – such as learning, teaching, thinking, doing
mathematics, etc. – are of interest for a practice-oriented research. Nissen (2012)
summarises the importance of seeing practice in relation to societal conditions: “praxis
is the general process of production in which we humans provide conditions for the
reproduction and development of our cultural modes of life” (Nissen, 2012, p. 110), in
which human practice is understood as “the reflexive and anticipatory productive
provision of conditions of life that accumulates [. . .] into a contradictory cultural
development and recreates ourselves” (Nissen, 2012, p. 37). The analytical movement
of researching practice does not take practices and their arrangements for granted as a
neutral field but always implies to look behind superficial appearances (Nissen, 2012,
p. 110). Practice in general, and thus also knowledge (re-)production, in particular, are
conceptualized as containing a transformative creativity (Nissen, 2012, pp. 117–118).
Knowledge can be regarded as shared objects of/within practice: formerly subjective
activities that have been externalised and generalised and which by now are generalised
societal action possibilities [verallgemeinerte Handlungsmöglichkeiten]. This perspec-
tive on knowledge highlights its political nature. Knowledge, in general, and learning
objects in particular, always refer to the ambiguous, conflictual and contradictory nature
of social/societal reality (Marvakis & Schraube, 2016, p. 205). They are thus always
embedded in contradictory societal meaning structures and their endless networks of
meaning. For example, mathematics is credited a high relevance for social development
because it makes everyday practices calculable, and it is even ascribed to mathematics
that it holds the ability to provide unambiguous solutions to practical problems. The
progress of mathematics, on the other hand, is based on a detachment from the ambigu-
ities of practice (for further elaborations of the complexities of current mathematics-
society relation, see e.g., Nickel et al., 2018).

Besides relating knowledge to its societal-mediatedness, the subject-scientific
approach seeks to include subjective perspectives. Including subjective perspectives
into, resp. addressing subjectivity in research, does not aim to classify nor to evaluate
individuals but to gain an understanding of their actions from their specific
standpoint – e.g., as learners, as teachers, as researchers, as persons identified to
be mathematically able, etc. This entails going beyond a mere reference to immedi-
ate human experience and “includes the notion that humans do not just live their life



in a world, but are actively engaged in the making of the societal world on the basis
of their experience and action, which in turn is re-making themselves” (Schraube &
Højholt, 2019, p. 9) and the shared practice in which they participate. From this
perspective, socialisation is not a one-way affair, but a reciprocal task. Socialisation
does not only involve an acquisition of current or desired practices, but also
responsibility for working towards (necessary) changes in the professional field.
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A central characteristic in all categories of the subject-scientific approach is the
twofold possibility [doppelte Möglichkeit] to either reproduce restrictive conditions
or the (however small) possibility to extend established practices and alter societal
conditions. This is also reflected in the analytical core-category action potence
[Handlungsfähigkeit] that describes the individual’s opportunities and constraints
to act from her or his specific position within societal conditions (Holzkamp, 1985),
in the analytical split of the category into two alternatives: “First, restricted action
potence [restriktive Handlungsfähigkeit] stands for a modality of alignment with or
subjection to given power structures describes the safekeeping of one’s own action
potence at the cost of the (re-)production of restrictive conditions. Second, general-
ised action potence [verallgemeinerte Handlungsfähigkeit] is directed towards
extending one’s own control over restrictive conditions, and thus entails the possi-
bility of overcoming existing power relations, in alliance with others.” (Ruge et al.,
2019a, p. 752).

Psychological processes – such as thinking and emotions – are grounded in the
particular individual’s concrete life situations that are always embedded in social
reality. Emotions and affects, also negative ones, are not considered as hindrances
for gaining knowledge per se, rather they may provide valuable insights about the
respective social reality (Holzkamp, 1985, 2013a; Osterkamp, 1978) – also if they
are initially language-less and cannot be formulated in a precise manner. Thus, a
feeling of unease can be a starting point for gaining knowledge.

3.2.2 Subject-Scientific Understanding of Learning

Learning can be analytically4 split into a learning process and its directionality
(Holzkamp, 1995). On the one hand, the terms incidental learning, or co-learning,
denotes learning that takes place in parallel with other processes, through participa-
tion in a particular practice. Characteristic of such a learning process is that we are
sometimes not even aware that we are learning something and thus have no
conscious control5 over the learning process. On the other hand, we have intentional
learning processes that are particularly important in relation to educational institu-
tions. They can, in turn, be analytically differentiated on the basis of the

4The distinction is made analytically, in real life situations it is not distinctly classifiable.
5This does not imply that it is not possible to become aware, or to consciously unlearn something in
retrospect that has been initially learned along the way.



directionality of the learning process. A distinction is made between defensive and
expansive reasons for learning (Holzkamp, 1995, 2013b). Learning can be grounded
in trying to avert an experienced or anticipated threat to one’s action potence. In this
case, the learning process is not primarily directed towards a deep understanding of
the subject matter, but towards dealing with this threat. This general pattern of
reasoning regarding learning activities is described by the term defensive learning.
Expansive learning, on the other hand, is characterised by a deeper processing of the
object of learning, which transcends one’s own immediate experience and looks
beyond the superficial appearance of a phenomenon (or empirical observation),
trying to understand it in its societal-mediatedness. This focus on societal mediation
is derived from the premise that a learning object is not a neutral object but
always embedded in a social/societal reality with all its contradictions (Sect.
3.2.1). Practice-oriented research can be regarded as an intentional learning process,
in this sense. An emancipatory expansion includes questioning one’s own immediate
experiences and dominant patterns of thinking. During the learning process, this can
in turn be accompanied by resistance and defensive affects (e.g., feeling inadequate,
questioning learning effort or usefulness of anticipated learning outcomes) (Ruge
et al., 2019b).
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The social practice of mathematics teacher education is located in specific
institutional arrangements. Thus, the learning process and its directionality have to
be balanced with the scope of the specific institution (Dreier, 2003, 2008). In order to
coordinate their learning in all their contradictions, individuals need to develop
personal stances: “Stances develop and sustain an orientation for subjects in the
structures of their complex, ongoing, personal social practice. This concept empha-
sizes the practical anchoring and consequences of personal reflections. [. . .] stances
guide persons in their transitions between diverse contexts” (Dreier, 1999,
pp. 15–16). Institutions combine contradictory demands and struggles take place.
Within the academic discipline of mathematics education – an institutional arrange-
ment that student-teachers are confronted with and have to relate to – struggles for a
desirable mathematics-society relation take place. Struggles manifest e.g. in
teaching-learning conditions and related reform movements. The object at stake
are – inherently ambiguous, conflictual and contradictory (Sect. 3.2.1) – aspects of
the cultural practice mathematics and its (re-)production in its current state, neces-
sary further developments, and possible transformations. An intentional learning
process entails a deliberate engagement with these aspects.

3.3 Unease to Be Identified as a Mathematician (Only)

In the following, I situate the emergence of the empirical observation by sketching
my method for analysing interview transcripts and broader empirical observations of
my overall study on learning experiences of pre-service mathematics teachers at
university, before referring to two examples. The empirical observations reported
below are the starting point for the following theoretical reflection. The theoretical



reflection strives for making an initially language-less and vague feeling tangible in
the first place and accessible to further reflection.
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I analysed the interview transcripts using a combination of grounded theory
(Bryant & Charmaz, 2007; Strauss & Corbin, 1990) and objective hermeneutics
(Wernet, 2009, 2012). The analysis process within the grounded theory approach is
based on a constant contrasting comparison of the available data material. The
researcher detaches him-/herself from a specific interview text by making cross-
case comparisons which shift his/her focus towards phenomena in its spectrum.
Interpretations that refer to a single case thus always entail the spectra of the
phenomena referred to. Objective hermeneutics makes it possible to grasp latent
meanings of an interview text. The detachment from a single case takes place by a
concentration on the transcript’s sequentiality and ruptures within articulations.
These ruptures are not attributed to the interviewee’s personality or ability, but
linked to current social practices and underlying societal structures. Both techniques
allow for linking individual expressions to societal meaning structures and their
network of meaning (Sect. 3.2.1).

The students I interviewed aimed to be mathematics teachers at different school
levels,6 but all had in common that they choose to study mathematics as one of two
school subjects they want to teach in the future. In the interviews, students described
their motives to become mathematics teachers, their conceptions of
professionalisation and ideals of teaching-learning-relations in the subject of math-
ematics (Ruge, 2017; Ruge & Hochmuth, 2015a, b, 2017). My interview partners
displayed various levels of comfort7 with mathematics at university, ranging from
doubts about their ability to keep up in the mathematics courses to referring to
mathematics as their personal strength. Some students relate to their mathematical
abilities in a contradictory way by describing mathematics as a personal strength and
the need for gaining confidence in their mathematical skills at the same time (for a
more detailed description, see Ruge & Hochmuth, 2015a). Within the interviews, a
variety of beliefs about mathematics and ideals of mathematics learning and teaching
were expressed. Expressed beliefs about mathematics ranged from a positive relation
with mathematics as a subject that provides definite solutions (Ruge & Hochmuth,
2017) to seeing mathematics as a shared activity that everyone can participate
in. Ideals of learning and teaching ranged from describing a thoroughly structured
guidance (Ruge & Hochmuth, 2015b, 2017) to allowing for participation on diverse
levels of action. Interestingly, independently of their expressed comfort level or ideal
pictures of teaching and learning mathematics, the students voiced an unease to be
identified as mathematicians, resp. with a perceived current state of the academic
discipline of mathematics. Unease denotes a still vague feeling of discomfort, that is

6The study programmes vary in their structure and focus. In primary and lower secondary teacher
education programmes more weight is put on pedagogical subjects, while in secondary school
teacher education programmes, which prepare for teaching at lower and upper secondary level, the
mathematical requirements are higher.
7Arranging qualities in a continuum is an analytical strategy of grounded theory.



also associated with a lack of ease in social relations (Merriam-Webster Thesaurus
Online, n.d.). Student-teachers distanced themselves, for example, from the idea of
becoming a constricted one-track-specialist (Sect. 3.3.1) or from being just mathe-
matically able (Sect. 3.3.2). They essentially distanced themselves from being
identified as mathematicians. I detail the above-mentioned unease with reference
to two interview partners: Bianca and Georg.8 Both felt comfortable with mathe-
matics within their study context. Afterwards, I briefly describe reactions that my
observations have provoked in the research community (Sect. 3.3.3), which have
directed my further inquiry.
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3.3.1 Against Being Identified as Becoming a Constricted
One-Track-Specialist

Talking about her choice of the study programme, Bianca stepped away from her
initial choice of becoming an upper secondary school teacher and enrolled in a
programme for becoming an elementary and lower secondary school teacher. She
justifies her decision with a reference to the structure of the respective study
programmes: “. . . For me it was always first and foremost, that I wanted to become
a teacher WITH math, but not first a mathematician and then a teacher”. She states
on a manifest level, that she did not want to exclusively become a mathematician.
Instead, she wants to combine mathematics and the educational profession and study
them in an integrated manner: “. . . because I would like to do something with people,
but also especially math, which was always my favourite at school and where I
really see my strengths. To really bring that together, to bring them together”.
Throughout the interview, she substantiates her argument against a pathway into the
teaching profession that follows the ideal of socialising into the discipline of
mathematics first. She interprets this pathway as standing in opposition to a math-
ematics in which all, the “super many others”, can participate, e.g.:

So I definitely have a negative role model, where I had a math teacher at secondary school
who, um, partly proved a lot, where maybe I didn’t have difficulties with it, but super many
others had difficulties with it. And where it really crystallised that he did that in his studies
and that kind of his whole studies, where there was so much proving, that he wanted to pass
on to the pupils somehow.

In popular myths9 about mathematics (Kogelman & Warren, 1978), mathematics is
said not to be accessible to everyone. It is imagined as a purely mental activity for
which the use of the body is a hindrance. The purpose of mathematical activities is
defined by their outcome: it is important to always be able to present an exact
solution. Mathematics is characterised by hard work and doing mathematics is

8Names are changed.
9Popular myths condense views regarding mathematics to images, these are often counter to
desirable views from a mathematics education perspective.



seen as an uncreative activity. How someone could master mathematics seems
inexplicable to many (Dowling 1998; Kogelman & Warren, 1978). Within her
articulations, Bianca answers to such myths. Her unease against becoming a
constricted specialist in mathematics, who is unable to make it accessible to others,
shows that her conflict goes beyond a mere matter of a personal identification with
mathematics. It is based in a wish to care for others and to oppose an exclusive, resp.
excluding understanding of mathematics.

3 The Unease About the Mathematics-Society Relation as Learning Potential 53

For her, mathematics is more than just academic mathematics and only acquires
its relevance for all members of society through joint action. Bianca does not only
express her own personal beliefs about mathematics teaching, she interlinks them
with the process that the profession of mathematics teaching heads towards: “So, in
my opinion, I see the/especially the math teacher in a state of flux, or just the whole
. . . training, which is somehow different or newer and that with these competences,
so to speak, we, a bit, have to carry it into the school first”. In her affirmation with a
competence-oriented teaching, she relates professionalisation into the teaching pro-
fession with the social struggle for inclusive mathematics, being humane in the sense
that all can participate in doing mathematics.

3.3.2 Against Being Identified as Just Being
Mathematically Able

Georg presents his mathematical abilities in the interview in a twofold manner. He
describes doing “math-gimmicks” as a leisure activity in a hesitant and cautious
way – he “likes to do that too”. Throughout the interview, he vividly describes
topics that caught his interest, he in contrast to others, wants to understand “why it
works”. This display of interest in mathematics is interlaced with segments where
Georg presents himself as “lazy” when it comes to mathematics, as well as also
having to work for it and having the drive to dig deeper. In the interview, he cannot
straightforwardly present himself as being good at and interested in mathematics.
Such displays are always interlaced with retracting segments.

Popular myths about people who are mathematically able include the idea that
mathematics supposedly comes naturally to these people. They are said to be
successful in mathematics without much effort. Thus, this ‘talent’ distinguishes
them from the others, those who are not mathematically able. However, the more
mathematically gifted a person is considered to be, the more strongly it is assumed
that this giftedness comes at the expense of other abilities, such as social skills
(Kogelman & Warren, 1978; Roodal Persad, 2014). Georg’s retracting moves relate
to struggles of not identifying himself with such myths. The unease of being
identified as a mathematically able person remains on a latent level throughout the
whole interview.



54 J. Ruge

3.3.3 Interlude

In summary, by retracing the unease to popular myths and social struggles for a
socially relevant and inclusive mathematics, it can be related to the contested and
political nature of the practice of mathematics teaching and learning and the struggle
for a humane mathematics-society relation (Sect. 3.2.2). Therefore, the unease
addresses not just an individual difficulty in the socialisation process, but an
indication of an important issue for the further development of mathematics teacher
education, which Bianca explicitly relates to developments in the field (Sect. 3.3.1).
Inspired by the subject-scientific insight that also feelings entail the potential to
provide valuable insights (Sect. 3.2.1), this led me to the question:

How can the unease with the mathematics-society relation be understood as a learning
potential for, both the further development of mathematics teacher education and the
academic discipline of mathematics education?

Before I can formulate first ideas, a digression is necessary: when I presented my
observations at conferences, as a first reaction, scholars, who identified themselves
with the academic discipline of mathematics, deprecated my interview partners for
their supposedly “inadequate” beliefs or for not adhering to the role as representa-
tives of the academic discipline in an unbrokenly positive manner: e.g. scholars
voiced doubts about the student-teachers’ capabilities, or their right to pursue a
career in the teaching profession and to represent mathematics. These scholars
expressed a need for changes, for changing the beliefs of the student-teachers.
This led me to take a closer look at belief research, which I summarize with respect
to its critique and developments in the following.

3.4 Belief Research

The concept of beliefs belongs to a research strand that focuses on mathematics-
related affect. Beliefs are categorised in different ways (Goldin et al., 2016).
According to Hannula (2012), concepts and theories concerning the affective
domain can be mapped in a three-dimensional space. The first dimension consists
of three broad categories to describe affect: motivation, emotions, and beliefs.
Beliefs stand out, because they are often conceptualised as including cognitive and
affective components and thus go beyond mere affect (e.g., Törner & Grigutsch,
1994). The second dimension describes a continuum between state and trait. Mostly,
beliefs are regarded as a trait-type affect, i.e., as being more stable. To what extent
stability is seen as a defining quality of beliefs is in debate (Liljedahl et al., 2012).
The third dimension concerns the theorising level of the broad categories. In
Hannula’s model, this level distinguishes between the physiological (embodied),
psychological (individual), and social level. Mathematics-related affects in general
have mostly been studied on the psychological level (Goldin et al., 2016) and beliefs
are usually studied and perceived as a concept that refers to the individual level.



There is no internationally accepted definition of the term beliefs, rather different
characteristics are highlighted, such that beliefs are “subjective and hidden”
(Furinghetti & Pehkonen, 2002), or it is proposed that “beliefs might be thought of
as lenses that affect one’s view of some aspect of the world or as dispositions toward
action” (Philipp, 2007, p. 259). Following this description, popular myths can be
considered as beliefs.
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An influential belief construct has been developed by Törner and Grigutsch
(1994). They differentiate between four different views regarding the nature of
mathematics, that can be summarised in the two following perspectives (Grigutsch
et al., 1998; Törner & Grigutsch, 1994): the first, conceptualisation of mathematics
as a static science includes the formalism-related view10 and the scheme-related
view.11 The second, conceptualisation of mathematics as a dynamic process includes
the process-related view12 and the application-related view.13 All these views
provide a description of a specific way of thinking about the relation between
mathematics and society. In contrast to prevailing myths, these views are compatible
with philosophical considerations about the nature of mathematics. Myths, in con-
trast to the proposed belief-categories are more specific concerning assumptions
about those members of society that are mathematically able.

In teacher-belief research, two major trends can be identified: Change of –
supposedly “inadequate” – teacher beliefs (Sect. 3.4.1) and in-/consistencies
between teacher beliefs and teacher practices (Sect. 3.4.2). Both are related to a
proclamation that mathematics education should be more learner-centred and that
the process character of mathematics should be given greater prominence. This can
be understood as a countermeasure to popular myths (see Sects. 3.3.1 and 3.3.2).
Improving the quality of mathematics teaching in this sense is a concern shared in
the international mathematics education community and also by my interview
partners. Skott (2004) summarises measures taken to reach this ideal the reform.
Reform efforts within the German context are articulated as a demand for “compe-
tence orientation” (Ruge, 2017), which also Bianca refers to in taking a stance for an
inclusive mathematics education (Sects. 3.3.1). The reform discourse goes hand in
hand with regarding certain beliefs, e.g., seeing mathematics as a dynamic process,
as desirable outcomes of teacher education.

3.4.1 Change of Teacher Beliefs

Within the context of teacher education programmes, several research studies aim at
the promotion of belief change (Goldin et al., 2016). Within the German discourse

10Mathematics is an exact science on an axiomatic basis and is further developed by deduction.
11Mathematics is a collection of terms, rules and formulae.
12Mathematics concerned with problem-solving and the discovery of structure and regularities.
13Mathematics is presented as a science relevant to society and life.



on university mathematics education, affect in general and beliefs in specific are
often linked to the idea of a double discontinuity, originally introduced by Klein
(1908), and recently discussed in connection to beliefs (e.g., Hoppenbrock et al.,
2016; Isaev & Eichler, 2017; Roth et al., 2015). It is assumed that there is a
discontinuity specific to the subject of mathematics during the transition from school
to university and from university back to school, which leads to students having
difficulties in relating university and school mathematics to each other.
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International studies, e.g., TEDS (Tatto & Senk, 2011), regularly proclaim beliefs
as important factors in teachers’ professional development and their success in
teaching mathematics. Within the German discourse especially large-scale quantita-
tive studies on (prospective) teachers’ beliefs are important references in the debate,
e.g., the TEDS-studies (Blömeke, et al., 2010, 2013; Tatto & Senk, 2011), and the
COACTIV-study (Krauss et al., 2008; Kunter, et al., 2011), which relate beliefs to
professional teaching competence. Most studies refer to an influential model by
Baumert and Kunter (2006), that considers epistemological beliefs concerning
mathematical knowledge and subjective theories about teaching and learning math-
ematics as essential components of the belief and value structure of the individual
teacher. The concept of beliefs has become established for the part of professional
competence that is regarded as not purely cognitive (Schwarz, 2013, pp. 49–50).

The need for changing student-teachers’ beliefs is justified by its supposed
beneficial effects on the acquisition of mathematical knowledge and on the success
of mathematics teaching. Existing beliefs of student-teachers are seen as influencing
the acquisition of new knowledge and skills. Beliefs are said to control the percep-
tion and handling of the learning content by acting as filters. A fit between a person’s
existing beliefs and the learning content is regarded beneficial for the learning
outcomes of this particular person (e.g., Blömeke, 2004; Schwarz, 2013). For
example, a construction view is thought to be more beneficial for student-teachers’
learning than a transmission view (Blömeke, et al., 2010), and is judged an “ade-
quate” mathematical world view. “Inadequate” mathematical world views are used
to explain deficits in building up content knowledge (Blömeke, et al., 2010).

In the design of teaching innovations, beliefs are seen as agents of change to
sustainably adjust the practice of teachers (e.g., Bernack-Schüler, 2018; Bernack
et al., 2011; Holzäpfel et al., 2012). For example, Süss-Stepancik and George (2016)
suggest to consider epistemological beliefs concerning mathematics knowledge in
the didactical design of mathematics and mathematics education courses for first-
year students to counteract this filter function of beliefs. They suggest measures such
as gradually introducing students to the exact way of speaking and thinking about
mathematics – a typical measure discussed within the discourse on softening the first
transition (e.g., Hoppenbrock et al. 2016; Roth et al., 2015). Despite that the
adjustment of beliefs is claimed to be “nearly impossible” (Pajares, 1992, p. 323),
efforts are directed at the design of teaching interventions that aim at influencing
beliefs – resp. counteracting (undesired) beliefs – of student-teachers (e.g. Schwarz,
2013; Süss-Stepancik & George, 2016).

So-called “affective factors” behind teaching behaviour in general have been an
increasing area of interest in mathematics education research (Goldin et al., 2016).



This trend fits with Fenstermacher’s (1979) prognosis that teacher effectiveness
research would focus more on the study of beliefs. Roth and Walshaw (2019)
criticise the way emotions and affect are conceptualised. They criticise a double
movement of affect being “intellectualized and approached as external to and
separate from intellect14” (Roth &Walshaw, 2019, p. 111). Concepts such as beliefs,
attitudes, engagement and motivation, that are marked as “affective traits” have been
“developed as means of capturing the non-rational aspects of subjectivity” (Roth &
Walshaw, 2019, p. 112). These concepts are thus seen as allowing researchers to
keep up a “cause-effect logic in descriptions of the performance of affected individ-
uals.” (Roth & Walshaw, 2019, p. 112).
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3.4.2 In-/Consistencies Between Teacher Beliefs
and Teaching Practices

Within research focusing on the relationship between beliefs and teaching practices,
both consistencies and inconsistencies have been found between teacher beliefs and
teaching practices (Goldin et al., 2016). The observed differences between espoused
and enacted beliefs have led to a shift of focus on context and also on teachers’
identity construction in the international mathematics education research commu-
nity. Skott’s (2009, 2013, 2019) research addresses the discrepancy between
expressed beliefs and enacted beliefs in the teaching practice of (new) teachers. He
shifts the focus to context in general, and more specifically to the question of how
(prospective) teachers participate in their development of a professional identity
(2013, 2019). For Skott, existing concepts from mathematics education research,
such as knowledge, beliefs and teacher identity, are not able to grasp the relationship
between integration in a specific practice context and personal development. Within
Skott’s patterns-of-participation-approach, different institutional contexts that play a
role in teacher education and its practice structures are included. Practice is always
understood as embedded within a community, within which rationales of action are
negotiated. Socialisation is understood as more than just an adaptation of (prospec-
tive) teachers to the respective community and existing practice structures, but also
as the possibility to get involved in it and contribute to a change. This aligns well
with the subject-scientific perspective (Sect. 3.2.1). Skott conceptualises the personal
development, resp. the socialisation process, as an integration movement from an
initially peripheral to a more inclusive participation, based on the idea of situated
learning (Lave & Wenger, 1991). Coming back to the double discontinuity (Sect.
3.4.1): the conscious engagement with meanings and rationales with different
communities can be seen as a potential for personal and institutional development.
To this end, the observed difficulties of making connections between the

14Regarding something as separate from intellect usually leads to consider it as not being part of
intentional learning processes.



institutional15 meaning constructions must be tackled with, and not for, the prospec-
tive teachers.
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Skott’s work is explicitly directed at the reform16 (see above) and builds on his
analysis that it is required from teachers to adopt a reflective stance, which is
grounded in an apparent contradiction: a simultaneous shift in emphasis from
teaching to learning and a greater emphasis on the role of the teacher. This shift
entails that the teacher must be a linking element between the priorities set by the
subject and the priorities that prevail due to the specific school context. For Skott,
this “new” teacher role raises the question of how development processes in teacher
education can be scientifically recorded and described, and thus, how they can be
modified on the basis of research into the conditions for development. This leads to
thinking in terms of a management of conditions (instead of people). Still, his
approach has a strong focus on immediate context situations and does not include
broader societal learning conditions and the social embeddedness of the communi-
ties in broader structures.

3.5 Current Trends in Belief Research from
a Subject-Scientific Perspective

From the perspective of the subject-scientific approach, the rationale behind trying to
change student-teachers’ beliefs (Sect. 3.4.1) can be summarised as based on a
unidirectional scheme: Perceiving mathematics in a certain way is seen as beneficial
for understanding mathematics at university (Sect. 3.4.1). Because of this, beneficial
beliefs need to be taken up and transported by the future teachers into school. It is
about an external shaping of what mathematics shall be for people and what kind of
mathematics they shall identify themselves with. This view can be criticised for its
direction to the management of individuals, and attempts towards controlling their
stance towards the object at stake (Sect. 3.2.1). This unidirectional scheme can be
linked to a common one-sidedness in learning theories that dissociates learning
objects from any conflictual and contradictory meanings and negotiates them as
supposedly neutral semantics (Marvakis & Schraube, 2016, pp. 196–197). This is
criticised by Schraube and Marvakis (2019) to be a “bisected learning”, that can be
found within the cause-effect descriptions in belief research. Beyond Roth and
Walshaw’s (2019) critique of dichotomization of affect and knowledge (Sect.
3.4.1), a dialectical relationship between the learner and the object is denied. The
object, resp. the learning outcome, is fixated in its meaning, and only the learner shall
change. Fixating the object leads to a restricted relationship between the learning

15School and university.
16His analysis is based on policies and research concerning the school level, but it could be argued
that also on university level comparable contradictory requirements for university teachers prevail.
For an example of contradictions that university teachers face, see Ruge et al. (2021).



process and knowledge: acquisition in the manner of an internalisation of a given
authoritative knowledge (Marvakis & Schraube, 2016, p. 197) – knowledge that is
restricted to stay within set limits. This confinement only allows for a quite restricted
form of understanding the relationship between the learner and knowledge: “an
obedient relation of subordination” (Marvakis & Schraube, 2016, p. 197, translated
by the author), and encourages defensive learning (Sect. 3.2.2). Strategies for
fixating the object and pushing aside entailed social struggles can be found in
curricula (e.g., delegating it to another course, demarking it as “not a mathematics
education problem”), and the individual (e.g., relegating it to later or another context,
or even suppression (Brown &McNamara, 2011)). But, when approaching an object
to figure out its meaning, resp. generalised societal action possibilities, this entails
the activity of (re-)connecting the object with social practices (Nissen, 2012,
pp. 117–118). Within a learning practice thus also lies an expansive potential (see
expansive learning, Sect. 3.2.2) of directing learning towards a change of not only
oneself, but also changing restrictive practices (Marvakis & Schraube, 2016,
pp. 196–197) – practices behind the unease.
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Within the prominent German model of mathematics professional competences
of teachers (Baumert & Kunter, 2006), beliefs and values are acknowledged as
playing a crucial role, but “[d]ifferent elements of mathematics that seem contradic-
tory are split into different aspects and marked as mathematical world views.” (Ruge,
2017, p. 831). This model fragments17 the learning object at stake: the mathematics-
society relation. Debates of educational philosophy about what constitutes mathe-
matics (Sect. 3.4), is redefined as an individual trait and is even “degraded18 to an
affective-motivational conditional factor of learning” (Ruge, 2017, p. 830) that a
student must face in order to become a successful learner. The affective-motivational
sphere is here not seen as a starting point for gaining insights (Sect. 3.2.1), but
merely “as an agent of change19 that has to be manipulated to a specific standpoint.”
(Ruge, 2017, p. 831), a standpoint that shall be learned along the way (see
co-learning, Sect. 3.2.2), instead of conceptualising deliberate engagement to con-
sciously develop a stance based on reflections. The design of teaching interventions
takes up the idea of beliefs as “agent of change” and thus implement the fragmen-
tation of the theoretical model into practice. They rely on gradual acquisition with
the help of a change in the respective mathematics-related beliefs (Sect. 3.4.1). The
question of the relationship between mathematics and society is learned along the
way. This separates the learning object into academic knowledge, which is to be
processed by the students through intentional learning, and a co-learning (Sect.
3.2.2) of its societal embeddedness. This separation obstructs a dialogue between
teacher educators, which in Germany are mathematics education scholars, and
student-teachers about existing contradictions within the mathematics-society

17A detailed argumentation can be found in Ruge (2017).
18Degraded in the sense that commonly the cognitive is referred to as higher function.
19Interestingly, it is not the student who is the agent of change but a scientific construct.



relation and thus obstruct a deliberate engagement with inherently ambiguous,
conflictual and contradictory aspects of the learning object.
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Theories based on the idea of situated learning (Lave & Wenger, 1991), such as
the patterns-of-participation-approach (Skott, 2013; Sect. 3.4.2) allow for a
conceptualisation of the learner as being actively involved in shaping practice.
However, the focus on anchoring the practice of learning in everyday life is quite
often understood in terms of immediate demands. This disambiguates the social
practices in which the learning process takes place. However, social practices in
which learning is situated, are always complex and contested (Dreier, 2003, 2008;
Marvakis & Schraube, 2016, p. 205). By reducing learning objects and/or the
learning context to neutral means or technical univocacies, the social struggle
embodied in the specific institutional arrangements and its knowledge is denied.

At first, I thought that I had reached a dead end and I could not find any
inspiration in belief research. But then I also considered belief research and the
associated attempts to change mathematics teacher education as a specific practice to
be interpreted in relation to current social struggles regarding mathematics educa-
tion. From this perspective, the ever-increasing interest in belief research can be
interpreted as an unease of mathematics education scholars with the current state of
the mathematics-society relation. The eagerness to find ways of changing teacher
beliefs, and through this mathematics teaching to a mathematics teaching that
emphasises a process-orientation and speaks against popular myths (Sect. 3.4.1),
can be interpreted as answering to this unease in a certain manner. In this sense, I
consider the unease to be shared by student-teachers (Sects. 3.3.1 and 3.3.2) and
mathematics education scholars20: both groups care for working towards a mathe-
matics education that aims to promote a humane mathematics-society relation. The
shared concern for the object at stake, can be regarded as a basis for an alliance with
each other (Sect. 3.2.1) for a learning process, resp. a further development directed to
this aim.

3.6 Discussion

In summary, the unease expressed by the students in the interviews (Sects. 3.3, 3.3.1
and 3.3.2), which I have also recognized in research projects (Sect. 3.5), refers to
struggles within society. Even if these are not explicitly addressed on a manifest
level (Sect. 3.3.2), there is a learning potential within this unease. A potential for
reflection on the mathematics-society relation and thus to look beneath the surface
(as aimed at in a practice-oriented research, Sect. 3.2.1) and further develop math-
ematics education theory. A one-sided conceptualisation of beliefs as individuals’
state of mind or traits denies the reference to the social and the societal level. A

20My belief in this interpretation was strengthened by the experiences I gathered at conferences
(Sect. 3.3.3).



management of this unease which aims at making students adapt to beliefs that are
supposedly conducive to learning, bears the danger that engagement with these
societal struggles will fall off the agenda (Sect. 3.5). It furthermore forecloses taking
up the unease about the current status of the mathematics-society relation and
making it a shared learning endeavour of scholars that identify with mathematics
and future teachers of mathematics. If one considers what is addressed in belief
research not as individual beliefs, but as an unease actually shared by scholars and
student-teachers, this opens up possibilities to think about the importance of beliefs
in teacher education beyond a focus on the management of individuals to take up
stances that fit to currently prevailing reform movements. It makes it possible to
understand the unease as a shared learning potential: The unease can be a starting
point for a learning process, which not only has a potential for the development of
teachers but can also be seen as a starting point for a shared inquiry of researchers
and (future) teachers.
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What happens at university is not only important for the learning of the individ-
uals that participate in a study programme. The university is not only an educational
institution but also a research institution. As a research institution, the university is
also the place where knowledge in mathematics and mathematics education that
serves as an important reference for the professional knowledge base of the teaching
profession is produced. Thus, the university is also a place of further development of
the professional discipline of mathematics education, which Bianca explicitly
addresses in her reference to recent competence-oriented reform efforts (Sect.
3.3.1). However, this further development always refers to more than just developing
individuals (Ruge & Peters, 2021). The double discontinuity can be understood as
bringing to the fore meaning-relations which are difficult to relate to each other
under the current status quo of the respective institutions. A deliberate engagement
with the prevailing discontinuity between school and university mathematics can
bring forward a deeper understanding of both knowledges, school and university
mathematics, but a “softening” (Sect. 3.4.1) that relies upon a non-conscious
co-learning of “adequate” beliefs, bears the danger of not realising the potential, or
even channelling difficulties with prevailing meanings to the latent level
(e.g. identifying as mathematically able, and therefore with current roles and images
of mathematics, Sect. 3.3.2). Thus, trying to support an acquisition of university
mathematics might come at the expense of closing off the transformative creativity
of the socialisation process. Instead, the idea of “unity of research and education”21

allows for heeding the stances that students bring along (Sect. 3.3.) and to struggle
together at university for a humane mathematics-society relation. Such an approach
offers the potential for generalisable insights and goes beyond the attempt to govern
(psychological processes of) individuals (for the purpose of gaining control over the
provision of mathematics teaching). Taking seriously the idea of a reciprocal
learning process (Sect. 3.2.2), as Skott (2013, 2019; Sect. 3.4.2) pointed out, the
participation of student-teachers not only lead to an alignment of the student-

21Central idea about the institution university in Germany.



teachers, but also always holds the potential of change within the institution. If
“situated” is understood as integrating social fields of struggles and co-articulating
social, political and epistemological locations (Marvakis & Schraube, 2016, p. 205),
then patterns-of-participation hint at structural implications and typical modes of
manoeuvring between different institutional contexts and, thus, the scope of the
current status of the institutional arrangements and hindrances and possibilities for
learning.
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To consciously take up the struggle for a humane mathematics-society relation as
a shared responsibility of scholars and student-teachers would also entail rethinking
the prevailing learning conditions. It requires a specific learning context: A shared
and conscious engagement with the unease always requires to a certain extent of
oneself to reveal a stance towards the mathematics-society relation, a stance towards
struggles, in order to even have a starting point for a dialogue. A mutual and
reciprocal caring and mattering for the concerns of the other person is needed.
However, this reciprocal caring and mattering requires refraining from common
practices of institutional teaching-learning processes (e.g., presenting oneself as in
alignment with the scope of the institution, fixed student and teacher positions,
assessment standard that favour the transmission of sanctioned knowledge etc.).22

The implementation of such an understanding of a shared learning process clashes
with current institutional arrangements, requirements and expectations of university
teaching (see also Nissen & Mørck, 2019).

The extent to which a realisation of such a learning process is feasible under
prevailing institutional conditions can certainly be doubted, but to start out such a
shared learning process might have the potential to change restrictive practices. To
acknowledge the struggle can be the first step.

To what extent such a shared learning process changes the academic discipline of
mathematics education remains an open question.
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Chapter 4
Collaboration Between Secondary
and Post-secondary Teachers About Their
Ways of Doing Mathematics Using Contexts

Claudia Corriveau

Abstract The transition from secondary to postsecondary mathematics has been
studied from various angles. Students encounter difficulties in this transition, but the
investigation should not only be restricted to their perspective. In our study, we
address the transition with teachers from both levels, fostering a dialog between
them. This entry allows to tackle the transition from implicit part of teaching. Indeed,
we focus on teachers’ ways of doing mathematics using contexts at each level. We
drew on ethnomethodology to conceptualize the object “teachers’ ways of doing.”
Adopting a collaborative approach and research-practice partnership principles, we
established a study in two phases. Results are presented according to these two
phases. From the initial phase arise the reconstitution of ways of doing mathematics
using contexts at each level, revealing two different “territories.” The second phase
exposes a certain rapprochement of the two levels.

Keywords Secondary-to-tertiary transition · Collaboration between teachers ·
Etnomethodology · Use of contexts in mathematics · Rapprochement perspective ·
Contextualisation and application comparison

4.1 Introduction

Our research springs from the desire to help students in mathematics during
secondary-postsecondary transition, by ensuring that teachers from both level
work side-by-side. We are seeking to establish inter-level collaboration by which
teachers can discuss issues of transition, their respective ways of doing mathematics
and also difficulties faced by their students. In doing so, these teachers work jointly
to bridge the gap between the two levels.
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While drawing upon studies from other countries, this investigation occurs in a
specific context. It takes place in Québec (Canada) where postsecondary education
begins with cégep.1 This follows secondary level and is prior to university. Cégep
lasts 3 years for career programs and 2 years for pre-university programs (equivalent
to Grades 12 and 13). Not all students are required to do mathematics, however,
there are three mandatory mathematics courses in science pre-university programs:
Differential Calculus, Integral Calculus, and Linear Algebra. Cégep mathematics
teachers generally hold a master’s degree in mathematics. The university culture of
mathematics constitutes an important reference for these teachers (Mathieu-Soucy,
2020). As Gueudet (2008a) stresses, academic institutions differ from one country to
another. Nonetheless, we hope that what we report here can inspire further research
on transition.

In this chapter, we offer a brief description of studies concerning the secondary-
postsecondary transition in mathematics and we explain the orientation of our
research. The angle adopted is that of a dialogue between the teachers, and the
theme is the use of contexts in mathematics. After presenting our theoretical
foundations in the second section, we will describe the methodology and analytical
process in the third section. The results are presented in two phases. The initial phase
allows for the reconstitution of the ways of using contexts in mathematics at each
level. The second phase reveals a certain rapprochement of the two levels.

4.2 The Secondary to Postsecondary Transition
in Mathematics

Many researchers stress that the passage from secondary to postsecondary level is
challenging for students who are not always able to grasp the new expectations
(e.g. Liebendörfer & Hochmuth, 2013; McPhail, 2015). Certain students, who
encounter difficulties when starting university, say that, in some way, they appreci-
ate these more demanding aspects (Hernandez-Martinez et al., 2011). They say that
these make them more responsible, and spur them to redouble their efforts to
overcome their difficulties. Others, in contrast, drop their mathematics courses and
impute their difficulties to the important differences between the levels (Di Martino
& Gregorio, 2019). Indeed, a number of researchers have identified mathematical
difficulties experienced by students entering university (e.g. Gueudet, 2008b;
Vandebrouck, 2011; De Vleeschouwer, 2010).

1A French acronym referred to in English as General and Vocational College.
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4.2.1 A Need for Dialogue Between Secondary
and Postsecondary Teachers

However, students are not the only ones affected by these difficulties associated with
the transition. At the postsecondary level, teachers expect a certain uniformity with
respect to their students’ knowledge, but soon become aware that this is rarely the
case. Teachers are facing students who have either not all seen the same content, or
who have not been presented with it in the same way (Corriveau, 2017; Stadler,
2011). Indeed, the transition marks a profound change of cultures in mathematics
(Artigue, 2004). Teaching approaches and assessment strategies are different
(Thomas & Klymchuk, 2012); there is a rupture in the didactic contract (Pepin,
2014), new kinds of mathematical organizations (Bosch et al., 2004; Gueudet, 2004;
Winsløw, 2007), a shift in the discourse (Thoma & Nardi, 2018) and different ways
of doing mathematics (Corriveau, 2017; Corriveau & Bednarz, 2017). The students
must adapt to all these differences, about which the teachers are not well informed.
There are “lacks of understanding of the issues involved in the transition from the
other’s perspective, and there is a need for improved communication between the
two sectors” (Thomas & Klymchuk, 2012, p. 298).

Secondary and postsecondary teachers have received different training, do not
share the same curriculum, and work in separate institutions. Furthermore, they
rarely have the opportunity to discuss with each other what they are doing in
mathematics. This compartmentalization engenders mutual misunderstandings
(Emerson et al., 2015) and leads certain teachers to think that their students were
poorly prepared at the lower level (Corriveau et al., 2020). Yet, much of what is done
in teaching is not explicit, and this leads to this type of misreading of the other level.

In light of the above, on the one hand, there is a necessity to consider teachers’
role in understanding the transition phenomenon, especially how mathematics is
done at each level. On the other hand, there is a need for dialogue. Indeed, the lack of
collaboration between the levels appears important when it comes to transition. This
collaboration would allow for enhanced awareness of the other level situation, and
be conducive to the development of ways to better support students during the
transition.

4.2.2 The Use of Contexts in Mathematics and the Secondary
to Postsecondary Transition

In the teaching of mathematics, the use of context is often seen either as a way of
introducing mathematics or else, as a way of exemplifying abstract mathematics in
its field of application. On the question of the secondary-postsecondary transition,
these two different manners to use contexts are meaningful. Indeed, researchers such



In the discussion, used as an illustration, the teachers bring up different meanings
for the notion of context:

as Artigue (2004) and Leviatan (2008) point to this “cultural gap” as adding further
complexity to the problems of the transition. The knowledge of secondary students is
undermined by its contextual nature.
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Table 4.1 A discussion between teachers from both levels

Patricia: There’s problem solving, but we’re much more inclined to start with the whole theory
and then, afterwards, apply it. Sometimes, I use a problem, and I try it [with
students]. Sometimes, I tell myself, “I haven’t done enough,” but I like to start with
the general. I say to myself (slight pause) I won’t start with the context.

Sam: That’s the whole secondary program (starting with the context).
Patricia: That’s right because everything is context. The thing is that I want to show them how to

evaluate a limit, how to come up with the derivative. I establish all the rules for
derivatives, I really do all the proofs, not using epsilon delta, but we start with the
definition of slope and go from there to obtain the derivative, so... I have a lot of theory
to communicate, so I lack the time to start with the context. My context will come into
play after. Then, there are books with a bunch of problems; there’s no shortage of
problems.

Sandra: At the same time, in secondary, there are still places where there is no context.

Sergio: This is not exclusively in context; it’s that our explanations are often contextual-
ized. We convey the subject with the context.

Patricia: I agree; that’s true.

Sergio: Something without context, that often comes after.
Patricia: We do it first without context and then, after, we work within a context.
Peter: But that’s what we were being told. . . we’re not surprised to hear that.
Patricia: But it scares the students. . .

In research we conducted with secondary and postsecondary teachers, the
teachers were convinced of this “cultural gap” (Corriveau, 2013). For these teachers,
on one side, there would be a tradition by which doing mathematics consists of
acquiring the tools through rigorous processes (definitions, theorems, and demon-
strations) which then allow for the resolution of problems in context
(postsecondary). On the other side, the context would be used to introduce and
develop mathematics, to explain it, and then to move on to mathematics with no
context (secondary). Table 4.1 presents an excerpt of the discussion (names begin-
ning respectively by S and P relates to secondary and postsecondary teachers).

– application, problem solving for postsecondary teachers;
– contextualized introduction and explanation, given some background for mathe-

matical concepts for secondary teachers.

Yet, the difference raised by the teachers is in terms of “before and after.” However,
these overall tendencies, well-known as Peter reminds us, might conceal more
complex aspects. Thus, it seems important to better understand this a priori and to
specify, for each of the levels, the ways of using contexts when doing mathematics.



4.2.3 Research Questions

Our objective is to develop and establish a collaboration between the levels which:
(a) allows for dialogue between the teachers; (b) contributes to enhanced under-
standing of how mathematics is done at each level; and (c) envisages ways of easing
the transition for students. In particular, we are working on the use of context and, in
so doing, we address the following questions.
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1. What are the specificities of the ways of doing mathematics using contexts at each
level?

2. How can a rapprochement be established between these ways of doing mathe-
matics using contexts?

4.3 The Theoretical Perspective

The theoretical foundations of ethnomethodology,2 originated by Garfinkel (1967)
in sociology, allowed to finely broach this object – teacher’s ways of doing math-
ematics (here when using contexts) – and to configure the various dimensions (see
Corriveau & Bednarz, 2013, 2017). From this perspective, actors produce knowl-
edge and “ways of doing things” in a form of incessant practical investigation. The
actors’ point of view is therefore pivotal since it is in assigning meaning to what
surrounds them that they construct their social world or any socially organized
activity such as teaching mathematics at a specific level.

The concept of ethnomethods, these methods used by actors in the pursuit of their
everyday activities (professional or other), provides an angle to approach teachers’
ways of doing. This concept is described through other concepts related to actors’
actions and actors’ interpretations (Fig. 4.1).

In our specific case, that means that while teachers are engaged in their daily
teaching activities (planning their teaching, choosing tasks, explaining a concept,
solving a mathematical problem with students, assessing, etc.) they constitute and
make visible (reflexivity/accountability) how we do mathematics at their specific
level. They are the ones who know best familiar ways of using contexts at their level
(interpretative procedures/membership). These ethnomethodological foundations
will provide insights to the methodological approach.

2Some researchers have drawn on ethnomethodology to study different aspect of mathematics
education, especially classroom interactions (see Ingram, 2018; Krummheuer, 2020).
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Ethnomethod

Ways of doing things are describable, intelligible and observable in the 
action of actors, in a variety of accounts: e.g., action that is effectively 
performed; the manner of discussing this action; interaction with other 
actors, etc. Accountability is, therefore, a key component of actions; it is 
the vector of reflexivity.

Accountability

Reflexivity

Interpretative
procedures

Membership

An action both describes and creates the social world (or any socially 
organized activity). Reflexivity is not a reflection on the action. From the 
actor’s perspective, acting entails having been able to interpret how to act 
(this is how we do) in certain circumstances and, at the same time, 
rendering interpretation possible (in the interaction with other actors). 

Actors use “interpretive procedures” (Cicourel, 1974) to inquire about the 
world and recognize the particular circumstances that give rise to action.

The focus of interest in ethnomethodology is not the individual actor but 
rather doing things together, being engaged in interaction with one another. 
This “membership” is  strongly associated with the idea of familiarity in which 
actors recognize themselves, particularly in terms of mastering a common 
language (Garfinkel and Sacks, 1970) and common ways of doing. 

Fig. 4.1 Ethnomethod defined through a group of interrelated concepts

4.4 Methodology

Our research adopts a collaborative approach (e.g. Bednarz, 2004) and draws upon
the basis of research-practice partnership (Coburn & Penuel, 2016): (1) it takes
place over the long term, rather than focusing on a single study; and (2) the work is
negotiated jointly and the leadership is shared. The results that we present stem from
a two-phase investigation.

4.4.1 An Investigation in Two Phases

The first phase is aimed at better understanding each level’s way of doing mathe-
matics. This initial phase, which started in 2011, brought together six teachers, three
from each level. Six encounters, lasting a full day (9 am to 4 pm), were spread out
over a year. They were structured around different mathematical themes such as
functions, symbolism, contexts, proofs, etc. The results of this first phase led us to
develop a second phase.

The second phase (2017–2019)3 brought together 13 teachers, six postsecondary
and seven secondary teachers. To ensure continuity between the two phases, and to
distribute the leadership as a way to facilitate collaboration (Heo et al., 2011), two
teachers who had participated in the first phase also participated in the second phase.
Yet, this time, they worked in conjunction with the researcher to organize seven

3Three major themes emerged from phase 1: functions and their representations; the use of contexts
and symbolism. Between the two phases presented here, from 2014 to 2017, the question of
transitions was brought further by the researcher from the angle of symbolism (see Corriveau &
Bednarz, 2016, 2017).
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meetings with the other teachers. Also, while the new participants were likely to
bring up new ideas, these two teachers could share reflections coming up from phase
1 and changes made in their practice.

4.4.2 The Dialogue Organized Around a Reflexive Activity

Reflexive activity in collaborative research is based on ethnomethodology
(Desgagné, 2001). It means that teachers must be in action so that they account for
and constitute their ways of doing. This was organized in various situations serving
as a basis for discussion. We used familiar situations which are meaningful in
teachers’ daily activities such as commenting on teaching situations, establishing
the way to make use of a problem, giving meaning to a student’s solution, etc.

The researcher’s role in mediating the discussion amongst the teachers was
central since teachers from both levels are not used to working together. Here, it
was a matter of encouraging and contributing to clarifying the ways of doing at a
given level, thus, adopting the role of interpreter (Davis, 2005). Also, with the aim of
engendering a rapprochement, the researcher was engaged, with the teachers, in
indicating areas that still needed to be clarified and in being on the lookout for any
opportunities to reveal issues associated with the transition.

4.4.3 The Overall Analytical Process

All the meetings were filmed. They constitute the core material of the research. We
relistened to the recordings, eliminating parts where the discussions were not directly
linked to the use of context. For Phase 1, after having retraced all the transcripts
about context, we separated those related to secondary from those related to
postsecondary. We reinvested the concept of accountability to divide the transcripts
in different types of account. Then, at a first level, we described, remaining very
close to what the teachers said, their ways of doing mathematics when using
contexts. At a second level, we proceeded to an analysis of these ways of doing,
pointing at their specificities, bringing forward what we call a “territory”4 at each
level. For Phase 2, we retraced, chronologically, the different episodes related to
context in order to proceed to the analysis of a rapprochement, still from the angle of
teachers’ ways of doing.

4We use this metaphor to illustrate that during the research, teachers of a specific level consistently
organize a familiar territory about their ways of using contexts in which they recognize themselves
(as members). We see it as a space that is continuously undergoing organization.



4.5 Results

Here we present the results according to the phases described above.

4.5.1 Phase 1: Two Territories Established Around the Use
of Contexts

The ways of doing related to the use of contexts are related through three types of
accounts.
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1. Through “action”: a mathematical task taken from a textbook was submitted to
the teachers and was spontaneously explored by them. They worked in teams of
teachers from the same level. This was a matter of interpreting graphs in context
(anomalous behaviour of water).

2. Through storytelling: in discussions, without context being the main subject,
teachers ended up sharing certain aspects of their practice in illustrating their
way of using contexts.

3. In discussing how to make use of a teaching situation: a teaching situation
presenting the graph of the reproductive behaviour over time of two populations
of bacteria was given to teachers. Teachers were asked whether this was the type
of task they worked on with their students and whether they could (how they
would) use it in class.

The analysis led to our nuancing the teachers’ initial position: the idea of “before and
after” and reconstitute two territories around the use of context. To describe each of
these territories, we drew upon the theoretical elements proposed by Janvier (1990,
1991) and Douady (1986, 1991).

4.5.1.1 Secondary Level Territory: Contextual Mathematics

The territory as constituted by secondary teachers who participated in Phase 1 of the
research is characterized by what we called contextual mathematics. Before
presenting the global specificities, we first present excerpts (Tables 4.2 and 4.3)
that exemplify our analysis (from the second type of account).

In this example, we see that secondary teachers are accustomed to introducing the
rational function in a context of a bus rental. This context is reworked to allow,
amongst other things, the illustration of some characteristics of the rational function:

The fact of adding a guide and counting or not a driver as describe by the
secondary teacher Scott relays mathematical intentions, such as contextualizing the
impossibility of dividing by zero, contextualizing parameters in the equations, etc.
Thus, the context evolves and this work is guided by the mathematics at play.
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Table 4.2 Excerpt of Scott explaining his way of introducing the rational function

Scott: Me, I always start with that for the rational function, without having seen anything
else; it’s a bus that you rent for $800. This is an organized group and there is a guide
who doesn’t pay anything. Once at the destination, it’s a museum visit and that’s
$25 per person, and then it’s a matter of finding out, and there are a number of
questions, but how does one calculate the cost per person according to the number
of participants.

Researcher: So then, what do you come up with?

Scott: Well, obviously, the students make mistakes. They work in teams, asking ques-
tions: “Well, it’s $800 for the bus, there’s the guide, plus $25 for the visit there”. . .
in this problem, there are the two asymptotes in a plausible context. Clearly, they
very often forget the guide, and there, there are questions, if there are so many
people, 2 or 3, who participate in this, how much will that cost? And there, let’s
suppose that the bus holds 50 people; we could put in as many as we want; it’s a
Harry potter bus! And there, it’s a question of seeing what happens and is it possible
just to have one person in the bus? “Well, there’s going to be a driver!” [. . .] in the
different versions, at a certain point, we said that the driver doesn’t count! And
there’s also the guide who pays nothing, but takes a place in the bus. Obviously in
that, there is a way to say that there cannot be only a single participant, because
there will not then be an organized trip. There have to be at least two people, the
guide and a participant. That’s it, the x, it’s the number of people in the bus.

Table 4.3 Excerpt of Sam adding to Scott’s explanation

Sam: Because it’s costing me a lot, I’m going to invite some friends.
So, when we’re two friends, that will cost us $2500 each.
And then, the two of us, we’re going to look for more friends.
The price diminishes more and more. . .

Another secondary teacher Sam (and colleagues) also plays with the context and
transforms it in connection with the mathematics at play.5 Indeed, Sam could
identify with Scott’s remarks. The context of the bus rental reveals, according to
Sam, that what varies in the rational function is “what we divide by”. Thus, Sam and
Scott, in the bus rental situation (at $5000 in Sam’s example), are demonstrating how
the division varies in context:

In other words, a certain generalization occurs in context (to generalize in
context). The secondary teachers are not trying to model the situation and are
considering the possibility of having 2,000,000 people in the bus (an example
given by Sam). This example serves instead to indicate that, regardless of the number
of people on the bus, even if it goes up and up, there will be a steadily declining cost,
without ever arriving at zero. The teacher tries to provide an image, using the
context, of the concept of asymptote.

All these ways of doing were, highlighted by the first layer of analysis, allowed to
characterize the secondary territory.

5We emphasize in bold the teachers’ ways of doing using context.
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– Mathematics, inseparable from the context

When it is a question of contextual mathematics, it is difficult to separate mathe-
matics and context. In other words, teachers are speaking of mathematics and of
context at the same time. They make the context evolve at the same time as
mathematics, and vice versa. Furthermore, when the teachers play with the context,
they also reveal, in the background, a progression of mathematics to be worked
on. We can readily see the underlying mathematical intentions but, in reality, it is the
context which is being discussed. (Teachers play with the context and transform
it in connection with the mathematics at play.)

This relates to the work of Janvier (1990). The latter emphasizes that a key
characteristic of contextual mathematics consists of proceeding in arithmetic with
specific measures or amounts rather than abstract numbers. In the example presented
above, the secondary teachers stress that functions are appreciated when they link
quantities and allow for the interpretation of phenomena. The function does not lose
its contextual connotation; it is the representation of a phenomenon (anomalous
behaviour of water, the cost of bus rentals, etc.).

– Oral Mathematics

All this work, by which contextual mathematics occurs, is principally communicated
through the spoken language, and mathematics is discussed in terms of the context.
For example, tracking a point on a graph in the context means, for secondary
teachers, saying, “at 4 degrees Celsius, this is the temperature when the volume of
water is equal to 1.” The oral approach is in the forefront. Indeed, what emerges from
our analysis of teachers’ ways of doing, through all the types of accounts is:
speaking about phenomena, verbalizing in context, using terms related to the
context, and talking about mathematical concepts in context.

– Imagery Mathematics

Along the same lines, doing mathematics in context entails speaking about mathe-
matics in this context and engaging in eloquent discourse. Within this mode of
communication, one uses images (in the broad sense) to “make mathematics speak.”
Similar to what Artigue said (2004), it is difficult to revive the memory of a group
which does not share the same story. Now, for a teacher, evoking images is, in some
ways, a means to remedy this situation. This requires teachers to start from
mathematical concepts and find ways to discuss them which evoke images. As
Sam mentions in the example below (Table 4.4), it is not necessary to explain further
since the image speaks for itself:
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Table 4.4 Excerpt about “evoking images”

Sam: When we left here after the last meeting, I worked on contexts in class and I asked myself:
“what am I doing there; why am I doing that?” [. . .] A boat that follows a wave. When
you say that the boat is following a wave, the students know what a boat is, what a wave
is. It rises and falls [mimics the movement]. You don’t need to explain further; it’s
already in the context.

Scott: That’s right, instead of saying, “a sinus function, it’s something which is periodic, with a
maximum and minimum.” [he looks confused, imitating a student.]

Table 4.5 Excerpt about seeing mathematics as a prerequisite for science

Patricia: What I want to say is that postsecondary students, they need to get out of their bubble...

Sam: I completely agree with you. . .

Patricia: You’re in natural sciences, what I want to show you, it’s that differential and integral
calculus will be useful in engineering... Because there are links to be made with
chemistry, there are links to be made with physics. That’s what I want to say. . . you
must get out of...[your bubble]. We can do fun things.

Peter . . . I think, as you say, we prepare them to sciences. Personally, I don’t prepare them as
if they were in a math program. I prepare them to study sciences. If they do chemistry
or physics, they should be able to do some math. . . I want to prepare them. I don’t want
them to be “mathematicians”. They are not doing a bachelor in mathematics as we did.
They are learning other stuff. But they need to be good enough in math so they can use
it if they need it. “I want to be a doctor”. Well, logic will help you a lot. They don’t
have a choice. They need to do math, they are in a math class.

Paula: They will not necessarily use this math in their daily life, but we train them as if they
would have a scientific career. This is our goal, the aiming. . . we don’t want to lie and
say, this is going to be very useful in your daily life!

4.5.1.2 The Territory of Postsecondary Mathematics: Illustrated
Mathematics

Postsecondary teachers interpret the usage of context at secondary level as inade-
quate for their students. Their ways of using contexts assign a particular role in
mathematics that of a prerequisite for science (see Table 4.5).

In our analysis, we noticed that the postsecondary teachers, Patricia, Peter and
Paula, associate contexts with problem solving (which is not the case for secondary
teachers). We chose “illustrated mathematics” to characterize the specificities of
their ways of doing mathematics using contexts. Illustrated means exemplified,
because the mathematical notions are applied within problems for illustrative pur-
poses. Then we also used this term because illustrated (from lustre) brings us back to
illuminating and, at the postsecondary level, even in context, light is shed on
mathematics.
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– An unequivocal correspondence between elements of the problem and mathe-
matical elements

The postsecondary teachers in Phase 1 make a correspondence between mathemat-
ical and contextual elements of a problem. Their work consists of “injecting” usable
mathematics into the problem. For example, Patricia and Paula found the inter-
pretation of the graph of the anomalous behaviour of water quite disconcerting. They
become more at ease when they could “inject” considerations of the limits and rates
of variation into the required task, and then they could envisage using this with
students. The finding of usable mathematics is ensured by the teacher. He or she
attempts to find, in a context, a mathematical task to be done, and in a problem, an
algorithm to perform, results to invoke or a process to implement.

– Mathematics as Tools

Teachers also refer to mathematical notions as tools. This echoes Douady’s work
(1986). For teachers, there seems to be interplay between work which is purely
mathematical and work with tools which mathematics provides. For postsecondary
teachers, a reference to the mathematician’s work is important. For Douady, a major
part of mathematicians’ activity consists of problem solving. To do so, they are led to
create conceptual tools which are subsequently decontextualized and formulated in
the most general way possible. Thus, the generalized concept-tool acquires the status
of an object. From the teaching perspective, one could refer to progressive reifica-
tion, that is, beginning by working with notions as tools but gradually objectifying
them, progressively, as the work progresses. Yet, for postsecondary teachers, it
seems that this shift between tool and object operates in the opposite direction, in
an application approach. Peter says: “we give them problems to know whether they
are capable of applying what we have shown them.”

As Patricia mentions, one needs tools to solve problems. Thus, teachers intro-
duce concepts/decontextualized objects and then use them as tools, amongst
other things, for problems of applications in contexts.

According to Janvier (1991), when the mathematical perspective is one of
application, the mathematical concept has a status in its own right and is not
context-sensitive. Facing contextual problems, teachers must put the light on the
mathematics. Once this association has been established, the idea is, for
postsecondary teachers, to move away from the context to carry out the
mathematics.

– Objectified Mathematics

Patricia, Peter and Paula consider that the notions they teach, and which they use as
tools, were developed by mathematicians: e.g. “we’re not the ones who invented it”
(Peter). In their teaching, what they present to students is, in some ways, already
reified and objectified (by mathematicians). This does not signify that postsecondary
teachers think that mathematics does not evolve, but that, the mathematics they work



on with students in their specific course does not. In context, they use mathematics as
a tool, but the status of mathematical objects is unchanging. In this sense, from this
perspective, clearly the role of context will be less important.
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– Written and Symbolized Mathematics

The mathematics worked by postsecondary teachers in contexts is communicated
through writing. When one seeks to apply tools, put into action formulas, operate in
problems, the preferred mode is that of written and symbolized mathematics. As the
teachers mentioned themselves, the context is incidental, it serves little or no
purpose. Problem solving is done mathematically, without referring to the
context.

4.5.2 Phase 2: A Process of Rapprochement Between Levels

The first part of the analysis highlights notable differences. In the second phase, we
proposed situations so as to encourage collaboration, and to see whether a rap-
prochement was viable. Before presenting the elements characterizing the rap-
prochement, we present types of account used in the meetings:

1. Discussion on the way to manage a teaching situation (Meeting 2): we utilize a
situation from Phase 1 (a comparison of the reproductive behaviour of two
populations of bacteria over time). The same questions were asked to the teachers.
The idea was to determine whether these new teachers reported the same ways of
doing things in context as their colleagues. In addition, this initial joint reflection
seemed necessary in order to go further.

2. A study of two lesson plans at the beginning of postsecondary level (Meeting 5):
the first lesson plans were based on observations made at the postsecondary level
and the second inspired by work in Phase 1. The teachers at each level discussed
them to determine what was a recall of prior knowledge and what constituted new
content.

3. The syntheses of the use of contexts (Meeting 6): this synthesis, led by the
researcher, was rich in terms of discussions. The teachers clarified a certain
rationale with respect to their use of contexts.

4. Exploration of the intuitive meaning of mathematical concepts evoked by a
situation in context (Meeting 6): we used a contextual task to determine which
concepts from postsecondary were intuitively mobilized.

5. Joint planning (Meeting 7): at the request of a postsecondary teacher, in a
sub-group (with two teachers from each level), we planned the first lessons of
Differential calculus course for students arriving from secondary level.

Through these means, the teachers account for some ways of doing raised in Phase
1. The analysis of the rapprochement draws upon these accounts. We distinguish
four key moments.
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4.5.2.1 Moment 1: Explaining Their Respective Ways of Doing

The discussion around the reproductive behaviour of two populations of bacteria
over time brought out comparable elements as in Phase 1. For example, the second-
ary teachers indicate that this task could be done with their students. They see it as a
work of interpretation of a graph or of a mathematical model in terms of context;
mathematical concepts retain a contextual connotation (the interval is spoken of in
terms of duration, and the increases in terms of the growth and decline of the
population). At the postsecondary level, the teachers make it clear that for the task
to be assigned at their level, the equation of functions, and not of curves, would be
required (injecting usable mathematics): “You must have the rule. If you’ve seen the
derivative concept, you, you want the second derivative, an inflection point”
(Philip). He makes elements of the problem correspond to the mathematics to be
tackled. This situation does not necessarily entail a rapprochement. Nevertheless,
this allows the researcher to confirm that teachers place themselves in their respec-
tive territory, to take action that elucidates their respective ways of doing things, and
to base the work ahead.

The study of two different lesson plans (the first lessons of Differential calculus
course) brings to light some reciprocal misunderstandings. The one familiar to
secondary teachers presents new elements for postsecondary teachers, and vice
versa. This finding, of which the teachers gradually become aware in the discussion,
highlights the relevance of a dialogue between teachers. Secondary teachers are
sensitive to the way mathematics is approached in the lesson plans. While the first
plan (chosen by the postsecondary teachers) goes over methods of factorization and
the introduction of the concept of limit and its properties (work on the definitions and
properties), in the second scenario (chosen by the secondary teachers), students are
led to explore two activities, the second of which is contextualized. In the discussion,
the teachers made their respective territories clear (which mainly comes back to what
is outlined in Phase 1).

4.5.2.2 Moment 2: The Establishment of Common Elements

While the teachers discussed their respective ways of using contexts, it seemed
important to pursue this explanation, but through the underlying rationale. Thus, a
synthesis of elements agreed upon is presented to the teachers. (See Fig. 4.2 and
Table 4.6) In light of this synthesis, the teachers interpret the elements and bring up
certain limitations of their use of context.

In this discussion, Sophie brings to light the limitations of this way of using
contexts. It can pose difficulties for students. This issue, raised by Sophie, spurs
Patricia to mention that, at the postsecondary level, there are also challenges:
students have done “the construction of a concept, but the application is impossible,
since they have not sufficiently mastered the concept” (corroborated by other
postsecondary teachers). There are limitations in the ways of using context for
both levels.
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Fig. 4.2 Synthesis of teachers’ reasons for using contexts

Table 4.6 Excerpt of a discussion from the synthesis

Sophie: We want so much to contextualize [at secondary level] that sometimes it’s far-fetched.

The other secondary teachers agree and give some examples from ministerial exams.

[...]

Sarah: At secondary level, for certain functions, to understand them, it’s interesting to have a
context at the outset. . . the exponential, it’s super-relevant to use examples to get
there. . . they [students] end up finding an equation that there is an exponential function
associated with that....You know, the rational [function]....You can start with a context
in which you have a linear divided by another linear... They see what this gives; they
analyze the function...It becomes more representative and, after that, you can go further
into the abstract.

Sophie: There, where I’ve got a problem sometimes, is that the contexts end up confusing them.
Especially when we’re into continuous variables and discrete variables. They mix up
the contexts from 1 year to another and even in the same year. [She gives an example of
the same context treated as a discrete context and then as a continuous context, and the
other teachers corroborate this.]

However, the choice of context seems important for teachers at both levels:
“everything depends on the context” (Sarah); “when the context is well chosen. . .,
not too easy, not too difficult” (Scott); “not too complicated” (Piero); “there are some
cool contexts to motivate students” (Piero); “some classic contexts which are great
when one is introducing a concept” (Petra), etc. In so doing, teachers agree on some
reasons for their use, while still remaining in their respective territory. Teachers
agree that contexts help “give meaning,” “motivate,” “interest,” “stimulate,” etc.
Despite the different ways of using context, the goals concur.
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4.5.2.3 Moment 3: Revisiting One’s Territory in Light of the Other

Playing the role of the moderator of the interaction among the teachers, the
researcher charts the outline of Fig. 4.3 below6 and proposes the hypothesis that
the issues are represented by the dotted arrows.

The teachers add (Table 4.7).
The researcher then suggests reflecting on the dotted Arrow A (see Fig. 4.3)

starting from key postsecondary concepts. She proposes considering the task in
Fig. 4.4. This task seems to her at the juncture between secondary and
postsecondary. The situation evokes concepts from secondary level but there are
also a number of interrelated elements.

At the outset, the teachers place themselves in their respective territory: those
from the postsecondary level say that this is a complex task which should appear at
the end of the calculus course, and remark that the equation is not already included in
the task (objectified mathematics). Those from secondary also see a complex, but
accessible, task: “I would have them do it” (Sarah); “problems like that, they get lots
of them in secondary; this one is a bit different, but familiar” (Sophie, supported by
Scott). After explaining the particular features of secondary level (e.g. the work
surrounding the rational function, with the canonical form of equation) and of
postsecondary (e.g. the notion of limits and of indeterminate forms), a discussion
emerges (Table 4.8).

In the previous, bridges are built. Postsecondary teachers, in collaboration with
secondary teachers, revisit their territory, with that of secondary teachers as a
horizon (intuitively approaching the limit, in context, starting from familiar elements
from the secondary level). Petra reveals that this work belongs to the postsecondary
territory. This joint questioning invites postsecondary teachers into the territory of
secondary teachers and opens up an extension of the postsecondary territory. In
doing so, “intermediate zones” are created which contribute to the rapprochement of
the two levels.

4.5.2.4 Moment 4: Joint Planning

In August 2019, Petra asked us to set up a meeting (the 7th) in a subgroup before
postsecondary students came back to cégep. The organization of the initial lessons of
the calculus course was discussed. Amongst the various suggestions, the task
“overhanging roof” came back as a means to introduce the notion of limit. Then,
the question raised was how to work on this in class and how to use this contextu-
alized task to arrive at the concept of limit.

6This schema was also utilized in Phase 1 of the project with a goal of rapprochement, but was
handled differently. Throughout the discussions, the teachers remained in their own territory and
engaged in dialogue without necessarily entering the territory of the other (Corriveau, 2013).
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Fig. 4.3 Schema used as a basis for a rapprochement

Table 4.7 Discussion arisen from the schema

Sophie: Finally, being able to do both. . .

Petra: Well, it’s finding the balance, I think. . .

Scott: . . .starting from the general to come back to context (he laughs).

Sophie: Being able to take concepts to apply them in context and being able to take the contexts
to come up with generalities. Me, I like that a lot. You’ve got to do both.

M

N B

A

x
4

3h

An overhanging roof
A inclining roof lies on the walls MN and AB. These walls are 3 m high and 4 m apart 

from each other. The roof can be more or less inclined. How does the height h of the ridge 

change when the distance of x approaches 2 m?

• How does h vary when x gets bigger and bigger?

• How are these previous observations interpreted in the graph representing h as a 

function of x?

Fig. 4.4 Context used for exploration of the postsecondary concept. (Taken from groupe A. H. A.,
1999, our translation)

Everyone agrees with keeping the task as is, but Patricia writes on the board a

more complex function (f xð Þ=
ffiffiffiffiffiffiffiffi

x3þ1
x- 1

q

Þ . The group then debates the progression

from the situation of the roof to the function proposed by Patricia. In other words, the
idea is to work on the dotted arrow B (see Fig. 4.2). The synthesis of the progression
is presented in Table 4.9.
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Table 4.8 Discussion revealing a rapprochement

Sophie: It seems to me that if one was able to make this link. . . [she’s talking about the link
between the limit (intuitively) and the infinite and the different forms of the rule
(homographic and canonical form of equation)].

Petra: But we’re the ones who should be doing it!We, we know what you’re working on. A
lot with the canonical form of equation. There, we tell them [students]: “we’re a bit
short of time because we have infinity over infinity. We’re going to have some tools,
but is there anything else that you have [with reference to the canonical form of
equation]?”

Sophie: They’re going to do it!

Piero: [surprised] It’s true that, that means we can avoid here going through an indeterminate
form!

Sophie: For the introduction at least and that’s going to allow to make a link to something that
they already know.

Petra: There, that’s okay, they’ll be able to do it, but they’ll see that they need other things
after, tools to be developed. We are creating a need.

4.6 Conclusion

What can we conclude from this analysis? First, it leads to nuancing teachers’ initial
position, presented in Sect. 4.2.2: the idea of “before and after” when it comes to
using contexts. The ethnomethodology perspective via teachers and their ways of
doing mathematics using contexts has allowed us to report what usually is implicit.
We perceive here a first contribution as these ways of doing could not be as visible
from an analysis of the curriculum and textbooks. This allowed us to (re)constitute a
certain territory at each level: from contextual mathematics at the secondary level to
illustrated mathematics at the postsecondary level. The teachers’ discussions
revealed a broader vision of mathematics (in relation to the use of context), a way
of conceiving it. Moreover, we can affirm that, with reference to the use of contexts,
secondary and postsecondary teachers who participated in the research “live” in two
very distinct territories. Thus, it is not surprising that students arriving at the
postsecondary level have difficulties decoding the rules of the game.

Janvier’s work (1990, 1991) in which he contrasts the notion of application and
that of contextualization is evocative to compare the two levels. For Janvier, from an
application perspective (illustrated mathematics in our case), mathematics is con-
sidered general knowledge. The field in which this mathematics is significant and
where it can be used does not change, and does not affect the nature of this
mathematics. For example, mathematical work done on equations will not relate to
the underlying context that enabled them to be established.

From the contextual mathematics perspective, the context which frames mathe-
matical activity provides support for the reasoning. According to Janvier (1990,
1991), contextual mathematical reasoning develops at the intersection of two
domains. The context contains specific elements; so, it is normal to expect these
particular elements to play a role in the way of broaching mathematics. The
characteristics of the context contribute to the development of a mathematical



ð Þ

ð Þ= þ
x- 1

meaning. Contextual reasoning aims to reconcile the mathematics carried out with
the characteristics of the context, through the support defined by the context: graphs,
verbal description, images, gestural. Figure 4.5, which distinguishes contextualiza-
tion from application, is inspired by that of Janvier (1991).
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Table 4.9 A four-step progression

Intermediate zone (the “overhanging roof” task seen in Fig. 4.4)
According to teachers, secondary students have enough knowledge to complete the task. Never-
theless, they will find the rule h = 3x/(x-2) a form to which they are relatively unaccustomed. The
secondary teachers expect students to shift to the canonical form: h = (6/(x-2)) + 3. The
postsecondary teachers plan to explore the notion of limit in this context, but also to connect the
two forms of equation (homographic and canonical) in relation to the intuitive notion of limit. A
secondary teacher also proposes discussing with the students what happens with the height (h)
when the base of the roof comes closer and closer to the wall at x = 2. The context being here
central in the explanations.

New way of doing at the postsecondary level: Gradually moving away from the context
(f x = x3 - 3x

x- 3 )

A postsecondary teacher proposes intuitively pursuing the exploration of the limit according to a

certain progression. She suggests the function f xð Þ= x3 - 3x
x- 3 . What happens around x = 3? The

secondary students have not worked with “holes”. This is an initial detachment from context, but
the work is not yet generalized. Instead, it is based on an example close to that which was done in
context (the division of polynomials), but liable to unsettle students’ conceptions (the rational
expression means asymptote). As Sarah mentions: “They (students) operationalize elsewhere
what they have just seen before” (Sarah).

ffiffiffiffiffiffiffiffiq

Establishing a clear border (f x x3 1) to enter postsecondary level

With this function, according to the postsecondary teachers, we arrive at the boundary of what
students can accomplish intuitively. Therefore, they propose an introduction to the concept of
limit and properties. This is the objective at the postsecondary level.

New way of doing at the postsecondary level: Drawing upon the previous work in context
While introducing the limit (definition and properties), it is proposed to come back to the initial
function (from the “overhanging roof” task) to exemplify the concept of limit and certain
properties in context.

Our research is not about finding the best ways to do mathematics using contexts,
but rather understanding how mathematics is done at each level. However, as
mentioned by Biza et al. (2016), there is an increased interest about the role of
mathematics in other disciplines at tertiary level. They recall Harris et al. (2015)
study in which they suggest that the students “need to get insight of the real use of
mathematics in their discipline.” (Biza et al., 2016, p. 6). The applicationist under-
standing of the use of mathematics in other disciplines (as shown by postsecondary
teachers participating in our research) neglect, according to Hochmuth (2020), the
dialectic relation between mathematics and the context of its use. What would
contextual mathematics brought by secondary7 teachers here mean at postsecondary
level? What elements of context from postsecondary scientific or professional

7And also from research conducted in situated perspectives (Please see, in particular, Lave, 1988,
1996; Noss, 2002; Noss et al., 1999; Nunès et al., 1993; Traoré & Bednarz, 2009).



disciplines (e.g., engineering, economy, etc.) could help understand the mathematics
and vice versa?
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Fig. 4.5 Schematization of the differences between secondary and postsecondary territories based
on Janvier’s comparison of contextualisation and application (1991, p. 146)

Also, the back and forth between contextualized and decontextualized (dotted
Arrows A and B from Fig. 4.2) become important aspects to work on when teaching
to non-mathematics students at postsecondary level.8 Even if the operationalization
of these reflections remains to be formulated, these suggestions suppose, in our view,
an important change in postsecondary mathematics teaching.

Finally, the goal of a rapprochement was achieved in a progression of four key
moments: explication of respective ways of doing mathematics, establishment of
common elements, revisit one’s territory in light of the other, joint planning. This
rapprochement is not a way to ensure that each level adopts the same ways of doing
mathematics using contexts. As it was developed within the group, it reveals the
need to take into account what is done at the other level and how it is done. That
occurs through a progressive familiarization with the territory of the other level.
Facilitating inter-levels collaboration enables the understanding of the other and new
ways of doing to accompany the students in the transition.

8The reflection would be completely different for mathematics students. New requirements in terms
of formalism, proofs, rigor and abstract mathematics in mathematics major programmes have been
an important focus to understand the transition and remain very relevant for those students. We
chose to focus here on non-mathematics students and on the relationship between mathematics and
other disciplines at tertiary level. Indeed, there is an increased interest about the role of mathematics
in other disciplines at tertiary level as pointed out by Biza et al. (2016), however one can ask what is
the role of other disciplines – and more broadly of contexts – in mathematics courses?



4 Collaboration Between Secondary and Post-secondary Teachers About. . . 87

References

Artigue, M. (2004). Le défi de la transition secondaire/supérieur: Que peuvent nous apporter les
recherches didactiques et les innovations développées dans ce domaine. Communication
presented at the first Canada-France mathematics sciences conference. Toulouse.

Bednarz, N. (2004). Collaborative research and professional development of teachers in mathemat-
ics. In M. Niss & E. Emberg (Eds.), Proceedings of the international conference on mathematics
education (CD-ROM). Roskilde University.

Biza, I., Giraldo, V., Hochmuth, R., Sadat Khakbaz, A., & Rasmussen, C. (2016). Research on
teaching and learning mathematics at the tertiary level. Springer Nature. https://doi.org/10.
1007/978-3-319-41814-8_1

Bosch, M., Fonseca, C., & Gascon, J. (2004). Incompletitud de las organizaciones matemáticas
locales en las instituciones escolares. Recherches en didactique des mathématiques, 24(2–3),
205–250.

Cicourel, A. V. (1974). Interpretive procedures and normative rules in the negotiation of status and
role. In A. V. Ciccourel (Ed.), Cognitive sociology: Language and meaning in social interaction
(pp. 11–41). The Free Press.

Coburn, C. E., & Penuel, W. R. (2016). Research–practice partnerships in education: Outcomes,
dynamics, and open questions. Educational Researcher, 45(1), 48–54. https://doi.org/10.3102/
0013189X16631750

Corriveau, C. (2013). Des manières de faire des mathématiques comme enseignants abordées dans
une perspective ethnométhodologique pour explorer la transition secondaire collégial.
Unpublished doctoral thesis. Université du Québec à Montréal.

Corriveau, C. (2017). Secondary-to-tertiary comparison through the lens of ways of doing mathe-
matics in relation to functions: A study in collaboration with teachers. Educational Studies in
Mathematics, 94(2), 139–160. https://doi.org/10.1007/s10649-016-9719-2

Corriveau, C., & Bednarz, N. (2013). Manières de faire des mathématiques comme enseignants: une
perspective ethnométhodologique. For the Learning of Mathematics, 33(2), 24–30.

Corriveau, C., & et Bednarz, N. (2016). Transition secondaire postsecondaire abordée sous l’angle
de l’harmonisation entre manières de faire des mathématiques comme enseignants entourant le
symbolisme. Revue canadienne de l’enseignement des sciences, des mathématiques et des
technologies/Canadian Journal of Science, Mathematics and Technology, 16(3), 213–236.

Corriveau, C., & Bednarz, N. (2017). The secondary-tertiary transition viewed as a change in
mathematical cultures: An exploration concerning symbolism and its use. Educational Studies
in Mathematics, 95(1), 1–19. https://doi.org/10.1007/s10649-016-9738-z

Corriveau, C., Breuleux, A., Kobiela, M., & Oliveira, I. (2020). Projet ARIM: processus de
rapprochement des pratiques d’enseignement de mathématiques pour favoriser un passage
plus harmonieux pour les élèves lors de transitions scolaires. Rapport final de recherche pour
la subvention no. 2017-PO-202613. Fonds de recherche du Québec Socité Culture, Programme
d’actions concertées sur la réussite et la persévérance scolaire (research report).

Davis, B. (2005). Trois attitudes de recherche en éducation. Revue des sciences de l’éducation,
31(2), 389–416. https://doi.org/10.7202/012762ar

Desgagné, S. (2001). La recherche collaborative: une nouvelle dynamique de recherche en éduca-
tion. In M. Anadón (Ed.), Nouvelles dynamiques de recherche en éducation (pp. 51–76). Les
presses de l’Université Laval.

Di Martino, P., & Gregorio, F. (2019). The mathematical crisis in secondary–tertiary transition.
International Journal of Science and Mathematics Education, 17(4), 825–843. https://doi.org/
10.1007/s10763-018-9894-y

Douady, R. (1986). Jeux de cadres et dialectique outil-objet. Recherches en Didactique des
Mathématiques, 7(2), 5–31.

Douady, R. (1991). Tool, object, setting, window: Elements for analyzing and constructing
didactical situations in mathematics (In mathematical knowledge: Its growth through teaching)
(pp. 107–130). Springer. https://doi.org/10.1007/978-94-017-2195-0_6

https://doi.org/10.1007/978-3-319-41814-8_1
https://doi.org/10.1007/978-3-319-41814-8_1
https://doi.org/10.3102/0013189X16631750
https://doi.org/10.3102/0013189X16631750
https://doi.org/10.1007/s10649-016-9719-2
https://doi.org/10.1007/s10649-016-9738-z
https://doi.org/10.7202/012762ar
https://doi.org/10.1007/s10763-018-9894-y
https://doi.org/10.1007/s10763-018-9894-y
https://doi.org/10.1007/978-94-017-2195-0_6


88 C. Corriveau

Emerson, L., Kilpin, K., & Feekery, A. (2015). Smoothing the path to transition. Summary Report.
Teaching & Learning Research Initiative, 2–17.

Garfinkel, H. (1967). Studies in ethnomethodology. Prentice-Hall.
Garfinkel, H., & Sacks, H. (1970). On formal structures of practical actions. In J. D. McKinney &

E. A. Tiryakian (Eds.), Theoretical sociology (pp. 337–366). Appleton-Century Crofts.
Groupe, A. H. A. (1999). Vers l’infini pas à pas-Approche Heuristique de l’Analyse. Manuel de

l’élève, De Boeck Wesmael.
Gueudet, G. (2004). Rôle du géométrique dans l’enseignement de l’algèbre linéaire. Recherche en

didactique des mathématiques, 24(1), 81–114.
Gueudet, G. (2008a). La transition secondaire-supérieur: résultats de recherches didactiques et

perspectives. In R. Rouchier (Ed.), Actes de la XIIIe école d’été de didactique des
mathématiques (CD-ROM). France.

Gueudet, G. (2008b). Investigating the secondary-tertiary transition. Educational Studies in Math-
ematics, 67, 237–254. https://doi.org/10.1007/s10649-007-9100-6

Harris, D., Black, L., Hernandez-Martinez, P., Pepin, B., Williams, J., & with the TransMaths
Team. (2015). Mathematics and its value for engineering students: What are the implications for
teaching? International Journal of Mathematical Education in Science and Technology, 46(3),
321–336. https://doi.org/10.1080/0020739X.2014.979893

Heo, G. M., Anderson, D., Goyetche, M. H., Taker, D., & Breuleux, A. (2011). Distributed
leadership facilitating collaboration in a teacher community of practice. In M. Koehler &
P. Mishra (Eds.), Proceedings of SITE 2011-Society for Information Technology & teacher
education international conference (pp. 1529–1534). Association for the Advancement of
computing in education (AACE).

Hernandez-Martinez, P., Williams, J., Black, L., Davis, P., Pampaka, M., & Wake, G. (2011).
Students’ views on their transition from school to college mathematics: Rethinking ‘transition’
as an issue of identity. Research in Mathematics Education, 13(2), 119–130. https://doi.org/10.
1080/14794802.2011.585824

Hochmuth, R. (2020). Service-courses in university mathematics education. Encyclopedia of
Mathematics Education, 770–774.

Ingram, J. (2018). Moving forward with ethnomethodological approaches to analysing mathematics
classroom interactions. ZDM, 50(6), 1065–1075. https://doi.org/10.1007/s11858-018-0951-3

Janvier, C. (1990). Contextualization and mathematics for all. In T. J. Cooney & C. R. Hirsh (Eds.),
Teaching and learning mathematics in the 1990s (pp. 183–193). National Council of Teachers
of Mathematics.

Janvier, C. (1991). Contextualisation et représentation dans l’utilisation des mathématiques. In
C. Garnier, N. Bednarz, & I. Ulanovskaya (Eds.), Après Vygotski et Piaget: Perspectives sociale
et constructiviste, Écoles russe et occidentale (pp. 129–147). De Boeck.

Krummheuer, G. (2020). Interactionist and ethnomethodological approaches in mathematics edu-
cation. Encyclopedia of mathematics education, 412–415. https://doi.org/10.1007/978-94-007-
4978-8_81

Liebendörfer, M., & Hochmuth, R. (2013). Interest in mathematics and the first steps at the
university. In B. Ubuz, C. Haser, & M. A. Mariotti (Eds.), Proceedings of the 8th conference
of European research in mathematics education (pp. 2386–2395). Middle East Technical
University.

Lave, J. (1988). Cognition in practice: Mind, mathematics and culture in everyday life. Cambridge
University Press.

Lave, J. (1996). Teaching and learning in practice. Mind, Culture and Activity, 3(3), 149–164.
Leviatan, T. (2008). Bridging a cultural gap. Mathematics Education Research Journal, 20(2),

105–116. https://doi.org/10.1007/BF03217480
Mathieu-Soucy, S. (2020). Becoming a teacher: A narrative inquiry into the experiences of novice

teachers of mathematics in cégep. Unpublished doctoral thesis. Concordia University.

https://doi.org/10.1007/s10649-007-9100-6
https://doi.org/10.1080/0020739X.2014.979893
https://doi.org/10.1080/14794802.2011.585824
https://doi.org/10.1080/14794802.2011.585824
https://doi.org/10.1007/s11858-018-0951-3
https://doi.org/10.1007/978-94-007-4978-8_81
https://doi.org/10.1007/978-94-007-4978-8_81
https://doi.org/10.1007/BF03217480


4 Collaboration Between Secondary and Post-secondary Teachers About. . . 89

McPhail, R. (2015). Pre-university prepared students: A program for facilitating the transition from
secondary to tertiary education. Teaching in Higher Education, 20(6), 652–665. https://doi.org/
10.1080/13562517.2015.1062360

Noss, R. (2002). Mathematical epistemologies at work. For the Learning of Mathematics, 22(2),
2–13.

Noss, R., Pozzi, S., & Hoyles, C. (1999). Touching epistemologies: Meanings of average and
variation in nursing practice. Educational Studies in Mathematics, 40(1), 25–51. https://doi.org/
10.1023/A:1003763812875

Nunès, T., Schliemann, A. D., & Carraher, D. (1993). Street mathematics and school mathematics.
Cambridge University Press. https://doi.org/10.1111/j.2044-835X.1985.tb00951.x

Pepin, B. (2014). Using the construct of the didactic contract to understand student transition into
university mathematics education. Policy Futures in Education, 12(5), 646–657. https://doi.org/
10.2304/pfie.2014.12.5.646

Stadler, E. (2011). The same but different: Novice university students solve a textbook exercise. In
M. Pytlak, T. Rowland, & E. Swoboda (Eds.), Proceedings of CERME 7 (pp. 2083–2092).
University of Rzesvow.

Vandebrouck, F. (2011). Students conceptions of functions at the transition between secondary
school and university. In M. Pytlak, T. Rowland, & E. Swoboda (Eds.), Proceedings of CERME
7 (pp. 2093–2102). University of Rzesvow.

De Vleeschouwer, M. (2010). An institutional point of view of the secondary–university transition:
The case of duality. International Journal of Mathematical Education in Science and Technol-
ogy, 41(2), 155–171. https://doi.org/10.1080/00207390903372445

Thoma, A., & Nardi, E. (2018). Transition from school to university mathematics: Manifestations
of unresolved commognitive conflict in first-year students’ examination scripts. International
Journal of Research in Undergraduate Mathematics Education, 4(1), 161–180. https://doi.org/
10.1007/s40753-017-0064-3

Thomas, M. O., & Klymchuk, S. (2012). The school–tertiary interface in mathematics: Teaching
style and assessment practice. Mathematics Education Research Journal, 24(3), 283–300.
https://doi.org/10.1007/s13394-012-0051-6

Traoré, K., & Bednarz, N. (2009). Mathématiques de la vie quotidienne au Burkina Faso: une
analyse de la pratique sociale de comptage et de vente de mangues. Educational Studies in
Mathematics, 72(3), 359–378. https://doi.org/10.1007/s10649-009-9200-6

Winsløw, C. (2007). Les problèmes de transition dans l’enseignement de l’analyse et la
complémentarité des approches diverses de la didactique. Annales de didactique et de sciences
cognitives, 12, 195–215.

https://doi.org/10.1080/13562517.2015.1062360
https://doi.org/10.1080/13562517.2015.1062360
https://doi.org/10.1023/A:1003763812875
https://doi.org/10.1023/A:1003763812875
https://doi.org/10.1111/j.2044-835X.1985.tb00951.x
https://doi.org/10.2304/pfie.2014.12.5.646
https://doi.org/10.2304/pfie.2014.12.5.646
https://doi.org/10.1080/00207390903372445
https://doi.org/10.1007/s40753-017-0064-3
https://doi.org/10.1007/s40753-017-0064-3
https://doi.org/10.1007/s13394-012-0051-6
https://doi.org/10.1007/s10649-009-9200-6


91

Chapter 5
Framing Goals of Mathematics Support
Measures

Michael Liebendörfer , Christiane Büdenbender-Kuklinski, Elisa Lankeit,
Mirko Schürmann, Rolf Biehler, and Niclas Schaper

Abstract Tertiary mathematics education has produced a multitude of measures
in recent years, all ofwhich aim at improving the learningofmathematics at universities.
Such support measures pursue a diversity of goals that have hardly been explicitly
captured and compared in the literature so far. This chapter takes a step in this direction
by presenting a framework that was developed within the WiGeMath project. The
WiGeMath (Wirkung und Gelingensbedingungen von Unterstützungsmaßnahmen für
mathematikbezogenes Lernen in der Studieneingangsphase; Effects and success con-
ditions of mathematics learning support in the introductory study phase) project was
funded by the German Federal Ministry of Education and Research (BMBF, grant
identifiers 01PB14015A and 01PB14015B) to compare innovative support measures in
Germany. Based on concrete measures, a differentiated category system for goals was
developed. One benefit of the framework is illustrated in the second part of this chapter
where several pre-university bridging courses, redesigned lectures and mathematics
learning support centres are compared regarding their targeted goal categories. The
results show both the variance within measures of a similar type and variance between
these types. We discuss how the framework can contribute in making goals more
explicitly visible for the comparison of measures, but also for their change or redesign.
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5.1 Supporting Students in the Secondary-Tertiary
Transition and the WiGeMath Project

The secondary-tertiary transition in mathematics is difficult for students and some-
times disappointing for teachers (Gueudet, 2008). Internationally, similar difficulties
are reported, such as students’ decline in motivation (e.g. Daskalogianni & Simpson,
2002) and problems in coping with the new requirements. In Germany, as in some
other countries, drop-out rates are particularly high in mathematics and mathematics-
related study programs (Heublein, 2014). Internationally, new approaches to
improving this transition have existed for a long time but have recently gained
momentum (e.g. Durand-Guerrier et al., 2021). Traditional teaching can both be
enriched and changed. We speak of mathematics support measures and mean
different kinds of measures designed to help ease the secondary-tertiary transition
for students. In Germany, many such measures have been initiated in recent years
(cf. Göller et al., 2017, for an overview).

This development raises the questions of which aims such measures pursue and
which ones of those they actually achieve. The WiGeMath and WiGeMath-Transfer
projects, led by Reinhard Hochmuth, Rolf Biehler and Niclas Schaper, have tried to
answer both questions. The overall aim was to evaluate and compare different
support measures in terms of their implementation, necessary conditions for success
and impact. In the WiGeMath project, three types of measures were investigated in
depth: pre-university bridging courses, redesigned lectures and mathematics learning
support centres (MLSC). Pre-university bridging courses are courses offered by
universities shortly before the start of the regular first semester in order to teach
mathematics-related competencies, lasting several days to weeks. In most cases,
participation is optional and free of charge. Redesigned lectures are regular compul-
sory lectures introducing students to university mathematics in a non-traditional way
to ease their transition from school to university. MLSCs offer low-threshold
individual support in a specific site on campus (not an office) in addition to the
curriculum. They have longer been offered in English-speaking countries (Cronin
et al., 2016; Lawson, 2015; Rylands & Shearman, 2018) and are becoming more and
more common in Germany (Schürmann et al., 2021). In MLSCs, advice and support
are offered to students on mathematical topics and tasks.

As a prerequisite for the communication about measures’ goals and frame
conditions, we created a comparative framework which includes goals, frame con-
ditions and measure characteristics. In this paper we focus on the goals. Making
measures’ varying goals visible can have a benefit beyond the WiGeMath project,
because the question of how we can design and evaluate such measures is relevant
internationally. This contribution is based on preliminary work (Hochmuth et al.,
2018; Liebendörfer et al., 2017).

In the first part of this chapter, we describe how we reconstructed the goals of
different support measures and integrated them in one model, which is then
presented. In the second part, we illustrate the benefit of the model and the diversity



of goals that recent support measures in Germany had via a description of three types
of measures based on categories from our model. Finally, we discuss the use of this
model and further steps for research.
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5.2 Development of the Goal Categories in the WiGeMath
Framework

5.2.1 The Underlying Concept of Theory-Driven Evaluation

The WiGeMath project followed the approach of theory-driven evaluation by Chen
(1990, 2012) which is central to understand the development of goal categories in
this chapter. A main concept of Chen’s ‘Theory-driven Evaluation’ is the program
theory, which is “a set of explicit or implicit assumptions by stakeholders about what
action is required to solve a social, educational or health problem and why the
problem will respond to this action” (Chen, 2012, p. 17). These assumptions may be
both descriptive and prescriptive. Chen distinguishes six domains of program
theories that need to be considered for a holistic and comprehensive evaluation of
intervention approaches such as support measures in our case. The first three
program theory domains are so-called normative theories, i.e. they describe the
predefined or assumed structure of the measure and its context. The first domain
describes the theory of outcomes, i.e. the goals of the measure. In the second domain,
the procedural theory is developed, e.g. activities to be carried out, material to be
used. The third domain, the theory about the implementation environment, describes
the frame conditions under which the measure is to be realised (e.g. characteristics of
the participants, competences of the implementers). The remaining three theory
domains refer to the causal relationships between input and output of the program.
In this chapter, we regard the first domain of goals only.

Goals describe the intended outcomes of a measure. When goals are stated
explicitly, they may guide the activities in a measure and be used to assess a
measure’s effectiveness. We should acknowledge, however, that goals may some-
times be present only implicitly in stakeholders’ beliefs and views. Chen (1990)
therefore introduces the goal revelation evaluation to uncover such goals.

The initiators of redesigned lectures in the WiGeMath project, for example, had
clear ideas about topics or procedures in the lectures, such as allowing more time for
collaborative problem solving. These are part of the procedural theory. Partly,
however, they had not documented related goals. It would be wrong to state that
such measures had no goals. Instead, it was important to jointly reconstruct what was
to be achieved with such processes. This might include strengthening students’ self-
efficacy beliefs or enculturation into university mathematics.
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5.2.2 The Purpose of a Framework Model for Goal
Categories

We started developing the framework model because we lacked a common basis for
the theory-based study of mathematics support measures addressing the secondary-
tertiary transition. In WiGeMath, goals of support measures addressing mathematics
students, mathematics teacher education and mathematics in engineering students
should be classified and evaluated across different universities. Such comparisons
are not part of the original theory-driven evaluation approach. It was thus not only
necessary to reveal and describe the goals of single measures but to create a
consistent model that would serve to compare goals of different measures. We call
this the framework model. The framework model should offer descriptive categories
for different aspects of the support measures in a structured form.

The description categories should be both comprehensive and relevant across
measures. Constructing the model called for reflections of the overarching relevance
of categories that initially only appeared to be relevant for specific measures and for
standardization via abstractions from the descriptions of the single measures.

5.2.3 Main Steps in Developing the Model

The development of the framework model required work on two levels. On the lower
level, program theories of single measures were collected. According to Chen
(1990), a variety of sources can be used like the evaluation of documents on the
goals of a measure or interviews with those who initiated or implemented the
measure. On the higher level, the framework model was established through a
synthesis of the various program theories of single measures. In this process, goals
from the program theories that were considered relevant for the transition problem
were first selected and grouped. Categories were then derived through abstraction
rendering individual theoretical elements of the program theories as manifestations
of corresponding categories.

An initial descriptive grid for the support measures was developed based on
theoretical descriptions of teaching and learning (e.g. Wildt, 2002; Winteler &
Bartscherer, 2008). We did not only include variables that represent independent
goals but also some that can serve to clarify effects (e.g. learning strategies). Parallel
to this deductive procedure, we used an inductive procedure to create further goal
categories by reconstructing program theories of selected measures of different
types: We carried out a case-related, qualitative analysis of documents and analysed
documents from 28 measures representing 13 institutions, namely our own two
universities, ten other German universities and one Norwegian university. At this
point, we did not only focus on pre-university bridging courses, MLSCs and



Total

7 4 6 20

2 1 3 8

redesigned lectures but also other measures offering special teaching, material or
consulting to complement regular teaching. Details on the numbers of different
measures are displayed in Table 5.1.
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Table 5.1 Numbers of measures with either rich or sparse documents on their goals

Pre-university
bridging courses

Mathematics learning
support centres

Redesigned
lectures

Other
measures

Rich
material

3

Sparse
material

2

Total 9 5 5 9 28

The documents greatly varied in their quality and quantity. Thus, we classified the
material: rich material included documents that more or less explicitly named goals
of a measure like brochures for teaching staff, proposals for external funding,
academic publications including books on some measures or project reports. Sparse
Material included documents that reflected goals without explicitly naming them like
advertising material for students, teaching material including tasks or lecture notes,
short instructions for teaching staff and informal emails.

All documents were reviewed and the contents were assigned to the goals,
implementation and implementation conditions according to Chen’s (1990)
approach. We followed the typical steps of a document analysis: skimming the
documents for relevant passages, reading them and interpreting them in an iterative
process (Bowen, 2009). Relevant categories and their underlying document excerpts
were then discussed in the project team. We reconstructed goals that were not
mentioned explicitly but seemed plausible. If, for example, a document stated a
measure should present challenging problems to the students, we did not take this as
a goal (because it does not describe an outcome) but noted the learning of problem-
solving skills as a possible goal.

In this process, the expected limitations of a document analysis became apparent.
Documents are not always accessible, often incomplete, they cannot be interrogated
in depth and they have been created in a specific social context for a certain purpose
(Bowen, 2009; Prior, 2016). Most significant, however, was the limitation that the
existing documents often only described the measures very roughly. Yet, the infor-
mation was enough to set up possible goal categories and not a complete description
of the single measures’ goals in this step.

The two approaches were then merged. Often, the elements of the program
theories from the inductive approach could be classified as expressions of existing
or easily supplemented categories in the deductively obtained model.

We tested the framework model through a total of ten measure-specific guideline-
based expert interviews (Helfferich, 2014) with responsible staff for various of the
measures of the earlier inductive approach. The weaknesses of the document anal-
ysis were well compensated for by interview questions, especially follow-up



questions and joint discussions between the interviewers and the experts. The
evaluation of the interviews followed a theory-based qualitative content analysis
(Mayring, 2015). Every goal mentioned by the interview partners needed to corre-
spond to a category in the model. If necessary, the model was modified or extended
so that all goals, procedures and framework conditions of the measures according to
interviewees or researchers could be located in the framework model.
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The program theories of the single measures were then summarised. Some goals
in the documents, in particular those relating to psychological aspects like beliefs,
had been described in diverse and sometimes vague terms including metaphors. We
unified the categories and in doing so, we based the categories on concepts from
mathematics education, psychology or similar disciplines where it seemed reason-
able, especially on concepts that had already been used to formulate categories in the
first, deductive step. As there is no standardized methodology for this step, we
simply discussed theoretical relations based on their recent use in mathematics
education and their fit to the goal categories in our team.

Both in the document analysis and interviews, our compiled descriptions focused
on the procedural theory of the measures and these descriptions were often detailed.
Goals (as well as conditions), on the other hand, were not always explicitly stated
although they always seemed present. It was clear for bridging courses, for example,
that prospective students should be prepared for their studies. Yet, there were
sometimes no more precise goal statements and staff might answer questions for
goals giving details on the procedure to be implemented. A closer look at the
measures revealed a large variance, for example with regard to their repetitive
treatment of school mathematics or their propaedeutic covering of university math-
ematics and also with regard to possible secondary goals such as promoting the
formation of learning groups. Such goals could be derived more or less clearly from
the procedural theory for all types of measures, although it was not always possible
to clarify to what extent the goals here could be assigned to the measure or to
individual teachers. In accordance with the evaluation approach by Chen (1990) they
were nevertheless collected and taken as relevant for the framework model.

Next, the framework model was validated and further developed in an expert
workshop with 21 WiGeMath partners representing all 13 institutions from step
1. Some partners represented more than one measure. After a presentation of the
framework model in the current version, results for the specification of the frame-
work model, considering the measure-specific characteristics, were presented in
measure-type-specific working groups and discussed for further refinement and
optimisation of the model categories. In addition, for each category of the framework
model, the participants rated the perceived relevance of this category for describing
their type of measure on a scale (1–4). Corresponding assessments by the project
team were given in advance and were also available so that deviating assessments
could be discussed. Subsequently and based on the expert workshop, some minor
modifications were made to the framework model for advanced clarity.

To ensure that all relevant goals of a measure could be classified in the framework
model in terms of its scope and the clarity of its categories, a second round of expert
interviews was then conducted with representatives of two pre-university bridging



courses, three MLSCs and two redesigned lectures that had participated in the prior
steps to locate their measures in the framework model. The resulting changes were
minimal. Overall, the framework model seemed to cover all goals that we or the
partners considered as relevant. However, these last analyses also showed that not all
categories are useful for every measure or can be collected appropriately. Finally, the
revised framework model was presented to the WiGeMath partners in a second
workshop and was approved by them.
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To ensure the model’s connectivity to mathematics education research, the part of
the model referring to goals was presented at CERME 10 (Liebendörfer et al., 2017).
The discussion there underlined the versatile purposes but also its limitations. In
particular, the formulation of system-related goals (cf. the descriptions below) was
emphasised as a profitable approach.

5.2.4 Presentation of the Goal Categories

The framework model consists of a hierarchically structured list of categories with
short descriptions, in this case categories of different goals. The categories are
formulated as part of the program theory from the perspective of the designers.
The framework model is intended to classify the respective program theory of one or
more measures. Because of the multitude of aspects, we chose to structure the
framework model in several levels. The goals are subdivided into educational
goals, which map individual students’ changes, system-related goals, which refer
to the functioning of the higher education system, and goal qualities, which classify
these goals on a meta-level (e.g., if they are SMART; cf. Lawlor & Hornyak, 2012).
In this chapter we focus on the categories of educational goals and system-related
goals.

In line with the development of the model and its objectives, now follows a brief
description of each category in terms of what it encompasses, why or for what
purpose it was relevant in the WiGeMath project, and to what extent it is linked to
existing literature on university mathematics education. Category names are itali-
cized. A compact presentation of the framework model with all goal categories and
short descriptions is given in the appendix of this chapter.

5.2.4.1 Educational Goals

Educational goals refer to targeted changes in knowledge, actions and attitudes of
the measure participants. They should be the starting point for the support measures’
didactic design of the teaching/learning environment and the learning process. All
educational goals are linked to the difficulties in the secondary-tertiary transition in
mathematics. Naturally, all measures aimed for educational goals.
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Knowledge goals refer to both the declarative (“knowledge, that”) and procedural
knowledge (“knowledge, how”; Renkl, 2015, p. 4) that is developed through the
measure. The category of improvement of school mathematics knowledge and
abilities includes all content and techniques that are or were taught in school
mathematics lessons. Students may not actually have covered this content in their
lessons at secondary level, though. For example, this category also includes topics
from the area of trigonometry which used to be in the curriculum but have since been
dropped in many places. The classification as school mathematical knowledge
suggests that such additions are treated as school mathematics, e.g. through predom-
inantly descriptive concept formation. The need for a demarcation from university
mathematics knowledge was made clear, for example, by various bridging courses
that clearly had different emphases in this respect. School mathematics knowledge is
deemed necessary for mathematical studies by many German university teachers,
including aspects like trigonometric functions that are hardly covered in recent
syllabi (Neumann et al., 2017). In recent studies, prior school knowledge has proven
to be by far the most significant predictor of academic success (Halverscheid &
Pustelnik, 2013; Rach & Ufer, 2020). Improvement of higher mathematics knowl-
edge and abilities, on the other hand, concerns the content taught in regular
mathematics courses of the degree program. This content is diverse and specific to
the target group, so that a standardised differentiation did not seem useful. However,
special attention is paid to promote learning of the language of mathematics, which
includes symbols (e.g. the sum sign), abbreviations (e.g. like OBdA, corresponding
to the English abbreviation “w.l.o.g.” for “without loss of generality”) and basic
technical terms (e.g. “injective”). The language of mathematics is not linked to
specific subject areas or courses but refers to overarching elements. Such university
mathematics knowledge is taught in some bridging courses and redesigned lectures.
Dealing with the language of mathematics regularly poses difficulties for students
(Corriveau & Bednarz, 2017) and is addressed in separate literature on study support
(Beutelspacher, 2004; Houston, 2010; Vivaldi, 2014).

Action-oriented learning goals refer to skills of mathematical working and
learning as well as the concrete design of learning processes. Such goals were
pursued by all types of measures, albeit with a different focus. Enhancing mathe-
matical modes of operation concerns an enhancement of activities for working out
mathematical content and solving mathematical problems. Mathematical modes of
operation include problem-solving skills such as the use of heuristics. These have
long been described as important for mathematics (Polya, 1945; Schoenfeld, 1985),
especially in proving mathematically at university (Weber, 2005). Modes of opera-
tion also include (local) defining, working out examples and counterexamples,
making conjectures and proving, as well as approaches to exercises. Such modes
of operation are described in advice literature (Alcock, 2013a, b; Houston, 2009;
Mason et al., 2010) and became a central content in some redesigned lectures. In
contrast, enhancing university modes of operation concerns subject-unspecific
aspects such as time management, self-organisation, self-regulation or taking and
organising notes, which can be optimised especially at the beginning of university
studies (Dehling et al., 2014). Promoting learning strategies includes the promotion



of activities that serve to build mathematical knowledge like summarising important
content, planning, monitoring and evaluating learning, or practising and
memorising. Such learning strategies can also explain performance in
mathematics-related studies (Griese, 2017; Liebendörfer et al., 2020). While the
learning goals mentioned so far refer to a development of skills or routines, the
category support of learning and working conduct concerns changes in the actual
exercise. This category concerns the learning rhythm (when learning takes place),
learning effort (how much is learned), learning material (what is learned with),
learning environment (where and with whom learning takes place) and use of offers.
These objectives were mainly related to MLSCs.
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Attitudinal goals refer to a change in attitude towards mathematics. A positive
attitude towards mathematics of some kind was pursued by all types of measures.
Here, attitude is defined more broadly than is usually the case in psychology. For
example, change in beliefs, i.e. mathematical world views, is included (Goldin et al.,
2009; Grigutsch & Törner, 1998; Törner & Pehkonen, 1996). Typical views describe
mathematics as a collection of procedures (toolbox beliefs) or (also) a game for
exploring and (re)inventing structures (process beliefs). Such worldviews can influ-
ence how students perceive mathematics and how they work mathematically. They
are closely related to motivational development and drop-out (Geisler & Rolka,
2020; Liebendörfer & Schukajlow, 2017). Change in affective features describes a
change in emotional attitudes towards mathematics. This includes interest in math-
ematics, which has been addressed by recent research particularly in Germany
(Kosiol et al., 2019; Liebendörfer, 2018; Rach, 2014; Ufer et al., 2016). Especially
in the case of motivational variables, recourse to theoretically elaborated concepts is
helpful because they can have different roles in the learning process (Marsh et al.,
2019). Referring to more extrinsic motivation, both a perception of relevance for the
future job and a perception of relevance for future studies are relevant goal aspects of
this attitudinal category. The latter may be given when mathematical content is seen
as the basis for further courses. Both aspects can be discerned and found important
(Hernandez-Martinez & Vos, 2018). Mathematical enculturation describes the
introduction into a community in the sense of socio-cultural theories (e.g. Wenger,
1998). This refers, among other things, to the willing participation in “authentic”
activities of the new, university mathematical culture. Enculturation involves the
adoption of values, goals, ways of doing things and an adjustment of one’s identity.
It is thus closely related to beliefs, problem solving and proof (Perrenet & Taconis,
2009), but also aspects of one’s identity (Kaspersen et al., 2017). Enculturation was
addressed in some but not all pre-university bridging courses and even stronger in
redesigned lectures.

5.2.4.2 System-Related Goals

System-related goals are not oriented towards individual students, but towards the
functioning of the university system. This type of objective seemed necessary
because the approach of various measures showed that a measure’s success cannot



necessarily be assessed by looking at individual students and their development
only. Whereas with regard to individuals, for example, any promotion of knowledge
is helpful and any avoidance of drop-out makes sense, at the system level the special
promotion of disadvantaged groups or the achievement of a seemingly acceptable
level of drop-out can be targeted. The term “system-related” shall express that these
goals relate to the functioning of the system as a whole and not to individuals.
System-related goals are therefore formulated at the level of groups and from the
perspective of institutions.
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The goal category “creation of prerequisites for knowledge/abilities” refers to the
fact that future courses can assume certain knowledge or skills. This goal is mainly
pursued by bridging courses. It involves giving students the opportunity to learn this
content and ensuring that a certain proportion of students has actually achieved this
goal so that this content can be assumed as shared knowledge. This concerns the
improvement of school knowledge and abilities as a prerequisite for university
studies, such as calculating with fractions, sine, cosine and solving systems of
equations, especially if it is known that larger proportions of the student body do
not have such knowledge. To a lesser extent, it also concerns the creation of
requirements for lectures that exceed school knowledge in redesigned lectures, for
example logical and set-theoretical basics or the teaching of proof techniques like
mathematical induction. These topics were mostly compulsory or optional content in
school curricula at some time. Both categories show that measures may be designed
to help to maintain the previous structure and content of study programs when
cohorts with changed abilities begin their studies. They thus refer to an institutional
disruption in the secondary-tertiary transition. Universities need to adjust to changes
in schools and sometimes seem to try to maintain the traditional content of lectures
but add measures addressing the emerging gaps.

The category “improvement of formal study success” refers to objectively mea-
surable study success criteria such as a reduction of the dropout rate, i.e. the
proportion of students originally enrolled at the beginning of the semester who
have dropped out after the semester. It also includes an increasement of passing
rates/achievements, i.e. the proportion of students who have passed a certain module
and the distribution of students’ grades.

In addition, the system-related goals include categories that address the frame-
work conditions for students’ self-directed learning. The goal category “improve-
ment of feedback quality” means that students should receive qualitatively better
feedback (Hattie & Timperley, 2007), which is a goal of MLSCs in particular. In
addition, measures can aim at a “promotion of social contacts and connections
relevant for studies”, e.g., the formation of learning groups (MacBean et al.,
2004). This holds especially for bridging courses. The student groups mentioned
in the category “supporting certain student groups” could for example be women,
who are often underrepresented in mathematics-related degree programs (Gildehaus
& Liebendörfer, 2021), but also students who finance their studies with part-time
jobs, have children or have limited language skills.Making university study demands
transparent means that measures provide an insight into university requirements,
especially regarding the subject-related prerequisites and requirements in the further



Given the restricted space, we limit ourselves to measures that are aimed at math-
ematics majors and preservice teachers. Measures for engineering mathematics
would often have different emphases. In explicit, we focus on

course of studies. This is an objective of some bridging courses. In addition, some
measures’ goal can be the improvement of teaching quality, which refers primarily to
evaluations by students. These categories mirror also substantially different demands
for students’ self-regulated learning in school and university. Students’ need to
rapidly adjust to the new demands during the transition (e.g., Göller & Rück, this
volume).
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The system-related goals are also found in a similar way as learning goals and as
such often appear in the literature. The classification reflects that almost all measures
were conceived as a supplement and support to ensure that one can continue to use
the already existing teaching system for the further course of studies.

5.3 Using the Goal Categories of the Framework
to Compare Measures

To illustrate how we have used the framework and how different current measures
can be described, we compare measures from the WiGeMath-Transfer project
below.

5.3.1 Background and Methods

• bridging courses that were implemented as in-class courses (as opposed to online
courses) and aimed at future mathematics students, preservice teachers for math-
ematics and in some cases additionally future computer science students,

• redesigned lectures that focus more on the way mathematics is done at university
than on the mathematical content itself (cf. Grieser, 2018, for a concept of such a
“redesign”) and address preservice teachers but may also be attended by mathe-
matics students

• and MLSCs.

The ratings on which the following presentation is based were given by those
responsible for or carrying out the measures. For some measures, this was a single
person, for some there were teams of up to four people. The model was first
explained to them in workshops which were carried out in the WiGeMath-Transfer
project.1 The responsible persons indicated on a four-point scale whether the

1The WiGeMath-Transfer project aimed at a transfer of the results of the WiGeMath project
(including the framework model and its application) to a wider community.



objectives for their measure were a main goal (4), important goal (3), subordinate
goal (2) or no goal (1). If there was more than one person responsible for a measure,
all responsible persons discussed which rating they would give and decided on one
together. Some categories were not considered useful for certain types of measures
and were therefore excluded.
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5.3.2 Pre-University Bridging Courses

Our sample includes four bridging courses B1, B2, B3, and B4 held at three different
German universities (B3 and B4 being held at the same university but at different
points in time by different lecturers) in the weeks before the start of winter term. The
courses lasted 7–10 days. B3 and B4 were mandatory for future mathematics
students and preservice teachers at this particular university and also recommended
to computer science students. B1 and B2 were optional for the students. Each course
had between 100 and 180 participants. The courses included lectures in which
mathematical content was presented and tutorial group meetings in which the future
students worked in groups or individually on problems applying lecture content and
methods. Course B1 was organized and held completely by students. In B2, B3 and
B4, lectures were given by university staff and student tutors supervised the tutorial
group meetings. All four courses focused on basic topics in higher mathematics such
as naïve set theory, functions, logic, methods of proof and elementary number
theory. While the content and the overall structure is similar, differences and
similarities in the lecturers’ goals can be observed. We will first focus on educational
goals (cf. Fig. 5.1).

Regarding knowledge goals, only B1 aimed at an improvement of school math-
ematics knowledge and abilities and only as a subordinate, less important goal. This
is not typical for mathematical bridging courses in general since many mathematical
bridging courses – especially those aimed at engineering students – cover school
mathematics as a main topic. Instead, B1 and B2 regarded improvement of higher
mathematics knowledge and abilities as a main goal. B3 and B4 regarded this only as
a subordinate goal. This might seem surprising given the similar content in all of the
courses. But it can be explained by different perspectives of the lecturers: In the
courses B3 and B4, the content was only used as a means for illustrating mathemat-
ical modes of operation. To promote learning of the language of mathematics was
important for B1 and a main goal for the three other courses, making this the most
important knowledge goal of the bridging courses in this study.

Regarding action-oriented goals, all courses rated enhancing mathematical
modes of operation as a main goal. The views on the other goals differed, with
support of learning and working conduct being the least important goal.

None of the attitudinal goals were rated as a main goal in any of the bridging
courses, showing that the focus is on knowledge and action-oriented goals. How-
ever, some of the attitudinal goals were seen as important in some courses but there
was no consensus as to which. The least important attitudinal goals seemed to be



change in beliefs and perception of relevance for future jobs. Perception of rele-
vance for future studies was a subordinate goal in B3 and an important goal in B1,
B2 and B4.
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Fig. 5.1 Educational goals in bridging courses B1-B4

System-related goals (cf. Fig. 5.2) were rated variably. The promotion of social
contacts and connections relevant for studies, making university study demands
transparent and the improvement of teaching quality were the most important
system-related goals in these four bridging courses. None of the courses aimed at
a creation of requirements for following lectures that exceed school knowledge or at
supporting certain study groups. Only B1 aimed at the improvement of school
knowledge and abilities, but only as a minor goal. This is consistent with the rating
of the educational goal school mathematics knowledge and abilities. The improve-
ment of study success was regarded differently in the different courses (ranging from
no goal to important goal), with reduction of the dropout rates being more important
than increasement of passing rates/ achievements which was not a goal in three of
the courses.

5.3.3 Redesigned Lectures

We will look at three redesigned lectures R1, R2 and R3 held at different German
universities. R1 was designed for preservice teachers only, R2 was compulsory for
preservice teachers and mathematics students alike and R3 was compulsory for
preservice teachers and elective for mathematics students. Between 100 and 200 stu-
dents attended each lecture per semester. All three lectures were given by different



lecturers in different semesters and the lecturers had some freedom in selecting the
learning content. The learning culture in all three redesigned lectures was character-
ized by a lot of activity from the students’ part. Students were encouraged to work on
problems themselves and try out new methods during lecture time (Kuklinski et al.,
2019).
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Fig. 5.2 System-related goals in bridging courses B1-B4

There were some differences in how the three redesigned lectures set their focus
concerning educational goals and system-related goals. We will first consider the
educational goals, starting with knowledge goals (cf. Fig. 5.3).

None of the three redesigned lectures aimed at an improvement of knowledge of
school mathematics and abilities in their students. Meanwhile, they all focussed on
an improvement of higher mathematics knowledge and abilities and R3 set an even
stronger focus here than the other two lectures. To promote learning of the language
of mathematics was less important for R3 while it was just as important for R1 and
R2. Altogether, R1 and R2 seemed to set a very similar focus concerning the
knowledge goals but R3 differed somewhat.

Concerning the categories of action-oriented goals, all three redesigned lectures
had the goal of enhancing mathematical modes of operation and to a somewhat
smaller degree also promoting learning strategies, whereas an enhancement of
university modes of operation formed a subordinate goal only. Especially the strong
focus on mathematical modes of operation was very characteristic for redesigned
lectures for preservice teachers. None of the redesigned lectures aimed at a support
of the learning and working conduct of the students.
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Fig. 5.3 Educational goals in redesigned lectures R1-R3

There was some more variation between the three redesigned lectures concerning
the attitudinal goals. Causing a change in beliefs in students was a main goal in R2
and R3 and a little less important in R1. The gap widens for change in affective
features which was also in the focus of R2 and R3 but not very important in R1. That
students gain a perception of relevance for their future job was no goal in R3 and a
subordinate goal in R1 and R2 but in all three redesigned lectures it was more
important that students gain a perception of relevance for their future studies. A
mathematical enculturation was a main goal in R1 and R3 but less important in R2.
We see that the goal that students make learning progress in using the language of
mathematics was rated higher for R1 than for R3 and the goals that students gain
more knowledge in higher mathematics and develop positive affective features were
rated lower for R1 than for R3. Thus, we conclude that the different redesigned
lectures pursued different paths in reaching their focused target of a mathematical
enculturation of the students.

All in all, the educational goals of redesigned lectures showed similar profiles but
they set their focus a little differently, especially concerning the category of attitu-
dinal goals. We will now look at the system-related goals (cf. Fig. 5.4).

While none of the three lectures aimed for an improvement of school knowledge
and abilities as a prerequisite for university studies, the creation of requirements for
lectures that exceed school knowledge were rated much more important for R1 and
R2. R3 did not aim at this goal had the reduction of the dropout rate and the
increasement of the passing rates as main goals. Even though with less emphasis



than R3, R1 and R2 also aimed at reducing dropout rates but improving passing rates
was not on their agenda. An improvement of teaching quality was more important to
R1 than it was to R2 or R3 whereas improvement of feedback quality was a
subordinate goal for all three redesigned lectures. Even less focus did they set on
supporting certain student groups. A promotion of social contacts and connections
relevant for the studies and making university study demands transparent were
rather not pursued by R1 while R2 and R3 did find it important to promote social
contacts.
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Fig. 5.4 System-related goals in redesigned lectures R1-R3

5.3.4 Mathematics Learning Support Centres

The six MLSCs are characterised by a special place in the university that students
can attend to work on mathematical topics and receive support. The respective rooms
or spaces in the universities varied greatly in capacity. MLSCs that used former
seminar or teaching rooms had capacities of between 35 and 60 students. In some
cases, several rooms or adjoining areas were used in these MLSCs and the rooms
were exclusively used by them. MLSCs with larger capacities used places in the
university only for certain times of the day and that were used alternatively at other
times. Five MLSCs (1–5) had a focus on (pure) mathematics support. An additional
one (MLSC6) focused on mathematical support for teacher students with an



additional focus on didactical considerations and background theories. It helped the
secondary-tertiary transition by supporting reflections on the differences.
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Fig. 5.5 Educational goals in mathematics learning and support centres MLSC1-MLSC6

Support or additional advice in the MLSCs was mainly provided by tutors, who
were sometimes also involved in tutorials for courses. They were mainly qualified
through site-specific training by their MLSC. However, the qualification measures
for the tutors varied in scope from several hours to several days of training. If support
was given by staff members, instructions for staff was provided (e.g. by learning
centre managers or persons in charge) about how the counselling should generally be
conducted, but no specific training was given to these staff members.

With regard to the assessed educational goals (cf. Fig. 5.5), all respondents stated
the improvement of knowledge and abilities in higher mathematics as the main goal,
except MLSC6, which had its focus on mathematics didactics and therefore did not
have a priority in the support of students if they had problems in higher mathematics.
Enhancing mathematical modes of operation and promoting learning of the lan-
guage of mathematics were chosen as other main and important goals by all six
MLSCs. Further important goals for at least two of the six MLSCs were the
promotion of mathematical enculturation (MLSC1, 4, 5 & 6), changes in affective
features of students (MLSC5 & 6) and promoting learnings strategies (MLSC2 &
6). Some of the other goals were rated as subordinate or as no goal by most MLSCs.
Overall, the assessments reflected individual priorities of the learning centres, which
were also due to the different focus on the students’ degree programs the MLSCs
gave support to.
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Fig. 5.6 System-related goals in mathematics learning and support centres MLSC1-MLSC6

The system-related goals (cf. Fig. 5.6) of the participating MLSCs varied slightly
and also indicated the individual priorities of the centres. For example, the reduction
of dropout rates was rated as a main goal (MLSC1, 3 & 5), an important goal
(MLSC4), a subordinate goal (MLSC2) or as no goal (MLSC6). The improvement of
feedback quality was no goal for MLSC1 and MLSC5, a subordinate goal for others
(MLSC3 & 4), an important goal for yet another MLSC (MLSC2) and a main goal
for MLSC6. Most respondents rated the support of certain student groups and the
improvement of school knowledge and abilities as no goal or only a subordinate goal.
In sum, MLSCs 1 to 5 gave more similar ratings in terms of the presented goals
compared to MLSC6, which again reflected the emphasis of the latter on mathemat-
ics didactics support in the context of mathematics teacher education study
programs.

5.3.5 Comparing Different Types of Measures

Across all measures (aimed at mathematics students and preservice teachers), the
focus was on teaching both higher mathematics and mathematical modes of opera-
tion. These goals form the central aspects of mathematical competence and seem
therefore important for each subject-specific support measure.
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The diagrams also show different emphases between the types of measures.
Bridging courses particularly emphasized social contacts and making study require-
ments transparent. Both are considered prerequisites for a good start to university
studies. Redesigned lectures had a focus on enculturation, beliefs and affective
variables. They provide an answer to known problems of disaffected and distanced
students that are not targeted by the other types of measures. Redesigned lectures
may change the relationship with mathematics in a profound way that relatively
short bridging courses or voluntary visits to an MLSC cannot. MLSCs also focussed
on goals that were less closely related to mathematics, such as university modes of
operation, learning strategies, and learning and working conduct. Possibly, these
problems are best tackled individually. In addition, they set a focus on reducing
drop-out and on improving feedback quality. This is another strength of MSLCs,
where individual cases can be discussed and reflected. At least one MLSC, in
contrast to the other measures, also focused on specific student groups.

5.4 Discussion

We presented a model of goals that mathematics support measures for the secondary-
tertiary transition may have. It has an empirical basis given by diverse analyses, yet it
may be incomplete and other research could derive other goals. We further compared
three different types of measures, showing that the types differ in their goals and that
there is also variation within the types.

5.4.1 The Framework Model

Despite its limited empirical basis, the model shows a variety of goals that are hardly
discussed in the literature as a whole system of goals. Learning goals focusing on
mathematical content have been discussed for a while (e.g., Speer et al., 2015). In
discussing prerequisites for studying mathematics, mathematical knowledge has
been supplemented by affective variables, beliefs and abilities to employ mathemat-
ical processes (Deeken et al., 2020). Such abilities like problem solving have also
been highlighted as learning goals in the first semester (Alpers, 2014; Rensaa et al.,
2020). Our new contributions are the focus on goals pursued by recent support
measures, systematization of these goals and comparisons of different measures
concerning their goals.

This chapter illustrates that the secondary-tertiary transition in mathematics is a
multi-faceted affair and support can look diverse. A new approach lies in the
category of “system-related goals”. They demonstrate that not every progress by
individual students is equal to an improvement of the functioning of universities.



This point is particularly important in the secondary-tertiary transition in mathemat-
ics: The gap between school and university mathematics and teaching is not only
mirrored in students’ problems to succeed in their first semester but also in institu-
tions running smoothly. In Germany, drop-out is particularly high in the first
semesters (Geisler & Rolka, 2020; Heublein, 2014) which may have negative
consequences for the institutions. The system-related goals reveal that universities
try to help students to succeed with their studies without changing classical lectures
too much. To some extent, the support measures seem to address gaps that arise
when the school system changes. However, it might be necessary to adjust classical
lectures as well. This calls for a more intense dialogue between school teachers and
university teachers (Corriveau, this volume).
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Measures of the same type often had similar goals. However, this result cannot
yet be generalized to the particular type of measure. For this, a more representative
sample of further measures would have to be systematically described. By focusing
on mathematics majors and preservice teachers, we further restricted the scope of
results. If, for example, measures for engineering mathematics were also included,
which was realized in the WiGeMath project, a strong focus on the repetition of
school mathematics would become visible. In addition, it must be considered that
measures can also have an effect on unintended goals. Bridging courses, for exam-
ple, may improve passing rates but this was not a goal for many respondents.
Possibly this goal is too distal.

5.4.2 Using the Framework Model to Evaluate Measures

In the WiGeMath project, we used the framework model to derive quantitative
instruments to evaluate whether targeted changes took place (for a documentation
of the instruments, cf. Hochmuth et al., 2022). The achievement of the most
important goals in the bridging courses was measured by self-assessment of the
students (cf. Lankeit & Biehler, 2022). Students reported that they met fellow
students and felt well integrated socially, showing that the promotion of social
contacts worked well. Additionally, they reported that they had learned new math-
ematical content, gotten good insight into university teaching and university math-
ematics. In terms of dealing with mathematical texts, the students felt they had learnt
that at least to some extent. Instruments for testing whether students reached these
goals objectively and not only based on self-reports (especially regarding mathe-
matical modes of operation and the language of mathematics) are yet to be designed.

Concerning redesigned lectures, results of the WiGeMath evaluations indicated
that these lectures seem to be successful in supporting students to develop and
maintain rather positive affective features and that students find these lectures very
helpful (cf. Kuklinski et al., 2018, 2019; Liebendörfer et al., 2018).
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Evaluations of the MLSCs showed overall positive results of the centers’ quality,
especially concerning the respective framework conditions and the individual sup-
port services in particular. MLSCs thus seem to be a support measure which is used
with high satisfaction and which is positively evaluated due to the low-threshold
support and easy access. Comparative analyses between users and non-users showed
that MLSCs promote students who have a higher need for support which indicates
that this measure is successful in supporting certain student groups (Hochmuth et al.,
2018).

5.4.3 Further Use of the Framework Model

Notwithstanding its main purpose of evaluation, the framework model and espe-
cially its application in the area of goals can also provide a good basis for an
advanced or new conception of support measures. On the basis of clearly defined
goals, measures can be better designed and their components can be described in
advance in the sense of impact hypotheses. Thus, results to be achieved can be
defined and verified in accordance with the theory by Chen (1990, 2012).

Finally, with the help of the model, university teachers can often better reflect
which goals they have and which of these are or should be essential for their work.
This became evident in the first phase of the WiGeMath project. Knowing the
categories, some descriptions of measures in the interviews became even richer or
ideas for changes emerged. In addition, the explicit listing of goals can help with
trade-offs, such as whether to focus on certain student groups (e.g., low- or high-
achieving students) more strongly at the expense of other groups. Therefore, the
framework model can also be helpful for the planning of one’s own measure, both
for the identification of essential aspects of one’s own conception and, for example,
in the search for measures already described that can serve as a model for certain
aspects.
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Appendix

1.1 Knowledge 
Goals
Knowledge-related 
goals refer to both 
the declara�ve and 
procedural 
knowledge that is 
imparted by the 
measure. It is a 
ma�er of 
determining what 
kind of knowledge 
is to be imparted 
by the measure.

1.1.1 Improvement of school mathema�cs knowledge and abili�es
School mathema�cs knowledge and abili�es include all content and techniques 
taught in school mathema�cs classes. Are these repeated, rounded off or 
completed in the measure?

1.1.2 Improvement of higher mathema�cs knowledge and abili�es
Higher mathema�cs knowledge and abili�es comprise the content taught in the 
regular courses in mathema�cs.

1.1.3 Promote learning of the language of mathema�cs
By language of mathema�cs we understand symbols, abbrevia�ons and technical 
expressions of mathema�cs.

1.2 Ac�on-oriented 
goals
Ac�on-oriented 
goals refer to skills 
of mathema�cal 
working and 
learning as well as 
the concrete design 
of learning and 
working processes.

1.2.1 Enhancing mathema�cal modes of opera�on
Mathema�cal modes of opera�on describe ac�vi�es for the development of 
mathema�cal content and the solu�on of mathema�cal problems.

1.2.2 Enhancing university modes of opera�on
University modes of opera�on include, for example, �me management, self-
organiza�on, self-regula�on, or note-taking and organiza�on.

1.2.3 Promo�ng learning strategies
Learning strategies include ac�vi�es that are essen�al for building mathema�cal 
knowledge, such as summarizing important content, planning, monitoring, and 
evalua�ng learning, and using visualiza�on.

1.2.4 Support of learning and working conduct
Learning and working conduct refers to the learning rhythm (when is learned), 
learning effort (how much is learned), learning material (with what is learned), 
learning environment (where and with whom is learned) and use of offers.

1.3 A�tudinal 
Goals
A�tudinal goals 
refer to a change in 
a�tude toward 
math. Here, 
a�tude is defined 
more broadly than 
the usual psycholo-
gical defini�on.

1.3.1 Change in beliefs
We only study beliefs about the nature of mathema�cs, also called mathema�cal 
worldviews.
1.3.2 Change in affec�ve features
Affec�ve features describe emo�onal a�tudes toward mathema�cs (e.g., math 
anxiety, self-efficacy expecta�ons, or interest).
1.3.3 Percep�on of relevance for the future job
The measure provides an insight into the relevance of mathema�cs for the 
profession to be prac�ced later.
1.3.4 Percep�on of relevance for future studies
In the measure, it is clear that the content and strategies taught are relevant to 
future studies.
1.3.5 Mathema�cal encultura�on
This means the voluntary par�cipa�on in "authen�c" ac�vi�es of the new, 
university mathema�cs culture.

Educational Goals
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2.1 Crea�on of 
prerequisites for 
knowledge/ abili�es
This refers to enabling 
students to follow the 
advanced courses 
a�er the introductory 
phase of study.

2.1.1 Improvement of school knowledge and abili�es as a prerequisite for university 
studies
We mean areas and methods that are not taught in the beginners' lectures at the 
university, but should have been taught at school.

2.1.2 Crea�on of requirements for lectures that exceed school knowledge
For example, systema�c outsourcing of topics such as groups, rings, or fields that would 
otherwise be addressed in follow-up or parallel events.

2.2 Improvement of 
formal study success
This category refers 
to the objec�vely 
measurable following 
study success criteria.

2.2.1 Reduc�on of the dropout rate
Rate of how many of the students originally enrolled at the beginning of the semester 
dropped out a�er the semester.

2.2.2 Increasement of passing rates/ achievements
Rate of how many of the students registered for a module have reached the passing mark; 
also the distribu�on of the students' grades.

2.3 Improvement of 
feedback quality
This category refers to the 
fact that students should 
receive feedback of a be�er 
quality.

2.4 Promo�on of social 
contacts and connec�ons 
relevant for studies
Promote social exchange, 
conversa�on, professional 
assistance, encourage 
learning groups, etc.

2.5 Suppor�ng certain 
student groups
Special support is given to 
certain groups of students.

2.6 Making university study demands 
transparent
The measure provides an insight into the 
university requirements, especially 
an�cipa�ng the professional prerequisites 
and requirements in higher semesters / in the 
further course of studies.

2.7 Improvement of 
teaching quality
The aim of the 
ins�tu�on is that the 
quality of events is 
improved and that 
they are be�er 
evaluated by 
students.

System-related Goals
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Chapter 6
“It Is Easy to See”: Tacit Expectations
in Teaching the Implicit Function Theorem

Matija Bašić and Željka Milin Šipuš

Abstract We investigate the teaching and learning of curves and surfaces within
multivariable calculus courses in university mathematics education, focusing on
certain tacit expectations of teachers. More specifically, our aim is to describe the
position of students and teachers with respect to knowledge based on the Implicit
Function Theorem with applications to spatial geometry and nonlinear problems.
The student perspective was analysed based on their interaction with the designed
tasks, in which they were asked to reflect on their acquired knowledge. The teacher
perspective was analysed based on interviews, with the focus on the knowledge
taught and their actual expectations of students. Our findings shed light on the
particular type of a didactic contract, in which we highlight the tacit expectations
concerning the use of non-routine algebraic manipulations and geometric interpre-
tation of equations, and the students’ perception of their responsibility for learning,
stating that “they did not study enough”.

Keywords Multivariable calculus · Implicit function theorem · Didactic contract ·
Tacit expectations

6.1 Introduction

University mathematics education is characterised by a fast pace and dense exposi-
tion of knowledge, along with a high level of student responsibility for learning the
required content. In addition, mathematics knowledge is complex, abstract, and
advanced, and it is mainly compartmentalized and prone to the influence of many
discontinuities and breaks in teaching (Artigue, 1999). In their cumulative nature,
many concepts evolve from the basic concepts defined at the beginning of
university education to advanced concepts for specialised purposes, while in this
process, their value or purpose, their raison d’être (Bosch & Gascón, 2014) often
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remains hidden. Therefore, depending on the professional choices of a particular
student, many of the concepts the student faces may seem to be the ends of education
(Gascón & Nicolás, 2019).
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Here we investigate an interconnected network of discontinuities that students in
university mathematics education are confronted within core mathematical subjects,
and which may be seen as part of the interplay between the two main mathematics
domains, algebra, and geometry. Formulated in the domain of algebra, we discuss
problems that involve systems of nonlinear equations in terms of the existence of a
solution and possible methods for solving and describing the solution set, including
its geometrical interpretation. The topic is primarily relevant in multivariable calcu-
lus in the context of the Implicit Function Theorem (IFT), finding constrained
extrema by Lagrange multipliers, or when graphing and determining boundaries of
double and triple integrals, or curve and surface integrals. It also appears in elemen-
tary mathematics, linear algebra, differential geometry, as well as in applications in
physics, and can be perceived as the further development of techniques learned
within linear algebra, however, with a theory behind it being undefined or
unanswered.

Hochmuth (2020) considers certain similar aspects of concepts in nonlinear
analysis as bridging and extending concepts within and across the domain of
mathematical analysis. These concepts are to be followed in the transition from
basic lectures in analysis to advanced specialised courses in nonlinear approxima-
tion. He suggests that analysis of mathematical and didactic practices of these
concepts might help overcome compartmentalisation of mathematical knowledge
at university.

In this paper, we question the position of this mathematical knowledge on the
Implicit Function Theorem, especially whether there are tacit teacher expectations of
student work. We aim to reconstruct students’ mathematical practices required for
multivariable calculus courses by inspecting their work and by generally taking an
institutional perspective.

This study is a continuation of our previous research on student practices
concerning the interplay of geometry and algebra in multivariable calculus and the
subsequent course (differential geometry). Both authors of this study are mathema-
ticians and researchers in mathematics education. The first author was involved in
teaching courses as a teaching assistant, and his research in mathematics focuses on
algebraic topology. The research interests of the second author focus on differential
geometry. In mathematics education, both authors study the teaching and learning of
mathematical concepts in multivariable calculus, especially concerning the interplay
of geometry and algebra. This study is motivated by earlier observations while
teaching these courses where student difficulties in working with equations (mostly
nonlinear) for geometric objects (curves and surfaces) arose as an issue. In the first
study (Bašić & Milin Šipuš, 2019), we observed persistent difficulties emerging
already in linear algebra; for instance, with false generalisations from 2D to 3D. In
2D, a straight line or a curve, in general, is represented by a single implicit equation,



whereas in 3D, a single implicit equation represents a surface, even if it is an
equation without the z-variable (e.g., x2 + y2 = 1 in 3D represents a circular
cylinder). We further observed difficulties in changing the form of representation
between parametric and implicit forms, which is often assumed to be a prerequisite
in multivariable calculus. However, the study also pointed to the influence of the
didactic contract, which may prevent students from reasoning “geometrically”. In
our second study (Bašić &Milin Šipuš, 2021), we investigated student work on two
tasks designed to appraise their learning of the notion of a curve in 3D space. The
tasks were designed to support the students’ independent work, i.e., as having
(theoretically) adidactic, linking, and deepening potentials (Gravesen et al., 2017).
The realisation of these potentials was observed during a tutorial given by the
authors with six students who volunteered to solve designed tasks, in which we
observed specific values of the theoretical potentials, but also student difficulties in
switching from 2D to 3D.
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6.2 Theoretical Framework and Research Questions

This research is carried out from the perspective of the Anthropological Theory of
the Didactic (ATD) (Bosch & Gascón, 2006, 2014; Chevallard, 1985) and the
Theory of Didactic Situations (TDS) (Brousseau, 1997). The framework of ATD
highlights the institutional dimension of mathematical and didactic activities and
thus analyses the process of didactic transposition of knowledge in relation to an
institution. It postulates that knowledge is taken from the scholarly knowledge built
by mathematicians or other scientists at the university level, for instance, and is
transposed and identified as knowledge to be taught. In the next step, it is transposed
by teachers into knowledge actually taught in the classroom. To describe the relevant
behaviours with respect to the didactics of a particular piece of knowledge, ATD
proposes an analysis of their economic, ecological, and epistemological dimensions
(Gascón & Nicolás, 2019). The economic dimension of a didactic phenomenon
refers to the rules and principles that govern the system in its current behaviour; the
ecological dimension refers to the set of conditions and constraints that allow the
evolution of a system and facilitate or hinder its modification, while the epistemo-
logical dimension describes various aspects directly related to a particular piece of
(mathematical) knowledge. The three dimensions are interwoven, and “there is a
hierarchy among them: if a question is included in the ecological dimension (e.g.,
how to change the condition for a study of a certain piece of knowledge), one needs
answers from the economic dimension (what is the current state with this piece of
knowledge), which in turn are based on the (perhaps implicit) assumption of an
epistemological point of view, e.g., a certain description of the piece of knowledge at
stake” (Gascón & Nicolás, 2019, p. 7).

In addition to analysing the epistemology of the mathematical knowledge in
question, in this study, we also describe the economy- and ecology-governing
behaviours conditioned by the institution and the mathematical subject by using



results from student questionnaires and informal interviews with university teachers
of a multivariable calculus course while examining a recent modification of the
course. In this way, we analyse the teachers’ relationship to the knowledge to be
taught in the observed cases.
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As a further theoretical basis for the description of the didactical problem in the
present study, we consider the notion of the didactic contract as a core of TDS. This
is an implicit set of rules and expectations that shape the interactions between the
teacher and students within a particular institution, in this context, the university
mathematics department. TDS as a theoretical foundation in a university setting is
used, for example, in a study on teaching differential equations by Artigue (1999), a
study of cases from calculus and proofs by González-Martín et al. (2014), and
concerning resources used by students by Gueudet & Pepin (2018).

Much of what is expected from students in university mathematics education is
not taught directly during lectures, and teachers often assume that students would
“cope somehow” with the expectations. Every mathematics student will likely recall
the phrase “it is easy to see, and we’ll leave it as an exercise”, which indicates the
need for an “increasing amount of personal work [. . .], and the importance of
personal initiative” (Rogalski, 1998, cited in González-Martín et al., 2014, p. 122).
For the purpose of this analysis, we consider the teachers’ knowledge and beliefs that
are not expressed explicitly and the teachers’ expectations of students concerning
this knowledge as tacit. In the literature (e.g., McGrath et al., 2019; Nonaka, 1994),
explicit knowledge is addressed as the knowledge that is transmittable in formal,
systematic language. Tacit (sometimes implicit) knowledge is the knowledge that is
difficult to formalise and communicate, that is rooted in action, or maybe described
simply as “the idea that we know more than we can tell”. In education, the presence
of tacit knowledge invokes different didactic issues; among others, it is observed that
students “can face a lack of transparency in what is expected in assignments”
(McGrath et al., 2019, p. 836), i.e., what the teachers’ expectations are.

The transition process from knowledge to be taught to knowledge (actually)
taught is shaped by the university mathematics teacher, who is very often a research
mathematician. Their decisions and actions seem to be shaped by their mathematical
knowledge and subject matter considerations on what is essential or important
(Schoenfeld et al., 2016); through a combination of knowledge about mathematics
and pedagogical considerations, their skills and experience, the goals of the course
and understanding of how students learn and what they have to learn, and moreover
by their academic fields of research in mathematics or mathematics education
(Weber, 2004, cited in Karavi et al., 2020). This wider context of university teacher
behaviour undoubtedly governs the teaching process. This study, however, concerns
the description of teachers’ tacit knowledge of a chosen specific piece of mathemat-
ical knowledge. Therefore, our research questions can be formulated as follows:
What are the rules and principles (economy) of the didactic contract of teaching and
learning the Implicit Function Theorem, the didactic conditions and constraints
(ecology) governing the contract, and which parts of it can be recognized as tacit?



The lectures provide some examples illustrating the mathematical theory. More
examples are given in exercise classes (mostly taken from previous written exams),
for instance, on the application of the Lagrange multiplier theorem and the Implicit
Function Theorem. Typical tasks involving nonlinear equations within the scope of
the mentioned courses are of the following type:
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6.3 Context of the Study

The department in this study is characterised by large numbers of students and a
strong tradition of dividing courses into “lectures” and “exercise classes”, with a
very traditional (ex-cathedra) approach to teaching in both. With teaching in the
scope of visiting works, which indicates addressing mathematical works as ends of
education (Bosch et al., 2018; Gascón & Nicolás, 2019), it often tends not to analyse
the students’ relationship to a particular piece of mathematical knowledge.

The mathematical context of this research, related to systems of nonlinear equa-
tions as the common piece of knowledge, is relevant in multivariable calculus in the
context of introductory work with curves and surfaces, such as determining the
tangent line or tangent plane when determining boundaries of double and triple
integrals, calculating curve and surface integrals, or when finding constrained
extrema by Lagrange multipliers. We base our study on the analysis of two com-
pulsory courses, one on multivariable differential and one on integral calculus,
taught in the undergraduate mathematics study program at a university mathematics
department in Croatia, each for a period of one semester. The content of the first
course covers standard topics in the calculus of functions of several variables, their
continuity, and differentiability, followed by foundational theorems, such as
Schwarz’s theorem, Taylor’s theorem, and Implicit and Inverse Function Theorems.
The subsequent course in the following semester deals with integrability (Riemann
integral of functions of two variables, multiple integrals, Fubini’s theorem, curve and
surface integrals).

The knowledge relevant for this study begins with a chapter on the Implicit
Function Theorem (IFT), followed by the introductory chapter on curves and
surfaces. This is addressed towards the end of the first course, usually within a
time constraint, and therefore with very few worked-out examples. However, future
work in the mentioned mathematical contexts requires students to be familiar with
flexible, non-routine algebraic manipulations and to have an understanding of the
nature of the solution set in terms of passing between different representations in
algebra and geometry, which are not explicitly discussed or built during the course.
Official, detailed lecture notes are available in Croatian that provide precise defini-
tions, examples, statements, and proofs. On the other hand, there are no introductory
texts or informal discussions, though it should be stated that pictures for visualisation
are presented during lectures. The content of the courses allows for certain modifi-
cations, though the content is usually stable over many years. A minor modification
of the first course was made in 2019, prior to this study. The course teachers
expanded certain sections of the content, particularly in the mentioned chapters
with the mathematical content in question.
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1. Find the tangent line at the point (1,1) of the curve y2 = x ln y
x.

2. Show that there is a unique C1-class function g : ℝ2 → ℝ such that

xþ yþ gðx,yÞ= e- ðxþyþgðx,yÞÞ

holds for each (x, y) ℝ2.
3. Determine the global extrema of the function f(x, y, z) = x + y + z on the set

D= x, y, zð Þ 2 ℝ3 : x2 þ y2 ≤ z≤ 1
�

:

The first task requires implicit derivation of y considered as a function of x. The
second task requires invoking IFT to show that g is smooth. The last task requires the
geometric interpretation of the equations that gives meaning to the position of
different surfaces in order to apply Lagrange’s method and obtain nonlinear systems
whose solutions are candidates for the global extrema. Similar equations appear in
solving integration problems (e.g., to integrate a function f over the set D).

In these contexts, the intertwining of algebra and geometry cannot be seen as
limited to one or a few institutions but is generally seen in many sources. For
example, in the introduction to his textbook, Edwards (1995, p. ix) discusses that
“modern conceptual treatment of multivariable calculus emphasizes the interplay of
geometry and analysis via linear algebra and the approximation of nonlinear map-
pings by linear ones”. Regarding the Implicit Function Theorem, we point out that it
addresses a question concerning functions of several variables but can be interpreted
from two additional aspects: one of nonlinearity, where it considers the question of
finding solutions of a system of nonlinear equations, and a second one of geometry,
where it addresses the question of the geometric structure of a solution set. Zaldivar
(2013), in his review of Krantz and Parks (2003), writes that “the implicit function
theorem in its various guises (the inverse function theorem or the rank theorem) is a
gem of geometry, taking this term in its broadest sense, encompassing analysis, both
real and complex, differential geometry and topology, algebraic and analytic
geometry”.

We illustrate these aspects with two exemplary problems in which the three
viewpoints (algebraic, geometric, and functional) intertwine:

1. Which curve is the intersection of the surfaces given by the equations:

x2 þ y2 þ z2 = 1,

x y z= 1?

Find the tangent line in a point of that curve with z= 1
2.
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2. One solution of the system

x3y- z= 1,

x y2 z3 = 6

is (1, 2, 1). Estimate the x and y for z = 1.1.

These problems rely on the procedure of implicit derivation, which in the first
problem provides the direction of the tangent line, and the second problem gives
the coefficient for linear approximation of the variables x and y depending on z. The
procedure is justified by the IFT as it implies that, under certain conditions, we may
consider some of the variables as functions of the other and consequently find
derivatives of these functions. We point out that these types of tasks were not
included in the mentioned courses before this study but were intended to be included
in the second course after this study, following the suggestions made by the authors.

6.4 Mathematical Analysis of Student Tasks in the Exercise
Class

In this section, we present the tasks designed by the authors for independent student
work and implemented in a previous study 1 year earlier on a smaller scale with a
group of volunteers (Bašić & Milin Šipuš, 2021). The previous study offered the
authors specific insights into the didactic potentials of the tasks and the difficulties
students encountered in solving them. The tasks presented in Fig. 6.1 are used in this
study as a basis for students’ reflections on their difficulties that may indicate tacit
expectations from the teachers in the course on multivariable calculus.

Mathematical knowledge required for solving the tasks embraces the knowledge
in question: algebraic manipulation of equations and their interpretations in geomet-
ric contexts (in 3D in particular), the use of different forms of representation of

1. An ellipse is given by the implicit equation  2 2
+

2
= 6.

a) Determine its tangent line at the point (1, 2) using implicit differentiation. 

b) Parametrise the ellipse. 

c) Determine the tangent line at the point (1, 2) using parametric differentiation. 

d) Which theoretical results connects two ways of calculating the derivatives? 

2. A curve is given as the intersection of the elliptic paraboloid 2
+

2
= 3 and the 

plane 4 + 4 + 3 = 1.

a) Which curve is given?

b) What does the equation 4 + 4 +
2
+

2
= 1 represent? 

c) Determine the tangent line to the curve at the point (–2, 1, 5/3). 

Fig. 6.1 Tasks for independent student work
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geometric objects (parametric and implicit), and referencing to the underlying
theory. The tasks explicitly refer to geometric objects, meaning they are not
completely set up algebraically.

In the first task, the slope of the tangent line is given by the derivative at a point,
calculated either in the implicit form by assuming that a curve is locally described
(as, e.g., y= y(x) as provided by IFT under the conditions that the theorem requires),
or parametrically (as x= x(t), y= y(t) which may be invoked by using trigonometric
functions or by explicitly expressing y as a function of x, y xð Þ= ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6- 2x2

p
). It is

expected that students invoke IFT to justify the use of the implicit derivation
y0 xð Þ= - ∂xF

∂yF
for the implicit function F(x, y) = 2x2 + y2 - 6, where ∂xF, ∂yF

stand for the partial derivatives of F. The chain rule for differentiation of a composite
function y′(t)= y(x(t)) (under the assumption that x is a strictly monotonous function
of t) implies that y0 xð Þ= y0 tð Þ

x0 tð Þ , thus providing the connection between the two

approaches.
In the second task, the intersection is obviously planar since the second equation

represents a plane in space. It can be recognised (e.g., by geometric arguments) as an
ellipse. The equation in subtask (b) is obtained by algebraic manipulation from the
first two equations given and, as seen in our previous study, referred to as “a
solution” by students, i.e., as an equation representing the intersection curve.
However, this is an equation of a new surface (circular cylinder) upon which the
intersection curve lies and whose projection onto the xy-plane is a circle with the
given equation. We call this way of reasoning the “intersection-projection
misconception”. Determining the derivative in subtask (c) requires the use of either
the implicit or parametric form of the intersection curve. In the first approach, a more
subtle use of IFT is needed for local curve description in expressing the two variables
in the system of equations F1(x, y, z) = 0, F2(x, y, z) = 0 given in the task by one
variable, e.g., as y = y(x), z = z(x), which can be achieved if the matrix formed by
partial derivatives of F1, F2 with respect to y, z is regular.

6.5 Methodology

Our study uses three sources of data: lecture notes from the courses on multivariable
calculus (described in the section on Context), students’ productions and reflections
obtained during the exercise class based on the interaction with the two tasks in
Fig. 6.1, and informal interviews with the teachers of these courses.

In total, 87 students participated during the first exercise class in the second
course in multivariable calculus, after which their productions were collected and
analysed. Each student received two sheets, one task per sheet, with empty space for
their solutions. The tasks were previously presented to teachers who confirmed that
they corresponded to the theory in lectures and agreed to include them in the exercise
class. The parametric and implicit differentiation in the case of curves in 2D is
covered in single variable calculus, so our assumption is that the structure of the task
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would serve as a scaffold for students to recall and link the two techniques with the
underlying theory given at the end of the first course. The second task had not been
previously covered in the exercise class, but it was expected that students would
reason by analogy. The theory of parametrized curves and surfaces was covered in
the previous course, and the analogous linear situations of the intersection of two
planes were treated in the first year courses, so these pieces of knowledge would
support solving tasks (2a) and (2b), while students’ solutions to task (2c) would
show their ability to apply IFT by following the strategy outlined by the first task.
Students’ difficulties would direct our further investigation of the interaction
between the students, teachers, and the knowledge at stake.

After solving the first task on their own for about 20 min, students were asked to
discuss their solutions in pairs and then to write reflections about their work on the
same paper. They were asked to be explicit about what they learned from their
discussion with peers and what remained unknown or unclear, and what they were
not certain about. After that, the teaching assistant provided the solution on the
blackboard, and the whole process was repeated with the second task.

The main assumption was that by asking students to reflect upon and explain their
own difficulties, we would be able to recognize parts of mathematical knowledge
that indicate discontinuities and breaks in the didactic process and hence form
expectations that remain tacit. This would be the starting point for the interviews
with the teachers in which we would aim to identify whether and under which
conditions these discontinuities arise.

Students’ (anonymous) written work on both tasks was collected and analysed. It
included the students’ mathematical solutions of the task and their reflections on
learning this topic at the end of the first course.

In the mathematical analysis of the students’ solutions, we consider the use of
implicit and parametric differentiation, the arguments that students give about their
connection, the possible occurrence of the “intersection-projection misconception,”
and the analogies the students draw between the two tasks. We have presented the
answers to each subtask according to our a-priori analysis.

For the reflections, students’ answers were short and very similar, falling into
several categories, so in the end, we decided to present them by examples and
indicate their count. Following that, we interpreted the results and formulated
hypotheses with which we entered the interviews with the teachers.

The two courses on multivariable calculus relevant for this study are taught by
two research mathematicians and university teachers, in two parallel classes of
approximately 65 students. One of the teachers (teacher A) has long experience
(15 years) in teaching the course and is also a researcher in applied mathematics. The
second teacher (teacher B) is a young university mathematician with research
interests in functional analysis and with teaching experience in differential geometry.

The main goal of the interview was to collect further data that would enable us to
understand the didactic contract and the evolution of the didactic system that leads to
students’ difficulties and practice. The form of the interview was chosen primarily
because the intention is to understand the conditions and certain teacher decisions
that are related to tacit expectations appearing in the course. As mathematicians and



researchers in mathematics education, we ourselves are interested in this topic and
have the same experience with it as these teachers, so the intersubjective aspect of
the interview emphasises “the social situatedness of the research” and the interview
provides “space for spontaneity, complete answers, responses about complex and
deep issues” (Cohen et al., 2011, p. 349).

Based on the analysis of the course materials, students’ solutions and reflections,
and our previous research and experience, we have hypothesized that it is demanding
to cover the course material within the allotted time (two lectures of 3 h) given for the
two chapters (IFT and curves and surfaces), so there are many decisions that the
teachers make regarding the level of details of the theory and examples on three
levels: presented in the lecture notes, presented during the lecture, and expected from
the students. The aim of the interview was to understand the latter two, which we
could not reach otherwise.

Based on these, we formulated the interview questions that provided us with the
structure of the interview and its subsequent analysis. Teachers were asked to read
the selected students’ answers to the two tasks in advance. Each teacher was
interviewed independently by both authors, and each conversation lasted about
60 min. The structure of the interview was approached through the following
questions:
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1. How do you comment on the students’ work, and what do you think about the
learning potential of the activity in general?

2. What have you changed in the course materials in recent years, and why?
3. How do you see the position of geometry in the course?
4. How do you see the position of tasks involving systems of nonlinear equations in

the course?
5. Which parts and aspects of IFT do you emphasise?
6. How do you deliver the material from lecture notes? Do you cover all examples?
7. Which expectations from students do you make explicit?
8. What do you expect from students, concerning the previous content, during your

assessment?

Questions 1 and 2 are aimed at teachers’ attitudes towards changes and decision
making concerning the use of time and organization of teaching – teachers’ beliefs
and conditions directing the didactic process. Questions 3, 4, and 5 aim at the extent
to which the pieces of knowledge are made explicit, while Question 6 aims at the
delivery of the material during the lectures. Question 7, in addition allows the
teachers to identify other expectations that remain tacit in the didactic contract that
we might overlook, while question 8, and in some parts question 1, is related to
assessment and the expectations about the knowledge actually taught at the end of
the course. We expected teachers to highlight what was omitted and provide reasons
for particular student difficulties as a consequence of delivery. Furthermore, we
hoped that they would describe constraints that govern their decisions about the
course and that they would also make some expectations explicit and state or become
aware that they are tacit for students.



The order of questions was decided during the interview, but all planned ques-
tions were posed to both teachers. For each interview, a transcript was produced, the
answers to questions identified, and then compared between the teachers for each
topic. If the answers provided the same information, then we report on these
responses as joint answers of the teachers, whereas if differences were detected,
the answers of each teacher are given separately.

6.6 Results – Students’ Solutions and Reflections

For task (1a) we have observed that 22 out of 87 students obtained the equation of
the tangent line by implicit differentiation using the procedure from first year course,
10 students obtained it by expressing y explicitly as a function of x, while 7 students
used the gradient of the function f(x, y) = 2x2 + y2, which we can interpret as
imitating the procedure for obtaining the tangent plane of a surface taught in the
course. Further 34 students calculated partial derivatives, but without any sense how
to obtain the tangent line. Finally, 14 students did not write anything relevant to this
task (blank).

In (1b) 44 students wrote down the trigonometric parametrisation and 10 of them
the explicit parametrisation. Three students only divided the equation by 6, while
30 students skipped this task. In (1c) only 13 students obtained the equation of the
tangent line, while 19 students calculated the derivative of their parametrisation, but
did not know how to continue (either by not knowing which t to use, or how to use
the calculation to obtain coefficients in the equation of the tangent line). We have
42 students who skipped this task and 13 with unclear strategies. Finally, in (1d) we
have 42 students who mention IFT, 5 students mention chain rule, 4 mention that the
derivative of a function is the slope of the tangent at its graph, while 34 students did
not answer the question. Only 2 students have given an argument connecting the two
approaches.

In (2a) and (2b), we have 26 students showing the projection-intersection
misconception. Typical answers showing this are:

The intersection is a circle, the equation 4x + 4y + x2 + y2 = 1 is the equation of that circle.
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After elimination of zwe obtain the equation (x + 2)2 + (y + 2)2= 9 which is a circle of radius
3 with centre (-2, -2), the second equation is the same as above.

In (2c), 48 students applied the procedure of implicit differentiation (shown as a
solution for the first task) to the equation in (2b) instead of applying it to the system
of equations given in the task. No student has given a correct solution assuming that
x and y are a function of z. There were 5 students that calculated the tangent plane to
the paraboloid and its intersection with the given plane. In 9 cases, a student
parametrized x and y from the equation (x + 2)2 + (y + 2)2 = 9 and expressed
z= 1

3 x2 þ y2ð Þor z= 1
3 1- 4x- 4yð Þ, but they either made calculational errors or did

not use the derivation of the parametrization.



Students’ reflections can be organized into several categories. There were 32 stu-
dents that did not write any reflection or wrote that they did not learn anything from
the discussion in pair. There were 21 students who wrote that they do not know how
to obtain a parametrisation or what parametric or implicit differentiation is, e.g.

We lack basic knowledge about the parametrisation of a surface and parametric
differentiation.
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We concluded that we do not know what parametric and implicit differentiation is. I know
the definition of parametrisation, but I do not understand it.

Furthermore, 6 students wrote that the notion of parametrisation was not covered in
enough detail in the previous courses:

We talked about the parametrisation, and we thought that it could be better explained
(in general, its purpose and meaning).

Is something unclear? Yes, but I don’t even know how to phrase the question. Did we miss
any lectures last week?

On the other hand, 11 students wrote that they did not learn enough:

Not much is clear, we have forgotten it all.

I have not studied enough the subject matter about curves.

Two students wrote that they did not know how to solve it because that chapter was
assessed only for higher grades.

After the discussion, I see that we do not understand the theoretical background of the
problem, likely because it was only required for a higher mark.

Five students wrote that they had learned something from a peer, three students that
they realized they had used the explicit equation, and three students had mathemat-
ical comments (derivative is the slope of the tangent; the curve is independent of its
parametrisation). One student provided a full solution and provided an alternative
approach as a reflection. Three students wrote that they are re-taking the course and
forgot the material of the previous course because of the year break.

The main conclusion from the mathematical solutions is that students lack
procedural fluency in the methods and that the hypothesis that all required pieces
of knowledge for the suggested task were covered in the previous courses. We have a
variety of students, ranging from those familiar with everything to those who did not
answer a single question. The majority of students have difficulties connecting the
derivative of the parametrisation to the equation of the tangent line, which can be
explained by inspecting the lecture notes and noting that there is no example of that
type. Furthermore, the majority of students have difficulties in interpreting equations
in three variables, which cannot be assumed to be easily adapted from linear algebra.
The overall conclusion from these results is that it is not straightforward for the
students to connect the fragmented pieces of knowledge even if they had encounters
with all of the pieces in their previous education.

From students’ solutions and reflections, we see that they do not tend to commu-
nicate verbally about mathematics or learning mathematics – their main



mathematical discourse is symbolic. This may be related to the orientation toward
procedures as we see indications of techniques that are applied in the wrong contexts
(as in 2c) or parts of techniques (calculation of derivatives) without a clear strategy
on how to use the results (to obtain the tangent line). Another related aspect might be
a part of the contract to learn the theorems (or to be aware of them) even when
techniques are not present in the knowledge. We find from the high number of
students mentioning IFT as justification even when the tangent line was not obtained
that these responses confirm the hypothesis that the formal treatment of IFT does not
equip students to apply implicit differentiation in concrete situations.
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Finally, some students note that in the previous courses, they did not see the
needed techniques, while some feel that they are responsible for not learning more to
be able to solve the given tasks. We find this point subtle and that it might be relevant
in other university programs with larger numbers of students and dense lectures. We
interpret that these comments indicate students’ uncertainty about the expectations
and the opportunities they have had to get prepared for these expectations.

6.7 Results – Interviews with Teachers

Concerning students’ productions (question 1), none of the teachers were surprised
by the variety in the answers and the difficulties which appeared in them. Teacher A
emphasised that he was aware that the subject was difficult but expressed that he has
realistic expectations.

Look, this course has a standard issue: we do too few examples, and most examples are
theoretical. We teach this part at the very end of the semester. There is a lot to cover. The
other parts of the theory are more important, and we are not left with much time. All the
details are written in the lecture notes.

The comments of teacher B were more outcome-oriented, as he pointed out that “IFT
requires a certain maturity”. He emphasised that the audience is large and diverse,
which sometimes makes the choices very difficult. He was aware that students would
not approach the material in-depth:

It depends on a student’s interest whether they will develop the geometric viewpoint. Many
students just want to pass the course. If they hear that this will not be part of the exam, and
we explicitly say that we do not ask that at the oral exam, they do not learn it.

A modification of the first course (question 2) was implemented before this study,
following a departmental decision to include an extra hour per week for teaching
it. The decision of teachers was to expand the lecture notes (and lectures) for the
chapter on curves and surfaces, given their previous teaching experience that “they
were going too fast”, while “students had a vague understanding of the topic”. The
notes were expanded by teacher B based on his experience teaching a course
Differential geometry, and he closely followed a foreign textbook. Before the
modification, IFT was only stated and proved in the context of functions; the



modification included the geometric aspect of the theorem (questions 3 and 5).
Teacher B stated:
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Now we have examples where we use geometric interpretation. We consider the intersection
of two spheres given by their equations. After checking the analytical conditions of IFT, we
give a geometrical explanation for the singularity. . . Geometry is neglected in our depart-
ment. I think differential geometry should be a compulsory course because it is reachable,
and students can see the applications of the analytical tools that we have developed.

Both teachers agreed that geometric intuition is very helpful but difficult to learn and
teach. Teacher A gave a broader discussion of the complexity of the subject:

Intuition is accumulated experience. Geometric intuition is useful to understand what
something looks like. When I see an algebraic equation (sometimes), I see the set of
solutions, but the student does not see anything. Geometry in 2D and 3D is very close to
my scientific interests. Interpretations of any kind are helpful, but they are neither easy for
students to grasp nor for us to show. When I teach, geometric interpretation is my starting
point, but in the oral exam, I only ask this part of the subject at the theoretical level (and only
for a high grade). It does not surprise me that this is hard for students.

Nonlinear systems of equations (question 4) are seen only as an extension of the
linear. Those that appear in examples or in exam problems (question 8) mostly have
an exact solution since they include second-degree equations. Both teachers agreed
that they need to cover a great deal of theoretical materials, and there is no time to
deal with techniques systematically, or even tricks, for solving nonlinear systems.
These techniques are often of a higher level of algebraic manipulation, and since
there is more important basic knowledge, they are not in focus. By working only
with second-degree equations, teachers rely on students’ knowledge of high school
algebra and put more emphasis on the conceptual interpretation of the procedures.
Teacher A considered that solving a nonlinear system is not an application of IFT. In
practice, nonlinear systems are usually treated by numerical methods, and an exact
solution cannot be found. The case of nonlinearity is further discussed from various
points of view:

As a student, I was not aware of the problem of nonlinearity; only as a researcher could I see
how little we know about nonlinear problems. A problem may very easily become too hard
for an exam. Those systems that could be solved require a trick, and that is not what we
assess at the exam. [. . .] I think we should make it clear to students that we usually encounter
nonlinear problems in real life. [. . .] We should change the whole system in order to enable
students to “get their hands dirty”; this would require project teaching, and we have
130 students.

Regarding course organisation, we can summarise that the teachers agreed that IFT
is an important theorem but that there are more important topics in the course (e.g.,
continuity and differentiability). They felt that there was not enough time to cover all
results they would like to during the lecture and that they delivered only the basic
ideas (e.g., basic steps in the proof of IFT) and skip many examples (question 6).

Regarding expectations (questions 7 and 8) on student work, teacher A showed
awareness that the topic is difficult and tried to make his expectation explicit by
pointing out to students what is required for a particular grade. He also concluded
that students know that one exam question concerns the application of IFT and that it



is up to the students to decide whether or not to prepare for it. Teacher B emphasised,
“I try to repeat and explain what I notice that the students do not know,” but also
mentioned that students struggle even with basic concepts in more than two dimen-
sions, that they do not ask questions, they did not acquire skills of algebraic
manipulation in high school, or that parametric differentiation should be understood
from the single variable calculus.
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From these comments, we infer that the described didactical situation is governed
mainly by the lecturing tradition of teaching and that for many students, this is a
constraint to establishing two-way communication. The teachers have mentioned
time, the number of students, and complexity of the subject as constraints for
in-depth teaching. They expect that students have mastered specific techniques
from high school algebra (solving second-degree equations and systems of equa-
tions) and concepts from differential calculus (e.g., parametric differentiation), but at
the same time consider the geometric reasoning with corresponding curves and
surfaces complex for teaching and learning. We interpret that all of these constitute
tacit knowledge that teachers find either hard to transfer or that the students must
have already acquired by the second-year courses on multivariable calculus.

These observations point to the fact that teachers show awareness of tacit
moments in their teaching where they do not explicitly address certain pieces of
mathematical knowledge. At the same time, they express limiting expectations from
students, which is not known to students. They aim to provide reasonable challenges
in mathematical problems regarding nonlinear manipulation in assessment, and they
do not expect fluent geometric reasoning from students since it is not the focus of
their teaching.

By taking into account students’ solutions, we conclude that students might be
aware of the theory but lack more opportunities to build the techniques and connect
the techniques to the corresponding theoretical discourse. By considering the lecture
notes and the choices for modifications, we may also notice the tendency to “cover
all the theory” as an obligation that a university teacher might feel when following a
textbook and hence limiting their own freedom in determining the scope and the
level of the details. The teachers, therefore, provide lecture materials that are very
detailed and cover more content than presented in the lectures. Also, in the assess-
ment they require only a fragment of that content. They know that the techniques
which are needed in the second course will be revisited during the exercise classes,
but at the moment when students are learning IFT this is not clearly articulated, and
students might be facing a choice of how much to learn under these circumstances.

6.8 Conclusions and Further Perspectives

In this study, we aim to describe the didactic contract in which teaching and learning
of the Implicit Function Theorem and its applications in spatial geometry take place,
and predominantly whether there are certain tacit knowledge and teacher expecta-
tions related to it. We assumed that from the students’ reflections about their own



difficulties and doubts in solving two tasks, we would find indications of disconti-
nuities in the didactic process causing parts of knowledge to remain tacit and that
these would then be confirmed by the teachers’ own description of their teaching
process.
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By analysing students’ reflections, we found that students do not tend to express
themselves in many words when discussing (learning) mathematics. Many of them
have named the relevant theorem, even in the situations where they did not write the
techniques that should be justified, indicating that they follow the rule to learn the
theorems only to reproduce their statements. We have observed their difficulties with
procedures related to underlying theory (Implicit Function Theorem), that is, with
the application of the theory to a particular task and change of representation
(parametric-implicit, with difficulties in establishing parametrisation). The
intersection-projection misunderstanding as a difficulty concerning algebraic manip-
ulation and the geometric interpretation of equations was also observed. At the same
time, some students expressed a sense of accountability for their own learning,
having the impression that it was expected of them that the given tasks were within
their reach but that they have “not studied enough” or “is it possible that we missed a
lecture”. However, the interviews with teachers revealed that not much time or effort
was devoted to mathematical contents regarding Implicit Function Theorem or
spatial analytic geometry, which allows us to consider this knowledge as tacit.

The teacher interviews gave a further description from their side regarding the
course organisation, decision-making process on mathematical content, and expec-
tations from students. The interviewed teachers reported that they always try to
provide connections of different parts of mathematics while teaching, but that
interpretation is an expert ability and is difficult to teach. They do not expect the
same level of mathematical fluency from students, as this can be, even with the best
of intentions, made explicit only to a limited extent and even reason that “intuition is
accumulated experience”. This limited expectation, as well as limited possibilities of
transferring certain aspects of knowledge, remain tacit for the students.

There are a few crucial aspects that govern the decisions made by the teachers.
Lack of time, a large number of students, and extensive subject material are seen as
the main constraints to providing students with the opportunity “to get their hands
dirty”. While the course material is detailed, teachers have to select only a part of the
subject matter to present in the lecture. The Implicit Function Theorem forms “a
grain of knowledge that everyone should see, but only a few would go in its depths”.
Both teachers considered that this theorem is not the most important part of the
course, and hence it would not be justified to spend more lecture time on it. On the
other hand, we could say that for mathematicians and university teachers, there is an
understandable sense of discomfort regarding what would happen “if we do not
cover all the theory” and what remains for the students to rely on in that case. Much
of the content is required in assessment only for a high mark, which also adds to the
ambiguity of what the students should learn and what they actually learn. The
situation is balanced by the teachers’ awareness that some parts will remain unclear
or tacit after the first course and will need to be repeated or solidified during the
second course.
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As we know that “the tacit knowledge is the knowledge that comes from personal
experience, and it is a trait of an expert” (McGrath et al., 2019), we could only
speculate about the improvements that might stem from possible out-of-the-box
orientation toward peer and inquiry learning that would yield more adidactical
potential. At the level of university mathematics education, given the large numbers
of students and strong tradition of lecturing, we can certainly not expect colossal
changes in the teaching paradigm, or as Hochmuth (2020) points out, “it is not clear
to what extent the potentials can be realised under the currently dominant teaching
and learning conditions”. However, as we have seen in the presented case, teachers
themselves have already introduced certain modifications, were willing to consider
other suggestions (e.g., by including the exercises suggested by the authors of this
study), and to participate in the interviews to discuss and reflect upon their own
decisions, so we might perhaps see other changes in the future leading to a more
efficient didactic process.
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Chapter 7
University Students’ Development of (Non-)
Mathematical Practices: The Case of a First
Analysis Course

Laura Broley and Nadia Hardy

Abstract In this chapter, we present a study that investigated the nature of the task
solving practices developed by students in a first Analysis course at a North
American university, and how these practices may be shaped by the evaluations
(assignments and exams) given in the course. Task-based interviews with 15 students
after their successful completion of the course revealed that students’ practices could
vary in nature, being more or less “mathematical,” i.e., more or less reflective of
mathematicians’ practices. As suggested by previous research on Calculus courses,
we also found that the practices students develop in this Analysis course are likely
shaped by the minimal requirements for success. To try to make sense of this, we
introduce the theoretical notion of “path to a practice” and a characterization of three
ways in which students’ practices may reveal themselves to be “non-mathematical.”

Keywords Mathematical practices · Task solving · Praxeology · Institutional
perspective · Real analysis · Functions

7.1 Introduction

Previous research has investigated what students learn in Calculus courses and
documented its potentially rote procedural nature. Orton (1983) interviewed 110 Cal-
culus students and found that many were operating according to rules without
reasons: When it came to performing integral calculations, they knew what to do,
but did not know why they were doing it. Shortly after, similar results concerning a
variety of Calculus topics were published by other researchers (e.g., Artigue et al.,
1990, in France; Cox, 1994, in Britain; Selden et al., 1994, in the United States;
White & Mitchelmore, 1996, in Australia), some of whom began to look more
systematically into why students may learn rules without reasons. Cox’s (1994)
discussions with Calculus teachers and students revealed that they may tailor their
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To contribute to the literature outlined above we conducted an exploratory study
(Broley, ) of an Analysis course at a North American university. In this chapter,
we deepen our analysis of a refined subset of results and extend our reflections
concerning two general research questions we explored:

2020

teaching and learning to typical exam questions. Selden et al. (1994) also pointed to
the potential impact of emphasizing routine tasks in instruction and evaluation: Tests
administered to students who received good passing grades in Calculus courses
showed that they could solve routine tasks quite well, but lacked the conceptual
understanding needed to solve only moderately nonroutine tasks. Later research by
Lithner and colleagues echoed these findings and worked on characterizing the
nature of the reasoning underlying students’ solving of routine tasks. For example,
in observing students’ task solving, Lithner (2000, 2003) saw how some students
explained their strategies based on established experiences from their learning
environment or superficial features of similar-looking tasks (rather than “mathemat-
ical” reasoning). Subsequent studies made sense of this through systematic analyses
of the tasks that are typically posed in Calculus textbooks and final exams, which
were found to not require students to go beyond superficial mimicry or the basic
recall of algorithms based on properties of the tasks that are not relevant from a
“mathematical” point of view (e.g., Bergqvist, 2007; Brandes & Hardy, 2018;
Hardy, 2009; Lithner, 2004; Tallman et al., 2016).
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It seems reasonable to expect that as students move beyond Calculus courses, the
nature of what they know and learn would be required to change. Theoretically
speaking, it has been proposed that curricula of more advanced courses in Analysis
invite students to deepen their understanding of mathematical concepts and theories
underlying procedures learned in Calculus, and to develop formal proof practices
that require the use of mathematical reasoning (Winsløw, 2006). On a practical level,
however, scholars (a) doubt that students naturally make productive connections
between what they learn in Analysis and what they learned in Calculus (e.g.,
Kondratieva & Winsløw, 2018; Winsløw et al., 2014), (b) pinpoint epistemic,
cognitive, and didactic obstacles to students’ learning of formal proof practices
(e.g., Bergé, 2008; Maciejewski & Merchant, 2016; Raman, 2002, 2004; Sfard,
1991; Tall, 1992; Timmermann, 2005), and (c) point to the possibility of students
successfully completing1 Analysis courses by memorizing a particular subset of
definitions, theorems, and proofs (e.g., Darlington, 2014), or by learning new kinds
of superficial (non-mathematically relevant) and algorithmic task solving practices
(e.g., Weber, 2005a, b).

1. What is the nature of the practices developed by students in a first Analysis
course?

2. How might these practices be shaped by the nature of the tasks offered to students
in the course?

1Both in those studies and in ours, successful completion of a course means obtaining a passing
grade.



7 University Students’ Development of (Non-)Mathematical Practices: The. . . 141

Responses to these questions could have practical implications for teachers or
curriculum developers involved in designing the tasks offered in university mathe-
matics courses. In what follows, we introduce how we framed our questions (Sect.
7.2), describe our methodology and the more specific objectives it addressed (Sect.
7.3), and present and discuss some results (Sects. 7.4 and 7.5).

7.2 Theoretical Framework

To frame our research questions, we first specify how we think about “practices” and
their “nature” (Sect. 7.2.1). Then we elaborate our perspective on how practices may
be “shaped by the nature of the tasks offered to students” in a course (Sect. 7.2.2).

7.2.1 Mathematical and Non-Mathematical Practices

To help us think about the nature of students’ practices, we turned to theoretical tools
within the Anthropological Theory of the Didactic (ATD; Chevallard, 1985, 1991,
1992, 1999).2

In the ATD, practices refer to regularized and purposeful human actions, which
can be personal (developed by an individual) or institutional (created, encouraged,
and enforced in a particular institution). An institution is understood in a broad sense
as a relatively stable structural element of a society that has been established to
organize human (inter)actions and orient them towards certain outcomes. Any
profession (pure mathematics research, actuarial science, engineering, etc.) or form
of organized education (school mathematics, university mathematics, etc.) can be
thought of as an institution (called professional or didactic institutions, respectively).
An individual is said to have developed an institutional practice if they have
developed a personal practice that is judged to be acceptable and worthwhile within
that institution.

With his theory of didactic transposition, Chevallard (1985) brought to light the
transformation of practices as they migrate from a professional institution into a
didactic institution, which serves to exemplify the institutional relativity of prac-
tices.3 In particular, the ATD acknowledges that what is considered “mathematics”
or “mathematical” may change from one institution to the next. We nevertheless
claim that one overall aim of university mathematics is to support students’ eventual
development of mathematicians’ practices, by which we mean the practices

2To learn more about the ATD and its use in mathematics education, see Bosch et al. (2020) for a
recent comprehensive description and Winsløw et al. (2014) for an overview specific to the
university level.
3One should pause and reflect on the relationship between the terms “practice” and “knowledge”
from an ATD perspective. We let this hang in the subtext of our chapter, to be addressed in further
discussion and subsequent theoretical research.



produced and used by mathematicians in the broad professional institution referred
to as scholarly mathematics. Thus, in our work, we use mathematicians’ practices as
a reference with which to compare the practices of university mathematics students,
and we use the term mathematical practices (and non-mathematical practices, in
contrast) in a particular way: to refer to practices that would be considered acceptable
and worthwhile (or not acceptable or not worthwhile, in contrast) within the schol-
arly mathematics institution.

Chevallard (1999) offers the notion of praxeology as a way of modelling practices
as they exist across institutions and individuals; any practice can be represented by a
quadruplet [T, τ, θ,Θ] – called a “praxeology” – involving four interconnected,
essential components:
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• a type of task, T, to be accomplished;
• a corresponding collection of techniques, τ, to accomplish T;
• the technology, θ, i.e., discourses to describe, justify, explain, and produce the

techniques; and
• the theory, Θ, that serves as a foundation of θ.

This representation of a practice recognizes both a practical part (the know-how),
[T, τ], called the praxis, and a theoretical part (the know-why), [θ,Θ], called the
logos.

The notion of praxeology gives us a way to think about the nature of students’
practices, which in turn allows us to reflect on whether and in what ways the
practices are mathematical or not (in the sense posed above). As we consider a
praxeology to be a static model of a practice, and inspired by previous work (e.g.,
Lithner’s, 2008, task solving framework), we say that an individual enacts a
mathematical practice if they carry out the action of solving a given task by

• identifying the task as belonging to a mathematical type of task;
• selecting and implementing a mathematical technique to accomplish the task;
• describing, in a mathematical discourse, how and why the technique works; and
• acknowledging a mathematical theory that supports the discourse4;

where, as explained above, “mathematical” is used in a particular way, to describe a
component (type of task, technique, etc.) as acceptable and worthwhile within the
scholarly mathematics institution.5 If, conversely, some component would not be

4It is possible that an individual will not explicitly engage in each of these actions when solving a
task. Following the example of Chevallard (1999), we take the position that “having a practice”
means being able to engage in four actions reflecting the four components of a praxeology. For
example, if an individual has a practice, they would be able to give some description of why their
chosen technique works. This description need not be “mathematical”: e.g., “I know the technique
works because my teacher told me to do it that way.”
5We are assuming that there are some uniform, implicit ideas among mathematicians of what is
(or is not) acceptable and worthwhile. We also acknowledge that there could be pertinent differ-
ences between mathematicians’ judgements depending, for example, on the specific area of
mathematics in which they work (mathematical physics, numerical analysis, algebraic topology,
. . .), which could warrant a definition of mathematical practice that depends on a specified area of
mathematics. We did not consider such differences in this research.



considered acceptable and worthwhile according to scholarly mathematics, we say
that the individual enacts a non-mathematical practice. Certainly, enacting a math-
ematical practice cannot be equated with having developed one. Nevertheless, in
our work, we assume that an Analysis student who enacts a non-mathematical
practice has not developed a mathematical practice – we say that these students
have developed non-mathematical practices.

6
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As an example, we could expect a mathematician faced with finding lim
x→ 1

x- 1
x2þx to

identify the task as belonging to the type find the limit of a rational function at a
point and to solve the task by direct substitution. If prompted to describe how and
why the technique solves the task, we could expect them to acknowledge certain
theoretical elements such as theorems, laws, and definitions. In contrast, when asked
to find lim

x→ 1

x- 1
x2þx, many of the Calculus students in Hardy’s (2009) study seemed to

identify the task with a type characterized by an easily factorable expression, which
necessitates some sort of algebraic technique: 20 out of 28 students tried factoring,
seven of which did direct substitution first. Furthermore, the students’ discourses
were of the sort: “We do this because that’s what our teacher showed us, and that’s
what we normally do for this kind of problem.” Hardy (2009) concluded that the
students learned to behave “normally” rather than “mathematically.” In the context
of our study, we would say that the students were enacting non-mathematical
practices. In the following, we propose one way of thinking about how the students
may have developed such non-mathematical practices.

7.2.2 The Progressive Development of Practices

In our work, and in line with previous research (e.g., Bergqvist, 2007; Cox, 1994;
Hardy, 2009; Lithner, 2004; Selden et al., 1994), we conjecture that in university
mathematics courses, students encounter numerous tasks that progressively deter-
mine the practices they develop. The tasks may occur in lectures, recommended
exercises, assessments, and students’ independently driven work. To model how the
nature of such tasks might contribute to moulding students’ practices, we introduce a
distinction between isolated tasks and tasks forming a path to a practice (building on
Broley & Hardy, 2018).

The tasks in Table 7.1 were offered by teachers to students in the Analysis course
we studied, along with written solutions. The written solutions for the tasks on the
right of Table 7.1 use the Intermediate Value Theorem (IVT). These tasks are meant
to help students identify a particular type of task – that of showing that a function has

6A student who enacts a mathematical practice could simply be mimicking behaviour. But the focus
of our work is the development of non-mathematical practices. Given our task-based interview
approach (see Sect. 7.3), we are convinced that the students we interviewed who enacted
non-mathematical practices had not developed mathematical practices; they had developed
non-mathematical practices.
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Table 7.1 Examples of tasks found in assessment documents in the Analysis course we studied

a certain number of zeros – and to master a particular technique – one afforded by the
IVT. Teachers’ solutions propose to students discourses to describe how and why the
technique works: “by the Intermediate Value Theorem”.

We say that tasks that relate to the same type of task and exist in relatively high
quantity, including in situations that are relevant to a student’s success, form a path
to a practice: they communicate to the student that some kind of practice should be
developed. In contrast, certain types of tasks may be encountered by students only in
disconnected, rare, or seemingly non-relevant (e.g., non-tested) situations. The
action of accomplishing the related tasks may hence remain isolated and particular,
not contributing to the development of a practice.7 We say that such tasks are
isolated (as opposed to forming a path to a practice).

7We consider the important distinction between the action of solving a task for which one has
developed a practice and the action of solving a task for which one has not developed a practice. For
instance, an individual may engage in the tasks of cooking a meal or hammering a nail without
having developed practices for doing so. In contrast, professional chefs or carpenters are typically
required to develop practices to ensure the regular and suitable accomplishment of those tasks.
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The nature of the practice suggested by a pathmay depend on different elements:
for instance, the nature of the tasks forming the path (e.g., the way the tasks are
phrased or the kinds of objects they concern); the context within which the different
tasks take place (e.g., tasks occurring on past exams may have a greater influence
than tasks occurring in assignments); what is made explicit about the tasks (e.g.,
steps and discourses present or absent in teachers’ solutions); or who is observing the
tasks (e.g., a researcher, a teacher, or a student). It is possible that different students
see different paths or develop different practices when engaging in the same given
tasks (we return to this idea in Sects. 7.4 and 7.5). Observing from our perspective as
researchers, we found the idea of a path to a practice helpful in framing the way we
collected and analysed data.

7.3 Methodology

Our study focussed on a first Analysis course (A1) offered at a large North American
university. A1 is a mandatory course for mathematics programs leading to graduate
work (e.g., in statistics or pure mathematics). It is typically preceded by courses in
single variable and multivariable Calculus, and followed by a second course in
Analysis (A2). Together, A1 and A2 form an introduction to Analysis of single
variable real-valued functions. Most topics are identical to those in single variable
Calculus courses (e.g., limits, continuity, derivatives). The difference is the expec-
tation (explicit in curricular documents) that the courses will introduce students to
mathematical rigour and proofs.

A1 is an institution in the ATD sense (Sect. 7.2.1). The teacher (typically a full-
time mathematics professor engaging in teaching and research) provides 3 h of
lecture per week; students are evaluated through weekly assignments, a midterm,
and a final exam, with their successful completion of the course significantly
determined by their final exam grade8; and there is a course examiner who is
responsible for ensuring consistency in evaluations across teachers and terms.

To address our two research questions, we used a task-based interview approach
(Goldin, 1997, 2000), founded on an a priori analysis of some of the tasks typically
offered in A1. Hence, our study proceeded in two stages. The focus of the first stage
was an analysis of tasks proposed to students in A1 and the solutions teachers made
available to students for studying. The objective of this first stage was two-fold. On
the one hand, we expected to test our capacity to predict, based on previous research
and on the tasks and solutions proposed to students, what (non-)mathematical9

practices students would develop (based on our analysis of the tasks, we would
model practices we expected students to develop – for further clarity, see footnote

8At the time of our study, students were evaluated by taking the best of two possible distributions:
10% assignments, 30% midterm, 60% final exam or 10% assignments, 90% final exam.
9We use “(non-)mathematical” to mean “non-mathematical or mathematical.”
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10). On the other hand, the analysis of tasks offered to students in A1 was key to the
creation of task-based interviews that would elicit students’ developed practices. The
objective of the second stage of our study – the creation, implementation, and
analysis of task-based interviews – was to build models of practices actually
developed by students and to reflect on the (non-)mathematical nature of these
practices. We present relevant details of our methodology below (for more details,
including a thorough description of the methodological approach and illustrative
examples, see Chap. 4 in Broley, 2020).

In the first stage of our study (described in detail in 4.1 in Broley, 2020), we
analyzed over 200 tasks listed in assessment documents provided to students in A1,
including the weekly assignments, midterm, and final exam posed in a particular
iteration of the course, as well as midterms and final exams from previous iterations
that students were given to guide their studying. While our research questions refer
to the practices developed by students in A1, our analysis was focussed exclusively
on the tasks presented in the documents listed above (as opposed to considering all
the tasks offered to students, including, e.g., in lectures). We considered these tasks
sufficient for our objectives for several reasons: Past research has shown the poten-
tially strong influence of assessments on the practices students develop (e.g., Cox
1994; Hardy 2009); and in the course we studied, tasks that will be tested appear
with high frequency in assessment documents (assignments, midterms, and final
exams) and study guides (the textbook and solutions to tasks provided to students),
which, we conjecture, drives students towards the development of practices that will
be tested.

In our analysis of the tasks, we sought to identify those that relate to the same type
of task and exist in relatively high quantity – the tasks in a path to a practice (Sect.
7.2.2). If tasks relating to a certain type of task occurred in low quantity and only on
assignments, we considered them to be isolated; otherwise, we considered them as
forming paths to practices. To characterize the practices that we expected students to
develop (what we will refer to as the “suggested practices,” from our perspective as
researchers),10 we built praxeological models, including specific characteristics of
the tasks and teachers’ solutions that we conjectured (based on previous research)
might have shaped students’ practices (e.g., we recorded whether tasks concerned
particular kinds of objects and which theoretical elements were explicit in teachers’
solutions). We then selected a subset of paths to practices on which to base our
interview tasks, for different reasons: e.g., we chose a variety of paths (in terms of
topic) to explore patterns or differences in students’ practices; our interest in the
evolution of students’ practices from Calculus to Analysis also led us to favour paths
(and eventually tasks) that students may link to practices developed in prior Calculus
courses. Our six interview tasks can be found in Appendix A in Broley (2020).

10To be clear, we are not referring to the expectations that the institution or the teacher may have,
which may well be that students learn mathematical practices. We are referring to our expectations
as researchers critical of the tasks being proposed. Based on previous research, we expected
students to develop some non-mathematical practices (e.g., focusing on superficial,
non-mathematically relevant features of highly frequent tasks).
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Complete results of this stage of our study can be found in Chap. 6 (6.i.1, i = 1 to 6)
in Broley (2020). In Sect. 7.4.1, we present the suggested practice associated with
our second interview task (T2): Show that the function f(x)= ex- 100(x- 1)(2- x)
has 2 zeros. We selected this task as the focus of this chapter since its results illustrate
well our approach and the different kinds of (non-)mathematical practices we found
students may develop.

The second stage of our study (described in detail in 4.2 in Broley, 2020)
focussed on the design, implementation, and analysis of our task-based interview.
This kind of interview was fitting for our objectives since it could allow us to observe
students as they enact practices to solve given tasks. We designed the interview tasks
and protocol with the goal of eliciting students’ practices and revealing their nature.
Key to the design was achieving recognizability and deception: students needed to
recognize the interview tasks as being solvable using practices they had developed in
A1; they also needed to be potentially deceived by some element of the task so that
any non-mathematical nature of their practices would be revealed. Generally speak-
ing, we chose interview tasks that mirrored, but also differed in some significant
way, from tasks within the paths selected from the first stage of our study (in Sect.
7.4.1, we give the example of T2). Once the tasks were chosen, following Goldin’s
(1997, 2000) principles, we created a protocol (Appendix A in Broley, 2020), which
outlined the rules of interaction between the interviewer, an interviewee
(a successful A1 student), and the tasks. After receiving a task (printed on the top
of a blank sheet of paper), an interviewee had as much time as possible11 to engage in
independent task solving, thinking aloud and using the tools made available to them
(paper, a pencil, and a scientific calculator). If the interviewee struggled to engage
with a task, the interviewer offered heuristic suggestions that became progressively
more directive as needed (potential suggestive questions were created for each task
and can be found in the protocol). At the end of an interviewee’s task solving
attempt, the interviewer asked follow-up questions with our objectives in mind
(e.g., it was not important for the interviewee to develop a final polished solution;
but they were encouraged to clarify the approach they took or would take for solving
the given task, and why, which was crucial for modelling their practices). We
conducted two- to three-hour interviews with 15 students (S1 to S15) after they
successfully completed A1.

Our analysis proceeded in several steps. First, audio recordings of the 15 inter-
views were combined with participants’ written work to create verbatim transcripts.
Second, for each participant and each task, we created a table with three rows, where
we recorded observations from the participant’s transcript that would help us infer
the different components of their practice(s): the type(s) of task(s) identified, the
technique(s) selected and implemented, and the discourses used to describe how and
why the technique(s) work, including any acknowledgement of underlying theory.
For example, in the row corresponding to technique(s), we synthesized the steps the

11The time available for solving a given task was constrained by the planned duration of the
interview (2 h) and the priority of observing a participant formulate at least one approach, and a
reason for the approach, for each of the six interview tasks.
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participant took to solve the task. Third, for each task, we then used the tables to
categorize participants according to criteria that emerged as we read the tables and
thought about our objectives. Criteria varied across tasks and were not limited to
“task(s) solved,” “technique(s) considered,” or “technologies/theories referred to”:
e.g., for T2, the criteria also included “the first thing a participant spoke about or did
upon receiving the task” and “how they chose which x values to plug in (to locate
sign changes in f ).” Using this categorization, we engaged in a fourth step, writing
about patterns in participants’ task solving: i.e., how they identified types of tasks,
selected and implemented techniques, and described how and why those techniques
worked. Finally, we created models of the practices enacted by the students, which
we used to reflect on their nature (using the lens elaborated in Sect. 7.2.1), and how
they may have been shaped by the tasks offered in the course (by comparing them to
our models of suggested practices). In Sect. 7.4.2, we present some of the results of
this analysis, exemplified in relation to T2.

Before presenting the results, it is important to address the fact that we model
students’ practices – regularized and purposeful actions (Sect. 7.2.1) – based on a
solution to one task of a certain type. Since we interviewed students at the end of the
course, we expected them to have developed regularized and purposeful actions for
solving potentially evaluated tasks. Our interview tasks were designed to trigger
such practices, and the deceptive nature of the tasks meant that when a practice did
not work (to solve the task), the student was forced to explain it. Moreover, a student
would often exhibit specific cues that their behaviour was indicative of a practice
(see footnote 7). For instance, they would describe their approach in a general sense
(i.e., not specific to the given task), or they would say things like “I am going to use
the method learned in class,” “I’ve repeated this approach so often,” or “I usually do
it this way” (as exemplified in Sect. 7.4.2). This said, we recognize that there may
have been times where identified “practices” were “potential” and could have been
more “practices in development, in adaptation, or in evolution.” This is a complex
issue and an interesting direction for future work.

7.4 Results

In our analysis, we found that participants’ practices were (non-)mathematical in
different ways. We also observed variability in the ways in which participants’
practices could be linked to our models of suggested practices12 (and, by extension,
the assessment tasks that had been offered in A1). The next sections exemplify these
results using our second interview task (T2): Show that the function f(x) = ex - 100
(x - 1)(2 - x) has 2 zeros. We first present our model of the suggested practice
associated with T2 (Sect. 7.4.1). Then we present our analysis of a selection of
practices enacted by participants for solving T2, and their links to the suggested
practice (Sect. 7.4.2).

12See Sect. 7.3 for the meaning of suggested practice in the context of this study.



7.4.1 Suggested Practice Associated with T2

The first stage of our methodology (Sect. 7.3) was an analysis of assessment tasks
and teachers’ solutions to those tasks offered to students in A1, which involved an
identification of paths of tasks and a characterization of practices suggested by those
paths. Table 7.2 depicts our model of a practice suggested by one of the paths we
identified. The model is founded on the type of task: T, Prove that a function f(x) has
exactly n zeros on an interval I. Examples of tasks belonging to the path are shown in
Table 7.1. Teachers’ solutions to those tasks (which they made available to students
for studying purposes) suggested that T be split into two sub-tasks: Ta, prove that f(x)
has at least n zeros on I and Tb, prove that f(x) has at most n zeros on I.

In teachers’ solutions, the most common technique for showing that f has at least
n zeros was to locate n sign changes (τa). Teachers’ solutions did not consistently
include justifications beyond “by the Intermediate Value Theorem” (θa). None of
such solutions commented on the usefulness of the IVT (e.g., “because the zeros of
f cannot be found analytically”) or on how the IVT works (e.g., “if f is a continuous
function on an interval [a, b] and d 2 ( f(a), f(b)), then there is some number c 2 (a, b)
such that f(c) = d”). Also, the continuity condition necessary for applying the IVT
was not always mentioned or justified in teachers’ solutions. Moreover, these
solutions did not elaborate on how students should look for sign changes (only
listing the values of f(x) that proved the existence of the sign changes), and the
intervals and functions were always of a type such that sign changes could be easily
found (by plugging in the endpoints of the interval, normally integers, and possibly
some points in between, normally also integers and/or the midpoint of the interval).
Accordingly, we wondered if students would have developed a non-mathematical
practice and we constructed T2 in attempt to reveal this. We did not specify an
interval, and we constructed f(x)= ex- 100(x- 1)(2- x) so that plugging in integer
values for x would lead to only positive values for f(x) and, thus, would not be
enough to locate sign changes (this was part of the deceptive nature of the task; see
Sect. 7.3). In the absence of an interval, we expected students to work with the
domain of definition of the function (i.e., to assume I = (-1,1)).

Note that with the way we phrased T2, we expected the participants of our study
to identify it with Ta and for the interviewer to pose a follow-up question asking if
participants’ approaches would be different if they needed to show that the function
has exactly two zeros. There was potential for a variety of responses. Indeed, in
contrast with Ta, and as portrayed in Table 7.2, there were several techniques
(τb1 ,τb2 ,τb3 ) illustrated in teachers’ solutions for showing that f has at most n zeros.
These techniques were illustrated on different subsets of Tb: e.g., when n = 2, as in
T2, teachers’ solutions suggested that students should argue by contradiction,
assuming the function has 3 zeros, applying Rolle’s Theorem twice to find that f 00

should have a zero, and then calculating f 00 to find that it actually has none.
Finally, within the path of assessment tasks related to T, we identified three

equivalent task types (Table 7.1 shows some related tasks):
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Table 7.2 Our model of a practice suggested by a path of assessment tasks offered in A1, based on
the nature of the tasks themselves, as well as the techniques illustrated and technologies made
explicit in teachers’ solutions. The notation used aligns with that in the concept of praxeology: T for
types of tasks, τ for techniques, and θ for technologies
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1. _T , Prove that a function g(x) has (exactly) n fixed points on an interval I.
2. ~T , Prove that an equation g(x) = h(x) has (exactly) n solutions on an interval I.

3. bT , Prove that two functions, g and h, intersect (exactly) n times on an interval I.

In teachers’ solutions, tasks of these types were solved by transforming them into a
task of type T (see the first and second rows of Table 7.2). For example, to prove that
ex = 100(x - 1)(2 - x) has exactly 2 solutions, students were shown to introduce a
new function, f(x) = ex - 100(x - 1)(2 - x), and to argue that f has exactly 2 zeros
using the techniques mentioned above. None of the teachers’ solutions leveraged the
equivalence in the other direction (e.g., thinking about the intersections of g(x) = ex

and h(x) = 100(x - 1)(2 - x) could lead to a graphical solution for T2). Hence, we
did not expect students to spontaneously construct such a solution.

7.4.2 Practices Enacted by Participants for Solving T2

The second stage of our methodology (Sect. 7.3) involved the implementation of a
task-based interview, including T2 (Show that the function f(x) = ex - 100(x - 1)
(2 - x) has 2 zeros.), with 15 students who had successfully completed A1. In what
follows, we provide selected examples of our analyses of the interview data, to
illustrate three different ways in which students’ practices revealed themselves to be
(non-)mathematical: how students identified T2 with a type of task and technique
(Sect. 7.4.2.1), how students implemented their chosen technique for accomplishing
T2 (Sect. 7.4.2.2), and how students explained their chosen technique for
accomplishing T2 (Sect. 7.4.2.3).

7.4.2.1 The Identification of T2 with a Type of Task and Technique

When presented with T2, eleven13 out of 15 participants almost immediately indi-
cated that they would use the IVT. For example, S4’s first words after receiving the
task were: “Ok. I remember this being with the Intermediate Value Theorem.” In our
analysis, we found examples of participants who seemed to be drawn to the word
“zeros” as the way of identifying T2 with a type of task necessitating the use of the
IVT. For instance, S6 explained:

Show that it has zeros is IVT for sure. [...] like if it’s a continuous function, [. . .] you plug in
some values, you get a negative, then positive, then negative, it must cross the [the x-axis], at
some point, it does have a zero.

13Of the four participants who did not immediately speak of using the IVT, one (S15) spoke about
needing to use a “theorem” but could not remember which one, one (S2) immediately took the
derivative of f, and the other two were S9 and S3 mentioned below.



S8’s actions and utterings also suggested that to show a function has zeros, one
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applies the IVT: “I understand that the IVT works like that. [. . .] If I find one that’s
positive and one that’s negative, I [can] find a zero.” S11 explained similarly:

My logic with finding zeros is finding a value before and finding a value after that point at
which it’s equal zero that are alternating signs. And the only theorem that we have that talks
about that is [. . .] the Intermediate Value Theorem. So that’s why I instantly thought of that.

These students did not stop to reflect on the properties of the function in T2 to inform
their decision to use the IVT, their focus seeming to be exclusively on the task being
about “zeros.” It is in this sense, or for this reason, that we consider that they were
enacting a non-mathematical practice. We note, importantly, that in the context of
the assessment tasks given in A1, all tasks about “zeros” could be easily solved using
the IVT (Sect. 7.4.1).

In comparison, there were examples of participants who considered the nature of
the function f(x) = ex - 100(x - 1)(2 - x) in T2 to support their choice of an
IVT-inspired technique and did not focus solely on the fact that it was a task about
“zeros.” After being triggered to use the IVT, S1 stopped to note about f: “if ex

wasn’t here, it’d be pretty easy to find the two zeros. But since there’s [ex], we have
to do the non-high school way,”meaning, as S9 did, that one could not algebraically
solve the equation f(x)= 0. S9 said: “It’s not as simple as just isolating x. [. . .] So, in
this case, we have to use one of those theorems we saw in [A1].” These participants
showed some awareness that choosing an IVT-based technique is appropriate for
tasks involving a function whose zeros cannot be found using other, simpler,
analytical or algebraic techniques. These students were considering the task in its
entirety and not focusing exclusively on the fact that it was about the zeros of a
function. We consider their identification of the task to be mathematical (as opposed
to the students referred to in the previous paragraph14).

S3 also considered the nature of the function in T2: “a classic example where you
cannot use [. . .] easy things to find the root.” The difference with S3, when compared
to all other participants, is that he transformed T2 into the equivalent tasks “show
that ex = 100(x - 1)(2 - x) has two solutions” and “show that the graphs of ex and
100(x - 1)(2 - x) have two intersections”; and he developed an unexpected (see
Sect. 7.4.1) solution based on proving the properties shown in his sketch (Fig. 7.1).
We infer that S3 identified T2 with three equivalent types of tasks (about zeros of
functions, about solutions of equations, and about intersections of graphs) and chose
a technique based on essential mathematical properties of f(x) = ex - 100(x - 1)
(2 - x); namely, that it is the sum of two functions whose graphical properties are
known (to A1 students). This, we concluded, was indicative of the development of a
mathematical practice.

14Our judgement is that their identification of the task exclusively on the fact that it is about the
zeros of a function is not worthwhile from the perspective of scholarly mathematics.
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Fig. 7.1 S3’s
reinterpretation and solution
of T2 as a task about
intersections of graphs

7.4.2.2 The Implementation of a Technique to Accomplish T2

Of the twelve participants who tried to implement an IVT-based technique (i.e.,
finding two sign changes in f(x)), eleven eventually struggled to complete the task,
facing the expected challenge (described in Sect. 7.4.1) of finding only (or mainly15)
positive values for f(x). All eleven of these participants seemed to, at some point,
choose x values “at random” (perhaps considering ease of calculation or variance in
chosen values), with several explicitly indicating taking this approach. In our
analysis, we found examples of participants who seemed to be choosing their next
step in carrying out their technique simply by trying to remember what had worked
when solving tasks from A1. After checking the limits of f at infinity,16 S1 said: “I’d
like to see if there’s a negative. [. . .] So, I’d just try random numbers.” He used his
calculator to do so (e.g., calculating f(0), f(100), f(-5)), finding only positive values,
and explained his choice to go “at random” by saying that he “forgot the better way.”
As another example, S11 used a calculator to find f(0), f(1), and f(-1), and
explained: “usually what we saw in [A1] was that. . . [. . .] the interval in which
[the function] is alternating between negative and positive [values] is like some-
where in a close range of zero.” We infer that S11 was selecting x values, not by
reasoning about the mathematical properties of the given function f, but based on his
memory of the kinds of x values (close to zero) that had resulted in sought-after sign
changes when solving tasks in A1. S11 later described a more specific list of steps he
would have expected to work had T2 included the specification of an interval (like in
the assessment tasks from A1; see Sect. 7.4.1):

15Some participants found negative values for f(x) due to calculation errors.
16This is not something we had anticipated based on our model of a suggested practice and so we do
not know where this first step came from. Since S1 was not the only one to do it, perhaps it was
shown to students in lectures.



Like if you tell me [ ] it’s not this function, it’s another function,. . . and you tell me [the
interval is] zero to five [writing [0,5]], then at that point you can just plug in the values [...]
Zero, one, two, three, four, five. [. . .] And you’ll see which one alternates between negative
and positive. And you’ll figure out how many zeros you have.

17
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The steps S11 described would have worked to solve assessment tasks in A1, but
they do not make sense from a mathematical point of view in the context of T2.
Implementing the IVT in this way illustrates another way in which practices can be
non-mathematical.

In response to their struggle, nine participants (including S11) eventually indi-
cated a (possible) change of approach to looking for sign changes in f, based on
reasoning about mathematical properties of the given function (Table 7.3).18 Still,
there are interesting differences in the nature of these approaches. For example,
(1) and (2) in Table 7.3 rely on local studies of the function’s monotonicity to make
predictions about whether it will change sign somewhere nearby (they involve a
quantitative study of f that does not take advantage of its essential features). In
comparison, (3), (4), and (5) are based on a qualitative study of f to try to understand
its global behaviour, although (3) (like (1) and (2)) still includes a degree of
arbitrariness in the choice of x. Only one participant (S12 – see (4) in Table 7.3)
implemented the IVT-based technique solely by performing a qualitative mathemat-
ical study of f (i.e., by reasoning mathematically19). This, we concluded, was
indicative of the development of a mathematical practice.

7.4.2.3 The Explanation of a Technique for Accomplishing T2

In our analysis, we found examples of students who seemed to explain their
IVT-inspired technique based solely on the technique being a normal part of what
occurred in A1 (what we refer to as “established experiences” from the learning
environment, following Lithner, 2000). In reference to his use of the IVT for solving
T2, S1 explained: “I know that [the IVT is] applicable in this situation.20 [. . .] Why
do I know? Well, I’m cheating. Cause I know that that’s how we used to solve it
[in A1]. [. . .] Cause we did it in class.” S4 said similarly: “It’s just having repeated it
so often, whether it be assignments, class, practice, . . .” From this, and the interac-
tions that occurred during the interviews, we interpret that S1, S4, and other
participants did not actually know why the IVT-inspired technique solves T2:

17S11 made the specification that “it’s not this function, it’s another function” when giving the
example of the interval [0, 5] because he had already tried plugging in x= 0, 1, 2, 3, 4, 5 and had not
found the two zeros. This said, the zeros for f(x) do indeed occur on [0, 5].
18This may be an example where students were exhibiting “practices in development” (see the last
paragraph of Sect. 7.3).
19As in the use of the adjective “mathematical” in this study, “mathematically” here refers to a way
of reasoning that is acceptable and worthwhile by the institution of scholarly mathematics.
20S1 was one of six participants who did not mention the continuity condition required for applying
the IVT during his solving of T2.



They know it is a task about “zeros,” they know one applies the IVT in that case, and
they follow learned steps to implement the technique. Their logos is of
non-mathematical nature, hence illustrating another way in which students’ practices
may be non-mathematical.
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Table 7.3 Models of participants’ approaches and reasoning for choosing x values to find sign
changes in f(x) = g(x) - h(x), where g(x) = ex and h(x) = 100(x - 1)(2 - x). * indicates the
participant only described (did not try) the approach. Bold indicates the participant successfully
solved the task using the approach

While solving T2, twelve participants eventually considered the task of showing
that f(x) = ex - 100(x - 1)(2 - x) has at most two zeros (Tb). Several techniques
were exhibited, reflecting the diversity in the suggested practice (Table 7.2). This
contributed to enrich the collection of examples of what we deemed (non-)
mathematical explanations of selected techniques. For instance, to solve Tb, five
participants (S1, S2, S7, S13, and S15) considered using Rolle’s Theorem (RT) or
exhibited a technique based on it (somewhat, though not exactly, reflecting τb2 in
Table 7.2), for which the underlying explanation seemed to be limited to citing the
theorem (void of understanding what the theorem says or how it can be used to
afford a technique). S15 recalled the complete statement of RT, but could not see
how to use it to produce a technique for solving T2. In comparison, S1, S2, S7, and
S13 chose to show that f 0(x) = ex + 200x - 300 has exactly one zero, based on “a



theorem.” According to S1, the theorem says that “if the derivative [function] has
one [zero], [. . .] the [function] has at most two [zeros].” According to S2: “It says
that if you have n zeros for f(x), then [. . .] you have n - 1 zeros for the derivative.”
No participant provided a mathematical explanation connecting these two statements
(i.e., why, mathematically speaking, RT – or a generalized version of it – produces
the technique). We infer that the students’ references to RT (or “a theorem”) were
disconnected acknowledgements of a piece of theory, which remained a static part of
their practice that they were not able to use. This is what we mean by explaining a
technique based on inert knowledge; another example of how an explanation for a
technique may be non-mathematical. As in the example above, this kind of expla-
nation (“by a theorem”) aligns with our model of the suggested practice in relation to
T2 (Table 7.2).
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In contrast, we found examples of participants who seemed to understand and use
elements of mathematical theory to produce and explain a technique for solving Tb.
Five participants seemed to solve Tb by implicitly or explicitly turning to theorems
about what f 0 or f 00 tell us about the shape of f’s graph. S12, for example, devised a
technique reflecting τb1 (Table 7.2): Expecting f to have a global minimum (based on
his previous work, including a sketch of f ), S12 planned to locate the minimum by
finding xm such that f 0(xm)= 0; and then argue that f 0(x)< 0 ( f is strictly decreasing)
on (-1, xm) and f 0(x) > 0 ( f is strictly increasing) on (xm,1). S12 got stuck
implementing his technique when he realized he could not analytically solve
f 0(xm) = 0. This said, he gave the following mathematical explanation for how and
why the technique worked:

If a function is [. . .] increasing strictly, it means that [. . .] if I have two points, a and b, where
a < b, then [. . .] f(a) < f(b). So, if I have some point that is a zero, [say b], [the value of f at]
any point that is greater than b is going to have to be greater than zero. So that shows that no
value c greater than b is actually going to give something that’s a zero in our function.
Similarly, no value less than b will give us a value of zero. [. . .] The same is true for
decreasing functions.

In this argument, S12 does not rely on his personal understanding alone; rather his
understanding seems to be shaped by the mathematical theory of functions (e.g., the
definitions of increasing or decreasing functions and the definition of a zero of a
function). This is an example of what we mean by clarifying, questioning, and
verifying one’s own understanding with mathematical theory, which we see as one
way in which students’ practices may be mathematical.

7.5 Discussion

At the beginning of this chapter, we posed two research questions:

1. What is the nature of the practices developed by students in a first Analysis
course?

2. How might these practices be shaped by the nature of the tasks offered to students
in the course?
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Considering the above results, we discuss possible elements of response, critically
reflect on our study (its contribution and limitations), and propose some directions
for future work.

7.5.1 Answer to the Research Questions and Contribution
of the Study to Research in University Mathematics
Education

Our study involved task-based interviews (see Sect. 7.3) with 15 students after they
successfully completed a first Analysis course. In our analysis of these students’ task
solving, we found examples of practices that were not mathematical (see Sects. 7.2
and 7.4.2). These kinds of practices have been identified in research on Calculus
courses (e.g., Hardy, 2009; Lithner, 2000; Orton, 1983; Selden et al., 1994). Given
the procedural focus of those courses, the development of non-mathematical prac-
tices is perhaps not surprising. It is surprising, however, that students may still be
developing such practices in more advanced theoretical courses such as A1, often
taken in the second-last year of mathematics programs leading to graduate work.
Some studies (e.g., Weber 2005a, b) have hinted at this possibility; our study
contributes a focused theoretical and empirical exploration of this issue. Using the
notion of “path to a practice” (see Sect. 7.2) contributed by our study, we conjecture
that the development of non-mathematical practices may be permitted and encour-
aged (for any student) by paths of tasks that do not help students to identify relevant
mathematical features of the tasks, and where it is not necessary to learn how to
mathematically explain a technique for a mathematical type of task (e.g., the path
described in Sect. 7.4.1).

This said, we also found that some students enacted practices that, while
non-mathematical from the perspective of this study, could be considered mathe-
matical in some way (e.g., the student is paying attention to mathematically relevant
aspects of the task to choose a technique, but does not have mathematically sound
discourses; or vice versa). This could be empirical evidence of students going
through the expected shift (Winsløw, 2006), from a more procedural focus (encour-
aged in Calculus) to a more theoretical focus (encouraged in Analysis).

The differences we found in the nature of students’ practices also seemed to
reflect different ways in which students’ practices may be linked to (or influenced
by) the assessment tasks given in A1 (as suggested by comparing results from Sects.
7.4.1 and 7.4.2). This may further reflect our expected differences in “a practice
suggested by a path” depending on the observer (see the last paragraph of Sect.
7.2.2); that is, it is possible that different students abstracted different practices from
the paths that we identified, or that they made different connections among tasks than
we did (forming different kinds of paths). We have begun trying to make sense of
this by characterizing different general ways in which students may position them-
selves within their courses (e.g., Broley, 2021).
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7.5.2 Limitations and Directions for Future Research

It is interesting to note that the notion of “path to a practice” arose within our study
context, which followed the paradigm of “visiting works” (Chevallard, 2015). As
evidenced by Section 4 of this book, this paradigm is being challenged by innovative
approaches such as inquiry-based mathematics education (Artigue & Blomhøj,
2013). Recently arising in the ATD is a variation that proposes to organize learning
around another kind of “path”: study and research paths, which start with an open-
ended question that the teacher and students seek to answer through studying
existing works and researching new questions (e.g., Florensa et al., 2019). One
direction for future work could be to analyse the nature of the practices students
develop while engaging in such paths and to theoretically reflect on how they relate
to the notion of “path to a practice.”

Our study had limitations, which point to other future directions. For instance, we
analysed only some of the tasks offered to students: Future work could look at the
role, if any, of the tasks students encounter outside assessment or teachers’ lectures
in the paths they identify for themselves, or the influence of tasks (or paths) from
other courses. Another limitation is that our task-based interview was not designed to
distinguish between different practices’ states; e.g., “practices in development,”
“practices in adaptation,” or “practices in evolution,” which could be the focus of
future work.

Based on the conclusions of our study, namely that students develop
non-mathematical practices, another future direction could be design-based research
to create and evaluate learning experiences for the development of mathematical
practices. The examples in this study – of students’ non-mathematical practices –
could inform the design of tasks for that purpose. More detailed analyses of how
students form paths and abstract practices could also provide interesting and impor-
tant empirical and theoretical insights.

Taking an institutional point of view reminds us of the complex web of con-
straints faced by teachers and students (examination procedures, time limitations,
curricular expectations). One participant from our study gave a poignant reflection,
highlighting how the larger context may encourage the development of
non-mathematical practices:

I feel that we’re grinded to do so many questions really quickly. So, we need to associate
problems to a solution [...] really fast. [...] Cause I don’t really have the time to analyze the
problem and try different things during an exam. So, I grind problems at home. And when I
get in an exam, I see the problem and I say, “Ok, that’s exactly the kind of problem. . .it goes
down to this.”

Although we claim that one overall aim of university mathematics is the eventual
development of practices reflecting the aimed (mathematical) profession, a pertinent
question raised by our study, and many others before ours (some cited here), is: To
what extent is this aim achievable under existing constraints?
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Chapter 8
The Mathematical Practice of Learning
from Lectures: Preliminary Hypotheses
on How Students Learn to Understand
Definitions

Kristen Lew, Timothy Fukawa-Connelly, and Keith Weber

Abstract In this theoretical chapter, we argue that when mathematicians lecture,
they not only cover mathematical content, but also model how student should learn
mathematics. We analyze a corpus of eleven lectures in a variety of advanced
mathematics courses to investigate ways in which mathematicians present the
definitions of concepts and gain insight into how mathematicians may expect
students to learn from lectures. We highlight how the instructors modeled what it
means to study a concept and its definition and argue that students are expected to
engage in independent study outside of class.

Keywords Proof · Lecture-based instruction · Mathematical behaviors ·
Mathematical practice

8.1 Introduction

Imagine a mathematician about to enter a new area of research. This might be a
doctoral student who is beginning her dissertation research or she might be an
established faculty member changing her research focus. What sort of activities
might this individual engage in to learn about this area of research? If she is like
many mathematicians, she would attend a workshop. Mathematical workshops
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typically consist of a series of coordinated lectures that survey the latest develop-
ments in important areas of research. These workshops typically have social pur-
poses (such as fostering collaboration), but they also have a cognitive purpose: the
participants expect to come to understand some key ideas of the research area better.
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A mathematician might also engage in other activities to learn about a new
domain of research, such as attending colloquia or auditing a relevant doctoral-
level course. Again, the expectation is that the mathematician can learn about a new
mathematical domain by attending these lectures. Of course, a mathematician does
not learn mathematics only by attending lectures. Other activities, such as studying
research papers and talking with colleagues who work in the area, are essential as
well. We are not claiming that attending lectures is sufficient to master a new
mathematical domain, only that mathematicians regularly use lectures as a key
resource for learning new mathematics. Learning from lectures is an important
mathematical practice.

Some readers may be surprised to find a chapter on lecturing in an edited volume
on practice-oriented research in tertiary mathematics. After all, lecture-based instruc-
tion is sometimes viewed as the antithesis of instruction that engages students in
authentic mathematical practices. There is good reason for this sentiment. In a
typical lecture-based course, students are given little opportunity to engage in core
mathematical practices such as problem solving and proving during their course
meetings. Indeed, some practices such as conjecturing and defining are given scant
attention at all (c.f. Johnson et al., 2018). We agree in tertiary mathematics instruc-
tion, there is an overemphasis on learning from lectures, while too little attention is
paid to other mathematical practices.

Despite the weaknesses of teaching exclusively via lecture, we advocate for more
mathematics education research on the practice of learning from lectures for three
reasons. First, as noted, learning from lectures is an important mathematical practice
and one we believe is poorly understood. Second, lectures are potentially a valuable
resource that students can use to learn mathematics. As Larsen (2017) noted, lectures
are appropriate in some contexts, particularly when “students have developed to the
point of knowing what it means to do mathematics” (p. 245) and are capable of doing
the hard work of studying the ideas from lecture outside of class. That is, lectures
might be useful to students who know how to engage in the practice of learning from
lectures. Third, for better or worse, most tertiary proof-oriented courses are taught
via lecture and we anticipate this will be the case for the foreseeable future. Even if
lecturing is limited pedagogically, tertiary mathematics students will experience
lecturing frequently in their mathematical development.

In this theoretical chapter we advance the following (speculative) argument:
When mathematicians lecture, they not only cover content, but also model how
students should learn mathematics; some even give explicit suggestions about how
to learn mathematics. We claim by studying how mathematicians model engaging in
mathematics, we can gain insight into how mathematicians expect students to learn
from lectures, with much of the learning occurring outside of class. We use a corpus
of 11 lectures in a variety of advanced mathematics courses, focusing on how
mathematicians present the definitions of concepts. We highlight how the instructors



modeled what it means to study a concept and its definition, where we argue students
are expected to engage in similar study habits outside of class. We conclude the
chapter by proposing open questions and future directions for how mathematics
educators might investigate the practice of learning from lectures.
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8.2 Literature Review

8.2.1 What Do We Mean by Learning from Lectures?

Asiala et al. (1997) defined a students’ mathematical knowledge as her ability to
productively respond to the mathematical situations that she may encounter. To us,
these situations, such as those where students are asked to prove a mathematical
conjecture, require having an understanding of the relevant mathematical concepts at
play as well as a facility with the mechanics of proving. However, we maintain that
productively responding to these situations also involves the development of pro-
ductive dispositions (e.g., that one should try to prove or disprove open conjectures)
and an internalization of sociomathematical norms (e.g., how proofs should be
written). Learning mathematics therefore involves developing the skills, understand-
ing, and dispositions and internalizing the sociomathematical norms needed to
respond effectively to mathematical situations. Students have many resources with
which they can interact to do this, including textbooks to read and colleagues with
whom they can interact. An important resource students have is the lectures their
teachers provide.

8.2.2 Research on Lecturing in Advanced Mathematics

In the last 10 years, there has been tremendous growth in research on lecturing in
advanced mathematics courses. For the sake of brevity, we point the reader to the
recent surveys of Gabel (2019) and Melhuish et al. (2022). Below, we highlight five
findings relevant to this chapter.

First, although mathematics educators have developed innovative student-
centered curricula for teaching advanced mathematics (e.g., Larsen, 2013; Leron
& Dubinsky, 1995), most advanced mathematics courses are still taught by lecture.
This research finding is supported by both surveys with mathematicians (Fukawa-
Connelly et al., 2016) and classroom observations (Artemeva & Fox, 2011;
Fukaway-Connelly et al., 2017). Second, advanced mathematics lectures are not
strictly formal affairs in which mathematicians present rigorous proofs of theorems.
Instead, mathematicians attempt to convey informal content that mathematics edu-
cators value, such as providing examples of concepts (e.g., Fukawa-Connelly &
Newton, 2014; Mills, 2014), informal representations of concepts, and heuristics for
writing proofs (e.g., Fukawa-Connelly et al., 2017). Third, mathematicians are able



to provide sensible and nuanced rationales for their pedagogical decisions. This
finding is supported both by studies in which mathematicians are asked to discuss
specific pedagogical actions they take in their lectures (e.g., Lew et al., 2016; Pinto,
2019; Weber, 2004) and are interviewed more generally about their teaching (e.g.,
Nardi, 2008). Fourth, there are typically limited opportunities for students to con-
tribute mathematical ideas or engage in authentic mathematical practices during
lectures. Paoletti et al. (2018) found that although mathematicians frequently ask
questions during their lectures, the questions usually ask students to recall a specific
fact or to state the next step in the proof and students are usually provided less than
5 s of wait time to provide an answer even for questions asking for more. Students
are rarely given the opportunity to engage in practices like conjecturing or defining
during a lecture.
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Finally, students learn less than mathematicians and mathematics educators
would like in their lecture-based advanced mathematics classes. Students typically
emerge from these classes with an impoverished understanding of core mathematics
concepts (e.g., Dubinsky et al., 1994; see Rasmussen & Wawro, 2017 for a recent
review) and an inability to write proofs (e.g., Mejía-Ramos & Weber, 2019; see
Stylianides, Stylianides, & Weber, 2017 for a recent review), which are amongst the
primary learning goals of these courses.

8.2.3 The Inadequacy of a Transmission Model of Learning

While mathematics educators have developed a solid understanding of how and why
mathematicians lecture in advanced mathematics and amassed extensive evidence
that students fail to learn what their instructors desire from their lectures, much less is
known about how students interpret lectures and why students fail to learn the
desired content in these environments (Melhuish et al., 2022).

Some mathematics educators believe lectures are undergirded by a transmission
model of teaching and learning (e.g., Jaworski et al., 2017). According to this
pedagogical model, learning occurs via the following progression: First, the lecturer
thinks carefully about what content she would like the students to learn and what
understandings she would like the students to possess; she then articulates the
content in a clear and engaging manner in her class meetings. If the lecturer is
effective, the students will interpret the content as intended and thereby acquire the
desired understandings.

Some mathematics educators (ourselves included) have claimed lectures do not
work in advanced mathematics because the transmission model is not viable. For
instance, Leron and Dubinsky (1995) declared “the teaching of abstract algebra is a
disaster” (p. 217) due to the prevalence of lecturing. According to Leron and
Dubinsky, lecturing is bound to fail because “telling students about mathematical
processes, objects, and relations is not sufficient to induce meaningful learning
(hence the sorry state of affairs even with the best of lecturers)” (p. 241).
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Our own published accounts of why lectures fail also implicitly blame the
inadequacy of a transmission model. For instance, in Lew et al. (2016), we examined
a particular lecture by a professor, Dr. A. We interviewed Dr. A about what
mathematical content he hoped to convey and six students about what they learned
from that lecture. By exposing the mismatch between what Dr. A was saying and
what the students heard, we believed we were exposing the limitations of lectures.1

Mathematics educators widely reject a transmission model of learning for teach-
ing students complex mathematical content. However, mathematicians also reject a
transmission model. Consider Wu’s (1999) remarks on his defense of lecturing:

Learning mathematics is a long and arduous process, and no matter how one defines
‘learning’, it is not possible to learn all the required material of any mathematics course in
45 hours of discussion. To make any kind of teaching possible, professors and students must
enter into a contract . . . the professor gives an outline of what and how much students should
learn, and students do the work on their own outside of the 45 hours of class meetings.
Lecturing is one way to implement this contract. It is an efficient way for the professor to
dictate the pace and convey his vision to the students, on the condition that students would
do their share of groping and staggering towards the goal on their own. It should be clear that
without this understanding, lectures would be of no value whatsoever to the students.

Based on this passage, if Wu read Leron and Dubinsky’s (1995) claim that telling
students about mathematics is not sufficient to induce learning, he would surely
agree. However, to Wu, this does not imply that lecture is not a viable mode of
instruction. Rather, the lecture is one valuable resource for helping students come to
understand the material, but attending lectures alone is insufficient for learning.
Wu’s viewpoint seems to be shared by most mathematicians. For instance, Weber
(2012) interviewed nine mathematicians about why they presented proofs in the
classroom. He found mathematicians expected students to spend a substantial
amount of time studying the proofs outside of class. More broadly, Fukawa-
Connelly et al. (2016) found through a survey that even though most mathematicians
believed lecturing was the best way to teach, most mathematicians also believed
students learned best when they did work in addition to attending lectures.

In summary, both mathematics educators and mathematicians believe lecture
alone is inadequate for students to learn mathematics. Students need to struggle
with the mathematical content if they are to develop appropriate understandings.
There are certainly practices students might engage in during lectures that would
support learning, such as taking notes (c.f. Fukawa-Connelly et al., 2017; Iannone &
Miller, 2019) and thinking about the content (e.g., Mueller & Oppenheimer, 2014).
These during-lecture practices might be thought of as supporting the outside-of-class
struggle with ideas of mathematics Wu sees as central to the pedagogical construct of
lectures. At the same time, there is strong evidence that students are not learning the
content of lectures. Wu (1999) attributes this failure to students not honoring the
didactic contract. We have a more generous account for students: maybe they do not
know how to honor the contract.

1See Krupnik et al. (2018) for a similar study undergirded by a similar methodological logic.
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8.2.4 The Importance of Modeling During Lectures

When mathematicians lecture, they are not only doing so to convey mathematical
content. They are also modeling how students can successfully do mathematics is a
primary reason that they choose to lecture. Consider one mathematician’s comment
below:

I do believe that modeling is really important. That is, the instructor should be doing what the
students are going to be expected to do. And modeling that in real time rather than relying on
a text to be the model of ‘this is how you write the math, this is how you actually write the
mathematics, I’m just gonna give you the big pictures and here’s how you actually do the
details’. That modeling, thinking about the details in real time is important. So I think that is
a good thing about the old-fashioned way that we work (Woods & Weber, 2020, p. 7, italics
are our emphasis).

This passage illustrates the importance that mathematicians ascribe to modeling
during lectures. We use it to highlight three other key points. First, this mathema-
tician expects students to continue working on the mathematics that was presented in
the lecture outside of class—the mathematician gives the big picture and the students
“do the details” at a later time. Second, mathematicians claim that the purpose of
modeling is to illustrate how students should actually do the details and, more
generally, to make clear what students are expected to do (although the extent that
this is done and how students perceive this modeling are open research questions).
Third, following Pinto (2019), we view the modeling described above as achieving a
meta-level learning goal in which students are taught how to fill in the details
missing from lectures. We might say this mathematician wants to make explicit
the didactic contract Wu (1999) described. Our claim is that mathematicians model
productive practices students might use to develop some types of understanding of
content, not that the practices are sufficient for developing complete understanding.

In summary, we conjecture that mathematicians are not only modeling how to do
mathematics; they are modeling how students are supposed to learn from lectures.
Moreover, mathematicians are modeling the types of activities they want students to
engage in outside of class. To learn from lectures then would involve students
apprehending and adopting the modeled behaviors. By our definition, “learning
from lectures” means students are able to interact with the lectures in such a way
that, by engaging in the modeled practices, students should both develop better
content understandings and be able to more effectively learn from future lectures.

8.2.5 Goals of This Chapter

In this chapter, we analyze how mathematicians present concepts and definitions in
their lectures, focusing on how they model the process of coming to understand these
concepts and definitions. The purpose of this analysis is threefold. First, we illustrate
how mathematicians are modeling how to learn mathematics. Second, we use these



mathematicians’ comments to form initial speculations on the mathematical practice
of learning from lectures. Finally, we use the insights that we gained from our
analysis to pose open questions and propose new research directions.
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8.3 Data and Analysis

8.3.1 A Data Corpus of Lectures in Advanced Mathematics

The individual lectures we discuss in this chapter come from a corpus of data we
used to analyze the types of mathematical content that mathematicians convey in
lectures. A detailed account of the data collection is provided in Fukawa-Connelly
et al. (2017); a brief summary of the procedure is provided here.

The data came from eleven 80-min lectures we observed at three large PhD
granting universities in the northeastern United States. These courses were all
proof-oriented university courses intended for third-year and fourth-year mathemat-
ics students from a variety of mathematical subjects, such as real analysis, abstract
algebra, linear algebra, geometry, number theory, and set theory. There were
between 7 and 25 students attending each lecture with an average of about 17 stu-
dents per lecture. Each lecturer allowed a member of our research team to audio-
record the lecture. A member of our research team also used a Smart Pen to
transcribe everything the lecturer wrote on the blackboard. We then created a
verbatim transcription of the audio and coordinated it with the board transcription
to create a final transcript that included both.

In previous reports, we analyzed the types of formal and informal mathematical
content that mathematicians conveyed in their lectures (Fukawa-Connelly et al.,
2017), what types of teacher questioning were used (Paoletti et al., 2018), and what
metaphors were used (Olsen et al., 2020). In this chapter, and other papers, we
identify the lecturers as L#. The numbering scheme is consistent across the
published work.

8.3.2 Analysis

The analysis in this chapter is qualitative and interpretive. The purpose of this
analysis is exploratory and generative. We will present episodes illustrating the
ways lecturers modeled the practice of learning definitions and we will use these
to generate research questions and directions for future research in the conclusion of
the chapter.

To find the episodes, we looked in our corpus of lectures for instances of
mathematicians informing students what they should be doing outside of class
when they encounter a new definition. To seek out these instances, we identified
cases where the lecturer expressed words or phrases indicating a duty or



responsibility, such as “need”, “should”, “have to”, and “obligation”. We then
interpreted whether the text surrounding these words or phrases indicated things
students ought to be doing when they encountered a definition.

170 K. Lew et al.

We believe if students noticed and followed their lecturer’s counsel, they would
indeed be learning mathematics. We speculate that if the students engaged in the
practices emphasized by their lecturers, they would develop a better understanding
of the definitions being presented. More importantly, they would be better prepared
to respond productively to future lectures they attended. Overall, they would be
(developing the mathematical practice of) learning from lectures.

The next section reports some of the responsibilities students had in learning
mathematics, according to the mathematicians we observed. Although there were
also episodes about understanding propositions and proving, we have chosen to
focus on the learning of definition because they allow us to illustrate the phenomena
of interest. We do not claim these are representative of all mathematics lectures, or
even the other lectures in our corpus. Rather, they allow us to illustrate and analyze
how some professors model how students might learn definitions.

8.4 Results

8.4.1 When Learning a Definition, One Should Justify Why
the Definition Has Desirable Attributes

The first lecture we consider is L1’s lecture on set theory, in which he set the stage
for presenting the definition of the cardinality of a set. Early in the lecture, he clearly
states the goal of what he will discuss:

[1] So what I want to discuss here is not so much the definition but as the desire to have a
definition which will come later.

[2] So what we want, alright, let’s put it like this.
[3] The relation of equinumerosity is defined using bijections but we want it to mean, we

know what we want it to mean.
[4] We want it to mean that A and B have the same size.
[5] So ideally we would like to say what do we mean by the size and then just define this

as saying it’s the same.

In the next lines he noted they will replace the term size with cardinality and claimed
they would not define how to assign a cardinality in this class. There are several
noteworthy comments in this passage. In [1], L1 is quite clear that his learning goal is
not to present a definition, but the desire to have a definition. In [4] and [5], L1 states
the broad goal that the definition should satisfy: “we would like to say what do we
mean by size”. L1 is not setting expectations on how students should learn mathe-
matics, but implicitly suggests some epistemological views on what should be
learned and how mathematics is done. According to L1, mathematicians create
definitions to capture important intuitive notions.
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Later, in his presentation of the definition of addition of cardinal numbers, L1
models the mathematical practice of learning definitions by considering the purposes
of various aspects of the definitions and verifying they are accomplished. We present
an extended segment of transcript to illustrate this point:

[6] Alright so this is definition 18.6.
Board text: Def. 18.6: κ + λ = card (κ λ)

Where card(κ) = k, card(λ) = l
And κ λ = ∅.

Well-defined: If κ κ′ and λ λ′, where κ λ = ∅ and κ′ λ′ = ∅ ,
then, κ λ κ′ λ′

[7] And it’s a definition of kappa plus lambda.
[8] And as usual, there will be something to prove in order to justify the definition.
[9] So all these definitions will go something like this.
[10] Kappa is the cardinality of some set, let’s say K. Lambda is the cardinality of some

set, let’s say L.
[11] What shall we do to K and to L to get kappa plus lambda?

The key passage of text we wish to highlight here is [8]. After presenting the
definition, L1 notes that “as usual, there will be something to prove in order to
justify the definition.”2 We interpret this as L1 conveying two expectations. The first
is that definitions need to be justified. The second is that this might be done by
proving something or exploring whether it adequately captures an intuitive concept.
The “as usual” may also have been L1 referring to the fact that he usually performed
such justifications in his lectures. We did not have access to L1’s prior or subsequent
lectures, so we cannot determine if this is what L1 meant. If he did have this
interpretation, this would still corroborate our point that this is a common
expectation.

L1 immediately continued:

[12] And you think something like union.
[13] Yeah. So union [inaudible].
[14] So then there is something to think about as a result.
[15] So I’ll start out as if I’m being extremely careless.
[16] Kappa plus lambda is defined as the cardinality of K union L where, you know,

I have to write all this stuff down.
[17] This is basically the rules of the game at this point. [writes κ + λ = card (κ [ λ),

where card(κ) = k, card(λ) = l, and κ λ = ∅]
[18] I actually have two small obligations at this point to prove that we’re actually

making any sense at all.
[19] I guess the obvious obligation is this. I mean, why are we doing this.
[20] If they weren’t disjoint, we could get different answers, depending on how many

[inaudible] were together.
[21] So what we have to prove is that now that we decided that they should be disjoint,

the answer no longer depends on anything.
[22] So what we need to know is, what we need to know is if we make this computation

twice using K and L and then K’ and L’ also disjoint, we will get the same answer.

2In this passage, and throughout this section, italics will always be our emphasis.
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[23] And there’s something else we need to check, which is probably different, you can
probably think of it.

[24] But in any case, the thing that we obviously need to check is this, so I’ll start
with that.

For our purposes, the key lines in this transcript occur in [18] and [19]. L1 refers to
obligations one has when introducing definitions referring to representatives of
equivalence classes. We interpret L1’s word choice as identifying the need for
himself as a learner (and possibly producer) of mathematics to verify the definition
captures its intended purpose. As L1 views the intended purpose of cardinality is to
capture the notion of the size of sets (see lines [4] and [5] of the transcript presented
earlier) and the definition of adding cardinals κ and λ makes reference to sets of size
κ and λ, it should not matter which representatives of size κ and λ are chosen. L1
summarizes this idea succinctly in [22], essentially explaining what it means for the
operation of cardinal addition to be well-defined in this context. Finally, in [24], L1
again expresses the notion of obligation: “the thing that we obviously need to check
is this”.

A few minutes later, L1 focuses the discussion on the other obligation that he
referenced in [23]:

[25] What was the other thing that I didn’t pay attention to?
[26] Well, it’s kind of silly but in order for this definition to have any meaning at all, I

need to verify the following small claim.
[27] When I have two cardinals that I can [with emphasis] take two representatives that

are disjoint.
[28] In order to do this, I have to take the two sets and if they’re not disjoint, I have to

replace them with two sets that are disjoint.
[. . .]
[29] Given a kappa, lambda, there are, I would call them representatives K, L with, I

mean I was taking this for granted a second ago and it’s one of those things that seems kind
of obvious.

[30] And it is.
[31] But you have to think of some definite way of explaining it.

In this passage, we again see L1 emphasizing the need to verify the definition is
accomplishing its goal. In [25], L1 says “in order for the definition to have any
meaning at all I need to verify the following small claim”. The point here is subtle.
As expressed in [27] and [28], if the definition of cardinal addition is based on
choosing arbitrary representative disjoint sets of given cardinalities, one needs to
check that such disjoint sets exist (otherwise the operation would not be defined for
certain cardinals). Although it might seem obvious this can be done ([28, 29]), L1
again expresses an obligation in [30]: “You have to think of some definite way of
explaining it”. We note the subject is “you”, which may suggest a shared obligation
in which students must take responsibility.

In summary, we view L1 as modeling how students should learn a mathematical
definition. When a definition is offered, they have the obligation of showing how the
definition captures its intended meaning, which usually involves proving the defini-
tion satisfies some desirable properties. That proofs can serve this purpose has been
noted in the mathematics education research literature (see Weber’s, 2002, proofs



that justify the use of definitions and more generally, deVillier’s, 1990, proofs that
systematize theories). We interpret L1’s work as extending these notions to convey
that a learner of mathematics has the obligation to seek out or produce such proofs.
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8.4.2 When a New Definition Is Proposed, One Should
Actively Explore the Definition

The next lecture we consider is a geometry lecture by L7, in which L7 introduces a
formal definition of dilation. Like L1’s treatment of cardinality, L7 begins with some
introductory remarks about what to expect from her definition before introducing it:

[1] What do we need in order to define a dilation?
[2] The scale, a proportion, the constant of proportionality and what else?
[3] You’re probably not thinking of what else because you’re always used to thinking of

dilations from the origin, but it doesn’t have to be from the origin, right?
[4] You could dilate from any point. So, we need a center of our dilation and we need

some constant of proportionality.

Like L1, we see L7 emphasizing obligations. The obligations that L7 describes are
different from the ones L1 presents, in the sense that L7’s obligations refer to what
needs to be contained in a definition, rather than what a lecturer or a student needs to
do to justify that a definition is good. In [1] and [2], L7 says that to define a dilation,
“we need. . . the scale, a proportion, [and] the constant of proportionality” and in [4],
“we need a center of our dilation”. Rather than offering a completed definition at the
outset, we believe L7 is highlighting to her students a definition must offer a
complete description of a concept. We suggest this has the following corollary:
When students encounter a new concept, they should consider what properties the
definition needs to include to capture the intuitive sense of the concept and to be a
complete description.

L7 then offers the formal definition: “Let O be a fixed point and K be a real
number. The homothety (or dilation) HO, K maps O to O and any other point P to a
point P′ such that O, P, P′ are collinear and OP’ = K(OP)”.3 Next, L7 asks and
sometimes answers a sequence of rhetorical questions about the presented definition:

[5] So here’s my center of dilation, O, I have some point P.
[6] Where does the image of P go? What do I know about it?
[7] Ah. It might get closer to O, it might get further from O, but in general it must be on

the same line, right?
[8] Such that O, P, and P’ must be co-linear, and what’s the connection between OP and

OP’? It’s exactly that K.

3Here, we include the verbatim definition provided and wonder if K should be a positive real
number.



We interpret the second sentence in [8] to indicate that the length of OP and OP’ are
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different by a factor of K. We interpret the rhetorical questions expressed in [6] as
modeling the natural questions one might ask to understand the definition of a
particular mapping, and could be generalized to a heuristic of ‘ensure you understand
what the parts of the definition mean’. If so, we might view these as the types of
questions students should ask when presented with a concept.

Immediately following this discussion, L7 has the students draw sketches to
investigate the impact the value of K has on the dilation:

[9] So now I would like us to do some sketches.
[10] I almost brought in rulers and I must say after this fiasco I’m really sorry I didn’t

bring in rulers, however what we’re drawing right now it’s not quite this complicated.
[11] So there’s some cases to think about here.
[12] This isn’t really enough yet to get some sense of how they work.
[13] What are our cases that we should think about?
[14] What are gonna be some key differences? Different kinds of problems? Is every

dilation the same? No, it depends a lot on. . .? [A student says “K”]
[15] K, right? Ok, so how can they be different? How does K make them different?
[16] What are some really different, so obviously, every K is a different dilation, but what

are some really important cases to think about?

In her launch of the sketching task, in [12], L7 motivates the activity indicating the
definition itself “isn’t really enough yet to get some sense of how they work.” This
conveys the expectation that understanding a definition involves making sense of
how the ideas work. L7 then asks a series of rhetorical questions in [13–16]. Note in
[13], L7 expresses one of these rhetorical questions in terms of an obligation: “What
are our cases that we should think about?” In asking these rhetorical questions, we
interpret L7 as modeling mathematical behaviors on two levels. At the broadest
level, she is modeling for her students how questions can be used to make sense of
the definitions they encounter. Second, she is suggesting, in a situation like this, they
should consider paradigmatic cases and she is asking students to think about what
makes a case paradigmatic. At this point (and at multiple points during the rest of the
lecture), L7 laments her decision to not bring rulers to aid her students’ drawing. We
believe this suggests the importance to L7 that her students engage in developing this
example space of dilations with varying K values (although we concede this is
speculative). The class spends 6 min with the students drawing sketches and
discussing the sketches before L7 leads the class discussion to question what is
invariant under a dilation.

Based on these interactions, we believe L7 is modeling how to make sense of
definitions to her students. It is clear she wants her students to engage in example
generation to help them gain a better conceptual understanding of the definition. In
the mathematics education literature, Watson and Mason (2005) and others (e.g.,
Fukawa-Connelly & Newton, 2014) have advocated for students engaging in exem-
plifying to understand new concepts better. We see L7 as encouraging students to do
this in various ways, such as by asking them “what are the cases we should think
about” and having them generate examples of those cases during lectures. Like L1,
L7 is not only teaching about the specific concept of dilations, but also preparing
students to productively respond to other definitions they will encounter.
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8.4.3 When a New Definition Is Provided, One Should
Exemplify this Definition in Many Ways

Our final illustration of a lecturer modeling how to learn is from L8’s abstract algebra
lecture in which the definition of ideals is introduced. As L8 presents and explains
the definition of ideals, she makes a series of declarative statements about her own
activities and makes claims for student behavior. She does not frame example
generation or questioning the possible meanings of terms generally or state that
students should engage in such behaviors when they encounter a new definition.
Hence, while L8 is certainly modeling how she gains an understanding of a defini-
tion, it is unclear as to whether she is setting expectations for how students should
learn outside of class. However, at several points, L8 does explicitly tell students
they should consider definitions on their own time.

After presenting the definition of ideals, L8 presents several examples. The
examples begin with multiples of five (I = (5) = {5k| k 2 ℤ}), the polynomial ring
with multiples of x2 + 1 (I = (x2 + 1) = {f(x)(x2 + 1)| f(x) 2 ℝ[x]}), and the set
containing zero (I = {0}). L8 then says: “We did these yesterday. . . at least that’s
what you guys should have been checking in the recitation, yes?” Later, she goes on
to say:

[1] All right, let me write down an example that’s slightly different.
[2] All right, and maybe, it’s not going to be of critical importance to us, so I’m not going

to write out all of the details for you.
[3] I’m going to tell you some things about this example that will hopefully convince you

that it’s something legitimately different from these others.
[4] Okay, all right?
[5] Life can be deceiving when all of your examples are of a certain type, you think

everything is of that type.
[. . .]
[6] There are a lot more examples in the book and you should read them.
[7] That’s a good idea, it will give you. . . the richer your set of examples, the better you’ll

understand the concept.

There are two noteworthy features of this passage of text we wish to highlight. First,
in [2], L8 says: “I’m not going to write out all of the details for you”. She had
previously told the students they should have been working out the details them-
selves in recitation. Outside of class, the students have the responsibility of working
out the details that are not of “critical importance” during lecture. Second, in [6], L8
conveys a specific obligation: Students should read the examples in the textbook. In
[7], L8 indicates this is a general expectation: “the richer your set of examples, the
better you’ll understand the concept”. This complements her previous warning in
[5] that “life can be deceiving when all of your examples are of a certain type”. Thus,
we see L8 indicating directly that her students should engage in considering,
comparing, and contrasting across examples to help them understand and make
sense of definitions outside of the classroom.

In the literature, Alcock (2004) and others (e.g., Watson & Mason, 2005) have
claimed that students need to see a wide range of examples to understand a concept



properly. Focusing on a narrow range of examples could lead students to
overgeneralize and infer that concepts possess properties that do not generally
hold. We see L8 urging students to read a wide range of examples outside of class
for exactly this purpose.

176 K. Lew et al.

8.4.4 How Should Students Study New Definitions That Are
Presented in Lectures?

The above episodes offer insight into the ways in which mathematicians model how
students should work to understand a definition. This was not always done in the
lectures that we observed, although we cannot speculate as to whether a discussion
of how to learn and make sense of definitions occurred in lectures other than those
observed.

In the following excerpt, L4 provides the definition of a general eigenvector by
writing and reading the definition verbatim, offering no commentary on what to do to
understand it:

Let T be a linear transformation of a finite dimensional vector space. Let there be an LT on an
F (inaudible). And let λ be an eigenvalue of T. Then the generalized eigenvector of T relative
to λ, is a not zero vector not in the null space of T – λ(I) but in the null space of some power of
T – λ(I) for some k greater than 0.

Immediately after completing this definition, he says: “That’s good enough.” Noth-
ing about this introduction of the definition provides evidence of L4 modeling any
particular learning behavior beyond learning the statement of the definition. Follow-
ing the definition, L4 does offer a discussion about the null space of the powers of the
linear transformation versus the null space of the transformation itself; but provides
no further examples or discussion to provide insight into the definition itself or its
various components or conditions.

Eigenvectors are a difficult concept. Most students probably cannot come to
understand eigenvectors by simply copying the definition and unpacking the mean-
ing of each word outside of class. How can the preceding episodes advise students in
this lecture to study this definition outside of class?

First, following L1, students may try to think about what properties the definition
of general eigenvector is trying to capture and verify that such properties are indeed
captured. Second, following L7, students might consider what mathematical objects
needed to be considered in posing the definition and how they were represented in
the definition. Third, following L8, students may want to consider a wide range of
examples of matrices, eigenvalues, and their generalized eigenvectors. We cannot be
sure of L4’s intentions, but if L4 is like Wu (1999), he may have reasoned that he
could not cover a sufficient amount of linear algebra if he modeled all these things in
the lectures (and perhaps especially not if students engaged in these explorations
themselves). The expectation may have been that students work on the material
themselves outside of class.
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8.5 Discussion

In the previous section, we presented episodes that we interpreted as mathematicians
conveying to students how they are expected to work to understand the definitions
they encounter. L1 believed that some definitions were meant to capture certain
intuitive ideas (like size) and that individuals should justify that the definitions
actually capture this intuition. L1 said that this is sometimes accomplished by
writing basic proofs. L7 asked students to consider what features a definition should
have and invited them to explore how a definition works with examples. L8 also
considered examples, stating students should consider a wide range of examples and
that this consideration should occur outside of class. In the beginning of this chapter,
we noted Larsen’s (2017) claim that students can learn some mathematics from
lectures if they know what it means to really do mathematics. We view L1, L7, and
L8 as each explaining some aspect of what it means to do mathematics when they
encounter a new definition.

We use these observations to raise several questions and pose some directions for
research. At the broadest level, how do mathematicians expect students to learn from
lectures? What do mathematicians expect students to do outside of class? Earlier in
this chapter, we citedWu (1999) as saying that lecturing (as well as any other form of
university mathematics instruction) only works if students honor a contract in which
they work hard to understand the content outside of class. Do mathematicians agree
with Wu? If so, what exactly is the nature of this didactic contract that students need
to honor?

We offer two ways of addressing these broad issues. The first is to conduct
interviews and surveys with mathematicians about their expectations of students’
behavior, both inside and outside of lectures. Preliminary work has been conducted;
we know mathematicians agree with Wu that learning mathematics is an arduous
process requiring students to take responsibility in their own learning (e.g., Fukawa-
Connelly et al., 2016; Weber, 2012). However, we know little about the specifics of
what mathematicians expect students to do. An alternative approach is to conduct
studies on how mathematicians learn mathematics by attending lectures in their own
professional practice. As Burton (1999) noted, investigating mathematicians qua
enquirers not only has pedagogical implications, but also can shed light on hidden
aspects of the nature of mathematics as a social enterprise.

Assuming there are (broadly speaking) shared expectations of how students will
study outside of the mathematics classroom, how do mathematicians convey these
expectations to students? We know from interviews that some mathematicians
(claim to) do so via modeling (Woods & Weber, 2020), although we emphasize
we have no good evidence that these findings generalize to the broader population of
mathematicians. We’ve illustrated in this chapter that we can interpret mathemati-
cians as conveying expectations via modeling in their lectures. Is this method of
teaching typical? What are some other things that mathematicians might do?

Our final topic of discussion concerns why lecturing in advanced mathematics
seems to be ineffective. As we noted earlier, a robust finding from tertiary



mathematics education research is that students emerge from their advanced math-
ematics courses with impoverished understanding and limited ability to engage in
core mathematical competencies. Why is this the case? We’ve noted that mathemat-
ics educators have argued that teaching by telling does not work because of
limitations of the transmission model of pedagogy, but we countered that this was
not mathematicians’ rationale for lecturing. Is it possible for students to learn from
lectures if they knew what to do? Even though Larsen (2017) does not endorse
teaching primarily by lecture, he suggested well-prepared students can learn from
lectures, based on his personal anecdotal experience.
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We can use our episode with L4 to contextualize our broader interests. L4 simply
presented the definition of eigenvectors. How would his students study that defini-
tion outside of class? If L7 or L8 had simply presented a definition as L4 did, would
their students (know to) consider the types of examples that L7 and L8 implored
students to do in the episodes we highlighted? More generally, if students are not
doing the right things outside of class, why aren’t they? Would students interpret the
episodes we presented in this chapter in the same way we did? Or would they not see
the mathematicians as describing their responsibilities? Is there a way that expecta-
tions could be explained so students might satisfy them? Do students need to
experience in-class active learning if they are to engage in studying mathematics
outside of class in desirable ways?

We end this chapter by considering a performance model that is often used to
make sense of lectures and to debate their viability. Krantz (2015) initially used a
violin metaphor to justify why lecturing was a viable practice, in spite of the poor
learning outcomes associated with it. Imagine you heard two players enter a lecture
hall and butcher a violin performance. Then you heard a third violin player enter the
lecture hall and provide a marvelous performance. Would you conclude the violin is
a terrible instrument because it frequently leads to poor performances? Or would you
conclude the violin can be a magnificent instrument in the right hands? Presumably
the latter. Krantz argued we should view lecturing similarly. Lectures often are not
successful, but this should be viewed as an indication of poor lecturers, not a poor
pedagogical method. In a critique of Krantz’s argument, Larsen (2017) again used a
violin metaphor. Larsen asks whether we could ever hope to play the violin compe-
tently simply by listening to masterful performances in a lecture hall. Presumably
not. But then, Larsen asks, how can we expect our students to be competent at doing
mathematics simply by watching mathematicians give virtuoso performances?

We conclude by suggesting a third violin analogy. What if mathematicians are not
the violinists intending to give a concert performance, but are instead the music
teachers who are showing students how to practice? What if mathematicians are not
playing the great songs but playing practice scales? Of course, there is no guarantee
that one can prepare a competent violinist only by showing her how to play the violin
when she only does so outside of class, just as there is no guarantee we can prepare a
competent mathematician by exemplifying how she should learn mathematics out-
side of class. But if we are going to understand why lectures fail or speculate on how
they might succeed, this might be the right metaphor to use.
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Chapter 9
Supporting Students in Developing
Adequate Concept Images and Definitions
at University: The Case of the Convergence
of Sequences

Laura Ostsieker and Rolf Biehler

Abstract This chapter presents a learning environment in which students are guided
to reinvent the definition of convergence of a sequence. This learning environment
consists of a set of examples and non-examples of convergent sequences, a task, and
expected obstacles with prepared supports for each expected obstacle. The learning
environment was developed in the Design-Based Research paradigm, conducted
twice, and analyzed and refined each time. In this chapter, we focus our analysis on
the changes, especially to the task, that were made based on the results of the first
two implementations.

Keywords Convergence of sequences · Reinvention of definitions · Learning
Environment · Design Research

9.1 Introduction and Overview

The purpose of this chapter is twofold, first, explore the difficulties students face in
reinventing the definition of the convergence of sequences. Second, to develop a
learning environment (“workshop”) that supports students in overcoming these
difficulties. The learning environment for reinventing the definition of sequence
convergence was a workshop developed for the target group of mathematics students
in a proof-oriented Analysis 1 course at a German university, comparable to Real
Analysis courses in other countries. This workshop was an optional add-on course
offered before the concept of convergence was covered in the associated lecture. The
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aspects presented in this chapter are part of a broader study (Ostsieker, 2020) done in
the design-based-research paradigm (Gravemeijer & Cobb, 2006). The research
study was carried out in three different, cyclically repeating phases. In the experi-
ment’s preparation phase, especially the learners’ starting points, the design of the
activities, the targeted endpoints, and theories about the learning processes are
formulated in the form of a Hypothetical Learning Trajectory (Bakker & van
Eerde, 2015). After the experiment was conducted, a retrospective analysis followed.
Based on in-depth analyses of transcripts of student discussions during the work-
shops, both the learning environment and the local theory of how students learn the
limit concept was revised.
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In this chapter, we will report on how the workshop’s design and, in particular,
the task that asks students to reinvent the concept of limit changed in the successive
cycles of the study.

9.2 Theoretical Background and Literature Review

Tall and Vinner (1981) introduced the terms concept image and concept definition to
deal with mathematical concepts. Under the notion of concept image, they summa-
rize the entire cognitive structure of an individual to a concept. In contrast, they use
the term concept definition for an individual’s definition for a concept. This personal
definition may differ from the generally accepted definition. Suppose learners – as is
often the case with the limit concept – already have some ideas about a concept and
later learn a formal definition. In that case, there are three possible implications for
the concept image and concept definition. First, it would be desirable that the
concept image is adapted coherently to the new concept definition. However, it
can also happen that the concept image remains unchanged and co-exists with the
formal concept definition for some time. Both conceptions can be activated in
problem-solving. Furthermore, the concept image and concept definition may
remain unchanged despite having seen the formal definition.

The role of definitions changes significantly with students’ transition from school
to college (Engelbrecht, 2010). Zaslavsky and Shir (2005), in a study with twelfth
graders, found that students have different views about what property a mathematical
definition must satisfy. For example, there was disagreement about whether a
definition may contain superfluous conditions and whether there can be multiple
definitions for a term. Since it is rarely made explicit to learners what functions and
properties mathematical definitions have, the differing views are not surprising.
Edwards and Ward (2004) suggest that the notion of a definition should be explicitly
addressed at some point. In one study, they had students complete tasks in which the
use of a definition would have been adequate. Although they had the written
definition available when they worked on the task, they did not necessarily use
it. It happens that they work on such tasks solely based on their concept image.
Edwards and Ward believe it is helpful for students to participate in the process of



defining. It was an open question for us to which extent, and when, metaknowledge
about mathematical definitions is needed in the process of defining.
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The learning environment presented here has a two-fold challenge: developing a
concept image of convergence coherent with the usual formal definition and devel-
oping a personal concept definition equivalent to the standard formal definition.
First, typical misconceptions about sequence convergence should be actively over-
come by starting with a broad set of examples, including some that are – based on
misconceptions – not considered as convergent. For example, a limited conception is
that the distance of the sequence elements to the limit must be strictly monotonically
decreasing when convergent (Roh, 2005). Moreover, (strictly) monotone convergent
sequences are often viewed as prototypical of convergent sequences (Alcock &
Simpson, 2004; Cornu, 1991; Davis & Vinner, 1986; Robert, 1982). Another
misconception is that no sequence element may be equal to the limit of the sequence
(Davis & Vinner, 1986; Roh, 2005; Szydlik, 2000, Tall & Schwarzenberger, 1978;
Williams, 1991). This misconception can be distinguished from the misconception
that the limit is an upper or lower bound that may not be passed (Cornu, 1991; Davis
& Vinner, 1986; Robert, 1982; Szydlik, 2000).

Roh (2005, 2007, 2008, 2009, 2010a, b; Roh & Lee, 2011, 2017) has investigated
the connection between the intuitive understanding of the limit concept and the level
of so-called reverse thinking in several studies with different target groups. For
example, suppose the convergence of a sequence against a value with the ε- N-
definition is to be proven. In that case, a suitable index N must be chosen for an
arbitrary but fixed ε so that from this index on all further sequence elements deviate
from the value by less than ε. However, students often proceed intuitively in a
different way:

students typically first choose an index number, and next determine how close the term
corresponding to the index is to a certain value (Roh, 2005, p. 7)

Students would have to proceed in a reverse way compared to this intuitive
approach, which Roh refers to as reverse thinking in the context of the limit of a
sequence:

reversibility in the context of the limit of a sequence (. . .) means the ability to think of the
infinite process in defining the limit in terms of the index and simultaneously to reverse the
process by finding an appropriate index in terms of an arbitrarily chosen error bound. (Roh,
2005, p. 20)

To encourage this reverse thinking in the context of the concept of limit, she has
proposed an ε-strip activity (Roh, 2010c). Students work with transparent strips of
different widths in this activity, with the center marked by a horizontal line. This line
was placed at the potential limit in graphical representations of different sequences.
The students were asked to answer how many sequence members were inside and
outside the ε-strips, respectively. From this, it could be discovered that all but finitely
many sequence members are within each strip for convergent sequences. Thus, the
goal for students was to understand the relationship between ε and N in the formal
definition.
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Przenioslo (2005) has proposed a series of lessons to introduce the notion of
convergence in school to counteract the various restricted conceptions. The main
task consists of presenting students with eleven different sequences convergent to
1 and one sequence with two cluster points at 1 and 2 (named bn) and asking the
students:

What common property not shared by the sequence (bn), do the infinite sequences (an)
mentioned below have? (Przenioslo, 2005, p. 76)

She speaks of infinitely many sequences because the defining equation of one of the
sequences contains a parameter. She has carefully selected the example sequences.
For each of the typically restricted conceptions, there are some sequences that would
be considered non-convergent if the particularly restricted conception would be
applied. In addition, the author has developed several “fictitious discussions” that
can be used at various stages of the reinvention process to focus learners’ attention
on particular aspects. Przenioslo reports she has successfully implemented this series
of lessons several times but has not followed up with an empirical study.

In our study, we used her general approach, most of the examples, and some of
the fictitious discussions as a starting point of our research and development project.
The individual elements adopted and the modifications in the first and the subse-
quent cycles will be discussed in the presentation of the design of the learning
environment.

An empirical study of the guided reinvention of the notion of sequence conver-
gence was carried out by Oehrtman and colleagues (Oehrtman et al., 2011, 2014). At
the beginning of the teaching experiment, the observed pairs of students were asked
to collect as many different examples as possible of sequences that have and do not
have the limit 5, respectively. Afterward, students were asked to complete the
sentence “a sequence converges to 5 as n → 1provided. . .” (Oehrtman et al.,
2011, p. 328) so that the statement was true for all examples and not true for all
non-examples. A cyclical process followed in which students proposed formulations
of the definition, discussed it, and revised it as necessary. Two teachers were present
and assisted them in this process by asking specific questions. They evaluated the
reinvention process as helpful for the students and showed that the self-generated
ideas are retained in the long term based on a study conducted with the same students
6 months later (Martin et al., 2012).

Other publications have addressed the guided reinvention of other concepts such
as convergence of functions, series, and pointwise convergence (Martin et al., 2011;
Swinyard, 2008, 2011; Swinyard & Larsen, 2012).

The study was part of the Ph.D. project of the first author, supervised by the
second author (Ostsieker, 2020). Schüler-Meyer (2018, 2020), whose study was
published after finishing the Ph.D. project, also addresses the convergence of series
on the object level of convergence and on the meta-level of defining with a different
theoretical approach in the context of supporting secondary students.

Concerning the role of definitions in tertiary mathematics, the learning environ-
ment we describe is limited because it ends with formulating a definition. However,
the role of definitions in proving and creating a deductively organized mathematical
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theory is essential in tertiary mathematics education, and activities have to be
designed to highlight this role (see Pinto & Tall, 1999). Sierpinska (2000) also
emphasizes this aspect under the role of theoretical thinking with concepts. In
Ostsieker (2020), a second learning environment was developed addressing these
aspects after the formal definition, and some theorems concerning convergence had
been introduced in the lecture. We will not report on this “follow-up” learning
environment in this chapter.

9.3 Research Questions

What difficulties arise for students when they are asked to reinvent the notion of
convergence of sequences in a form commonly used in university mathematics?

How can overcoming these difficulties be supported through an adequate learning
environment?

9.4 Context of the Study

A non-compulsory 4-h workshop for students of an Analysis 1 course that should
support them in constructing the formal definition of convergence of a sequence in
an attempt of guided reinvention. The workshop was held some weeks after starting
the Analysis 1 course, just before the lecture introduced the formal definition. It was
offered in two cycles to all students of the course. We took a random selection from
the volunteers to create a non-biased control group. The results of a quantitative
study comparing participants with non-participants are reported in Ostsieker (2020).
In the first round, 16 students participated; in the second round, 12 students. After the
workshop, the notion of convergence was introduced in the lecture, and a second
workshop was offered to deepen the conceptual knowledge of the participating
students. This second workshop is not part of the discussion in this chapter.

9.5 The Design of the Initial Learning Environment

The study builds on work by Roh (Roh, 2010a, b; Roh & Lee, 2017) and Oehrtman
(Oehrtman et al., 2011, 2014). However, the main idea was to empirically test and
adapt the theoretical approach of Przenioslo (2005).

Her idea was to present the students a set of examples and non-examples of series
being convergent to 1 and asks that are called to be “convergent” and others that are
called non-convergent and ask the students to construct a definition of “conver-
gence” where the examples are examples of, respectively non-examples are not. The
students are supported by referring to “fictitious discussions” between fictitious



students when they got stuck. The set of examples was chosen to avoid an inade-
quate concept image from the beginning and base the definition on this set.

Our learning environment has three components:
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1. The set of examples and non-examples and its anticipated use
2. The task formulation
3. Anticipated obstacles: The prepared prompts when students got stuck (including

fictitious discussions and visualizations)
4. Spontaneous teacher interventions if needed

9.5.1 The Set of Examples and Non-examples and Its
Anticipated Use

The initial set of examples and non-examples is shown in Fig. 9.1. The sequence (an)
is the prototype of a monotonically convergent sequence that never reaches its limit.
The sequences (bn) and (cn) stand for sequences that reach their limit after some n
and are “finally constant.” Whereas (bn) is monotone, (cn) is not. (dn) is convergent
but not monotonic. The sequence (en) is a well-known case where many students
have misconceptions. Still, it is crucial to learn that the limit of this sequence is also
1, ( fn) has an “exception” of the rule at n = 10 and stands for alternating sequences.
The sequence (xn) is an example of a sequence with two accumulation points. The
sequences (bn), (cn), and ( fn) stand for sequences with “exception” at a finite number
of points (which should be regarded as irrelevant for convergence). (dn) and (xn)
stand for sequences with an infinite number of “exceptions,” which can matter.

Fig. 9.1 The set of
sequences (an). . . ( fn) are
examples for the concept to
be defined, (xn) is a
non-example. (Ostsieker,
2020, p. 96; our translation)



Generate examples 
and non-examples

9 Supporting Students in Developing Adequate Concept Images and. . . 187

Fig. 9.2 Iterative Refinement in the process of guided reinvention, figure redrawn similar to
Oertman et al. (2014, p. 135)

In contrast to Przenioslo’s approach, we gave the example sequences different
names to make it easier for the students to talk about them. We also reduced the
number of examples to not overwhelm students by dealing with too many sequences
at once. The sequences (an) to (dn) were taken from Przenioslo, and only the
“exception” at n = 10 was changed in the sequence ( fn). We added the sequence
(en). The unusual presentation of (en) was chosen to avoid additional difficulties due
to the summation sign. The example sequences we have chosen are still very diverse
and cover the various typical restricted conceptions.

All the examples were, in a sense, generic examples, exemplifying a specific type
of sequence. We expect that students will not take the examples too literally. For
instance, we hoped they would recognize that the concrete numbers in (cn) do not
matter, as long as the number of “exceptions” is final.

In the a priori analysis creating a hypothetical learning trajectory – which is an
important first step in frameworks for design research but also in the tradition of
didactical engineering in the French tradition –we formulated the hypothesis that the
students will use the examples in an iterative process of refining their definition
similar to what is shown in the diagram of Oehrtman (Fig. 9.2).

However, we prepared a meta-cognitive prompt directed to checking whether a
preliminary definition holds for all the examples in case students did not use this
meta-cognitive strategy.

9.5.2 The Initial Task Formulation

The formulation of the task (Fig. 9.3) is slightly different from that of Przenioslo.
First, the term “convergent” was deliberately used. Without knowing the formal
definition, students who had met the term before could otherwise have answered that
the common property was convergence to 1, and the task would have been solved in



their eyes. Second, the wording “describe as best as possible” was intended to
convey that merely describing a property is insufficient. At the same time, we
consciously decided against explicitly asking for a definition because we had the
initial hypothesis that this may distract students from starting to focus on the content
level first and refine the formulation of the property later.
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“The sequences … are called convergent to the limit 1; the sequence is not convergent. 
Describe, as best as possible, the property that the sequences share but which the 
sequence does not have.”

Fig. 9.3 Initial task formulation. (Ostsieker, 2020, p. 86; our translation)

9.5.3 Anticipated Obstacles and Prepared Support

From analyzing the hypothetical learning trajectory, we expected five types of
obstacles and prepared support interventions for this. First, we used “fictitious
interactive discussions” between fictitious students that include questions for the
readers instead of just giving hints by the teacher for supporting self-regulated
learning in several parallel groups and empirically testing the fictitious discussions
approach. Moreover, unlike Przenioslo, we identified several clear triggering situa-
tions in which support would be given to the students. Finally, the numbering of the
supports means that the second or third support was only provided when needed
(graduated aids).

Situation Description Support

A Problems with starting 1. “Find a common property for a subset
of examples and check this with the other
examples.”
2. First fictitious discussion, where stu-
dents exemplify the strategy to focus on
a subset first to find a common property,
taken from Przenioslo (2005, p. 80)

B Students stop with a formulation that is
not sufficient

1. The teacher selects an example, which
does not fit the description

C Students formulate the shared property as
a disjunction of several separate proper-
ties that characterize subsets of the
examples.

1. Encourage students to formulate one
property for all examples
2. Second fictitious discussion (from
Przenioslo 2005, p. 81): Idea to focus
mentally on a strip around the limit 1 and
search for n0, so that all further elements
are inside the strip

D The formulated property is too vague, so
that a decision whether the property is
true of one of the sequences or not is not
possible.

1. “Check whether you can get decisions
for all sequences of the task.”
2. Several ε-strips are handed out as
material, and students are encouraged to

(continued)



9 Supporting Students in Developing Adequate Concept Images and. . . 189

Situation Description Support

find a more precise characterization
based on focusing on the distance
between the elements and the limit,
respectively the limit’s neighborhood
(adapted from Roh, 2005, evoking
“reverse thinking”)

E The property is true for all examples and
not true for the non-example, but not
equivalent to the standard definition of
convergence.

1. Students are praised for a correct
solution. Afterward, they are given a
further ad hoc example that does not
fulfill their condition but which is con-
vergent to 1

9.6 Design of the Study, Sample, Collected Data, Methods
of Data Analysis

9.6.1 Instructional Design of the Workshop

After a brief introduction to the task, the participants of the workshop were divided
into small groups. They were then presented with the set of example sequences and
the non-example, as shown above. They were also given graphical representations of
the sequences they were first asked to match. After a brief discussion in the plenary,
the reinvention of the notion of convergence began in small group work. The teacher
acted as a facilitator, observing the groups’ collaborative processes and providing the
prepared aids as needed. The discussions of each small group were audio-recorded,
and in addition, a video recording of the whole classroom was made. The small
group discussions were later retrospectively analyzed. This analysis was done
following methods from interpretive classroom research (Krummheuer & Naujok,
1999). The reconstructed real learning trajectories were compared to the hypothetical
epistemological trajectories formulated in advance.

9.6.2 Iterative Analysis from the Perspective of Design
Research

These three components of the learning environment and how they evolved through-
out the study are discussed in more detail in the results section. As part of the
comprehensive study, the first version of a Hypothetical Learning Trajectory (with
several possible hypothetical reinvention processes) was developed, and the learning
environment was implemented. In the retrospective analysis, the actual reinvention



processes of all observed small groups were reconstructed and compared with the
different variants of the previously formulated hypothetical processes. In particular,
the extent to which the set of examples and non-examples, the task, the triggering
situations, and the supports were helpful and sufficient for the reinvention was
examined. The Hypothetical Learning Trajectory, including these four components,
was revised based on the results. This second version was also carried out, analyzed
and thus, a third version of the Hypothetical Learning Trajectory was developed.
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9.7 Results

9.7.1 Changes in the Set of Examples/Non-examples
and the Anticipated Use

In the second cycle, some notational adaptations (for instance, for (an) were made.
However, the example (en) turned out to be causing difficulties that were not
productive for the concept development. On the other hand, a constant sequence
was not among the examples, but only finally constant sequences, which caused
further difficulties. As the constant sequence is often not part of the concept image of
convergence, it was added as the new sequence (en).

In the second cycle, an unanticipated event occurred. A group of students
characterized convergence as follows: Either an element of the sequence equals
the limit or the distance of the element to the limit is less than the distance of the
previous element to the limit that was identical to the limit. If the students had added
that this distance has to become arbitrarily small, their characterization would be
valid for a real subset of all convergent sequences. However, there are convergent
sequences that do not have this property, such as

gnð Þn2ℕ with gn =
1þ 1

2n
if n isodd

1þ 1
n

if n is even

8

>

<

>

:

Therefore, this example was added to the list of examples. We also discovered that
the anticipated process of iterative refinement of definitions using examples often did
not occur, so we added a suitable recommendation to the task formulation (see
Sect. 9.7.2).



(continued)
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9.7.2 Changes in the Prepared Support for the Second Cycle
Based on Retrospective Analysis of Cycle 1

Situation Description Support (changes in italics)

A Problems with starting 1. “Find a common property for a subset
of examples and check this with the other
examples.”
2. First fictitious discussion about com-
mon properties, a new version from first
cycle discussions

B Students stop with a formulation that is
not sufficient

1. “Check whether your property is true
for all examples and not true for
non-example
2. The teacher selects an example, which
does not fit the description

C1 new Students formulate that elements
“approach 1 or reach 1”

1. “Is this property formulated in a way
to decide whether it is true for any pos-
sible sequence?”
2. Second fictitious discussion about
common properties, a new version from
first cycle discussions

C2 new Students formulate that the distance of
elements to 1 gets small or is 0

1. “Is this property formulated in a way
to decide whether it is true for any pos-
sible sequence?”
2. Third fictitious discussion about com-
mon properties, a new version from first
cycle discussions

C3 Students formulate the shared property as
a disjunction of several separate proper-
ties which characterize subsets of the
examples.

1. Encourage students to formulate one
property for all examples
2. Second fictitious discussion (from
Przenioslo): Idea to focus on a strip
around the limit 1 and search for n0, so
that all further elements are inside the
strip

D1 new Students describe the property as an
approximation to 1.

1. “Is this property formulated in a way
to decide whether it is true for any pos-
sible sequence?”
2. Fourth fictitious discussion about
common properties, new from first cycle
discussions

D2 new The students characterize the property by
the fact that the distance of the sequence
elements to 1 becomes small.

1. “Is this property formulated in a way
to decide whether it is true for any pos-
sible sequence?”
2. Fifth fictitious discussion about com-
mon properties, new from first cycle
discussions
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Situation Description Support (changes in italics)

D3 new Students characterize the property by the
fact that the distance of the elements to
1 becomes arbitrarily small for large n.

1. “Is this property formulated in a way
to decide whether it is true for any pos-
sible sequence?”
2. Sixth fictitious discussion about com-
mon properties, new from first cycle
discussions

D4 The formulated property is too vague, so a
definite decision whether the property is
true of one of the sequences is not
possible.

1. “Check whether you can get definite
decisions for all sequences of the task.”
2. Several ε-strips are handed out as
material, and students are encouraged to
find a more precise characterization
based on focusing on the distance
between the elements and the limit,
respectively the limit’s neighborhood
(adapted from Roh, 2005, evoking
“reversed thinking”)

E The property is true for all examples and
not true for the non-example, but not
equivalent to the standard definition of
convergence.

1. Students are praised for a correct
solution. Afterward, they are given a
further ad hoc example that does not
fulfill their condition but which is con-
vergent to 1

A significant change is that the triggering problem situations were refined based
on the problem situations that occurred in the first cycle. Situations (A) and (E) did
not happen at all in the first cycle, while situations (B), (C), and (D) each occurred in
two of the four groups. In problem situation (B), the support provided worked well
and quickly. On the other hand, the groups spent the most time dealing with problem
situations (C) and (D). To provide more specific support to the students, situation
(C) was broken down into (C1), (C2), and (C3), and (D) was refined into (D1), (D2),
(D3), and (D4).

For example, the following situation occurred in cycle 1:

For n towards infinity, an goes towards a fixed value or is a fixed value.

This situation was taken into account by the new triggering situation C1.
Also, the fictitious discussions on the refined problem situations now begin with a

statement that roughly corresponds to the characterization last formulated by the
students.

Moreover, the fictitious discussions were revised by using excerpts from the
actual discussions from the first cycle. This choice should make the fictitious
discussions more authentic and closer to the language used by the students. Poten-
tially, this could also lead to students finding the discussions more understandable.
This point was a point of criticism with some small groups in the first cycle, as
shown in the following transcript excerpt from a group’s conversation as they were
working through a fictional discussion:



(continued)

462 S: What does she mean?
463 N: Yes, I don’t understand that either, because first, she says you can

disregard some, but then she says we should consider all of them.
464 S: It is somehow illogical.
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9.7.3 Changes in the Prepared Support for the Third Cycle
Based on Retrospective Analysis of Cycle 2

The following revisions of triggering situations and support were created due to the
retrospective analysis of cycle 2.

Situation Description Support (changes in italics)

1.1 (A) Problems with starting 1. “Find a common property for a subset
of examples and check this with the other
examples.”
2. First fictitious discussion about com-
mon properties

1.2 (B) Students stop with a formulation that is
not sufficient

1. “Check whether your property is true
for all examples and not true for
non-example.”
2. Teacher selects example, which does
not fit the description

2.1 (C1) Students formulate that elements are 1 or
“approach 1”

1. “Is this property formulated in a way
to objectively decide and demonstrate
whether it is true for any possible
sequence?”
2. Second fictitious discussion about
common properties
3. “Write down the common property.”

2.2 (C2) Students formulate that the distance of
elements to 1 gets small or is 0

1. “Is this property formulated in a way
to objectively decide and demonstrate
whether it is true for any possible
sequence?”
2. Several ε-strips are handed out with
specific questions
3. Third fictitious discussion about com-
mon properties
4. “Write down the common property.”

2.3 (C3) Students formulate the shared property as
a disjunction of several separate proper-
ties which characterize subsets of the
examples.

1. “Is this property formulated in a way
to objectively decide and demonstrate
whether it is true for any possible
sequence?”
2. Several ε-strips are handed out with
specific questions
3. “Write down the common property.”
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Situation Description Support (changes in italics)

3.1 (D1) Students describe the property as an
approximation to 1.

1. “Is this property formulated in a way
to objectively decide and demonstrate
whether it is true for any possible
sequence?”
2. Several ε-strips are handed out with
specific questions
3. Fourth fictitious discussion about
common properties
4. “Write down the common property.”

3.2 (D2) The students characterize the property by
the fact that the distance of the sequence
elements to 1 becomes small.

1. “Is this property formulated in a way
to objectively decide and demonstrate
whether it is true for any possible
sequence?”
2. Several ε-strips are handed out with
specific questions
3. Fifth fictitious discussion about com-
mon properties
4. “Write down the common property.”

3.3 (D3) Students characterize the property by the
fact that the distance of the elements to
1 becomes arbitrarily small for large n.

1. “Is this property formulated in a way
to objectively decide and demonstrate
whether it is true for any possible
sequence?”
2. Several ε-strips are handed out with
specific questions
3. Sixth fictitious discussion about com-
mon properties
4. “Write down the common property.”

3.4 (D4) The formulated property is too vague, so a
definite decision whether the property is
true of one of the sequences is not
possible.

1. “Is this property formulated in a way
to objectively decide and demonstrate
whether it is true for any possible
sequence?”
2. Several ε-strips are handed out with
specific questions
3. “Write down the common property.”

4.1 new The students have formulated that the
condition should be valid for decreasing
or “infinitely small” epsilon.

1. “How would you prove that a
sequence has the property you
formulated?”

4.2 new The students have formulated that the
condition should hold “from a particular
n onwards” but cannot formalize this.

1. “Does the condition have to be valid
for every strip or epsilon starting from
the same n? Must the condition hold for
every sequence starting from the
same n?” (for becoming aware that the
respective n may depend on epsilon,
i.e. on the strip).

0 (E) The property is true for all examples and
not true for the non-example, but not
equivalent to the standard definition of
convergence.

1. Students are praised for a correct
solution. Afterward, they are given a
further ad hoc example that does not
fulfill their condition but which is con-
vergent to 1



9 Supporting Students in Developing Adequate Concept Images and. . . 195

Reasons for defining new obstacle situations and redesigning the support:
During the retrospective analysis of the second cycle, it was possible to distin-

guish four common phases in the students’ learning trajectories were identified in
which the reinvention process usually takes place:

1. Dealing with the examples and conceptualization of characteristic features
2. Finding a single characterization that applies to all examples
3. Optimizing the formulation so that it is accurate enough that it could be used as a

decision rule
4. Writing down the final characterization in formal mathematical language

The triggering situations were assigned to these phases. In the process, the obstacle
situations were renamed so that it is evident in which stage they are to be expected.
For example, situations (1.1) and (1.2) usually occur in phase 1, and so on. Apart
from this renaming, other changes were made to the obstacle situations and the
associated supports.

A significant change is the prompt “Write down the common property.” which
was added to all triggering situations in phases 2 and 3. In cycle 2, when spontane-
ously made by the tutor, this intervention led to a more precise and formal charac-
terization of the property or definition, so we hypothesize that the request to move
from oral discussion to a written formulation as per se, a significant strategic impact.
Similarly, we constantly changed the formulation to “Is this property formulated in a
way to objectively decide and demonstrate whether it is true for any possible
sequence?” as a new strategic intervention. This change is to stimulate students to
reflect on their formulation from different persons’ points of view and apply it to
fictitious new sequences, which had not been done spontaneously.

One change is that in situations (2.1, 2.2, and 2.3), the impulse is no longer to
express the property by a single condition. This change is because several students
did not consider a formulation by two conditions connected by “or” as a deficiency
and therefore questioned this impulse. Therefore, this requirement had already been
included in the assignment for the third cycle. Secondly, the formulations that led to
a classification in these situations were not precise enough to be used as a decision
rule. Therefore, the first prompt now accurately points this out. When revising the
characterization from this point of view, it was often automatically expressed by a
single condition in cycle 2. So, the hypothesis is that it suffices to include the “or”
problem in the task formulation.

Another revision relates to the use of the ε-strips. It has become apparent that
students need more guidance in this process. Therefore, specific questions and
prompts have been added to the ε-strips to guide the work with the strips to help
students transition to a characterization that can be used as a decision rule. These are
different questions and impulses than proposed by Roh (2010c). First, she asks
students questions about the number of sequence members inside and outside the
ε-strips, respectively. Then they have to evaluate the validity of two “ε-strip defini-
tions.” One of the two ε-strip definitions is that a sequence converges to a value if
there are infinitely many sequence members within each strip around that value. This
characterization applies not only to limits but also to cluster points.
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The other ε-strip definition, on the other hand, characterizes limits by saying that
there are only finitely many sequence members outside each ε-strip around the value.
In our case, the first instruction was to start with one of the ε-strips and then address
how it could be placed on the graphic representations of the sequences. Differences
between the example sequences and the non-example should then be observed.
Finally, if necessary, the question is asked, similar to Roh, how many sequence
members are outside the ε-strips in each case. There are several specific goals to be
pursued with the ε-strips. One is that students might get the idea of looking at the
distance of the sequence members from 1 or neighborhoods of 1. Another goal might
be to discover that in each of the given examples, as opposed to the non-example,
there exists an N such that all sequence members with larger index are inside the ε-
strips. In using them, students might also discover that the particular N depends on
both the specific sequence and the width of the strip. A similar alternative discovery
would be that in each of the example sequences, only finitely many elements of the
sequence are outside each ε-strip. In contrast, in the case of the non-example, some
ε-strips have infinitely many elements outside the strips. Closely related to this
discovery is the step to reverse thinking (Roh, 2005).

During the first cycle, the impulse was sometimes spontaneously given to write
down the verbally formulated characterization. It turned out that the transition to a
written characterization always led to a more precise formulation. It seems that the
students have lower demands on an oral formulation regarding precision than on a
written formulation. This impulse was therefore added to all obstacle situations
where a specification is necessary.

Finally, the two obstacle situations (4.1) and (4.2) were added. These situations
can occur when writing down the final characterization in formal mathematical
language.

9.7.4 Changes in the Task Formulation

In general, the task formulations were expanded, and aspects were added that had
been used in the first cycle within the intervention phase (Fig. 9.4). We had the
hypothesis that this may lead to two improvements: First, assuming that students
read and comprehend the task formulation, they may need fewer interventions in the
process. And secondly: instead of introducing a new precision of the task for the
students in the process itself, their attention may be drawn to the task formulation as
a strategic intervention, instead of making the task more precise in the process, to
which students may react negatively if they think that the task was changed “in the
process.”

The formulation in 1. explicitly asks for a mathematical definition, not only for a
“property.” When students present formulations of a property that does not qualify
for a definition, it is possible to refer to socio-mathematical norms for definitions. A
“definition in university mathematics”was added because some students had entered
the debate with a school-mathematical concept of “convergence,” according to



which some examples were not convergent that were claimed to be “convergent” by
the task. This event happened when students had a school-mathematical conver-
gence concept that calls sequences convergent only when the elements are
approaching a limit (monotonically) but never reach it. We did not expect that
some students did not accept the rules of our “game,” so we had to make it explicit
that we have to distinguish possible previous concepts by name from the new
concept that is to be defined. This reformulation may help; however, self-confident
students may not be willing to give up a concept they found helpful in the past. This
observation may point to limitations of the approach that Ostsieker (2020) and
Przenioslo (2005) have chosen. The approach does not provide problems that
motivate a change of previous definitions because of theoretical or practical reasons
but forces the students to accept that there is some hidden good reason in the choice
of the provided examples. In the sense of Freudenthal’s didactical phenomenology,
no actual problem situation is presented that motivates the creation of the new
concept (Freudenthal, 2002).
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Task formula�on in the third cycle

The third formula�on resulted from a profound retrospec�ve analysis a�er the second trial, but it 
was not yet tested empirically in a third cycle.

1. “We are going to discover the defini�on (in university mathema�cs) of the convergence of a 
sequence to 1. The concept must be defined so that the sequences ( )… ( ) are 
convergent, and the sequence ( ) is not.

2. Aim at formula�ng a shared property of the sequences ( )… ( ) that the sequence ( )

does not possess as one single condi�on.

3. This condi�on has to be formulated so that somebody to whom this formula�on is presented 
can objec�vely decide and argue for every arbitrary sequence, whether this sequence has the 
property or not. Every person to whom this formula�on is presented should come to the same 
conclusion about every specific sequence.

4. If you believe that you have formulated an adequate property, check whether all the example 
sequences possess this property and check whether does not have it. If some of these 
checks are nega�ve, revise your formula�on." 

Fig. 9.4 Final task formulation after two iterations of the workshop. (Ostsieker, 2020, p. 542, our
translation. The numbering was added to make references in the following text clearer)

The formulation in 2 (“one single condition”) reflects situations that occurred in
the students’ debates. Some groups adequately characterized several subgroups of
the examples and then formulated the definition by several statements connected by
“or.” For instance, “convergence” can mean monotonically approaching a number
with arbitrary closeness but not reaching it“ or “being equal to this number from a
certain n onwards” or “alternating around that number with . . .“ or doing one of
these things with a finite number of exceptions” etc. This solution – even if it fulfills
all criteria of rigor --, would be considered as “inelegant” in mathematics. This
phenomenon reveals another norm that mathematical definitions have to meet.



Students in the first two workshops were correct in claiming that this requirement
was not specified in advance. That is why it was added.
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Formulation 3 reacts to the situation that some students were satisfied with
problematic formulations. Pointing to potential “readers” of the definition should
initiate a reflection of the preciseness and understandability of the definition and
motivate students to check their definition with further self-created examples or use
other students’ views. This extension of the task formulation may be of practical
value. However, students may need to have more opportunities to reflect on criteria
that a mathematical definition must fulfill (Edwards & Ward, 2004; Ouvrier-Buffet,
2006; Zaslavsky & Shir, 2005). Moreover, the formulation bears another problem. A
mathematician would say that a mathematical definition must “in principle” allow
one to decide whether an object fulfills it or not. It will, of course, often happen that
determining whether a concrete object satisfies a definition may be considered a
severe mathematical problem to be solved in the future. Moreover, the formulation
“every person should come to the same conclusion”, is of limited practical value:
how can this be validated?

Formulation 4 reflects the following observation. In the anticipated learning
trajectories, it was assumed that the students work on a successive improvement of
their formulations of a definition, creating a first version of the definition from a
limited set of examples, then systematically testing this formulation on all initial
examples and also on new ones, then revising the definition and so on. However,
such a systematic approach was seldom observed. Therefore, the formulation was
added to foster such an approach. The relatively unsystematic approach towards
concept definition may not only be due to limited experiences in creating mathe-
matical concept definitions, but it is plausible that students may have seldom met
concept definition tasks or situations requiring new concept definitions in their
school or university life. In sum, these results also support the need to make implicit
norms explicit and provide more extensive experiences for students to actively and
reflectively participate in the new culture, where a more formal way of reasoning
about limits is required.

9.8 Discussion

In retrospect, it is not surprising that the first and second versions of the set of
examples and non-examples, assignment, triggering situations, and supports were
insufficient to initiate a self-regulatory reinvention process of consequence conver-
gence. The students have never worked on such a task before. They are unaware of
the necessary strategies and requirements for formulating a definition, and therefore,
these need to be made explicit in the task formulation. An alternative might be to
explicitly discuss the functions and characteristics of mathematical definitions with
students before conducting the workshop. This option would fit the recommendation
of Edwards andWard (2004). Reverse thinking, identified by Roh (2005) as a crucial
step in understanding the ε- N-definition, also emerged as a critical obstacle in our



study, where, in contrast to Roh’s studies, students reinvented the definition them-
selves with guidance. The ε-strips suggested by Roh can help overcome this
obstacle, but most students need to be guided to use them to move to reverse
thinking. The “ε-strip definitions” proposed by Roh were not suitable for the
reinvention of the definition.
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Swinyard and Larsen (2012) refer to a similar step in the context of the ε- δ-
definition of the limit of functions from moving from an “x-first” perspective to a “y-
first” perspective and have also called this as one of the main difficulties in
reinventing the definition. We also encountered the second central problem they
mentioned, the operationalization of expressions of the “infinitely close” type.
Moreover, similar obstacles emerged in our study, such as expressions like “for
large n.”

Unlike other studies, we precisely worked out what kind of support could
optimize the reinvention process. Another critical problem that emerged in this
study is the lack of systematicity among students in the reinvention process. For
example, students did not systematically check the characterizations they formulated
on all the given example sequences. As a result, in some cases, they did not notice
when they formulated a property that did not apply to all given example sequences or
applied to the given non-example. In Oehrtman et al. (2011, 2014), such problematic
formulations that students are not aware of were referred to as problematic issues,
different from problems that students are aware of. However, problematic issues
include not only formulations that do not apply to all given example sequences or
that apply to the given non-example, but also, for example, imprecise formulations.
In this respect, a major problematic issue was added by our study with the students’
lack of systematicity in reinventing the definition.

Moreover, our study confirms the need to support the students on a meta-level
concerning requirements for a mathematical definition. It is compatible with similar
results that Schüler-Meyer (2018, 2020) found in a different setting for supporting
students’ reinvention processes of the limit concept definition.
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Chapter 10
Investigating High School Graduates’ Basis
for Argumentation: Considering Local
Organisation, Epistemic Value, and Modal
Qualifier When Analysing Proof
Constructions

Leander Kempen

Abstract The present study is about high school graduates’ basis for argumentation
in elementary arithmetic. Besides knowing the elements of the basis for argumenta-
tion, the question arises in how far individual understandings of these components
differ. We conducted task-based interviews focussing on learners’ usage and mean-
ing of statements in terms of their embeddedness in a local organisation, the
epistemic values assigned to them, and respective effects on the conclusion’s
modal qualifier. We want to highlight the following results: While all graduates
accept definitions and rules for term manipulation, there is no consensus concerning
the statements involved. Furthermore, the individuals’ epistemic values concerning
the statements involved affect their usage in a chain of arguments and the individ-
uals’ evaluation of the conclusion. Although the assessments of a local organisation
of mathematical content differ, the epistemic values seem to be decisive for the
individual evaluation of the conclusion. Thus, we extend the existing theory by
investigating the meaning of epistemic value in the context of the basis for argu-
mentation and its effects on the individual’s proof constructions. For practice-
oriented research, we contribute to the ongoing discussion about the learning of
proof in school mathematics by investigating the basis for argumentation of high
school graduates in arithmetic.

Keywords Basis for argumentation · Local organisation · Epistemic value ·
Toulmin model

L. Kempen (*)
TU Dortmund University, Dortmund, Germany
e-mail: leander.kempen@tu-dortmund.de

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
R. Biehler et al. (eds.), Practice-Oriented Research in Tertiary Mathematics
Education, Advances in Mathematics Education,
https://doi.org/10.1007/978-3-031-14175-1_10

203

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14175-1_10&domain=pdf
mailto:leander.kempen@tu-dortmund.de
https://doi.org/10.1007/978-3-031-14175-1_10#DOI


204 L. Kempen

10.1 Introduction

The lack of the global axiomatic-deductive structure in school mathematics causes
the question concerning the choice of arguments when proving a theorem. Accord-
ingly, when dealing with proof, the question arises, which parts of the mathematical
theory might be used for verifying a given claim? This question has been discussed
theoretically in terms of “set of accepted statements” (Stylianides, 2007) and “basis
for argumentation” (Bürger, 1979). The (individual) set of accepted statements
consists of statements and forms of reasoning that the student subjectively believes
to be true. Theoretically, such knowledge is considered shared knowledge in a
classroom community. These accepted statements are meant to be embedded or
organised in a “local organisation” (Freudenthal, 1973), displaying a small part of
the wider mathematical theory in school mathematics. It is an open question: What
elements do constitute the basis for argumentation of today’s high school graduates
and the extent to which corresponding knowledge might be considered shared
knowledge?

In Germany, the role of mathematical proof in school has declined in the last
decades. In the German national standards for mathematics in school, proof is
subsumed in the context of the competence “mathematical reasoning” covering
other ways of reasoning (like operative proofs, preformal proofs, and plausible
reasoning), too. However, various studies have shown that German school students
tend to have rather basic competencies in this area (cf. Brunner 2014, p. 82 ff.).
Brunner (2014, p. 2; author’s translation), therefore, concludes: “It can therefore be
assumed that in the topic of ‘proving’ there is a greater discrepancy between the
claim, as manifested for example in the educational standards, and the reality,
realised as an everyday practice of mathematics teaching [...]”. This chapter aims
at investigating the basis for argumentation of high school graduates in the context of
elementary arithmetic in Germany. Apart from what elements this basis for argu-
mentation contains, the question arises to what extent the knowledge can be consid-
ered shared knowledge among the graduates. However, this question does not only
deal with the availability of knowledge. Moreover, the embeddedness of knowledge
in a local organisation may vary and also the so-called epistemic value of the
mathematical statements involved may differ individually: A statement considered
a valid theorem by one student might be viewed as a (still unproven) conjecture by
another. This yields the question of to what extent the epistemic value assigned to the
statements affects their usage in argumentation and therefore the conclusion. Since
proof is considered a main hurdle in the transition to university, it seems necessary
and promising to investigate high school graduates’ understanding of mathematical
proof to get more profound insights into the problematic issue of teaching proof at
university, too.
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10.2 Theoretical Background

10.2.1 Set of Accepted Statements, Local Organisation,
and the Basis for Argumentation

In his conceptualization of the meaning of proof in school mathematics, Stylianides
(2007, p. 291) stresses the relevance of the set of accepted statements:

Proof is a mathematical argument, a connected sequence of assertions for or against a
mathematical claim, with the following characteristics:

1. It uses statements accepted by the classroom community (set of accepted statements) that
are true and available without further justification; [. . .]

Following Stylianides’ (2007) conceptualization, the term proof can be used to
denote various deductive arguments. In such arguments, statements and forms of
reasoning might be used that are accepted and available in an educational setting.
Also, the way of communicating proof depends on this setting. For example, a proof
can be expressed in a narrative manner (narrative proof), by explicating the argument
with reference to (generic) examples (generic proof), or by using mathematical
symbolic language (sometimes called formal proof in the context of school
mathematics).

Stylianides refers to Kitcher (1984, p. 178) when explicating on the set of
accepted statements: “the set of sentences, formulated in the mathematical language
of the time, to which an omnivorous and alert reader of the current texts, journals,
and research papers would assent”. In this sense, both the meaning and the accep-
tance of proof within a class community depend on what is accepted and thus known
or conceptually accessible at a given time. There is no axiomatic-deductive con-
struction of the mathematical content in school mathematics (at least in Germany).
This lack of a global theory can lead to problems when proving in the context of
school mathematics:

The principal problem here is the arbitrariness of the choice of initial statements and the
different status of statements depending on the choice of initial statements. It is difficult for
the student to understand that some propositions may be regarded as correct while others
have to be proved. (Tietze et al., 1997, p. 160; author’s translation).

To counteract this problem and to provide the idea of a deductive theory to the
students, the idea of “local organisation” (Freudenthal, 1973) was developed in the
context of geometry. In a local organisation, the deductive connections between
constituting elements (definitions, statements, etc.) are highlighted. Accordingly, a
small part of the wider mathematical theory becomes visible. Moreover, by stressing
the deductive connections between the statements, the statements’ truth is
established. This way, a set of accepted and justified statements might be
constructed. A local organisation in the context of odd and even numbers is provided
(see Fig. 10.1).

The lack of the global deductive structure in school mathematics causes the
question about the choice of (valid) arguments when trying to prove a theorem,



which the phenomenon of the local organisation might partly answer. However, the
idea of the “set of accepted statements” can be elaborated by referring to the concept
of “basis for argumentation” by Bürger (1979). This author uses the term to
summarize a student’s mathematical basis for proving theorems. In addition to
Styliandes’ “set of accepted statements”, the basis for argumentation consists of
statements, definitions, and forms of reasoning that the student subjectively con-
siders correct. Such statements may include, among others, propositions that appear
to be intuitively evident or plausible (see Tietze et al. (1997, p. 160 ff.) for a more
detailed description). Besides, one should note that the various contents of the
person’s basis of argumentation do not have to be (explicitly) conscious but can
also be implicit (ibid.). In the following, we refer to the basis for argumentation
because this concept seems more appropriate for discussing high school graduates’
knowledge and handling of mathematical content in a proving context.
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Fig. 10.1 A local organisation of statements concerning odd and even natural numbers.

The elements of the basis for argumentation are considered shared knowledge in a
given community. However, Stylianides (2007) stresses that the scope and the
individual understanding of the shared knowledge may differ:

The knowledge that can be considered as shared within the community [. . .] does not
necessarily reflect the individual understanding of each student. Accordingly, [. . .] I do
not wish to imply that each student in the community understands in the same way the
elements of this set. (Stylianides, 2007, p. 293).

It becomes evident that apart from knowing the elements of the basis for argumen-
tation, the individuals’ understanding of the different statements may differ, too.
Here, the aspect of epistemic value helps to elaborate on one particular part of
understanding mathematical statements.
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10.2.2 The Epistemic Value of Statements

The individual knowledge and understanding of statements used in a proving context
touch upon the aspect of “epistemic value” (Duval, 1991, 2007): “The epistemic
value is the degree of certainty or conviction assigned to a statement” (Duval, 1991,
p. 254; author’s translation). Accordingly, it can take on values as obvious, likely,
absurd, necessary, etc., and it is closely connected to the individuals’ understanding
of the content (Duval, 2007, p. 138). In the axiomatic-deductive theory of mathe-
matics, a statement’s theoretical status (definition, axiom, hypothesis, etc.) implies
its epistemic value. In school mathematics, as well as in real-life argumentations, the
situation is quite different. As Knipping (2003) stresses:

Students stick to their individual assessment of the reliability of a statement, even if a
universal, i.e., universally valid value has been produced in a proof. In addition, different
individuals evaluate the same statement as having different degrees of certainty in collective
learning processes. Just like the quality of the reasons and their relevance, the epistemic
value of statements in general is also judged differently. (ibid., p. 36 f.; author’s translation).

It must be noted that even an epistemic value such as “necessary” cannot arise for an
individual solely through logical-mathematical reasoning. Duval (2007, p. 147) also
names the direct observation (e.g., of a geometric configuration) and “the fact that
others agree to its truth” (ibid., p. 148).

Even though students might share a basis for argumentation, the epistemic values
linked to the statements involved might differ individually. This, of course, affects
the use of statements within an argumentation and the certainty of logical reasoning.
Due to the statements’ epistemic value, an argument might count as proof for one
student and for another not.

10.2.3 Toulmin’s Model for Structuring Argumentation

Toulmin (1958) proposed a scheme for structuring argumentations in general. Inglis
et al. (2007, p. 4; emphasis in original) summarize this scheme as follows:

Toulmin’s (1985) scheme has six basic types of statement, each of which plays a different
role in an argument. The conclusion (C) is the statement of which the arguer wishes to
convince their audience. The data (D) is the foundations on which the argument is based, the
relevant evidence for the claim. The warrant (W) justifies the connection between data and
conclusion by, for example, appealing to a rule, a definition or by making an analogy. The
warrant is supported by the backing (B) which presents further evidence. The modal
qualifier (Q) qualifies the conclusion by expressing degrees of confidence; and the rebuttal
(R) potentially refutes the conclusion by stating the conditions under which it would
not hold.

The complete Toulmin scheme is shown in Fig. 10.2.
It has been shown that the Toulmin model can be used for revealing structures of

argumentations in proving processes (e.g., Inglis et al., 2007; Knipping, 2008).
Inglis et al. (2007) described that the warrants involved might affect the modal
qualifier.
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Fig. 10.2 Toulmin’s full scheme of argumentation

10.2.4 Basis for Argumentation, Local Organisation,
and Epistemic Value

As mentioned above, the basis for argumentation consists of statements and forms of
reasoning that the student subjectively believes to be true, including propositions
that appear to be intuitive-evident or plausible. From a theoretical point of view, such
components’ theoretical status is constituted by their localisation in the axiomatic-
deductive system of mathematics. In school mathematics, the truth of a statement is
inferred in the context of a local organisation. What is considered a plausible
proposition in the first stage might become a statement after having proved it. This
is why the theoretical status implies the epistemic value from a theoretical point of
view. However, it has been argued that the epistemic values assigned to the state-
ments might differ individually in the context of a group of learners.

Speaking in the Toulmin model context, one statement’s use as a warrant in an
argument is not per se combined with one specific modal qualifier. However, due to
the epistemic value that the individual assigns to the statement, modal qualifiers such
as with certainty or probably seem to be possible. This theoretical conclusion based
on the previous considerations can only be understood as a hypothesis at this point. It
will be a concern of this article to pursue this hypothesis.

10.2.5 Findings from the Literature

Edwards (1998) asked ten first-year high school students (ages 14 to 15) to work on
three proving tasks concerning the sum and the product of odd and even numbers.
None of these students offered an algebraic proof, even though using algebraic
notation to represent and manipulate quantities had been a topic in their math classes



for eight months. Only three students gave somehow coherent arguments whose
elements could be interpreted in terms of basis for argumentation. Knuth et al. (2002)
asked 30 sixth through eighth grade students to generate arguments concerning two
statements from elementary arithmetic. Here, about 70% of the responses were based
on single examples. The author states that only a minority of students gave general
arguments, mentioning the order of odd and even numbers on the number line or the
statement that the sum of an even and an odd number is always odd. Coe and
Ruthven (1994) investigated the proof practices of 60 students in their final year of
high school. They conclude that only a few students were concerned about locating
the arguments used within a mathematical system. Instead, students’ strategies were
predominantly empirical.
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Empirical evidence is also a matter for high school graduates and first-year
students. In the study by Reiss and Heinze (2000), only 51.9% of 81 German high
school graduates indicated that the check of a single example was not sufficient for
general verification. Besides, most graduates failed to use deductive reasoning when
completing proof tasks on geometry from the TIMS study. In this study, earlier
findings from TIMS were confirmed that German students show low performance in
mathematical proof even in upper secondary school (Baumert et al., 1998).

Kempen and Biehler (2019a) investigated first-year pre-service teachers’ proof
competencies when entering university. In this study, only 10% of the 71 students
gave a coherent argument when verifying the claim that the sum of any two odd
numbers is always even. While 14% of the given answers were purely empirical-
inductive, another 32% gave pseudo answers, i.e., rephrasing the respective state-
ment about the sum or naming irrelevant or wrong facts. It turned out that only 4.6%
of students used algebraic variables. However, a minority of students made use of
statements from elementary arithmetic. Finally, in the study of Kempen and Biehler
(2019b), 29.7% of the pre-service teachers in their first semester at university rated a
mere check of single examples as correct proof.

To sum up, learners are reported to have rather basal proof skills across ages.
Besides, students in these studies did not seem to use algebraic variables to prove
general statements. Finally, the use of examples in the context of proving appears to
be a delicate matter. Even though some learners might held a misconception that
testing single examples would constitute a general valid proof, the use of single
number examples does not mean that learners must have corresponding misconcep-
tions. As stressed by Weber et al. (2020), such students do not necessarily believe
that an example provides a proof. Maybe, students just start their proving process by
testing several examples and then do not know how to continue to produce a
deductive argument.
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10.3 Research Questions

In this study, we focus on describing and analysing the basis for argumentation of
high school graduates in elementary arithmetic.1 The investigation framing the basis
for argumentation presented in this chapter is part of a wider research project
focussing on high school graduates’ proof productions and respective theoretical
issues (e.g., norms and values). Here, we will only focus on the proving task from
arithmetic and the parts from the interview concerning the basis for argumentation
and the related theoretical issues named in Sect. 10.2.

RQ 1a: What elements form the basis for argumentation of high school graduates in the
given context of elementary arithmetic?

When using statements in a proving context, their embeddedness in a (local) theory
becomes important, because their validity has to be assured for deriving logical
conclusions.

RQ 2: To what extent can the statements of elementary arithmetic be regarded as embedded
in a local mathematical theory in the case of high school graduates?

As shown above, apart from knowing the definitions and statements and their
position in a local organisation, the individuals’ understanding of the different
elements in terms of epistemic value has to be considered. The epistemic value of
the statements involved might influence their use in the proving context.

RQ 3: To what extent does the epistemic value of the definitions and statements used in the
proving context vary among high school graduates?

RQ 4: To what extent does the epistemic value assigned to the statements affect the
modal qualifiers of the argument’s conclusion?

10.4 Methodology

10.4.1 Research Instruments

We followed the concept of task-based interviews (Goldin, 2000) to make the
graduates explain and evaluate their proof productions. Goldin (2000, p. 523) pro-
poses the following four-stage model: (1) posing the question and free work,
(2) minimal heuristic suggestions, if the learner struggles with the given task,
(3) the guided use of heuristic suggestions, and (4) exploratory, metacognitive
questions. Accordingly, the high school graduates were first asked to work on
proving tasks [phase (1) and (2)]. Afterwards, an interview was conducted [phase
(3) and (4)]. Personal data was collected at the beginning of the study.

1We use the term “elementary arithmetic” to summarize the mathematical content covering
properties of the natural numbers and divisibility issues.
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10.4.1.1 Task Analysis and Expected Solution

The proving task used in this study should be accessible to all high school graduates
and allow for different approaches. The following task is taken from Biehler and
Kempen (2013): “Prove that the sum of an odd natural number and its double is
always odd”.

The use of an algebraic representation of an odd number (e.g., 2n� 1) would lead
to the result “6n � 3 ¼ 2(3n � 1) � 1” which is an odd number by definition.
However, such a solution does not seem appropriate for high school graduates in
Germany, because using such algebraic representations is no common strategy or
approach for performing reasoning in school mathematics. When starting with one
algebraic variable, the summation with its double leads to three times the initial
number (e.g., a + 2a ¼ 3a). At this point, at the latest, the graduates would have to
name further statements to reason why this result has to be an odd number. Of
course, the whole argumentation could be formulated as narrative proof, too.
Besides, it is possible to use generic examples to point to a general argument giving
a generic proof (cf. Biehler & Kempen, 2013). However, in the context of such
argumentation, statements like the following seem to be in reach of the graduates and
might be used in this context (compare the local organisation given in Fig. 10.1):
“Three times an odd number is always odd.”, “Two times an odd number is always
even.”, etc. Finally, also the checking of the claim with several examples is possible.
However, this approach does not lead to a general verification.

10.4.1.2 Construction of the Interview Guide

The interview phase was meant to make the high school graduates explain and reflect
upon their proof constructions, i.e., answers on the given proving tasks. The
interview guide consisted, among other things, of the following components to
meet our needs:

1. Prompts to explain one’s work (e.g., “Tell me, what did you do?”).
2. Questions to stimulate evaluation (e.g., “Are you satisfied with your solution -

why (not)?”).
3. Questions, if the solution produced is considered being a mathematical proof

(e.g., “Is this a proof - why (not)?”).

The interview contained some final questions concerning a personal definition of
mathematical proof and the previous experiences with proof in school mathematics.
However, due to the focus of this chapter, we will not elaborate on these aspects.
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10.4.2 Procedure

At the beginning of each investigation, the graduates were informed about the
research project’s principles (anonymity, voluntariness, and collection and use of
data). Then, personal data were collected by a questionnaire. Afterwards, two
proving tasks were handed out with the hint of having about 20 minutes to work
on the given tasks. The graduates had the opportunity of using several tools
(coloured pencils, eraser, set square, compass, ruler, and calculator). This way, we
wanted to allow following their individual approaches without suggesting specific
ways of coping with the tasks. This first phase lasted until the test persons indicated
that they had finished working on both tasks. Then, the interview phase took place.

10.4.3 Piloting the Research Instrument

The whole setting was piloted in the context of a master thesis in 2019 (Krämer,
2019), focusing on high school students’ personal meaning of proof. Corresponding
results are published in Kempen et al. (2020). The last section of the interview guide
was revised based on the pilot study. However, this does not influence the issues
discussed in this chapter.

10.4.4 Data Collection

The study was conducted in August 2019. The selected students had passed their
high school graduation but had not yet started their university studies. Twelve
persons (six female, six male; mage ¼ 17.92, SD ¼ 0.29; six persons taking an
advanced course in mathematics at school) from different high schools from the area
of Paderborn (Germany) participated in this study. Participants’ final high school
graduation mark (M ¼ 1.83, SD ¼ 0.70),2 as well as their final high school grade in
mathematics was raised (M ¼ 11.34, SD ¼ 2.19).3 Participants’ proving attempts
were collected and scanned for research purposes. All twelve sessions (working on
the task and subsequent interview) were video- and audio-taped. The dialogues have
been transcribed for further analysis.

2Marks are scaled from 1 to 4, 1 being the best mark.
3Marks in school subjects are scaled from 0 to 15, 15 being the best mark.
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10.4.5 Data Analysis

In a first step, the graduates’ whole chain of argument was reconstructed in a
Toulmin-scheme. This was done by using the graduates’ written proving attempts
and their explanations in the subsequent interview. Referring to both resources was
necessary because the graduates did not write down all their arguments but elabo-
rated on their proving attempts in the interview. In this sense, the use of the Toulmin-
scheme made it possible to summarize the proof construction of a graduate in a clear
picture. Moreover, it became possible to organize and structure the different parts
and elements of the graduates’ proof attempts.

The elements of their basis for argumentation used by the students in this context
could thus be read from the respective Toulmin-scheme (being the warrants in the
whole chain of argument), even if they had not been explicitly written down
beforehand. We coded the warrants based on the different approaches listed in
Sect. 10.4.1.1 (algebraic variables and term manipulation, (narrative) arguments,
and checking several examples). The modal qualifier in the Toulmin-scheme was
obtained by citing or rephrasing respective phrasings from the interview transcript
(compare Inglis et al. (2007)). A qualitative content analysis (Mayring, 2014) was
conducted on the transcripts to investigate a statement’s possible embeddedness in a
local organisation. Here, we focused on graduates’ explanations of the elements
functioning as backings in the Toulmin-scheme. Distinguishing whether and how
the arguments were supported by respective backings led to the inductive construc-
tion of categories. The “epistemic values” of the statements involved could be
inferred from the interview transcript when the graduates explained their proving
attempts. This was methodologically done by a deductive/inductive qualitative
content analysis, based on Duval’s examples (2007, p. 138) (see Sect. 10.2.2). We
illustrate this part of the data analysis by reconstructing participant 1’s whole chain
of argument in a Toulmin-scheme. His work on task one is shown in Fig. 10.3.

In addition, we cite the corresponding lines from the interview transcript (author’s
translation).

1 I: What does it mean, these abbreviations?

2 P1: Odd, even, odd [in german: ungerade, gerade, ungerade]. I thought about how to prove
it.

3 Anyway, everybody knows that the sum is an odd number.

4 I: Tell me. . .

5 P1: If you double an odd number, it will be even.

[. . .]

7 P1: If you add an even and an odd number, the sum is an odd number.

8 But why is it like that? I cannot say. It’s just like that.

[. . .]

10 I: Now, is it a proof?

11 P1: Proof. . . is that it is true for all examples. No. yes?

12 I: What do you think?

13 P1: It is true for all odd numbers.
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Fig. 10.3 Participant 1’s
working on task 1. [last line:
“a: odd number”]

Fig. 10.4 The Toulmin-scheme displaying participant 1’s whole chain of argument

Participant 1 is making use of the following statements, functioning as warrants in
the Toulmin-scheme: “The double of an odd number is always even” (line 5) and
“The sum of an odd and an even number is always odd” (line 7). Participant 1 cannot
produce any backing for these warrants (line 8). Accordingly, we have no evidence
of any kind of statements’ embeddedness in a local organisation. However, the
participant is sure about the warrants’ validity (line 8) reflecting his epistemic
value of these statements as “necessary”. Finally, he stresses that the whole chain
of argument is valid for all odd numbers (line 13). Accordingly, the modal qualifier
can be described as “100%”, and no rebuttal can be identified (see Fig. 10.4). In this
episode, we gain two statements being part of one student’s basis for argumentation.
The phenomenon that these statements do not seem to be embedded in a local
organisation serves as a starting point for the inductive construction of respective
categories.
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Finally, it should be noted that this chapter does not deal with individual in-depth
case analyses concerning the different subjects. In the following, the results will be
considered in cross-section. Therefore, the focus is on the sum of the total number of
phenomena identified, irrespective of the individual case.

10.5 Results

10.5.1 Results concerning the Elements of the Basis
for Argumentation used in the Proof Constructions

The elements used by the graduates when working on the proving task are shown in
Table 10.1. The following elements have been detected as warrants in the Toulmin-
schemes: algebraic variables and term manipulation, (narrative) statements, and the
testing of several examples (compare Sect. 10.4.5). Nearly all graduates used
algebraic variables and term manipulations. However, no participant proved the
whole claim by only relying on algebra. Narrative statements were used by most
of the graduates. However, the definitions of odd and even numbers were not stated
or used in the context of algebraic representations but in the context of narrative
reasoning (e.g., “An odd number means that after division by 2 you have the
remainder 1.”). Most high school graduates checked at least one example for testing
and/or understanding the given claim. Only participant 11 misinterpreted the claim
and gave wrong examples. This participant, however, followed his empirical-
inductive approach for verifying the given claim. In addition, participants 6 and
12 did not mention any argument exceeding the single test of some examples or the
attempt with wrong algebraic representation.

Table 10.1 Elements used in graduates’ proving attempts

Elements used in graduates’ proof attempts Participant

Algebraic variables and term manipulation 1, 2, 3, 4, 5, 7, 9, 10, 12 (wrong)

(Narrative) statements from arithmetic:

Statements about the sum/product of odd and even numbers 1, 2, 3, 4, 5, 7, 8, 10

A number is odd iff the last digit in the number is odd. 9

Definition of odd and even numbers 4, 8

Check of examples 1, 2, 3, 4, 5, 6, 7, 9, 11 (wrong), 12
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10.5.2 Results concerning the Embeddedness
of the Statements used in a Local Organisation

Here, we focus on if and how the statements use by the graduates to prove the given
claims can be considered being embedded in a local organisation. The qualitative
content analysis led to the four categories shown in Table 10.2. In the first category,
the statements used are considered true. However, it is at least an open question for
these graduates if such statements might be used in a proving context. Respective
statements have not been adequately validated in school mathematics for these
learners. Here, the existence of a local organisation is not seen or not considered
sufficient. In the second category, the phenomenon of local organisation becomes
evident when graduates explain the validity of the statements used by referring to
former statements or definitions. In contrast, the statements are mere facts not
embedded in a local organisation in the third category. Finally, the fourth category
is about considering the statements as conjectures or possible conclusions. Accord-
ingly, there are no (valid) statements in a mathematical sense that might be embed-
ded in a local organisation.

10.5.3 Results concerning the Epistemic Value Assigned
to the Statements, Rules, and Definitions used

In the course of the qualitative content analysis, it became clear that the epistemic
values elaborated for the statements used could be described in line with the
categories regarding statements’ embeddedness in a local organisation. Even though
we name the statements’ epistemic value “necessary” in the context of categories [1],
[2], and [3], there are remarkable differences concerning the way the awareness of
necessity has been reached. In the context of the first category, the statements are
considered true. However, the necessity has not been derived by mathematical proof.
The need for proving them thus refers to a (somehow rigorous) understanding of
mathematical proof and not to a minor degree of certainty or conviction. In category
[2], the necessity has been reached by making references to definitions or former
proved statements in the sense of local organisation. The awareness of necessity in
category [3] seems to align with Duval’s description of relying on others’ agreement.
Here, the statements appear as mere facts that have been learned before. In this sense,
the awareness of necessity is combined with normative regulations of classroom
interactions. Finally, some graduates developed these statements as conjectures or
possible conclusions while working on the proving task (category [4]). Thus, an
epistemic value of “probably” is assigned.

The graduates did not explicate the rules for term manipulation. However, the
syntactic results of such term manipulations were not questioned in any case.
Accordingly, an epistemic value as “necessary” can be assigned to these rules.
This is also true for the use of definitions of odd and even numbers.
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Table 10.2 Categories and results concerning the statements’ embeddedness in a local organisa-
tion and the epistemic values assigned

Category Explanation

Examples (taken from the
interview excerpts; author’s
translation)

Epistemic
value of the
corresponding
statements

[1] (true) state-
ments with miss-
ing
embeddedness

The statements are consid-
ered true. However, their
use in a proof must be
discussed, as the statements
have not yet been proven.

“Let’s say that it is proof if
one accepts these basic
statements. [...] the question
is, what do you refer to? So
whether you say you are
satisfied with them or [...]
you would also like to prove
it.” [P10]

Necessary

[2] (true) state-
ments embedded
in a (local)
theory

The statements are consid-
ered true. Their validity can
be backed up by making
references to former state-
ments or definitions.

“The sum of three odd
numbers is odd.
In any case, I said that an
odd number is odd, because
it gives a remainder of one
when dividing it by two.
That means, if one adds
another odd number, it has
twice this remainder of one,
which adds up to two. And
thereby, it is even again,
because two is even, it has
the remainder zero. If you
then add a third number,
you add another remainder
one, and it is then three.
These remainders of all
three [numbers] taken
together and that is then odd
again, because it again has
the remainder of one after
dividing it by two.” [P8]

Necessary

[3] statements
considered as
facts, not
embedded in a
theory

Here, the statements are
considered facts that one
has learned before. There is
no reference to former
statements or definitions.

“If you add an even and an
odd number, the sum is an
odd number. But why is it
like that? I cannot say. It’s
just like that.” [P1]

Necessary

[4] statements
appearing as
conjectures

The statements appear as
conjectures or possible con-
clusions. Accordingly, there
are no statements that might
be embedded in a local
organisation.

“If one looks at this obser-
vation a little more in detail
[. . .] when the summands
are of the same kind, if both
summands are even or odd,
the sum is even. [. . .] that is
first of all the conclusion
which I have drawn from
the observations.” [P2]

Probably
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10.5.4 Results on the Effects of Epistemic Values
on the Conclusion’s Modal Qualifier

Those graduates considering the statements from arithmetic as being totally reliable
(i.e., assigning an epistemic value of “necessary”) did also completely trust their
conclusion’s validity. In these cases, a modal qualifier like “100%” is considered
(see Fig. 10.4 for an example). However, the same statements also occurred as
conjectures or claims, and their use as warrants led to a modal qualifier like “It seems
to be like that” and thus to an uncertain conclusion since the existence of a
counterexample is not excluded (see Fig. 10.5 for an example). Therefore, we can
note that there seems to be a strong connection between the epistemic values
attributed to the warrants used and the conclusions’ modal qualifier.

10.6 Discussion

10.6.1 Elements of the Basis for Argumentation used
in the Proof Constructions

Answer to research question 1: In this study, the basis for argumentation of the high
school graduates comprised the use of algebraic variables and rules for term manip-
ulation, the definitions of odd and even numbers (as natural numbers leaving a
reminder of one respective zero when being divided by two), rules for term manip-
ulation, and statements from elementary arithmetic concerning the sum and the
product of odd and even numbers. Besides, the statement was used that the last
digit in the number determines whether the number is even or odd.

Fig. 10.5 The Toulmin-scheme displaying participant 2’s whole chain of argument
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The mathematical content from middle school (algebra, definitions of odd and
even numbers, and statements from elementary arithmetic) can only be considered
shared knowledge to a certain degree. Three participants did not succeed in starting a
proof attempt by making at least use of one of such components. Besides, the
graduates differed concerning the usage of the examples. While nearly all graduates
explicitly stated that testing one or more examples is insufficient to validate the given
claim (about all odd natural numbers), one graduate used an empirical-inductive
generalisation to ‘prove’ this claim. These results can be considered a first glance of
individual differences concerning this group’s shared knowledge.

Graduates’ algebraic skills were insufficient to prove the given assertion on a
purely syntactic level. One graduate did not succeed in providing an appropriate
algebraic representation of the given claim. It has already been mentioned in Sect.
10.4.1 that this phenomenon has been anticipated and can be explained by the minor
status of proof and mathematical argumentation in school mathematics in Germany
and also by a minor emphasis on the use of the algebraic symbolic language in this
context in particular. This result is in line with those mentioned by Edwards (1998)
and Kempen and Biehler (2019b).

10.6.2 Statements Embedded in a Local Organisation

Answer to research question 2: The analysis conceptualized four different views
regarding the statements ‘embeddedness in a local organisation. In the first category,
the graduates explicitly miss respective embeddedness in a mathematical theory that
would allow using such statements in proving contexts. Due to this perceived lack,
we interpret this result as expressing a theoretical dissatisfaction with the way
statements are validated in school mathematics. These graduates seem to ask for
validation in the sense of a global mathematics theory, where statements are proved
by referring to former statements until basic axioms are touched. The second
category seems to be in line with the concept of the local organisation. The graduates
state references to former statements or definitions to verify a given statements. In
contrast to this phenomenon of local organisation, other graduates consider such
statements as mere facts that have been learned and are not explicitly embedded in a
(local) theory. Finally, some graduates perceived respective statements as mere
conjectures. Accordingly, the question of local organisation was not touched here.

The idea of a local organisation of the arithmetical content became implicitly
visible in some graduates’ proof constructions and reflections. However, this local
organisation of school mathematics seems to be insufficient for some graduates who
seek somehow more profound mathematical theory (P7: “Since we never did
anything like that in math class, so real proofs.”; P10: “The fact is, I am relying on
these basis statements to prove the given claim. The only question is, what should be
based on what? So, whether you say, you are satisfied with that now, or you say, but I
really want to get to the core of the whole thing and also prove that again.”). Finally,
there was also the phenomenon of viewing the statements as mere facts juxtaposed
without further connections.
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It becomes evident that the concept of a local organisation is at least not a
dominant principle in graduates’ notion on the mathematical theory. Nor is the
validation of the school mathematics statements considered sufficient from a math-
ematical perspective by all the graduates (compare category [1] and the quotes from
graduates number seven and ten above). Interestingly, the different forms of state-
ments’ embeddedness in a local organisation (see categories [1], [2], and [3]) did not
affect the modal qualifier of the final conlcusion. However, it has been shown, that
the modal qualifier changed due to the epistemic value of the statements involved
(see below).

10.6.3 The Epistemic Value Assigned to the Statements
and Definitions used

Answer to research question 3: It has been shown that an epistemic value of
“necessary” regarding rules for term manipulation and definitions of odd and even
numbers was not questioned in any case. However, the epistemic value assigned to
the statements from elementary arithmetic varied throughout the students. While
some graduates considered the statements as being valid mathematical statements
and thus implicitly assigned an epistemic value as “necessary”, respective statements
occurred as mere conjectures for others (epistemic value “probably”). Accordingly,
even when sharing the same statements in one’s basis for argumentation in the sense
of shared knowledge, the epistemic value assigned to these statements might differ
individually and affect their use in a proving context. This means that, despite the
existing knowledge, the individual basis for argumentation might vary in its per-
ceived certainty because of different epistemic values. However, it became evident
that not only the epistemic value of a statement predicts its usage in a proving
context: While some graduates used valid statements quite naturally combined in
their chain or argument, others denied their usage due to their conception of
mathematical proof (see category [1] above). These graduates did not feel that
these valid statements had been sufficiently or adequately proved to be used in a
mathematical proof.

10.6.4 Effects of Epistemic Values on the Conclusions’
Modal Qualifier

Answer to research question 4: In this study, the epistemic value assigned to the
statements used as warrants in the chain or arguments affected the respective
conclusions’ modal qualifier. For example, a statement assigned with an epistemic
value of “necessary” led to a modal qualifier like “100%” and thus to a conclusion



that follows with certainty. The same statements, considered a conjecture, led to a
conclusions’ modal qualifier like “it seems to be like this”. Besides, one graduate
used an inductive warrant but assigned the modal qualifier “100%” for the
conclusion.
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To sum up, one statement can occur in argumentation in different ways (valid
statement, conjecture, etc.) due to the person’s knowledge. In this sense, the modal
qualifier of the conclusion varies because of the statements’ epistemic values.

10.6.5 Limitations

The results presented are based on one study with 12 high school graduates. Due to
the voluntary nature of participation in this study, some positive selection can
initially be assumed. The rather good grades in graduation also support this assump-
tion. However, it must also be emphasized that two of the graduates did not cope
well with the given proof task and did not find a solution independently. Therefore, a
certain range of mathematical competencies can also be found in this sample.
Finally, the presented study has to be understood as a case study aiming to show
phenomena. Therefore, the results obtained in this study must also be confirmed in
further studies or discussed concerning their quantitative significance. Another
limitation is that we only investigated the named focus in the context of one proving
task taken from elementary arithmetic. This raises the question of how
corresponding results would turn out in other areas of mathematics or even
concerning content in the upper grades.

10.6.6 Conclusions

To sum up, various conclusions can be drawn. Starting from the idea of shared
knowledge in school mathematics, the question in how far a common basis for
argumentation can be detected among high-school graduates was focused on in this
study. However, the individual basis for argumentations varied in terms of the mere
knowledge of the elements and the epistemic values assigned to the statements
involved. Accordingly, the idea of shared knowledge could only be detected up to
a certain degree. In this study, the different degrees of a statement’s embeddedness in
a local organisation did not affect its usage in the proving context. What mattered
was the degree of conviction about the truth of the statements, i.e., the epistemic
value assigned by the individuals. This phenomenon contradicts the theoretical
mathematical view, where the theoretical status of a statement implies its epistemic
value. In this sense, a major difference between school mathematics and tertiary
mathematics becomes apparent.
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Following these results, the difficulty level of a proving task has to be discussed
by taking into account both the knowledge needed to verify the given claim and the
epistemic values assigned to the statements needed. Due to the epistemic values
assigned to such statements, the difficulty level of a proving task differs individually.
Since the phenomenon of differing epistemic values primarily occurs in the context
of narrative arguments, this issue is particularly concerning with the construction of
narrative proofs or generic proofs. Besides, this phenomenon of differing epistemic
values also touches on proof validation. For example, due to the epistemic values
assigned to the statements used as warrants in a given proof, the whole proof might
be accepted as correct or not.

Even though the results presented were obtained in the context of the German
school system, the phenomena mentioned might be transferred to the situation in
other countries, too. Since we cannot use the axiomatic-deductive mathematics
system at school, the idea of local organisation must be considered an international
matter. However, corresponding studies should also be carried out in other countries
to show cultural differences concerning proof and proving in school mathematics.
Furthermore, respective results have to be discussed in the context of different
theoretical issues (national educational standards, ideas, and concepts of school
education, science propaedeutics, related socio-mathematical norms, etc.). These
issues widen our international perspective on the current state of mathematical proof
in school mathematics.
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Chapter 11
Proving and Defining in Mathematics Two
Intertwined Mathematical Practices

The Cases of Real Numbers and Infinity

Viviane Durand-Guerrier

Abstract The main goal of this chapter is to underline from an epistemological
point of view the relevance of engaging university students in intertwined proving
and defining practices. The chosen examples are real numbers and infinity, both
concepts for which didactic research is still needed. In the first part of the paper, we
illustrate the intertwined practices of proving and defining in the case of the
construction of irrational numbers by Dedekind (1872) and Cantor (1872), recalling
that for both authors, the need for these constructions emerged from proving issues.
Next, we present an example of a situation involving R-completeness versus
Q-incompleteness that has the potential to foster students’ engagement in
intertwined proving and defining practices. In the second part of the paper, we
explore the intertwined relationships between practices of enumeration, the defini-
tion of infinite sets, and diagonal proofs that the set of rational numbers is denumer-
able while the set of irrational numbers is not. We finish by addressing didactic
implications.

Keywords Didactics of university mathematics · Mathematical practices · Defining
and proving in mathematics · Irrational numbers · Infinite sets

11.1 Introduction

University students’ practices have raised increasing attention in the last decade, as
evidenced by the number of papers in the INDRUM conferences and synthesized in
Rasmussen et al. (2021). A matter of interest is the possibility of more closely
aligning the mathematical practices of university students with those of their expert
mathematician teachers. In their study comparing the ways mathematicians and
graduate students learn an unfamiliar proof, Wilkerson-Jerde and Wilensky (2011)
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found “experts are more likely to refer to definitions when questioning or explaining
some aspect of the focal mathematical idea” (p. 21). Assuming that defining and
proving are practices at the core of mathematical work (Ouvrier-Buffet, 2011;
Zandieh & Rasmussen, 2010), we consider addressing the intertwining, between
proving and defining at university, a promising research avenue. By intertwining
between proving and defining, we refer to mathematical practices in which the
proving process calls for defining new objects, properties, or relationships that will
be used further for proving new results in an iterative process.
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In previous research, we have shown the relevance of adopting a semantic
perspective on proof and proving in mathematics education. In such a perspective,
the roles played by objects, properties, and relationships in the proving process
appear to be crucial (Durand-Guerrier, 2008; Weber & Alcock, 2004). Nevertheless,
it is rather common that this is hidden in usual teaching practises. This is for instance
the case for real numbers. Indeed, it is common, at least in France, to define the set of
real numbers by a list of axioms, including an axiom guaranteeing completeness;
here we would avoid explicitly addressing issues related to the incompleteness of ℚ
which, in the second half of nineteenth century, motivated the creation of real
numbers. For example, a classical way of stating the Intermediate Value Theorem
(IVT) can be found in the Concise Oxford Dictionary of Mathematics (Clapham &
Nicholson, 2009):

If the real function f is continuous on the closed interval [a, b] and η is a real number between
f(a) and f(b) then, for some c in [a, b] f(c) = η.

Since a usual definition of a real function is “a function on the set (or a subset of the
set) of real numbers,” the domain of a real function might be an incomplete subset of
the set of real numbers (e.g. an interval on the set of rational numbers). This is hidden
in the way the IVT is shown above. Indeed, as is generally the case, the fact that the
considered interval is real is implicit. Consequently, a discussion that the IVT does
not hold if the interval is, for example, an interval on the set of rational numbers is
unlikely to appear. We note that addressing the condition on the interval could
engage the search for counterexamples and therefore consider real numbers as
objects.

One could suppose that, at the secondary/tertiary transition, it is enough to work
in the set of real numbers without addressing these advanced questions. Neverthe-
less, research findings show that students entering universities may still have diffi-
culty recognizing the nature of numbers based on their representations (e.g.,
considering that a number can be both finite decimal because it is written with a
decimal point and irrational because it is written under a root – e.g.

ffiffiffiffiffiffiffiffiffiffiffi

13,21
p

)
(Durand-Guerrier, 2016, p. 344). A didactic research question is therefore “how is
it possible to improve students’ conceptualisation of real numbers?”. We address this
question on two features of real numbers – the ℝ-completeness versus the
ℚ-incompleteness, and potential infinity versus actual infinity – through the lens
of the intertwining between proving and defining.

In the first part of the paper, we illustrate the intertwining of proving and defining
in the case of the construction of irrational numbers by Dedekind (1872) and Cantor



(1872), recalling that for both authors the need for these constructions emerged from
proving issues. We first briefly present the epistemological paths. Next, we present
an example of a situation involving the ℝ-completeness/ ℚ-incompleteness that has
the potential to foster students’ engagement in intertwined proving and defining
practices. In the second part of the paper, we explore the intertwined relationships
between practices of enumeration, the definition of infinite sets, and diagonal proofs
that the set of rational numbers is denumerable while the set of irrational numbers is
not. We suggest that such an approach might help students to overcome the
difficulties they faced for what concerns infinity (e.g., Tsamir, 2001).
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11.2 Defining to be Able to Prove – The Case of Irrational
Numbers

For a long time, real numbers have been used in mathematical activity without being
formally defined. It was enough to know, from Eudoxus, that the rational numbers
fail to solve certain problems in mathematics, mainly with regards to magnitude and
measure. Relying on geometrical arguments to prove theorems of analysis has long
been a common practice. Bolzano was one of the first to address this issue in his
memoir on the Intermediate Value Theorem (Bolzano, 1817). Until the beginning of
the nineteenth century, the proof relied on geometrical considerations that he
considered inadmissible, as he claimed in the preface to the memoir. Despite this
strong concern, Bolzano did not give a full definition of real numbers. It was only in
the second half of the nineteenth century that Dedekind and Cantor provided formal
definitions of the real numbers in very different ways and with different motivations
which we recall below.

11.2.1 Defining Irrational Numbers by Cuts (Dedekind, 1872)

In 1872, R. Dedekind published an essay entitled: Stetigkeit und irrationale Zahlen.1

In this short text, Dedekind proposed a completion of the set of rational numbers
relying on the notion of cuts. He refers explicitly to an analogy with the intuitive
continuity of the graphic line that he characterized by the following “axiom”:

If all points of the straight line fall into two classes such that every point of the first class lies
to the left of every point of the second class, then there exists one and only one point which
produces this division of all points into two classes, this severing of the straight line into two
portions (Dedekind, 1963, p. 11).

1We use here the English translation by W. W. Beman in Dedekind (1963).



This inspired him regarding how to complete the set of rational numbers. He de nes
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a cut of the set of rational numbers with the standard order as a partition into two
subsets A and B such that every element of A is smaller than or equal to every
element of B. He then proves that there exist infinitely many cuts which do not
correspond to a rational number, and claims that: “In this property that not all cuts are
produced by a rational number consists the incompleteness or discontinuity of the
domain R of all rational numbers” (Dedekind, 1963, p. 15). Then, whenever a cut is
not produced by a rational number, he creates a new, irrational, number, Finally,
Dedekind proves that the new set, which consists of all rational and irrational
numbers, is complete for the cut procedure (i.e., in the new set, every cut is operated
by one and only one element of the set), that means, in other words, that it is
continuous.

In the preface of the text, Dedekind asserts that he felt the need for a truly
scientific foundation for arithmetic to overcome geometric intuition which he did
not consider a sound foundation for differential calculus. This concern echoes that of
Bolzano regarding the use of geometry for proofs of the Intermediate Value Theo-
rem. Such proofs are based on the idea that as soon as two straight lines intersect,
there is a point corresponding to the intersection. Dedekind proved that this is not
true if we consider the line of rational numbers. The creation of irrational numbers
allowed him to create a set such that the associated number line has this property of
continuity. Consequently, given two axes with a common origin and a unit on each,
the intersection of two geometric lines corresponds to a pair of real numbers. This
provides a theoretical foundation for our geometrical intuition, and a solid reference
for going back and forth between algebraic and graphic registers (e.g., conjecturing
the existence of solutions in the graphic register and then using the Intermediate
Value Theorem to prove it).

11.2.2 Defining Rational Numbers as Fundamental
Sequences (Cantor, 1872)

While working on trigonometric series, Cantor considered the need for developing a
theory of real numbers to be able to prove the uniqueness of the development of a
given function into a trigonometric series. He exposed it in the first paragraph of the
essay of 1872 on trigonometric series. Cantor defines an extension of the notion of
numerical magnitude that he will name in 18832 fundamental sequence: the concept
corresponds to what we call today “Cauchy sequences,” namely sequences of
rational numbers such that the difference between two terms of the sequence
becomes less than any assigned value beyond a certain rank, formally:

2This was a revised version of the initial text of 1872.
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Definition: a sequence u of rational numbers is a fundamental sequence if and
only if:

8ε 2 ℚþ�∃p 2 ℕ�8 n, mð Þ 2 ℕ2 n≥ p ^ m≥ p ) um - unj j< εð

(ℚ+� is the set of strictly positive rational numbers, and ℕ* is the set of non-zero
natural numbers.)

For Cantor, such fundamental sequences should converge. However, some of
these sequences do not converge in the set of rational numbers. We will not develop
here the theory by Cantor, but we would like to stress his concern to avoid presuming
the existence of a limit for a fundamental sequence of rational numbers before
having created the irrational numbers. Once his theory developed, Cantor
established the link with the number line by stating that, once an origin and a unit
have been chosen, each point is defined by its abscissa. He showed that in the case of
an abscissa not being rational, there exists at least one fundamental sequence that
determines it, and he added an axiom ascertaining that “for every numerical magni-
tude, there corresponds a definite point of the line, whose coordinate3 is equal to this
numerical magnitude” (quoted in Kanamori, 2020, p. 225).

11.2.3 Impact of the Way of Defining Real Numbers
on Proving

Comparing Dedekind’s and Cantor’s development of the set of real numbers high-
lights the intertwining between defining and proving.

The goal for Dedekind was to avoid having to rely on geometric arguments when
working in differential calculus. This leads him to take the continuity of the straight
line as a reference for its theoretical construction which appears as “a formalization
of the intuition conveyed by the continuity of the line” (Durand-Guerrier, 2016,
p. 339). In doing so, he identified the incompleteness as gaps in the rational line and
he chose a definition that allowed him to eliminate these gaps in one go. He was then
able to prove that the domain of real numbers was a complete ordered set. He then
proved the theorem:

If a magnitude x grows continually but not beyond all limits, it approaches a limited value
(Dedekind, 1963, p. 24–25).

This corresponds in modern terms to the theorem: “If a function is increasing and
bounded, then it admits a limit”.

Dedekind stressed that:

This theorem is equivalent to the principle of continuity, i.e., it loses its validity as soon as
we assume a single real number not to be contained in the domain R (ibid, p. 25).

3The author uses “coordinate” where we have used “abscissa”.



Cantor’s goal, on the other hand, was to prove a theorem on trigonometric series
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involving convergence problems that lead him to think of numerical quantities as
series with a specific property guaranteeing convergence (e.g., Kanamori, 2020,
p. 224). Once done, he was able to prove the uniqueness theorem, which had been
the motivation of his construction. Nevertheless, he also returned to the number line,
proving in its theory the one-to-one correspondence between the points on the line
and the real numbers. Hence both authors make explicit the link with the line through
an axiom: for Dedekind by using the analogy with a property of the geometric line,
which in his view captures the essence of continuity; for Cantor by introducing an
axiom making explicit the one-to-one correspondence between the set of real
numbers and the line as soon as an origin and a unit are chosen. Both Cantor and
Dedekind have elaborated the set of real numbers as a complete ordered set - if we
formulate it in modern terms - through very different ways. In the modern university
mathematics curriculum, both ways play a crucial role. The vision by Cantor is
linked to the role of fundamental sequences as a path for proving convergence of
sequences. The vision by Dedekind is closely linked to the concept of supremum,
which is difficult to master even by advanced students as shown by Bergé (2010).
While Cantor’s construction involves the concept of limit, in Dedekind’s approach
the central concept is order. In this regard, we hypothesize that offering students
activities aimed at promoting an adequate appropriation of the two approaches
would allow them to perceive the close relationship between defining and proving
for their own mathematical activity. An example of such activities could be devel-
oped in the case of the IVT already mentioned. Considering different types of proof,
relying either on adjacent sequences or on the supremum, and discussing why such
proofs do not hold when working on an interval in ℚ will contribute in our view to
such appropriation. Another example is presented below.

11.2.4 A Didactic Situation to Address Issues Related
to ℝ-Completeness Versus ℚ-Incompleteness

In Durand-Guerrier (2016), we presented a didactical situation aimed at fostering the
conceptualisation of the continuum (the completeness of the set of real numbers) by
discussing the existence of a fixed-point for an increasing function depending on the
domain of the function (Fig. 11.1).4 Among other didactic issues, this didactical
situation leads us to consider, at least in-action, the intertwining between the types of
numbers involved and the proving process. In this chapter, we focus on this aspect.
We first recall the outline of the situation and then we focus on this intertwining.

Looking at this statement, we foresee that the nature of the numbers in the
different questions will play a role. The first question concerns the initial segment
of the set of natural numbers, which are finite discrete sets. Generalisation with the

4For a priori and a posteriori analysis of this didactical situation, see Durand-Guerrier, 2016,
pp. 349–359.



interval on the set of decimal numbers (respectively of rational numbers) concerns an
interval of an infinite dense uncomplete ordered set. At the same time, the third
question concerns an interval of the set of real numbers (this is implicit), which is a
dense complete ordered set.
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Let us consider a function of {1, 2, … } into {1, 2, … }, where is a nonzero

natural number, and where is supposed to be increasing (including non-strictly 

increasing functions); show that there exists an integer such that ( ) = ; 

is named a fixed-point. Then, study possible generalizations in the following 

cases, with an increasing function.

1. : ∩ [0; 1] → ∩ [0; 1], where is the set of finite decimal numbers,

2. : ℚ ∩ [0; 1] → ℚ ∩ [0; 1], where ℚ is the set of rational numbers,

3. : [0; 1] → [0; 1],

or any other generalization.

Fig. 11.1 The fixed-point problem given to students

In the first case where the domain is a starting segment of the set of positive
integers, it is possible to construct a proof by reductio ad absurdum that relies on the
fact that every integer has a successor, that implies that:

8 p, qð Þ 2 ℕ2 p> q⟹p≥ qþ 1ð Þ

It is also possible to provide a proof by induction. Still, in both cases, the argument
relies on this property, closely related to Peano’s axiomatic definition of the set of
natural numbers. The students had not learned this definition, but the property was
available because it is often used in class.

Once moving to the set  \ [0; 1] or to the set ℚ \ [0; 1] we lose the successor
property because  and ℚ with their standard order are dense sets (i.e., for any pair
of elements, there exists an element in-between different from both initial elements).
Consequently, it is not possible to adapt the proof provided in the case of positive
integers. From a geometric point of view, it may seem obvious that any increasing
function satisfies the property. But this is not the case, precisely because -- as was
said by Dedekind -- there are infinitely many more elements on the number line than
in the rational number set (this counts also for the decimal numbers set). As expert
mathematicians aware of this incompleteness, we know that the statement is not true
for question 1 and 2, which means there are counterexamples. Finding such coun-
terexamples requires our referring to decimal (rational) numbers as objects owning
properties (semantic aspect). The fixed-point problem resorts to the following result:
given an ordered set E that is a complete lattice (i.e., every non-empty subset has
both a greatest lower bound and a least upper bound), every increasing function from
E on E has at least a fixed point. (See Appendix). In Durand-Guerrier (2016), we
have shown, based on Pontille et al. (1996), the relevance of this problem for raising
epistemological questions linked to ordered-completeness (the paper reports on a
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long-term experimental setting with volunteer students in grade 11 in France). Such
questions are crucial for an adequate conceptualisation of real numbers and are
nearly never addressed even in undergraduate studies. In the same paper, we also
reported that prospective secondary mathematics teachers, having followed an
Analysis course during their undergraduate studies, showed behaviours very similar
to those of the 11th graders for the three first cases: the initial segment of the set of
natural numbers, the interval  [0; 1], and the interval ℚ [0; 1].
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11.3 Enumeration, Infinite Sets, and Diagonal Proofs

In this section, we examine the intertwining between defining and proving in the case
of infinite sets. We first discuss defining infinite sets focusing on two contrastive
ways and considering the impact of the chosen way on proving. Next, we present
some issues of comparing the size of infinite sets, enlightening the intertwining
between defining and proving, focusing on the diagonal proofs by Cantor that ℚ is
denumerable while ℝ is not.

11.3.1 How to Define Infinite Sets?

As is well-known in history and philosophy of science, in the Dialogue on Two New
Sciences, Galileo Galilei (1638) discussed the following paradox: there are as many
squares of positive integers as positive integers, while there are many positive
integers that are not squares of positive integers. Such a paradox contradicts the
Aristotelian claim that the whole is greater than each of its proper parts. This leads
Galileo to reject the possibility of comparing infinite quantities, or more precisely, of
considering quantities that are potentially infinite as a whole. We learn from this that
it is possible to provide an unlimited list of elements in one-to-one correspondence
with the unlimited list of integers, in other words, an enumeration. However,
considering the whole collection of elements of such a list introduces a contradiction
with the Aristotelian principle recalled above because of the strict inclusion in the set
of natural numbers. Today, modern mathematics relies mainly on set theory, includ-
ing the definition of infinite sets. We present below two contrastive ways of defining
infinite sets.

11.4 Infinite Sets as Non-finite Sets

In his book “How to prove it,” Velleman (2006) claims:

One-to-one correspondence is the key idea behind measuring the size of sets and sets of the
form {1, 2, . . ., n} are the standards against which we measure the sizes of finite sets
(Velleman, 2006, p. 306).



Then, Velleman relies on this idea to de ne the relation to be equinumerous and
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provide definition of finite sets and then infinite sets, as non-finite ones.

Definition 7.1.1. Suppose A and B are sets. We’ll say that A is equinumerous with B if there
is a function f A→B that is one-to-one and onto.5 We’ll write A~B to indicate that A is
equinumerous to B. For each natural number n, let In= {i 2ℤ+ ∕ i≤ n}. A set A is called finite
if there is a natural number n such that In~A. Otherwise, A is infinite (ibid., p. 306).

The author notes that for a finite set, there is exactly one natural number n such that
In~A, which is named the cardinal of the set.

Thus, the definition of finite sets by Velleman appears as a formalization of the
intuitive notion of cardinal of a finite collection, as developed from primary school,
which underlies the abstract concept of natural number (e.g., Vergnaud, 2009, p. 85).
It is important to note that, for this definition, it is not necessary to refer to the infinite
set of natural numbers, which refers to the actual infinity as defined in set theory.
Indeed, it is sufficient to consider the unlimited list of natural numbers, which refers
to the potential infinity (a dynamic form of infinity, a process that continues
endlessly), which, as Fischbein (2001, p. 310) stated, is easier to conceive than the
actual infinity.

11.5 Infinite Sets as Violating the Principle the “Whole is
Greater Than the Part.”

In his essay “Was sind und was sollen die Zahlen,” published in 1888,6 Dedekind
defines an infinite set as a set that can be put in one-to-one correspondence with a
proper subset of itself, and a finite set is defined as a non-infinite set (Dedekind,
1963, p. 63). In doing so, Dedekind assumes a theoretical principle that violates the
Aristotelian postulate, which has long prevented mathematicians and philosophers
from accepting the consideration of infinite sets, as for example, C.F. Gauß in a letter
to Schumacher on 12 July 1831 (Peters, 1860).

In a way, Dedekind’s definition completes the movement initiated by Bolzano
(1851) in his short essay “Paradoxien des Unendlichen”, where he recognises the
property for infinite sets that: there exists a bijection between the set itself and a
proper subset of it but rejects the conclusion that the two would be equal in term of
equinumericity, as this would have contradicted strict inclusion (for a discussion in
French, see e.g. Sebestik, 1992, pp. 186–189).

5The author seems to use one-to-one correspondence as synonym of injective rather than bijective;
this would explain the precision that the correspondence is also onto (surjective).
6English translation by W. W. Beman in Dedekind (1963)
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11.5.1 Impact of the Ways of Defining on Proving That a Set
Is Infinite

We have seen above two different ways of defining an infinite set, one by Dedekind
(1888) the other in a modern textbook by Velleman (2006), which are likely to have
an impact on how to prove that a given set is infinite.

Having defined an infinite set as a non-finite one, Velleman (2006) assumes that
the definition of equinumerous can also be applied to infinite sets, with results that
are sometimes surprising” (op. cit. p. 307). To illustrate this, he proves that ℤ and ℤ+

on the one hand ℤ+ and ℤ+×ℤ+ on the other hand, are equinumerous (pp. 307–308).
He takes for granted that ℤ+is infinite, which of course, is intuitively true. According
to H. Benis-Sinaceur,7 this was the position of Cantor. As we have seen above, this
was not the case for Dedekind, who first defined theoretically infinite sets and then
proved that the set of integers is infinite. It is noticeable that the definition by
Velleman, of being infinite for a set as the negation of the property of being finite,
might direct one to engage in reductio ad absurdum to prove that a given set is
infinite. It is assumed that the set is finite; this allows one to consider a finite
enumeration (the finite list) of all the elements of the set; then, providing an element
of the set that is not in the list shows a contradiction. The conclusion is the rejection
of the initial hypothesis.

This way of defining finite set by Velleman is in a certain sense external because
it needs to refer to the starting segment of the set of positive integers. Consequently,
it does not explicitly address the paradox pointed out by Galileo and discussed
(among others) by Bolzano. However, asserting that the definition of equinumerous
can be applied to infinite sets is a theoretical demand leading to giving up Aristotle’s
postulate “the whole is greater than the part.”

In Dedekind’s approach, the one-to-one correspondence between a given set and
a subset plays the key role as a characteristic of infinite sets. This way of defining
infinite and finite sets is internal. This could direct one to prove that a given set is
infinite, finding a one-to-one correspondence between the set and one of its proper
subsets. This way of acting leads to proving that the set ℕ of natural numbers is
infinite by considering the one-to-one correspondence ϕ betweenℕ and the subset of
perfect squares defined by ϕ(n)= n2;8 this solves theoretically the paradox raised by
Galileo.9

This is a new illustration of the intertwining between defining and proving
practices in mathematics activity. In both cases, the aim is to be able to deal with
an infinite set by “accepting theoretically” that while in a proper subset of a given set
A, there are fewer elements than in A (some elements in A are not in the subset), it
could be considered that there are as many elements in both. In both cases, the one-

7In a footnote in Dedekind (2008), p. 173 (our translation).
8Or other subsets: e.g. the subset of even (odd) numbers.
9This is not the way chosen by Dedekind who defined simply infinite systems and named the
elements of such a system natural numbers (Dedekind, 1963, 67–70).



to-one correspondence plays the central role, and it is necessary to create an object,
but they are of different types: an element that is not in the list in the first case (the
proof by contradiction); a function in the second. Nevertheless, it is not always easy
to find a relevant object in both cases.
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In the same period where Dedekind was defining theoretically the concept of an
infinite set, Cantor, taking first for granted that the set of integers was infinite,
investigated questions relative to the comparison of the size of infinite sets.

11.6 How Big Is Infinity?

The informal question in the title is known to be at the source of the work by Cantor
that led him to define transfinite numbers. More precisely, Cantor shared with
Dedekind in November 1873 the concern below:

He asked whether it is possible to assign in a unique way (by this, he meant unique in both
directions) the set (‘Inbegriff’) of the positive whole numbers to the set of positive real
numbers. He guessed that this is not the case (Jahnke, 2001, p. 178).

Cantor first paid interest to countable sets. Intuitively, these are sets that can be
written down in a list; mathematically, these are sets that can be put in one-to-one
correspondence with a subset of the set of natural numbers; a countable set may be
either finite or denumerable (Borowski & Borwein, 2002, p. 125).

As already pointed out above, for finite discrete collections, this conforms to the
practice of enumeration, which is related to the everyday experience of pointing at
objects to be able to determine the number of elements (the cardinal) of the
considered collection. After having given the formal definition:

Definition 7.1.4. A set A is called denumerable if ℤ+~A. It is called countable if it is either
finite or denumerable. Otherwise, it is uncountable (Velleman, 2006, p. 310).

Velleman comments on it:

You might think of countable sets as those sets whose elements can be counted by pointing
to all of them, one by one while naming positive integers in order. If the counting process
ends at some point, then the set is finite; and if it never ends, then the set is denumerable
(ibid, p. 310).

On the mathematical side, following the definition, a set A is countable iff there is an
injective function from A to ℤ+. If there is also an injective function from ℤ+ to A,
then there exists a bijective function from A to ℤ+ (Cantor-Schröder-Bernstein-
theorem); hence A is denumerable (countable infinite).

The set of perfect squares of positive integers is a countable subset of the set of
positive integers, and the process of counting “never ends” by construction. For such
a set, the “intuitive” definition above might be enough to be convinced that it is
denumerable since there is a relatively natural way of counting, but this is not always
the case. Moreover, it seems relatively clear that this definition is more consistent
with the idea of potential infinity (unlimited list) than actual infinity (infinite set).



Nevertheless, it suggests the idea of enumeration, a kind of one-to-one correspon-
dence that might be sought when trying to prove that a given set is denumerable.
Moreover, this makes explicit that the interest in countable sets is related to the
possibility of expanding our experience with finite sets to infinite sets. This may have
given Cantor the idea of proving that ℚ is denumerable by concretely proposing an
enumeration.
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11.6.1 The Diagonal Proof That ℚ Is Denumerable

The idea that ℚ is infinite countable (denumerable) is not intuitive (e.g., see
Branchetti & Durand-Guerrier, 2018, p. 14) because with its standard order it is a
dense set, that makes it impossible to isolate elements as is the case for discrete sets,
and that appears to be a condition for enumerability. As underlined by Jahnke (2001,
p. 193), this presupposed a complete change of perspective. The classical proof is
done in three steps. The first step consists in providing an enumeration of the
Cartesian product ℕ� × ℕ�, then to consider the canonical injection f from ℚ+� to

ℕ� × ℕ� defined by f p
q

� �

= p, qð Þ where p and q are relatively prime, and finally, to

provide a bijection from ℚ+� onto ℚ. What we learn from this proof is that Cantor
relies on our common experience of the finite to develop a method of enumeration,
instead of looking directly for an explicit bijective function. In the case of the
diagonal enumeration ofℕ� ×ℕ�, it is possible to express the corresponding function
as an algebraic one. However, it would be surprising if such a function could be
found directly, without relying on an enumeration. The diagonal procedure refers to
defining a denumerable set as a set for which it is possible to provide an enumeration.
This is a way of providing a one-to-one correspondence. It is noticeable that
enumerable is sometimes used instead of denumerable and that in this context,
“one-to-one correspondence” is in general preferred to “bijection” or “bijective
function.”

11.6.2 The Diagonal Proof That ℝ Is Not Denumerable

The proof that ℚ is denumerable with the diagonal procedure was first written by
Cantor in 1873. As we mentioned above, the question of whether the set of real
numbers was denumerable or not was the question shared by Cantor with Dedekind
in November 1873. One year later Cantor published a paper (Cantor, 1874) with a
proof that the set of algebraic numbers was also denumerable, while the set of real
numbers was not. In 1891, Cantor provided a simpler proof of the result using
sequences. In line with the diagonal proof for the set of rational numbers, the
question turns on the following: is it possible to provide an enumeration of the set
of real numbers? The proof consists of first showing that, for any enumeration of



binary sequences, it is possible to give a sequence by a diagonal procedure which is
not present in the enumeration. A proof by reductio ad absurdum allows one to prove
that the set of binary sequences is not enumerable.
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The same diagonal argument is then used to prove that the set of real numbers
between 0 and 1 is not denumerable. A real number between 0 and 1 can be defined
as a sequence of integers between 0 and 9 through its proper decimal expansion.
Given an enumeration of real numbers, it is always possible to provide an element
not in the enumeration by considering the sequence of terms on the diagonal and to
change every term into a different term (e.g., changing to 0 if non 0 or to 1 if 0; or
changing to n + 1 if n is between 0 and 8, and changing 9 to 0). The new sequence
represents a real number but differs from all the sequences in the enumeration. By
reductio ad absurdum, this shows that the set of real numbers is not denumerable.

The proving process relies on several ideas: a real number can be represented by a
sequence, for example, by enumeration of the digits in its decimal expansion; if a set
of sequences is enumerable, it can be listed; if not, given an enumeration of the
sequences of the set, it is possible to provide a sequence that is not in the list, which
presents a contradiction.

One might wonder why such proof could not work for the set of rational numbers
proved to be denumerable. An argument is that in an enumeration of a list of
sequences corresponding to rational numbers, there is no assurance that the sequence
built from the diagonal would be a periodic one. In fact, it is possible to provide a list
of sequences of rational numbers such that the diagonal sequence is not periodic.
Hence, we cannot assert that in every such enumeration, there is a sequence
representing a rational number out of the list; this, of course, is consistent with the
proof that ℚ is countable (for a discussion in French and an example with the
diagonal sequence representing the number π which is known to be irrational, see
Vidal, 2003).

This illustrates once more the intertwining between proving and defining. Indeed,
showing that the proof does not hold for the set of rational numbers needs one to
consider the characterization of rational numbers as periodic decimal expansions. In
contrast, the diagonal proof of denumerability relies on the characterization as a ratio
of non-zero integers.

11.7 Didactic Implications

Moving back to our initial question, we will draw what we consider to be the main
contributions for addressing the broad research question: “how can we improve
students’ conceptualisation of real numbers?”

The report of the experiment of the fixed-point situation. in Pontille et al. (1996)
showed its potential for engaging students in intertwined proving and defining
practices. Indeed, students were able to address relevant aspects of the nature of
the numbers considered: (1) they successfully used a property specific to ordered
discrete sets; (2) they raised and solved the question of the possibility that for a



function with domain in  or ℚ, the graphical representation may show an intersec-
tion point that does not correspond to a fixed-point of the function. As we discussed
in the introduction, this is an important feature of incompleteness that appears at this
level (grade11) as a concept-in-action (Vergnaud, 2009); (3) the search for a
counterexample in the case of the set of decimal numbers leads them to consider a
decimal as a particular case of rational number; (4) the search for a counterexample
in the case of the set of rational numbers makes them aware that an affine function
with rational coefficients always has a rational fixed point, and that a well-chosen
quadratic function could provide a counter-example. Hence, this situation presents
on the one hand, the density, and on the other hand, the incompleteness of the set of
decimal (rational) numbers. In addition, as reported in Durand-Guerrier (2016),
observations made in implementation of a module for prospective secondary
teachers show that this fixed-point problem is likely to illuminate the role of
completeness in real analysis and the fact that a subset of the set of real numbers
is not necessarily complete (Durand-Guerrier, 2016, pp. 357–358). As we saw in the
introduction, for the Intermediate Value Theorem (IVT), the completeness of the
interval on which the given function is defined is a necessary condition of applica-
tion, which usually remains implicit in the lectures. In our view, the results that we
just mentioned confirm the possibility, on the one hand, and the relevance, of the
other hand, of addressing these issues in the secondary/tertiary transition, by design-
ing appropriate didactical situations. We have already mentioned the possibility of
addressing the issues of completeness/incompleteness by discussing the conditions
of application to the IVT. This could help students to understand why the graphical
reading of the coordinates of an intersection point might be misleading in some
cases, but not in all cases, thus helping them to have a balanced use of the
relationship between the numerical and graphical registers: neither unconditional
confidence, nor complete rejection. In addition, the nature of numbers involved
would be discussed, including the search for counterexamples, as we mentioned in
the analysis of the fixed-point problem.
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In the second section, the comparison between the two contrasting ways of
defining infinite sets introduces two points of view useful in calculus courses:
enumeration on the one side as one-to-one correspondence with the list of natural
numbers; bijective function between a set and a proper subset. The diagonal proof by
Cantor that ℚ is denumerable resorts to the first point of view and emphasizes the
fact that the enumeration provides a discrete order on ℚ. In contrast, ℚ with the
standard order is dense. As Branchetti and Durand-Guerrier (2018) show, this may
not be clear, even for advanced students. The diagonal proof by Cantor that the set of
real numbers is not denumerable relies on the representation of real numbers as
sequences corresponding to their decimal expansion, and the proof that this diagonal
argument does not apply for the set of rational numbers relies on the characteristic of
rational numbers as periodic decimal expansions. Examining the epistemological
paths suggests working on various aspects of infinity at the secondary-tertiary
transition: introducing Dedekind’s theoretical definition to solve the Aristotle’s



paradox and engaging in proofs that some sets are not finite; developing enumeration
practices for countable sets, this being related with discrete mathematics and com-
puter science; discussing the relations between approximations based on potential
infinity and limits based on actual infinity (Durand-Guerrier & Tanguay, 2018,
p. 33). We hypothesize that these are prerequisites for students to understand the
scope of the proof by Cantor that the set of real numbers is not denumerable, thus
opening for the theory of transfinite numbers at a more advanced level.
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An additional comment is a strong need for this kind of work in mathematics
teacher training. Indeed, as pointed out by Winsløw and Grønbæk (2014).

In high school, calculus is one of the most advanced topics, and it is usually taught in a quite
informal style, leaving the teacher with delicate choices and tasks of explanation (p. 61).

Due to the role of the back-and-forth between numeric register and graphic register
in secondary school, one would expect an adequate understanding of the
ℚ-incompleteness / ℝ-completeness and the link with the corresponding number
line by secondary teachers (Branchetti & Durand-Guerrier, 2018). Although in
general not mentioned in the curriculum, both potential infinity (e.g., a counting
process that never ends) and actual infinity (as defined in set theory) are present in
Calculus at the secondary level and are a possible source of difficulties that need to
be recognized and addressed by teachers (Fischbein, 2001).

11.8 Conclusion

In this chapter, we explore the relationship between defining and proving, highlight-
ing that these two practices at the core of mathematical activity are closely
intertwined. In the first part of the chapter devoted to the creation of irrational
numbers by Dedekind and Cantor, respectively, we have shown that the paths
chosen by each author to reach a formal definition that satisfies them are closely
linked to his search for a proof. In the second part of the chapter, we have discussed
two different approaches for defining infinite sets. In the last section, we have
discussed some didactic implications. Further investigations are needed to confirm
the potentialities suggested by the epistemological study. Emphasising the
intertwining between defining and proving instead of the relationships between
definitions and proofs opens new research avenues on student’s practices at the
secondary/tertiary transition. In our view, this is likely to deepen students’
conceptualisation of real numbers and of infinity beyond the mastering of technical
skills.
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Proof of the existence of a fixed-point for an increasing function f from [0; 1] to
[0; 1].

Let A be the subset given by A = {x [0;1]|f(x) ≥ x}.
A is a non-empty subset of the set of real numbers (0 A) and is bounded above.
Hence, it has a supremum α.
Let us prove that α is a fixed-point for f.
Let x be an element in A. Since x ≤ α and f is increasing, f (x) ≤ f (α);
hence f (α) is an upper-bound for A; since α is the supremum of A, α ≤ f (α) (1).
Since f is increasing, from (1) we infer that f (α) ≤ f (f (α)).
This means that f(α) is an element of A;
as α is the supremum of A, f (α) ≤ α (2).
From (1) and (2), we conclude that f(α) = α, e.g., α is a fixed-point for f.
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Chapter 12
Developing Mathematics Teaching
in University Tutorials: An Activity
Perspective

Barbara Jaworski and Despina Potari

Abstract In this chapter, we give an example of practice-oriented research in small
group tutorials at university level, focusing on the tutor’s pedagogical practice for
promoting her students’ mathematics meaning-making (MMM) and her own devel-
oping knowledge in teaching practice. In particular, we analyse, using grounded
theory techniques, episodes from a tutorial in Linear Algebra. We focus on the
interactions between the tutor and the students and the tutor’s interpretations of
students’ MMM. Adopting an Activity Theory perspective, we seek relationships
between the tutor’s actions and goals in the activity of tutoring, with emerging
tensions related to students’ outcomes. Our analysis in the different layers of the
activity indicates the complexity of the tutoring, identifying contradictions internal
to the activity. These contradictions can be seen as central to practice, as revealed in
practice-oriented research, and to a methodology in developing mathematics
tutoring.

Keywords University tutorials · Contradictions · Activity theory · Developmental
research · Teacher goals · Teacher questioning

12.1 Introduction

Practice-oriented research in university teaching of mathematics in this chapter is
developmental research that relates closely:

1. the development of students’ understandings of mathematics and mathematics
meaning making and
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2. teaching design and practice, and the developing insights of the teacher in
interacting with students.

We focus specifically on development of teaching in small group tutorials that
inquires into the pedagogical practices focused on students’ mathematical
meaning-making (henceforth MMM), and the decisions and tensions that the tutor
faces. We build on previous research in this area: for example, Nardi, Jaworski and
Hegedus studied teaching in traditional Oxford University tutorials, characterising
their findings through a “Spectrum of Pedagogical Awareness” (SPA – Nardi et al.,
2005) in which knowledge and use of pedagogy were ‘measured’ alongside the
conveyance of mathematical concepts, and comparison of tutors’ pedagogic
approaches (Jaworski, 2002). More recent reports on tutorial teaching come from
Jaworski and Didis (2014) and Abboud et al. (2018) both of which we draw on
further below.

It is well documented within university culture that the most common form of
teaching at university level is lecturing: students are used to listening to their
lecturers, copying from the board on which the lecturer writes, and going away to
work by themselves on problems set by their lecturer. In a lecture culture, they are
unfamiliar with being asked to express their own mathematical understandings:
particularly, for them, speaking mathematics is extremely uncommon (e.g. Alsina,
2001; Artemeva & Fox, 2011; Pritchard, 2010; Sweeney et al., 2004). Even in
tutorials, in an observation study, Jaworski (2002) pointed to the most common
form of tutoring being exposition by the tutor; Sweeney et al. (2004), from inter-
views with students about tutorials, offered several reasons for students’ silence, one
being that students were afraid of being laughed at by their peers; Mali (2016), in
observation of 26 tutorials in one university, found a spectrum of teaching
approaches and student verbal contribution from students’ silence to oral interaction.

Thus, in our study, familiar with this history of university teaching, the tutor’s
intention was to use a pedagogy focusing on MMM that enabled students to engage
with mathematics, to express their understandings of mathematical terms and con-
cepts, their personal meanings, and to build on insecure meanings through tutor and
peer interactions in tutorial dialogue. Our research focus is practice-oriented in so far
as we form a collaboration between researchers and the tutor-researcher. The
practice here is the practice of tutoring to facilitate students’ MMM. The “practice”
involves students engaging with and making meanings of the mathematics they
encounter; also, the tutor engaging and making meanings of pedagogic approaches
and her use of pedagogic tools to engage the students in accord with her goals for
their learning and understanding. We analyse data to determine relationships
between the tutor’s use of these tools and what she was able to learn about students’
MMM in linear algebra. In doing so, we refer to the overall ‘activity’ of the tutorial in
all its parts and use the term ‘activity’ in the sense of activity theory as we explain
below.
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12.2 Practice-Oriented/Close-to-Practice Research

In 2018, BERA, the British Educational Research Association, commissioned a
study of what they called “Close to Practice Research” (CtP – Wyse et al., 2018),
addressing the overarching research question, ‘How can high quality close-to-prac-
tice research be characterised and enhanced for education in the UK?’ In particular,
they sought to inform the BERA statement on CtP as well as the national Research
Excellence Framework (REF – ref.ac.uk), the system for assessing the quality of
research in UK higher education institutions. Following a ‘rapid evidence assess-
ment’ of published research papers that focussed on CtP research, the following
definition emerged (Wyse et al., 2018), which also fits very well with our own study
of tutorial teaching.

Close-to-practice research is research that focusses on aspects defined by practitioners as
relevant to their practice, and often involves collaborative work between practitioners and
researchers (p. 1).

Our study involved the tutor-researcher (first author), one researcher (the second
author) and two research assistants who supported data collection, the analytical
process and associated theorising. With respect to the above definition, the tutor-
researcher is a practitioner and also a researcher. As a practitioner she has goals for
her students within the practices and culture of the university setting, focused on
students’ mathematical meanings and their development. As a researcher, together
with her colleagues, she seeks to make sense of the ways in which her goals for her
teaching and for her students’ learning are realised (or not) and the issues and
tensions that are a force for influence in achieving her goals. In terms of the SPA
(Nardi et al., 2005), we would say that she is working at the fourth level which they
describe as “Confident and articulate: involving considered and developed pedagog-
ical approaches designed to address recognised issues; recognition and articulation
of students’ difficulties with certain well-worked-out teaching strategies for
addressing them; recognition of issues and critiquing of practice (p. 293).”

We take further the analysis in Jaworski and Didis (2014) and Abboud et al.
(2018). For example, these papers included an extract from a tutorial in which the
main pedagogical tool was “questioning”. There, the tutor’s use of questioning was
designed to reveal students’ understandings of multivariable functions. Jaworski and
Didis (2014) identified two different teaching goals in relation to students’ MMM:
one was to promote and the other to discern students’MMM. They argued that these
two goals are often in tension, and they analysed the tutor’s questioning in an attempt
to see positive relations between questioning and students’ MMM.

The tensions and the implied contradictions through the analysis of the same
episode were more elaborated in the paper of Abboud et al. (2018) by using an
activity theory perspective. The use of ‘activity’ there, and here, is the activity of
university education in mathematics manifested in the tutorial. The tutor uses
different means to mediate mathematical meaning; this creates tensions between
the mathematical ideas that the tutor wants the students to understand and the ways
she interacts with them and promotes the dialogue. Another tension discussed in the
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paper of Abboud et al. (2018) relates to the division of labour between the tutor and
the students, implying possibly different goals. The tutor aims that the students
develop a deep understanding of mathematics, while the students’ goals include
being successful in the course assessment which, for them, may imply that they need
to be able to use more algorithmic procedures.

In this chapter, we analyse tutorial interactions from another tutorial in the same
corpus of data, this time, in the context of Linear Algebra. We focus on pedagogical
tools in and beyond teacher questioning. Pedagogical practices (including the use of
tools) are indicated through the actions and goals of the tutor in her attempts to
engage students meaningfully with mathematics. These actions and goals are embed-
ded in the activity of tutoring in the context of the tutorials with object the students’
MMM. We illustrate these practices through selected episodes and point to associ-
ated tensions and contradictions in the activity.

12.3 Our Use of Activity Theory

We draw on Leont’ev (e.g., 1979) with attention to the three layers of activity (see
Fig. 12.1) to link actions and goals to activity and its motive or object. According to
Leont’ev, “human activity is the non-additive, molar unit of life . . . a system with its
own structure, its own internal transformations, and its own development . . . moti-
vated within the sociocultural and historical processes of human life” (Leont’ev,
1979, p. 46). The actions and goals are central to the activity which is engaged and
depend on operations and conditions in the environment in which activity takes
place. According to Leont’ev, motive may not be conscious, whereas the object and
goals are always conscious.

In what follows below, we see the activity to be the activity of university
education in mathematics manifested in the tutorial; motive/object to be the desire
of the tutor to foster students’MMM; tutor’s goals to be her declared (to herself and

Fig. 12.1 Contradictions
and tensions in Leont’ev’s
three layers of activity

Activity   Motive/Object

Actions Goals

Operations Conditions

CONTRADICTIONS

TENSIONS
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others) intentions for achieving her object of activity; operations and conditions to
be factors relating to the achievement of the object through actions related to goals
(examples are the university infrastructure including curriculum and examinations,
timetable, lectures and tutorials, as well as levels of culture affecting education,
teaching and learning etc.).

The process of achieving the tutor’s goals may lead to effective moments in the
interaction and overall positive outcomes for the students. For situations in which
this is not the case, we seek out the tensions in the interaction between the tutor and
the students as well as the underlying contradictions in the activity. These tensions
are often embedded in the activity as the participants (the tutor and the students)
create their own images of the object of the activity (students’ MMM). In our case,
the tutor (as subject) interprets the object of the activity as students’meaning making
while the students (as subject) may interpret it differently (for example, as being
successful in the course assessment). These different perceptions of the object of
activity often indicate tensions which appear in the actions of the subject related to
difference between outcomes and goals. These tensions imply contradictions at the
level of the activity, and as Roth and Lee (2007) argue “refuse to go away” (p. 187).
They often indicate tensions between theory and praxis, epistemological and onto-
logical aspects of human development or the disjunction between individual learners
with other learners and their social environment. Referring to the work of Il’encov
(1977) they see contradictions as accumulated inner contradictions at the level of
activity and not “surface expressions of tensions, problems, conflicts and break-
downs” (p. 203). Similar contradictions exist in the way that the subject (here, the
tutor) experiences, through division of labour (the different positions and roles of
tutor and students), the activity as a whole (e.g., the educational environment, its
affordances and constraints) and the particular (e.g., the particular interests of the
individuals).

Stouraitis et al. (2017) elaborated further the meaning and the role of these
contradictions in mathematics teaching and its development. They classified the
contradictions on the basis of their dialectical character (called dialectical opposi-
tions). Examples of dialectical oppositions related to mathematics were the pairs:
structure—process, conceptual understanding—procedural fluency, intuition—
logic. Dialectical oppositions such as individual–collective, teacher’s guidance –
student’s autonomy and quality – quantity were of pedagogical character.
Interpreting why two teachers coped with a particular contradiction (intuition and
logic) in different ways, they considered the role of the professional communities in
which these two teachers participated and their impact on the way they used
curriculum recourses. Barab et al. (2002) consider tensions among the components
of an activity system as a way to understand contradictions within the system.
Tensions are the manifestations of contradictions; they can be cognitive and emo-
tional emerging at the level of interaction or in the process of self-reflection
(Chapman & Heater, 2010). In our study, we identify the emerging tensions in the
actual interactions between the tutor and the students and also in the tutor’s self-
reflection. We consider tensions at the layers of actions and goals and their opera-
tions and conditions where the tutor uses specific tools to design the tutorials,
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interact with the students and reflect on them. Contradictions are the broader
interpretations of these tensions at the activity level as we have elaborated in the
previous paragraphs.

12.4 Meaning Making

There is a considerable literature on MMM at a range of levels (Kilpatrick et al.,
2005). For example, first, Ben-Zvi & Arcavi, 2001 suggest that making meaning in
mathematics is a process of “socialisation” into the “culture and values of ‘doing
mathematics’ (‘enculturation’)” (p. 35). We take this idea further in an activity
theory perspective below. Second, we can think of meaning making as making
connections, both within mathematics and to the world beyond mathematics. Noss
et al. (1997) write “[M]athematical meanings derive from connections: intra-
mathematical connections which link new mathematical knowledge with old and
extra-mathematical meaning derived from contexts and settings which include –
though not uniquely – the experiential world” (p. 20). Third, Nardi (2008) refers to
students “mediating mathematical meaning through symbolisation, verbalisation and
visualisation” (p. 111), suggesting that students experience the tension between the
need to appear to be mathematical (i.e., using the symbols etc. appropriately), or to
be mathematical (make sense of, or understand the meanings of the concepts).
Meaning-making has been studied in the context of interaction between the teacher
and the students or the students themselves, usually in the setting of a school
classroom. The work of Cobb et al. (e.g., 1990) has been influential in studying
the emergence of mathematical meaning in the context of classroom interaction,
making links to classroom norms, both social and socio-mathematical, that are
established in the classroom. Yackel (2004) writes that “meanings grow out of social
interaction, each individual’s personal meanings and understandings are formed in
and through the process of interpreting that interaction” (p. 5).

Scott (1998), adopting a Vygotskian perspective, has developed a framework that
has as a major strand “Supporting student meaning making” that includes the forms
of pedagogical intervention of promoting shared meaning and checking student
understanding. The authoritative discourse of the teacher’s interventions is mainly
expressed by the transmissive function of teacher talk while the dialogic discourse is
realized through the teacher’s attempts to encourage students to express their ideas
and debate points of view. Finally, the pedagogical interventions such as scaffolding
are related to the zone of proximal development and a gradual withdrawal of
assistance from the teacher to give responsibility to the student.

While Cobb and his colleagues designed classroom activity together with the
teacher to promote constructivist goals (i.e., teaching designed on the basis of the
researchers’ theory), Scott’s analysis is that of an educator-researcher analysing the
practice of teaching and presenting a theoretical model (i.e., researcher generating
theory from his observations of teaching practice). In close-to-practice research, we
examine teaching in its raw state along with the developmental goals that underpin it



Our research questions, developed through several stages of analysis, are:

12 Developing Mathematics Teaching in University Tutorials: An. . . 251

where the teacher and the researcher collaborate. The aim of this study is neither to
measure the teaching against prescribed teacher activity nor to fit a theoretical frame,
but rather to reveal the goals and actions of the activity setting and offer insights to
the ways in which activity embodies tensions and contradictions within close-to-
practice research.

12.5 Methodology

We take a close-to-practice perspective within developmental research: that is
research which informs ongoing practice as well as studying its development. The
practice is that of tutoring. The tutor engages in tutoring, acting according to her
goals for her students and developing her practice through actions and reflections.
The research process offers a medium for reflection and hence for development of
practice.

This practice takes place in a UK university in which first year mathematics
students are placed into small groups (5–8) for tutorials (one hour per week for
12 weeks) with a mathematics tutor who is also their personal tutor for the whole of
their degree. These students attend lectures with lecturers from the mathematics
department who provide example sheets of problems for students to follow up their
lectures. Tutors address students’ questions about their mathematical work on the
topics covered in lectures. We collected data from one semester’s tutorials.

Data were collected in the practice setting (the tutorial) by a researcher-observer
(one of the research assistants) who recorded and transcribed the words and actions
of the tutor and students. Analysis was done jointly by the researchers, including the
tutor-researcher who learned from the data analysis to influence future activity with
students (Jaworski & Didis, 2014). We use activity theory to analyse the develop-
mental process as tutor and students work (and learn) together and the tutor reflects
on their interactions. In particular, we recognise issues, tensions and contradictions
and analyse their contribution to the goals and outcomes of the practice we study.

We focus here on one tutorial (in week 8 of 12) in which tutor and students
addressed questions from the lecturer’s example sheet of 10 questions in linear
algebra: focusing on questions 1a, b, c, d (see Fig. 12.2).

1. What are the tutor’s pedagogical practices and their associated goals for promot-
ing the students’ MMM?

2. What can we learn from goals and outcomes in the activity and particularly the
issues, tensions and contradictions that can be discerned?

In (2) the ‘we’ includes the tutor, the researchers, and the wider research community
who are interested in such close-to-practice research.
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Fig. 12.2 Linear algebra questions

12.5.1 Analysis of Data

Through several stages of analysis, we analysed the tutor’s pedagogic practices in
relation to students’ engagement with mathematics, and focused on the issues,
tensions and contradictions recognised in this activity.

The tutor-researcher and the research assistants made an introductory pass
through the data adding detail to the transcriptions from their recall of the actions
in the tutorial (e.g., movement to and from the board, who was writing on the board
and what was written). An initial analysis, grounded in this data, then addressed the
action of the tutorial and its dialogue, seeking to make sense of the roles and
intentions of tutor and students using as a tool the ‘Teaching Triad’ (Potari &
Jaworski, 2002 – not discussed further here). The researchers read from the tran-
script, turn by turn, asking questions, making comments and forming initial codes.
The observer then made another version of the transcript, including the codes and
comments, and this formed the basis of another pass, turn by turn, through this
enhanced data. During this analysis, the tutor reflected aloud, expressed her inten-
tions for her interactions with the students and was questioned by her two colleagues,



revealing the goals presented above. This provided an initial attempt to address
tutor’s goals in relation to the observed action.

An important part of close-to-practice research is the involvement of the tutor-
researcher. Through reflection, she reveals what her intentions were in working with
the students. The analytical dialogue makes it possible to reflect on what occurred in
the tutorial and to critique her practice, much as an interview might have achieved.
The growth of awareness and understanding for the tutor, as the researchers address
the meanings involved in relation to the tutor’s actions and goals, are key elements
both of analysis and of development of teaching. Tensions are identified when the
tutor finds herself acting to satisfy one goal at the expense of another. In develop-
ment of teaching, it is not a case of removing the tension, but rather of becoming
aware of the choice in the moment (Mason, 2002), with the option to act differently,
or refine goals. Examples follow below.

A later further analysis between the tutor-researcher (first author) and her research
colleague (second author) took up overtly the questions relating tutor goals to
tutorial observations, starting to note areas of tension and/or contradiction. This
later stage of analysis enabled identification of key episodes relating to research
questions and a further critique and articulation by the tutor-researcher, prompted by
her colleague. From this later analysis, we identified 12 episodes from which we
have selected episodes which exemplify key elements of practice related to the seven
goals and associated tensions/contradictions. The extracts we present below show
examples of this analysis, addressing research question 1
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1. tutor’s attempts to support students’ meaning making- unpacking the meaning
of words; valuing students’ wrong solutions and building on them (Episodes 3
and 4)

2. building on students’ solutions to present a general statement, synthesizing/
exposing (Episode 5),

We also see sources of tension which we discuss below to address research
question 2.

12.6 Analysis of Dialogue in Key Episodes

12.6.1 Tutoring for Students’ Meaning-Making – Actions
and Goals

We have discerned 7 goals arising from the tutor’s critical reflections, prompted by
her research colleagues in the early stages of analysis and therefore becoming data
for the later stage: four concern desired student actions, G1 to G4, i.e., to get
students to:



of the relationship between goals and actions.
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G1
express what they ‘see’ (in informal language), their images, their connections,
their symbolic awareness, their thinking;

G2
get used to talking about the mathematical concepts, to express ideas in words,
and to link to formal mathematics representation;

G3
listen to each other and build on what another person expresses;

G4
feel comfortable about not knowing, and recognise that working together can
enable more than they could do alone.

three, G5 to G7, focus on the tutor’s own actions:

G5
to phrase questions in ways to which students can respond;

G6
to listen to the students and discern meaning from what they say;

G7
to maintain a focus on the mathematics that is important, without telling, guiding,
funnelling in ways that will foster a surface recognition without deeper meaning.

These goals together form a statement about pedagogy. However, goals have to be
interpreted into practice and it is ultimately the actions in practice that impact on the
students. Here we see an important aspect of CtP research: the research process
encourages the tutor to critique her own practice and hence become more conscious

12.6.2 The Practice of Tutoring – Summary of Tutorial – Key
Points

Although asked to do so, students have not offered any questions relating to the
current week’s lectures, so tutor (T) uses the example sheet from the Linear Algebra
lectures to choose suitable questions to work on. (Qu 1 a,b,c,d) – they provide
opportunity to rehearse key ideas and relationships (basis, vectors, span, vector
space, matrix, linear transformation . . .).

T asks students to work first on question 1b and gives time for this – there is a low
murmuring of conversation. In the discussion that follows, she uses a dialogic
approach, questioning, prompting and guiding students on key ideas and encourag-
ing them to participate. Students seem shy to give responses; it appears some of them
can see what is required but do not have the language to express it. They become
more willing to offer responses as the tutorial progresses. In the progress of the
tutorial, T asks two students (Alex and Julia) to present their writing at the board –
choosing them because they hint at understanding – either in what they say or what



In this section we present key episodes under the headings listed above.

to hear’.]
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they have written. What is written on the board becomes a focus for further
questions/input from T who offers certain meta-comments telling students what
she is doing, or why she does something. Questions 1a and 1d (omitting c due to
time pressure) follow in similar style.

12.6.3 The Episodes and the Grounded Analysis

1. Teacher’s attempts for meaning making – unpacking the meaning of words
(Episodes 3 & 4),

Episode 3, Turns 27–36. Dialogue with Julia
27 T: (says) So you start off with and (writes on the board) “The standard basis in

R3
”. Now, Julia, what is the standard basis in R3? . . .

28 S: (Julia) the identity matrix?
29 T: Is a basis a matrix?
30 S: (Julia) No
31 T: okay, what is the difference?
32 S: (Julia) Vectors?
33 T: If I asked to write down standard basis in R3 what would you actually write?
34 S: (Julia) we just write those three as a span [hard to hear – HTH]
35 T: Tell me symbol by symbol how to write the basis
36 S: (Julia) (says and lecturer repeats and writes it on the board) . . . curly bracket

and vector 1,0,0 and the vector 0,1,0 (lecturer asks “anything between those?”
and student says “comma”, lecturer say “right, go on”) and 0,0,1.

[Note: Three dots . . . indicates a very short pause or hesitation; HTH stands for ‘hard

This episode addresses the meaning of ‘basis’: what does basis mean for the
students? In dialogue with Julia, Julia is asked “what is the standard basis in R3.”Her
response “the identity matrix” is not correct, but, for T, who interprets what she
hears, it suggests a degree of meaning – although a basis is not a matrix, the columns
of the matrix can form the basis, so (the tutor asks herself) is this a confusion with
terminology or is it conceptual? To find out, T follows up with several questions to
prompt the student for more explication so that she can more clearly infer the
student’s meaning. In turn 35, a more explicit question allows Julia to present
what she understands: her responses at turns 32, 34 and 36 suggest that she has
confused similar symbolisation and terminology in meanings of basis and matrix. T
asks herself whether she could have gone more directly to the confusion by starting
with a more precise question such as those at turns 33 and 35. How appropriate were
the actions to the goals? Our interpretation is that the actions, the dialogue with the



In a similar style, questioning and prompting students, seeking to involve them all, T
emphasises the language of set, components of a set, vectors, vector space R3 and
links between them. In the dialogue following Episode 3 above, students have
articulated that a basis is a set – T asks, “a set of what?”
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student, reveal some of the confusions that can arise for students between concepts
and their terms. This informs T’s interpretations and thus contributes to her own
development and awareness of students’ meanings.

We see the tutor’s pedagogy here as asking questions to encourage students to
participate and voice their meanings, primitive though these may be (G1/G2).
Students should get used to being expected to respond, however imperfectly, and
as they respond, T gains a sense of their quality of meaning (G6). As responses are
made and terms used, other students can hear and become acculturated into the
language and relationships (G3). When T offers explanation, they can hear a correct
articulation of a concept (G2). Here there is a tension for the tutor in offering her own
explanations to be sure that students have heard a ‘correct’ version – but they heard a
correct version in the lecture, so why is this needed? How does the action fit with the
goals? To address this tension she tries to get students to respond to each other,
building the relationships collectively (G7) (e.g., as in Episode 4: 55–71). This also
creates tensions as we see in Episode 5.

Episode 4 Turns 44–61 Questions for All

44 S: (Carol) any vector in R3? (HTH)
45 T: do you agree with that, Alun?
46 S: (Alun) any three component vectors. . . yeah. . .
47 T: do you agree with that, Erik?
48 S: (Erik) yes
49 T: what do you agree with?
50 S: (Erik) any set of three components (his response fades)
51 T: any set of three components?
52 S: (Erik? HTH)
53 T: I am not just asking you to repeat what somebody else said. I am trying to find

out, do you actually know what we are talking about? (short pause – she points to
what is written on the board) What we have here is a set, curly brackets indicate a
set, in the set we have three elements separated by commas and each of them
vectors. So that is the basis you are given, and, Carol could you tell us again what
it was you said?

54 S: (Carol) any vector in set R3

55 T: Now, what is the condition for such a set of vectors to be a basis?
56 S: (Carol) they are linearly independent
57 T: the vectors must be linearly independent (short pause) and?
58 S: (Alun) Span in . . .
59 T: they must span in? . . . go on . . .
60 S: (Alun) span in R3

61 T: They must span in R3, so we are given a basis in the vector space R3; it is a set
of three vectors.



We continue here from the dialogue in Episode 4 above. Here we see T probing the
meaning of Julia who (it seems to T) has suggested that she sees some relationship
between the concept of identity matrix and the set of basis vectors.
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Here T overtly asks students to respond. She interprets students’ use of language:
some students give evidence of their development of meaning (G5, G6), for example
in the meanings of vector, set, basis and span in R3. At turns 53 and 61, she states her
own meanings for the terms (G7). At 53, we see her use of a meta-comment,
indicating to students that she wants them to try to articulate for themselves, not
just to repeat what someone else offers.

All these elements are part of her pedagogy in practice, where goals are
interpreted into actions. There are many ways of interpreting goals in practice. For
example, she wonders if perhaps she was too unkind to Erik at turn 53. She is aware
that students’ responses may result from hesitancy to express what they see or think
or indeed a wish to give an acceptable answer and thus escape further questions.
Here we see another tension for the tutor as she interprets what students say and
decides on an appropriate action. All of this is revealed in the tutor’s reflections, first
as she responds to students in the tutorial and subsequently as she reads and seeks to
interpret critically (post hoc) the tutorial interactions between herself and the
students.

12.6.4 Synthesizing/Exposing: Building on Students’
Solutions to Present the General Solution Method –
(Episode 5)

Episode 5 Turns 61–95 Building on Julia’s Ideas

61 (cont)T: mmm, somebody said something about the identity matrix a while ago,
who was that? Was it you Julia?

62 S: (Julia) it was me.
63 T: Right, when you were thinking about the set of vectors, you mentioned the

identity matrix; now what is the relationship between these? This set of vectors is
not a matrix. What is the relationship between that set of vectors and the identity
matrix?

64 S: (Julia) I don’t know.
65 T: But you thought of something didn’t you, when you said the identity matrix,

and I said, we are not looking for a matrix. But actually, your mention of the
identity matrix sort of indicated to me you could see a relationship between the
standard basis and the identity matrix.

66 S: (Julia) yeah because the vectors, if you (HTH) there would be a (HTH)
67 T: if you form a matrix from these three vectors, it would be the identity matrix, so

what you just expressed is a relationship between the standard basis and the
identity matrix
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[Note: We terminate this episode here, because of limitations on space, and include a
short part of Episode 7 which is part of our analysis of Julia’s MMM].

Episode 7118–128 (Section Only)
118

T: [T’s words, referring to writing on the board, omitted] Now okay!!
(Tutor cleans what Julia wrote on the board, because it is wrong)
Any thoughts? What will you to do? Perhaps in order to see that, because here

what we did worked because . . . [again she is pointing at the board]
119

S: (Julia)do we standardize the basis?
120

T: standardize the basis. What do you mean by that?
121

S: (Julia). . .(HTH)
122

T: I think you are on the right track. I think you mix two different things – come
back to . . .

[T continues to compare two solutions to show which of them provides the
required transformation.]

Here we see T encouraging/guiding/scaffolding Julia so that she can make sense of
the relationship between the set of vectors that forms the basis, and the identity
matrix. It could be that the words “relationship between” are unhelpful, perhaps
because Julia is not aware of what a ‘relationship’ implies. T rephrases, seeking to
convince Julia that she has expressed something valuable. The words “see the
relationship between the standard basis and the identity matrix” seem to encourage
Julia to say more about what she sees (G2), convincing T that Julia could indeed see
some relationship, even if this is still vague (G6). In any case, T has introduced the
word ‘relationship’ so that students can (she hopes: interpretation again) become
more familiar with what it implies mathematically G2). In Episode 5, an emerging
tension concerns the guiding/scaffolding, sometimes lengthy exposition by T versus
students’ autonomous work (individual or in groups).

12.6.5 The Tensions Manifested in the Three Episodes

In these episodes, in contrast with a familiar tutoring style of demonstrating pro-
cedures and articulating solutions for the students, tutoring can be seen as a series of
pedagogic actions that seek to involve the students: e.g., time for thinking and
writing (parts of) a solution; questioning and asking students to articulate a concept,
or some terminology, inviting a student to show a symbolisation on the board. This is
a slow and lengthy process, building on incomplete statements, partial reasoning and
interpretation of what is said. They could cover more questions from the example
sheet more quickly if she demonstrated solutions herself, but this does not fit with



Tensions are manifested by a perceived lack of fit between goals and actions.
Actions address tutor’s perceptions in practice, whereas goals are more distant from
the actions. Several tensions are revealed through the dialogue:
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her goals and actions. However, at times we see her shift into explanation mode,
expressing concepts herself so that the correct solution or reasoning could be heard
by the students.

The character of the dialogue can be seen to be controlled by T. She has chosen
the questions on which to focus; she gives time for students to work on a question
before they discuss it. Experience with the tutor group (this is week 8) demonstrates
that these students struggle with concepts, finding it difficult to articulate mathemat-
ical relationships. There is some evidence that she is gaining their trust, they are
responding even when they do not seem sure how to express what they see. One
student, Alex, is confident enough to write a solution on the board twice, and is
mostly correct, although he makes little contribution to voicing the mathematical
concepts himself. Julia, while more hesitant seem to gain confidence and, ultimately,
is willing to write at the board, and to volunteer a relationship (standardising the
basis) even when not asked directly (119).

Episode 3: A tension for the tutor lies with the occasions when she answers her own
questions, to be sure that students have heard a ‘correct’ version. The tension is
related to the difference between the tutor’s goals and (potentially) the students’
goals (e.g., conceptual meaning making versus getting the correct answer).

Episode 4: At turns 53 and 61 T offers her own meanings for these terms (e.g., basis
is a set of vectors in R3) She is aware that students may seek a correct building up
of a procedure they can reproduce in an assessment, or indeed a wish to give a
correct answer and thus escape further questions. The tension for the tutor is
related to balancing students’MMMwith the procedural fluency required usually
in the assessment.

Episode 5: an emerging tension concerns the guiding/scaffolding, sometimes
lengthy exposition by T versus students’ own articulations The tension involves
guidance versus students’ autonomy (doing it for themselves).

12.7 Analyzing the Episodes from an Activity Theory
Perspective

Through the grounded analysis of the data, we have illustrated the tutor’s goals and
actions and, to some extent, students’ engagement with mathematics; as well as
emerging tensions in the teaching in the tutorial context. Reflecting on the level of
the activity, the tutoring activity, allows us to go more deeply into relations between
actions and goals in the interaction between the students and the tutor and the
students themselves and to the achieved outcomes.

We view the tutor’s pedagogic practices through her actions and the associated
goals related to students’ learning and to teaching. Supporting students’ MMM



involved students in: expressing their informal ideas; talking about mathematics and
making formalisations; listening to each other’s ideas; and valuing collaboration
with their peers. Her goals for teaching included discerning students’ meanings,
using language accessible to students’, avoiding too close guidance that would not
allow students’ MMM. Specific actions included questioning, prompting, providing
input, unpacking the meaning of words, synthesizing students ideas and solutions to
more formal results, guiding/scaffolding, valuing students’ ideas even when incor-
rect, meta-commenting, controlling directions, encouraging students’ participation.
The goals and the corresponding actions were developed to achieve the object of the
tutoring activity, students’ MMM.
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To what extent these goals and the corresponding actions achieved the object of
the activity and resulted in positive outcomes for the students is not possible to
conclude from the data and the analysis of this study. However, we can see that there
was an increasing number of students who participated in the class discussion and
expressed their ideas to the extent seen in the above episodes, something that it is
usually uncommon in this setting. An interesting case is Julia who is very hesitant
but, nevertheless, comes to the board and shares her idea; although it is wrong, the
tutor addresses it to talk about a relevant mathematical idea that she knows that
students confuse. Julia seems to feel more confident and willing to contribute further.
Considering the actions and goals at the level of the activity of tutoring allows us to
see how these interrelate according to the planned and on the moment decisions of
the tutor in the light of students’ contributions and meaning making.

As we have indicated in our grounded analysis the process is not smooth, it
involves tensions that the tutor experiences that indicate contradictions in the activity
and in the way that the tutor and the students understand its object/motive. One
tension the tutor experienced was the focus on students’ MMM, seeking conceptual
awareness, while also aware that their concern for success in the assessment might
prefer to be given procedural clarity. This also implies an epistemological contra-
diction between conceptual understanding and procedural fluency characterized as
dialectical opposition in the study of Stouraitis et al. (2017). This dialectical char-
acter reflects also on the actions of the tutor who offers in Episode 4 her own
meanings of the basic mathematical terms while at other parts of the episode her
actions promote and attempt to discern students’ conceptual understanding. The
synthesis of these poles of the contradiction at the level of the activity allows
students’ engagement in mathematics and MMM meeting to some extent their
goal that it is to be successful in the assessment. Balancing these goals is something
that the tutor takes into account. The tension between rigour in mathematics and
students’ MMM implies also an epistemological contradiction close to what
Stouraitis et al. (2017) refer to as ‘the dialectical opposition logic versus intuition’.
Logic is more related to the rigorous and formal aspects of mathematics while
intuition to more informal and meaningful aspects of it. The tutor seems to handle
this contradiction by on one hand controlling direction to formalizations and on the
other allowing students to give informal and incomplete descriptions. Finally, the
tension between the tutor’s guidance and the students’ autonomy implies also a
contradiction referring to pedagogy. This contradiction relates to division of labour
in the teaching activity where usually the teacher has the authority to guide students



to achieve the object of the activity and the students usually do what the teacher asks
them to do. It also has a dialectical character in the tutoring activity as guidance and
autonomy are both sides of the same coin in the sense that they are inseparable in the
tutor’s attempt to achieve students’ MMM. The tutor allows students time to work
on the questions of the worksheet individually or in groups, express their ideas and
share their solutions but she also guides them to make sense of the meaning of basic
terms and develop strategies to solve the tasks.
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The study that we offer in this chapter, as an example of close-to practice
research, shows the complexity of the activity of teaching at the university level:
in particular in the tutorials, in the actions and goals of the practitioner, the tutor
often brings to the fore contradictions internal to the activity. Handling these
contradictions and attempting to achieve positive outcomes for the students requires
a continuous development of teacher thinking and consciousness in relation to the
activity of teaching. The double role of teacher as practitioner and researcher allows
this development and brings changes at the level of the activity and new realisations
of its object/motive.

12.8 In Conclusion

Close to practice research here delves into the close relationships of students and
tutor as they work together to develop meanings: mathematical meanings for the
students, student meanings for the tutor. They learn simultaneously within their own
action spheres, acting in relation to their own consciousness within the setting. The
tutor controls the action while wishing the students to take control of their mathe-
matics which is difficult for them (therein lies the tensions articulated above).
Students, hesitantly, respond to what they see the tutor to want or be asking for,
while constrained by their lack of mathematical confidence and fear of being wrong.
The tutor has to encourage, probe, prompt, question and challenge the students, and
nevertheless articulate the correct version of the concepts involved rather than leave
them wondering whether the answer was correct or not. The use of activity theory to
address tensions and contradictions, allows some theorisation of the sometimes
conflicting challenges the didactic situation encapsulates.

The example of the study we offer as a close-to-practice research at the university
level indicates several methodological/developmental issues related to the different
levels of analysis (from grounded approaches at the level of interactions to the global
level of the activity), and to the role of the researcher as practitioner who reflects on
her actions and generates new data for analysis. Our focus also on tensions and
contradictions helps us to develop new insights about the complex process of
teaching and researching at the university level. Becoming aware of the contradic-
tions and developing ways of handling them seems to be important for the develop-
ment of mathematics teaching and the professionalisation of the teacher. Extending
the research beyond this particular case study, involving more tutors/researchers
would bring to the fore more social and institutional issues and a methodology for
close to practice research and its contribution to developing mathematics teaching.
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Chapter 13
Lecture Notes Design by Post-secondary
Instructors: Resources and Priorities

Vilma Mesa

Abstract Drawing from 21 post-secondary mathematics instructors’ descriptions of
how they use resources to plan lessons, I reflect on processes of lesson planning and
identify three priorities instructors had regarding document design. Using various
records instructors created (maps of resources, responses to survey questions, lecture
notes) and following the documentational approach to didactics (DAD), I identified
resources, features of the lecture and lesson notes, and processes and rationales for
their production. As anticipated by DAD, instructors drew from a rich set of
resources to develop these documents, but they did so by prioritizing either content,
meaning of mathematical ideas, or assessment, as revealed by distinct instrumenta-
tion processes. Textbook content and individual preferences might help explain
these results.

Keywords Lesson design · Documentational approach to didactics · Resource
instrumentation · Teacher work · Lecture notes

Current conceptualizations of instructors’ work describe it as intrinsically akin to
design. The abundance of resources available to instructors to do such design work
requires that they engage in creative processes when selecting, curating, and using
these resources in order to address their goals and their perceived students’ needs
(Trouche et al., 2020). This creative process has been studied using the documen-
tational approach to didactics, which acknowledges that instructors may produce and
re-produce various types of documents for their work, using a rich system of
resources; this system is structured with different components each fulfilling differ-
ent purposes. Large scale studies of documentational work have been carried out
mostly with school teachers (see e.g., Gueudet & Trouche, 2012a) under the aegis of
school curriculum reform.
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However, school teachers operate under very different teaching conditions rela-
tive to post-secondary instructors. One significant difference is that schoolteachers
must conform to external regulations, guidelines, and expectations dictated either
nationally or locally and go through a rigorous certification process in order to be
allowed to teach. It is also the case that through their careers they have frequent
opportunities for continued professional development, which is mandated by their
contracts. In addition, at least in the United States, student performance on stan-
dardized examinations has been used as an accountability mechanism to establish
teacher and school effectiveness. Because of these conditions, there is usually more
funding allocated to support and understand work of teachers in schools. Such
conditions do not exist in the post-secondary setting; which courses are taught
tends to be defined at a program level and their content is primarily determined by
textbook availability. Individual departments may choose the textbooks, although it
is also common for instructors to make their own decisions about the textbooks and
materials they want to use. Instructors teaching in post-secondary settings are
typically not required to take any pedagogical training and how well students do
in their courses is rarely used as an indicator of their effectiveness. Moreover,
funding to study post-secondary teaching is not a priority for agencies that fund
educational research. More important for our case, is that distinct from K-12 settings,
as courses get more advanced, there are fewer resources available to instructors. This
might explain the small number of studies that have investigated this creative design
process in university and post-secondary contexts, and the reason why most of these
investigations are based on a handful of instructors (Gueudet, 2017; Gueudet &
Pepin, 2018; Hammoud, 2012).

We are interested in the creative process involved in teachers’ work at the post-
secondary level, precisely because of the contextual and institutional differences that
surrounds their work. We choose to focus on documents and their production
because they can help understand how instructors conceptualize their work and
how they use resources—specifically textbooks—given that instructors have auton-
omy in selecting them, especially in courses that are not departmentally coordinated.
Knowledge about post-secondary instructors’ work can provide the basis for
directing the design of curriculum materials that support lesson design, and eventu-
ally teaching, in this context.

A first step in building this knowledge necessitates an understanding of post-
secondary instructors’ work as they produce documents that support their teaching.
Using data from 21 instructors who taught a mathematics course in natural condi-
tions1 we explore the creation of one document that instructors used to teach a
lesson, and that they named “lecture notes.” We address the following questions:

• How do instructors describe the process of creating lecture notes for their
courses?

1The only expectation was for the instructors to use one of the textbooks in the project, a calculus
textbook (Boelkins, 2021), a linear algebra textbook (Beezer, 2021), and an abstract algebra
textbook (Judson, 2021).
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• What resources do instructors use when creating lecture notes?
• How are the resources instrumented to generate the lecture notes?

13.1 Theoretical Tools

We are interested in documentational genesis (Trouche et al., 2020) the process by
which a teacher engages in instrumented activity with a set of resources that have
been gathered for a specific purpose, a purpose determined by the class of situations
that are part of their professional work and that are bounded by a particular context.
In our case, a class of situations refers to planning calculus lessons for post-
secondary students and the context is determined by the specific goal of planning
the teaching of a particular topic—for example, the fundamental theorem of calcu-
lus, linear dependence, or groups. We chose the activity of planning lessons over
designing assessments because planning is likely to require more resources, as
instructors tend to rely on only their textbooks for generating assessments
(Leckrone, 2014), and because planning can give us insight into what teaching,
the enactment of those plans, might entail.

Using a set of resources involves the dual processes of instrumentalization—
directed at the resources and indicating ways in which the teacher takes from the
resources to fulfill a goal, and instrumentation—directed at the teacher, and indicat-
ing how those resources prompt some changes on the teacher. These process
encompass epistemic, pragmatic, interpersonal, and reflexive mediations through
which the instructor acquires new knowledge, skills, and practices—even if those are
not consciously recognized (Trgalova et al., 2019).

Similar to what happens with teachers in K-12 schools, the documentation in
post-secondary teaching includes looking for resources such as textbooks, instruc-
tional videos, visualizations, or paradigmatic problems that can be used to illustrate a
particular point; discussing ideas with colleagues; attending seminars; or consulting
previously generated documents (notes from prior courses, even from graduate
school). A main point of departure is that there is more independence about the
content that can be included in post-secondary courses, as there is no official body
that dictates what should be included in the courses.2 Universities and other post-
secondary settings decide on their own how to organize the individual courses which
usually results in individual faculty members making decisions about the textbook
and the course materials that they want to use for their courses.

In the documentational approach, a document is the result of the orchestration of
multiple resources through particular schemes of use (i.e., aims, rules of use,

2In the United States, and for some lower division courses, such as calculus, there are regulations
about what content should be covered that are established by the individual states to ensure
transferability of courses across institutions (see e.g., http://regents.ohio.gov/transfer/documents/
bringing-down-the-silos.pdf and https://www.ohiohighered.org/Ohio-Transfer-36/learning-out
comes for outcomes for Calculus I and Elementary Linear Algebra).

http://regents.ohio.gov/transfer/documents/bringing-down-the-silos.pdf
http://regents.ohio.gov/transfer/documents/bringing-down-the-silos.pdf
https://www.ohiohighered.org/Ohio-Transfer-36/learning-outcomes
https://www.ohiohighered.org/Ohio-Transfer-36/learning-outcomes
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operational invariants, and inference possibilities, see Trouche et al., 2020) of the
resources. We principally seek to infer the operational invariants, as those represent
rationales that guide the orchestration of the resources.

13.2 Methods

For this exploration we drew data from a large-scale study of use of open-source
textbooks in the United States (Beezer et al., 2018). The participants taught with one
of three textbooks over one semester: Abstract Algebra Theory and Applications
(Judson, 2021), Active Calculus (Boelkins, 2021), and A First Course in Linear
Algebra (Beezer, 2021), available in two formats, PDF or HTML. These textbooks
were chosen because they represent different levels of content in an undergraduate
mathematics curriculum in the United States: calculus is a first year course that is
taken by a large number of students as it is nowadays a requirement for many
programs; linear algebra is a course intended for mathematics and computer science
majors, usually taught in the second semester of the first year or in the second year of
the curriculum; abstract algebra is usually a course for math majors (including future
secondary teachers). We anticipated that the different audiences of the courses would
influence how instructors used their textbooks and other resources for their work. We
describe next the textbooks used.

13.2.1 The Textbooks

The textbooks used in this project have been written in PreTeXt (https://
pretßextbook.org), a purpose-built ‘design neutral’ markup language that allows
renderings of the textbook in multiple formats, online, and print (including Braille).
As open-access and open-source, they can be accessed from any device connected to
the internet and modified for personal use. When updates are done, they are nearly
immediately available. When viewed in the HTML format, they include features that
promote interaction (e.g., automatic and immediate feedback for individual solu-
tions, live computations in Python via Sage cells). Links called knowls open boxes
when clicked, so the reader gets access to specific content (e.g., definitions, theo-
rems, examples, exercises, etc.) as displayed in Fig. 13.1.

The three textbooks include canonical content in each of the subjects (e.g.,
derivation, integration in calculus; systems of linear equations, vector spaces, linear
transformations in linear algebra; and groups, rings, fields, Galois theory in abstract
algebra). The calculus textbook is organized around problems, some of which are to
be completed before class (preview activities) and some of which are to be done
during class in small groups (activities). The linear algebra and abstract algebra
textbooks are organized around definitions, theorems, proofs, and examples, and
include Reading Questions sections that are to be answered prior to discussing the
content in class.

https://pret�extbook.org
https://pret�extbook.org
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Fig. 13.1 Example of a knowl for Definition VSCV, Vector Spaces of Column Vector. The slightly
indented text appears when the link in parenthesis is clicked. (Beezer, 2021)

13.2.2 Participants

To date, a total of 50 instructors have participated in the larger study since January
2018. The subset of 21 instructors included in this analysis taught one course over
one semester using one of the textbooks, between January 2018 and December 2020
(8 taught linear algebra; 5, abstract algebra; and 8, calculus). They taught in different
institutions located in 15 different states in the United States. The selectivity in
admissions to these institutions ranged from none (all students who apply are
admitted) to very high (less than 10% of students admitted). The instructors reported
having between 4 and 40 years of teaching experience (mean 19 years, standard
deviation 7 years). The sample included six female instructors (5 taught calculus,
1 abstract algebra).

13.2.3 Data Collected

From the instructors we collected: (1) an initial survey, (2) five short surveys (logs)
that were distributed throughout the semester and addressed different aspects of their
work, (3) their lecture notes for a specific topic, and (4) their course syllabus. We use
the data collected in Log 2 which was devoted to their lesson planning and that asked
instructors to upload a map showing the process of creating their lecture notes for a
lesson.

The survey that was administered prior to the beginning of the semester was used
to obtain contextual information about the course, the students who typically take the
course, the institution, and the instructors. We analyzed the responses that all
participating faculty provided to seven questions in the second bi-weekly log that
sought information about how they created their lecture and lesson notes (see
Fig. 13.2) contextualizing and supporting our interpretation with survey data (e.g.,
goals for the course, beliefs about teaching and learning mathematics, knowledge of
students, etc.).
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1. How do you create your lecture notesa for a class session?

2. What resources are you using to create your lecture notes? (e.g., course 

textbook, CoCalc, lecture nots from previous years?

3. How do you use your lecture notes during class?

4. Sometimes you may deviate from y our lecture notes; in which cases does this 

happen and why?

5. Please add other comments you may have on y our lecture notes for this 

course.

6. We would like for you to create on paper a diagram that showcases the 

resources you use when planning the course and the lessons (e.g., how they 

connect to each other, which ones are mostly used.) Please explain your 

thought process in creating this diagram (e.g., the rationale for each piece in 

the diagram.)

7. Please create a second diagram that describes the network of people with 

whom you discuss your Calculus/Linear Algebra/Abstract Algebra course. 

Please explain your thought process in creating this diagram (e.g., the rationale 

for each piece in the diagram.)

Fig. 13.2 Log 2 Questions about production of lecture notes. a. We used the expression “lecture
notes” because it was the terminology faculty used in our pilot study to refer to what they created to
get ready for class. Some instructors said that they did not lecture (e.g., T26), but described, and
submitted, what they produced for their lessons

Questions 6 and 7 were inspired by the documentational approach (Hammoud,
2012; Trouche et al., 2020) and generated maps of the resources and processes used
to create those lecture notes and the networks of people that were involved in their
production. We asked instructors to provide a syllabus of their course and copies of
the lecture notes they produced for a specific topic in their course (fundamental
theorem of calculus in calculus, linear independence and spanning sets in linear
algebra, and groups in abstract algebra). The original purpose of the analysis was to
investigate how the textbooks showed up in their lecture notes and in the processes
instructors used to create them. Through the analysis, described next, we uncovered
a richer set of resources and processes than what we had anticipated.



13.2.4 Analysis

We performed several analyses; first, and following Hammoud (2012), we did a
systematic analysis of the representations (hereafter maps) provided in response to
Question 6 (Fig. 13.2) that included both resources and processes of creating the
lecture notes, which led us to identify three types of maps which we tentatively call,
“spike,” “interconnected,” and “process” based on how the various resources men-
tioned were represented (see Table 13.1).3

These idealizations of the representations were based on surface appearance and
contributed to our interpretation of the types of resources called for and how they
were being instrumented by the participants. These maps are used to infer the regular
pattern those instructors followed when they created the lecture notes, allowing us to
envision the rules of action associated with schemes of use of the various resources
called for in the creation of the lecture notes.

Next, and using the maps and the responses to Question 2 (Fig. 13.2), we derived
a list of resources that we tentatively categorized as material and non-material,
attending simply to their tangibility rather than to their function in the process of
creating the lecture notes. Material resources include those that are text-based and
available in print form, those that are available only in electronic form, and those that
are physical objects. The category of electronic resources includes software for
distinct purposes, such as mathematical (e.g., Sage), pedagogical (e.g., GeoGebra),
and production (e.g., LaTeX); distinct types of repositories: video (e.g., YouTube),
reference (e.g., Wolfram alpha, Wikipedia), and files (e.g., GitHub, Google drive);
and resources for communication (e.g., Zoom). Resources that did not fit these
categories were labeled non-material; these include references to individual cogni-
tive processes (e.g., experience, knowledge), social exchanges (e.g., student ques-
tions, discussions with communities), and time, which was only implicitly referred
to in the maps.

We then reviewed the lecture notes from the instructors who submitted their
notes4 and, through various iterations of coding, identified five potential defining
characteristics: their shareability, style, content, means of production, and means of
presentation.

13 Lecture Notes Design by Post-secondary Instructors: Resources and Priorities 271

• Shareability refers to how shareable the notes are; for example, they may be
personal notes, indicating that the instructor has no intention to share the notes
with the students. Alternatively, the instructor may distribute them ahead of class,
either in print, right at the beginning of the class or electronically via a learning

3We originally intended to analyze the network maps (Question 7, Fig. 13.2); however all but two
of the maps showed only three types of people: the instructor, the students (usually with a
bi-directional arrow or a connection between them), and either a colleague or a spouse. The two
exceptions named numerous specific communities (e.g., IBL community, project NeXT) suggesting
that for most of our instructors, the task of planning lessons is private (to them and their students)
and solitary (involving much personal reflection).
4Two instructors did not submit their lecture notes, T27 and T31.
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Table 13.1 Typology of the representations of the process of generating lecture notes

Typologies of maps Description

Spike: The representation shows many resources that are connected
to a central (core) resource (e.g., lecture notes, lesson plans, my vast
experience). It suggests that the many resources contribute some-
what equally to creating of the document

Interconnected: The representation shows resources that are com-
bined in particular ways via different connections among them that
may contribute differentially to the creation of the document

Process: The representation shows distinct stages of the creation of
the document with various resources intervening at different times

management system. The instructor may project them during class so that the
notes can be annotated live in front of the students. Finally, the notes (clean or
augmented with annotations) can be shared with the students after class once they
are scanned, or through live recording of the lesson, through a learning manage-
ment system.

• Style refers to the formatting of the content of the notes. They may contain fully
or partially written out sentences or text, a table with approximate times for
various activities, a template or a structure with blank space that will be filled
out in class, or a bulleted list of actions or reminders.

• Content refers to what is included in the notes. It could be definitions, examples,
theorems, proofs, list of homework problems or class activities, reminders to self,
a narrative that conveys the nature of the argument to be built, or administrative
reminders.

• Means of production refers to how are the notes produced, for example hand-
written, typed using a word processor (Word, Google doc), or a presentation
program (e.g., Beamer, PPT), or more advanced editing programs, such as LaTeX
or PreTeXt.

• Means of presentation refers to how the notes are intended to be used in
classroom, when that is the case. The instructors may copy the content of the
notes on the board or may use a computer or a tablet to project them, or use
instead a document camera or Zoom to screen share their own notes.

We next analyzed the responses to Questions 1 and 3 and the accompanying text that
instructors provided describing their maps in order to identify instrumentalization



and instrumentation processes across all the instructors. Each response was parsed to
identify first, phrases that indicated that the teachers were using the various resources
and then phrases that suggested that resources had exerted some influence on them.
Consider for example, the following response, made by Teacher 15, who was
teaching linear algebra:
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My lecture notes tend to follow the text as much as possible. With this course, I find that the
vocabulary is very important, so following the definitions in the text helps the students
follow the development of the new ideas. At times, I find that there is an example that I prefer
to the text, and I slip that in instead. This gives a little more variety to the students, too. The
textbook does a good job of highlighting the various definitions, theorems, and examples,
and my previous lecture notes help me remember the points that I like to emphasize. (T15,
LA)

In this excerpt we found evidence that the textbook provided a structure for the
instructor to create the lecture notes (“tend to follow the text as much as possible”);
that the instructor relied on “the definitions in the text” as it “does a good job of
highlighting the various definitions, theorem, and examples” and that occasionally
he brought “an example that I prefer to the text, and I slip that in instead” indicating
a need to reach for other sources that might fit better his plans; mentioning that his
“previous lecture notes help me remember the points that I like to emphasize”
showed that this resource is a trigger for him that helps in “remembering” what is
important to be emphasized, the kernel contents for the lesson. In this case, this
resource (prior lecture notes) is a reminder for this instructor that aids his planning.
Collectively these sentences illustrate both process of instrumentation and
instrumentalization, providing information about the rationales used: supporting
the development of ideas, offering more variety to the students in terms of examples
that illustrate mathematical notions beyond what the textbook offers, and personal
preferences.

The systematic analysis of the instructors’ responses was the basis for identifying
how the resources were involved in the production of the lecture notes, how
instructors were thinking about those resources, and their rationale for action—a
process similar to that of identifying schemes of use in the documentational
approach to didactics (Gueudet & Trouche, 2012b). These three analyses (map
structure, named resources, instrumentation and instrumentalization) were combined
in a final step in order to discern the way in which the instructors instrumented the
various resources to produce their lecture notes, which led to the identification of
three different types of notes that could be distinguished by what seemed to be
prioritized in each: either content, meaning, or assessment. The typology emerged
through this systematic analysis, done first across instructors (by data source) and
then by instructor (using each instructor’s data) to corroborate the interpretations.

Finally, we reviewed data from survey questions (e.g., “How do you use your
lecture notes during class,” “Please list the goals of this course”) to augment,
corroborate, and provide further support for our classification. T15, for example
said the following about the use of the lecture notes during class:
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I present a .pdf of the day's material, which I mark up in real time. I refer to my notes in order
to make connections with other theorems, definitions, and examples that we have done
previously. I like to use notation that is consistent with the textbook and sometimes use
different notation. Generally, I like to inform the students of as many different notations as
I can.

This helped us in corroborating that he prioritized content over assessment and
meaning. Likewise, in describing the goals for the course, T15 referred only to
content that students needed to master:

This course covers theory and application of the study of systems of linear equations, linear
transformations, and characteristics of vector spaces while introducing the student to inner
product spaces [organized] into two units: [the first includes] matrix algebra through the
study of systems of linear equations, vectors, and properties of vectors [and] sets the
foundation for advanced ideas. The second unit uses many of the skills obtained in the
first unit to gain a better understanding of general vector spaces, culminating with represen-
tations of vectors and matrices in terms of the spectral theorem. By the end of the course,
students in [course] will write clear and concise proofs.

13.3 Results

We present the main findings from the analysis of each source of data.

13.3.1 Maps

“Spike” maps had as a core resource, either the lecture notes or the document they
were creating or their own experience; “interconnected”maps had many connections
between the terms chosen, some indicating loops; the “process” maps denoted the
various steps that instructors followed in creating their lecture notes. A spike type of
map is shown in Fig. 13.3. The core resource of this spike resource map is “what
appears in class on the white board” naming the lecture notes as the outcome of
T21’s creative process. Indications about the meaning of the arrows state that the
most often-used resources are the active learning plan and lecture notes, which this
instructor writes out by hand after consulting the textbook. An excel spreadsheet
with a schedule of coverage, textbook notes, reading questions and misconceptions
from those questions, and homework assignments from the book (as influenced by
sage homework) are used often. The sage homework is noted as least often shown on
the board. The instructor also notes that student questions start each day without a
connecting line to the core resource.

An interconnected type of map is shown in Fig. 13.4. This map shows multiple
resources mutually interconnected, including the text, course objectives, the learning
management system (Canvas), readings, assessments (quizzes, midterms, home-
work), the course calendar, and student questions (both those in class and asynchro-
nous). These generate the lecture notes that are stored as a PDF file on a tablet. T15
also mentions the notes being influenced by department objectives.
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Fig. 13.3 Spike type map by T21 teaching abstract algebra

A process type of map is shown in Fig. 13.5. T25 illustrates a workflow that starts
with a class preparation assignment adapted from a past professor, then checking the
syllabus to pick topics, then looking over the book to determine which problems to
assign and activities to do in class, then looking over old notes to determine what’s
missing from the current plan, then checking for upcoming labs to see if anything
needs to be rearranged. All of this process goes into the outline for class. From there,
the instructor uses sage for visualizations, considers whether handouts will be
helpful, and determines if students will be working on the board.

Most of the maps submitted were of the spike type (12 maps); four maps were of
the process type, and two maps were of the interconnected type; the rest of the maps
had combination of a spike and process map, with the process portion devoted to the
actual production of the notes (e.g., create in word, scan, project in class) or a spike
with some connections between a few terms (e.g., from Desmos to the student
activity sheets, and from the student activity sheets to group work). No pattern
was evident by type of course.
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Fig. 13.4 Interconnected type of map by T15 teaching linear algebra

13.3.2 Resources

Figure 13.6 classifies the 170 references to resources made both in maps and in
responses to the questions, organized by their nature, material or non-material, and
within each category, by how frequently they were mentioned.

Among the material resources that are available in print, the textbook with
specific content in the textbook and documents produced in the past were the
resources most frequently mentioned by the instructors (66 times out of 83). This
is not surprising, as we had instructors who had taught the courses numerous times
and instructors who were using the textbooks for the first time. In general, the
instructors said that they needed to understand what the textbook author was trying
to do so that they could convey that to the students; they checked their prior lecture
notes because they wanted to make sure that they were addressing key points or
using examples they knew were useful. The instructors also referred to schedules
mandated by their departments, as these provided the pacing for the course; two
additional resources, the course objectives and the final course assessments were
mentioned as providing a lever for making decisions about what to include in the
lecture notes.

Mentions of course syllabi, college and departmental competencies, and assess-
ment indicate that instructors attended to institutionally established content goals as
they produced their lecture notes, whereas mentions of student productions (e.g.,



responses to reading questions or work that had to be turned in before class) suggest
that in producing their lecture notes, students and how they were learning the
material were important considerations. Resources provided by the authors or by
others outside the institution indicate that in some cases the instructors were also
oriented outwards to external communities.
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Fig. 13.5 Process type of map by T25 teaching calculus

Regarding resources that are available only electronically, we identified various
categories: mathematical software, software for producing the lecture notes, repos-
itories that are used for storing or sharing resources, the internet, and communication
systems—all of these categories fulfilling specific purposes. The math software and
the Internet supported pedagogical purposes, to illustrate concepts or to solve
complex computational problems; other software supported practical purposes of
producing, storing, and sharing the lecture notes. The majority of the physical
resources specified supported the production of the notes, although some were
mentioned as part of the medium of presentation for the notes. Resources in the
non-material category were described as serving a pedagogical purpose: faculty
reach to these sources for ideas that will inform what to include or exclude; student
questions, formulated either in prior classes or via email, are used to think about
additional examples or explanations; personal knowledge and experience, discus-
sions with others—in particular with close relatives, and in one case internal
conversations with the “divine”—inform content decisions in the lecture notes.

Time was resource not explicitly mentioned but implicit in the maps (1) in
processes that embedded actions spanning minutes (e.g., “quickly glancing at the



student responses”) or hours or days, as instructors perfected their plans; or (2) in the
ordering of the processes, some actions occur either before others (e.g., checking the
course objectives or assessments occurs before deciding what examples to include)
or are cyclical (e.g., “repeat ad nauseum”).
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Material
Non-material (18%)Print available 

(55%) Electronic available (18%) Physical (8%)

• textbook

• specific content (e.g., 

definition of vector 

space) or textbook 

elements (definitions, 

theorems, proofs, etc.)

• documents produced in 

prior years

• course syllabus, college 

department 

competencies, including 

assessments

• student work

• documents provided by 

authors (prep 

assignments, solutions 

to problems, 

worksheets)

• publications (MAA, 

research)

• other textbooks

• math software (Sage, 

Desmos, GeoGebra, 

Mathematica)

• software for producing 

the notes (LaTeX, 

PreTeXt, Beamer, 

OneNote, Word, PPT, 

Google docs)

• course management 

systems

• repositories (GitHub, 

MS OneDrive, Google 

drive)

• Internet (YouTube, 

Wolfram Alpha, 

Wikipedia)

• communication 

(Remind, Zoom)

• computer

• board

• printer

• scanner

• document 

projector

• tablet 

• student questions

• own thinking

• personal 

knowledge

• experience

• discussions with 

others (students, 

colleagues, 

partners, children, 

IBL/NExT)

• “divine” 

inspiration

• (time)

Fig. 13.6 Types of resources mentioned by instructors in their maps (N = 170). Time is noted in
parenthesis because it was not explicitly, but implicitly alluded to by the instructors. Percentage
calculated from the total number of references

13.3.3 Lecture Notes

Figures 13.7 and 13.8 are excerpts of the lecture notes from instructors T20 and T23
that are representative of the variation we saw along shareability, style, content,
means of production, and means of presentation. T20’s notes are for personal use
(not to be shared with students), with mostly fully written out text as style; in terms
of content these include definitions, examples, class activities (“Activity 2: do Ex
8”), theorems, proofs, and reminders (“check well-def[ined]”); they are handwritten
on paper and with various colored pens; and intended to be written out on the board
during class time.

T23’s notes are also personal; the text is fully written out and it includes a bulleted
list. In terms of content, T23 does not write out definitions or theorems, instead
narrating a plan via questions (“What are the subgroups”) and directions (“Let’s
prove that if G is any abelian group, then. . .”); the notes are typed in PreTeXt and
intended to be shared later with the students.
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Fig. 13.7 Excerpt of T20’s lecture notes on Groups

Fig. 13.8 Excerpt of T23’s lecture notes on Subgroups
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13.3.4 Instrumentation and Instrumentalization
of the Resources

In the documentational approach the use of these resources involves
instrumentalization—directed at the resources as the user “shapes the artifacts”—
and instrumentation, which constitutes “the schemes of utilization of the artifacts”
(Gueudet & Trouche, 2012b, p. 25). These process encompass epistemic, pragmatic,
interpersonal, and reflexive mediations through which the instructor acquires new
knowledge, skills, and practices (Mesa & Griffiths, 2012). Our analysis suggested
three different priorities towards the design of the lecture notes involving the
resources, guided by what is privileged in the production of the lecture notes,
which in turn guides the instructors’ design decisions: prioritizing content, prioritiz-
ing meaning, or prioritizing assessment. As we have inferred these as being their
implicit reasons for why they create their lecture notes, they are akin to operational
invariants in the schemes of use of the resources.

In the cases in which content is prioritized in design, we notice that what matters
for the instructors is that the content be rigorously presented. Instructors indicate
using the same definitions presented in the textbook, following the same notation,
and including full details of definitions and theorems; instructors consider this type
of rigor as necessary for building up mathematical ideas. For example, T31 who was
teaching calculus wrote in his log: “When multiple notations exist (such as deriva-
tive) I will adopt the same notation as the textbook.” Fig. 13.9 shows an excerpt of
T18’s linear algebra lecture notes on Linear Independence and Spanning Sets on
“Theorem VRRB” (Vector Representation Relative to a Basis), in which it is
possible to see the effort in maintaining the notation and full details of the proof of
the theorem, which are almost identical as in the textbook:

The lecture notes in which content is prioritized include full statements of
definitions written out; it is as if in the writing of these statements, instructors
were also revisiting the ideas contained in the material to make sure of their
understanding; fully writing the notes ahead of time allows instructors to rehearse
the content included in notes in preparation for what they will do in class (“I often
leave them in the office. It’s really the preparation of them in the first place that is the
important part” T27, LA). Instructors who write the notes during class, do so because
they want students to see how mathematics is produced:

I . . . dive into what's written in my notes, following them more or less verbatim. (. . .) I want
to be sure students see an example of type XYZ to better appreciate what the result is saying
(T33, AA).

This process of writing and re-writing the notes has an epistemic component; the
instructors solidify their knowledge of the content through producing these notes in
this way (“Usually, I have copied down everything I need [on the board, without
looking at the notes], but sometimes I will pull up the book if I forgot something,”
T36, LA; “I write and rewrite my notes several times. But then while lecturing, I do
not look at my notes,” T20, AA).
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Fig. 13.9 Excerpt from T18’s lecture notes on Theorem VRRB (Vector Representation Relative to
a Basis, https://books.aimath.org/fcla/section-LISS.html#SKU)

Fig. 13.10 A process type of map by T20 teaching abstract algebra

The notes by T20 (Fig. 13.7) illustrate this priority; this instructor made a process
type of map (Fig. 13.10).

The map shows the starting point as the ‘master schedule,’ a plan, given by the
department, for when to cover what textbook content. With this information, the
instructor consults the textbook, the notes from prior years, and the reading

https://books.aimath.org/fcla/section-LISS.html#SKU


assignment which informs what students understood from the reading and is posted
in the learning management system. All of these will be considered to write the
lecture notes. In the notes we see references to “reading assignment” with a note in
black on two matrices and other notes about activities that students will be doing,
possibly to address what the two matrices signal about student thinking as revealed
by their responses to the lecture notes.
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In the cases in which meaning is prioritized in designing the lecture notes,
instructors seek to highlight what makes the definitions, theorems, and proofs
important and where they are coming from. Rather than writing out explicit defini-
tions or theorems, instructors motivate the various elements using a conversational
approach (“What are the subgroups?” T23; “Talk about the definition of a limit in
whole class, sharing book” T26) and using examples to motivate the need for
specific definitions or theorems (“Show that f is graph and f′ is a graph – ask about
connections. Document camera? Desmos?”, T26, C). The notes by T23 (Fig. 13.8)
illustrate this priority. These notes have a more conversational style, with the
audience being both the instructor and the students; there are directives (e.g.,
“Check the 3 things.” in the first bullet) and questions that are posed to advance
the thinking, but with no answer written out. The notes are short statements as
invitations to further explore ideas that leave out details that are presumably going to
be worked out in the classroom. These notes can be described as ‘streams of thought’
about the material (“Last time we introduced. . .We decided to check. . .We need to
check. . . Note though that. . . We would also like to say. . .”) suggesting both
epistemic and reflexive mediations as the instructor is working out conversationally
with themselves the various key elements of the material and envisioning how they
will play out during class with the students; precision and rigor, seem to take a
backstage role in the notes.

This instructor provided an interconnected type of map Fig. 13.11.
The map has the lecture notes in the center, together with a “Canvas shell” (course

management platform); the textbook appears as shaping what goes into the notes and
the assessments in the course (quizzes, homework, practice problems). As a coun-
terpoint, the previous materials inform the notes, assessments, and the work that will
happen in class.

Finally in cases in which assessment is prioritized in the design of the lecture
notes, instructors start with the assignments that students will have to complete for a
particular unit and use the problems that are included in them to guide the develop-
ment of the notes and choose the content from the textbook that will be needed;
while content and meaning might be important, these are done at the service of
preparing students for the examinations. The notes by T17 (Fig. 13.12) illustrate this
priority. These notes have a combination of elements described earlier; the instructor
writes notes to self (e.g., “this should be quick, you should ask them to present at the
board”) as if this self were a third person (“the instructor”) and includes fully written
out definitions (see “Instructor Notes” in Fig. 13.12) pasted verbatim from the
textbook, which is easily done because the textbooks are open source. The lecture
notes are structured into parts, signaling the different components of the lesson and
possibly the time allocation in class. This lesson had five parts (only two are shown



in Fig. 13.12), three devoted to definitions (general definition of linear indepen-
dence, spanning sets, and vector representation) and two to student work (on linear
independence and spanning sets). The first activity “should be quick” the second
activity (not shown) was more complex computationally (“Determine if a set W was
a subspace and finding a spanning set for W”). The notes include points to consider
in finding the solution. In these notes we see pragmatic and interpersonal mediations
in statements about what students and the teacher can collectively and individually
do (e.g., “we can define,” “we can determine”); the directives to self (e.g., “ask the
students,” “write on the board,” “you can ask them to present at the board”) are
suggestive of reflexive mediations. These are also directives that are consistent with
offering opportunities to assess students informally. The instructor sets out a path for
the presentation, and unlike the other cases, it is not clear whether deviations will
happen. The rigor of the content is ensured by including and projecting the textbook
during class (“show definitions on projector”) and by requiring that students work on
tasks that will be part of course assessments.
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Fig. 13.11 An interconnected type of map by T23 teaching abstract algebra

This instructor produced a spike type of map (Fig. 13.13) with homework as a
core resource:

I used the course goals to think about concepts, skills, and tools that I want students to be
able to learn and use. These go into making the homework assignments. The amount of
material covered per homework assignments is reflected by how much of the text we have
covered, which in turn affects how much of the text I need to present in class. I also use the
homework as a guide for generating meaningful examples in class so that students can
practice certain algorithms and thought processes in class. Those examples I usually write on
the board which is on either side of the smart board, which is projecting the text book.
(emphasis added)
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Fig. 13.12 Excerpt of T17’s lecture notes on Linear Independence

Thus, the mandated course goals set the content for the homework that students will
be assigned, but the homework in turn is fundamental to determine what content is
included in a lesson, how much of it is presented in class, and what examples will be
done; in the map, the goals, the examples and the textbook are connected to this core
resource.

Across all the instructors we found 13 who wrote lecture notes that prioritized
content, six wrote notes that prioritized meaning, and two whose notes prioritized
assessment (one taught linear algebra, T17; the other calculus, T13). Six of the seven
instructors teaching linear algebra, prioritized content5; we think that there are two
reasons for this; one is that the textbook uses a very specific naming convention—it
does not use chapter numbers of sections, but rather acronyms that help remember

5One instructor, T17, had also elements in the notes that showed attention to content, but assess-
ment guided the production of the notes.



We analyzed various records from post-secondary instructors obtained with the goal
of understanding their documentation work, in particular:
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Fig. 13.13 A spike type of map by T17 teaching linear algebra

the content of the definitions and theorems (e.g., SSLE Solving Systems of Linear
Equations; Theorem EOPSS. Equation Operations Preserve Solution Sets)—and the
textbook is written to serve as an introduction to proofs. Instructors faced with this
content have to either use the exact notation in the textbook or translate the language
in the textbook using conventions used in other mainstream textbooks. We think that
it may be less time consuming to use the textbook as is. The rest of the instructors
(13) were teaching abstract algebra or calculus and were evenly split between
prioritizing content and meaning; and thus, it seems that personal preferences rather
than the specific type of textbook might determine these priorities. Thus, we propose
that the textbook and course learning goals (e.g., introducing proofs) as well as
personal preference, play a role in instructor’s prioritization in designing their lecture
notes. Furthermore, the priority and resources influence the process of
instrumentalization (instructor using the textbook and other resources to generate
lecture notes) and instrumentation because the instructor’s epistemic reflections and
knowledge gains are part of the process and an outcome of producing notes.

13.4 Discussion and Conclusion

• How do instructors view the process of creating lecture notes for their courses?
• What resources do instructors use when creating lecture notes needed to teach a

lesson?
• How are the resources instrumented to generate the lecture notes?
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We used the participants’ definition of lecture notes and the documents that they
created to deliver a lesson. The analyses of the various data sources suggest that with
goal of creating lecture notes for their lessons, instructors enacted distinct opera-
tional invariants that privileged the content that they need to teach, the meaning of
the content that students would be learning, or assessment of knowledge and skills
that students would need to master to demonstrate competence in the course. The
maps were a proxy for how instructors approach their creation of the lecture notes;
we found it interesting that 15 of 21 of the maps provided were of the spike type,
with all the resources having a single connection to a central element—usually the
document they were producing. Does the spike-type of representation chosen for the
process indicate that for these instructors the resources used have comparable status
and that they contribute equally to the production of the lecture notes? We do not
think this is the case. Instead, we think that the specific task that we asked the
instructors to perform was novel. Many instructors did mention this request as a
difficult one to fulfill; it may be possible that the various decisions that instructors
engage in as they prepare their lessons are unconscious, and therefore not easily
assailable; it is also possible that these kinds of tasks are foreign as university and
post-secondary instructors have not typically received training on pedagogy. The
maps showing steps of production or interconnection among terms, are suggestive of
a more conscious process as they conveyed temporal relationships and relative
importance of the resources. We see this as an area for further investigation.

Instructors mentioned quite rich sets of resources for their teaching. Classifying
these is difficult, as Trgalova et al. (2019) noted. The difficulty in classification has
consequences for theorization; we chose material and non-material,6 fully acknowl-
edging that such classification omits the various functions that the resources are
helping to fulfil. We also noticed that in their descriptions, time was a ubiquitous but
unmentioned resource that played an important role in how instructors described
their production of lecture notes. Time is encoded in descriptions of what is done
first, second, third, obviously, but also in comments regarding searches for examples
or alternative definitions or regarding “going back and forth” about content to
include (e.g., ‘do the proof?’ ‘add another activity?’). Time is also implicitly
addressed in the cases in which instructors indicate planning on using their notes
again, the next time they teach—this will save time, that they may use to expand
other areas of the notes.

The different priorities given to content, meaning, or assessment in the design of
the lecture notes show epistemic, pragmatic, interpersonal, and reflexive mediations
between the instructors and the resources used (Rabardel & Bourmaud, 2003).
Through the analysis of the documents (lecture notes) that participants produced
for teaching, we witness their instructional design activity, as instructors write and
re-write their notes, identify text inside their textbooks that they can copy or show to
the students, search for or create problems and activities that may fit the goals or that
will address a student query, annotate their notes to add connections to student

6Rudolf Straesser uses immaterial in his foreword to the book, From Text to ‘Lived’ Resources
(Gueudet et al., 2012a, b, p. iv).



responses, etc. These different priorities suggest different emphasis towards the
material and towards pedagogy; some seem to be guided by the textbook design,
as in the case of the linear algebra textbook which emphasized proofs, whereas
others seem to be guided by other factors that would merit further investigation.
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One question that this investigation has raised for us is how the availability of the
textbooks in digital form (HTML or PDF) facilitated or hindered the various aspects
of the design process. Besides the convenience of having the text ready to be copied
and altered as needed, it is not clear that instructors saw other advantages. In spite of
the textbook being available digitally, some instructors planned with a physical copy
of their textbook. We were unable to trace major differences because of textbook
format. Either the medium (digital/print) has not yet made an impact on these
instructors’ processes of thinking about their work or there is not much difference
in how instructors interact with the digital textbooks and other resources in planning
their lessons. Further investigations to ascertain such similarity are warranted.

Prior scholarship has documented that teachers use the textbook primarily as a
source of assignments and as a guide for choosing content to use during instruction
(Mesa & Griffiths, 2012; Pepin & Haggarty, 2001). This investigation suggests that
there is an additional priority for instructors: meaning, making connections with
ideas, and wondering about resources that might support those. The findings regard-
ing the subject matter are suggestive: perhaps a linear algebra textbook that is
designed differently (e.g., the inquiry-oriented linear algebra, Wawro et al., 2012)
might support faculty in prioritizing meaning or a departmental mandate might
require that instructors prioritize meaning (Mesa et al., 2019). Having instructors
that make meaning a priority might push authors to conceptualize their textbooks
differently.
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Chapter 14
Creating a Shared Basis of Agreement
by Using a Cognitive Conflict

Mika Gabel and Tommy Dreyfus

Abstract We analyse proof presentation at the tertiary level, using a concept called
‘the flow of a proof’, which relates to proof classroom presentation of proof. We
focus on rhetorical features of the flow of a proof that we analyse using our
adaptation of Perelman’s ‘New Rhetoric’. We present an analysis of an episode
from a lesson in Set Theory, given to prospective mathematics teachers, and
demonstrate how the lecturer’s design of the flow enabled her to create a thought-
provoking analogy and to trigger a cognitive conflict. The lecturer’s actions created
presence of the need for a proof as a tool to solve the conflict, and clarified that
analogies may be erroneous; moreover, the discussion highlighted mathematical
values that the lecturer wished the students to embrace. The study suggests that
mindful planning of the flow of a proof should attend to its rhetorical aspects, so that
the flow will promote productive classroom communication that improves proof
teaching and learning. Furthermore, a conscious pre-design of the flow may be used
by lecturers as a practical pedagogical ‘reflective aid’ that makes them aware of their
own premises. This can be used to support ideas that lecturers perceive as important
to convey to students.

Keywords Cognitive conflict · Flow of a proof · Perelman’s New Rhetoric ·
Dissociation · Presence · Basis of agreement

Teaching proof, at all levels, is a difficult instructional task. When mathematicians
teach proofs at the tertiary level, they display not only the formal mathematical
content of a ‘textbook proof’ but also meta-proof considerations, effective examples
or counterexamples, analogies and diagrams, and consider a variety of contextual
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factors such as the students’ previous knowledge, curriculum and time limitations
(Lai &Weber, 2014; Weber, 2012); however, eventually students may still not grasp
the proof’s structure and ideas (Lew et al., 2016). Indeed, the occasional feeling that,
no matter what is done or said, the mathematical ideas that are expressed to the
students ‘go in one ear and out the other’ is a frustrating experience for lecturers. Our
research tackles this problem and discusses practical rhetorical means that lecturers
can employ when they design a classroom presentation of a proof in order to clarify
complicated mathematical ideas, engage students in mathematical reflection while
proving and raise students’ awareness of important ideas. The research involves
observing and analyzing actual classroom scenarios using a new theoretical frame-
work that we shall discus shortly.
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This triangle of problem-practice-research together with a theory used to mediate
between them is in the spirit of Silver and Herbst’s (2007) discussion of Mathematics
Education Research, in which they state that Mathematics Education Research has
“also been done to systematically described practices originated in response to
problems” (p. 45). When focusing on theories as mediators between research and
practice, Silver and Herbst (2007) argue that research may use theories to describe
practices and to explain them. Theories may provide a standard against which one
can evaluate practices and conceptualize what can be considered as a desirable
practice. In addition, theories may be used to “understand practice by providing
rational arguments for why a certain phenomenon should not be surprising, or why it
is plausible” (p. 52).

Following this description of the role of theory in practice oriented research, this
chapter has two focal points: theoretical and methodological. The theoretical focal
point includes an introduction of a theoretical framework, ‘The New Rhetoric’
(Perelman & Olbrechts-Tyteca, 1969), its adaptation to the context of teaching
proof and a concept called ‘the flow of a proof’ that relates to proof classroom
presentation (Gabel & Dreyfus, 2017). We relate in particular to an argument scheme
called ‘dissociation’ and explain how it is used to solve cognitive conflicts and what
its possible effects are. The methodological focal point includes demonstrating the
use of the theoretical framework to analyze an episode from a lesson in set theory in
which the lecturer used a common practice – creating a cognitive conflict. We
combine these two focal points to illustrate practice-oriented research in the math-
ematics classroom.

In Sect. 14.1, we introduce ‘the flow of a proof’. In Sect. 14.2, we elaborate on the
relation between rhetoric and mathematics, on ‘The New Rhetoric’ (Perelman &
Olbrechts-Tyteca, 1969), and on its adaption; we focus on the use of cognitive
conflict and its solution by dissociation as a rhetorical device, for which we provide
some relevant background in Sect. 14.3. We then present the study’s design (Sect.
14.4) and our findings (Sect. 14.5). Finally, we discuss our findings and formulate
some implications in Sect. 14.6.
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14.1 The ‘Flow of a Proof’ and Its Rhetorical Features

The traditional frontal lecture (“chalk talk”) still prevails in university mathematics
instruction. Yet, even when mathematics lecturers teach “traditionally” their styles
may be substantially different (e.g., Pinto, 2013; Weber, 2004). The differences may
be a consequence of different attitudes, goals and context. Woods andWeber (2020),
for example, interviewed eight mathematicians about the practices they use and their
goals, the beliefs that guide their teaching and the relationship between their teaching
practices and pedagogical goals. They suggest that mathematics educators should
“develop pedagogical recommendations that can be used in a lecture setting and
align with mathematicians’ current goals and orientations” (p. 15). However,
Woods’ and Weber’s inquiry was based on interviewing the mathematicians outside
the classroom setting and not on examining actual pedagogical actions in an actual
lesson. Indeed, researchers suggested analyzing classroom observations and discus-
sions with teachers in order to design effective teaching methods (e.g., Speer et al.,
2010).

Our inquiry wished to capture the holistic nature of the classroom scenario, taking
into account the different types of lecturer actions, students’ reactions and the quality
of the communication between them. To this end, we offer a conceptual perspective
of addressing classroom proof presentation that relates to the personal choices and
considerations made by each lecturer, and allows analyzing actual classroom sce-
narios. We start by presenting a notion called ‘the flow of proof’ (Gabel & Dreyfus,
2017), that consists of: (i) the presentation of the logical structure of the proof;
(ii) the way informal features and considerations of the proof and proving process are
incorporated in the proof’s presentation. These two aspects take into account
mathematical and instructional contextual factors (e.g., students’ previous knowl-
edge and curricular requirements).

The nature of the flow of a proof requires a theory that enables to systematically
address a combination of diverse features, such as: formal and informal forms of
reasoning, the use of analogies, metaphors, examples, means of illustration, the way
that lecturers adjust their presentation to the previous knowledge of the attending
students and to various types of classroom scenarios, how lecturers design the
interplay between large scale proof modules and single proof arguments, the incor-
poration of intuitions, meta-proof considerations and explicit and implicit lecturers’
values and norms. Many of these features possess an inherent rhetorical character. In
order to address these features, we adopted ‘The New Rhetoric’ (Perelman &
Olbrechts-Tyteca, 1969), henceforth denoted PNR (Perelman’s New Rhetoric),
adapted it to mathematics education, and designed an associated methodology that
we used to evaluate rhetorical aspects of the flow of a proof.
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14.2 Theoretical Framework – The New Rhetoric

‘The New Rhetoric’ is a seminal argumentation theory published in 1958 by
Perelman and Olbrechts-Tyteca that gained momentum after its English translation
(Perelman & Olbrechts-Tyteca, 1969). Perelman envisioned an argumentation the-
ory complementing formal logic that would be able to show how choices, decisions,
and actions can be rationally justified, by combining ideas and approaches from
formal logic and rhetoric; rhetoric is perceived as a practical discipline that concerns
the manner by which a speaker can verbally persuade an audience (van Eemeren
et al., 2013). PNR examines “. . .conditions that allow argumentation to begin and to
be developed, as well as the effects produced by this development. . . it is not
concerned with forms of discourse for their ornamental. . . value but. . . [as] means
of persuasion and. . . creating ‘presence’” (Perelman, 1974, para. 1–3). According to
PNR, each argument dimension is tied to a conception of what the arguer believes
that the audience will accept (van Eemeren et al., 2013). Arguers who regard
premises not accepted by the audience commit an argumentation fallacy, though
not necessarily a mistake in formal logic.

Perelman and Olbrechts-Tyteca (1969) discuss two types of premises that may
establish a shared basis of agreement: (1) premises relating to the real – facts, truths
and presumptions; (2) premises relating to the preferable: values, value hierarchies
and loci of the preferable (which are highly abstract constructs that we do not
consider). Facts and truths are statements already agreed upon and they are consid-
ered to require no further justification and not subject to discussion, where truths
stand for connections between facts. Facts or truths might lose their “privileged
status” and consequently they can no longer be used as possible starting points, but
as conclusions of argumentation. Presumptions are opinions or statements about
what is the usual course of events, which need not be proved, although adherence to
them can be reinforced, and it is expected that at some point they will be confirmed.
Values are normally arranged in hierarchies and they relate to the preference of a
particular audience.

Perelman (1982) did not intend to use PNR to account for mathematical argu-
mentation, on the contrary; he states that “. . . it is inappropriate to be satisfied with
merely reasonable arguments from a mathematician as it would be to require
scientific proof from an orator” (p. 3). Nevertheless, a few scholars did find PNR
suitable to describe mathematical and scientific argumentation (e.g., Dufour, 2013).
In addition to mathematical argumentation, we found PNR appropriate to describe
the type of informal argumentation employed during a mathematics lesson in which
a proof is taught, especially in situations where mathematics lecturers use arguments
that are not qualified with ‘full certainty’, for example: in evaluating conjectures,
using analogies, illustrating definitions, giving examples, describing proof structure,
or using metaphors. These arguments are an essential part of the proof classroom
presentation. In fact, these are the rhetorical features of the flow of the proof
mentioned above. For us, this indicates that key notions of PNR, such as audience,
basis of agreement, presence and argumentation schemes, may be adapted to the
context of proof teaching and more generally to mathematics education.
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Table 14.1 Adapting PNR types of premises to a proof teaching context

Premises Examples

Facts Axioms, definitions, givens, accepted results, established notations

Truths Lemmas, theorems, new results

Presumptions Judgements about using previous knowledge, appropriate examples,
useful techniques and proving methods, meta-proof features (e.g.,
structure, main ideas)

Values (Mathematical and
didactical)

The adaptability to a particular audience of a certain proving method
or presentation; beliefs about mathematics and its teaching and
learning.

A detailed description of PNR’s adaptation to teaching proof has been presented
by Gabel (2019). Here, we concentrate on the adaptation of PNR’s types of premises
to the context of proof teaching, as presented in Table 14.1.

The scope and organization and ways of creating presence to elements are two
other PNR notions that we utilize in our analysis. The scope of the argumentation
relates to the choice of the arguments and their order, considering that a discourse
that seeks to persuade or convince requires an organization of the selected arguments
in an order that will optimally enforce them. The scope of the argumentation also
relates to various practical bounds, such as time limits and limits to the attention that
an audience can pay (Perelman, 1974). Presence is a product of style and delivery,
an outcome of the persuasive strategies, which make an audience discriminate and
remember ideas, or lines of argument set forth by the arguer (Karon, 1989). Perelman
and Olbrechts-Tyteca (1969) claim that presence “. . .is a psychological datum
operative. . . It is not enough indeed that a thing should exist for a person to feel
its presence... one of the preoccupations of a speaker is to make present. . . [what
s/he] considers important. . .” (pp. 116–117). Perelman (1982) affirms that premises
that are not fully accepted by the audience should be reinforced by endowing them
with presence through the use of certain rhetorical figures, for example picturesque
descriptions, metaphors, analogies and repetitions.

Perelman and Olbrechts-Tyteca assert that acceptance of the audience is
established by using various argument schemes, through processes of either associ-
ation (i.e., establishing a link between two independent entities) or dissociation. We
focus on dissociation, since it is particularly relevant for solving cognitive conflicts.
Perelman explains that “reasoning by dissociation is characterized. . . by the oppo-
sition of appearance and reality. . .[it] can be applied to any idea, as soon as one
makes use of the adjectives ‘apparent’ or ‘illusory’ on one hand, and ‘real’ or ‘true’
on the other” (Perelman, 1982, p. 134). The pair ‘appearance/reality’ is considered a
prototype from which other similar pairs can be derived, for example the pairs:
‘opinion/truth’ and ‘subjective/objective’. We will henceforth relate to the pair
‘opinion/truth’. Dissociation may be used by a speaker to form a ‘contradiction-
free’ vision of reality (Perelman, 1979). Perelman and Olbrechts-Tyteca explain:

When a stick is partly immersed in water, it seems curved when one looks at it and straight
when one touches it, but in reality it cannot be both curved and straight. While appearances



can be opposed to each other, reality is coherent: the effect of determining reality is to
dissociate those appearances that are deceptive from those that correspond to reality.
(Perelman & Olbrechts-Tyteca, 1969, p. 416)
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Dissociation splits up into separate elements something that the audience previously
considered as a whole. The result is one (or more) concept(s) associated with the
apparent (i.e., the false aspect of the original single concept) and other associated
with the real (i.e., the true aspect of the original single concept). Dissociation
involves resolving incompatibilities or conflicts by introducing a value hierarchy
or by applying a criterion, a standard that enables to separate between what is
apparent and what is real (van Eemeren et al., 2013). In mathematics the standard
which is used to dissociate opinion from truth may be definitions or formal proof.

Dissociation involves distinction, because a notion that the audience originally
regards as one conceptual unit is split up into two. It also involves a new definition of
the original notion. Therefore, dissociation may be used to achieve greater precision
and has a clarifying function (van Rees, 2006).

14.3 Cognitive Conflict and Mathematics Education

Albeit the (perhaps natural) inclination to assume that confidence and certainty are
preferred over uncertainty and confusion during learning, it appears that there is
considerable empirical evidence that confusion is not only prevalent during complex
learning but may even be beneficial, provided that it is appropriately regulated and
contextually coupled to the learning activity. Impasse-driven theories of learning
suggest that impasses that cause confusion provide learning opportunities and
invoke cognitive activity that may result in deep cognitive processing and more
durable memory representations (D’Mello et al. 2014). Confusion and doubt are
often associated with cognitive conflict, which is considered by many as contributing
to rational thinking and the genesis of knowledge (Zaslavsky, 2005). The cognitive
conflict strategy usually starts by identifying students’ current state of knowledge
and then, confronting them with contradictory or perplexing information. Although
several studies have demonstrated that the use of cognitive conflicts was successful
in promoting conceptual change, others have shown that this strategy is not always
effective for promoting students’ deep understanding of the new information
(Limon, 2001).

Limon (2001) offers a possible explanation. She claims that the theoretical
models proposed to explain conceptual change should focus not only on the indi-
vidual’s cognitive processes but also take into account other individual characteris-
tics (e.g., motivation, attitudes), the teacher’s characteristics (e.g., strategies,
training, beliefs) and social factors (e.g., the role of peer collaboration). Furthermore,
if an instructor wishes the students to reach a stage of meaningful conflict, the
problems introduced to them have to be relevant, so that students need to feel
curiosity and to be motivated about the learning activities; students also need to
have prior knowledge that will allow them to understand the new information.



We present part of a larger study conducted in a secondary mathematics teacher
training college. In the larger study, rhetorical aspects of the flow of a proof were
analyzed using a methodology based on Perelman’s New Rhetoric (PNR). A short
explanation of the ‘PNR analysis’ methodology is presented in Sect. 14.4.3; a more
detailed explanation about the setting and goals of the larger study, the design of the
methodology and the analysis of flow of proof have been presented by Gabel (2019).
In the current chapter, we focus on the commonly used practice of creating cognitive
conflicts, and use PNR to interpret the effects of creating cognitive conflict and its
solution by dissociation on the flow of proof. The objectives of the chapter are:
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The use of cognitive conflicts in the mathematics classroom has long been studied
by mathematics education (e.g., Tall 1977). Wijeratne and Zazkis (2015), for
example, presented twelve undergraduate students studying a calculus paradox
related to indefinite integrals and explored students’ attempts at resolving the
paradox, the challenges they faced and the mathematical and contextual consider-
ations they relied on. They found that all of the students seemed to be experiencing a
cognitive conflict and tried to resolve it, but chose different approaches to deal with
the situation. Some students referred to the impossibility of the presented situation,
some acknowledged the paradox but accepted it as a part of not yet fully developed
mathematics; the majority of students added contextual considerations trying to
reduce the level of abstraction whereas a conventional resolution of the paradox
involves considering the situation in an abstract mathematical manner.

The study of Zaslavsky (2005) addresses the social aspect that was raised by
Limon (2001). Zaslavsky discussed the design and implementation of mathematical
tasks that evoke learners’ uncertainty. She related to three types of uncertainty
associated with tasks: (1) competing claims or beliefs of the learner; (2) exploration
tasks and open-ended problems; and (3) lack of confidence regarding the correctness
or validity of an outcome. Zaslavsky described in details a doubt provoking task that
involved issues related to issues such as validity, multiple proof methods, existence
and uniqueness, examples and counterexamples. Most of these issues were initiated
by the learners themselves. Zaslavsky’s report places social interactions as a central
factor in exploiting the potential of such uncertainty evoking tasks, since the rich
collection of ideas that was raised by the learners would probably not been as rich if
originated from a single learner.

To conclude, cognitive conflict is a strategy that may be used to elicit deep
cognitive processes, as well as increase student motivation and curiosity; the effect
of using cognitive conflict also depends on social interactions between learners.

14.4 The Study

14.4.1 Objectives
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• to illustrate the use of PNR by analyzing an episode from a tertiary mathematics
lesson in which an experienced lecturer creates a cognitive conflict;

• to discuss the findings of the PNR analysis and its affordances in light of existing
literature and demonstrate the importance of practice-based research and the type
of insights that may be gained.

14.4.2 Setting

The research was performed in a College of Education in Israel, which offers, among
others, a degree in mathematics education certifying students to teach grades 7–10.
The students take an introductory course in set theory during their first year of
training; the course requires no previous knowledge. Class attendance is not man-
datory; therefore the number of attending students varied from week to week
(34 students were registered and the classroom was usually quite full). The course
was taught by Rachel, a very experienced lecturer who volunteered to participate in
the study. Together with Rachel, we selected for observation and analysis a few
lessons where she taught theorems whose proofs were rich in content and structure.
Rachel was not instructed in any way regarding proof presentation before the
lessons. The lessons were audio-recorded and transcribed; they were also observed
and documented by the first author (blackboard, verbal explanations, lecturer and
students comments and students’ behavior). Rachel was interviewed after each
lesson, and was asked to reflect on the proofs and their presentations. The notes
taken during the classroom observation were used during the interview. The inter-
views were audio-recorded and transcribed.

In this chapter, we present and analyze an episode taken from a lesson in which
Rachel taught and proved De Morgan’s laws for sets. In this episode, Rachel
formulated and proved the distributive laws for sets:

1. Union over intersection: A (B C) (A B) (A C)
2. Intersection over union: A (B C) (A B) (A C)

14.4.3 Analysis

14.4.3.1 Interviews Analysis

The post-lesson lecturer interviews were analyzed using principles of verbal analysis
(Chi, 1997). The interviews were transcribed; then, significant excerpts were marked
and divided into two categories: excerpts that concern proof teaching in general and
excerpts that relate to a specific proof taught in each lesson. These excerpts were then
interpreted, summarized and organized in four tables containing: general lecturer
considerations regarding proof teaching, lecturer considerations regarding teaching
of a specific proof, lecturer’s perception of general students’ difficulties in learning
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Table 14.2 Rachel’s considerations

Lecturer consideration Lecturer element

A. General principles of proof teaching A1. Exposing the students to different types of
proofs

A2. Refuting a false claim by a counter-example-
vs. providing a full proof for a true claim

B. Increasing Students’ involvement in
the lesson and in the proving process and
building students’ proving kills

B1. Gradually building students’ knowledge to
enable
involvement

B2. Drawing the proof from the students through
discussion

C. Lesson specific considerations C1. Justifying the generality of the visual proof

proofs, and lecturer’s perception of students’ difficulties in learning a specific proof.
In Table 14.2, we present only lecturer considerations relevant to the context of this
chapter, coded as ‘lecturer elements’.

14.4.3.2 PNR Analysis

The PNR analysis starts with analyzing the scope and organization of the proof
presentation. The lessons were divided into modules by the main mathematical topic
or argument presented in each module. Transitions between modules were placed
where the lecturer explicitly stated an intention to start a new topic or argument. The
modules, their order, their duration and the inter-relations between them, were
organized in a schematic presentation (Fig. 14.2).

Next, each module of the global analysis of the flow of the proof was examined
and places where a lecturer element was referred to were marked. An element was
categorized as ‘endowed with presence’ if the lecturer used rhetorical figures (such
as repetition or using an analogy) to strengthen its presence. An element was
categorized as ‘lacking presence’ if the lecturer had considered it significant in the
interview, but did not endow it with presence in the lecture. When examining the
modules in that manner, we found additional elements that had not been mentioned
by the lecturer in the interview but were endowed with presence (e.g., elements that
were raised by students and were then thoroughly discussed).

The analysis of basis of agreement was performed along several steps but we
relate here only to those steps that are directly relevant to the analysis of the episode
presented in Sect. 14.5.3.

1. Identifying potential gaps between lecturer premises and student premises,
according to a list of criteria, mostly based on students’ questions during the
lesson (for example repeated question or questions that reflected a substantial
misunderstanding).
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2. Identifying premises and gaps: we analyzed excerpts containing potential gaps by
using Toulmin schemes (Toulmin, 1958), narrative analysis and other coarse
grained schematic representations of the argumentation. We determined relevant
lecturer premises and whether they were explicit or implicit. We used students’
responses to determine students’ premises and their type; if there was a mismatch
between student premises and lecturer premises it was categorized as a gap.

3. Classifying gap source: If a lecturer attributed a premise a different status then the
students (e.g., the lecturer referred to something as ‘fact’ but the students referred
to it as ‘truth’) we determined that the gap source was the status of the premise. If
a lecturer used a premise unrecognized by students, we determined that the gap
source was the choice of the premise. If the lecturer used an unfamiliar or unclear
notation, we determined that the gap source was the presentation of the premise.

14.5 Findings

14.5.1 Findings from the Lecturer Interviews

In Table 14.2 we present Rachel’s considerations regarding proof teaching in general
and teaching De Morgan’s laws in particular. We present only those of Rachel’s
lecturer elements that we directly refer to in the analysis below. Elements A1, A2,
B1, and B2 have a general nature whereas C1 is lesson specific.

14.5.2 Scope and Organization of the Lesson

Rachel opened the lesson by checking homework assignments, which focused on
basic concepts and relations in Set Theory, particularly elements, sets, partial sets
and the difference between inclusion (A ⊂ B) and elements belonging to a set
(a 2 A). Next Rachel defined the complement of a set A with regards to a set E,
AC(E),and gave examples. She started discussing graphic representations of sets,
particularly Euler and Venn diagrams and explained how to representA [ B, A \ Bby
diagrams, while reminding the students of the definitions of[, \ . She then
proceeded to representations ofAC(A [ B), (A \ B)C(A) and (A \ B)C(A [ B)thus
consolidating both the concept of the complement and its graphic representations.

At this point Rachel asked the class what are all the possible reciprocal situations
between two sets, represented by diagrams. A classroom discussion led to the
diagrams depicted in Fig. 14.1.

This was followed by another classroom discussion, concluding it is enough to
use Diagram II in Fig. 14.1 in order to produce a valid proof of a claim relating to
properties of two sets. After this general discussion about using diagrams in proofs,
Rachel used Venn diagrams (like Diagram II in Fig. 14.1) to prove the
associative laws: (A B) C A (B C) and (A B) C A (B C).
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A B ABA B

I II III IV V

BA A=B

Fig. 14.1 Diagrams of five reciprocal situations between two sets

V. Using Venn diagrams to prove Associative and Distributive laws (17')

Va. Associative laws:, ( ∪ )∪ = ∪ ∪ ; ( ∩ ) ∩ = ∩ ∩

Vb.  Distributive laws:
A ∪ ∩ = ∪ ∩ ∪ ; ∩ ∪ = ∩ ∪ ∩

VII. Proving ∩ = ∪ formally (12’)

IV. Generality of Venn diagrams (classroom discussion) (8')

I. Opening: Consolidating basic definitions and notations: element, (partial) set, ∈,⊂ (16’)

II. Introducing the formal definition of a compliment of a set (E)

III. Venn diagrams of two sets – Introduction (7’)
IIIa. Representing ∪ , ∩ by Venn diagrams

IIIb. Exemplifying the complement of a set by Venn diagrams:

( ∪ ), ∩ A , ∩ ∪

VI. Explaining De-Morgan’s laws: ∪ = ∩ ; ∩ = ∪ (16')

and proving them using Venn diagrams

( )

(16')

Conflict

Fig. 14.2 Global flow analysis of the lesson

Then, instead of proceeding directly to proving the distributive laws A[ (B\C)¼
(A [ B) \ (A [ C)andA \ (B [ C)¼ (A \ B) [ (A \ C), she started a discussion about
the distributive law of multiplication over addition in number sets, suggested a
distributive law of addition over multiplication and involved the students in refuting
it. Only then, she formulated the distributive laws for sets together with the students
and asked if both laws are true. This triggered a vivid discussion involving a
cognitive conflict, which will be our focus in Sect. 14.5.3.

Finally, Rachel presented and explained De Morgan’s laws and let students prove
them on the blackboard using Venn diagrams. One of the laws was also proved
formally, using logical notation, after discussing a proving strategy with the students
(“double inclusion”). The formal proof of the other law was left as a homework
assignment.

Hence, the lesson can be divided into seven modules, as presented in Fig. 14.2,
where Module V, which will be the focus of our discussion, is bold.
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Figure 14.2 calls for two observations. Firstly, the lesson exhibits complex
interrelations between modules (represented by the arrows on the left). Concepts
and notations that are introduced in earlier modules are constantly being used in later
modules in different contexts and are being consolidated as a result. The different
modules are woven into a tangled web of ideas that are introduced, used and re-used
throughout the lesson. In that sense the global flow of the lesson is spiral rather than
linear. For example, the operations \, [ are recalled and illustrated in Module IIIa,
exercised in Module IIIb, discussed in Module V and then used in De Morgan’s laws
in Modules VI-VII. Secondly, all the required elements for understanding and
proving De Morgan’s laws were not only recalled during the lesson but were
thoroughly exercised so that they would be ready to be used when needed; in a
way the global flow of the lesson led to the two proofs of De Morgan’s laws. Finally,
Venn diagrams were treated by Rachel not just as convenient illustrative aid but as a
legitimate proving method, and as such considerable time and effort was invested in
justifying the use of Venn diagrams.

To summarize, the global flow of the lesson enabled the lecturer to comfortably
introduce De Morgan’s laws to the students and then to let the students prove the
laws by themselves. All the required “ingredients” were at hand and the students
only needed to implement them.

Elsewhere we analyze an episode from this lesson, focusing on gaps between
lecturer premises and students’ premises (Gabel & Dreyfus, 2020, 2022). Here, we
focus on the use of a cognitive conflict. Therefore, in the following section we
demonstrate a PNR analysis of Module V, as an example of using dissociation to
solve a cognitive conflict and consequently create a shared basis of agreement with
the students.

14.5.3 Analysis of an Episode from Module V – Cognitive
Conflict, and Dissociation

In this section, we discuss the analysis of presence and basis of agreement of an
episode in Module V where Rachel discussed and proved the two distributive laws:

1. Union over intersection: A (B C) (A B) (A C)
2. Intersection over union: A (B C) (A B) (A C)

From here on, whenever the terms fact, truth, presumption, value, value hierarchy
are used in their PNR sense, they will be written in italics.

The relevant episode started as follows:

357 Rachel: . . .the question is: Is there a distributive law of union over
intersection? What is the distributive law?

358 Student: What does it mean ‘over’?
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The student’s question caused an elaborate class discussion. Therefore, according
to our criteria (Sect. 14.4.3) this module was further inspected for the existence of
gaps. However, as will be seen shortly, Rachel was fully aware of a potential gap.
She did not only handle it and closed it but rather manipulated the situation to trigger
the following discussion:

359 Rachel: . . .Do you know the distributive law?
360 Student: Yes
361 Rachel: Yes. What is it? Generally. . .
362 Student: A union with. . .
363 Rachel: No, no, not with union – the law that you are familiar with
364 Student: a (b + c) . . .
365 Rachel: equals what?...
366 Student: a b + a c

Rachel writes a�(b + c) ¼ a�b + a�c on the blackboard and the students agree that
they are well familiar with it.

Rachel proceeded and explained the meaning of the word ‘over’ in the context
this law. She verified that she and the students share the same fact regarding the
distribution of multiplication over addition in numbers and that there is no gap,
neither of the status of the fact, nor in the use of the word ‘over’. In order to verify
that, rather than proceeding directly to the distributive laws for sets, she asked the
students to formulate a distributive law of addition over multiplication:

369 Rachel: Now, if I ask: Is there a distributive law of addition over
multiplication? How would it look like? What do I need to
write?

370 Student: a + b c
371 Rachel: Right! a + b cequals what?
372 Student: [several students] No, it is not equal. . .
373 Rachel: Is it equal to. . .what?
374 Student: (a + b) (a + c)
375 Rachel: [writing on the blackboard] aþ b � c ¼? aþ bð Þ � aþ cð Þ So is it

equal or not?
376 Student: No.
377 Rachel: No? Why not? Maybe it is equal?

Rachel refused to accept the students’ immediate negative answer and asked them
to justify what seemed obvious. The students suggested an algebraic proof but
Rachel asked for a simpler proof and together they reached the conclusion that in
order to refute a claim it is enough to provide a counterexample. She suggested the
students to choose small numbers; the students chose a¼ 1, b¼ 2, c¼ 3 and refuted
the claim. By doing that together with the students, Rachel endowed presence to
Element A1 (“Exposing the students to different types of proofs”) and Element A2
(“Refuting a false claim by a counter-example”) from Table 14.2 in Sect. 14.5.1.
This is an efficient example to demonstrate how a shared basis of agreement enables
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a critical discussion leading to strengthening of new premises of different types:
truths (the structure of distributive laws in general), presumptions (methods of
proving), values (the need to prove a claim that seems trivial) and value hierarchies
(preferring a simpler and shorter proof).
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Only then Rachel returned to proving the distributive laws for sets, but at this
point she had achieved two things: Firstly, the students shared with her premises
related to: (i) the structure of distributive laws; (ii) the language (‘over’); and (iii)
presumptions related to proving or refuting the laws. Secondly, she had intentionally
planted in the mind of the students the idea that one of the distributive laws is true
and the other is false. In fact, Rachel endowed this idea with more presence when she
summarized this part and said:

393 Rachel: . . .there is no distributive law of addition over multiplication.
However, there is a distributive law of multiplication over
addition. Now I ask you: what do you think happens with the
operations of union and intersection?

We will shortly see how Rachel used this misleading idea in a very sophisticated
manner. At that point, together with the students, she formulated the distributive law
for union over intersection, taking as an example the distributive law for multipli-

cation over addition and reaching the form: A [ B \ Cð Þ ¼? A [ Bð Þ \ A [ Cð ,
simply by replacing ‘ ’ by ‘ ’ and ‘+’ by ‘ ’.

One of the students still demonstrated the previous gap regarding the word ‘over’
and Rachel replied:

407 Rachel: Because you did not know what the distributive law was, you did
not understand what I meant. Therefore I demonstrated it by
using what you all know from before, you all know the
distributive law [for numbers], and I ask the same question.
Here we saw that the distributive law of multiplication over
addition holds, right? So how will you translate it? Instead of
multiplication, you take union, and instead of addition take
intersection. . .

We see how Rachel strives to maintain a shared basis of agreement with all the
students in the class and simultaneously she strengthens the analogy to the distrib-
utive law for numbers. She then asks:

409 Rachel: . . . The question is if this law holds or it does not hold. How
will we?...

410 Student: [several students] with the circles/ draw circles
411 Rachel: We check it with circles. We found a way to check it. . . .what do

you think?

The students, already well acquainted at this point with Venn diagrams suggested
to use diagrams to check if the law is true. Then Rachel urged the students to guess
and the students guessed it holds. Rachel stated that this guess needs to be checked
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and proved the law by drawing Venn diagrams on the blackboard as in Fig. 14.3. At
the same time, the students are also drawing Venn diagrams in their notebooks.
Finally, Rachel summarized that the distributive law of union over intersection
holds.
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C
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C

( ∩ ) A∪ ( ∩ )

(A∪ ) ∩ ( ∪ )

( ∪ )

(A∪ )

C

Fig. 14.3 Using Venn diagrams to prove the first distributive law

The fact that the students suggested to prove the law by using Venn diagrams
indicates that they believe that it is a legitimate way to prove claims about sets.
Element C1 from Table 14.2 in Sect. 14.5.1 (“Justifying the generality of the visual
proof“) was endowed with presence in the previous Module IV thus Rachel now
shares this presumption with the students.

Next, Rachel turned to the second distributive law of intersection over union. She
formulated it together with the students, demonstrating again the shared basis of
agreement (in 462 the student is actually dictating character by character):

459 Rachel: Let us move on. If I want now to write the distributive law of
intersection over union, what do I need to write?

460 Student: A intersection with B union C
461 Rachel: [writing] A (B C) and I ask. . .
462 Student: [student dictating] equal sign, question mark, open parenthesis,

A intersection B, close parenthesis, union, open parenthesis,
A intersection B, close parenthesis.

463 Rachel A \ B [ Cð Þ ¼? A \ Bð Þ [ A \ Cð Þ [writing on the blackboard].
Good. That is the question. What do you think?

This seems an innocent question, and the students are used to Rachel asking them
to make a conjecture before proving (Element B2 in Table 14.2, Sect. 14.5.1). After



formulating the first law, there was students’ consensus that the law is true. This time
the situation is different:
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464 Student: No/Yes/Maybe [many voices]
465 Rachel: There is a controversy. One says yes, the other says no. Let us

see what the majority thinks. Who thinks that the answer is yes?

The class is split into many voices. Rachel orchestrated this situation deliberately
and cleverly, and then took advantage of the shared basis of agreement she had
created, in order to create a cognitive conflict among the students. It is tempting to
call it a “cognitive trap” for Rachel cunningly manipulated the students and created a
confusion that led to a dispute. She says:

469 Rachel: There is a major dispute in the class and we are going to check,
we will see who was right, those who said yes or those who
said no.

The conflict involved the students in the process and emphasized the need for a
proof, not as a way to justify the obvious (as was for them the case with the
distributive law for numbers) but as a tool to solve the conflict, and decide if the
second law is false (as it was in numbers) or true. The solution of the cognitive
conflict involved the use of dissociation as described in Fig. 14.4.

Thus the cognitive conflict and its resolution served as a rhetorical device that
endowed presence not only to the two distributive laws for sets but also to the need

Opinion: Analogies can be reliably used to 

determine if a claim is true.

Truth: The structure of a distributive law

‘Operation-1 over Operation-2’ is as above.

Dissociation (by proof)

Opinion: In distributive laws, one law is true and 

the other is false.

Students’ opinion about distributive laws of two mathematical operations

Suppose we have two operations: Operation-1 denoted by # and Operation-2 denoted by &, and three

mathematical objects: A,B,C.

The structure of a distributive law “Operation-1 ‘over’ Operation-2” is: A#(B&C) = (A#B)&(A#C)

The structure of a distributive law “Operation-2 ‘over’ Operation-1” is: A&(B#C) = (A&B)#(A&C)

One law is true and the other is false.

Analogy creates

conflict

Truth: Analogies are useful but might produce

erroneous conclusions.

Algebra (a,b,c numbers)

∙ + = ∙ + ∙ ; + ( ∙ ) ≠ ( + ) ∙ ( + )

Algebra (a,b,c numbers)

∙ + = ∙ + ∙

+ ( ∙ ) ≠ ( + ) ∙ ( + )

Sets (A,B,C sets)

∪ ∩ = ∪ ∩ ∪

∩ ∪ = ∩ ∪ ∩

?

?

Fig. 14.4 Solving the cognitive conflict by dissociation



for proof as a standard for dissociating opinion from truth, especially when one has
no intuition or cannot rely on previous knowledge. In fact, it clarified that one should
be very careful with analogies that might produce erroneous conclusions, and that
claims may be true in one field but false in another. This is an important message and
Rachel stressed it:
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505 Rachel: Those who said it was true were right. There is something very
surprising here. We saw that in multiplication and addition of
numbers the distributive law “works” only in one direction –

multiplication over addition, but not in the other direction of
addition over multiplication. However, in union and intersection,
the distributive law “works” in both directions. There is the
distributive law of intersection over union and the distributive
law of union over intersection. Therefore, it is really quite
surprising. And those who said “no” were inspired by the
example of multiplication and addition – but finally the law
is true.

In turn 505 Rachel emphasized that: (i) admittedly the situation is not trivial but
‘surprising’, and (ii) the source of the confusion was the analogy to numbers. She did
not embarrass those who were mistaken, because one of her teaching goals is to
encourage students’ participation and involvement (Elements B1–B2, Table 14.2,
Sect. 14.5.1), yet she stressed the need to be careful.

The episode demonstrates how Rachel gradually built a shared basis of agreement
with the students, attending to each gap and acknowledging each difficulty. Rachel
created confusion. She deliberately confounded the students and accompanied them
until they solved the baffle by using proof. The shared premises regarding the
structure of the distributive laws and legitimate proving methods ( fact, presumption)
enabled a critical discussion leading to strengthening various types of other shared
premises: the distributive laws for sets (truth), the danger of using analogies (pre-
sumption) and the need for proof (value). However, the episode also showed that one
should be careful not to plant misconceptions in the mind of the students. In this
particular case, the lecturer was very experienced, aware and in control. Therefore,
she succeeded in using the misconception that she herself created as a cognitive
conflict that endowed presence to ideas that she wanted to enforce.

14.6 Discussion and Implications

Our findings demonstrate how the use of concepts and ideas from PNR allows us to
investigate a classroom episode, explore the lecturer’s pedagogical actions, and
interpret their consequences. We presented general and specific lecturer consider-
ations for proof teaching (Sect. 14.5.1), which we related to in our PNR analysis;
next, we showed how Rachel endowed her considerations with presence, thus
creating a shared basis of agreement with her students. We also presented an analysis



of the global flow of the proof (Sect. 14.5.2), a convenient platform to examine the
global design of a lesson and to place selected episodes within a mathematical and
instructional context; we then elaborated on the use of cognitive conflict as a
rhetorical device (Sect. 14.5.3). Thus, our PNR adaptation served as a research-
practice mediator; it provided concepts and constructs that allowed us to understand
the actions of Rachel – the practice, as well as to evaluate her actions in comparison
of the desirable act – designing a flow of a proof such that there exists a shared basis
of agreement with the students. As Silver and Herbst (2007) put it: “theories can be
languages to encode and read, that is to describe, a practice so that researchers can
examine practice according to such reading” (p. 52).
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Rachel’s pedagogical actions in creating the cognitive conflict reflect the strategy
expressed by Limon (2001): She first identifies the current state of knowledge of the
students by explaining how the distributive laws are formulated and what the
meaning of the word ‘over’ is; then, she asks the students to formulate themselves
the way that a distributive law for addition over multiplication would look like. In
PNR terms, she makes sure there will be no gaps in facts and truths. She then invests
some effort in making sure there will be no gaps in presumptions and values either,
by declining the students’ immediate denial of a distributive law of addition over
multiplication and making them prove their claim (in two ways). This shared basis of
agreement serves an important pedagogical goal, since students must have the ability
to reason about and evaluate contradictory pieces of evidence, otherwise they will be
unlikely to reach a meaningful cognitive conflict (Limon, 2001). In that sense,
addressing the distributive laws for numbers was an effective and clever pedagogical
move that enabled the students to be engaged and to participate actively in the
discussion. However, Rachel does more than that. She ‘plants a seed’—the idea that
when one of the distributive laws is true, the other is false. The scene is now set for
the second stage of the strategy expressed by Limon (2001): confronting students
with contradictory or perplexing information.

In this second stage, the students formulate the two distributive laws for sets.
After one of the laws has been proved, they are asked if the other one is true. At this
point, the analogy to the distributive laws for numbers creates two types of confu-
sion. Firstly, as the students have just experienced, not all distributive laws are true
apparently, and this has already created the type of confusion that Zaslavsky (2005)
attributes to exploration tasks. Secondly, the seed that was planted by the analogy
has evolved and borne fruit: some of the students intuitively responded negatively,
some positively and others are uncertain, i.e., there was confusion of the type that
Zaslavsky (2005) attributes to competing claims or beliefs of the learner. However,
the confusion was not limited to the mind of a single learner, it was expressed
explicitly, it split the class, it created a social interaction that felt like a contest, it
encouraged student engagement and made them curious to discover what is true.
Since the class now shared Rachel’s premises, they settled the dispute by proving the
second distributive law for sets thus dissociating opinion from truth and devaluing
the belief that when one of the distributive laws is true the other is false.



Furthermore, as D’Mello et al. (2014) recommend, the entire instructional process
was constantly regulated and supported by Rachel, therefore we surmise that the
confusion inflicted on the students by the conflict had positive learning outcomes,
yet this is a matter for future research.
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A positive outcome of Rachel’s use of cognitive conflict is explicating her pre-
sumptions and values. Dawkins and Weber (2017) investigate values and norms of
mathematicians regarding proof and suggest that proof instruction must seek to
expose the underlying values that guide that practice, otherwise students might
find proof and proving confusing and problematic. Their take on the different
value systems of mathematicians and students is compatible with PNR ideas about
mending gaps and the importance of creating a shared basis of agreement. Further-
more, Dawkins and Weber claim that students are being asked to adopt mathema-
ticians’ proof norms although “to students who do not share mathematicians’ values,
classroom proof norms represent arbitrary solutions, transmitted via imposition, to
questions the students never asked and might not even consider meaningful”
(p. 133). This echoes D’Mello’s et al. (2014) conclusion that confusion is positively
related to learning outcomes, if it is contextually coupled to the learning activity.

As we showed above (Sect. 14.5.3) Rachel created a situation that clarified the
need for proof as an effective (if not the only) way to solve a conflict. Thus, the
rhetorical use of the cognitive conflict endowed presence not only to the consider-
ations Rachel expressed in the post lesson interview (Sect. 14.5.1) but also to a
central value discussed by Dawkins and Weber (2017), which Rachel shares: the use
of proof as a standard for dissociating opinion from truth; it also endowed presence
to a mathematical norm: using analogies but treating them with caution. The
instructional setting increased the relevance of the mathematical discussion and
made it meaningful for students. This conceptual lens allows a hypothetical inter-
pretation of the findings of Wijeratne and Zazkis (2015) regarding the different
approaches that students used in dealing with the conflict (see Sect. 14.3) and
Wijeratne’s and Zazkis’ consequent recommendation to reinforce the way definite
and indefinite integrals are defined so that students would be able to rely on the
definition and not just apply calculations. In our framework, the outcome of this
recommendation would be that the use of definitions would be endowed with
presence, so that it will become a presumption shared with the students, who will
then be able to rely on it as a way to solve the conflict by dissociation; thus, the
understanding and working with mathematical definitions will gain significance.

Dawkins’ and Weber’s (2017) perspective shares with PNR the importance
attributed to fostering good communication between mathematicians and their
students. This communicational perspective is extensively discussed by Carrascal
(2015), who highly recommends that while teaching proofs, lecturers will conduct
argumentative dialogues instead of simply presenting proof in what she calls “an
authoritarian presentation”. Carrascal claims that such dialogues may help students
conceive proofs as “constructions built up through an interactive process that looks
for the understanding and the acknowledgment of the student, who has to explain all



the steps of the inferential process” (p. 317). She attributes other benefits to argu-
mentative dialogues, such as developing competences related to critical reasoning,
and states that teachers should have pedagogical and theoretical skills to foster
argumentation in the classroom. Moreover, she believes that communicating math-
ematics may require specific forms of expressions and the use of rhetorical elements
to convince the particular audience. Indeed, Rachel has surely considered the
characteristics and needs of the particular audience in her lesson, prospective
mathematics teachers, as she said in the post lesson interview:
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Rachel: . . . a lecturer who teaches this proof at university, does not start all the
stories from the beginning but just gives the proof. . . I try to set an
example of ‘how to teach’. It is an extra. . . a ‘bonus’. . . I give them
teaching methods, they should think, when something is difficult, how to
teach it to students in the clearest way. . . part of my teaching here. . . is to
give a personal example of ‘how to teach’, I believe this is part of our
job... our graduates will not be mathematicians but mathematics
teachers. . .

We believe that the episode we presented exhibits the type of dialogues that
Carrascal endorses. In this chapter we referred to a specific practice, the use of
cognitive conflict. However, elsewhere (Gabel & Dreyfus, 2017, 2022; Gabel, 2019)
we used the PNR framework to critically examine classroom communication and
further elaborate on ways to improve it. Our approach suggests a practical pedagog-
ical concept, the flow of a proof, that if carefully planned may make lecturers aware
of important proof elements and of their own premises and promote productive
classroom communication.
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Chapter 15
Teaching Mathematics Education
to Mathematics and Education
Undergraduates
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Abstract Mathematics Education courses are increasingly present in university
programmes in Mathematics and in Education. In this chapter, we propose
approaches to teaching and assessment which consider and address some of the
challenges that university teachers face as they welcome students from diverse
communities to Mathematics Education as an academic discipline. To this aim, we
draw on our experiences of design, delivery and assessment of two introductory,
optional courses in Research in Mathematics Education (RME), one to final-year BA
Education students in an Education Department and one to final-year BSc Mathe-
matics students in a Mathematics Department. We aim to discuss how such courses
can facilitate students’ cross-disciplinary transition (from Mathematics or Education
to Mathematics Education). First, we outline the literature and the theoretical
underpinnings that ground the design of the two courses and their assessment
frame. This frame consists of a typology of four characteristics of engagement
with RME discourses which is informed by the Theory of Commognition and has
emerged from our prior research with secondary mathematics teachers and univer-
sity mathematics lecturers: consistency, specificity, reification of RME discourse,
reification of mathematical discourse. Subsequently, we outline the two courses and
sample one activity and student work from each course to demonstrate the use of our
assessment frame and highlight insights emerging from its use (for example, in
tracing narratives about mathematics and its pedagogy as students engage with the
courses). We conclude with a brief discussion of the pedagogical potential of such
activities – and of the two courses more broadly – for undergraduate students’
introduction to RME.
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15.1 Mathematics Education Courses in the University
Curriculum

Courses that introduce Mathematics Education as an academic discipline now
feature increasingly in the syllabi of Mathematics undergraduate degrees as well as
in the syllabi of Education undergraduate degrees. These courses typically mark
students’ first encounter with Research in Mathematics Education (RME), whether
they are students of Mathematics or of Education. The challenges posed to those in
charge of welcoming these two quite different communities of learners – mathemat-
ics undergraduates and education undergraduates – into RME are diverse (Nardi,
2015a, b; Biza & Nardi, 2020, 2022). Addressing the challenges present in this first
encounter has implications for university-level teaching practice as well as wider
implications: teaching these courses is a quintessential opportunity for a much
needed rapprochement between the communities of Mathematics, Education and
Mathematics Education research (Nardi, 2008, 2016).

In this chapter, we present the design, delivery and assessment of two introduc-
tory, optional RME courses, one to final-year BA Education students in an Educa-
tion Department and the other to final-year BSc Mathematics students in a
Mathematics Department. Our account aims to explore how the design, delivery
and assessment of such courses can facilitate students’ cross-disciplinary transition
(from Mathematics or Education to Mathematics Education).

First, we discuss literature which informed the design of the two courses. We start
from literature that explores the epistemological differences between research in
Education, Mathematics and Mathematics Education (e.g. Boaler et al., 2003). We
also discuss challenges which pertain to the transition from studies in Education or
Mathematics to Mathematics Education. We then describe the theoretical underpin-
nings of the design, teaching and assessment of the two courses and we outline how
these inform the assessment frame we use for the evaluation of student work in the
two courses. This frame consists of a typology of four characteristics (consistency,
specificity, reification of RME discourse, reification of mathematical discourse: Biza
et al., 2018), is informed by the Theory of Commognition (Sfard, 2008) and emerged
from our prior research with secondary mathematics teachers (Biza et al., 2018) and
university mathematics lecturers (Nardi, 2008).

Subsequently, we outline the two courses and sample one activity – as well as
examples of student work – from each course. Our examples draw on data collected
during formative and summative assessments for the two courses. We sample from
course activities and from student work in order to demonstrate the use of our
assessment frame and illustrate insights emerging from its use into: how students
engage with RME and what shifts, if any, in the students’ mathematical and
pedagogical discourses may need to occur (engineered, encouraged) during said
engagement.

We conclude with a brief discussion of the interplay between our research and
teaching practice in the way these courses were conceived and continue to grow.



We highlight potentialities of such activities – and of curriculum design and peda-
gogical practice relating to the two courses more broadly – for undergraduate
students’ introduction to RME.

15 Teaching Mathematics Education to Mathematics and Education Undergraduates 313

15.2 Challenges in the Transition from Studies
in Mathematics or Education to Mathematics
Education

Welcoming newcomers to the community of RME, typically through optional
courses offered to Mathematics and Education undergraduates has become one
way in which Mathematics Education is making an increasingly institutionalized
presence within Mathematics and Education undergraduate programmes. One moti-
vation for such courses is often to introduce students to RME as they prepare for
post-graduate courses for mathematics teaching (in the UK, for example, PGCE, the
Post-Graduate Certificate in Education, a qualification that is typically required for
granting QTS, Qualified Teacher Status, to primary and secondary teachers).

Often, courses offered to Mathematics undergraduates aim to familiarise mathe-
matics students with the social science of Education and with the new, to them,
practices of educational research. These practices are often very different from those
for research in Mathematics (Schoenfeld, 2000). For example, in comparison to
Mathematics, RME discourses tend to be less absolutist and highly reliant on
learning and teaching context – and student responses to a mathematical problem
question are typically studied with attention to what may have led the student to
producing a particular response (Nardi, 2015b). Knowledge production is rather
more “cumulative, moving towards conclusions that can be considered to be beyond
a reasonable doubt” (Schoenfeld, 2000, p. 649) – and findings tend to be suggestive,
rather than definitive. Such epistemological differences make the navigation across
the discourses of Mathematics and RME a challenge that those of us in charge of
welcoming newcomers into RME need to actively consider and act upon.

Upon entry into RME, newcomers need to learn how to read, converse, write and
conduct research in this largely unfamiliar territory. Working towards membership
of the new scholarly community often implies a rethinking of epistemological
positions – see, for example, (Nardi, 2008, pp. 257–292) for a discussion of this
matter in relation to the experiences and challenges of mathematics educators and
university mathematicians engaging with collaborative research.

How to engage with RME literature has emerged in research as one such
challenge. For example, Boaler et al. (2003) explore two issues pertaining to the
welcoming of newcomers into RME. First, they note, practitioners who embark on
research often start off with a view of systematic enquiry as a way to “show, prove,
convince” of “what works” (p. 492). A further issue emerges when “new researchers
who know they need to become familiar with relevant studies in their field but
conceive of this task as a goal in its own sake, or even as a ritual, signalling to other



members of the community that they are well read” (p. 492). Boaler et al.’s treatment
of these issues – “considering research from the perspective of its practices”
(p. 493) – begins to highlight the necessary epistemological shifts that engagement
with RME entails, whether the new researcher sets out from an educational practi-
tioner/Education graduate background or from a mathematician/Mathematics grad-
uate background.
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As Boaler et al. noted in 2003 – and is still the case – the body of work on the
preparation of new mathematics education researchers is “small but expanding”
(p. 494). This body of work highlights that, upon entry in the field, newcomers
“need at minimum to understand and respect the nature of different research tradi-
tions and paradigms” and be “sufficiently open to appreciate the value of different
perspectives and frameworks” (p. 496). Their “ability to do so will depend, in part,
upon being knowledgeable about the philosophical and epistemological foundations
of different paradigms and the nature of evidence they provide.” (pp. 496–7).
Learning how to exercise “both imagination and discipline” (p. 497) is at the heart
of the skills that newcomers to the field need to develop – and the fostering of these
skills is at the heart of what their supervision and teaching needs to focus on.

Fostering of said skills was the focus of Nardi’s (2015b) study conducted in the
context of a postgraduate programme in Mathematics Education that enrols mostly
Mathematics – but also some Education – graduates. She proposed activity sets
“designed to facilitate incoming students’ engagement with the mathematics educa-
tion research literature” (ibid, p. 135) through gradual familiarisation with the key
journals in the field, and through co-engineering, with the students, steps purpose-
fully designed to develop their skills in identifying, reading, summarising, critically
reflecting on and contextualising RME literature.

Of particular resonance with the work we present in this chapter is Boaler et al.’s
(2003) observation that “the preparation of new mathematics education researchers
may be better informed if more explicit attention is given to the work in which they
will engage” (p. 497). “Work” here alludes to the “active process of investigation”
(p. 497), rather than to static, product-oriented notions of knowledge these
researchers need to acquire. Boaler et al.’s (2003) “explicit and purposeful focus
on research practices” (p. 517) such as “reading, formulating a research question,
using data carefully to make and ground claims, moving from the particular to the
general, considering mathematics, and communicating research findings” (p. 497)
aligns well with the design of the courses that we focus on here. Our course activities
aim to engage newcomers with RME literature in order to: facilitate the newcomers’
engagement with diverse and multi-modal readings; to foster their capacity to cope
with the complexity of engaging with the arguments and findings of others; to locate
their own prior learning and teaching experiences in mathematics, in the realm of
these arguments and findings; and, to deploy these insights into analysis and critical
reflection on incidents of mathematics teaching and learning that are likely to occur
in the classroom.

The course designs that we present here also respond to what Batanero et al.
(1994) noted as the need for activity-based RME courses – namely courses designed
around negotiating new objects of knowledge that can be applied in prior and future



experiences of mathematics learning and teaching (Liljedahl et al., 2013). Our design
resonates with works on engaged pedagogy that offer a platform for “students’
experience of active agency within scholarly communities” (Pyhalto et al., 2009,
p. 221). Similarly, independence, creativity and critical thinking often described –

for example, by Adler and Adler (2005) – as marks of emerging membership of a
scholarly community are at the heart of the course design we present here.
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Even though the aforementioned works refer mostly to postgraduate courses in
RME, and the work we present in this chapter concerns undergraduate provision, our
aims align well with the priorities these works highlight.

At this juncture, we note that one underlying assumption of the work presented
here is of Mathematics Education as an area of educational research, and therefore a
part of the Social Sciences. This is a widely, but not universally, accepted assump-
tion; in fact, it is a culturally dependent assumption. For example, in some countries
in continental Europe, didactics of mathematics chairs may be located in science
faculties, often alongside those in applied or pure mathematics; and, sometimes,
there is a distinction between RME at primary and secondary levels (with the former
located in Education departments and the latter in Mathematics departments). In any
case, regardless of whether RME is carried out by researchers whose affiliation is in
a Mathematics, Education or other department, the epistemological differences
between the respective fields can be profound (as documented, for example, in
Sierpinska and Kilpatrick, 1998, pp. 445–548; Nardi, 2008, ibid.).

We also note that aforementioned challenges apply for both Mathematics and
Education students – and that, for Education students, these may take an additional
and different shape. These students typically arrive on RME courses well-versed in
the Social Sciences paradigm – but often not having engaged with mathematics since
the end of compulsory education. In the UK, this is typically marked by the
completion of the Graduate Certificate in Secondary Education (GCSE), at the age
of 15–16. These students are often reticent about their mathematical ability and need
to revisit their own, sometimes recalled as negative, experiences of learning math-
ematics. An RME course then becomes a vehicle through which they can overcome
their fear of – and trepidation about teaching – mathematics (Nardi, 2015a, 2017).

In this chapter, we report from our work on optional RME courses offered to
Mathematics and Education undergraduates that builds on aforementioned studies.
We start with outlining the theoretical underpinnings of the design, teaching and
assessment of the two courses.

15.3 Theoretical Underpinnings of Undergraduate RME
Course Design

The theoretical perspective of this work is discursive and draws on the
commognitive framework (Sfard, 2008) that sees Mathematics, Education and
Mathematics Education as distinctive discourses and learning as communication
acts within these discourses. Our course design aims to attend to discursive



differences – and potential conflicts – between Mathematics/Education and RME
that our students may experience. We aim towards smooth navigation across these
discourses. Specifically, our course design is produced with attention to how stu-
dents may transform what they know about mathematics from their mathematical
studies (respectively, what they know about educational research from their educa-
tional studies) and what they learn about RME theory – to which they are introduced
during aforementioned courses – into discursive objects that can be used to describe,
and reflect upon, the teaching and learning of mathematics. This transformation is
the productive discursive activity that Sfard (2008, p. 118) labels as reification.
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In Nardi’s (2015b) study, a set of activities for Masters and doctoral level students
were proposed towards facilitating their introduction to RME literature. In these
activities, students are asked to read RME literature, to produce summaries of their
readings and to write accounts of instances in “their personal and professional
experiences that can be narrated in the language of the theoretical perspective”
(ibid, p. 151) featured in those readings. These accounts of students’ experiences
are calledData Samples. Engagement with literature, together with the production of
Data Samples, are seen as two key ingredients of student engagement with RME
literature. Analysis of student work has highlighted students’ challenges with coping
with the complexity of RME literate discourse and with contextualizing RME
literate discourse (ibid). The latter, particularly as triggered by the Data Samples,
is one pillar for the course design and activities we focus on in this chapter.

Another pillar comes from our work with pre- and in- service mathematics
teachers in the MathTASK1 programme. In MathTASK, we engage teachers with
fictional but realistic classroom situations, which we call mathtasks (Biza et al.,
2018). Mathtasks are presented to teachers as short narratives that comprise a
classroom situation where a teacher and students deal with a mathematical problem
and a conundrum that may arise from the different responses to the problem put
forward by different students. The mathematical problem, the student responses and
the teacher reactions are all inspired by mathematics classroom issues that prior
research has highlighted as seminal. Respondents are invited to engage with these
tasks through reflecting, responding in writing and discussing. At the heart of
MathTASK is the claim that discussion related to the teaching and learning of
mathematics can be particularly productive when it is situated in specific classroom
situations that are likely to occur in actual practice (Biza et al., 2018). Central to
mathtasks are pivotal classroom moments in the growth of learners’ mathematical
thinking presented as brief scenarios following the re-storying techniques deployed
in (Nardi, 2008, 2016) and akin to Leatham et al.’s (2015) Mathematically Signif-
icant Pedagogical Opportunities to build on Student Thinking (MOSTs). Our
concern with addressing the complex set of considerations that teachers take into
account when they determine their actions also aligns what Patricio Herbst and

1
“MathTASK” (https://www.uea.ac.uk/groups-and-centres/a-z/mathtask) refers to the overall
programme and its principles, whereas mathtask refers to a specific task designed in accordance
with the principles of the MathTASK programme.

https://www.uea.ac.uk/groups-and-centres/a-z/mathtask


colleagues (e.g. Herbst & Chazan, 2003) label as the practical rationality of
teaching.
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Towards the analysis of the student data we collect during the delivery of the
courses – and sample in this chapter – we deploy a typology of four interrelated
characteristics that emerged from themes identified as pertinent for mathematics
teacher education and professional development in our prior research (see detailed
rationale, definitions and examples in Biza et al., 2018; Biza & Nardi, 2019,
pp. 46–47) and is tailored to the commognitive underpinnings of our work.

• Consistency: how consistent a response to a mathtask is, namely how well-linked
the respondent’s utterances on stated pedagogical priorities are with their utter-
ances on intended reaction in the teaching situation under consideration.

• Specificity: how contextualised and specific a response to a mathtask is, namely
how explicitly relevant the respondent’s utterances are to the teaching situation
under consideration.

• Reification of RME discourse: how reified the use of theories and findings from
research into the teaching and learning of mathematics – that students are
becoming familiar with during the course – appear in a response to a mathtask.

• Reification of mathematical discourse: how reified mathematical discourse – that
students are familiar with, through prior mathematical studies – appears in a
response to a mathtask.

Each one of these four characteristics concern elements that we can trace firmly and
concretely in the students’writing. So, for example, for reification of RME discourse
we scrutinize the responses in terms of how specific, relevant, reliable and accurate
the use of RME terminology is. This scrutiny includes questions such as: Are RME
terms used accurately? Is there direct relevance of a reference to the point being
made (e.g. is the student referencing a piece of educational research in a very broad
manner when a point can be supported more precisely by a specific quotation from
an RME piece of research)? Is a reference specific to research into the teaching and
learning of the particular mathematical topics at stake in the mathtask? Is the link
between the reference and the point explicit? Is the source used credible (e.g. is the
student quoting a text of dubious origin in the same breath as peer-reviewed research
literature – and not demonstrating explicitly awareness of the difference between the
two)? Seeking such evidence in the students’ responses not only secures a verifiable
(by course moderators and external examiners) route to a student’s course mark; it
also paves the way for identifying which student narratives about the teaching and
learning of mathematics (and RME) subsequent versions of the courses (and
research thereof) need to challenge, and, change.

This typology is the basis for the assessment frame deployed towards the forma-
tive and summative assessment of the students’ work during the two courses. We
now describe the two courses and exemplify its use in samples of student work.
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15.4 Design, Delivery and Assessment of Two RMECourses

Thereafter, the Mathematics Education course for Mathematics undergraduates is
referred to as the BMath course and the Mathematics Education course for Education
undergraduates is referred to as the BEd course. Both are offered as optional courses
to finalist (Year 3) students, respectively on a Bachelor of Science (BSc Mathemat-
ics) and a Bachelor of Arts (BA Education) in a research-intensive university in the
UK.2 The collection and use of the students’ productions during the courses for
research purposes has been approved by the institution’s Research Ethics Committee
and consented to by the students.

15.4.1 The BMath Course

The aim of the BMath course (entitled The Learning and Teaching of Mathematics)
is to introduce Mathematics undergraduates to the study of the teaching and learning
of mathematics typically included in the secondary and post compulsory curriculum
(Biza & Nardi, 2020). The learning objectives of the course include: to become
familiar with RME theories; to be able to critically appraise RME literature and use it
to compose arguments regarding the learning and teaching of mathematics; to
become familiar with the requirements (professional, curricular and other) for
teaching mathematics; to engage with findings from research into the use of tech-
nology in the learning and teaching of mathematics; and, to practise reading, writing,
problem solving and presentation skills with a particular focus on texts that report
RME. The BMath course is led by the second author since 2016.

Contact time is 4 h per week (two for lectures and two for seminars) for 12 weeks.
Lectures are teacher-led and partly interactive. Seminars are student-led. In these,
students: present papers they have been asked to read in advance; identify examples
from their experience that resonate with themes in the readings (Data Samples, as per
Nardi, 2015b); solve mathematical problems and reflect on these solutions; and,
respond to mathtasks (Biza et al., 2018). The students upload weekly seminar
contributions in a shared folder. Half-way through the course, a formative assess-
ment activity asks them to produce a response to a mathtask (up to 800 words).
Summative assessment at the end of the course is through a Portfolio of Learning
Outcomes that involves: nutshell accounts of RME theoretical constructs; reflection
on students’ own learning experiences in mathematics; solving a mathematical
problem and reflecting on the solution; and, responding to mathtasks. An example
of a BMath mathtask is in Excerpt 15.1. Examples of coursework and portfolio
excerpts are in (Biza & Nardi, 2020, 2022). Students’ portfolio entries are marked in
accordance with the typology of the four characteristics we outline in the previous

2Occasionally, the courses are taken as optional by students with an interest in Mathematics
Education enrolled on Natural Sciences and Engineering courses.



section. Furthermore, in resonance with an institutional requirement that all student
work meets certain standards of academic writing, scripts are also marked for clarity,
coherence and quality of presentation and referencing.
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Class X is a high attaining group which Ms Jones has taken over at the start of Year 10. So far, 

Class X has been taught mathematics as a list of rules and they have been practising the 

application of these rules in a range of examples. These students have learnt to perform well in 

a competitive classroom environment in which they work on tasks and they are rewarded for 

the correctness and rapidness of their work. In her teaching, Ms Jones aims to instigate a 

different approach that includes justifications for the used rules and the relations amongst them. 

In a session on the sum of the angles of a polygon, she has asked the students to:

• work with a Dynamic Geometry software in order to sketch polygons with 3, 4, 5, 6, 

7, … sides, and 

• report the number of sides and the sum of the angles in a table, in order to conclude 

with a general rule about the sum of the angles of a polygon. 

After a couple of trials, the students conclude that the sum of the angles equals 180o

multiplied by the number of sides of the polygon minus two. They then verify this rule with 

trials of a few more polygons. At this point, Ms Jones asks the students to explain why this rule 

is correct. The dialogue below follows:

Ms Jones: Why is this formula correct? Can you give any explanation?

Student A: It works for all the polygons we tried.

Ms Jones: How do you know that this will work for all polygons?

Student B: It isn't necessary. What we need is a formula that works.

Student C: Yes, we spent so much time playing with the software. If you had given us the 

formula and a list of problems to work on, by now we would have got more 

done.

Student A: Practice makes perfect!

Questions
1. Prove that the sum of the angles of a polygon equals 180o multiplied by the number 

of sides of the polygon minus two.

2. What are the aims of using Dynamic Geometry software in this lesson?

3. What do you think are the issues in students’ responses, especially in the use of 

technology in the class?

4. How would you respond to the students and to the whole class?

Excerpt 15.1 Polygon mathtask (2020 BMath Portfolio of Learning Outcomes)

In (Biza & Nardi, 2020), we illustrate the use of these criteria in the assessment of
the mathtask responses of one student, Emily. In (Biza & Nardi, 2022), we report
observations that emerged from the assessment of the portfolio responses of an entire
student cohort. There, we present evidence that engaging with the portfolio activities
reveals, and challenges, deeply rooted, absolutist narratives about mathematics and
its pedagogy. We also evidence that students are challenged by the requirement to
deploy RME theory and findings towards backing up claims (e.g. about what may
constitute pedagogical effectiveness). The RME literature the students choose to
reference is often quite generic (namely, their references may lack specificity to the
particular issue they are aiming to discuss). Also, these references often appear to be
made for the purpose of gaining lecturer approval, and therefore marks, rather than
demonstrating explicitly the link between claim and evidence.
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We see these students’ attempts as engagement with the rituals of RME discourse,
as actions taken for the purpose of being accepted as a member of the RME
community – what Sfard (2008) calls a “natural, mostly inevitable, stage in routine
development” (p. 245). One example of ritualized engagement is the “name
dropping” of references to the work of eminent members of the RME community.
We stress that we see such ritualized engagement as a potentially productive first
step in the shift from making entirely unsubstantiated claims to recognizing the need
to back up claims through reference to the work of others. More systematic and
robust engagement with the work of others, and thus enculturation in the routines of
the RME community may then ensue.

Two further observations concerning said enculturation are: (1) how student
responses demonstrate attention to social or institutional aspects of the mathematical
activity in the mathtasks (such as group work, student interaction and
sociomathematical norms as per Cobb & Yackel, 1996), beyond merely attending
to mathematical correctness; and, (2) responses that conflate RME theoretical
constructs – intended as interpretive tools in the analysis of learning and teaching
situations in mathematics – as tools for pedagogical prescription. Again, we see this
as a natural step from the prescriptive and normative position that theory may hold in
the Natural Sciences and Mathematics to its more interpretive and reflective role in
the Social Sciences. We see evidence in the portfolio entries that the students have
become aware of this difference as evidence of “meta-level” learning about RME
(namely, learning about “change in the metarules of the discourse”, Sfard, 2008
p. 300).

In Excerpt 15.2, we sample responses to the mathtask presented in Excerpt 15.1
that illustrate observations (1) and (2), framed in the terms of the typology of four
characteristics we use for assessing students’ work.

15.4.2 The BEd Course

The BEd course has been part of the BA Education programme’s suite of optional
courses since 2012, is entitled Children, Teachers and Mathematics: Changing
Public Perceptions of Mathematics and is led by the first author. Its structure is
similar to that of the BMath course. Its aims are similar to, but also distinct from,
those of the BMath course (Nardi, 2017). As about three quarters of the programme’s
graduates continue into training to become primary teachers, the course is designed
to address directly the widely reported reticence of those students towards mathe-
matics and their generally low self-esteem in mathematics. Its aim is to equip these
students with the means to tackle the disaffection (Nardi & Steward, 2003) that often
tantalises the relationship with mathematics experienced by themselves as well as the
young people many of them will soon be preparing to teach.
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Lawrence: limited consistency, limited specificity
“Some of the difficulties that some students have with the use of technology is that some 

of them maybe there are not familiar with the Dynamic Geometry software. Also, a few 

researchers believe that “overuse lead to students’ metacognitive shifts, resulting in a loss 

of their focus on the original mathematical concept to something else” (Soheila B. 

Shahmohammadi, 2019). Moreover, the continuously use of technology lead to the loss of 

mathematical skills and thinking as in nowadays it is obvious that many dynamic software 

and calculators can do the calculations in a mathematical task with just one click. To 

conclude, in this example we can see that students use technology to structure many 

different polygons to find a general formula for the sum of their angles but the dynamic 

software cannot give you an exact proof of this formula but only that it works for some 

cases.”

Penny: limited reification of RME discourse (RME constructs inaccurate use)
“The student’s responses show that they lack the understanding of the concept of relational 

thinking, especially in their response to the use of technology.”

Harry: high reification of RME discourse (RME constructs accurate use), high specificity
“One initial problem is that Mrs Jones has taken this class over from another teacher. 

Therefore, the class already has established sociomathematical norms with their previous 

teacher. This sociomathematical norm is that students did not need to provide explanation 

or reasoning for their given answers, if they could carry out the procedures and rules they 

had been taught, this was enough.”

Nicole: high reification of RME discourse (RME constructs accurate use), high specificity
“[…] The class has been taught instrumentally, however Ms Jones aims for relational 

understanding. Students B and C show negative attitudes towards using the technology.

Pesek and Kirshner (2000) believe initial instrumental teaching can cause cognitive, 

metacognitive and attitudinal interference with later relational understanding. Students B 

and C show attitudinal interference, with Student B wanting a ‘formula that works’ (a 

preference for an external conviction proof scheme provided by the teacher), and Student C 

wanting faster solutions.”

Excerpt 15.2 A sample of BMath student responses to Question 3 of the Polygon mathtask
(Excerpt 15.1), with a selection also of their consistency/specificity/reification of RME and math-
ematical discourse characterisations

The course sets out from the assumption that influences on young people’s
attitudes towards mathematics come from inside school and outside school – and
that our role as educators is to optimize all those influences, including these four:
while our first priority needs to be with improving students’ experience of mathe-
matics within school (1), we need to also be aware of the often stereotypical ways in
which mathematics and mathematicians are portrayed outside school, e.g. in the
media, popular culture and the arts (2). With such awareness then, within school, we
need to develop systematic ways of working against stereotyping and towards
engineering more favourable, and accurate, images. Within school, we need to
openly address these images: question the inaccurate, undesirable ones, and make
the most of the rest (3). Furthermore, outside school (4), we need to work more
closely and systematically with the often well-intended, but not always best-
equipped, ‘outsiders’ who create those popular images (e.g. in the press and in the
creative industries).
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1. Mathematics and I
A biographical account of your relationship with mathematics

2. Mathematics in the media
A brief analysis of a mathematics-related media excerpt (paper press or online)

3. School mathematics and I
Reflections on one aspect of the school mathematics curriculum

4. Mathematics over time
A 2-minute Maths Pitch from the history of mathematics!

5. Mathematics today
A 2-minute Maths Pitch on a current application of mathematics!

6. Mathematics in the classroom
A response to a mathtask (with mathematical, social, affective, meta-

mathematical elements)

7. Mathematics in art and popular culture
A brief analysis of a mathematics-related art or popular culture excerpt (film, theatre, 

literature, arts, music)

8. Mathematical ability on film
A brief analysis of the portrayal of a mathematically able character on film

9. Myths about maths
A brief essay, with evidence, debunking myths about maths (such as Innate, Male, 

Introvert, Burn Out, Uncreative)

10. Mathematics lesson plan
A plan for a mathematics lesson on a topic of each student’s choice

Excerpt 15.3 The 10 parts of the BEd Portfolio of Learning Outcomes

The inception of the BEd course stems from acknowledging that the preparation
of teachers rarely equips them for this complex task – and its 12 weeks of lectures
and seminars are organized to address (1)–(4). In the Portfolio of Learning Out-
comes, the course’s single item of summative assessment, students are asked to:
return to ten activities they prepared for in the weekly seminars; study the materials
accumulated during the 12 weeks of the course; and, compose a revised contribution
to each one of the ten activities, written in the light of what they learnt during those
12 weeks. The headings of the ten activities are presented in Excerpt 15.3.

Students are expected to deploy RME constructs introduced and used throughout
the course. Examples of such constructs include: instrumental and relational under-
standing (Skemp, 1976); social and sociomathematical norms (Cobb & Yackel,
1996); commognitive conflict (Sfard, 2008); identity and identity work (Mendick,
2005); teaching triad (management of learning, sensitivity to students, mathematical
challenge; Jaworski, 1994); knowledge quartet (foundation, connection, transforma-
tion, contingency; Rowland, 2013). They are also expected to refer to a small
number of research papers (and, where needed, other publications such as policy
documents, reports or media excerpts) in each part. Excerpt 15.4 shows a mathtask
students were asked to respond to in Part 6 of the 2020 portfolio.

Portfolio entries are assessed with the same criteria as for the BMath course. In
Excerpt 15.5, we sample the use of these criteria towards the assessment of student
responses to the mathtask in Excerpt 15.4.
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Ms Jones is about to start a mathematics lesson in a Year 6 class (student age 10-11). As she

walks into class, she notices two girls giggling while listening to something in their headset.

She asks why they are giggling and she finds out that they are listening to Ariana Grande’s new

single 34 + 35. “I am not sure you're even supposed to listen to this – and certainly not during

a maths lesson!” she comments. “But, Ms!”, says one of the girls, “Ariana is playing a scientist

in the video and is doing maths in the song! We too just practised doing sums: 34 plus 35 makes

69!”. “Do you even know what this means…?!” exclaims the teacher. The class giggles.

Another student says he asked his older sister about this. “She mumbled “something to do with

sex” and rushed out of the room…”, he says. The class is now roaring with laughter and the

teacher interjects: “Ok, everyone! If Ariana is doing maths in her single, so will we in this class,

ok?”.

Ms Jones: There we go. 69 is the sum of two consecutive numbers, 34 and 35. Can you think

of other numbers that are the sum of two consecutive numbers?

Neil: Oh no. This is boring…And what's the point? Can’t we just go back to whatever you

were planning for today, Ms?

Anna: Well, I can think of some numbers. 49 is the sum of 24 and 25. And 89 is the sum of

44 and 45! I think there is quite a few of them! [She starts writing down a list: 49, 69,
89…]

Barack [a little weary]: Anna, this is taking too long and it’s not just the numbers ending in 

nine: 67 is the sum of 33 and 34, 93 is the sum of 46 and 47 and so on. There is no way 

you can make a list of all of them. Or, oh, or… maybe you can?! Look! Say I have a 

number N and then the number after this is N+1. If I add them together, I get N+(N+1). 

That’s 2 times N plus 1 [he writes: N+(N+1) = 2 N+1]. Doesn’t that say that the sum is 

always…a what you call it… that the sum is always an odd number? So, if I have an odd 

number, I can always break it into two numbers that are next to each other – what did you 

call them, Ms? – er… consecutive numbers! Look, look, it works: 1005 is an odd number 

and is the sum of 502 and 503. Wow! I wonder whether this works for three consecutive 

numbers…! Hm…

Clive [annoyed]: Ah, here he goes again with his N this and X that ... Too complicated and

boring. I think I am with Ariana on this one: “Math class, never was good”… Well said!

You are the teacher and you just heard what Neil, Anna, Barack and Clive said….
1. Which whole numbers can be written as a sum of two consecutive numbers? Explain your 

answer.

2. How would you respond to Anna?

3. How would you respond to Barack?

4. How would you respond to Clive?

5. How would you respond to the whole class – also in the light of Neil’s initial comment –

and conclude the lesson?

Excerpt 15.4 34 + 35 mathtask (2020 BEd Portfolio of Learning Outcomes)

15.5 The Interplay of Research and Practice in Welcoming
Two Different Communities of Learners – from
Mathematics and from Education – into RME

In this chapter, we presented briefly the design, delivery and assessment of two
introductory RME courses for final-year BA Education and BSc Mathematics
students. We also presented examples of mathtasks and the assessment frame used
in these two courses. We design and deploy course activities, such as the ones we
exemplified here, as tools that can trace, challenge, and potentially shift, students’
often deeply rooted mathematical and pedagogical discourses. Especially, for the



BMath course, activities are inspired by studies that have identified the epistemo-
logical differences between practices in Mathematics and Mathematics Education
(Schoenfeld, 2000; Boaler et al. 2003; Nardi, 2015b;) and have addressed these
differences in the learning of postgraduate students (Nardi, 2015b). Especially for
the BEd course, course activities also aim at re-engaging, with Mathematics, stu-
dents in the Social Sciences who may have been away from it since the end of
compulsory education and may also have low self-esteem in mathematics (Nardi,
2017; Nardi & Steward, 2003). The outlined set of activities uses task design
principles that contextualize mathematics and its pedagogy – and the use of RME
theory and findings – in specific learning situations (mathtasks, Biza et al. 2018).
Student responses to these activities are assessed in relation to a typology of four
characteristics (consistency, specificity, reification of Mathematics and RME dis-
courses; Biza et al., 2018) informed by discourse analysis (Theory of
Commognition; Sfard, 2008).
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Tim (3): limited specificity
“It is clear Barack is comfortable in the classroom environment, which as a teacher is vital to 

ensure it is friendly (Steward & Nardi, 2002, p. 8). As Barack’s teacher it is vital to praise his 

confidence and process of discovery in order to maintain and grow his interest in the subject.”

Tim (4): limited specificity, limited reification of RME discourse (re: use of RME constructs)
“Research suggests that it is likely that, as students proceed to the later years of their schooling, 

such as in this scenario, often become more disenchanted with the education process (Keys & 

Fernandes, 1993). As a teacher it is important to ensure that the students, continue to engage with 

mathematics throughout their education, instead of disengaging with it when it becomes 

‘complicated and boring’. Therefore, it is important to engage with Clive and talk through the 

given task in an engaging way, such as listening to the song”
Molly (2, 3, 4, 5): high specificity, high reification of RME discourse (re: use of RME constructs)

[Molly articulates her response around the three vertices of Jaworski’s (1994) Teaching Triad and 

Skemp’s (1976) relational/instrumental understanding dichotomy across her response to 2-5.]

She deploys the “sensitivity to students’ vertex of the Teaching Triad to praise Anna for “for 

contributing to the class and for thinking for herself” (2). Also in (2), she writes: “I would also 

give her a “mathematical challenge” (Jaworski 1994:44) […] whilst incorporating sensitivity to 

Anna by ensuring that this is suitable for her ability. For example, I would ask her, “Is it just 

numbers that end in nine that can be broken in this way?”. In (3) she accurately sees Barack’s 

“discovery of a mathematical pattern” as evidence of his “develop[ing] “relational understanding 

(Skemp 1976: p.2)” of why the pattern exists” and proposes an “even deeper mathematical 

investigation by asking him, “Does this work for three and four consecutive numbers?”. She also 

incorporates mathematical and metamathematical elements in (5) when she writes: “To conclude, 

I would ask the children, “If maths class was never good, then why did Ariana Grande use it make 

her hit song? Today we were going to learn about fractions, but the nature of mathematics has led 

us to an investigation from which we have found a very intriguing mathematical pattern!””

Excerpt 15.5 A sample of BEd student responses to Questions 2–5 of the 34 + 35 mathtask
(Excerpt 15.4), with a selection also of their consistency/specificity/reification of RME and math-
ematical discourse characterisations

We see the potency of these activities in the introduction of Mathematics and
Education students to RME in how they invite students to contextualise learning
about RME theories in their own learning experiences of Mathematics. Finally, we
see these activities – and their typology-driven assessment frame – as affording
opportunities for nuanced and concrete formative feedback. We stress that we see
this feedback as directly and naturally relevant to the students as much as to us, in



our role as educators and RME researchers (Nardi, 2015a, b; Biza & Nardi, 2020,
2022) working towards addressing the needs of current and subsequent student
cohorts – and welcoming these two quite different communities of learners (Math-
ematics/Education undergraduates) into RME.
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Finally, we also see the potency of these courses – delivered in two departments,
Education and Mathematics, that do not often negotiate shared course content – as a
quintessential form of much needed rapprochement between the communities of
Mathematics, Education and RME. We see the work presented in this chapter as a
modest contribution to an exciting area of university mathematics education research
and development: welcoming newcomers to RME and searching for an appropriate
“research curriculum” (Boaler et al., p. 518) for Mathematics Education studies.

Our work in this area is currently entering its next phase in which more fine-
grained analyses of the student data are in progress. The focus of these analyses is on
elaborating the discursive shifts – especially regarding much needed “meta-level
learning” (Sfard, 2008, p. 300) – that mark how students from diverse disciplinary
communities (Mathematics, Education) navigate across discourses governed by
distinctly different metarules (Mathematics Education). Through such elaboration,
we hope for making these courses – and any template for those that may emerge on
the way – an even more enticing invitation of newcomers into RME.
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Chapter 16
Inquiry-Oriented Linear Algebra:
Connecting Design-Based Research
and Instructional Change Research
in Curriculum Design

Megan Wawro, Christine Andrews-Larson, Michelle Zandieh,
and David Plaxco

Abstract Bridging curriculum design (theory) and classroom implementation
(practice) is a critical issue in tertiary mathematics education. In the Inquiry-Oriented
Linear Algebra project, we introduce the Design-Based Research (DBR) spiral as a
mechanism to bridge theory and practice. In this chapter, we elaborate our project’s
DBR spiral informed by Realistic Mathematics Education (RME) instructional
design heuristics. The phases of a Design-Based Research spiral are: Design, Paired
Teaching Experiment, Classroom Teaching Experiment, Online Working Group,
and Web. We explicate these phases to offer insight into the process of conceptual-
izing and developing an RME instructional sequence focused on determinants. The
Online Working Group phase involves work with instructors who were not part of
the research project team. This importantly allows us to explicitly connect to
research on instructional change as part of our instructional design process. Drawing
on data from these instructors’ work with the determinants unit, we gain valuable
insights into the ways in which differences in instructors’ instructional contexts and
orientation toward mathematical goals can constrain and afford particular kinds of
instructional commitments.
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The Inquiry-Oriented Linear Algebra (IOLA) project develops research-based cur-
ricular units for an active learning approach to the teaching and learning of linear
algebra at the introductory university level, as well as instructional support materials
to help instructors implement IOLA units in their classrooms (Wawro et al.,
2013a, b). This research integrates multiple ideologies and theoretical approaches.
In terms of instructional design theory, IOLA draws on Realistic Mathematics
Education (RME) (Freudenthal, 1991) in conjunction with the ideological orienta-
tion of Inquiry-Oriented Instruction (IOI) (Kuster et al., 2018; Rasmussen & Kwon,
2007). IOI is a form of active learning in which students contribute to the reinvention
of important mathematical ideas; this contrasts with forms of active learning in
which students practice or apply principles that were previously explained or
demonstrated by the instructor.

Furthermore, we situate IOLA research more broadly within the design-based
research paradigm (Cobb et al., 2003; Prediger et al., 2015), which involves a
cyclical process of investigating student reasoning about specific mathematical
concepts while concurrently designing and refining task sequences that honor and
leverage students’ ideas towards desired learning goals (Gravemeijer, 1994; Wawro
et al., 2013a, b). Within IOLA, however, we extend this cycle to what we call the
design research spiral, which includes a new phase that integrates collaboration with
mathematicians for classroom-based research in diverse settings across North Amer-
ica. This new phase, which utilizes Online Working Groups (OWG) (Fortune et al.,
2020), is informed by research on best practices for sustained propagation of
instructional change at scale (e.g., Henderson et al., 2012).

In this chapter, we consider the practical and theoretical question of aligning
instructional design theories with research on instructional change. The former
informs the researcher and the final product (e.g., cohesive task sequences and
instructional materials to support implementation), whereas the latter informs the
propagation and establishment of meaningful pedagogical reform across a diverse
range of university mathematics classrooms. Throughout the chapter, we illustrate
this work and the design research spiral by exemplifying a new unit on an inquiry-
oriented approach to the concept of determinants from the IOLA project. An
additional goal of this chapter is to put RME and IOI in conversation with instruc-
tional change literature. In particular, we consider how these bodies of work can be
mutually informative and explore possible points of compatibility or tension, with
the goal of connecting research and practice.
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16.1 Background Theory and Literature

In this section, we first detail the two main instructional design foundations of
IOLA – Realistic Mathematics Education (RME) and Inquiry-Oriented Instruction
(IOI). We then summarize literature on instructional change at the university level
that have been most influential to the IOLA project.

16.1.1 Realistic Mathematics Education

The main theoretical framework leveraged in IOLA for designing instructional
materials is RME (Freudenthal, 1991). In particular, there are three core design
heuristics: didactic phenomenology, emergent models, and guided reinvention.

The roots of the didactic phenomenology heuristic originated with Freudenthal
(1983) and his extension from mathematical phenomenology, “Our mathematical
concepts, structures, ideas have been invented as tools to organise the phenomena of
the physical, social and mental world. ... didactical phenomenology [is] a way to
show the teacher the places where the learner might step into the learning process of
mankind” (p. ix). Categorizing these human creations of mathematical concepts,
structures, tools, or ideas broadly as “thought things”, Gravemeijer (2020b) elabo-
rates the connection to a task settings and problem situations: “Knowing how certain
phenomena are organised by the thought thing under consideration, one can envision
how a task setting ... may be used as starting points for a reinvention process”
(p. 226). Larsen (2018) unpacks didactical phenomenology as the driving force
behind RME-oriented design work in general and in his design work with abstract
algebra content at the university level. Interpreting Gravemeijer and Terwel (2000),
Larsen explains the ‘thought-thing’ as the mathematics that the designer wishes the
students to learn. In this way Larsen summarizes this heuristic by highlighting that
“didactical phenomenology tells the designer that an instructional sequence meant to
support the learning of a piece of mathematics should be situated in a context that can
be productively organized by students using that piece of mathematics” (p. 25),
where ‘organize’ means to mathematize or make mathematical.

Whereas didactical phenomenology is the means for creating the task setting of
the phenomena to be organized, the emergent models heuristic describes a process
through which students can progress from their less formal understanding of the
phenomena to a more formal, more mathematized organization of the phenomena.
Gravemeijer (1999) describes four levels of activity that highlight this progression:
activity in the task setting (also situational activity, cf. Zandieh & Rasmussen, 2010;
Gravemeijer, 2020b), referential activity, general activity and formal activity. Stu-
dents progress from creating a model of the initial task setting through activity in
which they refer back to this setting while extending the model. The student can then
generalize the model beyond the initial task setting. In the end the students are able to
use this new model as a model for future activity including applying it in a formal,



mathematically deductive way towards exploring new phenomena. This mathemat-
ical progression is not the work of one class period or one task but extends minimally
over several days, and perhaps weeks. The result of this progression is the creation of
a new mathematical reality for the student (Gravemeijer, 1999, 2020b) “consisting
of mathematical objects within a framework of mathematical relations (p. 8).”
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Taken together with didactical phenomenology and emergent models, the heu-
ristic of guided reinvention is a mechanism by which students can reinvent mathe-
matical ideas guided by the structure of the task sequence and their interactions with
the instructor and their peers. Gravemeijer (2020a) points out that “the designer may
take both the history of mathematics and students’ informal interpretations as
sources of inspiration for delineating a tentative, potential route along which rein-
vention might evolve” (p. 225). Students are expected to generate a variety of
solution strategies that can be organized by their instructor in ways that guide
students along the path of reinvention. The path is meant to be wide and multi-
faceted, not a single specific trajectory. Students can discuss and debate various
strategies both to better delineate and clarify particular approaches but also to begin
to recognize the multiple interconnected paths along the trajectory. These connec-
tions make up the framework of mathematical relations that is the new mathematical
reality described in the emergent models heuristic.

16.1.2 Inquiry-Oriented Instruction

Inquiry is a form of active learning. Laursen and Rasmussen (2019) detail what they
see as the common vision of the two major inquiry traditions in university mathe-
matics instruction in the United States: Inquiry-Oriented Instruction and Inquiry
Based Learning. Leveraging the term “Inquiry Based Mathematics Education”
(IBME) – first offered by Artigue and Blomhøj (2013) – as an umbrella for both
traditions, Laursen and Rasmussen (2019) offer the four pillars of IBME as “student
engagement in meaningful mathematics, student collaboration for sensemaking,
instructor inquiry into student thinking, and equitable instructional practice to
include all in rigorous mathematical learning and mathematical identity-building”
(p. 140). The first pillars highlight the role of the student, and the latter highlight the
role of the instructor. Most instructors who seek out the IOLA materials are familiar
with at least one of these traditions and thus with some subset of IBME’s four pillars.

The IOLA research project works within the Inquiry-Oriented Instruction (IOI)
tradition.1 The defining characteristic of IOI is the central role of RME as an

1Inquiry-Oriented Differential Equations (Rasmussen et al., 2018) and Inquiry-Oriented Abstract
Algebra (Larsen et al., 2013) serve as the foundational research programs for the IOI movement at
the university level within the United States. In addition to IOLA, other IOI-aligned design work
exists within other content areas, such as combinatorics (Lockwood & Purdy, 2019), calculus
(Oehrtman et al., 2014), ring theory (Cook, 2014), and mathematical logic (Dawkins & Cook,
2017).



instructional design theory (Kuster et al., 2018). In addition to RME framing
mathematics as a human activity (Freudenthal, 1991), IOLA leverages the afore-
mentioned core RME design heuristics: didactic phenomenology, emergent models,
and guided reinvention (Gravemeijer & Doorman, 1999). These design heuristics
inform the development of sequences of tasks that align with a set of learning goals;
task sequences are then tested, revised, and retested through repeated teaching
experiments. These teaching experiments, which are two components in our Design
Research Spiral, entail extensive collection and analysis of data to document student
reasoning in the form of classroom video, artifacts of student work, and individual
problem-solving interviews with students (Cobb, 2000). As such, the inquiry-
oriented task sequences are first theorized according to RME and further built on
research in which refinements are informed by the nature of students’ mathematical
reasoning about the tasks, with the goal of maximizing students’ opportunities to
engage meaningfully in reinventing important mathematical ideas. The use of such
RME-informed task sequences synergistically allows for and facilitates the founda-
tion role of inquiry within the classroom.
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Although RME provides the foundation as an instructional design theory for IOI,
it does less work in terms of delineating how an IOI classroom functions in actuality.
Through analysis of: research on and descriptions of IOI, expert reflections on IOI
implementations, and videos of expert and novice implementations of IOI materials,
Kuster et al. (2018) articulated four key components that support the successful
implementation of inquiry-oriented instruction: generating student reasoning, build-
ing on student reasoning, developing a shared understanding, and formalizing
language and notation. These components are not only essential for the implemen-
tation of an RME task sequence but also provide opportunity for task sequence
refinement because of their focus on uncovering and exploring student reasoning.
Instructors who already have experience with IOI can be important informants to the
development of RME task sequences. Such instructors were recruited for the OWG’s
described in the design research spiral. In addition, instructors engaged in an OWG
have further opportunity to develop their skills at engaging in the key components of
successful implementation of IOI by discussing their implementation of new RME
units with others. This opportunity to develop as IO instructors contributes to a
broader goal of instructional change.

16.1.3 Instructional Change at the University Level

With mounting evidence linking active learning to improved student outcomes
(e.g. Freeman et al., 2014), there is evidence of uptake of student-centered instruc-
tional approaches to undergraduate STEM in the United States. Indeed, nearly half
of STEM faculty responding to a national survey reported incorporating various
forms of cooperative learning into their courses (Hurtado et al., 2012). However,



Henderson and Dancy (2008) found that faculty who try to implement instructional
reforms are often discouraged by the lack of ongoing support from educational
researchers. For instance, when shifting to more student-centered pedagogies,
instructors are faced with the challenge of deciding what kinds of activities they
might engage students in during class time, in addition to questions relating to how
to productively facilitate discussion around those activities and assess student
learning in ways that align with shifting instructional approaches (Johnson & Larsen,
2012; Speer & Wagner, 2009; Wagner et al., 2007). We argue that it is ideal that
instructors have access to instructional materials that are informed by basic research
on student learning in content-specific areas.

334 M. Wawro et al.

In a review of literature on instructional change efforts, Henderson et al. (2011)
organized these efforts relative to two key dimensions: whether the efforts focused
on changing individuals or environments and structures, and whether the intended
outcome was prescribed (predetermined by the change agent) or emergent (deter-
mined in collaboration with those involved in the change process). They found that
effective change strategies align with or seek to change the beliefs of the individuals
involved, involve long-term interventions, and are compatible with the institutional
context of the university and department. Two common, relatively prescriptive, but
frequently ineffective approaches are top-down policies meant to influence instruc-
tional practices, and merely making “best practice” curricular materials available to
faculty. Our current primary focus in IOLA is instructional change at the individual
level, and the OWG phase facilitates an emphasis on emergent outcomes.

Schoenfeld (2010) identified Resources, Orientations, and Goals (ROGs) as
foundational for shaping instructors’ behavior, implying they are critical compo-
nents of instructional change. Within this framework, teachers’ classroom instruc-
tion is generally guided by all three of these aspects of their respective
circumstances, in tandem, as enacted from their own perspective. Schoenfeld
describes Resources as all knowledge, technology, curricular materials, and infra-
structure that a teacher might use in their instruction. Orientations are composed of
the values, beliefs, dispositions, and opinions that a teacher may hold regarding
learning, their students’ abilities, mathematics, communication, or any other aspect
of teacher-student interactions.Goals can be articulated at several grain sizes and are
often an amalgam of what the instructor feels are the content objectives of the course,
important knowledge and skills that students should develop, and meaningful ways
of reasoning about the content. None of these three facets of the framework is
independent of the others and, indeed, each is necessarily mutually informed by
the others. We find this framework to be a helpful means for describing OWG
instructors’ adoption of the IOLA materials and approach to using the instructional
support materials. As we work with instructors, we have relied on this framework as
a lens for making sense of instructors’ adoption and implementation of the new
IOLA materials.
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Fig. 16.1 Graphical depiction of our Design Research Spiral

16.2 The Design Research Spiral

The particular approach to design research we currently utilize in the IOLA project is
what we refer to as the Design Research Spiral. There are five main phases in the
Design Research Spiral: Design, Paired Teaching Experiment (PTE), Classroom
Teaching Experiment (CTE), Online Work Group (OWG), and Web (see Fig. 16.1).
Briefly stated, the phases are as follows:

• Design Phase: The project creates a first draft of the unit tasks and learning goals
• PTE Phase: The team tries the unit tasks with student pairs in a modified

instructional setting
• CTE Phase: The unit tasks are tested in a classroom setting with a team member

as the teacher-researcher
• OWG Phase: The unit tasks are tested in classroom settings with experienced

IOLA users
• Web Phase: The research team creates the finalized version of the unit tasks and

instructor support materials and adds them to the IOLA website for dissemination

These phases align with the crosscutting features of design experiments in that
(Cobb et al., 2003) the broad goal is to develop domain-specific learning theories
that are accountable to design, and that this goal is achieved by developing conjec-
tures, testing them in highly interventionist studies, and iteratively refining them in a
cyclical way. Much like a design research cycle (e.g., Cobb et al., 2003; Wawro
et al., 2013a, b), the design research spiral includes and relies on revisions that occur
between each of the five phases (see Fig. 16.1). Throughout this iterative process, we
reflect on and analyze student reasoning in service of revising our developing
curricular materials as well as our research-based insight into student thinking. At
each transition along the spiral, the number of researchers and instructors providing
feedback on the task development increases until the materials are disseminated to
implementing instructors through the IOLA website (Web Phase). Furthermore, we
note that our notion of the Design Research Spiral contributes to the field of design
research by integrating the Online Work Groups as a key phase.

In the following sections, we exemplify the Design Research Spiral with the
Determinants unit from the IOLA project. We draw particular attention to RME and



IOI, as well as bodies of work on instructional change, emphasizing the extent to
which the various theoretical foundations are foregrounded in different phases of the
Design Research Spiral. Substantially more detail is given to the Design and OWG
phases because those more directly put RME, IOI, and Instructional Change
Research Theory in conversation with each other.
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Fig. 16.2 Implementation of the design research spiral for the determinants unit

By its conclusion, the execution of the design research spiral for the Determinants
unit will have lasted approximately 2 years. In Fig. 16.2, we indicate the month and
year in which each phase began. In the Design Research Spiral, each new phase
incorporates input from more researchers and instructors and also from implemen-
tation of the materials with more students. The Design phase involved two lead
researchers from the project team and four student research assistants. One of the
project team’s lead researchers conducted a paired teaching experiment with two
students, and a different lead researcher from a different university conducted a
classroom teaching experiment with a whole class of 17 students. That researcher led
and organized the OWG, which was made up of four instructors – two participant
instructors who are not members of the research team and two lead researchers who
were implementing the unit as participant instructors. The participant instructors
were chosen based on their familiarity with and prior experience using the existing
IOLA units. During this phase, the unit was implemented with approximately
175 students at four institutions. Finally, as of this chapter’s writing, the team is
finalizing the unit’s instructional materials for publication on the project website2 by
the end of 2022. Once published, it will be accessible to over 700 registered users.

16.2.1 Design Phase

The goal of the Design Phase is to create a first draft of the unit tasks and associated
sequencing. This relies on all three RME heuristics: didactical phenomenology,
guided reinvention, and emergent modeling. In practical use, these heuristics are

2https://iola.math.vt.edu

https://iola.math.vt.edu


intertwined and mutually informative. For instance, as designers, we first tasked
ourselves with identifying an experientially real context that “begged to be orga-
nized” (Larsen, 2018, p. 27) using the determinant concept; within that, we consid-
ered the influence of both guided reinvention and didactical phenomenology.
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In the determinants unit, the design work was most foundationally influenced by
didactical phenomenology. We began with the goal of creating a task setting in
which students mathematize phenomena in a way that creates the need to develop the
concept of determinants. Gravemeijer and Terwel (2000) give the example of length:
for students to construct length as a mathematical object, they should be confronted
with situations where phenomena have to be organized by length. We also consid-
ered the emergent modeling heuristic; in particular, we sought to create a task
sequence that could leverage students’ intuitive knowledge towards the development
of more formal ways of reasoning about the concept of determinant. In addition, we
leveraged our practice- and research-based knowledge of student reasoning in linear
algebra and of student participation in disciplinary practices such as symbolizing or
theoremizing (Rasmussen et al., 2015; Zandieh et al., 2017).

Although the historical origination of the determinant concept is rooted in
characterizing the solvability of systems of equations, in both Japan and Europe in
1600–1700’s (Andrews-Larson, 2015), we chose the geometric interpretation of
linear transformations in R2 and R3 as our contextually relevant starting point. In
particular, we chose measure of distortion of space as an experientially real setting
that could “give rise” to the notion of determinants for the students as they engaged
in the task. This leverages a graphical interpretation of matrices as the carrier of
information about linear transformations, which productively builds off of the
existing IOLA “Italicizing N” unit (Andrews-Larson et al., 2017). In addition, this
setting provides a rich set of ways for interpreting the meaning of a zero determinant
(e.g., in relation to the invertibility of a matrix transformation) and reasoning about
important determinant properties related to composition and inverses of linear trans-
formations and their matrix representations. Thus, the driving phenomenon of the
determinants unit is to draw on students’ knowledge of matrices as linear trans-
formations to build a conceptualization of matrix determinant as a measure of
(signed) multiplicative change in area or volume.

The unit has four tasks. The main purpose of Task 1 is to generate a need for
students to suggest change in area as a way to quantify the distortion that objects
experience under various 2� 2 single and composite matrix transformations. Rather
than tell students explicitly from the start to look for change in area, the task is set up
to bring students into a problem situation where the notion of change of area arises
from a need to answer that problem, and it arises from the students’ mathematics;
this is in line with the goals of didactical phenomenology. This sets the foundation
for the guided reinvention of the 2 � 2 determinant formula (Task 2) and the
introduction of the term “determinant,” which is in line with the intent of guided
reinvention. Task 3 gives students a new transformation graphically, and they are to
determine the matrix that “undoes’‘ that transformation as well as the determinant of
the “undoing” matrix. The main learning goals for Task 3 (see Fig. 16.3) are that
students will (a) coordinate their newly developing understanding of determinants as



change in area with their previous experience with invertible linear transformations
to reinvent det(A�1)¼ 1/det(A) for an invertible 2� 2 matrix A, and (b) conceptualize
the determinant of the matrix of an “undoing” transformation as the multiplicative
reciprocal of the determinant of the original transformation.
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The Window Task
Suppose you know there is a linear transformation : ℝ2 → ℝ2 that graphically distorts the 4-paned “window” as shown in 

the diagram, but you don’t yet know the transformation or its matrix representation = .

1. Without knowing the exact transformation or matrix, based on our previous work, what is the measure of this transformation’s change in 

area for objects in ℝ2? In other words: without knowing , what is ( )? Why? Show your work.

2. You now want to know about the transformation that “undoes” the effect of matrix transformation . What is the change in area 

measure (i.e., the determinant) of that matrix, and why? 

3. If you haven’t done so already, determine the entries of the matrix and the “undoing” matrix from #2. Then find the determinants of 

these matrices and compare them with your measures of the change in area from #1 and #2 above.  Describe at least one thing you notice 

and why you think that might be sensible. 
© IOLA Team - iola.math.vt.edu

Fig. 16.3 A condensed version of Task 3 from the determinants unit

In Task 4, students explore the geometric interpretation of matrix transformations
and their determinants via GeoGebra applets for 2 � 2 and 3 � 3 matrices. Each
applet consists of a matrix, sliders to control each matrix entry, a realtime calculation
of the determinant, and a realtime dynamic parallelogram or parallelepiped showing
the image of the unit square or cube under the matrix transformation. With these
components, students are able to create matrices within the parameter constraints and
visualize the effect that these changes have on the preimage. The goal is for students
to create their own observations and conjectures about determinant (e.g., under what
conditions det(A) ¼ 0 seems to occur) without specific prompting by the teacher so
that, when discussed, it is the students’ mathematics that is leveraged and explored.
However, the implementation notes also have prompts prepared to direct students
towards important observations and conjectures if students don’t generate those on
their own. By the end of the unit, the remaining learning goals include the determi-
nant properties: det(AB) ¼ det(A)det(B), det(kA) ¼ kndet(A), and det(A) ¼ 0 iff
columns of A are linearly dependent iff A is not invertible. Taken together, in
addition to its reliance on didactical phenomenology and guided reinvention, the
determinants unit aligns with emergent modeling by fostering that students first
develop models-of their mathematical activity about change in area induced by
matrix transformations. These later become models-for more sophisticated mathe-
matical reasoning about the determinant in general.
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16.2.2 PTE Phase

During the PTE phase, our team uses an adaptation of the paired teaching experiment
methodology (Steffe & Thompson, 2000) to investigate 1–2 pairs of students’
interactions with these early iterations of the tasks within a controlled interview
setting. Though consistent with Steffe and Thompson (2000), our methodology
departs in ways that are consistent with other RME-based curriculum design projects
at the university level (e.g., Lockwood, 2019). Our primary goal during the inter-
views is to teach students specific content by engaging them in theoretically
grounded tasks with a teacher-researcher guiding the trajectory of the participants’
activity. Further, we are interested in participants’ observable mathematical reason-
ing during interview sessions and rely on these data to inform future instructional
approaches and implementations. Steffe and Thompson (2000) also focus on model-
ing students’ cognition through frequent iterations of hypothesis testing; however,
our team is focused foremost on iteratively refining the tasks themselves and
identifying the changes that might better support students’ mathematical activity
while engaging in the tasks. To this end, we focus on participants’ mathematical
activity to the degree that it informs (1) iterative revisions to the tasks themselves and
(2) our expectations of student solutions in later implementations of the materials,
specifically during CTE and OWG phases. This informs the development of instruc-
tor materials that highlight possible student responses so that future IOLA instructors
can anticipate how to handle a variety of responses during small group work or
whole-class discussions.

In the determinants unit PTE, our data highlighted the importance of students’
prior knowledge about linear transformations and their standard matrix representa-
tions. The students interviewed in the PTE were enrolled in an introductory linear
algebra course that was completely asynchronous and online due to COVID-19. This
course was not an IOLA course; rather, it consisted of watching video lectures
recorded by the course instructor while completing a note-taking worksheet. At
the time of the interview (towards the end of the course), the students had learned
determinants with respect to matrix invertibility with a focus on computation and
properties; they had not yet learned about linear transformations. Therefore, the
interviewees did not have a robust geometric interpretation for linear transforma-
tions. As such, significant time during the PTE was spent helping them develop an
adequate sense of linear transformations for them to engage in the task sequence. To
gain additional perspectives on the task sequence, a slightly revised version was
piloted with the project team after the PTE and prior to the CTE, which again led to
minor revisions. One insight from this experience relevant to Task 1 was the variety
of quantities individuals may attend to when working to quantify distortion, a finding
that was echoed in the subsequent CTE. A second insight was the accessibility of
Task 3 for the conceptualization of the determinant of a matrix A’s inverse as the
multiplicative inverse of the determinant of A.
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16.2.3 CTE Phase

During the CTE phase, the research team implements the unit in a Classroom
Teaching Experiment (Cobb, 2000). According to Cobb, a CTE has two main
aspects: the first “is concerned with instructional development and planning and is
guided by an evolving instructional theory,” and the second “involves the ongoing
analysis of classroom activities and events” (p. 314). In the CTE phase in the Design
Research Spiral, we begin with the task sequence, refined during the PTE, as well as
the knowledge of potential student thinking that surfaced during the PTE. The
teacher-researcher for the CTE responds to student thinking during the task imple-
mentation by making revisions to the task sequence as needed. Ad hoc preliminary
analyses inform further revisions to the task sequence and instructor implementation
notes prior to its enactment in the OWG phase.

In the context of the determinants unit, one of the research team members served
as the teacher-researcher for the CTE. This CTE served as an effective catalyst for
both slight and more substantive revisions to the task sequence and instructor
implementation notes. For instance, the CTE implementation of Task 1 further
illuminated the vast range of strategies for quantifying a distortion that students
can develop given time to do so, and their activity did not always lead toward
developing understandings directly related to the determinant. In other words,
although an open implementation of Task 1 has the potential to provide opportuni-
ties for students to explore systematizing mathematical measures and definitions, this
is broader than the intended goal of measuring the multiplicative change in area
caused by matrix transformations. Thus, the project team concluded that it was
important to communicate clearly in the implementation notes that instructors
would find it advantageous to limit the amount of time spent considering possible
ways of measuring distortion of space, and to shift toward a focus on change in area
relatively early in subsequent iterations; an alternative task statement that suggested
“change in size” rather than “distortion” was added to the unit, as an option that
could be used to further help guide students towards change in area. An additional
insight from the CTE was that the algebraic formulation of the 2 � 2 determinant
may serve as an important linchpin for students in reasoning graphically with the
dynamic geometry applets in Task 4 to make discoveries and conjectures about
determinant properties. This confirmed that reinventing the 2 � 2 determinant
formula early in the task sequence is appropriate so students can leverage this in
their subsequent mathematical work.

16.2.4 OWG Phase

During the OWG phase, the research team works with participating instructors who
are experienced IOLA implementers to test the unit in their own intact classrooms.
To support the participating instructors’ understanding of the materials as designed,



the research team works through the tasks as a group with the participating instruc-
tors. This process also allows the research team to discuss implementation strategies
for keeping students at the center of the mathematical development of those ideas
(e.g., eliciting, responding to, and building on student contributions). To support this
goal, OWG meetings adopt a modified lesson study approach so as to hear the
experiences of instructors as they implement tasks and to provide opportunities for
reflection and collaborative conversations among implementing instructors (Fortune
et al., 2020).
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The goals of the OWG for the research team are to obtain feedback on task
design, formatting, and sequencing – as well as information about the ways in which
instructors’ institutional and individual resources, orientations, and goals influenced
their implementation. Further, the research team learns about how participating
instructors interpret the tasks and their intended learning goals, how the tasks were
implemented, and how they played out in various classrooms with various student
populations. These insights inform the development and refinement of instructor
notes and the tasks themselves.

The remainder of this section gives substantial detail regarding the OWG for the
determinants unit. We highlight this phase of the design research spiral to illustrate
its relation to IOI and instructional change literature.

Context of Participating Instructors: Teaching During A Pandemic Data col-
lection took place in the North American Spring 2021 semester (January-May),
when many instructors around the globe were teaching in online and hybrid formats
due to the COVID-19 pandemic. By design, half of the OWG was research team
members who were currently teaching linear algebra and half was participating
instructors who were new to the determinants task sequence. Two of the
implementing instructors were teaching fully online (one with relative autonomy
over course content and two classes of approximately 40 students each, one with
coordinated large lectures of several hundred students – which made use of zoom
breakout groups – and which also had additional activities during smaller recita-
tions). The other two were teaching in a hybrid format in which some students
attended in person and others simultaneously attended online (both of whom had
section sizes between 20–40 students and autonomy over course content). Both
participating instructors who were new to the task sequence used their own course
notes in lieu of a course text; both research team members used extant textbooks to
support their implementation of IOLA materials (Lay et al., 2016; Poole, 2015). All
instructors had previously taught linear algebra and had experience in curriculum
design; thus, the OWG participant group reflected a set of pedagogically sophisti-
cated mathematicians and mathematics educators. The online working group met
with research team members about once per week during the semester of
implementation.

Illustrations of Connections to Instructional Change Literature We highlight
contributions of OWG participating instructors who were not members of the
research team that offered insights into connections between RME, IOI, and instruc-
tional change literature. The OWG phase of the research project was particularly



�

important toward informing the development of instructor support materials, includ-
ing needed supports and flexibility. At this stage, teachers’ resources, orientations,
and goals (which include consideration of their institutional context) are taken
explicitly into account. In particular, we highlight examples of how instructors’
current understandings and valuation of content and its mathematical development
shapes their initial interpretations of and reactions to materials, as well as ways in
which their current practices and institutional context shape their implementation of
the materials and choices about what needs to be made explicit in instructor support
materials
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Exemplar 1: Differing Orientations Toward Mathematical Learning Foci
and Takeaways Prior to sharing details about the determinants unit with the
participating instructors, we asked them to share what they saw as the most impor-
tant ideas and non-negotiables in their teaching of determinants. The two participat-
ing instructors had different orientations regarding the organization and focus of the
content related to determinants. Specifically, Dr. T, whose background was
influenced by mathematical physics, articulated a vision that was highly aligned
with our approach – emphasizing the geometric interpretation at the core of what he
wanted students to take away.

Dr. T: For me, determinants as a change in volume, is a non-negotiable. I don’t actually care
about determinant formulas, although students are accountable for a 2 � 2 and a 3 � 3
formula. And I would like them to know that the seemingly natural extrapolation of those
formulas does not work on a 4 4.

When asked about seemingly natural extrapolation, he said “products of the diago-
nals minus products of the off-diagonals.” Dr. T elaborated that there is “Absolutely
zero mention of cofactors” in his course, but later added that he also wanted students
to understand the relationship between invertibility and the determinant being zero.
Dr. F then weighed in, emphasizing the role of the determinant in standard methods
for finding eigenvalues and eigenvectors (later commenting that this was inspired by
his own research and learning, which was more heavily focused on differential
equations than linear algebra).

Dr. F: So for the exact opposite side, for me it is about solvability conditions. Because to me,
the goal is to say why is it that we do the determinant A-λI equals zero? Why that
determinant? Why that equals zero? So that we have infinitely many solutions. To me,
that’s the goal. I have really bad geometric intuition about the volume transformation.
Period. So I tend to downplay that.

To us, this exchange was illustrative of the way in which two instructors whose
instructional orientations were both deeply committed to implementation of active
learning can carry vastly different orientations toward the mathematical develop-
ment of a particular topic. Further, these orientations are rooted in instructors’ own
expertise (a resource), which shapes their views of the ways in which particular
mathematical ideas are most useful. Dr. F stated that determinants had value
primarily algebraic in nature, with a focus on the information they provide about
when there is a unique solution to a matrix equation. In contrast, for Dr. T, the



geometric view was of primary importance. Interestingly, after working through the
IOLA determinant tasks together, Dr. F re-articulated his view of the value of the
geometric approach, highlighting how geometric understandings of the determinant
could be helpful for understanding eigenvectors and eigenvalues in terms of a
diagonalization. This suggests that, while he still viewed the primary use of deter-
minants in relation to eigenvectors and eigenvalues, he was now able to articulate a
way of making that connection geometrically rather than just algebraically.
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Exemplar 2: Institutional Context and Instructional Approaches We also learned
that the instructors had different approaches to supporting their students’ learning,
particularly in relation to the commitments of RME. Both identified the value of
student exploration that preceded formal presentation of information as important for
the development of creativity and modeling capabilities. Only Dr. F, however, who
had small classes and complete instructor autonomy, conducted his classes in
alignment with these goals. Dr. T had large coordinated sections with smaller lab
sections, and thus he felt he needed to adhere to a set pacing schedule. As noted in
Apkarian et al. (2021), this is often viewed in tension with efforts to be responsive to
students’ reasoning – both in terms of ability to meaningfully elicit and respond to
student thinking, and in terms of adhering to a pacing schedule due to time
constraints. Although Dr. T stated that he viewed student exploration coming before
formal treatment (e.g., reading the course text) as better for students’ learning, he
found it more efficient to require students to read prior to class – while acknowl-
edging that this approach “destroys creativity.” He elaborated:

Personally, I think it’s better to explore and then read. But I think it’s more straightforward to
ask the students to read before coming to class. I find holding them accountable for reading
before class, is um, something that’s easy to justify. And I tell my students one hour of
studying before class is worth two hours of studying after class. I’ve got a convincing
justification for them. I personally think that they would learn more if they did the two hours
of studying after class after the one hour of exploring, but I don’t know how to exactly pull
that off.

For the purpose of the study, Dr. T reserved a few lab sessions in which students
would be asked not to read ahead of time so as to learn what ideas they might bring
forward when given the tasks and asked to reason about them without reading about
the content ahead of time.

In our view, this exchange highlights the way in which one’s institutional context
can shape one’s perception of what is instructionally possible. Time and flexibility
emerge as two resources that are intertwined with one’s institutional context, and
Dr. T identified tensions between goals of learning and efficiency (an effect of
perceived lack of the resource of time). In his instruction, he deemed efficiency as
easier to “justify” to students and thus made the instructional choice reflective of that
orientation. However, this choice is in conflict with the goals and orientations
espoused by RME. Tensions such as those described by Dr. T are present throughout
the research literature and thus likely influence how curricular resources are taken up
at scale. This underscores the importance of both flexibility in the form of emergent
rather than prescribed outcomes (Henderson et al., 2012), as well as the importance
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of ongoing feedback and support to help instructors know when their pedagogical
choices may be at odds with the intended design of curricular materials (e.g., as when
to formalize certain concepts, which relates to the fourth component of IOI: formal-
izing language and notation).

16.2.5 Web Phase

During the Web phase, the research team creates the finalized version of the tasks
and instructor support materials and adds them to the IOLA website. These materials
allow instructors to build a course for their needs from the units and material
available. The initial structure for the website content was based on the work of
Sean Larsen (e.g., Lockwood et al., 2013) with the Inquiry Oriented Abstract
Algebra materials. For each task, three main components comprise the instructor
support materials:

• Learning Goals and Rationale: Addresses how the task contributes to meeting
instructional goals and what kinds of thinking are meant to be evoked, leveraged,
or challenged;

• Student Thinking: Elaborates, through photo and video examples of student work,
ways in which students might think about or approach the task, answers/strategies
they will likely develop; and

• Implementation: Includes suggestions for implementing the task, what discussion
topics might be most productive, and what types of student ideas teachers should
anticipate.

The instructor support materials also contain a lesson overview, editable task sheets,
implementation video clips, and homework suggestions. The website has a “Goals
for a Typical Day” page, which highlights various classroom interactions that help
foster a productive class environment. It describes various interpersonal structures
(small group work, partner talk, whole class discussion, and telling) that comprise an
inquiry-oriented classroom, and it provides detailed suggestions of how to foster
productive whole class discussions.

16.3 Discussion

In this chapter, our core goal was to connect literature on RME, IOI, and Instruc-
tional Change in a way that is both empirically and theoretically based – via the
Design Research Spiral, as exemplified via the new IOLA unit on the concept of
determinant. In the IOLA project we draw on previously successful design-based
research models for instructional material development grounded in the RME design
and IOI pedagogical traditions. By introducing the OWG Phase and extending the
revision process to incorporate multiple instructors at multiple sites, the design cycle



is extended in ways that facilitate materials refinement based on feedback from
experienced instructors in varying instructional contexts. We conclude the chapter
by considering the practical and theoretical work of aligning instructional design
theories with research on instructional change. That is, we consider how these bodies
of work can be mutually informative and explore possible points of compatibility or
tension, with the goal of connecting research and practice.
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As a general instructional theory, RME does not explicitly take up issues of
instructional change at scale. Rather, the focus is the development of task sequences
that support guided reinvention of mathematical ideas on the part of students.
Gravemeijer (2020b) does elaborate on the role of instructors in this process, and
on assumption that students work collaboratively with peers as they develop and
refine these ideas. IOI aligns with and is rooted in RME by design (Kuster et al.,
2018) and provides further definition of what a classroom that implements
RME-inspired instruction looks like in practice.

When considering the relation between our design research spiral and these
bodies of literature, we note that the earliest stages (Design and PTE) are most
strongly informed by RME, with IOI becoming a stronger focus in middle stages
(PTE, CTE, and OWG), and Instructional Change literature taking on the strongest
focus at the latest stages (OWG and Web). In some ways, this may suggest that it is
challenging to put RME literature in direct dialogue with literature on instructional
change. However, we include two key examples from our data that stimulate a direct
dialogue. First, instructors’ orientations toward content may differ from the didac-
tical phenomenological choices made by the design team. This emerged from
discussions in the OWG focused on instructors’ goals as they related to those of
the instructional materials. Second, we found that instructors’ resources and goals
shape their instruction in ways that may be aligned with or in tension with the intent
of RME. For instance, requesting that students read ahead of time is certainly not a
rare instructional choice, but it does not place students at the center of the reinvention
process. Furthermore, in high-enrollment courses, it may be unrealistic for an
instructor to generate and build on student reasoning in a manageable way. Thus
Henderson et al.’s (2012) distinction between emergent and prescribed outcomes
becomes helpful. It is productive to distinguish features of a research-based curric-
ulum that can be flexible in implementation so that outcomes can be viewed in an
emergent way rather than a prescriptive one, yet also acknowledge possible tension
between intent of curricular materials and the goals of an instructor.
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Chapter 17
Profession-Specific Curriculum Design
in Mathematics Teacher Education:
Connecting Disciplinary Practice
to the Learning of Group Theory

Lena Wessel and Timo Leuders

Abstract In this chapter, we report on design decisions for teaching group theory in
a profession-specific advanced mathematics class for prospective secondary
teachers. We relate our teaching design to previous suggestions on Abstract Algebra
teaching and suggest an overarching framework of theorizing for locating already
established and still needed theoretical contributions (kinds of theory elements) for
tertiary curriculum designs. We draw on Mathematical Knowledge for Teaching and
connections of secondary mathematics and advanced mathematics teaching
according to Wasserman as categorial theory elements. With those, we take a closer
look at what we already know for answering questions concerning profession-
specific Abstract Algebra learning, before we illustrate the core design decisions
realized in our teaching design, and summarize challenges and conditions of success
that led to further changes in the teaching design.
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17.1 Profession-Specific Teaching Designs: Introducing
Theory Elements for Reflecting on Design and Content
Decisions

For many years, teacher educators involved in curriculum development for prospec-
tive mathematics teachers at university are aware of and work on eliminating or at
least mitigating the double discontinuity first described by Klein (1908). Changes
and innovations have been tested and implemented in order to diminish the second
discontinuity between school and university mathematics for future teachers, so that
students no longer perceive their studies as too detached from their profession. That
this is a serious problem can be seen from the fact that mathematics courses often get
poor students’ evaluation especially with respect to the necessity and relevance for
their later teaching at school (Ticknor, 2012; Gray, 2021; for the German system
Mischau & Blunck, 2006). For curriculum designers, this perceived discrepancy
between tertiary mathematics and school practice raises important questions: Are
there ways to structure and design tertiary mathematics courses so that they become
more meaningful teacher preparation experiences? Can mathematics courses influ-
ence prospective teachers’ pedagogical practice? How can mathematics courses be
designed so that they are perceived more relevant to future mathematics teachers?

There is rising attention to the complex design questions, which are often
subsumed under the notion of profession-specific courses, meaning in the context
of this paper mathematics courses for prospective teachers. Methodologically, they
require design research studies for suggesting design principles for profession-
specific mathematics teaching designs at university level. With a prominent focus
on primary or secondary school teaching and learning, Design Research has been
established as a research methodology that systematically combines two aims:
(1) improving subject-matter classroom teaching by designing teaching-learning
arrangements for a certain topic and (2) generating theoretical contributions by
empirical research in order to understand the initiated teaching-learning processes
for a certain topic (Cobb et al., 2003; Barab & Squire, 2004; Gravemeijer & Cobb,
2006). In this research paradigm, mathematics education lecturers and researchers
also develop design innovations for various topics in the tertiary mathematics
curriculum pursuing the dual aims of improving instructional designs and theorizing
(e.g., for the case of Abstract Algebra teaching, Larsen, 2013; Larsen et al., 2013;
Leuders, 2016a).

However, for the above case of profession-specific mathematics courses, we still
lack systematic reviews of what the label profession-specific refers to in the various
studies dealing with university mathematics classes being particularly tailored for
prospective teachers, and how the learning processes of prospective teachers are
affected by such changes. One simple definition could be that next to pure mathe-
matics learning goals, additional goals are pursued, such as positively influencing
prospective teachers’ orientations towards teaching (e.g., on how mathematics
should be taught). For structuring such additional goals, Wasserman (2018a, p. 7)
puts the focus on connecting the particular advanced mathematics to secondary



mathematics and opens up a continuum of connections: The connections range from
“content connections” to “disciplinary practice connections”, “classroom teaching
connections”, and “modeled instruction connections” (to be further elaborated in
Sect. 17.1.3). For enhancing such connections in Abstract Algebra university teach-
ing, a growing body of research has been published rather recently (e.g., Ticknor,
2012; Wasserman, 2018a; Gray, 2021). Cummings et al. (2018) claim that next to
these theoretical contributions on what prospective teachers can learn in a
profession-specific Abstract Algebra class, we still need “both theory and data on
how prospective teachers can and do learn from an Abstract Algebra course”
(Cummings et al., 2018, p. 327). Further, we need theory that explains the process
quality of prospective teachers’ learning by reconstructing challenges and conditions
of success in initiated learning processes.
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For keeping track of design decisions as well as illustrating research gaps
concerning the what and the how in outcomes of theorizing tertiary curriculum
design innovations, we suggest to draw on a framework elaborated by Prediger
(2019). It captures what theorizing means in Design Research and suggests a
language for theory elements according to their function and structure. The theory
elements are structured according to the intertwining levels of practical and theoret-
ical contributions which Design Research studies aim at: (1) the design of the
teaching-learning arrangements for providing answers on how-questions “How to
design a teaching-learning arrangement so that the initiated learning processes reach
an intended aim?”, and (2) the structure of the learning content for providing
answers on what-questions (Gravemeijer & Cobb, 2006; Prediger & Zwetzschler,
2013; Bakker, 2018).

In these dimensions of what- and how-questions, Prediger (2019) provides a
methodological foundation for categorial, normative, descriptive, explanatory, and
predictive theory elements as outcomes of theorizing in Didactical Design Research,
summarized in Table 17.1.

All five kinds of theory elements (categorical, normative, predictive (humble or
refined), descriptive, and explanatory) are consequently intertwined in Design
Research studies, while design principles in their complete structures provide the
theoretical background for the functioning of the design: “design principles is
probably the most prevalent term used to characterize the kind of prescriptive
theoretical understanding developed through educational design research . . .
[as they] integrate descriptive, explanatory, and predictive understanding to guide
the design of interventions” (McKenney & Reeves, 2012, p. 35). When it comes to
Design Research on profession-specific teaching designs, structuring the learning
content is highly complex due to the different facets of teacher knowledge. We
believe the framework of theory elements to be valuable for reflecting and classify-
ing one’s design decisions: The theory elements help illustrating where insights and
recommendations for designing are already at hand as well as identifying aspects
which are not yet researched sufficiently. This also accompanies our chapter when
we work on the guiding question of “How to adapt an Abstract Algebra curriculum
focusing on learning group theory so that profession-specificity is enhanced by



design of teaching-learning arrangement

content-, disciplinary practice-, content teaching- or modeled instruction
connections?”
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Table 17.1 Theory elements on teaching designs (how) and content structure (what) (Prediger,
2019, p. 14)

How-questions for theory elements on the
What-questions for theory
elements on structuring the
content

Categorial the-
ory elements

Categories for design principles, process
qualities, characteristics of design
elements

Categories for distinguishing and
relating aspects of the learning
content

Normative
theory
elements

Which process quality should be reached
in order to achieve a later learning goal
(and why)? (process qualities)

What should students learn (and
why)? (unpacked learning content
goals)

Humble pre-
dictive theory
elements

Which design principles should be applied
for which aim?

In which (still vague) learning tra-
jectory can the learning content be
structured?

Descriptive
theory
elements

Which situational effects can the design
principles and design elements unfold in
the teaching-learning pathways? And how
does that relate to the intended effects?

What learning pathways do stu-
dents usually take along the
intended learning trajectory? And
how does that relate to the
intended learning trajectory?

Explanatory
theory
elements

Which background do the (non-)effects of
design principles and design
elements have? Under which conditions
of success do they have the intended
effects?

What can explain the students’
typical perspectives, learning
pathways and obstacles? (e.g.,
which aspects are crucial for
learning the next one?) What can
explain the differences between
the intended learning trajectory
and the individual learning
pathways?

Refined pre-
dictive theory
elements

Elaborated design principles: Which
design characteristics and design elements
can be applied for which intended aim and
which explanatory element justifies the
expectation of these effects and which
conditions of success must be considered?

What relations between aspects of
the learning contents must be
considered? In which refined
learning trajectory (or learning
landscape) can the relevant aspects
of the learning content be struc-
tured in order to increase access
for all students?

17.1.1 Facets of Teacher Knowledge as Categorial
and Normative Theory Elements

In this section, we give a short overview of categorial and normative theory elements
that became relevant for distinguishing and relating aspects of the learning content in
mathematics teacher professionalization contexts. With Shulman’s (1986)



distinctions of content knowledge from pedagogical content knowledge (PCK) as
differentiations of facets of teachers’ professional knowledge, and Bromme’s frame-
work (2001) for facets of teacher knowledge, important foundations have been
provided for theorizing in the field of tertiary curriculum design in mathematics
teacher education programs. Today, their conceptualizations serve as theoretical
frameworks in numerous studies which aim at more detailed understandings of
teachers’ professional knowledge, its development, and its relation to teachers’
practices (overview with a focus on PCK see Depaepe et al., 2013). For a further
specification of mathematics teacher knowledge, parallel lines of frameworks
evolved over the last decades. Whereas Shulman outlined professional knowledge
for all teachers, Ball and colleagues (e.g., Ball et al., 2008) refined the notion of
facets of teacher knowledge specifically for mathematics teachers. Their develop-
ment of the Mathematical Knowledge for Teaching (MKT) framework has been
widely adopted in mathematics education. In addition to being explicit about teacher
knowledge related to the practices of teaching (i.e., a practice-based approach to
teacher knowledge), the primary contribution of MKT was providing three
sub-domains of content knowledge in the sub-domains of “common content knowl-
edge (CCK)”, “specialized content knowledge (SCK)”, and “horizon content knowl-
edge (HCK)”; and pedagogical content knowledge in the sub-domains of
“knowledge of content and students (KCS)”, “knowledge of content and teaching
(KCT)”, and “knowledge of content and curriculum (KCC)”.
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While pedagogical content knowledge became quite popular in mathematics
education research for addressing and working on the second discontinuity, also
the content knowledge facet of “horizon content knowledge” is gaining more
theorizing attention recently. In Ball and colleagues’ framework it is defined as the
“awareness of how mathematical topics are related over the span of the curriculum”

(Ball et al., 2008, p. 403). This knowledge is particularly important when we think of
the content connections between school algebra and more advanced Abstract Alge-
bra. Wasserman (2018b) picked up the notion of “horizon content knowledge” in the
construct of knowledge of nonlocal mathematics for teaching. In this framework,
mathematical ideas in the local neighborhood of the mathematics being taught at
school and the nonlocal mathematical neighborhood are distinguished (ibid.). While
the four domains SCK, CCK, KCT and KCS primarily address local mathematical
ideas, Wasserman conceptualizes “horizon content knowledge” and “knowledge of
content and curriculum” as part of nonlocal mathematics. He also claims that for
nonlocal mathematical knowledge to have an impact on the teaching of school
mathematics, it seems necessary, but not sufficient, to establish connections between
the nonlocal and local content, and specific connections have to “reshape one’s
understanding of the local neighborhood” (Wasserman, 2018b, p. 7) in order to
influence teaching practices. As an example, learning that (Z, +) is a group and that
the steps to solve linear equations like x + 4 = 10 rely on the group axioms may
change one’s perception about solving these equations (Wasserman, 2018b).

In the above table of theory elements (Table 17.1), we can locate the different
constructs of mathematics teachers’ professional knowledge as categorial and nor-
mative theory elements for structuring the learning content of an advanced



mathematics class such as Abstract Algebra and for discussing design principles that
have proven fruitful in previous research. In the next section, we start with the latter
and summarize predictive theory elements in the how-dimension and give an
overview of elaborated design principles for Abstract Algebra teaching designs.
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17.1.2 Learning Abstract Algebra: What We Learn from
Previous Research for Answering How-Questions

Students’ difficulties in Abstract Algebra courses have been well documented (e.g.,
Asiala et al., 1997; overview in Weber & Larsen, 2008). Clinical interview studies
show how students struggle not only with proving theorems in Abstract Algebra, but
also with the level of abstraction and complexity of the fundamental concepts
(Hazzan, 1999) as well as the algebraic structuralism of Abstract Algebra in general
(Hausberger, 2015). Drawing on the notion of algebraic structuralism (referring to
“structure” used as a meta-concept that is typically used but not mathematically
defined in algebra classes), according to Hausberger (ibid.) it seems not surprising
that students are struggling when they are supposed to implicitly learn by themselves
and from examples what is meant by a structure. In consequence, Hausberger
develops activities for students to reflect explicitly on structuralist thinking (e.g.,
Hausberger, 2017).

For the specific case of group theory in Abstract Algebra, empirical studies have
repeatedly shown that “undergraduates tend to avoid using their conceptual knowl-
edge of the relevant mathematical objects by relying on well-known procedures”
(Hazzan, 2001). This can be traced back to a lack of sustainable mental models
(Hazzan, 1999), an observation that also Weber and Larsen share: While students are
often able to reproduce formal definitions or procedures, they “have no informal
ways of thinking about groups other than by reciting the group axioms” (2008,
p. 142). Studies across different sub-topics of a typical Abstract Algebra curriculum
came to similar conclusions that students “have no intuitive descriptions, e.g. of what
it meant for two groups to be isomorphic” (Weber & Larsen, 2008). As a conse-
quence of observed shortcomings in students’ conceptual understanding, extensive
Design Research was carried out in the field of teaching and learning Abstract
Algebra (including a phase of scaling up with the result of the Teaching Abstract
Algebra for Understanding (TAAFU) Curriculum, overview in Larsen et al., 2013 as
well as in-depth epistemological and cognitive investigation of selected concepts
such as the homomorphism concept, see e.g. Hausberger, 2017). The TAAFU
research aimed at developing a local instruction theory (Gravemeijer, 1998) that
takes empirically identified typical students’ difficulties and challenges into account.
Several years of research resulted in a local instruction theory which follows the
principle of guided reinvention of crucial concepts of group theory in an inquiry-
based teaching design (for further elaboration on Realistic Mathematics Education
principles (RME) see Freudenthal, 1991; Gravemeijer, 1998). The following design



principles of the TAAFU Curriculum have been implemented in three instructional
sequences (one for each of the main course concepts: group, isomorphism, and
quotient group) (Larsen, 2009; Larsen et al., 2013):
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Guided Reinvention and Emergent Modelling The backbone of the teaching
designs are instructional sequences which feature a reinvention phase and a deduc-
tive phase. During the reinvention phase, the students work on a sequence of tasks
designed to develop and formalize a concept by drawing on their prior knowledge
and informal strategies. The instructional sequences start with a problem situation in
which students encounter and develop an understanding of a certain concept, such as
group, as ‘models of’ in line with the design principle of emergent modelling
(Gravemeijer, 1999; Leuders, 2015). The product of the reinvention phase is a
formal definition and a collection of conjectures concerning the concept the students
have been working on. The reinvention phase is followed by a deductive phase in
which students work on proving theorems – which are often based on conjectures
arising during the reinvention phase – using the conventions, formal definitions and
previously proved results. Guided reinvention in the sense of RME has proven
fruitful for developing conceptual understanding which is assumed to be more
sustainable (for the case of algebra in comparison to knowledge acquired in a rather
typical deductive algebra class), because “[k]nowledge and ability when acquired by
one’s own activity stick better and are more readily available than when imposed by
others” (Freudenthal, 1991, p. 47). Having completed both, reinvention and deduc-
tive phases, students have acquired the certain concept (e.g., group) as ‘models for’
referring to the notion of emergent modelling that a concept which initially emerged
as a ‘model of’ students’ activity in problem situations. Cuoco and McCallum
(2018) support this design principle in their conclusions on working on the second
discontinuity, stating that abstractions should be motivated with concrete examples
whenever possible and call for “experience before formality”.

Proofs and Refutations Heuristics Following suggestions by Larsen and Zandieh
(2008) for processes of guided reinvention in undergraduate mathematics education,
the TAAFU designs rely on this heuristic as design principle for the transitions
between each reinvention and each deductive phase. This design principle captures
students’ learning processes in which conjectures are revised by analyzing proofs
especially in light of comparing and contrasting examples and counterexamples
(Rittle-Johnson & Star, 2011).

With these design principles, the research team provided important theoretical
contributions in the dimension of the above how-questions: If we want students to be
actively engaged in developing sustainable conceptual understanding, we need to
offer learning opportunities that allow for guided reinvention processes in which
students not too quickly move from conceptual understanding to formalized sym-
bolic representations and procedures.
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17.1.3 Learning Abstract Algebra: What We Learn from
Previous Research for Answering What-Questions

Abstract Algebra is defined as “the study and generalization of algebraic structures”
(Wasserman, 2016, p. 30). For prospective mathematics teachers in a secondary
teacher education program in Germany, the course curriculum typically comprises
binary operations, identities, inverses, commutativity, groups and subgroups, iso-
morphisms/homomorphisms, and rings (while the curriculum for prospective
teachers often differs from a curriculum of mathematics major programs). Next to
symmetry and quotient groups, permutations (as re-arrangements of elements of a
set) serve as a typical example of exploring the group concept (Alcock, 2021,
pp. 136 ff.). Within such a curriculum that is typically structured according to the
textbook or lecturer’s scripts, the different subtopics have various potentials for
enhancing profession specificity for prospective teachers (with different emphasis
for primary or secondary/upper secondary teachers).

Already Felix Klein illustrated how Abstract Algebra is relevant for school
algebra, and younger research particularly investigates the connections between
both (Suominen, 2015; Gray, 2021; Leuders, 2016a). In these investigations, it is
often the content connection perspective that is taken (Wasserman, 2018a). Content
connections refer to a meaningful relationship between a concept discussed in the
advanced course (e.g., a group in Abstract Algebra) and some secondary content
(e.g., invertible functions). Unfortunately, as Cuoco (2001) points out, “Abstract
Algebra is seen as a completely different subject from school algebra” (p. 169)
despite the clear connections to secondary school mathematics. This is one reason
why explicitly discussing such mathematical content connections is a way that
instructors of advanced mathematics courses choose in order to make the advanced
content more relevant to secondary teachers. For identifying fruitful content con-
nections, Abstract Algebra curriculum designers can rely on a study by Wasserman
(2016) who reconstructed how ideas in Abstract Algebra can be beneficial for
algebra (and early algebra) teaching. The content of school algebra only implicitly
draws on the structures of groups, fields, and rings (largely fields and rings). This is
why the study aimed at identifying common content areas that provide a synthesis of
the types of school mathematics potentially informed by knowledge of Abstract
Algebra. As a result, the four content areas arithmetic properties, inverses, structure
of sets, and solving equations have been shown as most relevant. Further support for
instructors searching for fruitful connections in an Abstract Algebra curriculum to
secondary algebra is provided by Suominen’s (2015) comprehensive connections
list between concepts found in Abstract Algebra and secondary school mathematics.
For the case of German course material, Leuders (2016b) proposes a curriculum and
textbook for explicating the multiple connections between elementary algebra and
Abstract Algebra. More specifically, Leuders (2016a) analyzes how and why aspects
of Galois Theory are relevant for secondary teachers (with a focus on upper
secondary mathematics teaching) by unfolding the content connections to solving
equations.



17 Profession-Specific Curriculum Design in Mathematics Teacher Education. . . 357

Next to content connections, Wasserman (2018a) introduces the disciplinary
practice connection as a point of connection to secondary teaching. Here, the
disciplinary practice that one engages in while studying advanced mathematics is
also engaged in while studying secondary mathematics. That is, the processes that
one engages in while “doing” advanced mathematics are related to some of the
important mathematical practices that have been identified by mathematicians and
mathematics educators as process standards or mathematical practice standards
(such as problem solving, modeling, proving etc.). According to Wasserman, these
kinds of connections serve a dual purpose: Mathematically, they intend prospective
teachers to become better “doers” of mathematics so that they have a better grasp on
mathematics itself (the epistemological nature of mathematics, mathematical norms
and sensibilities, etc.). With a more pedagogical purpose, disciplinary practice
connections intend that secondary teacher’s pedagogical choices in their future
teaching will engage their own students in these forms of thinking and doing. The
already mentioned Abstract Algebra curriculum (Leuders, 2016b) for prospective
teachers implements such disciplinary practice connections with an emphasis on
inquiry-based learning. Moreover, the suggested units are meant to initiate processes
of horizontal and vertical mathematization (Treffers, 1987; Gravemeijer, 1999;
Leuders, 2015). When we see mathematizing as the organization of a kind of reality
problem with mathematical means, Treffers (1987) differentiates horizontal from
vertical mathematization. While “[t]he attempt to schematize the problem mathe-
matically is indicated by the term ‘horizontal’ mathematization (. . .), activities that
follow and that are related to the mathematical process, the solution of the problem,
the generalization of the solution and the further formalization, can be described as
‘vertical’ mathematization (Treffers, 1987, p. 71). For vertical mathematization we
draw on models, schemes, symbols and diagrams (ibid.). By implementing the
principle of horizontal and vertical mathematization in Leuders’ (2016b) curriculum,
the students get the chance of perceiving modeled instruction connections. Modeled
instruction connections capture connections to secondary teaching that are realized
by intentionally modeling particular kinds of instruction in mathematics so that
teachers learn mathematics in particular ways that can shape their own approaches
to teaching (Wasserman, 2018a). The intended implication for secondary teachers is
about their pedagogy: Aside from the mathematical content, the implicit intent
behind modeling instruction in mathematics courses for secondary teachers is that
particular kinds of pedagogical choices or pedagogical models would be incorpo-
rated into their teaching.

As a fourth type of connection, Wasserman (ibid.) defines the classroom teaching
connection as some connection regarding the content of advanced mathematics, but
as applicable to a specific secondary teaching situation. That is, the advanced
mathematics is serving as a means to motivate particular and specific kinds of
pedagogical actions in the classroom. The teaching situations from mathematics
classrooms serve as a means to connect to advanced mathematics topics. The
primary implication is about professionalizing teacher’s pedagogical reactions to
or in a specific teaching situation (e.g., designing problems for teaching, responding
to students, sequencing activities, etc.). Substantial work by Cuoco and Rotman



(2013), Cuoco and McCallum (2018) in the thematic field of Abstract Algebra
combines content and classroom teaching connections while Prediger (2013) puts
a stronger emphasis on the classroom teaching connections for addressing the
second discontinuity in upper secondary teacher education. A variety of teaching
innovations structured according to the intended aims and kinds of connections are
also summarized in Wasserman (2018b).
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Fig. 17.1 Instruction model (Wasserman et al., 2019, p. 386)

In sum, the four types of connections serve as categorial theory elements, and as
such provide a language for distinguishing and relating aspects of learning contents
and learning goals in profession-specific teaching settings. On the categorial and
normative level, we find a growing body of theoretical contributions for guiding
instructors’ decisions who want to include specific learning goals addressing con-
nections to secondary algebra teaching. When we come back to the different kinds of
theory elements, the predictive theory element is of particular importance for
backing the structure of learning trajectories. So far, only little is known about
students’ learning pathways along profession-specific learning trajectordes or
insights into learning processes which identify or explain students’ typical perspec-
tives, learning pathways and obstacles.

Reacting to this empirical research gap, Wasserman et al. (2019) developed an
instructional model according to which connections between the advanced mathe-
matics learning content (conceptualized as knowledge from the nonlocal mathemat-
ics) can be connected to secondary mathematics and its teaching. The model covers
the three phases of building-up from (teaching) practice, learning advanced math-
ematics and stepping-down to (teaching) practice (see Fig. 17.1).

For example, students are asked to evaluate the quality of a teachers’ statement
about the power rule statement in the first phase (building-up). In the next phase
(learning), different proofs of the power rule statement and other derivative rules
typical for real analysis are covered. Finally, the students are supposed to apply their
newly acquired nonlocal knowledge to reevaluate the teachers’ statement about the
power rule statement (stepping-down) (Wasserman et al., 2019). Empirical research
indicates that learning trajectories structured according to this sequencing principle
have the effect that students’ perceived relevance of the course for their prospective
teaching increases (McGuffey et al., 2019).
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17.2 Design Principles and Design Elements for Enhancing
Profession-Specificity in an Abstract Algebra Class
for Prospective Teachers

Since Abstract Algebra is a university mathematics field for which previous research
provides a fruitful theoretical base, we started modifying our university mathematics
teaching for prospective primary and secondary teachers in an Abstract Algebra
class. We draw on insights from Didactical Design Research cycles, conducted by
both authors as teacher educators and course designers starting in the academic year
2018/19 at the University of Education Freiburg and being continued since 2020 at
Paderborn University. Table 17.2 gives an overview of the implemented design

Table 17.2 Overview of design experiment cycles

Design experiment cycle
1 (2017/18)

Design experiment cycle
2 (2018/19)

Design experiment cycle
3 (2020/21)

Aim and research setting
Testing inquiry learning tasks
and Cinderella/GeoGebra
Applets for guided reinvention
phase

Implementation of Implementation of

Whole class setting (n = 23) Reflection tasks on disci-
plinary practice and modeled
instruction connections

Content connections and
classroom teaching connec-
tions by realizing the
Wasserman et al. (2019)
sequencing principle

Structural scaffolding
“inquiry staircase”

Relating registers and rep-
resentations for realizing
content connections

Whole class (n = 49) and lab-
oratory setting (4 groups of
4 students: inquiry unit on
permutations)

Whole class (n = 84) and
laboratory setting (n = 8 in
4 × 2 pairs of students)

Collected data
Weekly uploaded journals
with students reporting on
discovered phenomena, con-
jectures, challenges and open
questions

Weekly uploaded journals with
students reporting on discov-
ered phenomena, conjectures,
challenges and open questions

Weekly uploaded journals
with students reporting on
discovered phenomena, con-
jectures, challenges and open
questions

Standardized evaluation ques-
tionnaire with open and closed
items

Standardized evaluation ques-
tionnaire with open and closed
items

Standardized evaluation
questionnaire with open and
closed items

Video data: inquiry learning
process on permutation
problem

Video data: complete learning
process of building up, learn-
ing and stepping down in
learning trajectory on asso-
ciativity/commutativity and
inverses



decisions and collected data in each cycle. Methodologically we rely on the iterative
Design Research cycle (see Fig. 17.2) which considers the what- and how-questions
explicitly.
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Fig. 17.2 Process model with working areas for topic-specific Didactical Design Research
(Prediger, 2019)

The following sections show how profession-specificity is interpreted and real-
ized in the teaching design. Furthermore, we explain in what way design decisions
for how-questions ought to be modified so that the intended effects of the teaching
design can be achieved. In this way, we unfold theory elements for working on
how-questions in tertiary didactical Design Research, particularly with a focus on
predictive theory elements (“Which design characteristics and design elements can
be applied for which intended aim?”).

17.2.1 First Design Experiment Cycle

For implementing our teaching design, we analyzed the tasks of the (online avail-
able) TAAFU teaching material with respect to their potential of being combined
with the inquiry learning tasks of the Abstract Algebra curriculum by Leuders
(2016b). As a result, we orchestrated four parts of guided reinvention in different
mathematical situations and contexts: the first three parts (they comprise a geomet-
rical, arithmetical, and combinatorial approach, see Table 17.3) each cover
3–4 weeks of the course.

The first three parts also have in common that they all aim at developing
conceptual understanding of the group concept for mathematization and interpreta-
tion for working on the given problem. Having developed a sustainable
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Table 17.3 Overview of guided reinvention phases and concepts in focus of the course curriculum

Three parts of guided reinvention in
the contexts of

Horizontal
mathematization (group
as ‘model of’)

Vertical mathematization
(group as ‘model for’)

Geometric operations Relations between
movements (invariance,
inverse operation)

Lifting strategies and thinking
to support development of
formal concepts:

Symmetry groups Structural properties:
associativity, invariance

Work with axiomatic defini-
tion of a group

Develop informal strate-
gies (e.g., for working
with Cayley tables)

Systematize informal strate-
gies by agreeing on conven-
tions and rules

Subgroup and order Formalize and proof theorems
on general phenomena (e.g.,
Lagrange’s theorem)

Arithmetic operations Relations between
actions (changing order
of operation)

Quotient groups Structural properties:
commutativity, inverse
operation

Cyclic groups

Combinatorial operations Relations between
actions of
rearrangements

Permutation groups Structural properties:
inverse operation, parity

Fourth part:

Guided reinvention of the concept of isomorphism and isomorphic groups



understanding of groups, the fourth part of the course covers 2–3 weeks in which
students reinvent the concept of isomorphism and isomorphic groups including
arguing for or against isomorphism in different ways. Along these four parts, further
neighboring concepts (see Table 17.3), accompanying procedures and conventions,
such as working with Cayley tables and the use of formal notations, are developed.
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Each week of the course follows the structure of (1) inquiry phase in which the
students work together with a partner on a given problem, note their observations
and conjectures in their journals which are uploaded for the course instructor;
(2) phase of systematization in a lecture which reacts adaptively to students’ work,
and extends their ideas; (3) application phase in a tutorial setting in which students
apply or prove concepts and theorems.

In the first cycle of working with the teaching material, a focus was put on each
week’s inquiry phase in which Cinderella and GeoGebra Applets served as core
design elements for initiating students’ reinvention processes (Cinderella and
GeoGebra Applets provided by Leuders, 2016b, freely available from the author).
For reflecting and structuring the students’ learning processes, the students have
been asked to collect their thoughts in accompanying learning journals (Artigue &
Blomhøj, 2013). The journals consist of reflections and notes from all three phases of
inquiry, systematization, and application (conjectures, open questions, insights,
critical moments in the sense of aha moments, mistakes or misunderstanding,
conventions, thoughts of transfer, deeper or more tangible understandings). Journal
entries on the inquiry phase have been uploaded weekly so that the course instructor
could follow students’ thinking and adaptively designed the lecture aimed at sys-
tematization of discovered phenomena. On the basis of these uploads, the function-
ing of the inquiry tasks has been evaluated, and tasks could be modified for the next
Design Experiment cycle.

The extensive phase of working with problems of inquiry aimed at disciplinary
practice connections: We intended prospective teachers to become better “doers” of
mathematics and experience the creative mathematical practices of inquiry and
problem solving (stating conjectures, generating examples, seeing and generalizing
connections, etc.). We also hope that the prospective teacher’s pedagogical choices
in their future teaching will engage their own students in these forms of thinking and
doing, so far, the methodological setting does not allow any insights into these
potential effects. In line with Hußmann and Selter (2013), we conject that learning
trajectories need not only these phases of experiencing inquiry-based learning, but
also moments in which prospective students can try out inquiry-based learning in
teaching experiments, e.g., with small groups of secondary students. Throughout the
whole course, content connections to school algebra stayed rather implicit.

As the core insights of this cycle with respect to necessary adaptations of the
teaching design, we observed that next to explicit statements in uploaded student
work, also the course evaluation showed that the students encountered many diffi-
culties in the phase of inquiry: Students have been insecure about what to write down
in their journals; they often stated that they have been challenged by the openness of
the inquiry-learning tasks and that they were not used to work on such open
problems in their mathematics studies. As a positive effect, they highlighted their



general motivation and that they often enjoyed doing the mathematics in this class.
In consequence, we sticked to the general structure of the course (inquiry, system-
atization, and application), but identified the need for additional scaffolding the first
phase of inquiry as a condition of successful mathematical learning processes.
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17.2.2 Second Design Experiment Cycle: Scaffolding Guided
Reinvention and Noticing Connections

As a reaction to the challenges that students faced when working on the open
problems of inquiry, the course material was extended and included a didactical
design element combined with making expectations more explicit to students. In
their mathematics education courses, prospective teachers deal with the didactical
principle of inquiry-based learning. As a means for speaking about the typical
processes that mathematics teaching designers hope to initiate in inquiry learning,
one can use the model of “inquiry staircase” (Rösike, 2022, drawing on Schelldorfer,
2007). In this model, the back and forth between capturing the problem, trying out
particular calculations, comparing examples and finding patterns, making conjec-
tures, or giving reasons is captured (see Fig. 17.3). The staircase model gives the
students a language for speaking and writing about their mental processes of inquiry
which we asked them to do in their journals. Using the staircase model and filling the
steps with concrete examples from the first inquiry process (symmetries of

Fig. 17.3 Inquiry staircase as categorial structural scaffolding (translated from Rösike, 2022)



geometrical figures, reinvention of the identity and inverses) intended to make the
students reflect on the typical phases of inquiry and reasoning (perception, trying
out, conjecture, systematize, give reasons as well as the notion of moving back and
forth between them) and to compare these to their own processes of inquiry. The
staircase model was introduced in a short teaching-related article and from then on
should serve as a self-reflection tool for one’s own learning and as a connecting
element in the sense of disciplinary practice connection (see Sect. 17.1.3).

364 L. Wessel and T. Leuders

Fig. 17.4 Reflection tasks as design element

As a second major need for revision, we identified means to make the disciplinary
practice and modeled instruction connections more explicit, because our students not
rarely perceived how the course relates to and obviously has connections to school
mathematics. After having completed the first three processes of guided reinvention
and deductive reasoning (this equals the first 3 weeks of the semester which focused
on geometric problem contexts), the prospective teachers first encountered the
reflection tasks (Fig. 17.4) we asked them to work on three times throughout the
semester or after the semester. These reflection tasks and questions refer to a content
dimension by asking to reflect upon the crucial concepts, procedures, or theorems
they have explored so far and why they seem relevant; to a personal dimension by
asking to reflect upon one’s own learning practice (including emotions and chal-
lenges) and to a classroom teaching mathematics dimension by asking to reflect
upon secondary school relations content- and process-wise. The prospective teachers
chose which phase and context of guided reinvention (geometric, arithmetic,



r

combinatorial) they explicitly relate to which reflection dimension (mathematical,
personal, teaching mathematics).
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Analyzing the prospective teachers’ texts shows how they perceived and
interpreted connections to school algebra, while at the same time the dual purpose
described by Wasserman (2018a) (becoming better “doers” of mathematics, chang-
ing teacher’s pedagogical orientations towards inquiry-based teaching approaches)
as the excerpts written by Jonathan and Stephanie (both prospective secondary
teachers in their bachelor program at University of Education, Freiburg) exemplify:

Jonathan: “For me, it was very helpful to work on the problems intensively by myself. I had
the feeling being much closer to the mathematics. It was fun making conjecture, proving
them, and reject or modify them. This way, I came up with new conjectures. For me it felt
good, because consistently inquiring new problems brought new insights into mathe-
matics every time.”

Stephanie: “Especially for my future teaching, I experienced valuable moments of under-
standing: For students, it makes so much more sense inventing the concepts and
discovering how they relate to another concept or how a procedure works. EVERY
student is able to discover something.”

17.3 Outlook on the Third Cycle and Discussion

In spite of the positive effects which we experienced with the connections we
implemented in the Abstract Algebra curriculum for prospective teachers especially
with a focus on disciplinary practice connections, the potential of content connec-
tions and the sequencing principle suggested by Wasserman et al. (2019) have not
been exploited satisfactorily. This is why the third cycle of design experiments
focuses on these aspects: All course materials have been analyzed for their potential
of implementing the sequencing principle. As a result, the course units on arithmetic
properties and inverses have been re-designed and now include material for building
up from teaching practice and stepping down to teaching practice (next to the
learning phase for which only small changes were needed). The three phases of
the sequencing principle have been intertwined with the phases of inquiry, system-
atization, and application, which worked out more successfully for the pairs “sys-
tematization/learning” and “stepping down to teaching practice/application” in
comparison to the pair “inquiry/building up from teaching practice”. The laboratory
design experiments have been transcribed so that the analysis can now focus on
reconstructing the initiated learning processes. With this third cycle and the clear
focus on leaning processes, we aim at the research gap of descriptive, explanatory,
and predictive theory elements that wish to address profession-specific o
“connected” learning processes (in the Wasserman sense of connections between
secondary and tertiary algebra).

With this chapter, our main theoretical contribution to practice-oriented research
in tertiary teaching designs refers to the notion of profession-specificity and how this
might be operationalized by drawing on categorial theory elements from teacher
professional knowledge frameworks. We suggest theory elements as fruitful cate-
gories for thinking of and designing integrated teaching designs that aim at learning



goals from a more pedagogical (PCK) dimension in addition to pure content learning
goals which can be combined by different kinds of connections.
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In the Design Research paradigm of tertiary mathematics education, developing
teaching designs for learning Abstract Algebra already has a long tradition so that we
could draw on insightful suggestions for structuring learning contents (see Sects.
17.1.2 and 17.1.3). Given the specific situation of German mathematics teacher
programs for lower secondary schools, we identified design elements as modifica-
tions so that the inquiry-based design functions with respect to the double aim of
high-quality algebra learning while making connections to mathematical practice
and classroom teaching. These design elements (inquiry staircase and reflection
tasks) would probably also function in tertiary mathematics classes with other
mathematical foci to be learned in inquiry-based settings.

The presented suggestion of a profession-specific Abstract Algebra teaching
design incorporates profession-specificity-enhancing design elements. We see
potential of those design elements in making advanced mathematics classes more
meaningful for students with respect to the courses’ relevance for future teaching.
However, the questions of interrelations in the learning processes can only be
answered as a next step with analyzing transcripts of the initiated learning.

References

Alcock, L. (2021). How to think about Abstract Algebra. Oxford University Press.
Artigue, M., & Blomhøj, M. (2013). Conceptualizing inquiry-based education in mathematics.

ZDM Mathematics Education, 45, 797–810. https://doi.org/10.1007/s11858-013-0506-6
Asiala, M., Dubinsky, E., Mathews, D. M., Morics, S., & Oktaç, A. (1997). Development of

students’ understanding of cosets, normality, and quotient groups. The Journal of Mathematical
Behavior, 16(3), 241–309. https://doi.org/10.1016/s0732-3123(97)90029-8

Bakker, A. (2018). Design research in education. Routledge. https://doi.org/10.4324/
9780203701010

Ball, D., Thames, M., & Phelps, G. (2008). Content knowledge for teaching: What makes it special?
Journal of Teacher Education, 59(5), 389–407. https://doi.org/10.1177/0022487108324554

Barab, S., & Squire, K. (2004). Special issue: Design-based research: Clarifying the terms. Journal
of the Learning Sciences, 13(1). https://doi.org/10.4324/9780203764565

Bromme, R. (2001). Teacher expertise. In N. J. Smelser & P. B. Baltes (Eds.), International
encyclopedia of the social and behavioral sciences (pp. 15459–15465). Elsevier. https://doi.
org/10.1016/b0-08-043076-7/02447-5

Cobb, P., Confrey, J., diSessa, A., Lehrer, R., & Schauble, L. (2003). Design experiments in
educational research. Educational Researcher, 32(1), 9–13. https://doi.org/10.3102/
0013189x032001009

Cummings, J., Lockwood, E., & Weber, K. (2018). Building a coherent research program that links
Abstract Algebra to secondary mathematics pedagogy via disciplinary practices. In
N. Wasserman (Ed.), Connecting Abstract Algebra to secondary mathematics, for secondary
mathematics teachers (pp. 319–331). Springer. https://doi.org/10.1007/978-3-319-99214-3_15

Cuoco, A. (2001). Mathematics for teaching. Notices of the American Mathematical Story, 48(2),
168–174.

https://doi.org/10.1007/s11858-013-0506-6
https://doi.org/10.1016/s0732-3123(97)90029-8
https://doi.org/10.4324/9780203701010
https://doi.org/10.4324/9780203701010
https://doi.org/10.1177/0022487108324554
https://doi.org/10.4324/9780203764565
https://doi.org/10.1016/b0-08-043076-7/02447-5
https://doi.org/10.1016/b0-08-043076-7/02447-5
https://doi.org/10.3102/0013189x032001009
https://doi.org/10.3102/0013189x032001009
https://doi.org/10.1007/978-3-319-99214-3_15


17 Profession-Specific Curriculum Design in Mathematics Teacher Education. . . 367

Cuoco, A., & McCallum, W. (2018). The double continuity of algebra. In G. Kaiser, H. Forgasz,
M. Graven, A. Kuzniak, E. Simmt, & B. Xu (Eds.), Invited lectures from the 13th international
congress on mathematical education. Springer. https://doi.org/10.1007/978-3-319-72170-5_4

Cuoco, A., & Rotman, J. (2013). Learning modern algebra. MAA Textbooks. https://doi.org/10.
1090/text/023

Depaepe, F., Verschaffel, L., & Kelchtermans, G. (2013). Pedagogical content knowledge: A
systematic review of the way in which the concept has pervaded mathematics educational
research. Teaching and Teacher Education, 34, 12–25. https://doi.org/10.1016/j.tate.2013.
03.001

Freudenthal, H. (1991). Revisiting mathematics education: China lectures. Kluwer.
Gravemeijer, K. (1998). Developmental research as a research method. In J. Kilpatrick &

A. Sierpinska (Eds.), Mathematics education as a research domain: A search for identity
(An ICMI Study) (pp. 227–295). Kluwer. https://doi.org/10.1007/978-94-011-5196-2_3

Gravemeijer, K. (1999). How emergent models may foster the constitution of formal mathematics.
Mathematical Thinking and Learning, 1(2), 155–177. https://doi.org/10.1207/
s15327833mtl0102_4

Gravemeijer, K., & Cobb, P. (2006). Design research from a learning design perspective. In J. van
den Akker, K. Gravemeijer, S. McKenney, & N. Nieveen (Eds.), Educational Design Research:
The design, development and evaluation of programs, processes and products (pp. 17–51).
Routledge. https://doi.org/10.4324/9780203088364-12

Gray, C. (2021). Exploring mathematical connections preservice teachers make between Abstract
Algebra and secondary mathematics: Implications for learning and teaching. Doctoral disser-
tation, University of New Hampshire, Durham.

Hausberger, T. (2015). Abstract Algebra, mathematical structuralism and semiotics. In K. Krainer
& N. Vondrova (Eds.), Proceedings of the ninth congress of the European Mathematical Society
for Research in mathematics education (pp. 2145–2151). Charles University in Prague, Faculty
of Education and ERME.

Hausberger, T. (2017). The (homo)morphism concept: Didactic transposition, meta-discourse and
thematisation. International Journal of Research in Undergraduate Mathematics Education,
3(3), 417–443. https://doi.org/10.1007/s40753-017-0052-7

Hazzan, O. (1999). Reducing abstraction level when learning Abstract Algebra concepts. Educa-
tional Studies in Mathematics, 40(2), 71–90. https://doi.org/10.1023/A:1003780613628

Hazzan, O. (2001). Reducing abstraction: The case of constructing an operation table for a group.
The Journal of Mathematival Behaviour, 20(2), 163–172. https://doi.org/10.1016/S0732-3123
(01)00067-0

Hußmann, S., & Selter, C. (2013). Diagnose und individuelle Förderung in der MINT-
Lehrerbildung: Das Projekt dortMINT. Waxmann.

Klein, F. (1908). Elementarmathematik vom höheren Standpunkte aus. Arithmetik, Algebra, Anal-
ysis (Vol. 1). Julius Springer.

Larsen, S. (2009). Reinventing the concepts of group and isomorphism. Journal of Mathematical
Behavior, 28(2–3), 119–137. https://doi.org/10.1016/j.jmathb.2009.06.001

Larsen, S. (2013). A local instructional theory for the guided reinvention of the group and
isomorphism concepts. The Journal of Mathematical Behavior, 32(4), 712–725. https://doi.
org/10.1016/j.jmathb.2013.04.006

Larsen, S., & Zandieh, M. (2008). Proofs and refutations in the undergraduate mathematics
classroom. Educational Studies in Mathematics, 67, 205–216. https://doi.org/10.1007/s10649-
007-9106-0

Larsen, S., Johnson, E., & Bartlo, J. (2013). Designing and scaling up an innovation in Abstract
Algebra. The Journal of Mathematical Behavior, 32(4), 693–711. https://doi.org/10.1016/j.
jmathb.2013.02.011

Leuders, T. (2015). Gruppen als Modelle – Horizontale und vertikale Mathematisierungsprozesse.
In G. Kaiser & H.-W. Henn (Eds.), Werner Blum und seine Beiträge zum Modellieren im
Mathematikunterricht (pp. 217–231). Springer Fachmedien Wiesbaden.

https://doi.org/10.1007/978-3-319-72170-5_4
https://doi.org/10.1090/text/023
https://doi.org/10.1090/text/023
https://doi.org/10.1016/j.tate.2013.03.001
https://doi.org/10.1016/j.tate.2013.03.001
https://doi.org/10.1007/978-94-011-5196-2_3
https://doi.org/10.1207/s15327833mtl0102_4
https://doi.org/10.1207/s15327833mtl0102_4
https://doi.org/10.4324/9780203088364-12
https://doi.org/10.1007/s40753-017-0052-7
https://doi.org/10.1023/A:1003780613628
https://doi.org/10.1016/S0732-3123(01)00067-0
https://doi.org/10.1016/S0732-3123(01)00067-0
https://doi.org/10.1016/j.jmathb.2009.06.001
https://doi.org/10.1016/j.jmathb.2013.04.006
https://doi.org/10.1016/j.jmathb.2013.04.006
https://doi.org/10.1007/s10649-007-9106-0
https://doi.org/10.1007/s10649-007-9106-0
https://doi.org/10.1016/j.jmathb.2013.02.011
https://doi.org/10.1016/j.jmathb.2013.02.011


368 L. Wessel and T. Leuders

Leuders, T. (2016a). Subject matter analysis with a perspective on teacher education – The case of
Galois theory as a theory of symmetry. Journal für Mathematik-Didaktik, 37(Suppl.1),
163–191. https://doi.org/10.1007/s13138-016-0099-z

Leuders, T. (2016b). Erlebnis Algebra: Zum aktiven Entdecken und selbstständigen Erarbeiten.
Springer Spektrum. https://doi.org/10.1007/978-3-662-46297-3

McGuffey, W., Quea, R., Weber, K., Wasserman, N., Fukawa-Conelly, T., & Mejia Ramos, J. P.
(2019). Pre- and in-service teachers’ perceived value of an experimental real analysis course for
teachers. International Journal of Mathematical Education in Science and Technology, 50(8),
1166–1190. https://doi.org/10.1080/0020739X.2019.1587021

McKenney, S., & Reeves, T. (2012). Conducting educational design research. Routledge.
Mischau, A., & Blunck, A. (2006). Mathematikstudierende, ihr Studium und ihr Fach: Einfluss von

Studiengang und Geschlecht. Mitteilungen der Deutschen Mathematiker-Vereinigung, 14(1),
46–52. https://doi.org/10.1515/dmvm-2006-0022

Prediger, S. (2013). Unterrichtsmomente als explizite Lernanlässe in fachinhaltlichen
Veranstaltungen. In C. Ableitinger, S. Prediger, & J. Kramer (Eds.), Zur doppelten
Diskontinuität in der Gymnasiallehrerbildung. Ansätze zu Verknüpfungen der fachinhaltlichen
Ausbildung mit schulischen Vorerfahrungen und Erfordernissen (pp. 151–158). Springer.
https://doi.org/10.1007/978-3-658-01360-8_9

Prediger, S. (2019). Theorizing in Design Research: Methodological reflections on developing and
connecting theory elements for language-responsive mathematics classrooms. Avances de
Investigación en Educación Matemática, 15, 5–27. https://doi.org/10.35763/aiem.v0i15.265

Prediger, S., & Zwetzschler, L. (2013). Topic-specific Design Research with a focus on learning
processes: The case of understanding algebraic equivalence in grade 8. In T. Plomp &
N. Nieveen (Eds.), Educational design research: Illustrative cases (pp. 407–424). SLO, Neth-
erlands Institute for Curriculum Development.

Rittle-Johnson, B., & Star, J. R. (2011). The power of comparison in learning and instruction:
Learning outcomes supported by different types of comparisons. In Psychology of learning and
motivation (Vol. 55, pp. 199–225). Academic.

Rösike, K. (2022). Expertise von Lehrkräften zur mathematischen Potenzialförderung. Dortmunder
Beiträge zur Entwicklung und Erforschung des Mathematikunterrichts (Vol. 47). Springer.

Schelldorfer, R. (2007). Summendarstellungen von Zahlen. Ein Feld für differenzierendes
entdeckendes Lernen. Praxis der Mathematik, 17(49), 25–27.

Shulman, L. (1986). Those who understand: Knowledge growth in teaching. Educational
Researcher, 15(2), 4–14. https://doi.org/10.3102/0013189x015002004

Suominen, A. (2015). Abstract algebra and secondary school mathematics: Identifying and
classifying mathematical connections. Unpublished doctoral dissertation. University of Geor-
gia, Athens.

Ticknor, C. S. (2012). Situated learning in an Abstract Algebra classroom. Educational Studies in
Mathematics, 81(3), 307–323. https://doi.org/10.1007/s10649-012-9405-y

Treffers, A. (1987). Three dimensions. A model of goal and theory description in mathematics
instruction – The Wiskobas Project. Reidel Publishing Company.

Wasserman, N. H. (2016). Abstract algebra for algebra teaching: Influencing school mathematics
instruction. Canadian Journal of Science, Mathematics and technology, 16(1), 28–47.

Wasserman, N. H. (2018a). Exploring advanced mathematics courses and content for secondary
mathematics teachers. In N. Wasserman (Ed.), Connecting Abstract Algebra to secondary
mathematics, for secondary mathematics teachers (pp. 1–15). Springer. https://doi.org/10.
1007/978-3-319-99214-3_1

Wasserman, N. H. (2018b). Knowledge of nonlocal mathematics for teaching. The Journal of
Mathematical Behavior, 49, 116–128. https://doi.org/10.1016/j.jmathb.2017.11.003

Wasserman, N. H., Weber, K., Fukawa-Conelly, T., & McGuffey, W. (2019). Designing advanced
mathematics courses to influence secondary teaching: Fostering mathematics teachers’ “atten-
tion to scope”. Journal of Mathematics Teacher Education, 22(4), 379–406. https://doi.org/10.
1007/s10857-019-09431-6

Weber, K., & Larsen, S. (2008). Teaching and learning group theory. Making the Connection:
Research and Teaching in Undergraduate Mathematics Education, 73, 139–152.

https://doi.org/10.1007/s13138-016-0099-z
https://doi.org/10.1007/978-3-662-46297-3
https://doi.org/10.1080/0020739X.2019.1587021
https://doi.org/10.1515/dmvm-2006-0022
https://doi.org/10.1007/978-3-658-01360-8_9
https://doi.org/10.35763/aiem.v0i15.265
https://doi.org/10.3102/0013189x015002004
https://doi.org/10.1007/s10649-012-9405-y
https://doi.org/10.1007/978-3-319-99214-3_1
https://doi.org/10.1007/978-3-319-99214-3_1
https://doi.org/10.1016/j.jmathb.2017.11.003
https://doi.org/10.1007/s10857-019-09431-6
https://doi.org/10.1007/s10857-019-09431-6


Chapter 18
Drivers and Strategies That Lead
to Sustainable Change in the Teaching
and Learning of Calculus Within
a Networked Improvement Community

Wendy M. Smith, Matthew Voigt, Antonio Estevan Martinez,
Chris Rasmussen , Rachel Funk, David C. Webb, and April Ström

Abstract Actively engaging students in learning mathematics is crucial to student
success and equitable teaching and learning. Yet, this practice requires instructors to
shift teaching strategies, which is not easily accomplished, particularly by them-
selves. In this chapter, we report on a longitudinal study of mathematics departments
in the process of shifting department norms and practices in support of active
learning and inclusive teaching. The research-informed change efforts have drawn
on theories of institutional change and Networked Improvement Communities (Bryk
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AS, Gomez L, Grunow A, LeMahieu P. Learning to improve: how America’s
schools can get better at getting better. Harvard Education Publishing, 2015). Data
include interviews with tertiary mathematics instructors, course coordinators, depart-
ment chairs, deans, other campus administrators, and students, as well as document
analyses. Analyses of the data from three institutions, through the lens of networked
improvement communities, reveal that some of the most important drivers of change
related to institutional change to enact active learning are shared tools and resources,
professional development, policies and structures, and connections across a network
to other mathematics departments engaged in similar efforts.

370 W. M. Smith et al.

Keywords Mathematics department change · Driver diagrams · Leveraging
institutional change · Active learning mathematics · Equitable tertiary mathematics
outcomes · Networked improvement communities for institutional change

18.1 Introduction

Grounded in research on institutional change (Kezar, 2013), the Student Engage-
ment in Mathematics through an Institutional Network for Active Learning (SEM-
INAL) project has studied 26 tertiary mathematics departments in the United States
that have initiated and sustained departmental change initiatives designed to improve
calculus programs. Our findings point to a systemic set of influential drivers that
formal and informal departmental leaders—acting collaboratively as change
agents—proposed, motivated, and enacted in undergraduate calculus. The focus of
all the mathematics departments was on transforming high-enrollment introductory
courses: Precalculus through Calculus.1 In this chapter, we selected three cases that
highlight how common drivers were used to articulate a vision for active learning,
incentivize collaboration, enhance professional development, and disseminate
instructional resources. All three departments demonstrated evidence of greater use
of active learning and improved student success (Miller et al., 2020; Oliver & Olkin,
2020; Vandenbussche et al., 2020); these departments were also selected as cases
due to differences in state-level educational policies and types of institutions (e.g.,
relative emphasis on research and teaching). These three cases provide examples of
how similar drivers for change were applied using locally adapted strategies. As a
note, change drivers are broad categories to guide attempts to change, whereas
change strategies are particular to local contexts and comprise the planned activities
that were enacted. As partners in the SEMINAL project, their activities and findings
contributed to a growing Networked Improvement Community designed to share
resources and lessons learned among the SEMINAL participants.

1In the U.S., Precalculus focuses on functions, modeling, trigonometry, and other requisite topics
for Calculus 1 (differential calculus through the Fundamental Theorem of Calculus) and Calculus
2 (integral calculus which includes sequences and series).
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Actively engaging students in learning mathematics is crucial to equitable teach-
ing and learning (Theobald et al., 2020); we follow Laursen and Rasmussen’s (2019)
definition of inquiry-based mathematics education to encompass our approach to
active learning and equity:

1. Students engage deeply with coherent and meaningful mathematical tasks.
2. Students collaboratively process mathematical ideas.
3. Instructors inquire into student thinking.
4. Instructors foster equity in their design and facilitation choices.

Actively engaging students often requires instructors to shift teaching strategies,
which is not easily accomplished in isolation. Curricular materials designed with
“group-worthy problems” (Boaler, 2006, p. 366) and instructors trained in orches-
trating inclusive mathematical class discussions are important components of active
learning practices that engage students. As there are increasing calls to improve
equitable student outcomes and broaden participation in the mathematical sciences,
it is important to approach the issue of improvement systemically. Thus, in line with
Reinholz et al.’s (2020) call for more research on institutional change, this chapter
focuses on research about improving teaching and learning in the calculus sequence,
with the tertiary-level mathematics department as the unit of change. Although the
focus of this chapter is around active learning and equity in mathematics, the
principles of how a department might seek to change its culture of teaching and
learning are broadly applicable across tertiary education. This research project’s
focus is on the department as the unit of change, and thus does not delve into the
finer-grained details of classroom activities that engage students.

One of the reasons we engage in this work is the need for research on program-
matic change. Curricular and instructional innovation is an important starting point
for implementing active learning practices and increasing student engagement.
However, to ensure the work of individual or small groups of instructors is sustained,
such work needs to find its roots in the context of a mathematics department that, at
the very least, recognizes and modestly supports active learning. Research into how
mathematics departments change is limited; while there has been research on
programmatic change in STEM departments more broadly, mathematics depart-
ments and courses differ from other STEM disciplines in ways that significantly
impact the change process (Reinholz et al., 2020). For example, calculus is not
taught in isolation of other undergraduate mathematics courses; more typically, it is
one course in a sequence that begins with precalculus and culminates with single or
multivariable integral calculus. To spread, support, and sustain active learning,
programmatic change is necessary. The better we can understand how mathematics
departments and particular drivers for change can be used to support active learning,
the more likely we will be able to prepare and support the “missing millions” (p. 17)
for STEM majors and career pathways (National Science Board, 2020).

The drivers that mathematics departments leverage have the potential to affect
individual teaching practices as well as the culture of the department. One type of
driver is to directly address a barrier. For example, if student evaluations are viewed
as a barrier because they privilege a teacher-centered mode of teaching, then making
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changes to student evaluations could turn the barrier into a driver. Since student
evaluations feed into policy decisions about promotion and tenure, revising these
evaluations might encourage faculty to adopt active learning pedagogies (Apkarian
et al., 2021; Dennin et al., 2017). However, directly addressing a barrier may not lead
to changes in teaching practices. For example, instructors often cite time constraints,
both in terms of the time needed to prepare lessons and the time needed to cover
material, as a reason they do not make greater use of active learning pedagogies
(Henderson & Dancy 2007; Brownell & Tanner, 2012; Shadle et al., 2017). Barriers
such as class size, student preparation, and classroom infrastructure are not readily
changed, and, even if they were, it is not clear that the removal of these barriers
would result in significant changes to teaching practices.

Rather than removing a barrier directly, another approach is to focus on modify-
ing the conditions and culture in which faculty work. Such drivers focus less on
individual instructors and more on the department. An important insight from
literature on institutional change (Henderson et al., 2011; Kezar, 2013; Laursen,
2019) is that widespread uptake of active learning pedagogies requires a shift in the
unit of change from individual instructors to the department. Recent work has begun
to identify key drivers for change—drivers that take a more holistic view of the
change process. In an empirical study of 169 science, engineering, and mathematics
faculty at the same four-year institution, Shadle et al. (2017) reported on 15 faculty-
identified drivers, with four being the most important drivers for change: expand on
current practice, encourage collaboration and shared objectives, improve teaching
and assessment, and align with existing resources. In a review of important change
drivers across different academic disciplines, Laursen (2019) identified professional
development, communities of practice, resource collections and digital libraries,
local data on student outcomes, and collaboration with other departments or
disciplines.

The SEMINAL project’s overarching research question is: What conditions,
strategies, and actions at the departmental and classroom levels contribute to the
initiation, implementation, and institutional sustainability of active learning in the
undergraduate calculus sequence across varied institutions? In this chapter, we focus
on the sub-question: What strategies do mathematics departments involved in a
networked improvement community use to accomplish desired transformations in
introductory tertiary mathematics courses across varied institutions? We address this
question through a cross-case analysis of mathematics departments at three
universities.

18.2 Theoretical Background

Initiating and sustaining departmental change is facilitated by attending to and
articulating the context of the local change project, the current state, a desired
state, and the hypothesized drivers that will enable progress toward the intended
outcomes. The articulation of these elements is referred to as a theory of change
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(Anderson, 2005; Reinholz & Andrews, 2020), and includes the local, context-
specific set of strategies and assumptions that guide a specific change project.
Such local theories are often captured pictorially in a driver-strategy diagram to
show the drivers and strategies in relation to the intended aims or improvement
targets. Figures 18.1, 18.2, and 18.3 show the driver-strategy diagrams for each of
the three sites. Informed by a review of the change literature and our ongoing work
with each site, we were able to identify the following four major drivers that were
leveraged by all three sites: shared tools and resources, professional development,
policy and structures, and networking. The specific strategies are the local,
department-initiated change drivers that derive additional power when they are
informed by a more global change theory. Change theories are overarching frame-
works that provide a generalizable explanatory model.

We draw on Networked Improvement Communities (NICs) as the overarching
change theory behind SEMINAL (Bryk et al., 2015; Martin et al., 2020). NICs are
built on several principles, including collaboration across institutions (departments)
and a focus on systemic improvement. Bryk et al. (2015) describe the key theory of
NICs as including: focus on specific aims (improvement targets); deep understand-
ing of the problem and system that led to the current problem; disciplined application
of improvement science via cycles of transformation and collecting and using local
data; and coordination to accelerate the development, testing, refinement, and scale
up of improvement strategies in multiple contexts. Within the broader theory of
NICs, a networked community can also serve as the driver for change; the SEMI-
NAL project included an overarching community (NIC) and multiple interconnected
local communities (NIC), all working toward the common goal of improving student
engagement in mathematics courses.

Some of the departments involved with SEMINAL combined NICs with Com-
munities of Practice (CoPs; Wenger, 2000). CoPs involve a community focused on
practice in a particular domain—in this case, instructors seeking to improve teaching
and learning in introductory mathematics courses. CoPs focus on the members of the
community acting collectively and collaboratively, whereas NICs focus on cycles of
improvement making incremental progress toward improvement targets. NICs also
include the dimension of sharing across communities to accelerate change efforts;
CoPs may or may not choose to share their lessons learned outside their local
community. Combining CoPs and NICs brings more emphasis to developing a
community of instructors within the broader NIC framework.

18.3 Methods

SEMINAL research is built around comparative case studies (Yin, 2012); for this
chapter, we focus on three sites of incentivized case studies, with data collected
2018–2021. Mathematics departments submitted proposals to join the SEMINAL
project in 2017–2018 and were selected through a competitive review process. The
three sites were selected from a collection of nine longitudinal case studies and thus
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allow for robust conclusions based on the impact of participating in the SEMINAL
NIC. More information about SEMINAL methods can be found in Smith et al.
(2021); more information about the cases discussed in this chapter can be found in
Oliver and Olkin (2020), Vandenbussche et al. (2020), and Miller et al. (2020). The
three cases were chosen as representative of some of the diversity of the SEMINAL
sites, overall. Each site had an articulated theory of change and actively participated
in the SEMINAL NIC to make progress toward their own transformation aims. The
SEMINAL project holds monthly NICcasts—interactive webinars—to engage local
SEMINAL members in ongoing conversations and sharing information.

California State University East Bay (CSUEB) is a public Hispanic-serving
institution with an enrollment of 16,000 students. CSUEB offers a master’s degree
in mathematics and lower-division mathematics courses are taught by part-time,
career-line, and tenure-track faculty in small sections of 20–40 students. Kennesaw
State University (KSU) is a large public university with over 40,000 students; 51%
of the KSU student body is classified as white, with another quarter Black and 12%
Hispanic, thus KSU shares many characteristics with minority-serving institutions.
KSU is a doctoral degree granting institution with high research expectations.
Lower-division mathematics courses are taught in small to medium sections
(approximately 35–60 students) by some tenured/tenure-track faculty, and many
full- or part-time contract instructors. The Ohio State University (OSU) is a large,
public university with over 60,000 students. The student body is predominantly
white (66%). OSU is a research-intensive university and its mathematics department
is ranked third in terms of National Science Foundation funding for Mathematical
Sciences. Lower-division mathematics courses at OSU are taught primarily in large
sections of 300–500 students by tenured/tenure-track faculty, with recitations (i.e.,
subsections of the course in which students review material and work on problems)
of 25–30 students taught by graduate student instructors.

This chapter focuses on data collected from Fall 2018 to Fall 2020, and includes:

• interview and observation data from at least two site visits per institution,
including researcher notes from the site visits and periodic progress meetings
with each site;

• artifacts such as reports of those site visits, which underwent member-checking
and revisions to summarize the findings from each site visit; and

• secondary data sources such as locally generated reports and manuscripts by
members of the targeted institutions, including their proposals to join SEMINAL,
annual progress reports submitted to the SEMINAL team, documentation of local
efforts, and manuscripts written by local team members (Miller et al., 2020;
Oliver & Olkin, 2020; Vandenbussche et al., 2020).

Although the SEMINAL project also collected additional data from students and
instructors, those data are not included in the analysis for this chapter.

To create the transformation stories for each department, we conducted an
extensive document analysis, starting with the institutions’ proposals to join the
SEMINAL project that outlined their goals, intended change drivers, and strategies.
We analyzed the reports the SEMINAL research team wrote summarizing each site



visit, the institutions’ annual reports, and published research of their progress and
findings (Miller et al., 2020; Oliver & Olkin, 2020; Vandenbussche et al., 2020). Our
analysis focused initially on the major change drivers identified by the SEMINAL
research team, based on the SEMINAL change theory, as informed by Shadle et al.’s
(2017) change drivers and barriers. After analyzing each case separately, we then
looked for commonalities across cases and distilled the major change drivers to those
related to shared tools and resources, professional development, policies and struc-
tures, and networking. As part of our axial coding process, we depicted the drivers
and strategies visually via driver-strategy diagrams for each of the cases. The specific
strategies were determined by each mathematics department and were informed by:
norms, needs and resources for each department, information shared within the
SEMINAL NIC, and decisions made by project leaders, These themes are supported
by our theory of change and are instantiated differently based on local contexts.
Throughout this chapter, quotations come from the various documents analyzed,
including direct quotations from participant interviews, and are representative of the
findings overall.
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18.4 Findings and Results

We present a summary of the changes (including theories of change) for each
university mathematics department in this section. For each case, the findings are
clustered around the major drivers for change: shared tools and resources, profes-
sional development, policies and structures, and networking.

18.4.1 California State University East Bay (CSUEB)

The CSUEB mathematics department entered into the SEMINAL project with a
targeted focus of improving its calculus sequence, particularly to help support its
underrepresented and racially minoritized (URM) students. A major driving factor
for this change was a noticeable achievement gap between URM students and their
non-underrepresented peers with average course grade (on a 0–4 scale) gaps of 0.46,
0.33, and 0.28 in Precalculus, Calculus 1 and Calculus 2, respectively (2017–2018
academic year). Drawing on the four major drivers as described in the previous
section, we present the specific strategies that CSUEB enacted in order to success-
fully implement, sustain, and ultimately teach others about active learning strategies
in introductory mathematics classrooms. Figure 18.1 illustrates connections between
drivers and specific strategies.
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Fig. 18.1 CSUEB’s driver-strategy diagram
Note: “DFW” stands for grades of D, F, or withdraw, so improved DFW rates means fewer people
are failing/needing to repeat a course

18.4.1.1 Shared Tools and Resources

Five specific strategies were central to CSUEB’s efforts. At the department level,
one important strategy was the use of local data related to passing rates and
persistence in the calculus sequence. Results from this data prompted action to
change the delivery of the calculus curriculum. One of these changes was the
implementation of a dynamic calendar, an online resource shared with all instructors
of a particular course that contains the pacing information for the delivery of the
material; this resource also contains myriad active learning activities to be used in
class (Oliver & Olkin, 2020). New instructors attend an orientation in which they
discuss a suggested weekly class schedule, active learning activities, and historical
grade distributions for the course. This orientation is led by the coordinator for the
course, who oversees the logistical management of the multi-section course and is
responsible for guiding and supporting instructors in their professional growth.
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18.4.1.2 Professional Development

Effective coordination not only consists of proper logistical management but also
includes an explicit focus on community building and professional development
(Rasmussen & Ellis, 2015). CSUEB coordinators are responsible for running the
pre-semester new instructor orientation and supporting the instructors by
establishing a community of practice (Wenger, 2000), which involves all of the
instructors for one particular course. The value of the CoP can be seen in one
representative quotation from an instructor reflecting on their experience being a
part of the CoP and teaching five courses in one semester:

Because of this community, it had taken that stress off of my shoulders. So, personally I
really appreciated feeling like I had some guidance and somewhere to go to. Not only people
to talk to, but just an information source to rely on.

At these CoP meetings, instructors talk about their teaching, what is working well,
and what is not working well. They have the opportunity to ask for help related to
classroom management, and they also schedule classroom visits. CSUEB’s mathe-
matics department has been able to establish a culture where classroom visits by
colleagues are highly encouraged and widely accepted as a normative practice. Other
opportunities for instructors to discuss effective active learning activities or strate-
gies exist outside of the CoP meetings, such as monthly lunches.

18.4.1.3 Policies and Structures

New-instructor orientation and course coordination are two permanent structures
that are crucial to building an environment where teaching is valued, and instructors
are supported in their professional growth. These structures foster a culture within
the department where faculty view them as normal operating procedure rather than
an imposed policy that restricts instructor growth and autonomy.

At the base of the driver diagram are two important institutional factors: the
California State University graduation initiative to graduate more students by 20252

and the change in 2018 from 10-week academic terms to 15-week terms. The 2025
initiative was a statewide focus for the entire CSU system, but was an important
motivator for the changes that needed to be done to support students at CSUEB,
particularly URM students. The move to the 15-week term was an opportunity to
examine the curriculum and led to the implementation of course coordination and
other important changes, described previously, to the CSUEB calculus sequence.

2https://www2.calstate.edu/csu-system/why-the-csu-matters/graduation-initiative-2025

https://www2.calstate.edu/csu-system/why-the-csu-matters/graduation-initiative-2025
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18.4.1.4 Networking

Networking significantly contributed to making and sustaining meaningful change
related to using active learning material throughout the calculus sequence. CSUEB
leveraged six strategies related to networking—which ultimately led to the emer-
gence of CSUEB as a leader within the SEMINAL project—namely: utilizing the
support and feedback from the leadership team during the initial site visits in 2018 to
make changes to the system; disseminating in-class activities and attending webcasts
so the SEMINAL NIC could learn from CSUEB’s organizational structure, class-
room activities, general approach to CoPs and coordination; and participating in
summer meetings with other SEMINAL participants. As of the 2018–2019 academic
year, the achievement gaps between the URM students and their
non-underrepresented peers had entirely vanished (Oliver & Olkin, 2020).

18.4.2 Kennesaw State University (KSU)

KSU joined the SEMINAL project with aims of increasing student success rates
throughout the Precalculus through Calculus sequence and eliminating disparities in
success rates of students from different demographic groups and different sections of
the same course. Between Fall 2014 and Spring 2016, success rates for Precalculus,
Calculus 1, and Calculus 2 were approximately 66%. Further, success rates for URM
students were generally lower (5–10%) than their peers. In this section we describe
the specific strategies KSU used to address its goals (see Fig. 18.2).

18.4.2.1 Shared Tools and Resources

One major incentive for joining the SEMINAL project was that KSU’s team would
be able to leverage the support of the SEMINAL network and funding to develop a
more robust coordination system. Starting from the current common textbook and
recommended syllabus, the KSU team developed an online repository of common
learning objectives and topics, sample syllabi, literature about the benefits of active
learning, active learning tasks, and clicker questions for Precalculus through Calcu-
lus. Some of these active learning tasks were taken from the Boulder/Omaha Active
Learning Alliance group (Hodge et al., 2020a, b), while others were developed by
instructors. New coordinators of the courses have taken over refining and developing
new materials.

The KSU team views common assessments as an important component of a
coordination system that supports student learning. While progress in this area has
been slow due to logistical complications, the pandemic, and some faculty pushback,
the department did pilot a common assessment in College Algebra, with an eye
toward expanding this to all coordinated courses.
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Fig. 18.2 KSU’s driver-strategy diagram

18.4.2.2 Professional Development

Much of the success of the change efforts at KSU can be attributed to leveraging
existing departmental and college structures. Pre-dating SEMINAL, KSU devoted
significant resources to structures called faculty learning communities that act as a
form of long-term professional development for faculty. These communities involve
groups of five to seven faculty members (often from different disciplines) who meet
throughout a semester or year to work on improving some aspect of teaching. These
structures have been used to develop active learning instructional materials for
faculty in Precalculus and Calculus and were explicitly leveraged by the local
team to encourage more faculty to participate. In Fall 2018 the department also
started monthly seminar-style “teaching conversations” for instructors to discuss
teaching and normalize the practice of having conversations about improving teach-
ing. In addition to college and department-wide professional development, the KSU
team facilitated one-time professional development opportunities so that instructors
can envision how an active learning classroom might look. They also worked to
conduct peer observations in Precalculus through Calculus 2 classrooms, in coop-
eration with the university Center for Excellence in Teaching and Learning, again
leveraging an institutional structure.
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18.4.2.3 Policies and Structures

Three structures have had a significant impact in change efforts at KSU: placement
policies, strand committees, and hiring practices. Before joining SEMINAL, the
department worked extensively to reform mathematics placement procedures for
incoming students. Although this strategy predated SEMINAL, it directly supports
their project goals. As one KSU team leader stated, “We just started a placement
procedure which is going to have a huge effect on success rates, so it’s going to be
impossible to untangle that [from the impacts of SEMINAL].” This strategy empha-
sizes factors we see as key to the successful efforts at KSU to improve Precalculus
through Calculus 2 courses: change efforts were successful, in part, because people
at multiple levels (e.g., department, college, university) prioritized improving these
courses, and local leaders effectively tied their goals to overall university goals.

At the start of joining SEMINAL, the KSU mathematics department was still in
the early stages of developing a new culture. Following the university’s consolida-
tion and move toward higher research intensity, faculty members needed to reposi-
tion themselves within the new combined university system and department, leading
to some uncertainty among faculty members about the role of teaching in this new
environment. Local change agents recognized the importance of attending to this
context when building a vision for their course improvement efforts, being particu-
larly cognizant of the need to give instructors a sense of ownership in the change
process. A department structure established in 2016 known as strand committees has
been used to guide and garner support for change efforts. Strand committees are run
on a volunteer basis (any department member is welcome to join). These committees
oversee particular groups of related courses (e.g., Calculus 1 and 2 make up one
strand) and make recommendations for course policy changes to the department.

One of the most significant successes from the work done at KSU is the
establishment of semi-permanent course coordinators for College Algebra, Precal-
culus, and Calculus 1 and 2. A strong commitment to active learning and to
supporting others’ use of active learning were explicit criteria for these positions.
In addition, hiring practices for instructor and faculty positions have been evolving
over time to include conversations about active learning, expressing the depart-
ment’s desire to hire instructors who are committed to using active learning.

18.4.2.4 Networking

SEMINAL provided funds for faculty to participate in faculty learning communities
and the development of instructional materials. Beyond funding support, KSU
leaders expressed that they value the feedback and ideas generated when meeting
with other institutions from the SEMINAL network. For example, they reached out
to CSUEB for suggestions about coordination after seeing CSUEB’s dynamic
calendar. Another leveraged membership in the Mathematics Teacher Education
Partnerships’ Active Learning Mathematics group (Smith et al., 2020) to access



co-created active learning materials for Precalculus and Calculus. In addition to the
SEMINAL funds, KSU leaders believe that participating in the SEMINAL project
lent credence to their efforts, generating an excitement about change efforts that
directly impacted the college’s decision to create these positions. One leader
commented that:
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I think all of the coordination was born out of the SEMINAL effort. It’s possible that the
department would have come around to it another way. But the coordination that we have
done over the past few years on the grant, and then I think the hiring of the new coordinators
moving forward, is all a direct effect of the grant.

The KSU team leaders also learned about an equitable practices observation protocol
(EQUIP; Reinholz & Shah, 2018) through the SEMINAL network and brought in a
facilitator to learn more about how to implement it. Team leaders also used the
network to define roles and responsibilities they wanted for newly hired course
coordinators:

In the summer, there was a discussion about data and collecting it and using it. We ended up
using that to help us to shape what sort of responsibilities we might want our new
coordinators to have...so that was really helpful where I think we’re having conversations
now just about what’s feasible and how to make it so that the data is something that we can
get on a regular basis.

Finally, being a part of SEMINAL has opened the door to other grant opportunities
for KSU. KSU has partnered with other SEMINAL universities to submit additional
grant proposals to study professional development and equitable teaching practices
as well as CoPs.

18.4.3 The Ohio State University (OSU)

A team of lecturers, faculty, and administrators at OSU engaged in a decade of
experimentation with various instructional approaches in Precalculus through Cal-
culus sections designated for instructional innovation. Supported by internal campus
grants, they investigated how technology could be used to: “flip” courses using
online videos of lectures that students could watch before class; support formative
assessment in large lectures of up to 500 students using polling software; and create
interactive worksheets using Ximera (The Ohio State University, 2021) to support
individualized feedback to students. Its SEMINAL proposal synthesized lessons
learned from this experimentation and focused on expanding the orientation for new
instructors and incentivizing and scaling up instructor use of formative assessment
tools. The sections that follow describe how OSU used locally viable strategies to
address the four major drivers (see Fig. 18.3).
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Fig. 18.3 OSU’s driver-strategy diagram
Notes: “GTA” refers to graduate teaching assistants. Phase 3 leadership refers to the SEMINAL
strategy of positioning members from Phase 2 (including faculty at The Ohio State) in leadership
roles with the next phase of the SEMINAL research

18.4.3.1 Shared Tools and Resources

Ximera is a program that can convert LaTeX documents into interactive PDF files,
allowing students to digitally complete lecture notes and mathematics tasks, and add
in their own responses to prompts as they observe and participate in the lecture. OSU
used Ximera to design an interactive textbook and related instructional resources that
could be distributed to all calculus sections. Student homework activities were also
adapted with Ximera so that instructors could receive real-time information regard-
ing problematic tasks and common errors. This resource strategy allowed for rapid
distribution of materials and informed adaptation of lessons, tasks, and activities.
Piloting and revision of the Ximera Calculus I textbook to use as a department-wide
text was a major undertaking when OSU initiated its work with SEMINAL.

Incentivizing instructor use of Top Hat (live polling software) through the
distribution of iPad Pros was another resource strategy that the OSU team used to
secure buy-in from reluctant instructors of large lectures. OSU provides all incoming
students with iPads. To leverage this institutional policy, the team used Top Hat to
design polls to promote discussion in large lectures. They further assumed iPad Pros



could be used to incentivize instructor use of Top Hat and found great success with
this approach, with the demand being greater than the supply. A co-leader noted that
this approach should be expanded even further, “I would give all incoming graduate
students iPads, just like we do the undergrads, so that they can use them to teach and
to learn.”
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18.4.3.2 Professional Development

Commitment to collaboration during the experimentation phase demonstrated tan-
gible benefits for professional learning and community, which led the OSU team to
expand its Math Education Forum to an “Active Learning Lunch,” whose acronym
of ALL denotes inclusivity.

Coordination was also used as a strategy to provide ongoing professional learning
and build community among course lecturers and graduate student instructors who
lead recitations. Coordinators serve in their roles for many years, which allows them
to develop institutional knowledge and learn how to negotiate policies and struc-
tures. Their professional and institutional knowledge was recently leveraged as they
took on significant roles as instructional designers, to abstract the best ideas and
lessons learned from prior experimentation to realign Ximera textbooks, homework
assignments, Top Hat questions, and conceptual assessments.

Having a text written from the perspective of the course coordinators had an unexpected
benefit for the large, coordinated classes. . . . [T]he coordinator [laid] out, in their own voice,
their vision for the material. This led to a level of course alignment that was not possible
previously (Miller et al., 2020, p. 10).

Miller et al. (2020) also noted that this instructional design work had an “impact in
Calculus 2 where success rates (percent of students who earned an A, B or C)
increased 10-15 percentage points” (p. 15).

18.4.3.3 Policies and Structures

Structures for professional development also include four weeks of graduate student
instructor training in the summer and a one-day instructor orientation. Both of these
activities have been sustained for many years and serve important roles in commu-
nicating the goals and expectations of the department and course coordinators, as
well as building and sustaining a sense of community.

The role of the course coordinator is an established departmental policy in which
some degree of authority is given to the coordinator to design and select the content
and resources used in lectures and recitations. The coordinators’ provision of syllabi,
schedules and resources to instructors incentivized their use of related resources
(e.g., interactive textbook, polls). The only remaining variable to advance active
learning is pedagogy. However, in interviews we found that pedagogical approaches
can be encouraged but not dictated. Pedagogy was left to the discretion of instructors
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since instructional leaders argued that actively learning is more effective when it is
aligned with related attitudes and beliefs (Miller et al., 2020). A related influential
policy that motivated statewide discussion of course goals was the Ohio Math
Initiative, which aligned content goals and transfer policies between tertiary
institutions.

18.4.3.4 Networking

The OSU SEMINAL team has been actively involved in and contributes to the
SEMINAL network. Some have adopted leadership roles in ongoing SEMINAL
research efforts; some facilitated NICcasts; and all have participated in the SEMI-
NAL NICcasts and summer workshops. The OSU team articulated that one of the
reasons it submitted a SEMINAL proposal was to join a professional network that it
recognized as beneficial to achieving its goals. When asked to recently reflect on the
benefits, one of the team members noted, “There’s a lot of emotional support and
creative support [so] that you’re not doing this alone. I think that makes a big
difference for me.”

Other team members noted how their involvement in summer meetings and
NICcasts informed the redesign and expansion of the summer instructor orientation
to support active learning in lectures and recitations and incorporate more equitable
and inclusive practices.

18.5 Reflections and Synthesis

18.5.1 Shared Tools and Resources

Across the three departments, course coordination was a common strategy for
sharing tools and resources. Each department focused its attention on coordinating
course-level materials by leveraging technology to facilitate the sharing of resources.
CSUEB created a dynamic calendar that not only provided active learning activities
but also served as a resource for pacing instruction and facilitated the onboarding of
new instructors. KSU’s strategy of coordination included an online repository of
both course resources (e.g., sample syllabi, research literature on active learning),
but also curricular resources (e.g., active learning tasks, clicker questions, common
final exam) to which instructors could use and contribute as a way of enhancing the
repository. Finally, OSU leveraged technology through the use of Ximera to house
interactive instructional materials for students to access through their institution-
issued iPads. The Ximera platform organized guided notes so that students could
access these notes on their iPad and fill in blanks while following along during class,
and it also served as the platform for homework, which provided instructors with
real-time feedback on student performance. Although each department’s strategy for
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sharing tools and resources for increased course coordination differed, they all had
two main similarities: use of technology and a shared goal of providing resources for
instructors in support of their course as well as materials for student utilization.

Additionally, departments found ways to use other tools to support their efforts.
CSUEB used local data of DFW rates and persistence as a critical driver for change
to provide both momentum for change and affirmation of their efforts. Its building of
a CoP is also a central strategy. At KSU, faculty who engaged in a learning
community could request an undergraduate learning assistant to support in-class
implementation of active learning. OSU initiated Active Learning Lunches and
provided their faculty with an iPad to help incentivize their use of Top Hat to support
instruction and formative assessments in large lecture courses. The strategies
implemented by these institutions demonstrate creative ways to share tools and
resources with instructors, which is a necessary and vital approach for increasing
course coordination in support of active learning.

18.5.2 Professional Development

In comparing the three departments’ approaches to professional development, it is
clear that they all leveraged the idea of building community among all who were
teaching Precalculus to Calculus courses, including lecturers and graduate student
instructors. Activities such as summer meetings, informal lunches, and seminar-style
teaching conversations, provided the means for instructors to engage in conversa-
tions about implementing active learning and the challenges and opportunities
nested within this targeted change. Thinking about professional development as a
means for coordination provides synergy within the community and allows for
instructional growth. At CSUEB, instructors of the CoP engaged in peer observa-
tions of one another which allowed for a culture of open-door teaching to flourish
and become normative. KSU and OSU also incorporated peer observations: KSU
leveraged its teaching and learning center to implement observations, and OSU used
peer-observation to support instructor use of iPads and polling software.

Through each institution’s local professional development activities, opportuni-
ties arose for improving the active learning activities shared among the instructors, as
well as through SEMINAL NICcasts and research activities where they could
showcase active learning instruction and learn from others on how they were
implementing active learning.

18.5.3 Policies and Structures

The policies and structures in mathematics departments need to be negotiated and
adapted to endorse and sustain course transformation. A common strategy in each
case was using course coordination to reduce inequities in student opportunities for



learning and increase the likelihood of successful completion of the calculus
sequence. Coordination also actuates instructor engagement in ways that benefit
the department: collaboration, communication, course planning meetings, profes-
sional development, and distribution of resources. Coordination also has the benefit
of reducing the collective workload and improving the alignment among goals,
curriculum, and assessment. Course coordinators are imbued with discretionary
authority, and the manner in which they choose to make decisions (e.g., collabora-
tive, authoritative) allows them to develop leadership skills that can stabilize and
sustain how courses are taught and assessed.
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External policies were influential in all three cases and could be summarized as
state-level policies that required either curriculum alignment (CSUEB and OSU) or
structural changes (KSU). As public universities, all three institutions are subject to
various degrees of state administrative and fiscal authority, and they are expected to
abide by legislation mandates and initiatives. Private institutions may have different
policy constraints.

18.5.4 Networking

Literally and figuratively, an institutional network is at the heart of SEMINAL. From
conceptualization through enactment over five years, SEMINAL has engaged
leaders in department and university administration by partnering with the Associ-
ation of Public and Land-grant Universities and mathematics department chairs.
SEMINAL also included numerous researchers and educators with expertise and
knowledge in local and systemic reform efforts in mathematics education. SEMI-
NAL was designed to operate as a network that collaborated in problem solving,
shared local findings and resources, and tested conjectures across varied contexts
working to infuse active learning in undergraduate calculus.

The interviews and reports from these cases all point to how networking was
valued and achieved through:

• in-person site visits, to bring greater visibility of the project to other faculty and
administrators;

• summer meetings to build community and share resources and tools; and
• monthly NICcasts to address contemporary challenges and issues articulated by

the network members.

Within the SEMINAL network, partnerships and teams emerged to support grant
writing, think through the implementation of innovative ideas, and advance more
equitable and inclusive practices. Participation in a national network offered local
teams political cover to make progress with proposed innovations; regular meetings
and progress reports motivated teams to share tools, resources, and lessons learned.



18 Drivers and Strategies That Lead to Sustainable Change in the Teaching. . . 387

18.6 Implications and Limitations

Focusing on the department as the unit of change has been crucial to the success of
SEMINAL’s efforts to impact positive cultural changes to infuse active learning
strategies in Precalculus and Calculus courses. The focus on mathematics provided
data for this research analysis, but similar NIC-based change efforts could be
transferred to other tertiary departments with high-enrollment courses. At the same
time, the specific change drivers and strategies appropriate for a given context will
vary depending on the discipline and existing climate, culture, and structures. For
example, unlike in other STEM disciplines, lower-division mathematics courses
(e.g., Precalculus, Calculus) are typically taught by assisting teaching staff (e.g.,
graduate students, postdoctoral researchers, adjunct faculty). Thus, although differ-
ent STEM departments might share a driver of instructor professional development,
the enactment might look quite different across mathematics courses taught by
graduate students, science labs led by graduate students, or computer science courses
led by tenured faculty. It is worth noting that each mathematics department, to
participate in SEMINAL, developed a proposal in which they completed a self-
assessment of the local context, and articulated a change strategy that identified
resources, structures and practices that were needed to expand the use of active
learning in Precalculus through Calculus 2 courses.

Changing instructional practices is enacted individually by each instructor in each
classroom, and support for such practices and efforts to institutionalize educational
innovations require the ongoing support of a departmental unit. Although change
efforts do not need all members to actively support the educational innovations,
successful transformations require a critical mass of actively involved individuals
who have sufficient authority to seek resources and make changes—and who can
collectively provide institutional memory for sustaining changes. The active
involvement of both formal and informal leaders has emerged as one of the most
important change drivers for departments seeking to improve the teaching and
learning of tertiary mathematics.

The establishment of such a critical mass of change agents does not happen by
chance, but requires a specific focus on the vision, goals, and establishment of a
community of instructors enacting change. The development of a CoP was fostered
through a shared vision of active learning and the structure of course coordination to
bring together the necessary people and resources. We see great promise in the use of
driver-strategy diagrams both for researchers to understand institutional change and
for change agents seeking to build a common vision and goals for institutional
change.

Research on institutional change is a fairly recent and emerging field in university
mathematics education; although, such research is long-established in the business
world. The SEMINAL project was positioned to contribute to the field to understand
how to support mathematics departments in enacting and sustaining cultural changes
to infuse active student engagement in Precalculus and Calculus courses. Although
research on active learning is promising for improved equitable student outcomes



(Freeman et al., 2014; Stains et al., 2018; Theobald et al., 2020), having students
work in groups is not automatically more equitable and can actually extend or
exacerbate implicit biases (Johnson et al., 2020). The change efforts at these three
sites are in a United States context, focused specifically on racial inequity in
achievement for URM students; however, equitable learning is a global phenomenon
and change efforts must attend to the identities and communities of students being
served (or underserved) in local contexts (e.g., women, indigenous students, ethnic
or religious identity).
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Changing departmental cultures does not occur in a vacuum: such transformation
efforts need to include a wide array of people, from students and instructors to
department and university administrators. Although every mathematics department
has unique dimensions to its local context, working collaboratively in a NIC is a
productive way to accelerate local transformation efforts. As such, the credibility of
the larger NIC can help provide more credence and enthusiasm for the localized
change strategies. The SEMINAL NIC model is structured so that departments can
learn from one another and benefit from learning about how other departments
overcame barriers and leveraged effective change strategies.

All research is necessarily bounded; one decision SEMINAL made was to focus
on institutions with graduate programs in mathematics, in order to include a focus on
graduate student instructors. Future research (some of which is ongoing through
related projects) should investigate similar questions in a wider variety of institu-
tional contexts, including community colleges (Ström et al., 2020). Future research
and transformational efforts are also needed to scale up the work of SEMINAL to an
even broader community. Finally, and perhaps most importantly, more research is
needed to understand the necessary conditions for improving equitable student
outcomes.
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Chapter 19
Real or Fake Inquiries? Study and Research
Paths in Statistics and Engineering
Education

Marianna Bosch, Ignasi Florensa, Kristina Markulin,
and Noemí Ruiz-Munzon

Abstract Study and research paths (SRPs) are a teaching format proposed by the
Anthropological Theory of the Didactic based on the inquiry about an open question.
The question that is initially proposed is a critical component of an SRP. It can
sometimes lead to “fake inquiries” when the instructional purpose is not to answer
the question but to meet some specific curricular content during the inquiry process.
This paper presents different choices of generating questions for SRPs implemented
in various university degrees. We focus on how these choices condition the devel-
opment of the SRP, especially in what concerns the situation in which the generating
question appears and its answer is received.
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19.1 Introduction

Inquiry-based mathematics education (IBME) has become a central goal in educa-
tion in many countries during the last two decades, and higher education is not an
exception. Governments and international organisations such as the OECD have
promoted its expansion. Adopting competency-based curricula within the European
Higher Education Area was considered a significant opportunity to foster the
transition (Van der Wende, 2000). Artigue and Blomhøj (2013) analyse how this
transition process has been framed and modelled by six research frameworks that
share some general principles but also produce a diversity of methodologies and
research tools. This paper focuses on those provided by the anthropological theory of
the didactic (ATD) in the case of university education and illustrates some connec-
tions found with the theory of didactical situations (TDS).

The ATD (Chevallard, 2019) opposes the pedagogical paradigm of visiting works
that proposes a curriculum based on works to study, to the pedagogical paradigm of
questioning the world where the curriculum should ideally consist of questions to
investigate. In this new paradigm, the works to be studied “are no longer given by an
omniscient instance but are determined by the very logic of the inquiry” (op. cit.,
p. 100). Therefore, the new paradigm includes the visit of works, even if it gives it a
new function: works are not an end in itself; they are valued by their capacity to
elaborate answers to the questions approached.

The ATD proposes study and research paths (SRPs) as a model to describe
inquiry processes and design inquiry-based instructional formats (Chevallard, 2015).
An SRP is initiated by a generating question addressed by a community of study
constituted by a group of students and some guides of the study – the teachers. The
selection of this initial question is part of the curriculum problem: the social project
that defines what is to be studied in a given school institution.

At the moment, we can consider that university institutions are still in the
transition between the old and the new paradigm, proposing competence-based
curricula but still mainly formulating them in terms of works of knowledge to
study – or to visit. The implementation of SRPs under these conditions requires
compromise solutions. Our proposal relies on the identification of didactic phenom-
ena (Chevallard, 1985) that are linked not only to the prevailing curriculum structure
but also to the conceptions of knowledge underlying it. Florensa et al. (2018a)
analyse the tension between the two components of the transition between para-
digms: proposing SRPs based on the inquiry of questions and using them to
overcome didactic constraints produced by the paradigm of visiting works. Bosch
(2018) illustrates the different tools proposed by the ATD to question and model the
knowledge to be taught and the evolution of these tools to adapt to the emergence of
the new pedagogical paradigm. In this line of research, the ATD research group in
Spain has already designed, implemented and analysed diverse SRPs in different
higher education degrees and institutions (see Table 19.1) (Florensa et al., 2019).

Our research focuses on the SRPs’ ecology, that is, the conditions needed and the
constraints hindering their running as normalised instructional activities (Barquero



et al., 2013). The implementation of SRPs reveals diverse ecological challenges
related to their fitting as normalised activities in different types of higher education
institutions. One of the issues pinpointed in all the previously cited studies is the
existing tension between the curriculum (the formulation of the “knowledge to be
taught”) and the SRP implementation, constraining the selection of generating
questions to the (partial) coverage of the course contents. This tension generates
difficulties in fitting SRPs into course plans, which explains that some of the SRPs
have been implemented as elective courses to minimise their effect on curricular
aspects of mandatory courses. The force of the university pedagogical tradition also
manifests in the strong dependency observed between the teachers running the SRPs
and its sustainability. For instance, Barquero et al. (2011, 2013) show that when the
implementation of an SRP stops being under the didacticians’ responsibility, it runs
the risk to be reduced into a traditional problem-based or tutorial session, where the
teacher ends up solving most of the questions raised in front of the students. Since
curricula are usually formulated in terms of knowledge organisations and not of
questions to address, teachers experience inquiry processes as a slowdown regarding
the expected progress of the didactic time.

19 Real or Fake Inquiries? Study and Research Paths in Statistics. . . 395

Table 19.1 SRPs implemented in higher education by the ATD research team in Spain

Subject Level/Degree
Generating
question Period References

Mathematics 1st year. Degree in
Chemical Engineering

Population
dynamics

2005–2009 Barquero (2009) and
Barquero et al. (2011,
2013)

Mathematics 1st year. Degree in
Business
Administration

Sales fore-
casts
Bike share
system

2006–2014 Serrano (2013)
Serrano et al. (2010)

Mathematics 1st year. Degree in
Business
Administration

Facebook
users forecast

2015–2017 Barquero et al. (2018)

Statistics 2nd year. Degree in
Business
Administration

Consumer
behaviour

2019–2021 Markulin et al. (2021a,
2022)

Strength of
materials

2nd year Mechanical
engineering

Slatted bed
design

2015–2020 Bartolomé et al. (2018)

Elasticity 3rd year Mechanical
engineering

Bike/device/
car part
design

2015–2020 Florensa et al. (2016)
Florensa et al. (2018b)

All these observations show a constant tension between “taking the generating
questions seriously”, that is, letting the generating question nourish the inquiry
process, and the teacher’s problem of linking the SRP to specific curriculum content.
It may lead to the development of SRPs where the generating question is conceived
as a mere excuse to visit specific knowledge organisations instead of being the
driving force of the inquiry dynamics. One can think that the adoption of
competency-based curricula would facilitate teachers’ detachment from



content-based curricula. However, the prevailing epistemology in higher education
institutions with content-oriented programs seems to endure.
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We present in this work two of the SRPs that have been implemented by a team of
teachers and didacticians in two higher education institutions. Specifically, we will
describe an SRP in Elasticity in a Mechanical Engineering degree and an SRP in
Statistics in a Business Administration Degree. We want to analyse to what extent
SRPs detach from classical content-oriented curriculum using the concepts of
adidacticity and situation developed by Brousseau (1997).

19.2 Theoretical Framework, Research Questions
and Empirical Methodology

A line of research we are following these past years consists of studying the
conditions and constraints affecting the transition from the paradigm of visiting
works to the paradigm of questioning the world. In this line of research, the
description, design, implementation, and analysis of SRPs become critical, and the
ATD has proposed diverse theoretical developments to sustain this work. We use
various analysis tools to analyse SRPs’ development. The first one is the Herbartian
schema we are presenting here in its short form:

In the schema, S(X; Y; Q) is a didactic system where a group X of students with the
help of a group of teachers (or study guides) Y addresses a question Q to provide an
answer A♥. The study of Q generates an inquiry process involving a didactic milieu
M including questions Qi derived from the initial one, “ready-made” answers Aj

⋄ one
can find in the literature or by consulting works and experts, together with empirical
data Dk and other material and knowledge works Wl. The expanded version of the
Herbartian schema is then:

If the Herbartian schema points at the elements of the inquiry, its dynamics is
described in terms of dialectics. We are only considering two of them in this
paper. The first one is the question-answer dialectic, which will provide a first
description of the inquiry structure. Approaching a question Qi can be done by
exploiting the inquiry milieu M, but also by searching available answers Aj

⋄ and
studying them to integrate them into the milieu (through a deconstruction-
reconstruction process). This study generates a provisional answer Ai

♥ to Qi, but
also new questions about the validity and limitations of Ai

♥ (and Aj
⋄), its adequacy to

Qi, the adaptations required, etc. (Bosch & Winsløw, 2015). The question-answer
dialectic shows the progress of the inquiry, how it moves forward. Following
Barquero and Bosch (2015), we attribute it to the chronogenesis of the SRP. The



second dialectic we are considering here is the media-milieu dialectic. Media refers
to any system emitting intentional messages, like books, articles, the internet, but
also experts. The search for preestablished answers Aj

⋄ is done by exploring the
media resources. In a sense, the media’s answers have to be integrated into the
milieu – turning into “sure” knowledge – and the elements of the milieu have to be
worked out to make them produce new messages. The evolution of the milieu during
the inquiry process by including new objects and partial answers constitutes the
inquiry mesogenesis (relating “meso” to “milieu”). Let us notice that the notions of
chronogenesis, mesogenesis and topogenesis come from the first developments of
the theory of didactic transposition (Chevallard, 1985, pp. 71–79; see also Barquero
& Bosch, 2015). Even if they correspond to the evolution of didactic processes
within the paradigm of visiting works, they can be easily extended to the broader
paradigm of questioning the world. In this context, the topogenesis corresponds to
the share of responsibilities between teachers and students (the “topos”
corresponding to the place or position occupied by X and Y ). It corresponds to the
evolution of the “didactic contract” from the Theory of Didactic Situations (TDS,
Brousseau, 1997) we are using here in its original meaning.
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An essential element of the SRPs dynamics is to be “question-driven”. By this,
we mean that the study community (X, Y ) approaches Q with the aim of elaborating
an answer A♥, which remains the final goal of the inquiry. This statement might seem
obvious, and it is so when we consider an inquiry process from the perspective of the
paradigm of questioning the world. However, in the paradigm of visiting works,
many times teachers present questions Q because they want X encounter some
specific knowledge organisations and learn them (incorporate them in the milieu).
In this case, the inquiry appears conditioned to some previously established answers
Aj

⋄ that X and Y are supposed to find or use in the elaboration of A♥. We talk in this
case of finalised SRPs (Chevallard, 2011).

In the SRPs experimented by our research team, the tension between the para-
digm of visiting works and the one of questioning the world is always present.
Teachers Y try to design and manage the inquiry process in a “question-driven way”,
which requires important changes in the didactic contract that are not always easy for
the students – and neither sometimes for the teachers. For instance, students expect
the teachers to assume many responsibilities in the SRP management, like planning
the work to do, proposing the questions to address and the media to consult,
validating the answers they propose, etc. In a way, in the traditional didactic contract
teachers are expected to lay out the paths students will then follow, as if the
“question-driven” inquiry was only driven by the teacher, not by the students.

To analyse the changes of responsibilities and better grasp the constraints orig-
inated in the prevailing paradigm of visiting works, our analyses have led us to use
the distinction between didactic and adidactic situations, two key notions of the
TDS. We consider, in a first step, the contrast between didactic and adidactic,
introducing a sort of continuity between them by talking about the adidacticity of
a teaching situation. In the TDS, the adidacticity of a teaching situation is established
when the activity – or game – proposed to the students can be carried out without the
teacher’s intervention and, therefore, without knowing the teacher’s intentions about



the knowledge to be taught. Students know that the teacher has designed the game or
activity for a didactic purpose: this is the difference between an adidactic and a non-
didactic situation. However, students engage in the activity to win the game, not to
fulfil the teacher’s didactic intentions. In this case, the situation milieu needs to be
rich enough to provide feedback to the students and help them evolve in the
strategies used:
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• In didactical Situations, the teacher maintains direct responsibility for all stages
of the lesson. She tells the students her intentions, what they will have to do, and
what the results should be. She intervenes freely to keep the class traveling on the
desired route. [. . .]

• In a-didactical Situations it is the students who have the initiative and the
responsibility for what comes of the Situation. The teacher thus delegates part
of the care for justifying, channeling and correcting the students’ decisions to a
milieu (a problem statement, a physical set-up, a game, an experiment).
(Brousseau et al., 2014, p. 147)

However, in our use of the notion of didactic situation, we do not include its
functioning as a fundamental situation, that is, as a reconstruction – and epistemo-
logical model – of the mathematical knowledge to be taught: “Each item of knowl-
edge can be characterised by a (or some) adidactical situation(s) which preserve
(s) meaning; we shall call this a fundamental situation” (Brousseau (1997, p. 30).
What we will adopt from the TDS notion of situation – which is at the core of
Brousseau’s epistemological proposal – is the consideration that any question or
problem is never raised in a vacuum but always appears to X (and Y ) under specific
circumstances or conditions, and with some particular available resources (and other
unavailable ones), a certain milieu.

Therefore, in our analyses of the experienced SRPs, we will talk in general about
adidacticity to refer to the very moments when students make decisions primarily
considering the generating question Q and the final answer A♥, without prioritising
the instructional process that envelops the inquiry. This does not mean that students
take Q – and A♥ – seriously because they like Q. For instance, they can be interested
in Q because they will be assessed by the “quality” of A♥ as an answer to Q. But it
means that the aim of the inquiry remains Q and not any preestablished answer A⋄ or
the particular intermediate works Ai

⋄ they will have to find and made available.
Looking for these adidactic moments can help measure to what extent an SRP is
overcoming the constraints of the paradigm of visiting works. Adidactic moments
can be good indicators that students are going beyond the traditional didactic
contract and are assuming their new inquiry responsibilities, thus producing an
evolution of the topogenesis.

From the previous considerations, we raise the following research questions:

To what extent can SRPs generate adidacticity (where X and Y prioritise the generating
question as the main goal of the inquiry) in higher education institutions? Under what
conditions? What is the role of the situation and contract within which the generating
question is raised?
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Our study is based on the exposition and comparison between two case studies
considering an SRP on Elasticity implemented in an Engineering degree, and an SRP
on Statistics from a Business Administration degree. Both SRPs have been designed,
experienced and analysed using the same methodology, derived from the didactic
engineering methodology as described by Barquero and Bosch (2015). The design of
the SRP considers a didactic phenomenon to address – usually derived from the
visiting works paradigm – and proposes an a priori analysis based on a description of
the generating power of the initial question Q in terms of expected potential derived
questions and partial answers. This a priori analysis is then completed with a
proposal of schedule and didactic devices for the organisation of the inquiry work:
presentation of Q, grouping of students in teams, use of a regular logbook per each
team of students, sharing and validation of intermediate results, presentation of the
final answer, continuous and final assessment, etc. The a posteriori analysis relies on
empirical data produced by these devices (students’ logbooks and productions,
teacher preparation notes and classroom presentations, assessment) completed by a
common survey administrated to the students and a semi-structured interview to a
small sample of them. In each SRP in Elasticity here considered, two teachers
(a lecturer doing research in didactics and a lecturer doing research in another
area) run the SRP with two different groups of students. In the second SRP in
Statistics, a researcher in didactics acted as a teacher assistant in both groups, also
adopting the role of an external observer. The developments presented in the next
sections mainly rely on the observations made by the teachers and observers during
the implementation of the SRPs. These observations regarded the students’ pro-
ductions and the interactions in class. The final students’ surveys and interviews
were then used to validate and complete them. Details about the methodology and
role of collected evidence can be found in (Florensa et al., 2018a, b) and (Markulin
et al., 2021a, 2022).

19.3 An SRP in Elasticity

The first SRP we consider here corresponds to an Elasticity course in the third year of
a Mechanical Engineering Degree in the EUSS School of Engineering in Barcelona
(Spain). Florensa et al. (2016) describe the first two versions of the SRP and the
didactic phenomena identified by researchers. Since 2015–2016, the SRP has been
experienced each academic year (last implementation on year 2019–2020).

The didactic phenomena that motivated the SRP design concern the institution’s
epistemological conception of Elasticity and its influence on three interrelated facts:
the monumentalisation of the discipline, the high level of algorithmisation of the
type of tasks promoted during the course, and the detachment between lab and
theory sessions. These phenomena are linked to the paradigm of visiting works. The
activity “labelled” as Elasticity in the institution is mainly related to the General
Elasticity Model presentation and its use to solve paper and pen problems (Florensa
et al., 2016). Because of the model’s mathematical nature, the problems which are
solvable using paper and pencil are far from real engineering problems: geometries



and loads are extremely simplified and, consequently, far from real-world situations
and disconnected from workplace activity. The proposed SRP intended to overcome
these phenomena by offering an alternative raison d’être of Elasticity: enabling
engineers to design and optimise parts of any geometry and under any load working
in an elastic regime.
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According to this change in the conception of the discipline, the SRP was
proposed as a project lasting for the last 6 weeks of the semester, after a traditional
organisation (theory and paper and pencil problems) for the nine first weeks. The
lecturers presented the generating question for the first SRP implementation as
follows: “A bike company asks you to design a bike part using one of three given
materials. You will have to provide an answer in a final report. The report will
include the dimensions and shape of the proposed design, the considered loads and
their justification, the safety factor, the deformations, as well as the project time
planning and cost”. During the project, students submitted weekly reports account-
ing for the progress of the SRP in terms of lists of questions and answers.

The SRP incorporation in the Elasticity course was not problematic in terms of
curricular restrictions, for two main reasons. On the one hand, the SRP took place
during the last 8 weeks of the semester, leaving the first part of the course with the
traditional lecture and tutorials structure. This organisation made the transition
between the two parts of the course easier for the lecturers. On the other hand, the
students’ weekly and final reports facilitated the assessment according to the curric-
ulum, which is stated in terms of learning goals (and not contents), as is the general
situation in many Spanish universities.

Florensa et al. (2018b) describe the effects of the two first implementations on the
content at stake in relation with the didactic phenomena addressed. However, they
also note that students found difficulties in adapting to the evolution of the didactic
contract between the two parts of the course, especially when validating answers:

Lecturers have to refrain from validating students’ answers and students have to assume a lot
of new responsibilities, like raising questions the teachers are not answering, searching for
new information to address the questions raised—and validating them—, sharing answers
with their classmates without the teacher’s interference, deciding when and how to test their
results in the lab. (Florensa et al., 2018a, b, p. 9)

The validation was problematic because the bike company was fictive, and the
productions were only validated through comparisons with other existing bike
parts or by lecturers’ comments on the weekly and final reports. This point relates
to the adidacticity involved in the SRP: the generating question was intended to
generate an adidactic situation where the use of the elasticity model and simulation
software would enable students to obtain a final answer. However, the validation
capacity of the milieu was not sufficient. This introduced students failing to assume
full responsibility for their productions, and relying too much on the lecturers’
validation. The absence of a strong validating milieu thus led to a loss of adidacticity:
the validation of the answers was done “outside” the SRP (by the lecturers).

In order to overcome these issues, after the two first editions, researchers, together
with lecturers, changed the generating question and intended to facilitate the



validation by creating a stronger milieu. The new generating question took advan-
tage of the creation of a Formula Student1 team at the engineering school. The
question was stated as follows: “The Formula Student team asks you to (re)design
and optimise a part of the racing car. You will have to provide an answer in a final
report. The report will include the dimensions and shape of the proposed design, the
considered loads and their justification, the adequation to the formula student rules,
the factor of safety, the deformations, as well as the time planning of the project and
the cost of the project”.
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The new question modified the way students addressed the questions, as the
answers were not to be presented to a fictive company, but to a real formula student
team composed of peers, some even participating as students in the SRP. The
validation process changed substantially: lecturers’ validation became secondary,
as the students were now attending to competition rules and the team members’
feedback. Besides, part of the lab used for the subject was also used as the Formula
Student car garage. Elasticity students and Formula Student’s team members thus
shared the same space, which facilitated their interactions. The new generating
question emphasised another fact that already existed in the first edition. Many
students addressed relevant topics in mechanical engineering that are usually
addressed in other courses, such as manufacturing processes, surface treatments,
and fatigue-related aspects. In the first SRP, the teacher could tell students they
would see these topics later. In the second one, these topics had to be addressed
during the SRP.

19.4 An SRP in Statistics

The second SRP was implemented in a Statistics course on the second year of a
Business Administration Degree at IQS School of Management in Barcelona.
Markulin et al. (2021a, 2022) present the first edition of the SRP together with its
analysis. We are considering two implementations of the SRP, a pilot one in the year
2019–2020 and the second one in 2020–2021. These two courses followed the same
organisation as the Elasticity course: a first part with traditional lecture/tutorial
sessions and a second part wholly devoted to the SRP.

The hypotheses underlying the SRP give priority to data analysis processes in
statistics using appropriate software, including gathering data and cleaning datasets.
The technical and theoretical elements of the course include descriptive analysis,
probability distributions and an introduction to inference and hypothesis tests. They
were introduced as the answer to some concrete questions embedded in case studies,
with data to summarise and results to generalise. The reason for designing and

1Formula Student is a student engineering competition held annually in diverse countries world-
wide. Student teams from around the world design, build, test, and race a small-scale formula style
racing car.



implementing the SRP in the course was twofold. On the one hand, as a teaching
process, it aims at proposing a real case where students have to gather data and
perform a complete statistical analysis on a general issue. On the other hand, from a
research perspective, it aims at providing some evidence for the study of the ecology
and management of an inquiry-based work in a university setting, considering that
the ecological dimension is often taken for granted in the literature on Statistics
project-based learning (Markulin et al., 2021b).
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The first edition of the SRP was proposed as a project in a second part of the
course, lasting for the last 3 weeks of the semester with six 2-h sessions. The first part
of the course was organised in bi-weekly case studies that were a mixture of theory
sessions and students’ analysis of open questions to be partially answered: providing
a descriptive analysis, using models of distributions, checking the descriptive anal-
ysis with hypothesis tests, etc. All the cases preceding the project, and the project
itself, were worked on in teams of four or five students. The generating question for
the SRP was: “How is the behaviour and what are the motives of vegan and
vegetarian people for choosing their diet (motivations, values, purchasing behaviour,
etc.)?” The Marketing department of the IQS School of Management proposed a
survey elaborated from a research perspective. Students had to gather data by
administrating the survey to relatives and friends of different ages. All answers
were put together, and students had to elaborate an analysis of the gathered dataset.
The students’ expected final production was a poster describing the sample obtained
by disseminating the survey and a summary of the findings, depending on the
research focus that teams chose to develop: vegans’ personal values, habits of
purchasing, motivations for the diet and social engagement etc. Students elaborated
one intermediate report presenting the progress on the SRP in terms of a “done and to
be elaborated” summary during the project. Lecturers proposed a structure of the
final report, containing a sample description and validation, some questions raised
about the chosen focus and the statistical analyses needed to answer them. When the
results produced were not sufficiently clear, hypothesis tests could provide addi-
tional tools to sharpen the conclusions. Students presented the final report in a poster
session, and the project assessment counted 30% of the final grade.

The incorporation of the SRP was not problematic in terms of curricular restric-
tions for the same motives as the before mentioned SRP in Elasticity. Moreover,
given the students’ profile, the practical focus of the subject and the Marketing
department’s collaboration appeared as positive conditions. Regarding the teamwork
as well as the theoretical and technological basis provided during the sessions
preceding the project, the pilot SRP ran as expected. Students obtained data from
their friends and relatives mainly, which of course, introduced strong biases, but they
related their findings to the type of sample considered. Nevertheless, Markulin et al.
(2021b) concluded that the generating question about vegans’ behaviour was not
well posed because it was too closely dependent on the survey structure, which was
decided by others and for a research purpose (outside of the SRP). This result shows
the importance of the situation in which the generating question is raised, that is, the
target or receiver of A♥, the conditions of this reception and its purpose (what will be
done with it).
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The final poster presentations was carried out with a combination of “internal”
and “external” evaluators, internal being lecturers of the Statistics course giving
feedback on the intermediate report and external being experts from different
departments within the institution where the SRP was implemented. Among external
evaluators, one was familiar with the research issue about vegan and vegetarian
diets, being involved in creating the proposal and the survey. The external evalua-
tor’s implication, who actually opened and proposed the topic of the project, seemed
as an appropriate solution for strengthening the adidacticity of the project work with
the chance of the final posters being possibly assessed by the “client”. However, due
to the project proposal’s lack of clarity, the process and the goal were often blurred.

The second edition of the SRP was proposed within the constraints of doing the
course partially or even completely online due to the COVID-19 pandemic. With
that in mind, the proposal implied a real consultancy study with a practical purpose,
rather than as a research project. The client was a society that was funding a
cooperative supermarket, FoodCoop BCN, the first of its kind in Barcelona, wishing
to analyse their target members and customers. Two members of the cooperative
supermarket introduced the project to the students in a real-time online session at the
beginning of the semester and could answer their doubts and clarify any initial
misunderstandings of their business idea. According to their demands, the generat-
ing question of this second SRP was stated by the lecturers in collaboration with the
students as: “Who are the FoodCoop BCN target members? Which is the best district
in Barcelona to place the supermarket?”

The new SRP assumed a change of the course organisation. Instead of concen-
trating everything at the end, the SRP was distributed among the course at the
semester’s beginning, middle, and end. Two reasons justified this choice. First, the
fact that students needed time to collect the answers to the survey. Second, the last
3 weeks of the semesters were programmed entirely for the project work to avoid
overloading students with different cases once they have already collected the
answers. Also, to make students working on the project in the middle of the semester
while waiting for the collected data, lecturers proposed an intermediate task to
describe Barcelona’s districts’ sociodemographic profile based on data available
on the web, which could help prepare the sample validation. In total, the SRP was
done for 4–5 weeks, implied three intermediate reports, each having aimed at
different aspects of the project process and ended up with a presentation session.
The results were validated like in the first edition, combining the internal evaluators
for the intermediate reports and the external ones for the final presentation session
(which was held online instead of as a poster presentation).

The first intermediate report about Barcelona districts had unexpectedly to be
done entirely online, just when all the classes were transferred to online modality
exclusively. Such report relied on the work with Excel carried out during the
previous semester’s course of Computer Science and Systems, a course that had
also suffered a change to online modality. The conditions resulted in a too simplified
study for the intermediate report and a certain discouragement of some teams of



students. The other two intermediate reports focused on the survey data analysis.
These reports were to be elaborated describing the personality and the intentions of
the potential cooperative’s members. Despite some teams’ interesting efforts in the
proposed directions, a considerable number focused their analysis more on describ-
ing rather obvious characteristics of general Barcelona residents than providing
valuable consultancy information for the client. But at the time of writing this
paper, a rigorous a posteriori analysis of the second edition of the SRP has still not
been carried out.
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An essential strength of an SRP, in theory, is the richness of the question that
generates the whole path. The second Statistics project precisely relied on a question
that emerged from a real business project (a cooperative supermarket) and required a
practical solution. However, to avoid complexity in the design of the survey,
lecturers requested the help of some marketing department experts, which, unfortu-
nately, led (again!) to prioritising a research approach to cooperative customers’
behaviour to the consultancy work that was the idea of the proposed SRP. In the end,
we did not observe a noticeable evolution from the first to the second SRP, despite
the changes in the project format, type of generating question and involvement of a
real client as receptor and validation agent. We attribute it to the continued strong
guidance from the lecturers in the kind of decisions made when running the inquiry:
a sudden proposal to search for secondary source data about Barcelona districts;
imposition of an external survey prepared by an expert team; lack of intermediate
interactions with the client (before the final one). Despite initially proposing a real
consultancy question by the affected cooperative organisers, lecturers did not suc-
ceed in engaging students in the inquiry as professionals, including the joint enter-
prise of making a rich enough milieu available. The passage to the online teaching
modality represented a critical difference as well, making comparison with the first
version difficult. In a way, COVID-19 amplified weaknesses of the implemented
SRP that might may had remained implicit in normal class conditions.

19.5 Conclusions and New Open Questions

This paper is based on the analysis of two experienced SRPs, one for the teaching of
Elasticity to Engineering students, another one for teaching Statistics in a degree of
Business Administration. In both SRPs, the generating questions have evolved from
the first to the second edition, resulting in different conditions in how the dialectics
of questions-answers and media-milieu have taken place. The results obtained shed
new light on the ecology of SRPs and the limitations of the instructional devices used
to enact the dialectics. Considering them under the light of the notions of adidacticity
and situation from the TDS helps us formulate three remarks that open new questions
about the relationships between the TDS and the ATD to be contemplated in further
investigations.
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19.5.1 The Choice of the Generating Question
and the Curriculum Constraint

The choice of the generating question Q of an SRP – or of any other kind of inquiry-
based or project-based instructional proposal –appears as an open problem in
educational research. Where does it come from?Who selects it? Under what criteria?
It also appears as an important open issue when designing an SRP for a given
instructional purpose. Once we have decided to implement an SRP in subjects like
Elasticity or Statistics, what is a “good” generating question? How to choose it? Are
some questions more productive than others? Is it possible to measure their “gener-
ating power”? This questioning is crucial at different levels: for the educational
project, for the facility to implement and manage the SRP, for how students will
receive and accept it, etc. However, we consider that this problem is usually raised
from the perspective of the visiting works. In a way, when one asks “how to choose
Q?” the implicit concern is “to teach a given knowledge organisation predetermined
by the curriculum”. In the paradigm of questioning the world, the question “what
Q to address?” corresponds to the curriculum problem, that is, to the problem of
defining the instructional project for a given set of students X. In the paradigm of
visiting works, the curriculum is defined in terms of subjects and knowledge
organisations students are required to visit and learn. In the paradigm of questioning
the world, it is defined in terms of questions to address. Therefore, the choice of the
generating question Q is primarily part of the curriculum definition and only
secondarily of the instructional process’s organisation. Even if it currently corre-
sponds to a crucial question in our research, it partially appears because we are still
conceiving instructional processes according to the old paradigm of visiting works
or, at least, in the transition between paradigms.

19.5.2 Taking Q Seriously and Creating Adidacticity During
the Inquiry Process

In our research about SRPs, we are starting to consider a broader notion of
adidacticity in the moments where the rules of the activities followed by (X, Y ) do
not seem to include their didactic component. This happens when the generating
question of the inquiry becomes the primary goal of the study community, and the
instructional project of learning some predetermined subjects and topics (the didac-
tic project) remains in the background. We often refer to these moments by saying
that “the generating question is taken seriously” and, thus, it is not seen as a “fake
question” only addressed for another aim, the one of teaching and learning some
“content”. These adidactic moments are often associated with the existence of
external validation instances (external to (X, Y)) incorporated in the inquiry process



through the media-milieu dialectics. In these cases, teachers act as partial validators
of some of the intermediate answers or tools obtained; they act as helpers to prepare a
final answer they are not validating. They intervene now and then to make the
inquiry progress but do not assume the final product’s responsibility. Both X and
Y are responsible for a final answer A♥ assessed by an external instance – the
receivers of A♥. However, the existence of external validators is not enough.
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19.5.3 Changing the Generating Question or Changing
the Situation in Which It Arises?

As we have seen in the second edition of the Elasticity SRP and the Student Formula
project, it is not a change of generating question Q that modifies the didactic
contract, but a modification of the conditions or situations in which this question
arises, which determine what is at stake for the students. Between the first and
second SRP, there is no real change in the question raised: students have to find
material for a given part of a mechanical machine in both cases. However, in the bike
case, it appears first as a fake demand, since only the teacher is receiving the report
about the material needed to build it. On the contrary, with the Student Formula
team, it becomes vital to get a part as light as possible and do it correctly for the sake
of the students’ team race.

We can find here one of the main raisons d’être of the notion of situation in the
TDS, which includes the question raised, the conditions under which it arises – the
initial milieu – and the conditions for its reception and validation. In a way, a
question also includes a contract about the type of answer A♥ expected, the persons
who are receiving and validating it, and what they are doing with it – its destiny. The
conditions to manage an SRP in a question-driven way, and the students’ engage-
ment in the process, depend on the initial contract established when proposing the
question to the students and maintaining this contract all along with the inquiry. Our
second case study about the SRP in Statistics for students in Business Administration
shows the importance of the initial formulation of the generating question Q and the
fragility of the conditions provided by the contract established with the external
validators about the kind of acceptable answers A♥. It is an illustrative example of
“real” generating questions – existing outside the classroom and the instructional
project – that did not appear sufficiently real to the students. The students’ role in the
contract passed with the clients appears as a critical condition for developing the
SRP and its dialectic, both for teachers and students. New dialectics, like the one of
the dissemination and diffusion (Chevallard with Bosch, 2020, pp. xxi), need to be
incorporated into the analysis and the design of SRPs, to improve their ecology and
ensure their sustainability under less favourable conditions.
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19.5.4 The Inclusion of TDS Notions into ATD Analyses

Let us add a final comment about the inclusion of notions taken from the TDS into
the analysis of didactic processes that have been designed and implemented within
the principles of the ATD. In 2007, Guy Brousseau developed some connections and
distinctions between key notions of TDS and what could be considered as their
analogues in ATD. His methodological proposal consists in considering these
notions “as points of contact, [. . .] to move from one to the other, rather than as
borders” (Brousseau, 2007, p. 24, our translation). And he concludes:

The ATD and the TDS complement each other. But in my opinion, it would be absurd to
simply juxtapose them. In many issues they are intertwined, they must be considered
together. What problems do they pose for each other? What answers do they offer each
other? What advances do they promise together? (Brousseau, 2007, p. 22, our translation)

In recent developments of the ATD, Chevallard (2021) introduces a relative per-
spective by considering the instance (person or institution) for whom a given
situation appears as didactic or non-didactic, distinguishing the cases of isodidactic
and antididactic situations and talking more generally about possibly didactic
situations.

These two networking strategies worked at the theoretical level of research
praxeologies (Artigue & Bosch, 2014). The strategy we adopt in this paper is
bottom-up, starting from the needs raised by the research techniques when analysing
and designing SRPs. In this situation, combining notions from the ATD and TDS is
something natural to us. In a way, ATD is a development of TDS, and they share
many basic theoretical assumptions. Our approach corresponds to a pragmatic
research perspective, resorting to the notions and methodological proposals that
seem most appropriate for the problems we address – a pragmatic attitude much in
line with the paradigm of questioning the world.
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Chapter 20
Fostering Inquiry and Creativity
in Abstract Algebra: The Theory
of Banquets and Its Reflexive Stance
on the Structuralist Methodology
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Abstract This chapter centres around the “theory of banquets”, an invented struc-
ture outside the standard Abstract Algebra syllabus. This theory has been elaborated
to facilitate students’ access to structuralist thinking at large through the use of the
meta-lever. Students are guided in an investigation of the meaning of a “structure” as
they engage in crucial steps of the structuralist method. The study has been carried
out with the methodology of didactic engineering: the activity has been designed,
implemented and analyzed using Brousseau’s Theory of Didactic Situations and an
epistemological and semio-cognitive framework, the “objects-structures dialectic”.
The purpose of this chapter is both to introduce the non-francophone community to
this research, published in Recherches en Didactique des Mathématiques, and to
connect and contrast it with selected other studies. The results of a classroom
experiment with third year Bachelor students are presented and discussed synthet-
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20.1 Introduction

Abstract Algebra designates in this chapter an upper division undergraduate course
typically required for mathematics majors and centered on the structures of groups,
rings, and fields. It is a subject generally recognized as challenging by students
whose difficulties, in particular regarding abstraction processes and the acquisition
of “structural sense”, are well documented in university mathematics education
research. As far as teaching is concerned, it seems that instructors rarely adopt
new pedagogical approaches (Fukawa-Connelly et al., 2016): lecture is predominant
and tutorials are often dedicated to working out standard examples and basic
techniques that leave little room to students’ creativity. A few design-based instruc-
tional approaches have been experimented, but these focus primarily on the teaching
and learning of Group Theory so that research in this area remains limited. Alto-
gether, Abstract Algebra “offers many challenges to researchers in order to develop
inquiry-based approaches that may promote adequate conceptualization and under-
standing” (Hausberger, 2018b).

In fact, the structuralist point of view inherited from German algebraists and
systematized in the mid twentieth century by the Bourbaki group shaped mathemat-
ics as a research field to give it its contemporary face (Corry, 1996). As explained,
this contrasts with the reality of mathematics classrooms where this powerful and
insightful vision struggles to be transposed. What kind of classroom activities may
be envisaged to foster inquiry and creativity in Abstract Algebra learning, in line
with genuine mathematical research practices?

This chapter centres around the “theory of banquets” (an invented structure
outside the standard Abstract Algebra syllabus). This theory was elaborated to
facilitate students’ access to structuralist thinking at large through the use of the
meta-lever (Hausberger, 2021). The study has been carried out with the methodol-
ogy of didactic engineering (Artigue, 2014): the activity has been designed,
implemented and analyzed using the Theory of Didactic Situations (TDS;
Brousseau, 1997) and an epistemological and semio-cognitive framework, the
“objects-structures dialectic” (Hausberger, 2017b). The latter has been drawn upon
in reference to the interplay between semantic work on mathematical objects and
syntactic work on the axiomatic structures that unify these objects. This dynamic is
as a fundamental epistemological (and didactical) dialectic that characterizes struc-
turalist thinking.

The results of a classroom experiment with third year Bachelor students are
presented and discussed, more synthetically than was done in the author’s RDM
paper (2021), written in French. The purpose of this chapter is both to introduce the
non-francophone community to this research and to connect and contrast it with
selected other studies. In relation to the full paper, less emphasis is given to the
debate on the existence of a fundamental situation (in the sense of Brousseau, 1997)
for structural concepts, and the point of view of the teacher (how the situation may be
managed) is not provided. However, two supplementary lab sessions with more
advanced students are discussed, in order to emphasize the inquiry and creativity that



the theory of banquets is able to generate. Finally, an early draft of this research was
first presented in 2016 at the KHDM conference in Hannover (Hausberger, 2017a). It
is a pleasure to take the opportunity of this book in honor of Reinhard Hochmuth to
disseminate the advances of this work to the international community of research on
university mathematics education.
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The chapter is structured as follows: in Sect. 20.2, main theoretical ideas under-
lying innovative aspects of the theory of banquets are presented and compared with
other instructional approaches. In the next section, mathematical aspects of the
didactic engineering are described and a priori analyses of main tasks are provided
as a reference. In Sect. 20.4, the data from the classroom experimentation and lab
sessions are analysed and the learning affordances of the theory of banquets are
discussed with respect to inquiry and creativity. A conclusive section summarizes
striking elements of this practice-oriented study, and discusses further avenues of
research.

20.2 Inquiry and Creativity in Abstract Algebra Teaching
and Learning

The goal of this section is twofold: firstly, to situate the theory of banquets among
different approaches that draw emphasis on either inquiry, creativity or both;
secondly, to develop a few of the main underlying theoretical ideas before the
more detailed presentation of the design in the next section.

20.2.1 Inquiry

Good examples of innovation can be found in the Teaching Abstract Algebra for
Understanding project (Larsen, 2013), whose ambition was the creation of a
research-based inquiry-oriented curriculum for Abstract Algebra. The design
followed the Realistic Mathematics Education framework (RME), in the tradition
of Freudenthal, and was centered on Group Theory (GT). Under the guidance of the
teacher, students investigated the set of symmetries preserving geometric figures,
developed a calculus for computing their combinations, and axiomatized the set of
rules that governed the algebraic computations. The instructional device culminated
with the “reinvention” of the definition of a group and similar processes were used to
handle quotient groups and the group isomorphism concept.

Within the Anthropological Theory of the Didactic (ATD), Bosch et al. (2018)
also launched a similar program. The global vision is a shift of paradigm, from
“monumentalism” (the critical view that contents are rarely questioned and
problematized in the current curricula) to a new epistemological and pedagogical
paradigm called emblematically “questioning the world” (Chevallard, 2015). With a



focus on GT, they looked for problems external to GT that could lead to the
reproduction of a substantial part of GT as a means to ascribe some rational to
it. They concluded that a counting problem on symmetries of a square might be a
suitable candidate for a reconstruction of elementary GT. The main difference with
Larsen lies at the implementation level of the inquiry process: ATD proposes a
general instructional device called Study and Research Paths (SRP; Chevallard,
2015) and endowed with several theoretical tools (in the form of dialectics) to
organize and measure the development of the inquiry process. But the envisaged
SRP has not been carried out by the authors and therefore remains hypothetical.
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Moreover, Bosch et al. wondered if the counting problem was substantial enough
to motivate the study of the isomorphism theorems. Such a question points to the
structuralist approach conducted by the author: if groups encode symmetries, a
substantial part of the rationale of GT relies in its relationship with the structuralist
methodology in general. In other words, some attention must also be paid to the
meta-concept of structure itself and to the methodological dimensions of mathemat-
ical structuralism, that could also be questioned.

In these lines of thought, the notion of structuralist praxeology was introduced
(Hausberger, 2018a) together with the experimentation of a SRP on Ring Theory
that used a transcription of an online forum as a crucial component of the milieu. A
general interpretation of “questioning the world” in Abstract Algebra was proposed,
based on the idea that formalization was both a mathematization of the world (the
extra-mathematical reality) and, at a higher level of abstraction, a conceptual rewrit-
ing of previous (pre-structuralist) mathematics in terms of structures, usual mathe-
matical objects being taken as the (intra-mathematical) reality. In this context,
questioning the world amounts to questioning mathematical objects in such a way
that a fruitful dialectic between objects and structures may be developed. Such a
vision meets the point of view of RME and in particular its notions of horizontal and
vertical mathematization. We will see below that abstraction processes in Abstract
Algebra may be distinguished from these two notions.

Before getting into these details, let us introduce a third theoretical framework
that inspired the theory of banquets as a second type of inquiry-oriented innovation
for the teaching and learning of mathematical structuralism. The banquets have been
designed as a problem that may be regarded as a partly a-didactical situation in the
sense of TDS. The inquiry thus takes the form of the epistemic actions of the learners
who play against an antagonist milieu. Moreover, the meta-lever is used, that is “the
use, in teaching, of information or knowledge about mathematics. [. . .]. This infor-
mation can lead students to reflect, consciously or otherwise, both on their own
learning activity in mathematics and the very nature of mathematics” (Dorier et al.,
2000, p. 151). Concretely, a meta-discourse is explicitly introduced in the milieu; for
example, the worksheet begins in these terms:

A structuralist theory is an abstract theory: it therefore deals with objects whose nature is not
specified. They are then noted by symbols: x, y, z or α, β, γ, etc. In the theory of banquets,
there is only one type of objects [. . .] Since the nature of the objects is not specified, it is the
relations between the objects that are the focus of the theory [. . .]. (Hausberger, 2021,
Appendix 2)
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The meta-discourse also aims at fostering a level of meta-cognition, along the lines
of Piaget’s reflective abstraction (Piaget & Beth, 1961), which is viewed as an
essential part of the inquiry process. Indeed, the main questions that are, explicitly
or implicitly raised by the theory of banquets, are the following: What is a banquet?
What does it mean to classify banquets? What do we mean by “structure” in
mathematical structuralism? Answers may be found by reflecting on the classifica-
tion of groups in order to classify banquets using similar structuralist means.

20.2.2 Creativity

Discourses on creativity draw back to Poincare’s essay L’invention mathématique
(1952) on the topic of mathematical discovery, creativity and invention, and to
Hadamard’s lectures on the psychology of mathematical invention (1945) which
emphasized four stages (initiation, incubation, illumination and verification) in the
journey to invention in the mathematical field. Those writings influenced the work
of Fischbein (1994) on the interaction between the formal and intuitive components
of mathematical activity. One of the main point made by Fischbein is that “a world of
intuitive models act tacitly and impose their own constraints” (loc. cit. p. 236), even
at formal stages of intellectual development. For instance, the abstract notion of set
comes with the idea of a collection of objects, with all its connotations. Intuition is
often accompanied by figural representations; these lead to idealized mental entities
that interplay with axiomatic or deductive systems. Fischbein met here the views of
Freudenthal (1983) who advocated in his didactical phenomenology of mathemat-
ical structures that mathematical concepts should be taught together with their
underlying mental images. Fischbein therefore investigated cases of fertile
symbiosis – or cases of conflict – between figural/intuitive and conceptual properties
of mathematical objects in the elaboration of a mathematical proof, for instance in
geometry. As an extension of this work, Kidron (2011) studied means to help
students be aware of their tacit models and achieve a complete synthesis between
formal and intuitive representations in the sense that the mental structure was flexible
and avoided conflicts. A situation in analysis was designed and experimented with
students.

To the author’s knowledge, there are very few studies on the role of intuition and
mental models in Abstract Algebra. In a pilot study, Stewart and Schmidt (2017)
used Tall’s three worlds (embodied/symbolic/formal; 2013) framework to compare a
mathematician and one of his students’ mathematical experience as the class was
about to prove the Fundamental Theorem of Galois Theory. According to Tall,
“natural proof builds on concept imagery involving embodiment and symbolism,
which may build on embodiment, symbolism, or a blend of the two” (p. 286).
Mathematical activity and access to formal knowledge therefore requires one to
navigate between the three worlds, including the embodied world based on gestures
and perception of patterns. This raises a didactical issue, since “there are significant
problematic changes in meaning that must be addressed to move to another plane of
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mathematical thinking” (p. 414). In the case of Galois Theory, the student struggled
to revisit the concrete examples in the light of the abstract concepts of the theory, and
therefore had a quite different mathematical experience than the professional math-
ematician. According to Stewart and Schmidt, the difficulty lies in “blending
conceptual embodiment and operational symbolism” (p. S47) as a path to formal
mathematics.

The theory of banquets is an educational device that aims to facilitate the access to
structuralist thinking. As evidenced by Fischbein and Tall, such an access involves
the development of mental models and the integration of intuition and logic to build
flexible and coherent schemes. The name of the theory (banquets) was chosen in
order to facilitate such an integration, as the mental image of guests sitting around
tables should be evoked. An important step before designing tasks consists in
clarifying the cognitive and epistemological dimensions of structuralist thinking
from a theoretical point of view. The objects-structures dialectic aims at providing
such a framework.

20.2.3 The Objects-Structures Dialectic

According to Cavaillès (1994), two movements of abstraction are at work in
structuralist thinking, idealisation and thematisation, which apply transversally to
each other (one is perceived as vertical, the other horizontal). They follow one
another dynamically to express a dialectic between form and content, which
Cavaillès calls the “dialectic of concepts”. Roughly speaking, idealization consists
of extracting a form, which is then thematized into a higher-level object theory.
Precise definitions are given in (Hausberger, 2017b). In fact, idealization may be
linked to the horizontal mathematization of RME and thematization to vertical
mathematization. However, idealization is not centered on real-life phenomena
(but on the epistemic action of identifying invariant properties attached to a plurality
of heterogeneous situations), and thematization is a particular vertical mathematiza-
tion, specific to the structuralist project.

Moreover, in the case of Abstract Algebra (unlike elementary school algebra),
two levels of organizing principles of phenomena need to be distinguished: on the
one hand, the level of the given structure (of group, ring, etc.), which appears as the
organizing principle of phenomena involving objects of a lower level; on the other
hand, the meta-concept of structure itself, which is playing an architectural role in the
elaboration of mathematical theories, in relation to the structuralist methodology.
Indeed, similar questions and tools govern the application of the abstract unifying
and generalizing point of view of structures and characterize the process of
thematization. For instance: which identity principle to adopt (which are the natural
morphisms between objects of a given type of structure)? How to classify objects up
to isomorphism? Which structuralist theorems govern the decomposition of objects
into simpler ones? We recover here key questions that will be used to design the
theory of banquets and its reflexive stance (the inquiry dimension).



20 Fostering Inquiry and Creativity in Abstract Algebra: The Theory. . . 417

Let us now develop the cognitive dimension that relates to intuition, creativity
and mental models. As mental representations cannot be accessed, semiotic consid-
erations on external representations must also be considered. A first didactical idea is
to use contributions of model theory, which offers a fertile point of view to bridge
intuition and logic through the distinction between syntax and semantics and the
articulation between these two aspects. First of all, a definition by axioms is, from a
logical point of view, an open sentence. The models (the instances that satisfy these
statements, in other words the objects in the sense of the objects-structures dialectic)
constitute the semantic content of the structure, in relation to the system of axioms
that defines it syntactically. Referring to Fischbein, models may include mental
models built from perceptual intuition or embodiment in the sense of Tall. This
will be the case with the banquet structure, whence its very name. By contrast,
syntactical work with the axioms is carried out in the symbolic world; articulation
between syntax and semantics thus amounts to what Fischbein called a fertile
symbiosis. This leads us to distinguish between a syntactic point of view on
idealization, which consists in abstracting the particular nature of objects and
isolating the formal properties of relations (the “logic” of relations), and a semantic
point of view which emphasizes the isomorphism classes of models. The latter
mediate the concrete semantic domain of objects and the abstract syntactic domain
of the structure, but the price to pay is the transition from elements to classes. From
this point of view, the task of classifying models (up to isomorphism) appears
fundamental for the conceptualization of an abstract structure. The conceptual
aspects include concept formation but also the structural horizon of the structuralist
theorem of decomposition of objects into simpler ones: in the case of banquets, the
decomposition of a banquet in a disjoint union of tables. This is a clear illustration of
the role that conceptual embodiment, in the sense of Stewart and Schmidt (2017),
may play on the journey to the so-called formal world (in other words, structuralist
thinking).

The second idea is to use Duval’s theory (2006) to handle representations and
work in the symbolic world, in other word the manipulation of signs. According to
Duval, the mental model is an internal representation, which serves to objectify the
banquet structure; whereas the observables are the external representations produced
by learners (semiosis), in particular during the conceptualization process (noesis). As
a means to investigate creativity in students’work, we will pay particular attention to
these representations, as well as to the semiotic manipulations (treatments and
conversions in the sense of Duval), which are used to determine classes of banquets.

20.3 The Theory of Banquets: A Didactic Engineering

The theory of banquets was designed according to the methodology of didactic
engineering (Artigue, 2014). As stated in the introduction, our main focus in this
chapter is on learners’ activity that will be analysed in the light of the theoretical
elements, centered on inquiry and creativity, that were just presented. The choice of
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values of didactic variables and the orchestration between didactical and a-didactical
dimensions of the situation in the sense of Brousseau (thus the role of the teacher) are
discussed in the RDM paper (Hausberger, 2021). We will restrict our account to a
brief presentation of mathematical aspects of the theory of banquets and provide an a
priori analysis of the tasks that relate to the data discussed in the next section.

20.3.1 Mathematical Presentation of the Theory of Banquets

A banquet is a set E endowed with a binary relation R which satisfies the following
axioms: (i) No element of E satisfies xRx; (ii) If xRy and xRz then y ¼ z; (iii) If yRx
and zRx then y ¼ z; (iv) For all x, there exists at least one y such that xRy.

In part I of the worksheet (which has been distributed in one go and may be
processed linearly), students are asked the following questions:

1 a. Coherence: is it a valid (non-contradictory) mathematical theory? In other
words, does there exist a model?

1 b. Independence: is any axiom a logical consequence of others or are all axioms
mutually independent?

2 a. Classify all banquets of order n 3
2 b. Classify banquets of order 4
2 c. What can you say about Z/4Z endowed with xRy y x+1?
2 d. How to characterize abstractly the preceding banquet (that is, how to charac-

terize its abstract banquet structure among all classes of banquets, in fact how to
characterize its class)?

The abstract/concrete relationship is reversed in part II, which begins with the
empirical definition of a table of cardinal number n to mean a configuration of
n people sitting around a round table. The following questions are raised:

1 a. What relationship between people could be used to abstractly define a table?
1 b. State a system of axioms abstractly defining a table.
2 a. Propose a definition of sub-banquet and irreducible banquet. Let b ¼ (E,R) be a

finite banquet and x2E. Define and characterize the sub-banquet <x> generated
by x.

2 b. What is the link between tables and irreducible banquets?
2 c. Define the operation of union of banquets. State and prove the structure theorem

of finite banquets.
2 d. Apply the theorem to banquets of cardinal number 4.

The banquet structure possesses a large variety of models since the system of axioms
may be interpreted in quite different worlds, beginning with the empirical interpre-
tation of guests sitting around tables (a component of Tall’s embodied world): xRy if
x is sitting on the left (or right) of y. Other domains of interpretation include Set
Theory (the binary relation is represented by its graph), Functions (xRy , y ¼ f(x)
defines a function f according to axioms (ii) and (iv); the other two axioms mean that



it is injective without fixed points), Permutation Groups ( f is a bijection when E is
finite, in other words a permutation without fixed points) or even Matrix Theory (the
relation is seen as a function E2 ! {0,1} and represented by the corresponding
matrix; the axioms express rules on the number of 1 in each row and column) and
Graph Theory (xRy if and only if the vertices x and y are connected by an edge
oriented from x to y).
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The structure theorem of banquets (decomposition in a disjoint union of tables)
thus corresponds to the well-known theorem of canonical cycle-decomposition of a
permutation, but the analogy remains hidden since the binary relation of banquets is
different from binary operations that define groups. A complete rewriting in terms of
permutations is not expected from students. These remarks explain why the theory of
banquets is mathematically rich but may not be found in any textbook (it is less
general than permutation groups). Moreover, it is a simpler theory (in the sense of
mathematical technicality) than Group Theory and it carries the underlying intuition
and mental image of guests sitting around tables (a wedding banquet).

In the language of TDS, the theory of banquets decomposes into 4 main (sub-)
situations:

• the logical analysis of the system of axioms (I 1),
• the classification of banquets of small cardinal numbers (I 2);
• the axiomatic definition of tables (II 1);
• theoretical elaboration and the structure theorem (II 2).

We will now apply the theoretical framework (the objects-structures dialectic, Sect.
20.2) to the a priori analysis of the tasks dedicated to the classification of banquets of
small cardinal numbers (I 2). The main prerequisite is a course in elementary Group
Theory.

20.3.2 A Priori Analysis of the Classification Tasks

The methods may be divided into two categories: on the one hand a syntactic-
dominant approach, which is similar to the reasoning used in the case of the
classification of groups of small orders, and on the other hand a semantic-dominant
approach, which uses generic models borrowed from matrix or graph theory. It will
be necessary, however, in each case to articulate syntax and semantics at a given
point in the reasoning.

In the syntactic-dominant approach, let us take the case of three elements x, y, z.
Up to permutation of elements, we can assume x R y (under (i) and (iv)); necessarily,
(yRx or yRz) and (zRx or zRy), again under (i) and (iv). Of the four cases, only yRz
and zRx is possible, by virtue of axioms (ii) and (iii). The reasoning is similar with
four elements, but it requires repeating several times the “up to permutation”
argument. This leads to two classes: xRy, yRx, zRt, tRz and xRy, yRz, zRt, tRx. One
may expect students to stop at this stage, while it remains to justify that these two
classes are distinct (and nonempty, by providing a model). The first point requires



the notion of isomorphism, in fact the knowledge of properties invariant under
isomorphism, which allow to distinguish the two classes. In the case of groups of
order 4, well-known to students, the presence or absence of an element of order 4 is
usually invoked. Working out the analogy with banquets consists in identifying a
pattern of cyclicity: reasoning about the order of an element amounts, in our context,
to reasoning about the cardinal of the “chain” generated by an element (by iteration
of the relation), which is a closed loop in the case of finite cardinality. Cyclic groups,
including those formed by the roots of unity, also rely on this mental image of the
circle. While it is unlikely that students will engage in such formalization, except for
those who are particularly comfortable with formalism, it is likely that the cyclic
pattern will be recognized and emphasized, the more so as it is suggested by the
mental image of banquets from the embodied world. The aim of questions (c) and
(d) is to lead students to make this mental image explicit and formalize a notion of
cyclic banquet.
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Fig. 20.1 Identification of isomorphic models through treatments within the semiotic register of
graphs and pattern recognition

In the semantic-dominant approach, matrix or graph theory is used to produce
generic models that may represent all possible cases. It is therefore a question of
differentiating classes. Graphs allow to quickly deal with the case of 3 elements by
replacing analytic reasoning on axioms with a succession of actions, as in a
Lego game: there are only two possibilities of endowing three letters x, y, z with
arrows such that the resulting directed graph fulfills the axioms (interpreted in graph
theory). To convince oneself that the direction of rotation is not important, a
treatment (in the sense of Duval) within the graph symbolic semiotic register may
be applied: the first step consists in re-establishing the counter-clockwise direction,
which does not change the directed graph; the same cyclic pattern is then recognized
up to permutation of x and y (step 2). Without formalizing a notion of isomorphism,
the principle of abstraction, in its naive sense of abstracting elements, thus allows to
figure out that both models lie in the same class, in the etymology of isomorphism
(having the same shape) (Fig. 20.1).

The situation is more complex in the case of 4 elements, as the number of
configurations is higher. Nevertheless, knowledge from graph theory (treatments
to remove the crossings of arrows) makes it easy to come to either the case of the
cyclic graph or the case of the graph with two connected components of two
elements related by a double arrow. The visual process of pattern recognition allows
to conclude, by forgetting the labeled vertices of the graph.

The formal definition of isomorphism requires to have integrated the syntactic
point of view of bijection that preserves relations. In GT, isomorphisms preserve
operations, which is conceptually different, but the syntactic proximity of x*y and



xRy should allow students to easily find the condition 8(x, y) 2 E2, xRy) φ(x) R0

φ( y) defining a morphism φ: (E,R)!(E0,R0) of banquets. The actual construction of
the isomorphism, for example between the 2 previous banquets of cardinality 3, may
be carried out by comparing xRy, yRz, zRx and x0Rz0, z0Ry0, y0Rx0: if φ maps x to x0, it
will also map y to y0 and z to z0. In fact, in writing relations in such sequences, we
have implicitly identified the cyclic pattern. The latter can be made explicit by
conversion (in the sense of Duval) to a register that underlines the pattern graphically
(such as graphs or empirical banquets from the embodied world).
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20.4 Learning Affordances of the Theory of Banquets

Aclassroomexperimentwith third yearBachelor students took place in 2014 (4 sessions
of 1h30 each for the full worksheet). To encourage the meta-cognitive dimension,
students worked in small groups of 3–4. Each group had to return its research notebook
to the teacher after each session and phases of devolution and institutionalization (in the
sense of Brousseau, 1997) took place when appropriate according to the scenario
(Hausberger, 2021). The experiment was later supplemented by two lab sessions
(outside the classroom), with two pairs of more advanced students called Alice/Bob
and Chris/Debby in this chapter. Alice had completed a PhD in mathematical physics
and occupied several post-doctoral positions before passing exams to become an upper-
high school/upper-secondary teacher. Bob was about to begin a PhD in differential
geometry and Chris/Debby were more standard Master students. The data that will be
discussed in this section comprise excerpts of students’ notebooks and excerpts of
transcripts of dialogues among pairs of advanced students.

20.4.1 What Is a Banquet? Students’ Creative Processes
in Making Sense of a Formal System of Axioms

Unsurprisingly, Alice readily connected the axioms to the mental model of wedding
banquets and blended symbolic manipulation of axioms with intuitive reasoning in
the embodied world. Alice is indeed close to being a professional mathematician and
her work is a wonderful illustration of Tall’s claims on symbolism and embodiment.

Alice: Classical, we specify the structure through relations, okay.
Bob: Antisymmetry [about axiom (i)].
Alice: It’s not quite like that, it’s non-reflexivity; there’s one guy on the right and

one on the left, that’s the idea, [laughter]; there’s nobody sitting alone at a
table.

Bob: The elements are people? And in relation if together at the table?
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Alice: Yes, that’s it. The relation is to sit on the right (or left). However, you can
have at most one guy on the right and at most one on the left, there is at least
one guy on the right. Yes. . . there is theory and models. To show that it’s
not contradictory, you can show that there exists a model. I suggest we take
one guy. No, one guy doesn’t work, 2 guys sitting next to each other. So
you take E {x,y}. You can also put {0,1}.

Bob: {1,2}?
Alice: Let’s take E¼ {a,b} and for the relations the couples (a,b) and (b,a). So it is

indeed a model.
Bob: [after reflection] ok
Alice: Yes, a set with 2 elements, they are sitting opposite each other. . .

obviously, there is at most one on the right and one on the left, they are
in relation with the one opposite. . .

Bob: So this is existence. And consistence?

More surprisingly, Chris and Debby did not relate the axioms to wedding
banquets (before part II of the worksheet). Nevertheless, they spontaneously intro-
duced semiotic representations from graph theory through cognitive processes that
also relate to embodiment: “Globally, we have a point x which maps to y and z, we
necessarily have equality” (discussion of axiom (ii)). The movement of the pencil,
from x to y, thus the gesture, led them to represent the relation in the form of an
oriented arrow. They then borrowed from permutations the notation (x y z), more
condensed, to designate the resulting directed graph in the case of 3 elements
(without linking banquets neither to graph theory nor GT).

In the classroom, nearly every group of students began by representing banquets
from the real world in a more or less idealized manner (top of Fig. 20.2). In order to
solve the assigned tasks, generic models with more affordances towards mathemat-
ical treatments had to be produced, therefore the teacher had to introduce the
repertoire of either graphs or matrices. Examples of such representations are pro-
vided at the bottom of Fig. 20.2, which also includes in the middle a purely symbolic
representation in Set Theory.

20.4.2 What Does It Mean to Classify Banquets? Students’
Creative Processes in Developing a Structuralist Point
of View

Let us now analyze how the representations from the embodied and symbolic worlds
may be used to potentially achieve the journey to the formal world and develop a
structuralist sense. We will begin with the expert practice of Alice who is playing the
role of teacher towards Bob:
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Fig. 20.2 Semiotic representations produced by students throughout part I

Bob: Cardinal number 3. . .
Alice: The circular thing, people a,b,c around the table. (a,b), (b,c), (c,a). It

remains to be seen that this is the only one. (a,b) by numbering, it is still
valid.

Bob: (a,c), (c,b), (b,a)?
Alice: It’s the same model, up to isomorphism.
Bob: That’s true.
Alice: (b,a). . . there’s going to be a problem, because c is going to be sent

on what? If c is sent on a or b, as a and b are already reached, we will
deny (ii).

Bob: If we had (a,b) and (b,a) we wouldn’t know what to do with c. . .
Alice: Yes, that’s it. Because his two potential right-wing neighbors already have

one neighbor
Bob: So it’s necessarily (b,c) and we complete.
Alice: Perhaps cardinal number 4 will be more interesting. Shall we say {a,b,c,d}?
Bob: Yes.
Alice: So there is the circular model. . . are you following me?
Bob: Always. . . but, in this case, there can be several if you put them a,b,c,d

around a table. . .
Alice: Yes, but you’ll be able to find a bijection, which amounts to a renumbering.

If you want, the natural morphisms in there will be. . . is there a way to send
E on E0 by a bijection that sends R on R0? So if you have a circular model,
you’re going to be able to send it on a circular model by a permutation.

Bob: Uh, yes. . .
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Alice: So we always have (a,b); we always have (b,c). . . ah, can b send itself to a?
That would make a first case separation.

Bob: It would make a two-table banquet, so to speak.
Alice: Yes, this is a possibility. You can have (a,b), (b,a), (c,d ), (d,c). In fact,

we’re going back to the previous banquets. We have the circular banquet
RC,4, and we have, one could say, finally a direct sum in fact. It is a direct
sum of banquets: R4 R2

L

R2. Are there others? I don’t think so.
Bob: Are there other direct sums possible? No, because there is no one-person

banquet.
Alice: In theory, you can have irreducible models, which do not break down into

direct sums, and which are a priori different from the circular model. But
here, if we have (a,b) and if we put (b,a), then the rest is specified; so we
will try to put (b,c). If we put (c,d ) we fall back to the circular banquet; (c,a)
we’re screwed. So this is the only possibility, I don’t know if you follow
me. . .

Bob: OK, so we have our two models.

Striking features of this dialogue include a fertile symbiosis between figural/
intuitive and conceptual properties of banquets that result in operative symbolism
(salient sentences are underlined in italic). Another feature is the conceptual per-
spective of Group Theory (and Abstract Algebra in general): the direct sum of
banquets has not been defined yet (the operation of union of banquets is the focus
of part II.2.c), therefore Alice’s reasoning cannot be understood but as analogical
thinking with, for instance, the decomposition of the Klein group V4 in a direct
product of two cyclic groups of order 2. Students anticipate part II and also introduce
a notion of irreducibility (which was not forecasted in the a priori analysis centered
on undergraduate students).

Let us now describe how Chris and Debby proceeded within the semiotic register
of graphs:

Chris: There would be 9 of them.
Debby: Nevertheless, we only considered objects that we know. But since the

beginning, we have been talking about a structure.
Chris: But wait, the elements can always be numbered. What could go wrong?
Debby: Our own consistency.
Chris: But here, we thought about relationships, we didn’t think about the objects

themselves, we didn’t take a particular relation.
Debby: Never mind.

The conclusion they drew is mathematically inaccurate. Nevertheless, the reflex-
ivity shown by the students is remarkable: they emphasized that they abstracted both
the nature of elements and the semantics of the relations. However, the algebraic
symbolism (the letter) gives the illusion that the process of abstraction is complete.
This is not the case, since labels of the graph vertices should also be removed.
Although they were visualizing the pattern (left part of Fig. 20.3), students did not
develop the intuition that the list of 9 models consisted in 2 classes, and as a
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consequence they did not formalize a notion of isomorphism. The intervention of the
instructor (I) was required to achieve this, which proved to be a long journey:
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Fig. 20.3 Chris/Debby’s classification of banquets of cardinality 4

Debby: So there would be 2 classes up to isomorphism, this kind of object and
this kind.

Chris: There, Z/4Z and there Z/2Z Z/2Z, in fact.
I: Are you thinking about the classification of groups?
Debby: Necessarily, we think about the classifications we know.
I: So there are 2 types of objects and here you have listed them all on x, y,

z, t [. . .] You have listed all the possible oriented graphs on x, y, z, t that
fulfills the axioms. [. . .] And why do you say there are two classes?

Chris: Two classes? We have put all the permutations behind, anyway.
I: And why would (x y z t) and (x y t z) be the same?
Chris: No, not the same, of the same type.
I: What does it mean to be of the same type?
Chris: I am thinking of permutations. One will loop faster than the other. I am

clearly thinking about the order behind it.
Debby: A bijection. One can pass from one element of this class to another by a

bijection, but not between the 2 classes.
I: Isn’t it always possible to find a bijection between two sets of same

cardinal number?
Chris: Yes it is!
Debby: Ah yes, but will it respect the structure? [. . .]

Again, the journey involved Tall’s three worlds (a loop is part of the embodied
world), but the process of accommodation of knowledge on groups to achieve a
structuralist classification of banquets proved to be difficult. The situation is different
from the case of Alice who developed a complete mental structure (or scheme)
regarding structuralist decompositions that could easily integrate the case of



banquets with the support of its mental model. Outside help was therefore needed,
but the last question raised by Debby showed that the inquiry process tackled crucial
issues in the development of structuralist sense.
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Let us finally point out the creative processes generated during the classroom
experiment, in particular the role played by the mental model. Unlike Chris/Debby
who did not mention wedding banquets at all (maybe, due to a didactical contract
that separated real world phenomena from genuine mathematical objects), there were
groups who engaged in classifying empirical banquets without questioning abstrac-
tion processes (Fig. 20.4). The mental model is here an obstacle towards bridging the
symbolic world and students did not manipulate the formal axioms at all.

To the other end, there were groups who were proficient in syntactical manipu-
lation of axioms but did not produce any synthesis of intuitive and symbolic
representations in their semiosis. In between, a few groups made a fertile use of
the mental model in identifying the class of the banquet (Z/4Z, R) (Fig. 20.5).
Students referred to the “table of 4”, which was idealized in their drawing and
superposed with another representation in the semiotic register of graphs. In the
terms of our theoretical framework, this is a convincing example of conceptual
embodiment. Nevertheless, the notion of isomorphism was not formalized by any
group without the intervention of the teacher who had to renegotiate the didactical
contract (by emphasizing the need of formal definitions) and clear a path to the
formal world as in the Chris/Debby case.

Most of the students perceived analogies with GT, on an intuitive basis (infor-
mally) and for various obvious reasons: the notation Z/4Z in the worksheet (whereas
it is essential to distinguish the additive group Z/4Z from the banquet (Z/4Z, R)), the
type of task (classifying objects) and the similarities in the results obtained (which is
not a coincidence, given the link with permutation groups). However, those who
made the analogy most explicit did not manage to expand the mental structure

Fig. 20.4 The mental
model as an obstacle:
empirical classification of
banquets

Fig. 20.5 Identification of
the isomorphism class by
conversion to a graphical
register related to
embodiment and pattern
recognition



(or schema) from groups to banquets as Alice did. For instance, a group of students
used the symbolic representation Z/2Z � Z/2Z to designate the 2-table banquet
(Fig. 20.6) without noticing conflicting aspects with the Cartesian product in Set
Theory. Indeed, the disjoint union of tables adds up cardinal numbers whereas the
Cartesian product is multiplicative. The same conclusion as Kidron (2011, p. 125)
draws, applies here: “it highlights the need for mathematical educators to help
students be aware of their tacit models, and to complete the synthesis between the
formal and the intuitive into one mental structure”.
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Fig. 20.6 Students’ difficulties in expanding the mental structure from groups to banquets

20.5 Conclusion and Perspectives

The theory of banquets is the fruit of a practice-oriented study that sheds light on
mathematical creativity in Abstract Algebra, in the sense of a fertile interplay
between intuition and formalism, as it is experienced by professional mathematicians
(represented by Alice), and by graduate or undergraduate students. The goal is also
to induce a meta-cognitive shift (a dimension of inquiry with a focus on the meta-
concept of structure) in order to facilitate the access to structuralist thinking. The
mathematical experience varied according to students’ personal level of advance-
ment in the mathematical journey through Tall’s 3 worlds. However, the 3 dimen-
sions (embodied, symbolic and formal) were almost always present, whatever the
level. Most students could take advantage of the cognitive affordances offered by the
mental model of the embodied world, to some extent, but only advanced students
were able to achieve a complete synthesis between the formal and the intuitive in the
development of a structuralist classification of banquets. Unsurprisingly, the inter-
vention of the teacher was needed to point out conflicting aspects between the formal
and the intuitive or stimulate the inquiry process on the meaning of a structuralist
classification for students to move forward.
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The main novelty of the theory of banquets in comparison with previous didac-
tical designs in Abstract Algebra presented in Sect. 20.2 is its ambition to tackle the
issue of students’ access to structuralist thinking at large. GT thus serves as prereq-
uisite, and meta-cognition is crucial in the inquiry process developed by students. If
research results may be expressed as above using theoretical constructs from
Fischbein and Tall, the framework of the objects-structures dialectic allowed a
finer-grained analysis of the interplay between the formal, symbolic and embodied
components of mathematical activity than previous accounts (e.g. Stewart &
Schmidt, 2017).

The study can still be deepened in different directions, depending on the theoret-
ical framework that is used to complement the analyses in the spirit of networking.
Studying structuralist praxeologies (Hausberger, 2018a) in the ATD framework can
shed more light on what it means and requires, at the level of praxis and logos, to
successfully work out the analogy between groups and banquets in the classification
tasks. The inquiry process can also be modeled as a SRP in order to get a finer
control on its vitality, economy and ecology. Inside TDS, the different levels of the
milieu (its structuration) may be analyzed in order to have a clearer picture of the
relationship of the epistemic subject with the milieu during the different phases of
the situation, particularly those of meta-cognition, and finally tune didactic variables
with higher granularity. Cognitive and semiotic aspects of the analysis may also be
deepened, for instance by using semiotic frameworks that pay more attention to
embodiment, or by attempting to study the structuralist schemes (or schemas)
involved in the theory of banquets using cognitive frameworks.
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Chapter 21
Following in Cauchy’s Footsteps: Student
Inquiry in Real Analysis

Sean Larsen, Tenchita Alzaga Elizondo, and David Brown

Abstract Proof-based mathematics courses are often taught in a lecture-based
format that deprives students of the opportunity to engage in authentic mathematical
activity. Students are presented with mysterious answers to questions they have
never even been asked to consider. Inquiry-oriented instruction (IOI) provides an
alternative approach in which teachers engage students in deep mathematical sense-
making as they inquire into both the mathematics and one another’s thinking. As part
of a larger project, we have designed an inquiry-oriented instructional sequence that
engages students in the reinvention of several real analysis concepts. In this chapter,
we explore the mathematical activity of both the students and instructors in one
course using this instructional sequence. Our results suggest that the principles of
inquiry-oriented instruction provide important support for instructors who are moti-
vated to provide students with an opportunity to engage in legitimate mathematical
activity while also meeting expectations for content coverage.

Keywords Inquiry oriented · Real analysis · Proof · Realistic mathematics
education · Mathematical practices · Convergence of sequences

21.1 Introduction

Advanced, proof-based mathematics courses are overwhelmingly taught through
lecture using a “definition-theorem-proof” format (Weber, 2004). However, research
(Lew et al., 2016) has demonstrated that even good lectures do not result in students
understanding the ideas the teacher intends to convey. More importantly, this
traditional approach denies students the opportunity to engage in authentic and
creative mathematical activity even though research (e.g., Lampert, 1990; Larsen
& Zandieh, 2008) has demonstrated that students are quite capable of doing
so. Inquiry-oriented instruction (IOI) provides an alternative approach in which
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teachers engage students in deep mathematical sense-making as they inquire into
both the mathematics and one another’s thinking (Laursen & Rasmussen, 2019).
While the students engage in mathematical inquiry, the teacher inquires into this
activity both to assess the students’ learning and with the aim of leveraging the
students’ ideas to drive the mathematical agenda (Laursen & Rasmussen, 2019). In
this chapter we explore student inquiry in the context of real analysis. The partici-
pating students were enrolled in a university course meant to support them in
transitioning to advanced proof-based mathematics. Our purpose in this chapter is
to illustrate the principles of inquiry-oriented instruction (Kuster et al., 2018) and
exemplify the kind of student inquiry that this approach can support.
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Real analysis is a topic most mathematics students encounter at some point in
their university studies. It also has an interesting history in that it was created as a
result of digging deeply for the rigorous foundations of the well-established com-
putational calculus. So, it is a particularly good context for illustrating the way that
definitions and axioms emerge near the end (and not the beginning) of the develop-
ment of an area of mathematics. However, the students in a traditional introductory
analysis course do not experience the course in a way that reflects its historical
development. Many real analysis courses begin with the unmotivated introduction of
field and order axioms before a similarly unmotivated introduction to the least upper
bound property. These foundations along with some basic definitions are then used
to prove theorems like the Archimedean property and the density of the rational
numbers in the real number line. These early concepts that student meet in their first
real analysis course are not only disconnected from the computational calculus the
students are familiar with, but they also provide mysterious answers to questions the
students have never even been asked to consider.

Our research team conducted a series of design studies resulting in the develop-
ment of an instructional sequence that captures the spirit of the historical inquiry that
led to the development of modern real analysis. This design process is described
elsewhere (Larsen et al., 2021; Strand et al., 2021; Strand, 2016; Vroom, 2020). Here
we examine the mathematical activity in a course that utilized this instructional
sequence in order to provide an illustration of the principles of IOI in action.
Specifically, we frame this illustration in light of the four principles described by
Kuster et al. (2018):

1. Generating student ways of reasoning
2. Building on student contributions
3. Developing a shared understanding
4. Connecting to standard mathematical language and notation

We will focus on one portion of the instructional sequence and use it to demonstrate
how the instructor moves, student inquiry, and instructional tasks worked together to
realize these principles of IOI. Generating student ways of reasoning, refers to the
process of eliciting student activity and thinking that anticipate the formal mathe-
matics that is the goal of instruction. The principle of building on student



contributions emphasizes the idea that the students’ mathematical activity drives the
agenda with the formal mathematics being developed as students further mathema-
tize their own mathematical activity. It is crucial that this principle is enacted in
concert with the principle of developing a shared understanding so that all of the
students have the opportunity to experience the mathematics as the result of their
own inquiry. Finally, the principle of connecting to standard mathematical language
and notation acknowledges the instructor’s role as a broker between the classroom
community and the greater mathematics community (Rasmussen et al., 2009). In this
role, the instructor both supports the classroom community in becoming legitimate
participants in the mathematics community and supports them in accessing the more
efficient and powerful language and notation of that community.
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21.2 Context and Brief Description of the Instructional
Sequence

21.2.1 Intermediate Value Theorem as Starting Point

The inquiry we will be describing takes place in the context of an instructional
sequence that was designed with the support of the theory of Realistic Mathematics
Education (RME), which holds that students should learn mathematics by
mathematizing both reality and their own mathematical activity (Gravemeijer &
Doorman, 1999). Of particular importance was the RME heuristic of didactical
phenomenology (Gravemeijer & Terwel, 2000; Larsen, 2018) which posits that if
the designer wants to support students in reinventing a mathematical idea, they
should strive to identify a phenomenon that can be productively organized by that
idea. In particular, we wanted students to reinvent the idea of a least upper bound, so
we developed a task context in which the concept of a least upper bound could
emerge as a commonsense solution to a problem. Note that this design heuristic
directly reflects the IOI principle of generating student ways of thinking in that the
idea is to provide a task situation that is likely to elicit informal ideas that anticipate
the formal mathematics that is the goal of instruction. The starting point for the
instructional sequence is the Intermediate Value Theorem (IVT). The task of proving
this theorem by drawing on approximation techniques, motivated by Cauchy’s
historical proof (Grabiner, 2012), is a context in which several important ideas like
sequence, limit, monotonicity, and least upper bound emerge as useful tools. In the
following subsections we will (1) describe the course and participating students from
which we draw our illustration, and (2) briefly describe the historical proof of the
IVT that inspired the instructional sequence.
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21.2.2 Context: The Course and the Participating Students

Our instructional approach was developed by conducting a series of design exper-
iments over the course of several years. The classroom data shared in this chapter
come from a university transition-to-proof course that was conducted near the end of
the design process when the design was relatively stable. The course was taken by
14 students all of whom had taken at least a year of computational calculus. Only one
had previously taken a real analysis course. Six of the students were women and
eight were men where two of the men were Hispanic. The course was co-taught by
the first two authors (one a professor and one a graduate student) with the assistance
of the third author (also a graduate student). Due to the COVID-19 pandemic, the
course was taught online in a remote synchronous format. Mathematical inquiry was
conducted collaboratively, with students working individually, in pairs, in small
groups, or as an entire class using various technological tools including Zoom, an
online whiteboard app, Google Docs, and a wiki-text (Katz & Thoren, 2014). The
course consisted of 19 sessions, each approximately 110 min in duration. We screen
recorded all class and office hour zoom sessions. We also collected all of the students
in-class work (Google Docs etc.) and homework in digital form. Additional data
included screen recordings of instructor debriefing and planning sessions, lesson
plans in Google Docs form, and the Wiki-Text in which we created “permanent”
public records of the collective mathematical progress of the class.

21.2.3 Starting Point and Cauchy’s Proof of IVT

The primary instructional sequence begins with a question that is designed to elicit a
justification that relies on some version of the Intermediate Value Theorem. We ask
the students, “Does every 5th degree polynomial have a real root?” The students
typically argue that a 5th degree polynomial must have a real root because it
approaches 1 in one direction and �1 in the other, and because polynomials are
continuous it must cross the x-axis at some point. Subsequent discussions result in
the formulation of a conjecture that is a special case of the IVT: Any continuous
function with a sign change will have at least one root.

The focus of the students’ inquiry for the next several weeks is the development
of a proof of this conjecture. Our approach is motivated by Cauchy’s original proof
of this theorem (Grabiner, 2012). Cauchy supposed that f(a) and f(b) have opposite
signs where a < b. He then described a process in which the interval [a, b] i
partitioned into m equal sized intervals. One of these sub-intervals must have
endpoints that have opposite signed output values. The partitioning is repeated
indefinitely, generating two sequences an and bn such that for every n: (1) an < bn,
(2) f(an) and f(bn) have opposite signs, and (3) bn� an¼ (bn � 1� an � 1)/m. Cauchy
then claimed that these two sequences must converge to the same limit because they
will differ from each other “by as little as desired” (p. 168). He then concludes that
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f(an) and f(bn) must both converge to the output of this limit value since f is
continuous, and because these sequences always have opposite signs this common
limit must be zero. It is the task of rigorously proving Cauchy’s claim that an and bn
both converge (and have the same limit) that motivates the development of several
important concepts of real analysis including the idea of a least upper bound. The
illustration we present here is situated within this portion of the instructional
sequence. Specifically, we pick up the story at the point where the students had
just completed creating approximation methods in their small groups and we con-
clude our description at the point where the students are generating informal
arguments for why an increasing sequence that is bounded above must converge
to its least upper bound.

21.2.4 Data Analysis

Our goal for this chapter is to illustrate Kuster et al.’s (2018) four IOI principles in
action. We began by reviewing all data related to the core part of the instructional
sequence (beginning with the development of approximation methods and ending
with a proof of the monotone convergence theorem). Then, convinced that each of
the principles were represented by several instances, we selected a subsequence that
was short enough to allow us to present a detailed discussion while also representing
a coherent mathematical story. We then conducted an in-depth analysis of the data
related to these tasks. We looked both for evidence of intent (in the task statements
and instructor moves) and of student activity that aligned with each principle. For
example, in the case of developing a shared understanding, we looked for task
statements that required students to explore and make sense of an idea that had been
introduced by one or more students. We also looked for instances in which students
exhibited an effort to understand such an idea (e.g., by asking a question) or did
mathematical work with the idea (e.g., approximating a root using a method they did
not develop). Finally, we constructed chronological narratives for each of the
instructional tasks, highlighting activity related to the IOI principles. We chose to
construct these narratives chronologically in order to illustrate (and better under-
stand) how the IOI principles interact over time to support students’ progressive
mathematical activity.

21.3 Classroom Inquiry: From the Bisection Method
to Least Upper Bounds

The first major task of the instructional sequence is to develop an approximation
method for finding the root of a continuous function that has a sign change. The
students worked individually, then in pairs, and finally in small groups to develop
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approximation methods. Each small group created a viable method. Two groups
created different versions of what we referred to as “decimal expansion” methods
and one group created what we referred to as the “bisection” method. We have
consistently seen both of these methods in our research, and our usual approach has
been to eventually focus on the bisection method because it provides a bit better
support for subsequent proving activity. However, it has been our habit to have all of
the students develop some understanding of both methods before selecting one to
focus on for the rest of the instructional sequence.

21.3.1 Developing a Shared Understanding of the Two
Approximation Methods

As we observed above, the IOI principle of building on student contributions must
be realized in tandem with the principle of developing a shared understanding.
There are two powerful reasons for this. First, as Kuster et al. (2018) argue,
developing a shared understanding helps the instructor to provide an equitable and
inclusive learning environment for the students. Second, as a practical matter,
students need to have ownership of a given idea in order to further develop it
mathematically, so developing a shared understanding facilitates the process of
building on student contributions. This is particularly true of the bisection method
(Fig. 21.1) in our instructional sequence because it is leveraged as a starting point for
the development of a number of important concepts.

In order to develop a shared understanding of the approximation methods, we
asked each student individually to “sketch a generic continuous function and
illustrate the first 3 steps and the n-th step”. They were asked to do this using both
a bisection and a decimal expansion method. We then selected a few students to

Fig. 21.1 Description of the bisection method as recorded in the course Wiki-Text
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Fig. 21.2 A student’s illustration of the bisection method

share their drawing with the whole class. One of the shared drawings for the
bisection method is shown in Fig. 21.2.

This individual task and the subsequent discussion of the drawings provided each
student a chance to develop their own understanding of the bisection method and
provided the classroom community the opportunity to develop a shared image of
how the method worked. Subsequent tasks provided further opportunities for this
shared understanding to develop as it was leveraged to develop more advanced and
formal mathematics.

21.3.2 Connecting the Approximation Method to Formal
Mathematical Language and Notation

Besides developing a shared understanding of the approximation method, the task of
illustrating each method had the additional goal of beginning the process of
mathematizing the bisection method using the sequence concept. The drawings
(as seen in Fig. 21.2) naturally used notation consistent with sequence notation.
The instructors leveraged this aspect of these student artifacts to connect the stu-
dents’ approximation methods to the sequence concept along with its formal defini-
tion and conventional notation.

First, Sean (Instructor) references the pictures and makes the observation that the
bisection method seems to generate some infinite lists of numbers. He then asks the
students, “Does anyone know what the word is for a list of numbers that goes on
forever? It’s a thing you studied in calculus.” The students in our class were quick to
make the connection to sequences. We then informed the students that formally, a
sequence is defined as a function. In an effort to support all of the students
connecting the formal definition of sequence to their bisection approximation
method, we asked them to think about what the domain and codomain of a sequence
would be when conceptualized as a function:



Tenchita (Instructor): Formally, we like to define a sequence as a function. So, my question
for you is, does that make any sense to define a sequence as some sort of function? [. . .] if
we look back at our definition of a function, right, it went from, it had some domain,
codomain, right? And can we connect that at all to our sequences?

Maya: So, our domain is the steps like the natural numbers as we’re stepping forward. And
we’re mapping that to each individual value in this sequence.

Tenchita (Instructor): Yeah, exactly [. . .] like Maya was saying, the n is kind of our input
value, right? It’s the thing that we’re saying, assign one to an. Right? So, we’re like
plugging in, if you’re thinking about a function, the natural number, and your output will
be what [. . .] the n th term of that sequence is.

In connecting the students’ bisection approximation method to the formal concept of
sequence we provided them with language and notation that they could use to further
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mathematize their informal mathematical activity. We immediately leveraged and
reinforced this by asking the students to identify and name (using sequence notation)
several specific sequences that would be generated by iterating the bisection method.
The resulting list of sequences included the left and right endpoint sequences
(denoted as an and bn), the midpoint sequence (denoted as cn), the corresponding
output sequences (denoted as f(an), f(bn), and f(cn)), and the sequence of interval
lengths (denoted by bn � an).

21.3.3 Eliciting Student Reasoning: Conjectures About
Sequences Generated by the Bisection Method

While principles of eliciting student reasoning and building on student contributions
are conceptually distinct, in practice the same instructional task will often reflect
both principles. This is a natural consequence of the RME idea of progressive
mathematization in which students’ mathematical activity in response to a given
task will subsequently function as a new starting point for further mathematizing.
This is the case with a key task of our real analysis instructional sequence in which
we ask students to make conjectures about the various sequences they identified as
being generated by the bisection method. This task builds on the students’ previous
contribution (specifically their approximation method). However, the task also is
meant to elicit new reasoning about how these various sequences behave – reasoning
that is subsequently built on to develop several key real analysis concepts. In
Fig. 21.3 we see a list of conjectures as recorded in the course Wiki Text.

Notice that several of these conjectures assume the existence of a root. One of the
first things we do to build on these student contributions is to remind them that our
overall objective is to (like Cauchy) leverage our approximation method to prove the
existence of a root. We then ask them to generate some new conjectures (inspired by
Conjecture 6) that do not assume the existence of a root. In response to this task, the
students in the course generated some additional conjectures including one that
simply asserted that an will always converge.
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Fig. 21.3 Screenshot of the wiki-text page documenting conjectures

21.3.4 Building on Students’ Ways of Reasoning: General
Conjectures About Sequence Convergence

The development of a proof of the convergence of the left endpoints is an important
step in constructing a proof of the IVT that is based on the bisection approximation
method. Further, the development of such a proof supports students in reinventing a
general theorem (e.g., Monotone Convergence Theorem) that motivates the devel-
opment of the least upper bound concept and the completeness axiom. Thus, we
were interested in building on students’ ways of reasoning about the left endpoint
sequence to formulate conjectures at a higher level of generality. Specifically, we
asked students to develop conjectures of the form “If _________, then the sequence
xn converges” where the hypotheses were to be selected from among the properties
the sequence of left endpoints (an) was known to possess.

We approached this task in two phases to support the students in drawing on their
knowledge of the context and in making the shift to more general activity. First, we
sought to elicit student ways of reasoning by asking the students to list reasons why
they think the sequence of left endpoints converged to a real number. They worked
in three small groups, recording ideas in a Google Doc. A subset of the (unedited
aside from math typesetting) ideas that two small groups recorded appears in
Table 21.1.
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Table 21.1 Nine student ideas about why the left endpoint sequence converges

Student ideas about why left endpoint sequence converges

1 Reminds me of Zeno’s paradox goes half way then half way are you ever going to get where
you are running? As limit goes to infinity it will converge to bn

2 We are adding the geometric series (at most) to the first term which converges. With the max
distance it can travel being b1 a1

3 Because is stuck between two values and is only increasing in value so it must converge on
some value

4 bn is never increasing and an is never decreasing and they won’t pass each other so they have
to converse on something

5 bn and an are getting closer together so they must converge

6 an are increasing

7 Because an keeps same value or increase it will approach the point that is the root

8 What we know is that our an ’s and bn ’s take on the form of cn. If we apply the bisection
method as lim

n!1 our midpoints (cn) will converge to a number. Since cn must converge to a

number, our an sequence must also converge to a number

9 Since f(an) is always positive then an converges to a number

Table 21.2 A collection of the unique generalized conjectures

General conjectures generated

1 Let xn be a sequence of real numbers. If limit of xn + 1 xn is 0, then xn converges

2 Let xn be a sequence of real numbers. If the sequence is increasing and bounded above, then
xn converges

3 Let xn be a sequence of real numbers. If there exists another sequence yn such that the
distance between them (yn xn) converges to zero. Then xn (and yn) must converge

4 Let xn be a sequence of real numbers. If xn increases, then xn converges

5 Let xn be a sequence of real numbers. If xn increases and there exists another sequence yn
such yn decreases. Then if xn remains less than yn, then xn converges

If xn is equal to another convergent sequence sometimes then it converges

If xn gets closer to another sequence yn then it converges

If xn is increasing then converges

10 If xn is equal to a geometric sequence then it converges

11 If xn is adding a convergent series then it converges

After this initial brainstorming task, we initiated a shift toward more general
activity by asking the students to build on their ideas to create general conjectures of
the form “If ______________ then xn converges”. Notice that the task statement
subtly reinforced the idea that we are looking for a general conjecture by using the
notation xn instead of an which directly references the left endpoint sequence.
Table 21.2 contains a complete (removing duplicates) list of the general conjectures
developed by the groups.

Again, we will see that this task not only served to build on the students’ previous
reasoning but also to elicit ways of reasoning that would subsequently be built on in
order to generate some important concepts and theorems.
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21.3.5 Building on Students’ Ways of Reasoning:
Investigating the False General Conjectures

To further build on the students’ contributions in a way that would further the
mathematical agenda of the course, we chose to follow-up on the first four conjec-
tures in Table 21.2. Investigating these four conjectures provided the class with the
opportunity the engage with the three most common ideas we observed in the small
group discussions (so we see the principle of developing a shared understanding in
action as well).

The first idea was to focus on the monotonicity of the left endpoint sequence
(Conjecture 2 and Conjecture 4). This was the idea we intended to ultimately pursue.
The second idea (Conjecture 1) was inspired by the fact that the first differences of
the left endpoint sequence decrease to zero. This idea does not quite work (the partial
sums of the harmonic series provide a counterexample). The third idea (Conjecture
3) was inspired by the fact that the two endpoint sequences are approaching one
another. While Conjecture 3 is untrue as stated, the idea can be refined to generate
either a monotone convergence theorem or something like the Nested Interval
Theorem.

We initiated the process with a brief whole class discussion to establish that the
fourth conjecture was not true because any unbounded increasing sequence would
provide a counterexample. Then in small groups, the students were asked to consider
whether the first and third conjectures were true and to generate counterexamples if
they were not. Here, we briefly share some of the discourse about Conjecture 3 from
one of the small group discussions.

As soon as her entire group was in the Zoom breakout room, Tenchita (Instructor)
asked, “so, what do we think?”. One of the students, Emily, replied immediately
saying, “Well, the yn � xn [Conjecture 3] implies one is positive and one is negative.
And it’s implying that the difference between the two is zero. I think it’s true, I can’t
come up with a counterexample.” This response reflects the cognitive difficulty in
navigating the two levels of generality at play. In the context of the bisection method,
the two sequences that satisfy the hypothesis of this conjecture are an and bn which
have the further property that one generates only negative function values and the
other generates only positive function values. It is this property (ultimately not
relevant to the conjecture) that Emily is referencing when she says one is positive
and one is negative. In addition to possessing this distracting property, these two
specific sequences are also bounded and non-oscillating so they do not exhibit the
kinds of behaviors that a counterexample would need.

After a brief discussion to help Emily navigate this shift to more general activity
by discussing what the conjecture does and does not say one can assume about the
sequences xn and yn, another student, Eduardo, suggested a clever trick for generat-
ing a counterexample. He asked, “Why don’t you let both sequences be the same?”
Then a third student, Dylan, elaborated saying, “if you just say the n th term is n.
Those are both, that is a sequence that just grows forever, and definitely does not
converge. But if you did do this conjecture and say, you know yn � xn, then you get
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zero every time.” Tenchita (Instructor) followed this up by helping the students
generate more complex examples (by adding 1/n to different kinds of
non-convergent sequences).

Conjecture 1 was more challenging to address using the students’ own ideas
because the most accessible examples involve infinite series. Specifically, the most
obvious (based on students’ prior experiences) counterexample is the sequence of
partial sums of the harmonic series. In this course, we were content to present this
counterexample to the students. While we cannot guarantee all of the students fully
understood this counterexample, one student was able to observe that it could be
contrasted with an which can also be seen as a sequence of partial sums, but one that
is clearly bounded.

21.3.6 Building on Students’ Ways of Reasoning:
Investigating the True General Conjecture

After dealing with the false conjectures, we turned the students’ attention to the
increasing and bounded conjecture [Conjecture 2]. The goal was to build on this
student contribution to eventually develop the concept of least upper bound and a
proof that an increasing bounded sequence would converge to its least upper bound.
This required us to elicit students’ ways of reasoning about why such a sequence
would converge and what its limit would be.

First, we asked them why a sequence must converge if it is increasing and
bounded above. After giving them a couple of minutes to think about this, we then
asked the students a different, more specific, question: “If xn is increasing and
bounded above, what does it converge to?” They were given a few minutes to
discuss this at the end of a class session, and then asked to respond to it as part of
a homework assignment. Notice that by asking the students to generate responses
individually, we were setting the groundwork for establishing a shared understand-
ing of the ideas we would subsequently pursue, but ensuring that each student had an
opportunity to develop their own ideas first.

Ten of the fourteen students responded in their homework by saying that the
sequence would converge to “the” upper bound. This student contribution provided
an opportunity for us to elicit the new idea of a least upper bound. We started the
next class period with a poll in which we asked the students about the sequence n/
n + 1. The students were asked to choose between:

(a) an is bounded above and 1 is THE upper bound
(b) an is bounded by ANY number greater than or equal to 1, and
(c) an is not bounded since n goes to infinity.

One student selected (c), while seven selected (a) and six selected (b). We followed
up the poll with a whole class discussion. Sean (Instructor) asked if someone who
selected (a) could say why. A student, Leo, responded saying, “I put option one,



because you can never actually get to one. So, it can’t actually be greater than one,
right? Because . . . if the denominator is always n + 1 you’ll never actually reach.”
Notice that this response explains why one is an upper bound, but it does not explain
why the numbers larger than one are not.
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Sean (Instructor) responded by asking if a different student could engage with
Leo’s idea by explaining, “why isn’t two an upper bound?”. Emily responded
saying, “It can be and that’s why there’s an option two ‘cause it could be anything.
You just know that it doesn’t pass one. One is just the smallest possible bound.”

These two student contributions provided us with the opportunity to accomplish
two goals. First, they provided a chance to establish a shared understanding of the
idea that a bounded sequence will have many different upper bounds. Second it
provided a chance to elicit the idea that one of the upper bounds might be special in
the sense of being smaller than all of the others. We capitalized on this opportunity
first by calling attention to the distinction between the two students’ contributions:

Sean (Instructor): So, you want, we want to kind of distinguish between those two. And so, I
can tell you what the official math answer to this question is, is option two, because by upper
bound, we don’t require it to be the best one. And so, any number bigger than one- one or
bigger, would be considered an upper bound. There’s a whole extra special concept about a
smallest upper bound, which I would not be surprised if we spent a bunch of time talking
about that later today.

We then opted to attempt to build on Emily’s contribution by revisiting the question
of the limit of an increasing bounded sequence. We solicited ideas and one of the
students, Will, said that it would be the lowest of the upper bounds. All of the
students indicated agreement in a whole class poll intended to support the develop-
ment of a shared understanding. At this point, another student, Amelia (the one
student who had taken a real analysis class before), remembered that the standard
term was least upper bound. As instructors, we then acted as brokers between the
math community and the classroom community to confirm that “least upper bound”
was the normative name for this concept.

To further formalize the concept of least upper bound and to develop a shared
understanding of the idea, we then worked with the students to write a definition.
Again, acting as brokers, we provided the students with a definition stem that
involved normative notation for least upper bound (i.e., Let xn be a sequence. α is
the least upper bound of xn if. . .). In a brief whole class discussion, we solicited
initial student ideas and then Tenchita (Instructor) proposed constructing a two-part
definition where the first part asserts that α is an upper bound and the second asserts
that it is the smallest upper bound. Several students suggested formalizations of the
first part, including one who used the Zoom chat feature to propose, “for all n, α is
bigger than xn” which is a standard formulation aside from the inequality apparently
being strict.

In an attempt to formalize the second part of the definition a student, Eduardo,
made a viable suggestion asking, “Can you make it into a set of alphas and just
saying that . . . the first, the alpha naught is the one we’re looking for? Alpha naught
being the lowest one.”Aside from the implication that the set of upper bounds can be
listed in order, this suggestion does capture the required condition and could be built
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on to finish formalizing the definition of least upper bound. However, instead of
creating a formalization, we opted to proceed with a definition that stated the second
condition simply as “α is smaller than all the other upper bounds”. Because the next
phase of the instructional sequence involved leveraging this definition to prove that
an increasing bounded sequence converges, we expected that if there was a need to
further formalize this definition it would emerge at that time and could be
addressed then.

21.3.7 Generating Student Ways of Reasoning:
Brainstorming Why the Least Upper Bound Will Be
the Limit

Or next aim was to build on the students’ contributions (the increasing and bounded
conjecture and the idea of a smallest upper bound) to prove a theorem that would
guarantee the convergence of the left endpoint sequence. We began by generating
student ideas about why an increasing and bounded sequence must converge to its
least upper bound. Students were asked to develop and share this reasoning first in
small groups and then in a whole class discussion. As the discussion below illus-
trates, this activity can generate useful informal ideas that can be built on to generate
a formal proof. The following is a portion of the whole class discussion.

Leo: . . .if the sequence passes the bounds, then it’s not truly bounded above for the definition
that we’ve come up with at least. Tell me where I’m wrong.

Sean (Instructor): Well, the good news is we don’t have to have a proof at this moment now,
because we actually can’t prove it yet until we do another thing. So, this is just us coming
up with our initial ideas of why we think it’s true. So,

Tenchita (Instructor): So one thing you did say is that if it goes past it, that means that the
sequence isn’t bounded above, does that necessarily mean it’s not bounded above? Or
what does that mean about the least upper bound?

Joseph: It means that that wasn’t a bound.

[Having established that the sequence cannot go beyond the least upper bound, we then built
on this reasoning by asking if there is anything else needed to ensure the sequence will
converge to the least upper bound.]

Tenchita (Instructor): Is that the only thing we need? For it to not go past?

Emily: It can’t stop before.

Tenchita (Instructor): Por que? why?

Emily: Because if stops before it. . .there could be still something between that point where it
stopped and where you selected that bound to be.

Sean (Instructor): And that bound is supposedly, is the smallest upper bound.

Emily: Exactly. So how can it be the smallest if it’s stopping here [gesturing to suggest a
sequence stopping short of the supposed smallest upper bound]? There’s all this space!



Notice that through this discussion, the instructors (1) encouraged students to
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generate and share their reasoning, (2) built on that reasoning by using it to direct
the conversation, and (3) connected their reasoning to the formal concepts they had
discussed earlier (i.e., least upper bound). While students still have significant work
to do to create a formal proof of the MCT, we see this discussion as critical step in
building on students’ ideas so that they are connected to more formal ways of
reasoning that the students can use to create the proof. In subsequent lessons, the
classroom community developed a definition of limit for sequences and eventually
used it to capitalize on these informal arguments to produce a formal proof of the
increasing and bounded conjecture on the way to proving the IVT.

21.4 Conclusion

This chapter shows how taking an IOI approach to real analysis can introduce
students to the foundational topics in a way that is driven by the students’ activity.
In particular, our analysis illustrates the way that the four principles of inquiry-
oriented instruction support a process of progressive mathematizing. For example,
the students’ approximation methods were connected to standard mathematical
language and notation by identifying how the artifacts (list of numbers) produced
when carrying out the methods connect to the formal idea of sequences. We then
generated student ways of reasoning about these sequences by asking the students to
develop arguments for why the sequence of left endpoints converges. The subse-
quent task built on these student contributions by having students transform their
ideas into conjectures about general sequences; ultimately leading to a conjecture
resembling the Monotone Convergence Theorem. Throughout this process, we
engaged students in critically thinking about one another’s ideas to develop a shared
understanding of the concepts. As a result, the classroom community was able to
reinvent significant mathematical ideas (e.g., MCT) while engaging in important
advanced mathematics practices including conjecturing, defining, generalizing, and
justifying. The students were also able to make substantial progress toward devel-
oping a proof of the Intermediate Value Theorem inspired by Cauchy’s historical
proof.

It is not a novel concept to build on student thinking when teaching real analysis
concepts. For instance, Cory and Garofalo (2011) designed an instructional inter-
vention in which students used a computer program that supported them in making
sense of epsilon-N relationship of sequence convergence. This intervention lever-
ages a tool developed by Roh (2010) that aims to confront and build on common
student conceptions of sequence convergence. However, we argue that the IOI
approach represented by the four IOI principles (and illustrated by our analysis)
goes further by positioning the students as responsible for the mathematical activity
in a way that promotes their ownership of the mathematics being developed. As
Gravemeijer and Doorman (1999) suggest, an RME approach to instruction (in our
case in real analysis) goes beyond bridging “the gap between their [students’]



informal knowledge and the formal mathematics”, to “transcend this dichotomy by
aiming at a process in which the formal mathematics emerges from the mathematical
activity of the students.” (pp. 115–116).
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In summary, the four principles are at the core of an RME approach to real
analysis and when enacted together combine to produce an instructional approach
that supports the classroom community in engaging in collective authentic mathe-
matical activity (an important goal in its own right) that results in the production of
the advanced mathematics targeted by the curriculum. It is a considerable challenge
to create an educational experience that provides all of the students with an oppor-
tunity to engage in legitimate mathematical activity while also meeting expectations
for content coverage. The four principles of IOI provide important support for
instructors who are motivated to take on this challenge.
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Chapter 22
Examining the Role of Generic Skills
in Inquiry-Based Mathematics Education –
The Case of Extreme Apprenticeship

Johanna Rämö, Jokke Häsä, and Tarja Tuononen

Abstract Generic skills are considered important in learning and for employment,
but these skills are rarely explicitly taught or even mentioned as learning objectives.
In this chapter, we study generic skills in Inquiry-Based Mathematics Education
(IBME). We investigate how the presence of generic skills has evolved during the
development of an inquiry-based teaching model in university mathematics, called
Extreme Apprenticeship. We use a historical approach to study the course descrip-
tions and learning objectives of 64 different implementations of courses taught with
the Extreme Apprenticeship model since its conception. The data reveals that the
variety of generic skills mentioned as learning objectives has gradually become more
enriched and they have assumed a position equal to content skills. We describe how
the nature of Extreme Apprenticeship has supported these changes. Based on our
analysis, we infer that some of the driving forces behind the changes are professional
development of teachers, development of teaching and assessment methods, and
close collaboration among teachers involved with Extreme Apprenticeship. Also, the
specific nature of mathematics, such as the emphasis on proving, has shaped the way
generic skills are incorporated in the learning objectives.
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22.1 Introduction

University students are expected to develop not only disciplinary knowledge and
skills, but also several generic skills, such as analytical, communication, teamwork
and problem-solving skills (e.g. Chan et al., 2017; van Dierendonck & van der
Gaast, 2013). Generic skills are important in any discipline and needed in studies as
well as in working life (Strijbos et al., 2015; Tuononen et al., 2019). However, there
is evidence that university students develop more content knowledge than generic
skills (Stiwne & Jungert, 2010; Monteiro et al., 2016; Tynjälä et al., 2006), and
generic skills are rarely explicitly taught or even mentioned as learning objectives
(De La Harpe et al., 2000). There is often a lack of consistency between beliefs of
importance of generic skills and the degree to which they exist in teaching (Chan
et al., 2017; Jones, 2009). This may be due to teachers’ focusing on teaching of
content knowledge and not realising their role in developing students’ generic skills
(Barrie, 2006; De la Harpe et al., 2000).

The development of generic skills can be promoted by different pedagogical
practices. It is important that generic skills are mentioned in learning objectives and
taken into account in assessment (Crebert et al., 2004; Hyytinen et al., 2019; King
et al., 2017). Many studies have shown that collaborative learning environments
promote the development of generic skills (Ballantine & Larres, 2007; Choi & Rhee,
2014; Knipprath, 2017; Virtanen & Tynjälä, 2019). In mathematics, one framework
of providing such learning environments is Inquiry-Based Mathematics Education
(IBME; Laursen & Rasmussen, 2019; Artigue & Blomhøj, 2013). Indeed, Laursen
and Rasmussen (2019) have suggested that IBME offers rich opportunities to teach
generic skills alongside mathematical content, and they advocate for more research
in this direction.

To facilitate the adoption of generic skills in university curricula, more research is
needed on how generic skills can be implemented in the teaching of different
disciplines, as well as what affects teachers’ decisions to include or omit generic
skills in their teaching. In this chapter, we take a historical approach (Berg, 1998;
Sáez-Rosenkranz, 2016) to study one case of incorporating generic skills in univer-
sity mathematics education through IBME, the Extreme Apprenticeship method
(XA; Rämö et al., 2020). The study is based on an analysis of course syllabi and
learning objectives written by the teachers. Learning objectives offer a fruitful point
of view to generic skills research, as curriculum has a central role in the learning of
generic skills (Leung et al., 2014). Our intention is to describe the gradual change in
the presence of generic skills in the course descriptions, infer potential reasons
behind teachers’ choices to include these generic skills, and analyse how the generic
skills are affected by the inquiry-based nature of the teaching. The results can be
used to guide university teachers – especially mathematics teachers – developing
new teaching methods and desiring to include generic skills in their courses.
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22.2 Generic Skills and Their Role in Mathematics
Curricula

Many countries and universities have implemented competence-based education,
and competences and generic skills have been included in curricula as learning
objectives (Clarke, 2017). Therefore, in addition to disciplinary knowledge and
skills, learning of generic skills, such as analytical, communication, teamwork and
problem-solving skills, is a key aim of university education. The term generic refers
to the idea that these skills are common to all disciplines, although there is variation
in skills that are emphasised in different disciplines (Barrie, 2006). However, it can
be argued that although different disciplines emphasise different competences, there
are still more similarities than differences between disciplines (Krause, 2014).
Several other terms are used to refer to generic skills, such as key skills, transferable
skills, employability skills, core skills, academic competences and generic attributes
(Barrie, 2006; Tuononen, 2019). A coherent definition of generic skills does not
exist, but there are various kinds of lists of generic skills (Barrie, 2006). These lists
vary from simple technical skills to complex intellectual abilities and ethical values
(Barrie, 2006), and there are discipline-specific lists as well as lists created at
different universities and in different countries (Badcock et al., 2010; Jones,
2009). For example, Virtanen and Tynjälä (2019) have explored generic skills
such as creativity and innovation, critical thinking, decision making, learning skills
and self-assessment skills.

Attempts have been made to describe which generic skills are important in
mathematics. In Australia, the generic skills students are expected to acquire in a
mathematics programme include communication of mathematical knowledge to
experts and non-experts, ethical conduct of mathematics, quantitative problem-
solving, writing skills and teamwork skills (FYiMaths, 2013, as cited in King
et al., 2017). The Mathematical Association of America’s Committee on the Under-
graduate Program in Mathematics (CUPM) recommends that every college-level
mathematics course should support students in developing analytical, critical rea-
soning, problem-solving, and communication skills and acquiring mathematical
habits of mind (Barker et al., 2004). In Hong Kong secondary education, critical
thinking, creativity, collaboration and communication skills, information technology
skills, numeracy skills, problem solving skills, self-management skills and study
skills are the generic skills that are expected to be developed (Leung et al., 2014).

Mathematics students, graduates and employers think that generic skills are
important but find that they do not develop well enough by studying mathematics
(King et al., 2017; Inglis et al., 2012; Rayner & Papakonstantinou, 2015). Literature
suggests several means to teaching generic skills, such as various teaching methods,
using different kinds of tasks, combining theory and practice, and collaborative
learning as well as working alone (Virtanen & Tynjälä, 2019). Generics skills should
be integrated in domain specific courses, and not taught in separate courses
(Hyytinen et al., 2019; Virtanen & Tynjälä, 2019). Since generic skills are lacking
from university mathematics courses, it would be valuable to find ways to implement
these suggestions in university mathematics education.
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22.3 Extreme Apprenticeship, a Form of Inquiry-Based
Mathematics Education

Inquiry-Based Mathematics Education (IBME) encompasses two strands of active
learning and teaching (Laursen & Rasmussen, 2019): Inquiry-Based Learning (IBL;
e.g., Laursen et al., 2014; Yoshinobu & Jones, 2011) and Inquiry-Oriented Instruc-
tion (IOI; e.g., Kuster et al., 2018; Rasmussen & Kwon, 2007; Wawro et al., 2012).
IBME is built upon four central ideas: students engage deeply with meaningful
mathematics, students collaborate to make sense of mathematical ideas, teachers
inquire into the thinking of students, and teachers foster equity in their classrooms.

The form of IBME discussed in this chapter is a teaching model called Extreme
Apprenticeship (XA). It was originally created in the University of Helsinki in 2011
for teaching computer science students (Vihavainen et al., 2011), but was soon
developed to suit also mathematics teaching (Hautala et al., 2012; Rämö et al.,
2019). The theoretical background of XA is in situated view on learning (Lave &
Wenger, 1991) and Cognitive Apprenticeship (Collins et al., 1991). In the XA
model, students take part in activities that resemble those carried out by profes-
sionals, which supports them in becoming experts in their field (Rämö et al., 2020).
In the case of mathematics, expert skills that have been emphasised are, for example,
reading and writing mathematical texts and participating in mathematical discus-
sions. Students start studying a new topic by solving introductory problems together
with each other and with the guidance of the teaching team. They receive feedback
on their work from the teaching team. After that, the topics are discussed in the
lectures in order to build a bigger picture and deepen understanding. After the
lectures, students are given more challenging tasks, and at the same time they start
studying new topics via new introductory tasks. The teaching team consists of the
responsible teacher and tutors who are undergraduate or graduate students. The XA
model has been used in both small and large scale, the student cohorts varying from
10 to 500.

In the XA model, the central themes of IBME are addressed in several ways
(Rämö et al., 2020). The task sequences given to the students are designed carefully
so that they support deep understanding. An open learning space has been created, in
which students can discuss and collaborate with each other and course tutors. The
tutors take part in pedagogical development that teaches them how to inquire into the
students’ learning. Finally, sets of explicitly shared norms support equal participa-
tion, as does the open, accessible learning space. In order to find a meaningful way of
assessment supporting active and inquiry-oriented learning, self-assessment has
been included in the teaching of many of the XA courses in the form of the DISA
model (Digital Self-Assessment; Häsä et al., 2019, 2021). The students perform
self-assessment exercises in which they evaluate their own skills against the learning
objectives and receive feedback on their assessment.
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22.4 Research Problem and Hypotheses

This study takes a close look at how the presence of generic skills has evolved in the
course descriptions during the development of a particular IBME type teaching
model. The purpose is to describe the process of incorporating generic skills to the
courses, as well as to bring to light the most likely factors behind the process. The
focus is on the point of view of teachers who are developing the model: what generic
skills are they including, in what form and in what order? What influences the
teachers’ decisions at each point of the development?

To offer answers to these questions, we examine the learning objectives as well as
other course descriptions written and published each year since the beginning of the
XA model. We study the materials in their context, taking note of the timing of each
change and relating them with major steps in the development of the model. The
written learning objectives form a good source of information for the XA model, as
they have been paid special attention to by the teachers and are described in detail in
the courses under study. In the context of XA, the learning objectives are created by
the teachers and can be considered to reflect the intentions of the teachers developing
the model, as opposed to external requirements dictated by the department or
programme of study.

Based on earlier literature on generic skills in university education as well as the
nature of IBME and the XA teaching model, we expect to find support for the
following ideas. Firstly, since IBME style learning environments are theorised to
support the teaching of generic skills, mentions of these skills should arise during the
development of XA. In particular, we expect to see skills such as reading mathe-
matical texts and participating in mathematical discussions, as these are emphasised
in the philosophy of XA. Secondly, as the teachers are involved in the development
of a new teaching model, they are actively revising their course descriptions,
learning objectives and teaching methods of their courses. Therefore, we expect to
see improvements in how the learning objectives are formulated and how objectives
and methods are aligned in the courses. Thirdly, as generic skills are integrated into
mathematics courses, we expect them to reflect certain characteristics of mathemat-
ics, such as a strong focus on problem-solving and a particular mode of communi-
cation, mathematical proof.

22.5 Method

The historical method involves a systematic process examining past events or
phenomena in order to create an account of what happened in the past (Berg,
1998). The events are usually accessed via written documents, called sources. The
aim is not merely to collect information and describe the events, but to search for
causes and offer explanations to them. According to Sáez-Rosenkranz (2016), the
historical method can help to characterise education systems or study the



development of education cultures, and it can be applied when the aim is to explain
the causes of observed phenomena in their social context.
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The research process in this study is based on the processes of historical research
outlined by Berg (1998) and Sáez-Rosenkranz (2016):

1. Specification of the research problem
2. Building a theoretical framework and developing hypotheses
3. Collection and critical observation of sources
4. Organisation and analysis of sources
5. Building a narrative synthesis.

First, the research problem was chosen and narrowed down in light of scientific
interest as well as available source material. Then, literature on generic skills and the
XA model was studied, and tentative hypotheses discussed. Source materials were
collected from websites and dated. As some sources consisted of wiki pages and
other changeable documents, edition histories were inspected to confirm dating and
authenticity of documents. Missing sources (e.g. removed web pages) were noted.

The analysis phase began by preparatory inspection of sources in three parts:

• The course websites were examined for mentions of generic skills, learning
objectives and teaching and assessment methods, and the temporal development
of these was recorded on a timeline, noting any major and minor changes in
content and wording.

• Similarly, the learning objectives mentioned in the course websites (usually in the
form of matrices) were examined, recording any major and minor changes in
content and wording.

• Learning objectives matrices of all XA courses from two time periods, the
beginning of their use and the most recent study year, were analysed using
content analysis guided by the theoretical framework. The generic skills were
coded based on the previous studies (Leung et al., 2014; Virtanen & Tynjälä,
2019). After finding the range of generic skills, the overall change of generic
skills during the years was analysed.

Following the preparatory inspection, the authors met to discuss their findings. At
this point, four subthemes were selected for further focusing: (1) which generic skills
are present in the learning objectives and how does this change in time (2) how the
generic skills are presented (how prominent they are, how they are worded etc.)
(3) how the generic skills objectives are aligned with other parts of teaching and
assessment, and (4) how the generic skills objectives of different courses are related.
Then the sources and prepared material were consulted again in the light of these
subthemes, and narratives were composed to describe and explain the developments
under each subtheme. The four narratives were discussed among the authors and
developed iteratively. Finally, conclusive remarks were based on the resulting
narratives, as well as the theoretical framework, to offer a response to the research
problem.
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The first and second authors of this manuscript have used XA in their teaching
and taken part in developing the teaching model. Their expertise was used when
inferring potential reasons behind teachers’ choices. They could also act as addi-
tional sources for some events. The third author is a researcher of generic skills and
transition to working life. She guided the content analysis of learning objectives and
acted as an external corroborator to reduce bias.

22.6 Context and Sources

The focus university of this study is a Finnish research-intensive university. Finnish
university studies typically last five years with three years of Bachelor’s studies and
two years of Master’s studies. Students declare a specific major when they enter the
university, and their studies focus heavily on their chosen discipline from the
beginning. Typical majors for students who take mathematics undergraduate courses
are mathematics (including teacher education), computer science, economics and
statistics.

The source data for the study consists of course websites and what is linked to
those pages, in particular the written learning objectives. In the focus department of
this study, there has been very little programme level control or planning of the
learning objectives of individual courses. Since 2017, the study programmes have
set learning objectives for each course, but objectives have been concise and written
at a general level. In particular, there has been no programme level requirement of
including generic skills among the learning objectives. All this means that individual
teachers of the courses have been able to write more detailed learning objectives and
use them in their teaching. The learning objectives we use as data in this study are the
learning objectives written by the teachers of XA courses. The sources of our study
can be considered primary sources, as they were produced by the teachers them-
selves at the time of teaching.

Data were gathered from courses that were taught with the XA model since its
adoption to teaching mathematics in 2011. They are described in Table 22.1. Apart
from Algebra II, all the courses are undergraduate courses. The table contains
abbreviations that are used for the courses in the subsequent sections.

In total, 64 different implementations of these courses were included in the study.
Nine course pages no longer existed, and these implementations were excluded from
the analysis (1 instance of IUM, 3 instances of LM1 and 3 instances of LM2). All
these courses were summer courses offered by the Open University, and they had
visiting teachers who could not be reached at the time of this research. The courses
included in the study were taught in Finnish, and quotes presented in the following
section are translated from Finnish. The only exception is the course A2 which was
taught in English in 2017–2019.
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Table 22.1 Description of courses included in the study

Course name
Abbre-
viation Level

Credits
(ECTS) Topics

Implementations
included in the
study

Introduction to
university
mathematics

IUM Bachelor
(BSc)

5 Sets, functions, proving Autumn
2011–2019
Spring
2013–2019
Summer
2017–2018

Linear algebra
and matrices I

LM1 BSc 5 Vectors of Rn, matrices,
linear independence,
basis, eigenvalues

Autumn
2011–2019
Summer 2013,
2016–2019

Linear algebra
and matrices II

LM2 BSc 5 Axiomatic definition of a
vector space, linear
mappings

Autumn
2011–2018
Spring 2020
Summer 2013,
2016–2019

Algebra I
(split into AS1
and AS2 in
2015)

A1 BSc 10 The first half of the course
corresponds to AS1, and
the second half to AS2

Spring
2011–2014

Algebraic
structures I

AS1 BSc 5 Groups, rings Spring
2015–2020

Algebraic
structures II

AS2 BSc 5 Quotient groups,
homomorphisms

Spring
2015–2019

Algebra II A2 Master
(MSc)

10 Group theory, commuta-
tive algebra, field
extensions

Spring
2016–2019

22.7 Results

The results are organised under four subthemes: which generic skills are mentioned
among the learning objectives, how the generic skills are presented, alignment of the
generic skills objectives with teaching methods, and how the generic skills objec-
tives of different courses are related.

22.7.1 Generic Skills as Learning Objectives

Generic skills that have been mentioned in the XA course descriptions over the years
have varied. The following categories were identified among the learning objectives
of XA courses: problem-solving, oral and written communication, group work,
reading, innovativeness and creativity, information technology skills, giving and
receiving feedback, and developing a mathematician’s identity. Table 22.2 illustrates



the change in diversity that has happened over the years in generic skills, listing the
categories of generic skills in 2013 and in 2019. It can be seen that the variety of
generic skills has risen from three to nine categories. This implies that over the years,
teachers have become more proficient in recognising and verbalising generic skills.
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Table 22.2 Categories of generic skills that appear in course syllabi in 2013 and 2019. In 2013,
three categories were identified among generic skills, whereas in 2019, nine categories were
identified

Generic skills in 2013 Generic skills in 2019

Reading skills
Written communication
Oral communication

Reading skills
Written communication
Oral communication
Information technology skills
Collaboration skills
Problem-solving skills
Creativity
Giving and receiving feedback
Developing a mathematician’s identity

When the XA model was implemented for the first time in 2011,
learning objectives concerning generics skills did not exist. In autumn 2013, the
learning objectives for the courses IUM and LM1 were described in detail as
learning objectives matrices, including also generic skills. As learning the kind of
skills experts use is in the core of the XA method (Vihavainen et al., 2011), the first
learning objectives emphasised skills that were considered important to expert
mathematicians. They concerned reading skills (e.g. “Reads course material”), oral
communication (e.g. “Is able to form precise questions for one’s mathematical
problems”), and written communication (e.g. “Writes solutions whose language
and logical structure are so clear that another person can make sense of them”).
Reading mathematical proofs is mentioned separately (“Reads proofs and is able to
follow their logical structure”). Oral and written communication have had a prom-
inent role among the generic skills throughout the years. Of all the skills, they have
been mentioned most often. Coincidentally, these skills have been recognised as
important in mathematics curricula also in other sources (FYiMaths, 2013, as cited in
King et al., 2017; Leung et al., 2014). After the emergence of first learning objec-
tives, matrices were created also for other courses, and the existing ones evolved
slightly. In the autumn 2014, information technology skills were added to the
courses LM1 and LM2. These learning objectives concerned mathematical program-
ming (e.g. “Is able to make small alterations to the code in order to obtain desired
results”, “Is able to search for new commands”).

A big step in the evolution of generic skills happened in spring 2016 when the XA
model was implemented in a Master’s level course A2. Because the course had a
smaller number of students than undergraduate courses, group work could be easily
incorporated into the teaching of the course and, for the first time, collaborative skills
were mentioned (e.g. “Does one’s own share in group work”, “Takes the other
members of the group into consideration”). The appearance of collaborative skills in
other XA courses was not until the course AR1 in spring 2020. All this implies that



the teachers found it difficult to include group work into teaching. Indeed, there is
evidence from previous studies that group work and collaboration skills do not
develop enough during studies (King et al., 2017; Tuononen et al., 2019), and
should be taken into account more often in curricula and assessment (Challis et al.,
2009; Inglis et al., 2012; Leung et al., 2014).
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Another new category that emerged in the course A2 in 2016 was problem
solving skills. These skills included, for example, linking concepts and coming up
with new ideas in solving challenging tasks. They were added because the teacher of
the course felt that it was difficult to describe advanced content skills in mathematics
as all of them seemed to boil down to problem solving. Problem-solving skills are
typical learning objectives in mathematics (Barker et al., 2004; Challis et al., 2009;
Leung et al., 2014), so it is somewhat surprising that they did not occur among
learning objectives prior to this. Maybe this was due to the fact that so much of
mathematics is related to problem solving that it was difficult to “see the forest for
the trees”, that is, to distinguish it from the content categories. The generic skills in
the course A2 included also creativity (“I can come up with proofs that require
linking different concepts and creative thinking”).

The next major evolution happened in summer 2017 when the learning objectives
of the course LM1 were expanded significantly. For example, oral communication
skills now included new skills such as “I have mathematical discussions in which I
express my own thoughts and listen to other people’s ideas” and “I am able to
maintain a mathematical discussion that benefits both parties”. Written communica-
tion was broadened to include skills related to writing proofs, such as “I define the
variables I use in proofs”. Also, a completely new category of skills, giving and
receiving feedback, appeared when peer feedback was added among the teaching
methods of the course. These skills concerned reacting to written feedback received
from teachers and peers (e.g. “I do not take personally the feedback I have received
but understand that it was given so that I could learn more”, “I am able to operate in
situations in which I receive contradictory feedback from different sources”) and
giving feedback to other students (“I give constructive peer feedback that aims to
make the other students’ work better”).

“Developing a mathematician’s identity” was a new category of skills that
appeared in the course IUM in autumn 2018. These skills concerned the epistemol-
ogy of mathematics (e.g. “I can explain the meaning of definitions, theorems and
proofs in mathematical communication”), cultural symbolism (e.g. “I aim to adopt
phrases used in mathematics”) and motivation (e.g. “I am persistent when facing
difficult problems”). Developing an identity is not something that is typically listed
as a learning objective. It bears resemblance to “acquiring mathematical habits of
mind” which the Mathematical Association of America recommends to be taught in
mathematics courses (Barker et al., 2004).

The ability to give and receive feedback as well as developing a mathematician’s
identity relate closely to the development of expertise and self-regulative knowledge
and skills (Tynjälä et al., 2016). It seems that workplace relevance and students’
employability were at this point considered more than before, which implies that a
new step in the evolution of generic skills was taken.



22 Examining the Role of Generic Skills in Inquiry-Based. . . 459

22.7.2 Communicating the Generic Skills

During the development of the XA model, the way generic skills are formulated in
the course websites and in the learning objectives has changed. In the beginning of
the model in 2011, the focus of course websites was on practical instructions and
course content, and learning objectives with complete descriptive sentences were
virtually absent. This was the tradition in mathematics course pages: precedence was
given to practical information, such as lecture times and how to complete the course.
Course content was given as a list of topics in the lower part of the page, as it was not
thought to be referred to as often as the practical information.

Generic skills make a first appearance in the course page of LM1 in autumn 2012
as an add-on sentence after a list of mathematical topics: “In addition, the student
will develop their skill in reading mathematical texts and practices to produce clear
and well-structured solutions.” Soon, however, learning objectives were brought to
the courses in the form of matrices, divided into “foundation skills” and “course
topics”. These corresponded roughly to generic skills and content skills. Matrices
themselves were given in separate pages, which enabled them to be moved to the top
of the course page, and “foundation skills” appeared above “course topics”. This
seems to convey a message that the “foundation skills” were considered something
that underlay the learning in the course.

Teachers’ personal development shows in the way they gradually break away
from tradition. First, the teachers realised the importance of including the learning
objectives, and soon moved them to the top of the course page. However, the
teachers struggled with the proper formulation of generic skills in the learning
objectives and instead gave them in the form of practical instructions directly
applicable to studying, such as “Familiarises oneself with the topic of the following
lecture with the help of the course material, in order to get full benefit from the
lecture.” It seems that the teachers of the XA model considered it important to tell
students that learning in these courses consists of more than the mathematical
content and procedures, but they did not yet know how to express these as objectives
instead of instructions. On the other hand, this operationalised formulation may have
been more approachable to students who were also not yet familiar with learning
objectives.

The introduction of self-assessment was a major catalyst in the way learning
objectives were expressed in XA courses. For successful self-assessment, it was
essential that learning objectives were formulated in such a way that it would be easy
for the students to relate their skills to the requirements of the course (Andrade & Du,
2007). Earlier, the objectives had been written in third person, but now they changed
to first person, likely to assist with reflection. Also, the requirement levels of the
objectives had been labelled as “approaching required skills” and “achieving
required skills”, which had emphasised the learning path leading to course comple-
tion; now they were changed to grade levels “1–2”, “3–4” and “5”, to assist with self-
grading. This in turn prompted the need for more careful analysis of different levels
of skills and rewording of the objectives. This improved the quality of the learning



objectives matrices, but on the other hand, the earlier idea of a learning path that
takes place before the passing level was lost.
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As the learning objectives matrices were being completely redesigned, it gave the
opportunity for the teachers to pour in everything they had learned during the years
since the first matrices were written. They had also gained confidence and were
ready to embrace bold ideas and stride even further from tradition. The generic skills
and course-specific skills were combined in the same matrix. Study skills and expert
skills were properly combined: for example, the formulation “Participates in discus-
sion in lectures and workshops” was replaced with “I participate in mathematical
discussions, in which I express my own ideas and listen to others’ ideas”. Here, the
objective is written as a generic skill that is useful also beyond university studies, and
the expanded wording points out what is important in these discussions. However,
the full generality is still curbed by the use of the word “mathematical”; this word
could have easily been removed without real difference to the meaning.

An issue specific to mathematics concerns mathematical proving. Proving is an
activity almost unique to mathematics. In terms of generic skills, it could be said to
incorporate at least three skills: problem-solving, written communication and crea-
tivity (e.g. CadwalladerOlsker, 2011). In the learning objectives matrices, proving
first appears as its own category in generic skills, including reading and constructing
proofs. In 2017, this category disappears, and skills related to proving appear under a
new heading “Reading and writing mathematics”. It seems that at this point, teachers
have wanted to put special emphasis on the communication aspect of proving.
However, with this choice, other aspects, such as problem solving and creativity
may have become undervalued.

Throughout the development of the XA model, the evolution of generic skills in
the course websites and objectives reflects the development of pedagogical compe-
tence and confidence of the teachers, as they gradually break away from tradition.
The largest visible changes happened in two stages: the introduction of learning
objectives matrices in courses and redesigning the matrices at the introduction of
self-assessment. However, the teachers’ skills have clearly been developing in the
meantime, as when the visible change happens, the result is much more sophisticated
and developed than before.

22.7.3 Interplay of Objectives, Methods and Assessment

The concept of alignment in course design refers to choosing the teaching methods
so that they support the learning objectives and basing the assessment of learning
outcomes on the same objectives (Biggs & Tang, 2007). Analysis of the source
material reveals that regarding generic skills, the XA courses have always struggled
with alignment. Most strikingly, the courses kept the traditional end exam assess-
ment for many years, although learning was supported by many new types of
formative assessment during the course.
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In some cases, the objectives have been tied strongly to a particular method,
instead of choosing methods to reach the objectives. This can become an issue when
objectives are shared between different courses or course instances. For example,
learning to read and understand proofs is part of the general goals in the XA
framework. However, it is not dictated how this goal is supported, apart from that
it should happen primarily through students’ activity. In autumn 2015, a method
called “self-explanation training” (Hodds et al., 2014) was adopted as an activity in
the courses IUM and LM1. Later, to emphasise this to the students, a new skill was
added to the learning objectives matrices: “I know how to use self-explanation to
read and understand proofs”. This then raised the question whether future instal-
ments of the same course – or indeed other XA courses – would need to include the
self-explanation training activity.

There have been even more substantial examples of changes in methods leading
to changes in objectives. In spring 2016, the course A2 introduced small group work
in the classroom. In accordance, group working skills were added as a separate topic
to the learning objectives matrix. Similarly, in summer 2017, peer feedback exer-
cises were added to the course LM2, and accordingly, a new category of “Giving and
receiving feedback” was added to the learning objectives matrix. Later, it was
noticed that the course workload was becoming too heavy because of too many
different kinds of activities, but – according to the teacher – it was difficult to give up
the peer feedback exercise as it was now considered as part of the learning
objectives.

Concerning assessment, the XA framework does not take a position on how to
conduct it. For many years, XA courses were assessed in the traditional way of final
exams, often coupled with mid-term exams and extra points awarded by coursework.
However, generic skills were mostly not assessed. This changed when summative
self-assessment was adopted in the course A2 in spring 2016. The self-assessment
was performed in private assessment discussions with the teacher at the end of the
course; the students were allowed to choose a final grade and offer justifications
based on the learning objectives. As the teacher had followed the activities in class
closely, this enabled a reliable assessment of practically all generic skills. The new
assessment spurred developments also in other courses: self-assessment was added
in different amounts, exams were changed to project work, and so on.

It can be seen that throughout the development of XA that there has been an
increasing amount of striving for better alignment. Regarding generic skills, there
have been difficulties, as the assessment methods that teachers were used to did not
support direct assessment of generic skills. This was particularly problematic, as
researchers have noted (e.g. Kember, 2009) that in order to support the learning of
generic skills, teaching and assessment methods should be varied and aimed at the
desired capabilities. However, as the XA model evolved and teachers gained expe-
rience, the alignment improved. This is again in line with previous research that
stresses that teachers need to have pedagogical competencies to integrate generic
skills and to use various teaching and assessment methods (Hyytinen et al., 2019;
Jones, 2009).
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22.7.4 Programme-Level Development

Analysis of the source material indicates that learning objectives regarding generic
skills vary less from course to course than those regarding content skills: content
skills are unique to each course, but some courses share the learning objectives for
generic skills. For example, the first learning objectives matrix was created for the
course LM1, and the courses IUM and LM2 used this same matrix. Even though the
learning matrices for the courses LM1 and IUMwere initially identical, they evolved
individually over the years, resulting in two different matrices. Over the years, the
courses have influenced each other in many ways. Individual learning objectives
may have been copied from one course to another, or the objectives of one course
have served as prerequisites for another course. For example, taking into account the
feelings of another person in a conversation was added to the learning objectives
matrix of the course A2 in spring 2018. In autumn 2018, this was mentioned also
among the learning objectives of the course LM1. Another example is the course
AS1 which has the course LM1 as a prerequisite. Almost all prerequisite skills for
the course AS1 are learning objectives from the course LM1.

Because learning generic skills requires time and practice (Bunney et al., 2015), it
is good that the same generic skills are mentioned as learning objectives in different
courses. On the other hand, the fact that so many courses in our study share the same
generic skills in their learning objectives can also be seen as a downside, as students
are expected to develop diverse generic skills. In addition, one would assume that
students’ generic skills develop during each course and therefore the subsequent
courses should have more advanced learning objectives.

Collaboration between teachers has had a central role in the evolution of generic
skills in the XA courses. For example, in 2013, when the first learning objective
matrices were created for the courses LM1 and IUM, they were written in collabo-
ration with the teachers of the two courses who were close colleagues. Also, the
significant rewriting of learning objectives in 2017 was done in cooperation with
teachers from different courses. From previous studies, it is known that development
and integration of generic skills into disciplinary courses requires collaboration
between teachers, and that teachers understand individual and collective responsi-
bility for teaching generic skills (Hyytinen et al., 2019).

In many cases, ideas have spread from one course to another when the same
person has taught those courses. For example, the courses LM1, AS1 and A2 have
all been taught at some point by the same person who has used the learning
objectives of one course in writing the learning objectives of another course.
Those learning objectives have then been passed on to the new teacher. This way,
knowledge about learning objectives has been transferred to new people. However,
in some cases, the new teachers have only published the mathematical learning
objectives but not the ones concerning generic skills (LM1, summer 2013; LM2,
summer and autumn 2017). It may be that the teacher did not find the generic skills
relevant or thought that it would be too radical to publish them.
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In the focus department of this study, individual teachers have had a central role
in shaping how generic skills are taken into account in the teaching of mathematics
courses. They have developed teaching methods and learning objectives and have
spread information among undergraduate courses. While it has been important that
the initiative to develop generic skills has come from the teachers, also programme
level planning would have been needed. To ensure that the core generic skills are
taught during the study programme, and different courses emphasise different
generic skills, programme level development and collaboration are essential
(Bunney et al., 2015).

22.8 Concluding Remarks

In this chapter, we studied the visible presence of generic skills during the develop-
ment of an IBME-type teaching model, Extreme Apprenticeship (XA). Our analysis
revealed that during the development of XA, the variety of generic skills mentioned
among the learning objectives has become much wider, and generic skills have
gradually assumed a position equal to content skills. Moreover, the way generic
skills are described has become more sophisticated. Assuming that the written
learning objectives reflect the teachers’ intentions and actions in their teaching, we
can infer that the role of generic skills has increased and diversified in XA courses. In
this way, our study lends support to the claim that introducing IBME style teaching
has potential to teach generic skills in university mathematics.

The development of the XA model and of the learning objectives concerning
generic skills have been intertwined. New additions to the teaching model, such as
self-assessment, peer feedback and group work, have spurred new learning objec-
tives and vice versa. The introduction of self-assessment seems to have been a
particularly significant reform that has changed drastically the way generic skills
are presented and assessed. These findings indicate that within IBME, the active role
of students as well as varied tasks and assessment methods may support the learning
of generic skills. Also, our results suggest that hands-on teaching experience of the
developers and programme-wide collaboration by the teachers may foster effective
incorporation of generic skills to the curriculum.

This study used the historical method to describe past events and search expla-
nations for teachers’ choices. A lot of care was taken to include all relevant sources
and to confirm the dating and authenticity of the documents. However, it is possible
that some details may have been overlooked. Another potential error is biased
interpretation. To mitigate this, the authors first collected and processed all material
systematically. Then they compared their findings and interpretations. As two of the
authors were developers of the XA model, and the third was a non-mathematician
and a researcher of generic skills, the team had both insight that helped with
interpretation, and an external eye to reduce biased conclusions.

Generic skills are important for the students’ future, and time and effort should be
dedicated to them in university teaching. It can be argued that integrating generic



skills into domain courses is an effective way of including them in the curriculum. It
is therefore important that more studies are dedicated to investigating the effective-
ness of such integration attempts. We also invite researchers to report on students’
perceptions, which are lacking from our study. Furthermore, to complete the picture,
research is needed to assess to what degree these endeavours are successful in
actually teaching generic skills to students.
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Chapter 23
On the Levels and Types of Students’
Inquiry: The Case of Calculus

Margo Kondratieva

Abstract The learning of mathematics organized around carefully designed ques-
tions is vital for students’ quantitative literacy development at both elementary and
advanced stages. Deliberating on how the inquiry-based instruction could be
supported, we further theorize about the idea that inquiry comes in many levels
and through different types of activities. We use the Herbartian schema and related
constructs of the Anthropological Theory of the Didactic in order to embrace the
continuum of levels of inquiry, labeled as confirmation, structured, guided, and
open. We review calculus textbooks’ descriptions of these inquiries and their
roles. We also suggest additional activities of the types that complement those
found in the textbooks. The new types include tasks for comparison and recognition
of objects, evaluation of the validity of statements, modification of questions, and
evaluation of reasoning - the actions common in mathematical research. We con-
clude by commenting on possible relations between the activity’s inquiry level, type,
and its learning potential (e.g. adidactic, linkage, deepening, and research).

Keywords Calculus textbooks · Herbartian schema · Levels of inquiry · Milieu
construction · Praxeology · Types of activities

23.1 Introduction

Enhancement of quantitative literacy, that is, the ability to employ quantitative
arguments in various contexts, is one of the major goals of mathematics education.
However, it is very much possible that university students, whose program requires a
significant mathematics component, may not be successful in responding to rela-
tively elementary questions involving numbers and figures. Agustin et al. (2012)
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conducted a diagnostic test focusing on practical applications and interpretations that
entail
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sophisticated reasoning with elementary mathematics rather than elementary reasoning with
sophisticated mathematics (Steen 2004, p. 9).

Agustin et al. (2012) found that students had difficulties with geometric applica-
tions, numerical and algebraic relations, and drawing logical conclusions from
numerical information. About a half of Calculus 1 students failed to solve problems
like the following one.

Sample Diagnostic Question
A box is sitting on a floor in a room. It has the base 3× 6 sq ft and height 2 ft.
What are the (integer) dimensions of the smallest rectangular tarp that will
cover the box to the floor?

Hughes-Hallett (2003) proposed,

mathematics courses that concentrate on teaching algorithms but not on varied applications
in context, are unlikely to develop quantitative literacy (p. 93).

Indeed, it is important for learners to go beyond the formal use of rules. Mathematics
courses based on memorization, passive learning and reproduction of given ideas
and formulas do not prepare students for simple, practical applications of mathe-
matics, let alone for dealing with abstract ideas and formal reasoning that is central to
university mathematics (Nardi 2008).

Research on undergraduate teaching indicates the advantages of instructional
practices that actively engage students in learning mathematics (Freeman et al.
2014; Rasmussen & Kwon 2007; Kogan & Laursen 2014). The results of recent
surveys of mathematics departments in the United States that offer a graduate degree
in mathematics suggested that one of the main characteristics of successful calculus
programs was using active learning strategies, such as students working on problems
in class, peer-to-peer and whole-class discussion, either as the primary instructional
approach or in conjunction with lecture (Rasmussen et al. 2019). In addition, the
study highlighted the importance of including challenging units

offered with high expectations for students, including engaging, conceptually oriented
content beyond an emphasis on procedures and skills related to calculus (ibid, p. 100).

However, it was also concluded that many mathematics departments across the
United States are struggling with implementation of these recommendations even if
they recognize their value. In particular, according to universities’ self-reports only

22% of Precalculus courses used some or mainly active learning, and this shrank to 20% of
Calculus 1 courses and 14% of Calculus 2 courses (ibid, p.103).

Could the quality of assigned tasks be a part of the problem? Lithner (2004)
discusses that many textbook exercises can be done by copying solved examples
without any conceptual grasp of mathematical properties and ideas. He reports that at



In the course of an inquiry, a group X of (one or more) learners and a group Y of
(zero or more) teachers form a didactic system S(X, Y,Q) around the questionQ. The
learners are confronted with information received from various sources such as
experts, books, the internet, and peers. These sources of information, each of
which may have its own agenda, are regarded as media. The process of inquiry
involves critical revision of the statements received from media concerning possible
answers to the question Q, while looking for evidence and proofs of such statements.

least 70% of the 598 exercises that he had reviewed, fall in this category. Similarly,
Tallman et al (2016) found that 85% of 3735 randomly selected calculus exam
questions could be done by memorization of facts and procedures, without under-
standing of an idea or why a procedure is valid.
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This chapter partly addresses the issue of implementing active and meaningful
learning in teaching calculus and looks at selected learning resources from the
perspective of their potential support and promotion of students’ quantitative rea-
soning. For that, we first revisit the notion of inquiry as a nucleus of active learning.
We will theorize that inquiry comes in many levels, forms and different types of
activities. We will look at various tasks presented in the textbooks and offer inquiry
tasks of some additional types.

23.2 Theoretical Background and Framework

The inquiry-based approach in teaching mathematics is grounded in the epistemo-
logical view that knowledge emerges from such processes as thinking, experimen-
tation, and reflection. Knowledge cannot be simply imposed on learners because its
acquisition

depends upon the activity, which the mind itself undergoes in responding to what is
presented from without (Dewey 1902/1956/1990, p. 209).

This is consistent with the constructivist view on cognitive development of math-
ematics knowledge by active mind (Piaget 1950; Bruner 1968) when participants are
engaged in problem solving, specialization, generalization, conjecturing, and prov-
ing (Pólya 1945; Mason et al. 2010; Schoenfeld 1985).

In order to prevent students’ knowledge from becoming ‘inert’ (Collins 1988)
mathematical thinking is stimulated through various challenges and opportunities for
reflection on and improvement of mathematical understanding (von Glasersfeld
1987). These and other characteristics of the inquiry-based learning (IBL) of math-
ematics have been identified and studied from several theoretical perspectives
(Artigue & Blomhøj 2013).

In particular, the Anthropological Theory of the Didactic (ATD) (Chevallard
1999; Chevallard 2019) offers several constructs useful for our further deliberation
on the nature of inquiry. In the ATD, inquiry is defined as

the action taken to provide an answer A to a question Q (Chevallard & Bosch 2019, p. xxv).



theories without much familiarity with the origin of the considered tasks. Within this
paradigm it is the teacher or the book author who inquires about certain questions in
order to present a result of their inquiry to the learners.

Students are not expected to take part in the inquiry proper: they receive a ready-made
answer and have to accept, understand and adopt it as the class’s answer. [In this scenario] a
lecture [...] addresses ‘topics’, deals with ‘subjects’, and but rarely struggles to explicitly
answer explicit questions (Chevallard 2019, pp. 101–102).
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In this process, an adidactic milieu M is formed by the didactic system:
S(X, Y,Q)→M. From the dialectics of media and milieu, from the pool of statements
viewed as conjectures and their proofs, refutations or alterations, an answer A is
produced. In short, an inquiry is represented by the Herbartian schema

H½SðX, Y , QÞ→M�→A: ð23:1Þ

Milieu is the central part of an inquiry. It consists of answers A ′ = fA0
1, A

0
2, . . . g

available in media, questions Q ′ = fQ0
1, Q

0
2, . . . g derived from study of Q and A′,

and worksW that help to make sense of A′ and build up A. Milieu also includes data
D that is used in support of conclusions drawn within the didactic system S(X, Y, Q).
Thus,

M= fA ′, Q ′, W , Dg: ð23:2Þ

In the ATD, work W is viewed as any intentional product of human activity.
Questions and answers are considered as a type of work. Answers are regarded in
ATD as praxeologies. A praxeology consists of four elements: a type of tasks T, a
technique τ required to accomplish the task, a technology θ that explains or justifies
the technique and a theoryΘ that provides the foundation of the above items, with all
the notation used and assumptions made. The components constitute the praxis
block Π= [T, τ] and the logos block Λ= [θ, Θ] of a praxeology. Therefore, a
complete answer to any concrete question includes a practical and theoretical parts

A 3 ðΠ, ΛÞ: ð23:3Þ

The task type is specified by a verb and the object (e.g. ‘to solve a quadratic
equation’). Tasks are united in the same type because of the same method (tech-
nique) applicable to them. As noted by Polya & Szego (1978/98),

An idea that can be used only once is a trick. If one can use it more than once it becomes a
method (p. viii).

The need to understand and explain a technique calls for a technology and a theory.
Praxeologies emerge in human activity in response to humans’ practical needs.

However, they undergo a transposition when appearing in the teaching context. They
often become detached from the original context, disintegrated and reorganized for
the purpose of better exposition. This leads to the teaching paradigm of ‘Visiting
Works’ when students are let to appreciate certain techniques, technologies and even
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The ATD advocates for an alternative didactic organization that puts questions in
the centre of learning. ‘Questioning the World’ paradigm implies the presence of
active learners searching for truth and evidence among the answers and theories
available to them (including the results of their own reasoning). However, as we saw
in the Introduction, the implementation of this teaching paradigm presents difficulty
to many instructors. Indeed,

Most students, regardless of age, need extensive practice to develop their inquiry abilities
and understandings to a point where they can conduct their own investigation from start to
finish (Banchi & Bell 2008, p. 26).

Banchi & Bell (2008) proposed an approach addressing this issue in the context of
elementary science education. Viewing inquiry as a less formal type of research
activity, they proposed four consecutive levels of inquiry that students can experi-
ence. These levels are explained below. The research questions of this chapter are:

1. What new details that are useful in the context of calculus arise from an
ATD-based review of the Banchi & Bell approach?

2. How do calculus textbooks describe intended levels and roles of inquiry?
3. What are examples and purposes of additional problem types supporting IBL of

calculus?

23.3 The Levels of Inquiry in Calculus Textbooks

The level of inquiry depends on the amount of guidance and information given to
students by a book author or instructor, facing the question:

Where do I draw the line between content I must impart to my students versus the content
they can produce independently? (Ernst n.d.).

In the context of science education (Banchi & Bell 2008) divided the information
into 3 categories: (i) guiding question, (ii) procedure, and (iii) expected results. We
use the Herbartian schema (23.1) to further theorize about the classification proposed
in Banchi & Bell (2008).

The presence of a guiding question is explicitly shown in the Herbartian schema
as a part of the didactic system S(X, Y, Q). Answering a question could be reduced to
a sequence of related tasks. Procedure then is identified with techniques τ
corresponding to these task types T and supported by theory Θ. As for expected
results, in mathematics we should distinguish an effort that produces a short answer
a (e.g. a number or formula) from an inquiry producing a complete answer (23.3),
namely:

A= fa, Π, Λg: ð23:4Þ

According to the authors’ descriptions there are different textbook organizations.
In a traditional calculus textbook
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each chapter is divided into sections and at the end of almost every section, variety of
problems is given. [...] Each topic is followed by examples, simple and complex alike,
solved in detail and graphs are presented whenever they are needed. In addition, we provide
answers to selected problems (Friedman & Kandel, 2011, p. viii).

The key difference of the IBL resources is that questions are given after only some
minimal information is provided.

In this book the students will encounter a question or problem and then they will be given the
opportunity to answers the question or to solve the problem before moving on. The
organization of the material here maximizes the reader’s opportunity to participate in the
creative process (Falbo, 2010, p. xiii).

As Polya & Szego (1978/98) explained, the most important goal is to

stimulate the reader to independent work and to suggest to him useful line of thought. [...]
The impartial and factual knowledge is for us a secondary consideration. Above all we aim
to promote in the reader a correct attitude, a certain discipline of thought (pp. vi–vii).

Next, we review several traditional and IBL calculus textbooks used at the
undergraduate university level. While we realize that our selection of textbooks
could be complemented with more choices, we believe that it already allows us to
identify references to different levels and roles of inquiry.

23.3.1 The Structured and Guided Inquiries

According to Banchi & Bell (2008), in the case of structured inquiry the question
and procedure are both provided to students and their goal is to find the expected
result. In the case of guided inquiry only the question is provided, and it is
anticipated that students find their own procedures and results. Using (23.1), we
can schematically represent both cases as1

H½SðX, Y , Q♢
y Þ→M�→A♡

x , ð23:5Þ

where Q♢
y is the question posed to students by teacher y2 Y and A♡

x is a complete
answer (23.4) produced by student x2X. The difference shows up in the milieuM in
(23.5). In the case of structured inquiry the praxeology is provided ðΠ♢

y , Λ
♢
y Þ 2 M ,

while in the case of guided inquiry it needs to be constructed by the student:
ðΠ♡

x , Λ
♡
x Þ 2 M.

1Following the ATD tradition, we mark by the rhombus (Q♢, A♢, Π♢, etc.) the pieces of information
given to learners and by the heart (Q♡, A♡, Λ♡, etc.) - the elements produced by them. The subscript
y symbolizes the teacher y2 Y who supplies the information and the subscript x symbolizes the
learner x2X who produces the items while possibly working with other students and teachers.
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Exercises in the end of a section in a traditional textbook are typical examples of
these inquiries. Authors may deliberately vary the level of difficulty with the
pedagogical goal to include both kinds of inquiry, as illustrated below.

(a) The first exercises are routine, modeled almost exactly on the examples; these are
intended to give students confidence. (b) Next come exercises that are still based directly
on the examples and text but which may have variations of wording or which combine
different ideas; these are intended to train students to think for themselves. (c) The last
exercises in each set are difficult. [Doing them] requires insight into what calculus is really
about (Marsden & Weinstein, 1985, p. vii).

Group (a) in this quote gives an example of structured inquiry. IBL resources may
introduce concepts by breaking them in a sequence of short tasks. The following
structured inquiry aims at making students invent the definition of the derivative.

An Example of Structured Inquiry
Consider the function f(x)= x3 + 3x2 + 2.

(a) Calculate the average rate of change Δf of f from x= 0 to x= 3.
(b) We choose a sequence of points that gets incrementally close to x= 3.

Let x1= 2. Then f ðx1Þ= , Δf = .

Let x2 to be closer to x= 3 than x1. Then
Δf = .

Let x3 to be closer to x= 3 than x2. Then
Δf = .

(c) What is happening to Δf in part (b) above?
(d) This suggests to us that the instantaneous rate of change at x= 3 is .

This assignment tells students exactly what to do. Because of that Greene & von
Renesse (2017) are concerned that students

will successfully complete each task, but probably not understand the bigger ideas and
connections (p. 657).

As well, speaking of the dominance of structured activities (e.g. routine exercises) in
a traditional textbook, Lithner (2003, 2004) describes students’ approach to solve
problems by identifying surface similarities and mimicking sample solutions. We
represent such undesirable scenarios by the schema leading to an answer a♡x with no
or little conceptual understanding:

H½SðX, Y , Q♢
y Þ→M�→ a♡x : ð23:6Þ

Lithner (2004) suggests, possession of plausible reasoning based on intrinsic
mathematical properties is an essential conditions for obtaining complete answers
A♡
x (23.4).
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One possible scenario of the structured inquiry is worth noting. Students may
discover an alternative way of doing the given task while performing a method
suggested by a textbook or a teacher. Kondratieva (2019) discusses a case when a
student accidentally, by the virtue of making a mistake, found an alternative tech-
nique τ♡x ≠ τ♢y for finding the osculating plane to a 3D curve at a point. The analysis
of the mistake led the student (prompted by his instructor) to a theoretical justifica-
tion θ♡x of the new technique. This outcome is more desirable compare to (23.6):

H½SðX, Y , Q♢
y Þ→M�→ fa♡x , τ♡x , θ♡x g:

A general recommendation is to move from too much structured inquiry towards
a guided one that engages learners e.g. by means of a more authentic question, and
forces them to construct or invent rather than copy or follow an idea of a solution.

In the next task students supposedly will perform calculations similar to the ones
explicitly suggested in the structured inquiry example. However, now the calcula-
tions will follow from the logic supported by the physical model. Thus, the numer-
ical answer will be associated with the concept of instantaneous speed.

An Example of Guided Inquiry

Consider a situation where cameras are located along a roadway and the following
information about a passing car is captured:

Time (mins past start camera) 0.5 1 1.5 2 2.5 3 3.5

Distance (miles from start camera) 0.06 0.1 0.16 0.28 0.47 0.79 1.33

How fast is this car traveling at the exact instant 2.7 min past the start camera?

(a) Provide a strategy for obtaining your most accurate estimate to answer the above
question.

(b) Find a function that models the distance data provided above. Using this model,
calculate another estimate to answer the question (Greene & von Renesse 2017,
p. 658).

In the guided case, milieu still could contain some relevant ready-made works and
answers chosen by students from a book, lecture or the internet. However, learners
take more initiative for creation and verification their own approach. Due to this
increased complexity, Greene & von Renesse (2017) warn that,

you may find students become frustrated and give up on the question before reaching the
level of inquiry that would lead to deep understanding (p. 657).

Therefore, textbooks offer a combination of different levels of inquiries, some-
times accompanied by hints or explanations. Exercises could be embedded in the
text prompting learners to pause and think about emerging questions as they read a



section. Some IBL explorations can be no more than a long series of interconnected
exercises (Schumacher 2007, p. xv). As well, the authors value learning projects.2
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One way of involving students and making them active learners is to have them work
(perhaps in groups) on extended projects that give a feeling of substantial accomplishment
when completed (Stewart 2008, p. xiii).

Here is a description of a discovery project found in a traditional textbook.

By observing the patterns that occur in the integrals of several members of the family, you
will first guess, and then prove, a general formula for the integral of any member of the
family (Stewart 2008, p. 494.).

The families include
R

1
ðxþaÞðxþbÞ dx,

R
sin ðaxÞ cos ðbxÞ dx, R xnex dx,

R
xn ln x dx,

and the project comprises the following tasks: (a) evaluate particular (given) cases
using CAS; (b) guess general formula based on these cases; (c) predict other values
based on your general formula and verify with CAS; (d) identify the restrictions on the
parameters; (e) prove your formula using basic techniques of integration.

Another example of guided inquiry, a sequence of tasks that provides a link
between calculus and analysis by making use of several techniques learned in the
former to match a theoretical construct of the latter, is discussed in Kondratieva &
Winsløw (2018).

It is important that authors offer general guidance on how to approach an inquiry
and challenge (Adams & Essex 2010, p. xiv), elaborating on Polya’s principles of
problem solving Pólya 1945, and exemplifying them in the calculus context (Stewart
2008, pp. 76–78, 241, 322). Pólya & Szegő (1978/1998) advise to build up, connect
and apply ideas as learners work through sets of problems given in the book.

Many problems, which would be intractable even for an advanced student if set in isolation,
are here surrounded by preparatory and explanatory problems presented in such a context
that with some perseverance and a little inventiveness it should be possible to master them
(Pólya & Szegő 1978/1998, p. xi).

We will now consider another two levels of inquiry.

23.3.2 The Confirmation and Open Inquiries: Two Extremes

At the confirmation level of inquiry

students are provided with the question and procedure (method), and the results are
known (Banchi & Bell 2008, p. 26).

Using (23.1), we can schematically represent this case as follows

H½SðX, Y , Q♢
y Þ→M�→A♡

x =A♢
y : ð23:7Þ

2For ATD-based analysis of project-based learning see Markulin et al. (2020).
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In (23.7), student x is provided by teacher y with both the question Q♢
y and

components of milieu M: the short answer a♢y explained in the context of given
methodology3 and supported by numerical or pictorial data D♢. In the process of
internal confirmation A♡

x =A♢
y of the complete answer (23.4) offered in an example

illustrating a general method, the student is supposed to get a sense of how to
approach questions of the given type. As it is evident from the introduction to a
traditional textbook,

there are a lot of examples with complete solutions to help you with the exercises (Marsden
& Weinstein 1985, p. xi).

Further, an IBL textbook explains the aim of questions with solutions and
answers.

The solutions [. . . ] are stated in a step-by-step manner that lets the student uncover the
solution one line at time to check his or her work. [. . . ] Students may also use solutions as
hints. [. . . ] Cover all but the first line, and go back and try to work the problem on your own
(Falbo 2010, p. xiv).

Reading provided solutions after one’s own attempts, successful or not, to solve
the problems should result in deeper thinking processes.

If repeated efforts [to answer a question] have been unsuccessful, the reader can afterwords
analyze the solution [...] with more incisive attention, bring out the actual principle, which is
the salient point, assimilate it, and commit it to his memory as a permanent acquisition
(Pólya & Szegő 1978/1998, p. xi).

Thus, in view of the authors, a confirmation inquiry is a useful learning tool
because it requires careful analysis and validation of given information, understand-
ing of the presented ideas and remembering them for future use. Despite the fact that
all the information is available to students, their critical stand is signified by the
ability to interpret and explain and then to accept or reject provided items, and as a
result, by the appearance of their own questions Q♡

x in the milieu M.
The emergence of questions is a crucial characteristic of any level of inquiry. They

may have various degrees of depth and sophistication, pivoting students’way towards
a complete answer. Some of these new questions may give rise to an independent
inquiry. In this case the inquiry is said to be open. At this highest level students

have the purest opportunities to act like scientists, deriving questions, designing and carrying
out investigations, and communicating their results (Banchi & Bell 2008, p. 27).

When students use actual questions Q♡
x that they have about calculus (Perrin &

Quinn 2008), they construct a milieu to develop and test own conjectures:

H½SðX, Y , Q♡
x Þ→M�→A♡

x : ð23:8Þ

3Students may be given either only the praxis block Π♢
y requiring own explanations θ♡x or both

praxis and logos blocks ðΠ♢
y , Λ

♢
y Þ requiring a validation.
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This is how an author of IBL resources describes intended students’ behaviour:

An Example of Open Inquiry

[...] students investigate the area and perimeter of Koch’s snowflake. They naturally
develop an example of a series and ask just the right question: Is this infinite or not? How
do we know when a (geometric) series is convergent or not? Looking at many examples
on wolfram alpha [a CAS] can then lead to a conjecture. Now the students are ready to
think about how to prove their conjecture. Notice that any language needed (series,
geometric series, convergence, divergence, sum notation, limit, . . .) can be provided
during the exploration, when the students need and want the vocabulary to express their
thinking (von Renesse 2014).

Learning to conduct an open inquiry involves mastery of the lower-level inquiries
and simultaneous experience of several levels of inquiry within the same activity
(Banchi & Bell 2008, p. 28).

In a sense, a goal of any textbook is to teach students how to conduct open
inquiries, that is to model how to ask right questions and the ways to approach their
answers. Learning to inquire is a gradual process. Pólya & Szegő (1978/1998) begin
with questions that do not require any special mathematical knowledge. However,
some of their problems from the first (1924) edition of the book have given rise to
extensive research (ibid, p. v).

Describing IBL, textbook authors emphasize supporting role of the instructor
encouraging students’ initiative and engagement in the learning process:

a teacher must be willing to become an ‘interested bystander’, while the student is the one
who presents solutions on the board (Falbo 2010, p. xi).

Students’ collaboration in small groups should be promoted, while the instructor

supports the students’ exploration by helping them make conjectures and see important
relations (Schumacher 2007, p. xvi).

Instructors also should help students develop meta-skills such as being confident,
curious, motivated, and persistent (Greene & von Renesse 2017). In any case, IBL
instructors should be interested in and promote student thinking (Rasmussen et al.
2017).

Next section models more types of tasks that one performs during mathematics
inquiries.

23.4 Additional Types of Activities That Promote Students’
Inquiry

Calculus textbooks include a wealth of material for instructors to select from, adjust
and compose the tasks to be offered in their courses, based on students’ needs
(Adams & Essex 2010, p. xv). Meantime, Swan (2005) provides examples at the



secondary school level and advocates for usefulness of activities of the following
five types: classification of objects, recognition of objects in various forms, evalu-
ation of statements, modification of problems, and analysis of reasoning. We follow
the original intention of each of the types and illustrate how an instructor can
compose new “inquiry-training” questions from typical assignments found in
textbooks.
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23.4.1 Classifying Mathematical Objects

In this type of activities students compare objects from a given set using either own
or given classifications.

They learn to discriminate carefully and recognize the properties of objects. They also
develop mathematical language and definitions (Swan 2005, p. 16).

Textbooks often ask to evaluate individual series. In the next example the quest is
open for discussing and using other criteria for series comparison.

Activity 1
Examine the following three series and identify, in turn, why each one might
be considered the odd one out.

P1
n= 1

1
2

� �n

,
P1
n= 1

-
1
2

� �n

,
P1
n= 0

ð- 1Þn π
2

� �2nþ1 1
ð2nþ 1Þ! :

The first two series are geometric, while the third is not. The second and the third
series are alternating, while the first is not. The first and the last series converge to
1, while the second converges to- 1∕3. If unable to evaluate all series students could
estimate that the second sum is negative, while the first and the last are positive.

In the next example students will see how organization of information may lead to
new conjectures and address misconceptions.

Classify the p-sequences fan = 1
npg

1
n= 1, parameterized by real numbers p in the

two-way grid by providing relevant values of p in each cell

Activity 2

General term an = 1
np, n≥ 1

P1
n= 1

an converges
P1
n= 1

an diverges

lim
n→1an = 0

lim
n→1an ≠ 0



P P

P P

1 0

→1
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A possible (incomplete) answer could consist of selected examples.

General term an = 1
np, n≥ 1

1

n= 1
an converges

1

n= 1
an diverges

lim
n→1an = 0 p= 2 p= 1

lim
n→1an ≠ 0 none p=-1

The ultimate goal of the activity is the complete classification that summarizes
properties of p series and sequences.

General term an = 1
np, n≥ 1

1

n= 1
an converges

1

n= 1
an diverges

Here parameter p is any real number.

lim
n→1an = 0 p> < p≤ 1

lim
n→1an ≠ 0 none p≤ 0

The second row of the table suggests that for sequences that converge to 0, related
series may or may not converge. However, in the third row of the table, one cell
contains ‘none’. This illustrates the Test for Divergence. Students often misapply it

by assuming that if lim
n→1an = 0 then the series

P1
n= 1

an converges, while the test really

claims that lim
n

an ≠ 0 implies the divergence of the series.

23.4.2 Interpreting Multiple Representations

In this type of activities students collect cards depicting the same mathematical
object or idea in different ways, by making sense of information encoded by
diagrams, formulas, word descriptions, etc.

They draw links between different representations and develop new mental images for
concepts (Swan 2005, p. 16).

Activity 3
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Students should recognize that cards 1, 4, 6 describe one object while cards 2, 3,
5 describe another one. They could also add graphical representation of the regions
and other possible descriptions. Students’ difficulties with the change of order of
integration and the use of polar coordinates in double integrals could be reduced if
they have understood multiple representations of the regions of integration. Similar
activity with 3D domains is helpful for performing triple integration.

23.4.3 Evaluating Mathematical Statements

In this type of activities students need to determine under what conditions (if any) a
given statement is true. By doing that, they learn

to develop rigorous mathematical arguments and justifications, and to devise examples and
counterexamples to defend their reasoning (Swan 2005, p. 16).

Statements could highlight common misconceptions and errors.

Decide whether the statement is always, sometimes or never true, and give
explanations for your decision: “When one evaluates an iterated integral over a
rectangular region of functions in the form f(x, y)= g(x)h( y), the order of
integration does not affect the efficiency of calculations.”

Activity 4

In general,
RR

½a, b� × ½c, d�
gðxÞhðyÞ dA=

R b
agðxÞ dx

R d
chðyÞ dy=

R d
chðyÞ dy

R b
agðxÞ dx .

As each integral (dx and dy) is done separately, the order of integration should not
affect the efficiency of calculations. However, if one of the integrals is zero and the
other integral is hard to evaluate, this makes a difference. Once counterexamples are
identified, students can adjust the statement to make it always true.

23.4.4 Creating Problems

In this type of activities students devise or modify problems for others to solve.

This offers them the opportunity to be creative and own problems. While others attempt to
solve them, they take on the role of teacher and explainer. The doing and undoing processes
of mathematics are vividly exemplified (Swan 2005, p. 16).

For instance, problems could reflect on the connection between the chain rule for
differentiation of composite functions and the substitution rule in integration, as
illustrated in the next doing-undoing example
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d
dx

sin ðuðxÞÞ = cos ðuðxÞÞ � u ′ ðxÞ→
Z

cos ðuðxÞÞ � u ′ ðxÞdx

=

Z
cos udu= sin ðuðxÞÞ þ C

Besides the inverse problems, students create variations of a given problem. They
need to pay attention to various aspects of the problem that affect its difficulty.

Modify the following question: “Starting from point A, you make one step in
any direction. If each of your next steps is a half of the previous one, what is
the farthest distance that you can move away from A? ”

Possible modifications include:

Activity 5

• How far away from A can you move in 10 steps?
• What is the least number of steps needed to move 1.9 metres away from A?
• What if each of your next steps is a 3/4 of the previous one?
• What is the region that you can eventually step in while moving in random

directions away from A?
• What is the infinite sum of all natural powers of 1

2?

Students’ understanding of the initial question in ordinary words may support
‘mathematization’ of further versions of the question. By inventing some alternative
questions students may also develop a solution strategy for the original problem.
However, some variations may be unnatural, clumsy, undefined, or unsolvable. To
ask reasonable questions is a skill that comes through experience and guidance.

23.4.5 Analysing Reasoning and Solutions

In this type of activities students focus on the solution process itself. They are asked
to (a) compare given alternative pathways through a problem, (b) logically organize
given fragments of a solution, and (c) verify a proposed solution.

By discussing given strategies to solve a problem, students concentrate on such
characteristics as generality, applicability and efficiency of different methods.
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Activity 6
Compare the following answers to the question “How to find the coefficient of

x11 in the Taylor expansion
P1
n= 1

anxn of the function f ðxÞ= e3x
4
?”

A:. Use the known expansion ey =
1

n= 0

yn

n!
and set y= 3x4.

B:. Use the formula an =
f ðnÞð0Þ
n! for n= 11.

C:. Notice that the function f is even, so only even powers will appear in the
Taylor expansion.

Strategy C is the most efficient due to specific property of the function. At the
same time, the most general strategy B is the least efficient in this case.

Comparison of several strategies of solving the same task could be useful for
students’ development of mathematical connections. Kondratieva & Bergsten
(2021) discuss a task of drawing a parabola and its tangent line by three different
methods. In that study students compared a calculus-based and two geometrical
constructions shown to them using dynamic geometry software.

The next activity deals with chains of reasoning consisting of several subtasks.
Each card contains a fragment of the process of evaluating a series by the telescoping
method. Cards related to two series are mixed together. When students sort these cards
producing two complete solutions, they focus on logic rather than on computations.

Activity 7
Sort the cards into two logically ordered solutions and report the answers.
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The sequence of card 1, 3, 4, 7, 14, 10, 12, 15 leads to the answer 1/2 in card 15.
The sequence 2, 6, 5, 9, 13, 11, 16 leads to the answer 1/6 in card 16.

Verification of given solutions is a tricky business, because errors could be of
different nature: computational or logical, including hidden assumptions, incorrect
inference, and redundancy. Ideally, students always have to verify the details of
solutions and proofs given in a book or lecture, even if they ‘make sense’ overall.

Consider the problem and examine the solution for possible pitfalls.
Activity 8

Problem: Find whether the series
P1
n= 0

n3

1þn4
p converges or diverges.

Solution: Consider the function f ðxÞ= x3ffiffiffiffiffiffiffiffi
1þx4

p , so that an= f(n). The integralR1
0

x3ffiffiffiffiffiffiffiffi
1þx4

p dx could be evaluated by the substitution u= 1 + x4, du= 4x3dx. The

resulting improper integral diverges:
R1
0

1
4
ffiffi
u

p du= 1
2 lim
a→1

ffiffiffi
a

p
=1 . By the

Integral Test, we conclude that the series diverges as well.

Application of the Integral test requires the function f to be continuous, positive
and decreasing on some infinite interval [x0, 1). While the first two conditions are
met, the last condition is not. So, technically the Integral Test in not applicable. At
the same time, the answer provided in the solution is correct: the series is divergent.
By discussing this situation, students review the role of the conditions of the Integral
Test in their explanations of why this test works. They should also conclude whether
the idea implemented in the solution is incorrect, or it only leads to redundant
calculations.

23.4.6 Different Types of Activities and Milieu Construction

The five types of activities support different ways of thinking (Swan 2005) and
contribute in the development of inquiry ability in different ways.

Classification of objects is critical for distinguishing intrinsic mathematical prop-
erties from surface similarities, the skill emphasised by Lithner (2004) in the context
of structured inquiry. It is helpful for identifying the type of task and related
methods. If criteria for comparison are not specified (Activity 1), learners face a
guided inquiry (23.5). The activity of sorting a collection of objects unites individual
problems in a small project, providing an opportunity for generalization and making
new conjectures (Activity 2), thus leading to open inquiries (23.8). Learners develop
mathematical definitions and language useful for working with the milieu ingredi-
ents (23.2).

By interpreting multiple representations of the same object, learners focus on the
meaning related to the technical skills required for producing each particular



representation. Careful consideration and explanation of matching choices (Activity
3) strengthen connections between praxis Π and logos Λ, leading to more complete
praxeologies populating learner’s milieu (23.2).

486 M. Kondratieva

By evaluating and properly quantifying statements (Activity 4), students develop
their ability to convince and prove. Since milieu includes possible answers obtained
from media, the ability to be attentive to details of statements is indispensable for
developing one’s own answer based on other works. Typical misconceptions may be
addressed through this type of activities.

By modifying problems, students reflect on the praxeologies that they possess.
They play with a given problem’s conditions by possibly altering types, methods and
justifications. This also fosters students’ ability to pose questions related to the
generating question (Activity 5) and thus, to shape the milieu development. Making
new problems is a sign of students’ progress towards open inquiry.

Analysis of reasoning aims to produce a shift from focusing on a short answer
(23.6) to making a complete answer (23.4) that includes theoretical justification.
Learners become aware that the same short answer could be produced in several
ways and they compare different praxeologies related to the same question (Activity
6). A short answer while formally correct, could follow from a flawed solution. A
proper construction of milieu (23.2) depends on the learner’s ability to spot mistakes
(Activity 8). Also, it relies on producing extended chains of smaller connected tasks
(Activity 7). Verification of reasoning within confirmation and structured activities is
a necessary step towards performing independent thinking at the guided and open
levels.

Most of the above activities are in the ‘Visiting Works’ spirit as they facilitate the
study of bodies of knowledge. Yet, they foster milieu construction in (23.1), the skill
critical for conducting research within the ‘Questioning the World’ paradigm.

23.5 Concluding Discussion

The IBL of mathematics stimulates the development of quantitative literacy because

students are learning how to learn. [...] They come to realize that the learning process
involves properly identifying questions/problems and then applying knowledge and
problem-solving skills to collect, analyze and synthesize information and arrive at viable
conclusions and solutions (Blessinger & Carfora 2015, p. 11).

In this chapter, we use the ATD theoretical frame to elaborate on the four-level
continuum of inquiry: confirmation, structured, guided and open. Besides clear
theoretical distinction between the levels in terms of the origin of question, proce-
dure and result, some new details become apparent by looking at the classification
through lenses of Herbartian schema (23.1). The goal of the formalization is to
scrutinize the structure of each case in terms of its building blocks. Such a look
reveals that at any level of inquiry the result of students’ work ought to include both
practical and theoretical components: the ultimate goal of their study is formation of



a complete (23.4) rather than a short answer (23.6). As prominent numerical analyst
R. W. Hamming once noted, the purpose of computing is insight, not numbers.
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Therefore, the procedure is viewed as more than just a method. A theory that
explains practical steps should be acquired by the learner and become a part of the
result. Theories may differ in their depth: calculus praxeologies could be rather
pragmatic and less formal than those found in real analysis (Job & Schneider, 2014).
Finally, the questions raised in the course of students’ work define the construction
of milieu from which an answer and possibly new inquiries emerge. The quality of
questions affects the quality of reasoning. A guiding question perceived as
unimportant may lead to superficial reasoning, while engaging questions stimulate
learners’ persistence and sense making.

In the open inquiry, much like in the scientific research, learners generate own
questions from their environment; then they search for answers, methods and
justifications. At the other extreme, everything: the question, the procedure and the
answer—are supplied in a textbook. A crucial shift in students’ learning attitude
occurs when they start to conceive the latter case as a confirmation inquiry. Instead
of blindly accepting or memorizing the given information, students begin to question
it and look for supporting evidence. The confirmation inquiry is a concluding part of
any inquiry. Students need to know when a problem at hand is solved correctly and
when an argument is valid. Working with confirmation inquiry tasks, they find
examples and models of such instances.

Structured inquiry activities require students to solve given tasks by given pro-
cedures. Each specimen of tasks brings its own mathematical nuance in the way the
procedure is employed. Focusing on those nuances helps students develop the
infrastructure used at the higher levels of inquiry.

The guided inquiry presents carefully crafted questions that engage students in
problem-solving activities. In practice, it may be hard to draw a line between the
structured and guided levels of inquiry. In both cases students construct a milieu to
find their own answer to a given question and they consult other works. However, in
the guided case students take more initiative in their search and invention of ideas,
compared to the structured case where the approach is suggested to them.

Traditional and IBL textbooks employ different teaching philosophies. The
former gear towards confirmation and structured inquires while the latter—towards
guided and open levels. Nevertheless, in both traditional and IBL calculus textbooks,
the authors build on the dialectic of study and research, providing careful explana-
tions and the room for reader’s action, reflection and initiative. They explicitly talk
about learning situations which could serve as inquires at any of the four levels. They
aim to bolster students’ confidence, feeling of accomplishment, and to encourage
independent work. The authors provide advice on students’ learning behaviour and
the role of instructor.

Open or guided inquiry activities have research potential. Besides that, an activity
may be characterized by its potential for students to (i) engage and work autono-
mously (adidactic potential); (ii) build upon existing knowledge (linkage potential);
and (iii) elaborate and construct inferences (deepening potential) (Gravesen et al.,
2017). Confirmation and structured levels of inquiry strengthen activities with



adidactic and linkage potentials. Students work with given information by making
connections with knowledge they already possess.
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Perhaps, in order to enhance the deepening potential of an activity, one needs to
emphasize a greater variety of tasks. Students should learn how to compare math-
ematical objects and classify them based on similarities and distinctions (Activity
1 and 2); recognize different representations of the same object (Activity 3); evaluate
statements paying attention to special cases and conditions (Activity 4); modify
given problems (Activity 5); analyze given reasoning (Activities 6,7,8). These
processes are useful for constructing a milieu from different inputs and appear in
mathematical research. Therefore, reliance on these types of questions is instrumen-
tal for developing students’ knowledge in progress and their abilities to conduct
more open inquiries. The mathematical ideas behind such questions, the level of
inquiry, and learning potentials could be foreseen by or evident to the designer.
However, as it is reminded in Gravesen et al. (2017), the realization of theoretical
characteristics of an activity strongly depends on the instructional conditions of its
implementation.

Our discussion about the range of inquiry levels and types of questions aims to
assist calculus instructors in the process of selecting learning resources and devel-
oping their teaching and assessment strategies to support IBL. Since students exhibit
various reading and working habits (Oktariani et al. 2020), including short-cut
strategies with suspension of sense-making (Lithner 2004), they will benefit from
explicit indication of learning goals and expectations related to each type of assigned
tasks.

Acknowledgements I am indebted to Carl Winsløw, Marianna Bosch and anonymous referees for
many useful and constructive comments.
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Chapter 24
From “Presenting Inquiry Results”
to “Mathematizing at the Board as Part
of Inquiry”: A Commognitive Look
at Familiar Student Practice

Igor’ Kontorovich , Rox-Anne L’Italien-Bruneau, and Sina Greenwood

Abstract The mathematics education literature occasionally suggests inviting stu-
dents to the classroom board to share results of their inquiry. In this conceptual
chapter, we discuss how this practice can be investigated. Linking across different
bodies of literature, we illuminate the special status of boards in mathematics and its
teaching, and elaborate on the affordances of a board as a physical place for
mathematizing. Building on the commognitive framework, we conceptualize the
practice in terms of situations where students engage in a public communicational
activity and generate narratives about the mathematical objects of their inquiry. We
refer to these situations as “mathematizing at the board” and argue for special
opportunities that they provide for students’ learning. To present the conceptualiza-
tion in action, we use two proofs that students generated at the board as part of our
ongoing project on topology teaching and learning. We use this data to illustrate the
analytical potential of the commognitive construct of routines to capture nuanced
differences in students’ mathematizing at the board.

Keywords Proving at the classroom board · Commognitive framework ·
Presentation of inquiry results · Topology teaching and learning

24.1 Introduction

As a pedagogical concept, inquiry has travelled a long way from the work of John
Dewey to the mainstream of mathematics education research (for a comprehensive
review see Artigue & Blomhøj, 2013). The Online Etymology Dictionary (n.d.)
suggests that the word “inquiry” originated from “enquiry” in Old French, where, in
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the early fifteenth century, it stood for “a judicial examination of facts to determine
truth”. In the contemporary educational literature, inquiry is used to refer to a family
of distinctive practices of learning and instruction, when some scholars maintain that
inquiry can underlie mathematics education in a broader sense (e.g., Artigue &
Blomhøj, 2013; Laursen & Rasmussen, 2019). Encyclopedia of Mathematics Edu-
cation defines inquiry-based mathematics education (IBME) as
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[. . .] a student-centered paradigm of teaching mathematics and science, in which students are
invited to work in ways similar to how mathematicians and scientists work. This means they
have to observe phenomena, ask questions, look for mathematical and scientific ways of how
to answer these questions [. . .], interpret and evaluate their solutions, and communicate and
discuss their solutions effectively (Dorier & Maaß, 2020, p. 384).

With this chapter we hope to make a conceptual contribution to the IBME literature
(cf. Gilson & Goldberg, 2015). Our focus is on what the IBME literature captures in
terms of “students presenting and sharing their work” (Laursen & Rasmussen, 2019,
p. 134), “communicating the results” (Maaß & Artigue, 2013, p. 781), and “the
process of presenting outcomes of an inquiry phase or of the whole inquiry cycle to
others (peers, teachers) and collecting feedback from them” (Pedaste et al., 2015,
p. 54). Some researchers suggest that this practice can unfold on a classroom board
(e.g., Ernst et al., 2017; Laursen et al., 2014; Yoshinobu & Jones, 2011), but only a
hand full of studies refer to the use of boards in inquiry classrooms (e.g., Johnson,
2013; Wagner et al., 2007). The issue pertains not only to the literature being silent
about how students mobilize the board to communicate their mathematical inquiries
but also to the need for the research machinery to investigate this practice in depth.
Hence, we are concerned with the question: “How can this student practice be
investigated?”

The openness of the question is intentional as it is aimed to ignite a conversation
in the IBME community about a practice, which some position at the core of inquiry
(Hayward et al., 2016). We use this chapter to share our perspective, which grows
from our theoretical stance, personal experience, and an ongoing project on learning
and teaching in a topology course (Kontorovich, 2021b; Kontorovich & Greenwood,
2022).

In a digital age, spotlighting students’ engagement with an old-school artefact
requires a justification. Accordingly, in Sect. 24.2, we deliberate on the special place
of boards in mathematics and its teaching, through linking works across different
bodies of literature and with an eye to inquiry. Afterwards, we turn to the
commognitive framework and capitalize on its comprehensive toolkit to conceptu-
alize the focal practice, to consider its potential in terms of students’ learning, and to
offer possible strands for its analysis (Sects. 24.3 and 24.4). In Sect. 24.5, w
illustrate these ideas with data from our project.
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24.2 Boards, Inquiry, and Mathematics

A lingering marker of a classroom that remains is an imposing vertical board
hanging on the wall. Barany (2020) trace the blackboards’ entrance to mathematical
higher education back to elite engineering training in Napoleonic France. Other
sources attribute the invention of a board to Reverend Samuel Reed Hall
(1795–1877), a minister and an education innovator, who is renowned for
establishing the first school in the US for preparing teachers, writing the first
American book on teaching, and organizing earliest education associations (e.g.,
Dobbs, 2001). Notably, some resources suggest that Hall used the first board to
explain arithmetic. His first board was a large sheet of dark paper that could be
written on and erased easily (the invention of the eraser has been also attributed to
Hall). Boards were initially met with ridicule, but Hall persisted with their usage
(Currier, 1878).

Inviting students to the board to prove mathematical statements has been a famed
instructional feature of the so-called “Moore method”. In the mathematics commu-
nity, Robert Lee Moore (1882–1974) has been recognized for his contribution to the
education of many mathematicians. Devlin (1999) goes as far as naming Dr. Moore
as “the greatest math teacher ever”. F. Burton Jones (1977) describes Dr. Moore’s
method of teaching as follows,

After stating the axioms and giving motivating examples to illustrate their meaning he
[Moore] would then state some definitions and theorems. He simply read them from his
book as the students copied them down. He would then instruct the class to find proofs of
their own and also to construct examples to show that the hypotheses of the theorems could
not be weakened, omitted, or partially omitted. [. . .] When a student stated that he could
prove Theorem x, he was asked to go to the blackboard and present the proof. Then the other
students, especially those who hadn’t been able to discover a proof, would make sure that the
proof presented was correct and convincing (pp. 274–275).

The reiterated rigidity of the Moore’s method (e.g., Coppin et al., 2009) may
overshadow several points of connection between this pedagogy and aspects often
associated if not with IBME then at least with inquiry-based approaches (e.g.,
Hayward et al., 2016; Mesa et al., 2020; Rasmussen & Kwon, 2007). Jones
(2017), a former student of Moore, argues that “the most important aspect of Dr
Moore’s teaching philosophy [. . .was] to develop the skill of thinking” (p. 301).
S. L. Jones juxtaposes learning to think and learning knowledge, associating the
former with generating original proofs and being critical about them. This echoes
Dewey’s (1938) notion of reflective inquiry as a controlled and reflective process, in
which students develop general habits of mind for learning (see Artigue & Blomhøj,
2013 and Laursen & Rasmussen, 2019 for the impact of John Dewey’s works
on IBME).

The instructional design at the core of Moore’s pedagogy, i.e., assigning math-
ematical statements for students to prove, providing them with space and time to do
so, and inviting them to the board to share their proofs, resonates to us with an
inquiry cycle (Pedaste et al., 2015). Such a cycle can enable “students to learn new



mathematics through engagement in genuine argumentation” and empower “learners
to see themselves as capable of reinventing mathematics and to see mathematics
itself as a human activity” (Rasmussen & Kwon, 2007, p. 191). Furthermore, in spite
of its general emphasis on individual learning, Moore’s format of students working
at the board has a distinctive social and even collaborative character. S. L. Jones
(2017) stresses that Moore would remain silent throughout a student’s proof, initially
leaving it up to the class to spot issues. This classroom dynamics opens the space for
communication where students explain their work to others, listen and attempt to
make sense of classmates’ arguments. Mesa et al. (2020) note that communication of
this sort is characteristic to inquiry classrooms.
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Laursen et al. (2014) comment that inquiry approaches in college mathematics in
the US have grown from the Moore method. In this way, the suggestions of some
researchers to invite students to the board as part of their inquiry (e.g., Ernst et al.,
2017; Johnson, 2013; Laursen et al., 2014; Wagner et al., 2007; Yoshinobu & Jones,
2011) may be seen as a pedagogical heritage of Dr. Moore. Yet, additional reasons
for making these suggestions can be offered.

Greiffenhagen (2014) notes the “iconic status” and “omnipresence” of black-
boards in mathematics, referring to them as “indispensable” for mathematicians
(e.g., see Wynne, 2021 for a remarkable gallery of mathematicians’ chalkboards
and reflective essays). Greiffenhagen notes that in popular culture, mathematicians
are often depicted as standing in front of a board, when many mathematicians use
similar photographs of themselves on their webpages. Furthermore, there are
accounts attesting to the role of boards in mathematicians’ work. For instance,
Lightman (2019) recalls how in the early 1970s, a renowned physicist, Richard
Feynman, developed equations describing spontaneous emission from black-holes
on the blackboard in Lightman’s office. This was a contravention to a then accepted
tenet, assuming that black-holes were “completely black” and emitted no energy on
their own. The ideas emerged as part of a casual conversation, and no one in the
room bothered to copy down the equations. When Lightman returned to his office
the next day, the blackboard had been wiped by the building cleaners. And a year
later Stephen Hawking became famous for his work on black-hole emission. This
story speaks to the value, spontaneity, materiality, and temporarily of mathematics
that one can generate on a board.

Paul Halmos refers to a blackboard when describing his famous realization about
epsilons in complex function theory. In his words,

Then one afternoon something happened. I remember standing at the blackboard in Room
213 of the mathematics building talking with Warren Ambrose and suddenly I understood
epsilons. I understood what limits were, and all of the stuff that people had been drilling into
me became clear (Albers, 1991, p. 8).

In his automathography, Halmos (1985) describes additional instances where he
arrived at significant mathematical insights when standing next to the board and
communicating with someone. This expands the conception of a board from a
material surface for capturing mathematics to a distinctive physical space where
one thinks, acts, and communicates mathematically. In accord with sociological



research (e.g., Artemeva & Fox, 2011; Barany, 2020; Greiffenhagen, 2014), we
suggest that people do mathematics at the board rather than only on it.
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The last set of reasons for engaging university students with a classroom board
stems from sociological research. This research illuminates boards, and especially
the black ones, as having “particular affordances that lend themselves to the presen-
tation of mathematics” (Greiffenhagen, 2014, p. 523). These affordances include the
close relations between mathematical thought and writing (e.g., Rotman, 1993), the
easiness with which words, symbols, and diagrams can be combined at the board,
and the possibilities that boards provide to mathematicians to “think with eyes and
hands” (Latour, 1986). These possibilities are relevant to those at the board and those
observing this process. For instance, in their investigation of a diverse cohort of
50 mathematicians, Artemeva and Fox (2011) found that all of their participants
accounted for a classroom board as a means of providing students with an experience
of mathematical processes. In the words of Halmos (1970), “the blackboard [. . .]
provides the opportunity to make something grow and come alive in a way that is not
possible with the printed page” (p. 149). Furthermore, many mathematicians in
Artemeva and Fox appreciated the way writing on the board slows down their
writing and supports their students’ focus and understanding. These affordances
seem especially relevant to inquiry classrooms, where students are expected to act in
ways that are similar to how mathematicians work, reason, and engage with each
other.

24.3 Mathematizing at the Board from the Commognitive
Standpoint

We propose that the commognitive framework is a viable candidate for investigating
the practice in the focus of this chapter. Our choice in commognition grows from the
increased attention that this framework has received in the last decade in the
community of university mathematics education (e.g., Nardi et al., 2014; Winsløw
et al., 2018). Furthermore, given the communicational nature of the focal practice
(see Sect. 24.2), it seems only reasonable to consider it through the lens of a theory
that is all about communication. We start this section by reviewing the framework in
brief and proceed to offering a commognitive perspective on the practice. The latter
enables us to consider the potential contribution of this practice to students’ learning
of mathematics.

24.3.1 Commognition in a Nutshell

Commognition is a socio-cultural, discursive, and participationist framework of
learning (e.g., Sfard et al., 2001). From the commognitive standpoint, in a university
mathematics course, a teacher and students participate in a mathematical discourse



a
(e.g., topology). Their participation manifests in their usage of characteristic key-
words (e.g., “topology”, “topological space”), visual mediators (e.g., “(X, τ)”,
diagram), routines (e.g., proving, topologizing a set), and narratives that are gener-
ally endorsed by mathematicians (e.g., “A set X together with all its open subsets
constitute a topological space”).
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In a classroom setting, the four abovementioned characteristics rarely feature in
their pure form as they are embedded in different types of communication. The first
type is mathematizing, and it occurs when students narrate about mathematical
objects (e.g., “So, let x not equal to y and suppose they’re in X”). Another frequently
occurring talk is that of subjectifying, that is, communicating about mathematizers
themselves (e.g., “I wanted to. . .”). One kind of subjectifying through which stu-
dents navigate their mathematical moves is meta-mathematizing (Chan & Sfard,
2020). It revolves around what mathematizers did so far, what they are currently
doing, and what they are planning to do next (e.g., “Suppose for a contradiction”).

Commognition situates students’ participation in a mathematical discourse on a
continuum, the two edges of which can be described as ritualistic and outcome-
oriented.1 Rituals refer to situations where one’s performance is driven towards
carrying out a mathematical procedure. The word “ritual” highlights the anthropo-
logical and sociological roots of the term. There, rituals are often viewed as cultur-
ally laden ways of acting that are valued for reinforcing traditions and promoting
social bonds (e.g., Bell, 2009). Similarly, Lavie et al. (2019) maintain that rituals are
appreciated for their performance and often executed for social reasons. On the other
end of the continuum, one’s actions are outcome-oriented when they are targeted at
growing mathematical narratives and developing routines that are new to the
performer.

Distinguishing between ritualistic and outcome-oriented participation entails a
methodological challenge. Nachlieli and Tabach (2019) suggest addressing it
through attending to circumstances under which a performer implements a routine.
Drawing on Sfard (2008), the researchers focus on the circumstances in which a
routine was evoked (initiation) and considered complete (closure).2 In this way,
rituals appear as socially encouraged processes, in which a performer adheres to a
particular procedure that has been formerly demonstrated. In outcome-oriented
cases, a performer is agentive and chooses among several options to pursue the
assigned task.

While recognizing the necessity of rituals for mathematics learning,
commognition is unequivocal in its wish for students to participate in a mathematical
discourse in outcome-oriented ways. Accordingly, contemporary commognitive
research focuses on teaching and instructional designs that afford such participation.
Nachlieli and Tabach (2019) discuss a special kind of tasks “that could not be

1The original commognitive term for the latter edge of this continuum is “explorative”. We use
“outcome-oriented” with the same meaning to avoid possible confusions with the notion of inquiry.
2Lavie et al. (2019) offer fine-grained characteristics for diagnosing one’s routine in terms of a ritual
and outcome-oriented performance. A “looser” approach to this issue is sufficient for our purposes.



successfully solved by performing a ritual. Rather, a successful completion of the
task can only be achieved by participating exploratively” (p. 257), i.e. in an
outcome-oriented manner. Next, we argue that the practice in our focus can emerge
in such a task.
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24.3.2 Mathematizing at the Board

Now that theoretical and conceptual blocks have been laid out, we are ready to offer
a commognitive perspective on the focal practice. We refer to it as mathematizing at
the board and associate it with classroom situations, in which a student (or a group of
students) is invited to engage in a public discursive activity and generate a mathe-
matical story (or a narrative) about the objects of their inquiry. In a university setting,
this story can be expected to unfold as a deductive sequence of endorsed narratives
that are substantiated in accord with a conventional mathematical discourse and
norms that have been established in a particular classroom. Once generated, such a
story can become a focus for a classroom discussion in terms of its holistic consis-
tency, comprehensiveness, and cohesiveness of its constituting narratives.

We argue that the above perspective is epistemologically different from the ones
featuring in the IBME literature in three ways. First, growing from a participationist
standpoint, we reject what appears as an implicit acquisitionist assumption (cf. Sfard,
1998 for a acquisitionist perspective on learning and Heyd-Metzuyanim & Shabtay,
2019 for an acquisition pedagogical discourse), according to which a student
“reflects”, “represents”, or “communicates” mathematics that they constructed in
the previous phases of their inquiry. Instead, we suggest that when mathematizing at
the board, students participate in a mathematical discourse in a manner that is distinct
from the ones that took place in preceding inquiry steps (for instance, when students
initially constructed mathematical stories about the objects of their inquiry) (for a
detailed examples see Kontorovich & Greenwood, 2022). Second, our perspective
underscores the mathematizing component of students’ communication, turning
mathematical objects into the main characters of their stories. This is different
from subjectification-dominated instances, in which students focus on what they
did with these objects in the preceding steps. Third, by construing a classroom board
as a physical space for communication, we attend to students’ stories as they unfold
in various media, including the components that are captured on the board (e.g., text,
diagrams, annotation), oral verbatim (e.g., utterances, intonation), gestures, move-
ment, face expressions, gazes, and so on.

Subject to an appropriate instructional design, mathematizing at the board can
require students to participate in a mathematical discourse in an outcome-oriented
manner (Nachlieli & Tabach, 2019). Similarly to how previously studied procedures
are not sufficient to complete a meaningful inquiry, it is hard to imagine a “recipe
book” that can prepare students for mathematizing at the board. Specifically, we
refer to myriad micro-routines that a student needs to initiate and lead to a closure,
such as generate a mathematical text, provide a verbal commentary, use notes, and



engage with the rest of the class. Thus, when considered in fine grain, the scope for
individual agency and decision making seems too large to “solve the task” of
mathematizing at the board ritualistically. Furthermore, Laursen and Rasmussen
(2019) argue that “as students discuss, elaborate and critique ideas together, they
deepen their understanding and build communication skills, collaborative skills, and
appreciation for diverse paths for solution” (pp. 138–139). Accordingly, when
accepting the invitation to the board, students implicitly agree not only generate a
story that is expected to meet high mathematical standards but to do so in the
presence of a particular audience, usually a teacher-mathematician and classmates.
Then, if appropriate inquiry norms have been established, the focal task can be
inseparable from the need to elaborate, revisit, and address potential critique of the
generated story (cf. F. B. Jones, 1977; S. L. Jones, 2017). Successful completion of
these processes is unlikely without the storyteller participating in a mathematical
discourse in an outcome-oriented manner.
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24.4 From a Broad Practice to More Focused Routines

In the previous section, we conceptualized mathematizing at the board in relation to
students’ stories that unfold in multiple media. An empirical study summons an
operationalization of this conceptualization that would afford exploring this practice
through the lens of more focused routines that students implement. The few math-
ematics education studies that we found casually mention that students put some
mathematics on the board, without delving into this process. Thus, we turn to the
neighboring bodies of research to extract three intertwining aspects that can inform
researchers’ selection of routines to notice and analyze: chalk talk, accounting for the
audience, and the distinction between oral and written mathematics.

24.4.1 Chalk Talk

Artemeva and Fox (2011) associate chalk talk with classroom situations where
teachers speak aloud “while writing on the board, drawing, diagramming, moving,
gesturing, and so on” (p. 355). The researchers consider chalk talk as a pedagogical
genre within a discipline “which is realized in the social practices and discursive
accounts of key stakeholders” (ibid, p. 346). The complexity of chalk talk stems
from myriad communicational and physical routines that a teacher undertakes either
in parallel or in a close proximity to each other. These include writing a mathemat-
ical text, articulating and providing a metacommentary on it, moving in space,
pointing, referring to notes or problem sets, raising rhetorical questions, pausing
for reflection, turning to students, and asking questions.

There are reasons to expect students’ mathematizing at the board to bear resem-
blance to the chalk talk of their teachers. Indeed, when this practice is planned (rather



than spontaneous), students can make preparatory notes, which seems not very
different from how university instructors get ready for their lectures. Furthermore,
Artemeva and Fox (2011) argue for the pervasiveness of chalk talk in many
mathematics classrooms as their findings emerged from university teachers at
different stages of their career, teaching experiences, countries, educational, cultural
and linguistic backgrounds. Bazerman (2010) notes that “knowledge is produced,
stored and accessed in specific genres associated with different activity systems”
(p. 445). Then, when put in an essentially pedagogical situation, it seems reasonable
for students to draw on chalk talk as a system of activities (or routines) of their
teachers. Given all the research on the dominance of lectures in university mathe-
matics, this might be the most familiar system to the students.
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24.4.2 Audience

Given the public nature of mathematizing at the board, it seems reasonable to attend
to how students account for their audience. In the context of argumentation, Perel-
man and Olbrechts-Tyteca (1969) distinguish between the universal and particular
audience. The universal audience consists of all the people that an arguer considers
competent, when a particular audience stands for a concrete group of people that the
arguer addresses explicitly.

In a classroom setting, it may be tempting to assume that peers and a teacher-
mathematician constitute the particular audience for students’ public mathematizing.
Yet, empirical research shows that even mature students can impose on themselves
different and rather idiosyncratic tasks in what may appear as a standard situation
(e.g., Kontorovich, 2021a; Krupnik et al., 2018). Then, special analytical tools are
needed to delineate the audience and the way it is considered in one’s
mathematizing.

One potentially useful tool of this sort could be attending to students’ use of
personal pronouns. Mathematics education has been focusing on teachers’ use of
pronouns. Pimm (1987) suggests that the ambiguity of “we” allows the teacher to
appeal to different referents: the teacher and the mathematics community, the teacher
and the students, the teacher only, the students only, or a combination of these. In
Rowland (1992), pronouns are interrogated from the perspectives of social position-
ing, interpersonal power, and generalization. Herbel-Eisenmann and Wagner (2010)
attend to personal pronouns as markers of interpersonal positioning of authority
(e.g., “I want you to”). Nachlieli and Tabach (2015) show that through personified
utterances a teacher can make mathematical objects more accessible to students (e.g.,
“when we move on the graph”). In this way, scrutinizing students’ oral and written
narratives for pronouns may turn insightful for learning about the audience the
students have in mind.
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24.4.3 What Is Said and What Is Written

Much has been said on the characteristics of academic mathematical texts (e.g., for a
comprehensive review see Morgan, 1998). These have been often described as being
dense with terminology and symbols, modest in their use of “grammatical” words,
impersonal and authoritative formulations, adhering to nominators rather than verbs,
underscoring deductive reasoning, and so on. Many of these descriptors are not
unique to mathematics and can also be found in scientific texts. Some of these
descriptors are explicitly recommended in purposeful resources for mathematics
writing (e.g., Knuth et al., 1989), which endows them with a status of disciplinary
norms. Thus, it may be interesting to see whether these descriptors apply to texts that
students put on the board, especially in advanced mathematics courses.

Lew et al. (2016) and Fukawa-Connelly et al. (2017) found that in their instruc-
tion of advanced courses, university teachers do not only provide definitions,
formulate theorems, and prove them, but also address more informal aspects, such
as modelling mathematical behaviors, giving examples and methods that can be
useful for a range of problems. Notably, while formal mathematics unfolded in
writing, more often than not, the informal elements were stated orally. This research
justifies paying attention to routines that students employ on the board compared to
those implemented orally. The routines through which the students coordinate their
work in the two media are also noteworthy.

24.5 Illustrations

To put the conceptualizations presented in Sects. 24.3.2 and 24.4 in-action, we turn
to our ongoing project. The project is contextualized in a topology course offered by
the mathematics department in a large research-intense university in New Zealand.
This course brings together mathematics majors at the advanced stages of their
studies and graduate mathematics students. The course has an interactive and
collaborative character, providing its students with multiple opportunities for active
participation in a topological discourse (Kontorovich, 2021b).

A key activity of the course was inspired by the “Moore method”. In this activity,
the students are allocated topological statements to prove and provided with space
and time to work on them. More complicated statements are usually allocated in
advance, giving students at least a week before proving them at the whiteboard for
the whole class. Each student is in charge of a different statement and its proving gets
scheduled for a particular lesson. In other cases, students work on the statement
during the lesson, which is followed by a volunteer proving at the board. The typical
course size is about 10 students, and each of them comes to the board several times
throughout a semester.
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Once a statement is proved, it is absorbed into the classroom discourse. This
legitimizes drawing on this statement in the future as well as a teacher-mathemati-
cian’s request to re-prove it as part of a test or an exam. This also applies to the
statements that students prove. Moreover, if a proof at the board is problematic, the
teacher-mathematician does not “fix” it in a traditional sense. Instead, she facilitates
a discussion encouraging the whole class to scrutinize the proof, discuss its
strengths, and offer suggestions for improvement. This instructional design creates
a system of dependencies between the student who mathematizes at the board and
the rest of the class.

In our project, we video-record the course lessons and collect students’ written
work. We believe that the project’s data on students’ proving at the board is suitable
to illustrate the preceding conceptualization of the focal practice. Next, we present
two proofs generated by Jonah and Virginia (pseudonyms) and proceed to analyze
them in terms of three routines: coordination between oral and written narratives,
accounting for the class audience, and meta-mathematizing. We choose the specific
proofs and routines for the readers to appreciate the richness that can emerge when
mathematizing at the board is analyzed in high resolution.

24.5.1 Jonah’s Proof

Jonah’s proof took place in the lesson on Hausdorff spaces. At the beginning of the
lesson, the teacher-mathematician defined Hausdorff spaces as those where every
two elements can be separated by open sets (i.e. for each x ≠ y in X there are open sets
U, V⊂ X such that x 2U, y 2 V andU \ V=∅). After discussing this definition and
specific examples, the students were divided in pairs and asked to prove proposi-
tions, including the following: “Given f : X → Y is a continuous function and Y is
Hausdorff. If f is one-to-one then X is Hausdorff”. After group work was completed,
Jonah volunteered to prove this statement at the whiteboard. He approached the
board holding the classroom notes with definitions and propositions but the note-
book with his previous work on the focal statement remained on the desk.

Table 24.1 presents the transcript of the proof that Jonah generated at the
whiteboard. The table’s columns demarcate between the oral and written compo-
nents of his story and the rows distinguish between his utterances. Specifically, in
some cases, Jonah spoke as he wrote (more or less), when in other instances there
was an evident time gap between his articulated and written narratives. We use “. . .”
to point at cases where Jonah did not continue his oral sentences, “#” to mark him
glimpsing at his notebook, and square brackets for our commentary. Throughout the
proof Jonah stood facing the board and with his back to the class. Figure 24.1
presents a snapshot of Jonah’s board on the completion of his proof.
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Table 24.1 Transcript of Jonah’s proof at the board

Move Time-stamp What Jonah said at the board
What Jonah put on the
board

1 19:38–19:56 So, let x not equal to y and suppose they’re in X Let x ≠ y X.

2 19:57–20:12 Then f of. . . f of x is not equal to y because f is one to
one

Then f(x) ≠ f( y) because
f is 1–1

3 20:12–20:45 And. . . mmmh. . . Y is Hausdorff so there exist U V
open in Y such that

Y is Hausdorff, so there
exist U, V open in Y such
that

4 20:45–21:00 [a] f(x) 2 U, f( y) 2 V,
[b] U V = ∅.

5 21:00–21:14 And. . .mhh. . . suppose [glimpses at the statement to be
proved and at what he wrote on the whiteboard; looks
hesitant]

6 20:14–21:29 [sketches on the left down
part of the board]

7 21:30–21:34 [giggles and smiles like of an embarrassment. Then, goes back to his seat and returns
with the notes that he made when working on the statement earlier.]

8 21:35–21:58 [#] oh yeah! Because f is continuous so. . . the
pre-image of U and the pre-image of V [points at the
symbols of f -1(U ) and f -1(V ) that he just wrote] are
open in X

f is continuous, so f -1(U ),
f -1(V ) are open in X.

9 21:59–22:08 [#] suppose for a contradiction
[says in a fading voice]

Suppose for a
contradiction

10 22:08–22:23 [as he sketches the dotted circle around y] so this is the
pre-image of V

[continues the sketch from
6]

11 22:24–23:11 , ∃z 2 f -1(U ) \ f -1(V )
Then f(z) 2 f( f-1(U )) = U
and f(z) 2 f -1( f(V )) = V a

*□
aWe assume that Jonah meant to write f(z) f( f-1(V )) = V

24.5.1.1 Coordinating Between Written and Oral Narratives

The story that Jonah generated at the board can be divided into two parts: [1–10]
where he speaks as he works on the whiteboard (i.e. “chalk talk” in terms of
Artemeva & Fox, 2011), and [11] where he completes the proof in silence. In the
former part, probably the most evident routine can be called duplicating since his
oral utterances mirror the sentences that he put on the whiteboard (e.g., [1–3] and



[8–9]). The duplication is perfect in the case of written words (i.e., every written
word is articulated), when symbols are replaced with the names of the corresponding
objects (e.g., “f-1(U )” is verbalized as “a pre-image of U” and not as “f to negative
one of U”).
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Fig. 24.1 Snapshot of Jonah’s board

24.5.1.2 Accounting for the Audience

Jonah’s narratives both oral and written, appear purely objectified and do not leave
much room for human agency. Indeed, even in [5] and [9], the people whom he
expected to “suppose” remained unnamed, which is typical for academic mathemat-
ical texts (cf. Morgan, 1998). This allows wondering whether Jonah was the
particular audience of his own proof. Considering his mathematizing as a proof for
himself explains why he practically ignored his classmates and the teacher through-
out the process, which was evident in Jonah standing with a back to the class, often
blocking the text that he put on the board with his body. This also explains him
gradually “turning off” the oral component of his proof – when one is communicat-
ing with themselves, the talk is loud even when all others hear is silence.

It may seem peculiar when someone mathematizes publicly but expresses almost
no markers of acknowledgment of the people who witness their craft. However, let
us recall that Jonah was proving the same statement that the whole class worked on
beforehand. Moreover, the teacher-mathematician stopped the group work by asking
whether students were finished and “ready to present”. Accordingly, Jonah might



have assumed that similarly to him, his peers had completed their proofs already, and
then have little interest in his work. This interpretation also relates to Jonah’s usage
of his notes.
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Jonah came to the board with the classroom notes, leaving the record of his
previous work on the focal statement behind. He half-heartedly grabbed this record
in [7], when it seemed like he was incapable to pursue his mathematical story.
He glanced at his notebook only twice in [8–9] and completed the rest of the proof
without resorting to it again. This pattern allows proposing that Jonah was driven to
prove the statement at the whiteboard “on his own” as much as possible, through
minimizing his reliance on his previous work.

24.5.1.3 Meta-Mathematizing

The point at which Jonah resorted to his auxiliary notebook does not appear
accidental to us. Indeed, in [1–6] and [8] he unpacked the notions of “Y is
Hausdorff”, “f is one-to-one”, and “f is continuous” into detailed narratives about
open sets and points, and into a diagram. However, the central problem of the
statement (cf. Selden & Selden, 1995) was in showing that the statement’s hypoth-
esis necessitate that “X is Hausdorff”, which required a meta-mathematizing move.
This move occurred in [9], where Jonah set up the course of his proof towards a
contradiction. And once he assumed the existence of z in the intersection of the
pre-images of U and V – first in the diagram and then in text – he reached this
contradiction rather effortlessly.

Jonah’s casual “Suppose for a contradiction” in [9] remained implicit regarding
the specific narrative that he presumed to be false. Indeed, until now, each of his
written narratives was deductively inferred either from the statement hypothesis
(e.g., [2–3], [8]) or from the narrative that was generated just beforehand (e.g.,
[3–4]). However, made in the sixth line on the whiteboard, the supposition
contradicted to [4b] – the narrative about the sets U and V being disjoint. Similarly,
Jonah’s last sentence [11] can be continued with “then f(z) 2 U \ V, a contradiction
since U and V are chosen so that U \ V =∅ from [4b]”. Perhaps, these connections
and inferences were obvious to Jonah; yet, for us as external observers his meta-
mathematizing left room for further specification.

24.5.2 Virginia’s Proof

The second proof comes from the lesson on compactness. In the classroom, a space
was defined as compact if every collection of open sets covering it has a finite
subcover. Before that lesson Virginia was assigned the statement positing that if X is
compact and C is a collection of its closed subsets with the finite intersection
property (FIP hereafter) then

T
C2C

C ≠∅. To recall, a collection of subsets is said to



have FIP if every finite sub-collection has a non-empty intersection. Table 24.2
contains a transcript of Virginia’s proof at the board. In addition to the notation
explained in Sect. 24.5.1, we use “%” for instances where Virginia turned her gaze,
head or body from the board towards the class, and “.” when she turned back to the
whiteboard. Figure 24.2 presents a snapshot of the whiteboard when Virginia
completed her proof.
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24.5.2.1 Coordinating Between Written and Oral Narratives

Virginia’s proof at the board can be decomposed into pairs of oral and written
narratives. Only in [1] and [6] both narratives were generated more or less at the
same time. In the remaining cases, there was an apparent time gap between what
Virginia said and what she wrote (e.g., for first-written-then-said see [3–4] and
[18–19], for first-said-then-written see [7–8] and [12–13]). Then, the two compo-
nents rarely duplicated each other in full, when the oral utterances seem to elaborate
on their written congeners. For instance, in [1–4], Virginia orally combined two
written sentences into a single narrative; in [2–3] and [19–20] she used the logical
connectors “then”, “because”, “so”, and “cause” that spelled out the relations
between her written statements.

Another notable routine pertains to Virginia replacing conventional names of the
mathematical objects that she symbolized in writing with deictic “this”, “that”, “all
these” (e.g., [6–7], [9], [23]). While research occasionally interprets students’ use of
deictic words as evidence of them lacking an appropriate terminology (e.g., Nardi
et al., 2014), this does not seem to be the case of Virginia. For instance, in [4], she
verbally acknowledges {Ci}i 2 I as a collection of closed subsets; in [6], she
articulates their intersection; and in [7] she stresses its complement. Accordingly,
we suggest that by using deictic words in combination with conventional names of
mathematical objects, Virginia verbally shifted attention from the former to the latter
in preparation for manipulating with the corresponding objects in her next step.

24.5.2.2 Accounting for the Audience

While in Jonah’s proof his accounting for the audience is hard to find, in Virginia’s
proof it is difficult to miss. Indeed, the transcript presents instances of her human-
izing the written sentences by using “we” (e.g., [4]), turning and gazing at her
classmates (e.g., [9]), and breaking the lines of symbolically compound statements
with expanded oral utterances (e.g., [7–11]). These patterns are consistent with the
context of Virginia’s proof: she was allocated the statement in advance, which
endowed her story at the board with value for the whole class. This interpretation
is also in tune with her not only proving in the sense of generating a deductive
sequence but also elaborating on the intermediate narratives (cf. proofs that prove
and proofs that explain in Hanna, 1990).
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Table 24.2 Transcript of Virginia’s proof at the board

Move Time-stamp What Virginia said at the board What Virginia put on the board

1 9:38–9:43 Suppose X is compact Suppose X is compact

2 9:44–9:49 And emh. . . [#]
3 9:50–10:28 Suppose {Ci}i 2 I [

#] is [#] an
arbitrary [#] collection of closed
subsets with the finite intersection
property

4 10:29–10:37 [gazes at what she wrote in 1–3 and
says while pointing with a marker]
OK, so it says suppose that X is
compact and suppose we have a
collection of closed subsets with
the finite intersection property

5 10:38–10:47 [#] and then I [%.] wanted to
prove it by contradiction so if we
. . .

6 10:48–10:57 Suppose that the intersection [#] of
this [intonates when writing

T
i2I
Ci]

is the empty set [ .]

Suppose Ci =∅.

7 10:58–11:05 Emh. . . then X is a complement of
this [points at

T
i2I
Ci in 6]

X=

8 11:05–11:11 [continues the previous line]T
i2I
Ci

 !c

9 11:11–11:12 Because that is an empty set [points
at ∅ in 6 and % when saying
“because”]

10 11:13–11:17 [.]and then. . . emh. . . which is
equal to [#]

11 11:18–11:23 [continues the previous line]
=
S
Cc
i

12 11:24–11:30 And.. Emh. . . and these all these si-
ai-es are closed [points at {Ci}i 2 I

from 3] so, emh. . . /si: Iz/ are open
[points at Cc

i in 11]

13 11:30–11:40 Ci close ⟹Cc
i open

14 11:30–11:48 So then. . . emh. . . [#] the set of all
the si-ai complements is an open
cover X

15 11:48–12:05 So CC
i i I

is open cover for X

16 12:06–12:10 Emh. . . emh. . . then. . . because
X is compact. . . emh. . .

17 12:11–12:15 By compactness [#]
18 12:16–12:20 Emh. . . there is



i2J

i2J
.

i2J
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Table 24.2 (continued)

Move Time-stamp What Virginia said at the board What Virginia put on the board

19 12:21–12:37 There is [#] a finite subset J ⊆ I [#]
such that [#]
X=

S
Cc
i [

#]

20 12:38–12:54 [%] cause we got. . . cause it’s. . .
cause X is compact then there is a
finite subsets of the. . . such that X is
the union of finite subsets [points atS
Cc
i from 19] and. . .[#][ ]

21 12:54–12:58 Oh and Soo. . . and this is the same
as. . .

22 12:58–13:05 [continues the previous line]

=
T
i2J
Ci

 !c

23 13:05–13:08 This [points at the brackets in 22]
so the inverse is the empty set

24 13:09–13:11 [continues the previous line]T
Ci =∅

25 13:11–13:22 Which is a contradiction cause we
said that. . . because it [%.] got the
finite intersection property.

24.5.2.3 Meta-Mathematizing

Virginia articulated the meta-mathematical move of contradiction in [5] but did not
capture it in writing. The written component of her proof ended in [24] with
“
T
i2J

Ci =∅ ” without elaborating on what enables this narrative to conclude the

proof. The oral congener of this narrative in [25] explains that “it got the finite
intersection property”, when “it” stands for “{Ci}i 2 I” whose FIP was noted in [3].
And since {Ci}i 2 J is a finite sub-collection of {Ci}i 2 I, the contradiction follows.
Accordingly, we suggest that the key meta-mathematical move in Virginia’s proof
could be elaborated further.

24.6 Summary

In this chapter, we drew attention of the IBME community to the core inquiry
practice of students’ communicating the results of their inquiry; a practice, that
according to some can unfold on a classroom board but is often overlooked in
empirical research. Then, we focused on how the board version of this practice
can be investigated.
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Fig. 24.2 Snapshot of Virginia’s board

In attempt to address this question, we linked across different bodies of literature
to illuminate the special status of boards in mathematics and its teaching, and the
affordances of a board as a physical place for mathematizing. These links contribute
to the IBME literature by putting forward arguments for engaging students with a
classroom board as part of the focal practice. We believe that drawing on the
literature that has been concerned with mathematicians and how they work, makes
these arguments especially relevant to IBME. These arguments may also be con-
vincing for practitioners who orchestrate inquiry in their classrooms and wish to
maximize its affordances.

Then we grounded the focal practice in the commognitive framework, giving rise
to the notion of mathematizing at the board. Capitalizing on the framework that has
not been used yet in the context of inquiry, we illuminated this practice in a light that
is different from what is accepted in the IBME literature: not as a “mere” reflection
on or representation of mathematical work that was completed beforehand but as
mathematizing in its own right. Specifically, we associated this practice with stu-
dents generating stories whose main actors are mathematical objects; stories that in
the university setting can emerge as deductive chains of well-substantiated narratives
and that the classroom can scrutinize for their holistic consistency, comprehensive-
ness, and cohesiveness. This conceptualization enabled us to put forward an argu-
ment for the outcome-oriented potential of mathematizing at the board.

Next, we proposed that students’ mathematizing at the board can be analyzed in
fine grain with the commognitive construct of routines. Drawing on the sociological
research and studies with university mathematics teachers, we proposed attending to
how students coordinate between what they say and what they put on the board, their
accounting for the audience, and their meta-mathematizing. To illustrate these pro-
posals, we presented two proofs from our project in a topology course. These
instances demonstrated a range of communicational and physical routines that



students can implement at the board even within a proof that is only a few minutes
long. The two protagonists of the illustrations showcased how differently
mathematizing at the board can play out.
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By grounding a single inquiry practice in commognition, we offer a “proof of
concept” or of the viability to bring this theoretical framework to IBME research.
The emerging insights may be a marker of the broader potential of commognition to
promote the IBME agenda. Indeed, Artigue and Blomhøj (2013) maintain that “[f]or
research it is relevant to pinpoint the mechanisms responsible for the learning
outcome of IBME” (p. 798) and that “different theoretical frameworks can support
the conceptualization of IBME [. . .], and its implementation in practice” (p. 809).
The acknowledged conceptual and analytical powers of commognition, and our
personal experience with this framework make us optimistic about its promise to
contribute to these endeavors.
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Chapter 25
Preservice Secondary School Teachers
Revisiting Real Numbers: A Striking
Instance of Klein’s Second Discontinuity

Berta Barquero and Carl Winsløw

Abstract The real numbers form the basis for most of secondary school mathemat-
ics, from analytic geometry to calculus and normal distributions. However, both in
secondary school and in undergraduate mathematics, it is customary to stay with an
informal description of what the real numbers are, while the university courses on
analysis certainly stipulate that they form a complete metric space, and prove many
advanced theorems based on that. Future secondary school teachers typically see
little relation between the advanced theory they learnt from undergraduate mathe-
matics courses and what they are going to teach in secondary school. The general
“gap” is often called “Klein’s double discontinuity”. This chapter focuses on the
particular case of real numbers. More concretely, we focus on identifying certain
challenges related to the second discontinuity and the efforts and effects of trying to
bridge it through a “capstone course” at the University of Copenhagen. We analyse
students’ work with assignments designed to enable them to draw on university
mathematics to solve problems involving real numbers and software commonly used
in secondary school. This analysis is complemented by a survey and some interviews
to get more insight into students’ perceptions about the relevance of the real number
theme for high school teaching.
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25.1 Introduction

In Denmark, Spain, and many other countries across the world, university based
initial education of secondary school mathematics teachers consists of a more or less
extensive study of academic mathematics, complemented by some courses that are
specially dedicated to preparing them for teaching.

Felix Klein, in his seminal book on “Elementary mathematics from a higher
viewpoint” from 1908 (Klein, 2016), warmly supports the idea that future teachers
should be well acquainted with contemporary mathematics, but at the same time
laments the distance which appears between academic mathematics courses and the
task of teaching mathematics in secondary school. He introduces the so-called
“double discontinuity” encountered by secondary mathematics teachers. Here we
focus on the second discontinuity which concerns the transition from university
studies to secondary school teaching. Klein’s book was based on the lectures he gave
for several years at Erlangen University, in view of bridging this second disconti-
nuity by revisiting, with the students, the school mathematics topics (from numbers
over algebra to geometry and basic analysis), while drawing on the more advanced
knowledge they had acquired at university.

This idea has been adopted in different ways for teacher education, from the
Stoffdidaktik (“content didactic”) courses taught in many German universities to the
“capstone” and “methods” courses offered in North American teacher education
(Buchholtz et al., 2013; Ferrini-Mundy & Findell, 2001; Sultan & Artzt, 2018). Such
courses are often welcomed by students who envisage a teaching career, but they are
also frequently criticised for being too far from what students perceive as relevant for
their profession, or from the students’ university background in mathematics, or
both. In fact, substantial uses of university mathematics courses in secondary school
mathematics teaching are not so easy to identify or establish, as evidenced for
example by the recent study of Yan et al. (2022).

In this chapter, we focus on a particular piece of mathematics: the real number
system. Real numbers appear everywhere in the advanced study of functions and
geometry, both at university and in secondary school. The (up to isomorphism,
unique) complete ordered field of real numbers certainly forms the lifeblood of
Mathematical Analysis, both as this area is taught at universities and in contempo-
rary mathematical research. It is usually less clear what role the more subtle features
of real numbers play (or may play) at the secondary level (González-Martín et al.,
2013; Winsløw, 2015; Licera et al., 2019). Certainly, secondary school pupils
encounter numbers that are not rational, and functions and function properties
which rely, theoretically, on the real numbers being complete. Analytic geometry,
as taught from lower secondary school onwards, certainly operates with points and
lines that cannot be restricted to, for instance, objects with only rational coordinates.
However, the traditional curriculum at secondary level is often informal, if not
entirely mute, when it comes to the raison d’être, definition and properties of real
numbers. Their consequences for other (more visible) mathematical themes, such as
functions, derivatives or analytic geometry, are often taken for granted or postulated



as facts of nature, while they formally rely on subtle arguments involving assets of
the real number field such as completeness. In fact, these subtleties are also often
given a relatively superficial treatment in undergraduate courses, where they typi-
cally appear as preliminaries to real analysis. The question arises about what
secondary school teachers need to know about such aspects of real numbers and
what could or should be done to fill these needs.
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We start by drawing on a reformulation of Klein’s second discontinuity (Winsløw
& Grønbæk, 2014) in terms of the Anthropological Theory of the Didactic (ATD)
(Chevallard, 1999). Next, we introduce the main tools from ATD that allow us to
problematise this second discontinuity, in relation to the institutional positions that
individuals can occupy, and use this to develop Klein’s questioning of the standard
view, that there is a simply continuity between the mathematical praxeologies
encountered in the two institutions. More concretely, this chapter investigates how
these matters appear in a capstone course taught at the University of Copenhagen.
Most students in this course are doing a minor in mathematics and have only done
parts of the undergraduate programme in pure mathematics, with the explicit goal of
teaching mathematics at secondary level along with their major subject. We analyse
one of the tasks proposed to question elementary contents about real numbers in this
particular university context, and students’ individual and collective work with the
tasks and the difficulties they encounter – both at the technical level of mathematical
work, and at the level of perceived relevance of the subject for high school teaching.
The point of this case study is to identify certain challenges relating to the second
discontinuity and efforts to bridge it in the specific case of the real number system.

25.2 Formulating Klein’s Double Discontinuity Within
the ATD

The Anthropological Theory of the Didactic (ATD) models practices and knowledge
as residing in institutions, using the notion of praxeology (Chevallard, 1999). We
outline the main tools used here. A praxeology O = (P, L ) consists of a praxis P
(types of tasks, techniques to solve them) together with logos L (discourse about the
praxis, and theory that explains, relates, and justifies the practical discourse in more
general ways). Institutions are considered as configurations of positions that indi-
vidual persons may occupy within the institution—such as being mathematics
teacher in Spanish upper secondary school. These positions are more or less
characterised by how they are supposed to relate to the praxeologies carried out in
the institution. For a position p and a praxeology O living in the institution I, we
denote that relationship by RI(p,O). It is important here that praxeologies exist in
more than one institution (e.g., fraction arithmetic appears in both primary and
secondary school) but still with subtle differences (such as preferred tasks, tech-
niques, terminology, notations).
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In this paper, we consider praxeologies related to the real numbers. As an
example of a common type of task, we could name producing a decimal represen-
tation of a given fraction of integers. Techniques may be both manual, as a division
algorithm and rules for rounding off, and instrumented, such as buttons to press and
settings to set on a calculator. In different schools, the discourse on these practices
may differ in subtle ways, and the theory supporting that discourse may be more or
less formal. In school institutions, syllabi and textbooks (cf. González-Martín et al.,
2013) may help to get some impression on the relationship that students are
supposed to develop to this praxeology. It is usually much less explicit what
relationships are expected from teachers.

As further explained by Winsløw and Grønbæk (2014), Klein’s double discon-
tinuity can be interpreted as the transitions.

RS p, Oð Þ→RU σ, ωð Þ→RS t, Oð Þ ð25:1Þ

where S = school, p= pupil in S, t= teacher in S, U = university, σ = student in U,
and finally O and ω are mathematical praxeologies in S and U respectively, which
involve the same mathematical objects or tasks – such as representing a fraction of
integers as a decimal. Typically, student teachers occupy position σ after position p,
and before t.

As for the second transition in (Eq. 25.1), the question is how to develop RU(σ,ω)
in order to strengthen the continuity and improve the contribution of RU(σ,ω) to a
future RS(t,O). In a capstone course, praxeologies that are somehow between ω and
O may be addressed. For instance, one could aim for the relation of t to an informal
or missing mathematical theory within O to be strengthened by mobilising some
theoretical elements from a relevant ω. To be concrete, to explain and justify the first
step in

2
3
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connects the meaning of 0:�6 with a convergent infinite series encountered in basic
Calculus. While the technique in O to establish the identity is likely to be either long
division or calculator use, it could be important for RS(t,O) to include the meaning of
periodic infinite decimals as limits of sequences of rational numbers, and more
generally to connect limits to the right-hand side of the identity
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þ . . .

so that it is in fact a definition of the left-hand side as a number, whose “existence”
can be inferred from the logos of some (not too fancy) university praxeology ω. We
can denote such a new relationship to O – to be obtained within U – as RU(σ,O [ ω).
In fact, the goal of Klein’s book, and the typical capstone course, is to establish links
for students between mathematics learned at university and the mathematics taught
and learnt in schools. A “capstone course” for future teachers thus, in general,
consists of adding an intermediate link to the transition:

RS p, Oð Þ→RU σ, ωð Þ
capstone

RU σ, O [ ωð Þ→RS t, Oð Þ ð25:2Þ

with further specifications of the goal being the concrete combinations O [ ω of
school and university mathematics, and the new relation to be defined in terms of the
concrete praxeologies involved. Looking again at the example pursued above, one
could, for instance, aim for the students to know and use the relation between
(certain) infinite series and (decimal representations of) real numbers, both in praxis
and logos.

The research questions of our study can now be formulated as follows:
RQ1: How can the “capstone” passage in (Eq. 25.2) be organised in the case of O

and ω being praxeologies concerning the real number system, its uses and its
properties?

RQ2: What are the effects of such organisations, both in terms of students actually
developing links between O and ω, and in terms of students’ perceptions of those
links as being relevant to teaching?

It is of course only possible to give partial answers to these questions: examples
of organisations of the capstone passage, and examples of the links and perceptions
such a concrete organisation produces in a given context. The main purpose of the
chapter is to show, by just some aspects of one case, what ideas and challenges can
be involved when setting up such an organisation, and especially how to use the
theoretical framework proposed above.

In the next section, we use the theoretical tools established above to review
previous work related to the above questions, which also includes proposals that
fall under the scope of RQ1.

25.3 Real Numbers in Capstone Mathematics for Future
High School Teachers

A common situation in many universities is still the classical situation (Eq. 25.1),
which corresponds to a kind of empty answer to RQ1. In this case, one may still
investigate RQ2, which then asks what links between O and ω that students may
develop by themselves, for instance if their contacts with university theory and



practice on real numbers lead to any progress in their command of corresponding
school praxeologies. There is no shortage of studies on university mathematics
students’ and secondary school teachers’ relationships to more or less basic aspects
of the real numbers, for instance, the meaning of irrational numbers (Fischbein et al.,
1995; Sirotic & Zazkis, 2007), infinite decimals and square roots (Bronner, 1997),
completeness (Bergé, 2010), or identities of type 0:�9= 1 (Ely, 2010). In most of
these studies, we do not know exactly how RU(σ,ω) was formed or if the subjects
have been exposed to any systematic effort to build RU(σ,O [ ω), but such studies
often find that a considerable part of the informants have not advanced beyond RS( p,
O), at least when it comes to the specific points tested.
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As regards RS( p,O), this is typically limited to meeting and occasionally using a
few instances of irrational numbers (especially π and a few square roots). Even if
their irrationality is discussed, it may remain rather marginal to the practical situa-
tions in which students use decimal representations of such numbers (González-
Martín et al., 2013). The increasing use of calculators may cause all practical use of
numbers to involve only finite decimals. If the set of these is denoted , one could
say that ℝ≈ for many students at this level, and even the official requirements for
RS( p,O) may not challenge that. Note that student work with fractions and algebraic
expressions involving quotients is usually still required, even when concrete num-
bers appear in the end to be from .

Given this state of affairs, one may in fact consider that RU(σ,ω) is more or less
irrelevant to RS(t,O). Moreira and David (2008, p. 37) went a step further and argued
that “the academic mathematics approach to number systems may conflict with the
kind of mathematical knowledge teachers need in practice”, essentially because the
formal approach neglects the meaning of different models of the real number
system – which could indeed be important at various stages of RS( p,O) and hence
for the teacher. Refusing the idea that altogether RU(σ,ω) could contribute to RS(t,O)
may not rule out the existence of “capstone” or supplementary university courses for
students aiming to become teachers. When these are disconnected from the previous
experience, one would have a variant of (Eq. 25.1) that could be represented as:

RS p, Oð Þ→RU σ, ωð Þ � RU σ, O0ð Þ→RS t, Oð Þ ð25:3Þ

where RU(σ,ω) and RU(σ,O
′) are more or less independent or perhaps even in

conflict; here the notationO′ reflects that the version ofO′ presented in the institution
U could be somewhat different from O. A common strategy for building RU(σ,O

′)
would then be to work with situations from (or very close to) school mathematics
that are, on the other hand, very challenging, with much more autonomous study and
research required from students than is usual in academic courses. An ambitious
design in this direction, given to future secondary school teachers and focused
specifically on the real number system, was designed, and experimented by Licera
(2017). In her proposal, the author works on the construction of the real numbers
based on the measurement of quantities that differ from both the university and the
secondary school praxeologies. While being closer to S in terms of the type of



activities carried out during the construction, the kind of O′ here considered aims to
stablish a new is the relationship between real numbers and the measurement of
quantities.
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From a position closer to that of Klein (2016), it may be contended that “a
construction of the real numbers, a proof that they satisfy the (. . .) field axioms,
and a proof that they satisfy the Completeness Axiom, are necessary for teachers”,
since these “need to know how to prove what is unstated in high school in order to
avoid false simplifications” (CBMS, 2010, p. 60). Kramer (2014) agrees with this
position and proposes that RU(σ,ω) needs to include not only the full formal
construction of ℝ following Cauchy, but also formal versions of more school
relevant models (ℝ as points on a line, ℝ as “all” infinite decimals), and complete
proofs of the isomorphism between these models and Cauchy’s construction. A full
exposition is given by Kramer and von Pippich (2013, pp. 119–153). It is clear how
this links to and extends RU(σ,ω), but the link to RS(t,O) is less obvious. One could
easily end up with a variant of (Eq. 25.1), with new potential links that often remain
invisible to individuals in the transition.

A midway position seems to be needed to realise (Eq. 25.2), by identifying and
organising situations for students (σ) to with substantial and challenging links
between university mathematics (ω) and the treatment and use of real numbers at
school (O). Sultan and Artzt (2018, pp. 285–357), in a capstone textbook for
secondary teachers, can be said to propose such a midway. Drawing on students’
knowledge from basic analysis and naïve set theory, several “school level themes”
are taken from first intuition to precise results. These themes include properties of the
number line (density properties etc.), basic arithmetic rules, construction of expo-
nential and logarithmic functions, decimal expansions of rational and general real
numbers, and the existence of many (uncountably many) non-algebraic numbers as
evidence that ℝ hugely exceeds  and ℚ. The “answers” to RQ1, whose effects we
study to answer RQ2, is largely based on this text, naturally with additional didactic
choices and emphases that we now proceed to describe.

25.4 Context of the Capstone Course UvMat
and Methodology for the Case Study

The capstone course called UvMat (an abbreviation for the Danish equivalent of
Mathematics in a Teaching Context) is held yearly in the University of Copenhagen.
Most of the (typically, 25–30) students in this course are finishing a 2-year minor in
mathematics to become high school teachers in this subject along with their major
(at Master level). Some students take the mathematics minor much after their major,
and then often have substantial teaching experience in the other subject. Due to the
shortage of qualified mathematics teachers, there are even temporary positions to
teach mathematics with less than full qualifications, meaning that a larger number of
students usually have some experience with high school mathematics teaching.
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The overall goal of the course is to enable the students to work with upper
secondary school mathematics by relating it to relevant parts of their academic
bachelor courses. It runs over a quarter (7 weeks), during which students devote
half of their time to it. The course combines weekly lectures with exercise sessions,
students’ individual and collective work on weekly group assignments, for which
they also receive supervision and written feedback. The final exam is written and
individual.

The mathematical topics focused on come from combinatorics, arithmetic, alge-
bra, and statistics. One theme, covered over 2 weeks, concerns real numbers and
functions defined on them (such as exponential and logarithmic functions). In
particular, the existence and (quasi-)uniqueness of decimal representations of real
numbers is worked on rigorously based on completeness and series known from
first-year courses.

Winsløw and Grønbæk (2014) describe some of the challenges faced by the
theme on real numbers. The Danish high school curriculum does not treat the
properties of real numbers (and its main subsets) in any detail and thus develops
Calculus in an intuitive way, with massive use of instrumented techniques. The first-
year courses in Analysis swiftly pass through topological “preliminaries” like the
completeness of ℝ and classical theorems related to continuity, compactness and so
on, to focus on a rigorous treatment of differential and integral calculus of functions
defined on ℝn, along with more advanced topics. Students generally find these
courses difficult and disconnected from what they learnt in high school (cf. also
Gravesen et al., 2017).

In the real number topic, which run over 2 weeks (weeks 3 and 4), UvMat mainly
seeks to deepen the students’ knowledge aboutℝ and connect with questions related
to basic functions met in high school to build a new relationship of type RU(σ,
O [ ω). We consider here some elements of the weekly assignment for week 4. This
assignment included some tasks close to what could be encountered in high school
(analysing graphs of rational functions) but with specific questions to make students
draw on more advanced knowledge, including material from the book on the decimal
representation of real numbers (details below). As in many other course activities,
the purpose is to place students in an intermediate position betweenU and S, to make
them realise that problematic phenomena of mathematical praxeologies in S can be
theoretically explained while drawing on praxeologies encountered in U. The study
of these problematic phenomena also implies moments of questioning the school
mathematical knowledge, in the sense that students should realize how its theoretical
elements are sometimes insufficient to account for results of common practices, such
as graphing done with computer software (cf. below).

Our aim here is to analyse some salient details and effects of this effort, both in
terms of concrete designs (RQ1), the links students actually develop between O and
ω, and students’ perceptions of those links as being relevant to teaching (RQ2). On
the one hand, we analyse students’ written work on the weekly assignment from
course week 4. We have selected the 14 groups’ answers to the last task (quoted
later) over six in total that composed the weekly assignment. Groups’ answers are
analysed based on an a priori analysis done by the researchers, before its
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implementation, in terms of subtasks likely to be considered by the students when
addressing a particular task or question asked to be solved. We also present the
analysis of students’ responses to a survey, distributed at the end of the course, and
complemented by in-depth interviews with four of the students. The interviews were
carried out in English by the first author, video recorded and transcribed, and then
analysed by the authors jointly.

The first five tasks in the assignment explore n = 10- nℤ n 2 ℕð Þ as subsets of
ℝ. In particular, students construct a sequence (an) such that an 2 n and an →

ffiffiffi

3
p

:
The last task [T] is:

Using Maple, investigate what the graphs of the functions given by

f xð Þ= x2 - 3
x- a10

for x≠ a10

2
g xð Þ= x - 3

x-
ffiffiffi

3
p for x≠

ffiffiffiffi

3:
p

look like. Comment.

We note here that, depending on the interval of plotting, Maple may show the
function graphs as

1. identical straight lines, or
2. different straight lines, or
3. very similar X-shaped figures (see Fig. 25.1; in fact, due to rounding error, even

the graph of gmay get a kind of “vertical asymptote” in Maple, when plotted on a
very tiny interval around 3

p
), or

Fig. 25.1 X-shaped graph
of g, produced by student
group 5



p

p
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4. g as a line and f as anything between a strange X and a nice smooth curve with a
vertical asymptote.

The standard plot shows (1), but the students are supposed to doubt the identity of
the graphs, as they know a10 ≠

ffiffiffi

3
p

. This is likely to push them towards
experimenting with the plot settings, in particular, by modifying the plot domain.

Our purpose is to analyse the students’ praxeologies, as reflected in their written
work. This analysis is based on an initial analysis of the particular mathematical task
T. This first step consisted of dividing T into possible subtasks, as described below,
and to anticipate the kind of techniques and justifications associated to these tasks,
and their roots in O and ω. Moreover, as the task required the use of Maple, we also
indicate the expected interaction of instrumented and non-instrumented techniques.

The first description of subtasks concern what can be done to investigate f and
g separately:

T1: Plot the graph of the function on one or more intervals (instrumented
O-techniques)

T2: Identify visual properties of the graphs, such as asymptotes (O-techniques)
T3: Look for algebraic developments of the function expression (O-techniques)
T4: Investigate the convergence and boundedness of the function at a10 and/or

ffiffiffi

3
(potentially, instrumented O-techniques and ω-techniques)

Some of these subtasks are most likely to be carried out once certain differences
appear from carrying out T2 in both cases. Then, the students may engage in further
subtasks related to the “Comment” part of the question (understood as, explain the
differences and similarities of the graphs):

T5: Numerical or graphical comparisons of values of the functions (instrumented
O-techniques)

T6: Discuss if the functions are identical, anywhere, somewhere? (O-techniques,
including instrumented ones to plot the functions together, and ω-techniques,
such as polynomial division, which are covered previously in UvMat, or other
courses)

T7: Compare convergence properties of the functions at a10 and/or
ffiffiffi

3 (potentially,
instrumented O-techniques, and ω-techniques)

T8: Discuss the nature of the singularities (removable/essential, ω-techniques)
T9: If defining fn in analogy with f (using an in the place of a10) does fn→g in some

sense, and what does the answer mean? (ω-techniques)
T10: Investigate if the properties of certain number sets, such as completeness,

countability or denseness, help to interpret the differences between the graphs,
and how they apparently depend on the interval used for plotting (ω-techniques)

This a priori analysis was then used to analyse students’ weekly reports by identi-
fying the particular subtasks, techniques, and elements of the technology and theory
that appear in the students’ responses. The analysis was carried out by the two
authors independently and then compared, with a high degree of convergence.
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Concerning the students’ responses to the survey and interviews, our purpose was
to get more insight into their perceptions about the relevance of the course, and in
particular the real number theme, for high school teaching. The survey and interview
asked about: details about the experience in teaching mathematics at secondary
school (Part A); the challenges and achievements of the course, with respect to the
theme on real numbers (Part B); initial expectations from students (Part C); and the
role of this course in relation to the transition between university and school
mathematics (Part D). We present the quantitative results from the survey,
complemented by some of the students’ responses from interviews, to identify the
achievement and the challenges relating to the second discontinuity and efforts to
bridge it in the specific case of the real number system. Again, the analysis was
carried out jointly by the authors.

25.5 Student Work on the Task T

We present the results from the analysis of 14 written reports on the weekly
assignment introduced above, delivered by students in groups of 1–3 students as
the theme on real numbers was finishing. From their answers to task T (introduced in
the previous section), we explain the traits of corresponding student praxeologies.

As could be expected, all the students carry out T1 about plotting the graph of
each function, but with significant variation, including one or more plots for each
function, the two functions plotted together, and so on. Two groups conclude the
graphs are “more or less the same”. The first states as the conclusion (with some
informal form of solution to T9 as justification):

[Group 12] We first note that an →
ffiffiffi

3
p

as n→1 for the concrete an we found in the previous
question. Thus, f(x) must be an approximation of g(x) which becomes more and more
precise, as n grows. (. . .) We see that the graphs coincide and thus f(x) must be an
approximation of g(x).

Group 5 also had this conclusion and provided X-shaped plots at very small intervals
(the one for g is shown in Fig. 25.1), and states that the graphs are almost identical,
just with divergence at slightly different spots.

The other groups get somewhat correct solutions to T6 when discussing where
and how function could be considered identical. Eight groups show only the graphs
that are clearly different, while six also include or mention the plots which appear
identical; four of these then argue that this is somehow “wrong”. The 12 groups who
provide plots showing the difference (on one or more smaller intervals) provide
various explanations, based on these graphs and sometimes other ideas:

[Group 9] We define the two functions and plot them in the same diagram. In the first plot we
see clearly that f(x) cannot be defined in 1.7320508075, while it seems that Maple has no
problem defining g(x) in

ffiffiffi

3
p

. [. . .] It is eye-catching that Maple seems to define
ffiffiffi

3
p

in a
smaller interval than 1.7320508075, although both numbers should “fill” the same space on
the number line.
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In the last phrase, one may see an informal attempt at T10, when interpreting the
differences between the graphs according to the properties of numbers, but the main
source is still the graphs, and Maple is blamed for the difference between them.
Another attempt to consider T10 is equally strange:

[Group 10] This illustrates very well the completeness ofℝ, as
ffiffiffi

3
p

is irrational with infinitely
many decimals, and we can therefore get arbitrarily close to the actual value without being
equal to it, while this is not the case for an since this has finitely many decimals.

Other groups provide comments related to limits, divergence, and asymptotes, also
based mainly on the graphs. Four groups solve T2 by pointing out the asymptote for
g, and six groups provide some form of limit interpretation (T4 and T7, in two cases
also involving T3, otherwise referring just to the graphs). One group provides a
characterisation of the singularities (T8) while two groups are content with showing
by a plot that the graphs are different (T5). In fact, they appear as slightly different
line segments on some small interval.

The overall dominance of informal descriptions of various graphs is not so
surprising, given the wording of T. However, four of the groups begin their discus-
sion by carrying out the algebraic developments of g (T3), using O-techniques
(product of sum and difference). They all note that although Maple draws the
graph as a continuous line, g(x) is only defined for x≠

ffiffiffi

3
p

. None consider this
similar subtask for f, so this is only used to explain what the graph of g looks like:

[Group 4] The function g(x) therefore becomes a straight line, which is not defined in the
point x=

ffiffiffi

3
p

, because the denominator (of the original rational function) cannot be zero. We
see that the Maple plot of g(x) is linear for all x, but g(x) is not defined at x =

ffiffiffi

3
p

.

Three of the groups note that the necessary degree of zooming is related to the
accuracy of Maple in plotting graphs, for instance:

[Group 13] [. . .] if f(x) is plotted in Maple with a very small interval, an asymptote is seen.
Since Maple selects a number of points in the graph, this is not seen when we consider a
larger interval for x.

Although, these remarks are not backed by numerical calculations.
Instrumented techniques were thus mainly related to plotting on various intervals

but were not used in students’ algebraic analysis of the functions, or for the
calculation of limits of functions. None of the students made numerical investiga-
tions using tables of function values, as they had done in previous tasks in the same
weekly report. The limited use of Maple is eye-catching in the cases where the
students attempted more than informal and visual arguments.

It is also remarkable that only a few students attempted to relate the task to
previous questions in the assignment or to other elements of ω, and that the few who
did mostly fail. There is thus some evidence that students σ spontaneously rely
mainly on a past relation RS(p,O) or even RS(t,O), if they have teaching experience
already. It is as if when students judge T as a possible task belonging to O, they call
for the expected praxeological elements in this institution.
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This does not mean that they cannot learn from the written report and oral
feedback provided for their work but reveal about the likely conflict that can be
felt by σ when choosing a position closer to RU(σ,ω) or to RU(σ,O) and reacting in
consequence. It also shows that the assignment might have to be modified to enable a
different relationship of the type RU(σ,O [ ω) to bridge the gap through the
construction of the necessary praxeological infrastructure to analyse T from the
midway position between U and S. Still, it is undeniable that not one of the 14 papers
provide a solution that reflects a fully satisfactory relationship of that type, or for that
matter clarity and correctness of exposition reflecting an adequate relation of type
RS(t,O) .

25.6 Students’ Perceptions

In this section we present the main outcomes from a survey that was distributed to all
25 students, and from in-depth follow-up interviews with four respondents. The
survey was answered by 11 students. Three of the four interviewees and 7 of the
survey respondents had some experience with teaching mathematics in high school.
In the sequel, Interviewees A, B and C designate the ones who already had taught in
secondary school, with 1, 4 and 20 years of experience respectively, while Inter-
viewee D had no teaching experience.

In the survey, students were asked about the challenges and achievements of the
course, in particular, about the theme of real numbers and about what they consider
important for secondary school teachers to learn about this topic. Table 25.1 sum-
marises the results.

A basic observation is that while students think their theoretical knowledge about
real numbers increased, they are less certain about the practical implications for
teaching.

The interviews provide a more detailed idea about students’ viewpoint. For
instance, one student suspects the new knowledge could mainly serve at the
advanced high school level (level A):

Table 25.1 Results of the degree of agreement on the assertions concerning the achievements of
the course about the topic of real numbers (1 = totally disagree, 5 = totally agree)

Mean Median

The topic of real numbers is important at secondary school education 3.3 3

This topic provided me more knowledge about . . .

. . . how to conceptualise and use real numbers in secondary school 3.3 4

. . . how to manipulate and operate with real numbers in secondary school 3.9 4

. . . the rationale and usefulness of real numbers at secondary school 3.7 4

. . . how the topic of real numbers is related to other topics (measure, round off,
errors, approximation, limits, etc.)

3.8 4

. . . questions about teaching real numbers in secondary school that I have
never reflected on before

3.7 4
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I think it’s important for me to know, but I don’t think, I haven’t been teaching that in
secondary school. I’ve only been teaching at the level B. I think it might be more important
if I, one day, teach the level A, this level, but right now I don’t think this is something that
I need to teach them, but I like to know myself. [. . .] I like that we are focusing on the topics
that we have to teach at the secondary school. I like that we will have another background
view of the mathematics theory. I don’t think that I’ve learned all the things here at the
courses, but it’s another way to look at it in this course. I like that. It is making me think of
how can I teach maybe in another way, what can I, what should I focus on? Interviewee A

Another interviewee is more critical of the topic and think that the course should
focus on other ones:

I’m not sure that all the work we’ve done with building up the real number system chapter is
that relevant compared to other areas [. . .]. There are other topics that are part of the
curriculum, and that are part of the textbook as well, which we could have studied as part
of this course: trigonometry, geometry, for instance, or the topic we are starting today about
functions and regressions. This topic is probably well justified. But the real number system
[. . .], I suppose it does give us more familiarity with the sort of the different, number systems
and especially the abstraction from the rational numbers to the real numbers. Interviewee C

However, other students so consider the real number theme as an important, but
difficult, part of the foundations for high school mathematics:

I think it’s really important that you have control over the basics. [. . .] Definitely [real
numbers] has been the most difficult topic. If I want to take some of this (referring to
the tasks proposed in the course about real numbers), I have to use like many hours.
Interviewee B
It makes us possible to explain things in different ways in primary school, and all the way
up. [...] It has helped me a lot to be able to explain the same things in another way that I have
experienced. Interviewee A

The following part of the survey and the interviews focused on the expectations
student had prior to taking the course (Table 25.2). The dominant expectations were
to “extend my knowledge about some topics of Mathematics relevant for Secondary
school” and “to get ideas and methods for designing activities”. The highest rated
item shows the importance given by the students of extending their knowledge to

Table 25.2 Results from the students’ expectations before starting the course (1= totally disagree,
5 = totally agree)

I expected to. . . Mean Median

. . . extend my knowledge about some topics of mathematics relevant for
secondary school

4.5 5

. . . get ideas and methods to design activities in secondary school 4.4 5

. . . get more knowledge about how to adapt university mathematics to sec-
ondary school mathematics

3.3 3

. . . be trained about some teaching methods to teach mathematics at secondary
school

3.8 4



something “new” to be created in U which is relevant at S. Indeed, the course
material on decimal representations of real numbers does involve mathematical
results which are not covered in the students’ other courses although it is built on
key ideas from them (such as geometric series and completeness). In other words,
RU(σ,O [ ω) involves combinations ofO and ωwhich are neither present in RU(σ,ω)
or in RS(s,O).
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All the interviewees express that they expected more proximity with secondary
school. For instance, Interviewee A and C would have preferred the course to
include more about teaching techniques, as opposed “academic mathematics”.

My expectations before the course were to learn more about how to design or construct tasks
of progression of tasks to give a picture to students, [. . .] What we’re doing now is more
talking about the theory behind what we are going to teach in secondary school. And yeah,
I think I need more practical. [. . .] I’m not sure. No, I don’t know why but I think I need
something else. Yeah. But that might be the Didactics. [. . .] Interviewee A

Although they emphasise their need for practical knowledge, when they expand on
what this knowledge might be, they also include some generic aspects, such as
“motivation of students”, “dealing with diversity of levels in the class”, “IT in
education”:

I still think that I am needing more practical things. [. . .] All of them teaching how to give to
students’ feedback, to motivate, construct the task for them, how to design a lesson to
motivate again, all about motivation. Interviewee A

The last part of the interviews and surveys were about the discontinuity between
university and high school mathematics. In both, students were asked to place
UvMat on a scale between university mathematics and high school mathematics
(shown at the extremes of a line segment). None of the four interviewees hesitated
much when placing this course in this line segment. What surprised us the most was
how Interviewees A, B and C, with experience in high school, quickly place this
course closer to university mathematics:

Until now, closer to university mathematics. We have used some things that we have never
learned in secondary school. But what we will do in a few minutes [referring to the next topic
of the course] is more secondary school mathematics [. . .] Today is regression and statistics.
But what we have learnt about real numbers and exponential growth; these are university
maths [. . .]. Interviewee A

This would be university mathematics and high school mathematics. So that, there are plenty
of steps, on the span of the bridge so we have here, the course UvMat, which is a sort of
“building the bridge” or “attempting to build a bridge over here”. So that, it insists that the
bridge can be built. [. . .] So that, we may trust on this belief and see how far, how far you can
build the bridge from the secondary school reality towards university mathematics. [. . .] It
makes sense to me also that you need experience from, from both worlds to, you know, to
actually build the bridge. Interviewee C
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By contrast, Interviewee D, who has no teaching experience, placed the course closer
to high school:

I would say it is closer to this one [pointing at secondary school mathematics]. [. . .] I would
say we have looked at the mathematics closer to here, but we are proving things like we are
in university [. . .] but I don’t find it that abstract [compared to other mathematics courses].
Interviewee D

Furthermore, Respondent 4 in the survey compared the difficulty and formalism of
this course in comparison to others:

The subjects are the same as the ones found in the gymnasium, but the approach is more
advanced. Still, it is nowhere nearly as advanced as regular courses–it felt like a holiday from
these. Survey respondent 4

In fact, assuming the course offers some combination O [ ω of praxeologies from
the two institutions, the unexpected O parts are clearly more visible when viewed
from the (exclusive) position of a university student σ, while the ω-parts may appear
more visible when one can also assume the position t, based on relations of type
RS(t,O). Considering the solutions of the task T that were analysed in Sect. 25.5, we
may also observe a tendency of course participants to assume the position s (school
student) as they perceive the task to pertain to a high school praxeology, and to then
draw mainly on past relations of type RS(p,O) (and perhaps RS(t,O) as well).

25.7 Discussion and Conclusions

One major challenge hidden in RQ1 is that the real numbers are assumed, in many
institutions, as a transparent mathematical object which requires no separate work.
When Cartesian coordinate systems are introduced, we may first work only with
integer coordinates, but sooner or later we learn that all points have coordinates and
that all points on the “number line” correspond indeed to a number. The real
numbers actually named in school are either rational, roots or a few other exceptions.
Even in high school this does not change, but the introduction of Calculus (begin-
ning with limits) makes certain properties of real numbers appear, albeit exclusively
through properties held by functions defined on ℝ, and usually treated as “evident”.
Even at university courses in Calculus, this is often the case. By contrast, textbooks
for rigorous analysis courses – which are taught in many European universities from
the first or second year – usually begin with some “preliminaries” concerning the
topology of ℝ, often passed over relatively quickly. Students may have been shown,
within the same lecture, “facts” like the uncountability of ℝ and the density of ℚ in
ℝ. And such quickly passed (and maybe quickly forgotten) facts are not easily
mobilised by students, for instance, to explain how Maple plots graphs and why that
may sometimes lead to surprising or bewildering results (like in the example). It
would then appear even less likely that they use such knowledge to develop a teacher
relation to these kinds of phenomena.
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In this paper, we have examined one strategy (materialised in a course at a
specific university) for helping students invest some of university mathematical
knowledge in high school mathematics and its teaching. The approach to the theory
of real numbers is much less formal than in other university courses on mathematics,
but also much more formal than the approach to real numbers and functions in high
school. The assignments include mathematical problems that are close (or identical)
to what students and teachers work with in high school, but with demands and
contexts that allow mobilisation of more advanced knowledge. In the example
studied, the need for more subtle aspects of real numbers and functions comes
from the bewildering output given by Maple. We notice here that, both in high
school and at university, Maple is mostly used to carry out simple standard tasks, not
to carry out more subtle investigations like the one proposed in T.

Both the analysis of student work, and of their own conceptions of the wider
experience, illustrate that drawing on advanced knowledge is neither easy nor
automatic for students. They are familiar with expectations in the two institutions,
secondary school and university, as seen apart, but the requirement to analyse a
problem from one institution (S) with the tools offered by the other (U ) is very
unfamiliar to them. Our analysis shows the general tendency that when they are
confronted with a task, students seek to identify it as belonging to either O or ω, in
order to be able to draw on previously established relations RS( p,O) or RU(σ,ω),
rather than establishing a new relationship of the type RU(σ,O [ ω). Overcoming
that tendency requires the construction of new didactic contracts (in the sense of
Brousseau, 1997, chap. 5) and a new didactical infrastructure (in the sense of
Chevallard, 2009) involving task design, among other elements.

To establish relationships of type RU(σ,O [ ω), simply siding with either O or ω
will evidently not do. Establishing even fragile and very local links requires careful
design and redesign of situations and assignments. The example studied here was far
from perfect or successful. And the case study here only sheds some light on the
effects of such an effort to construct links between the two compartments of
students’ mathematical background and how students react and reflect on
it. Another, and no doubt just as difficult and important question, is to investigate
the last step in (Eq. 25.2), namely the role that such links can play in their practice as
teachers.
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Chapter 26
Challenges for Research on Tertiary
Mathematics Education for Non-specialists:
Where Are We and Where Are We to Go?

Avenilde Romo-Vázquez and Michèle Artigue

Abstract The challenges raised by the teaching of mathematics for non-specialists
in tertiary mathematics education were pointed out by mathematicians long ago.
Since the beginning of the twentieth century, innovations and reflections have
developed around the world, but research in mathematics education in this area is
still underdeveloped. Where are we and where are we to go? In this chapter, we
address these two issues with a specific focus on engineering education. Returning to
the history of the field, we discuss these challenges, how they have been perceived
and dealt with, and how they are regularly renewed by scientific and technological
advances, or societal evolution and emerging concerns. Then, using examples
selected from recent research and development work and through the institutional
and epistemological perspective offered by the anthropological theory of the didac-
tic, we illustrate the progression of theoretical approaches and knowledge over the
past two decades, and discuss the perspectives for future research that this analysis
opens.

Keywords Tertiary mathematics education · Mathematics for non-specialists ·
Epistemological and didactical perspectives · Engineering education

26.1 Introduction

Research concerning mathematics education for non-specialists at the tertiary level
deals with the large numbers of students who do not intend to pursue academic
careers as researchers or teachers in this discipline, and for whom the tertiary
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institutions that admit them consider their mathematics background insufficient. A
wide variety of courses and professions are involved that receive students with
different backgrounds since, with few exceptions, educational systems differentiate
teaching in high school.
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For a long time now, tertiary institutions have been aware of the challenges that
mathematical education raises. At the beginning of the twentieth century when the
CIEM –today known as the ICMI, International Commission for Mathematical
Instruction– was created, one of the first reports it produced was devoted to the
mathematics that engineers in training would need (d’Ocagne, 1914). When ICMI
Studies were launched, under the Presidency of Jean-Pierre Kahane, a pure mathe-
matician who specialised in Fourier analysis and was regularly in charge of math-
ematics service courses, he immediately proposed to devote one study to the topic of
Mathematics as a Service Subject, a theme he considered of utmost importance
(Howson et al., 1988). A more recent ICMI Study launched and conducted jointly by
the ICMI and ICIAM (International Council for Industrial and Applied Mathemat-
ics) focused on the educational interfaces between mathematics and industry
(Damlamian et al., 2013). Throughout the twentieth century, innovations and reflec-
tions have developed worldwide, as shown by these studies and many others, and
have analyzed scientific, technological, professional, and pedagogical develop-
ments. Nevertheless, as several surveys have pointed out (Artigue et al., 2007;
Winsløw et al., 2018), until recently research in mathematics education in this area
has been scarce, even at the university level where most students study mathematics
only as service-courses. This situation, however, is changing as is reflected in the
new entry on Service-Courses in University Mathematics Education in the Encyclo-
paedia of Mathematics Education (Hochmuth, 2020). The challenges raised by the
teaching of mathematics to non-specialists are increasingly being addressed by
research in mathematics education. With the support of networks like INDRUM
(International Network for Didactic Research in University Mathematics),
researchers are now better connected and organized to capitalize on the knowledge
produced, and to address the crucial divide between research and practice (González-
Martín et al., 2021). So, the question is, where are we today and where do we go
from here?

In this contribution, we address these two issues, especially in the context of
engineering education. For this purpose, we returned to historical debates and
reflections regarding mathematics education for non-specialists at the tertiary level
since we postulate that historical knowledge contributes to the understanding of
current states of affairs. After elucidating this background and the encyclopaedia
entry mentioned above, we present our vision of the main challenges in this area.
Most of them are not new, but even the old ones are renewed by scientific and
technological advances and societal changes. Using a selection of recent studies on
engineering education and adopting the institutional and epistemological perspective
offered by the anthropological theory of the didactic, we show the progression of
conceptual tools and empirical knowledge as they relate to some of these challenges
in the twenty-first century. We conclude with suggested perspectives for future
research.
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26.2 A Historical Perspective

The historical perspective presented in this section is adapted from the study
proposed by the first author on the interesting case of the École Polytechnique in
France and developed in her doctoral thesis (Romo-Vázquez, 2009), as well as on
the three CIEM/ICMI studies mentioned in the Introduction. The resulting vision is,
inevitably, partial, but we consider it sufficient to support the reflection.

26.2.1 A First Historical Lens: The École Polytechnique

This school was created in 1794 in the context of the French Revolution. Drawing on
Belhoste (1994), Romo-Vázquez showed that tensions already existed at that time,
and that three models of education would follow one upon another in less than a
century, products of choices that combined academic, professional and social con-
siderations. These models were driven, respectively, by the ideas of Monge, Laplace,
and Le Verrier. The first model, described as Encyclopaedist, was influenced by the
ideas of Monge, the founder of descriptive geometry. It was divided into theoretical
and practical teaching. Mathematics and physics formed the basis of theoretical
teaching, while geometry occupied a predominant place in the latter, legitimized by
its important role in applications in the period. The courses on theoretical sciences
and their applications were closely connected. Taught by members of the Academy
of Sciences, they preceded practical sessions held in laboratories and taught by more
advanced students. The creation of Schools of Application in 1795, like the École
des Mines or the École des Ponts et Chaussées where polytechnicians specialised
after graduating from the École Polytechnique, destabilized this first model as those
schools claimed responsibility for teaching applications. In that same year, the
creation of an exit examination based essentially on mathematics that determined
who would be admitted to those schools, meant that this discipline became a key
selection tool. Under the influence of Lagrange and Laplace, analysis, which pro-
vides general methods for applications, became the dominant field. Analytical
methods penetrated into courses on mechanics, physics, machine theory, geodesy,
and probability. However, Cauchy’s course on analysis became highly theoretical,
so links with applications weakened. The application schools denounced this evo-
lution, arguing that mathematics was for engineers becoming something like Latin;
that is, a selection tool quickly forgotten as soon as students left school. At the same
time, the booming technical and industrial revolution imposed its needs. This led, in
1829, to the creation of the École Centrale des Arts et Manufactures, based on a new
model that taught a new approach to industrial science, one devoid of theoretical
references that sought to resolve the tension between pure abstraction and applica-
tions. The École Polytechnique later underwent reforms in a mission entrusted to the
astronomer Le Verrier in 1850. At that point, the criterion of usefulness for appli-
cations became the basis for organizing teaching and analysis as a domain was no
longer taught.
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This narrative describes an episode of French history but as Schubring (2007,
2019) sustains it has a more general value. Tensions between mathematics and its
applications were also observed in the polytechnical schools created in Europe and
beyond in the nineteenth century despite evident structural differences with respect
to the original École Polytechnique. Clearly, for over two centuries debates have
raged over just what kinds of mathematics should be taught to future engineers, and
the correct relationship between mathematics and applications and between theory
and practice. Different answers have led to the elaboration of different models. This
history also shows that, from the beginning of the nineteenth century, and driven
essentially by the industrial and technical revolution, a new scientific field emerged,
that of the engineering sciences, and with it new models for the place of mathematics
in the training of engineers.

26.2.2 A Second Historical Lens: CIEM/ICMI Studies

These debates would continue throughout the twentieth century, parallel to the
development of engineering sciences. In this section, we focus on three studies
that allow us to assess how this situation evolved over a period of more than a
century. The first two have been analysed in Romo-Vázquez (2009); here, we
continue to build on her analysis.

In 1914, the CIEM met to deal with two issues, one of which was “the place and
role of mathematics in higher technical education”. A report on the education of
engineers in ICME member countries was presented. It showed that, in general,
differential and integral calculus constituted the basis of mathematics education for
engineers. Mathematics was perceived as a broad, autonomous discipline, one that
was expected to provide a solid base of knowledge for studying other disciplines,
such as mechanics and physics –the classical disciplines of application– as well as
the engineering sciences. The dominant model was, therefore, of a rather Laplacian
type. However, the engineering sciences had come to occupy an important place in
most curricula, leading to a reduction in the number of hours allocated to mathe-
matics. Some people even argued that the necessary grounding in mathematics
should be acquired beforehand. At that meeting, d’Ocagne, a mathematician, engi-
neer, and professor at the École Polytechnique and the École des Ponts et Chaussées,
gave a lecture entitled, “The role of mathematics in the engineering sciences”.
Drawing on numerous examples, from undersea telegraphy to the propagation of
liquid waves in elastic pipes (the Kelvin effect), he sought to show that, while
engineers may be under the impression that they use only basic mathematics in
their daily work routines, solving engineering problems often required much more
advanced mathematics. He also illustrated the role that the engineering sciences play
as an interface between mathematics –theoretical and abstract– and the everyday
practices of the engineering sciences. He defended the view that engineers require a
solid mathematics education in order to understand and use, in a non-blinded way,
the knowledge produced by these sciences in their practice. This claim seems to have



been rather widely shared at the time. Debates centred on the issues of how to
provide such a mathematics education and organize its links to the engineering
disciplines and the questions that emerge in practice.
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The second ICMI Study devoted to this theme is the third in the series, but by the
time it was issued, circumstances had changed. That study made it very clear that
scientific and technical developments had created new educational needs. Moreover,
it also showed the emergence of a movement from the traditional theory-applications
vision towards modelling perspectives. Pollak’s contribution illustrates this evolu-
tion quite well. He explained, for example, how the development of the telecom-
munications sector led Bell Laboratories (where he had worked for 35 years) to set
up, as early as the 1940s, training courses to complement university engineering
courses: “Linear algebra, complex variables, Fourier series and Fourier and Laplace
transforms, probability theory, statistics, semi-conductor physics, and a number of
other topics which at that time were not part of the regular university education of
electrical and mechanical engineers” (Pollak, 1988, p. 30).

The courses that Bell organised at that time followed the classic theory-
application pattern, but retrospectively, and in light of his experience, Pollak came
to question that approach and emphasize the diversity of mathematical forms of
thought: not only those at stake in the classically recognized fields of analysis,
algebra, and geometry, but also statistical, probabilistic, and algorithmic forms,
and others that underlie optimization and operational research activities. He also
underscored the need for employees not only to understand the mathematics they
used, but also to be aware of the fact that those various forms of thinking can be
applied to the real world and provide valuable insights there by preparing students to
deal with open-ended situations, and to think about how they might use mathematics
to solve them. According to Pollak, modelling courses were particularly well-suited
to meet those needs. At the time, as we mentioned at the outset, mathematics had
connections with a growing number of fields and service courses in addition to
engineering subjects. This increasing diversity is not, however, reflected in the study
volume.

The panorama in the ICMI-ICIAM study launched in 2008 was much broader
(Damlamian et al., 2013). Its Discussion Document states that the study is based on a
wide definition of industry, interpreted by the OECD as “any activity of economic or
social value, including the service industry, regardless of whether it is in the public
or private sector” (p. 4). The goal of studying the interfaces between mathematics
education and industry was to find “a balance between the perceived needs of
industry for relevant mathematics education and the needs of learners for lifelong
and broad education in a globalized environment” (p. 5). This study shows a clear
evolution from the earlier ones. The vision of modelling was strongly present in both
the contributions of mathematicians working in industry or universities, and those of
mathematics educators. Industrial mathematicians emphasized the interdisciplinary
nature of their projects and the importance of developing good communications and
collaboration skills. The study also stressed the important changes induced by
technological evolution. Questions linked to the invisibility of mathematics despite
its growing role, and the relationship that needed to be established with the digital
tools that encapsulate mathematical techniques and lead to explorations of complex



processes through model simulation were omnipresent in the document. Several
contributions also emphasised the importance of more advanced mathematics in
certain fields, such as finance, and the attractiveness of these new fields that tended to
upset traditional balances.
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Many achievements are presented in the study based on work in both communi-
ties: the ICIAM and the ICMI, despite their different experiences, goals, approaches,
practices, time scales, language, and overall diversity. One main challenge that was
of interest in the study was, undoubtedly, to foster communication, to cross borders.
As the study’s conclusions highlight, for example, industrial practices tended to
induce forms of training in industrial mathematics that were in line with the idea of
communities of practice promoted in mathematics education research (p. 449):

Modelling weeks in general education as well as internships and industrial workshops seem
to blur the traditional separation of those who know already and those who have to learn.
Instead, people from university and industry –in a joint, social effort– hope to approach
problems unsolved to date with the help of mathematics.

These practices also tended to promote forms of assessment that were less individual
than those generally used in mathematics education, because in these contexts
cooperation is a key condition for success. In both fields, education and industry,
certain question arise: which software black boxes should be opened, to what extent
(grey or white), and how, though the constraints and challenges are not the same
(p. 450):

. . . hiding a process in a black box can be a marketing strategy for industry to secure
superiority over competitors in the market [. . .] in education, black boxes are a challenge for
the learning process —even if some learning processes definitively rely on black boxes
remaining black.

Differences were also stressed regarding modelling practices (pp. 450–451):

For industry it is the gateway into the use of mathematics. . . the extra-mathematical part of
the famous modelling cycle is the reason for using mathematics at all. Generally speaking, it
is only if mathematics offers additional insights into an extra-mathematical question that
industry will make use of mathematics. For education, modelling with the help of mathe-
matics is often an important aim in itself for classroom activities and curricula and it is
definitively an important competence to be acquired.

This study presents many interesting and innovative realizations concerning students
at all levels, up to the most advanced, and teachers. However, as far as research is
concerned, its contribution remains limited. For its authors, “research on the use of
mathematics in industry (taken in the wide sense indicated at the beginning of the
paper) has just started in various institutions around the world and in several
academic disciplines (such as Didactics of Mathematics, Applied Mathematics, or
Sociology of Work)” (p. 451).

What exactly is the state of this research today, specifically in the didactics of
mathematics mentioned as one of the contributing fields? How does this relate to the
challenges that this brief historical perspective has highlighted? And which chal-
lenges does it identify? We address these questions in the following sections, first
considering the new entry in the Encyclopaedia of Mathematics Education men-
tioned above.
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26.3 Mathematics Education for Non-specialists Through
the Lens of the Encyclopaedia of Mathematics
Education

Hochmuth (2020) acknowledges that most research in this area is recent (20 of the
30 references are less than 10 years old) and highlights a number of challenges that
researchers have identified. His discussion centres on the persistent challenge of the
relationship between mathematics service courses and those in the major disciplines
for non-specialists, the difficulties created by the organization of such courses and
the limited knowledge that we still have of mathematical practices outside of
mathematics itself: “Whereas topics like differentiation, integration, or stochastic
distributions can easily be identified and considered in curricula, the discipline-
related adequate mathematical practices and conceptions are often not sufficiently
determined or are not even known and require further research.” (p. 771).

Hochmuth links this problem to the persistence of applicationist visions of the
relationship between mathematics and other disciplines, and to the institutional
disconnection that this vision engenders. The studies cited show that this leads to
numerous mismatches between the uses of mathematics in service courses and in
basic or advanced major subject courses, mismatches at the level of symbolism,
practices, modes of reasoning, and validation. These mismatches are sources of
major difficulties for students, who tend to develop an incoherent mixture of concept
definitions and concept images. The case of the concept of derivative is cited as an
example with reference to research concerning students in mechanical engineering,
economics, and biomedical science. As that research shows, this situation affects
more globally the students’ recognition of the relevance of what is taught in
mathematics for solving the problems encountered in their major subject courses.
Other difficulties are mentioned more briefly, notably the fact that these students, at
least in the early years of their university education, often have little confidence in
their mathematical abilities. A final point is that developing this confidence is not
something that pedagogical forms –which are essentially transmissive– or evaluation
instruments foster.

In addition to research analysing current practices and their effects, Hochmuth
discusses studies designed to make mathematics service courses more relevant to
students and better connected to the teaching of their major disciplines. Collabora-
tion between mathematics lecturers and professors from other disciplines plays a
crucial role in this process. However, Hochmuth points out that:

[. . .] there is still a lack of systematic research on detailed studies about the use of
mathematics in other disciplines, on possibilities, demands, and limits of the use of tech-
nology and software tools, in particular in the implementation of complex life-like examples
from other disciplines, as well as on dealing with an increasing heterogeneity of cognitive
and affective-emotional prerequisites of students in large service-courses (p. 773).

Returning to the initial question of the challenges posed to didactic research by the
mathematical education of non-specialists at the tertiary level, this entry clearly
identifies an essential challenge: the one posed by the insufficient connection



between mathematics teaching and the teaching of the students’ major disciplines.
Meeting and eventually overcoming this requires additional knowledge, first of all
about how mathematics ‘lives’ in different disciplines. This demands an understand-
ing of the corresponding practices and their rationale. It is also necessary to enhance
our understanding of the systems of conditions and constraints that seem to lock
service courses into this state of disconnection; for example, the organization of
service courses that bring together large cohorts of students with a variety of
professional goals and backgrounds, and courses that must cover a large amount
of content in a short time to respond to such diverse needs. These conditions tend to
legitimize an applicationist vision of mathematics as a discipline that provides
general concepts and methods expressed in a purely mathematical discourse. Beyond
mere understanding, this field needs research that explores the construction of
possible connections, and the possibility of crossing borders, developing alterna-
tives, and studying the conditions for their ecological viability.
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But there are also other challenges. As shown in Sect. 26.2, from the outset
engineering disciplines have played the role of mediators between, on the one hand,
the scientific disciplines to which mathematics belongs and, on the other, practice.
This level of practice cannot be overlooked. The research initiated by researchers
like Noss et al. (2000) clearly shows that workplace mathematics have characteris-
tics that distant them from those of university courses. Once again, our knowledge of
these aspects is still fragmentary. In the following section, based on a selection of
studies, we present in greater detail some conceptual and empirical advances that
have been achieved in confronting these challenges.

26.4 Mathematical Training for Non-specialists from
an Institutional Perspective

In a concerted effort to recognize where we are concerning the challenges mentioned
above and the direction in which we need to head, this section revisits the research
analysed in Hochmuth (2020) in light of a perspective nourished by the Anthropo-
logical Theory of the Didactic (ATD) regarding the circulation of praxeologies
among institutions. The discussion focuses on institutional epistemologies and
potential tensions and relations among them.

26.4.1 Selected Theoretical Elements of the ATD

The ATD, proposed by Chevallard (1999, 2019), is an epistemological model that
allows studying human activity in its institutional dimension. A praxeology
[T, τ, θ,Θ] is a minimal unit of analysis of human activity. Its four components are
task type (T ), technique (τ), technology (θ); and theory (Θ). ‘Task’ refers to what is



to be done; ‘technique’ to how it is to be done; ‘technology’ to a discourse that
produces, justifies, and explains the ‘technique’; and ‘theory’ to that which produces,
justifies, and explains the ‘technology’. The first two elements correspond to the
praxis block [T, τ], the latter two to the logos block [θ, Θ]. In any institution there
exist different levels of praxeologies or praxeological organizations, called pinpoint,
local, regional, and global. The pinpoint level corresponds to a praxeology unit with
only one technique for performing one type of task and one logos block. Linking all
pinpoint praxeologies with the same logos block gives rise to the local level.
Associating local praxeologies with the same theory corresponds to the regional
level, while global praxeologies, or domains, group together specific regional
praxeological organizations. Discipline is the top level and combines all domains.
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An institution is a stable social organization that makes human activities possible
by providing its subjects with conditions and resources. Subjects can occupy differ-
ent positions in one institution and belong to different institutions at the same time.
Romo-Vázquez (2009) proposed a classification of institutions according to their
relation to knowledge as a predominant vocation: producing, teaching, and using.1

Producing, or Research, institutions, Ir, include disciplines that generate knowledge
(e.g., mathematics, electronics); Teaching institutions, It, are responsible for trans-
mitting knowledge (e.g., school mathematics, school electronics); and Using insti-
tutions, Iu, are involved in utilizing or applying knowledge (e.g., practical training,
manufacturing). Each institution has a specific epistemology. When praxeologies
pass from one institution to another they undergo transpositive processes
(Chevallard, 1999). Disciplinary mathematical praxeologies thus undergo didactical
transposition to become school mathematical praxeologies (Chevallard, 1991). In
the other direction, through some transposition user mathematical praxeologies
become disciplinary mathematical praxeologies. An exciting example is Heaviside’s
work (Lützen, 1979), another is Bell Laboratories (mentioned in Sect. 26.2.2),
where mathematical praxeologies such as Laplace Transformation were taught
long before they were introduced into university mathematics courses (Pollak,
1988).

Based on the above, we consider that the challenges of mathematics education for
non-specialists can be viewed advantageously through relationships among research,
teaching, and using institutions. This leads to two key questions: what relations and
tensions among these institutions have been identified, and what new connections
can we establish among them? To address these issues, we organized the studies
analysed by Hochmuth (2020) into three categories: those developed in workplaces,
those focused on analysing math courses and courses in major disciplines, and those
focused on the design of didactic proposals. This classification helps us reinterpret
their results in light of our institutional and epistemological perspective, identify
advances and limitations, and build a coherent overview of where we are and where
we are heading.

1A praxeology can be created, taught, and used in any of these institutions. Distinguishing them
makes it possible to analyze the circulation of mathematical praxeologies.
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26.4.2 Mathematical Praxeologies in Workplaces

Interest in analysing the role of mathematical praxeologies in workplaces has
increased in the last two decades (e.g., Alpers, 2011; Bissell & Dillon, 2000,
2012; Frejd & Bergsten, 2016; Gainsburg, 2006, 2007; Hall et al. 2007; Kent &
Noss, 2002). Pioneering research in engineering workplaces developed by Kent and
Noss (2002) identified, for example, a division of mathematical work in the devel-
opment of civil engineering projects associated with two types of engineers:
designer-specialists and analysts. Designer-specialists tend to be more experienced:

[. . .] so, as an engineer grows up, he may no longer be using the mathematics that they
started out using, they are still using the understanding that they derived earlier in their
experience, and some of this is difficult to describe as to the sort of knowledge it is (Kent &
Noss, 2002, p. 3).

Analysts (5% of employees), in contrast, are usually younger engineers who handle
the mathematical-analytical problems that other engineers cannot solve. A large part
of their work consists in interpreting the “codes of practice”, which are similar to the
“methodological guides” that Vergnaud (1996) identified in his study of an aero-
nautical company. These documents contain practical, experimental, and analytical
knowledge that have been verified by communities of practice. They coincide with
Bissell and Dillon’s (2000) affirmation that “models have to be mediated and
negotiated within a community of practice to make any sense” (p. 6). We thus
identify a specific epistemology that underpins the relationships among different
types of knowledge and is sometimes profoundly embedded in the technology.
According to Kent et al. (2007), this concerns Techno-mathematical Literacies
(TmL). As these authors explain (p. 66), the prefix “techno” emphasizes “the
mediation of mathematical knowledge by technology”, while the plural form of
“literacies” points to “the breadth of knowledge required in the context of contem-
porary work.” Van der Wal et al. (2017) characterize, among other aspects of the
TmL, technical software skills related to encapsulated mathematical knowledge at
three levels of transparency, called white, grey, and black boxes (a distinction also
mentioned in Sect. 26.2.2). Velten (2009) sustains that these levels characterize the
use of mathematical models, while Frejd and Bergsten (2016) relate them to three
types of activities that professional mathematical model constructors perform: data-
generated modelling, theory-generated modelling, and model-generated modelling.
The first is characterized by “the work of gathering, interpreting, synthesizing, and
transforming data as the main underlying base for identifying variables, relation-
ships, and constraints about a phenomenon used in the model development process”
(p. 20). This type of activity leads to the production of grey and black boxes for
social or biological sectors, among others. The second entails constructing theory. It
is related to grand projects and is developed by a work team using computer support
to produce white boxes closely related to mechanical systems. Finally, model-
generated modelling produces an empirical confrontation of already-constructed
(existing) mathematical models –that is, grey or white boxes– that may be related
to other modelling activities. The schemes of data-generated, theory-generated, and



model-generated modelling activities are shown in Figs. 26.1, 26.2, and 26.3,
respectively.
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Fig. 26.1 Data-generated modelling activity. (Similar to Frejd & Bergsten, 2016, p. 21)

The effectiveness of this model is determined through communication with other
“experts”.

These approaches led us to identify various workplace praxeologies of engineers
and professional mathematical model constructors. Mobilizing them requires con-
ceptualizing structures, systems, materials, behaviours, data, and information
obtained through mathematical methods and models. Moreover, having experience
in performing a wide variety of tasks allows those specialists to make decisions to
control their practice, a phenomenon that Gainsburg (2007) identified as “engineer-
ing judgment”. Likewise, we identify specific workplace conditions: collaborative
work, hard use of technology, engineering roles, and mathematical work division.
Characterizing workplace praxeologies and conditions is the first step in the process
of transposing them into the training of non-specialists. It was in this vein that Frejd
and Bergsten (2016, p. 31) developed their research and stated: “Here, our charac-
terization of the constructors’ modelling work may contribute to the didactic trans-
position process by being a source of information about central components and
processes used by the professional model constructors.” It is also crucial to develop
the theoretical tools to more finely analyse the transpositions of mathematical
praxeologies and the workplace needs that guide and motivate them.2 Indeed,

2See the Chap. 30 by Castela & Romo-Vázquez.
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these and other workplace analyses provide, increasingly, an epistemological refer-
ence that can support graded didactic proposals: starting from the analysis of
situations that have been solved, and running through proposing improvements,
identifying errors, and exposing practical knowledge. This offers a way to confront
the challenges mentioned in Sect. 26.3 that need to be explored.

26.4.3 Mathematics and Major Discipline Courses

Major disciplines and mathematics courses have been analysed in the context of
engineering programs (Allaire &Willcox, 2004; Castela & Romo, 2011; Flegg et al.,
2011; González-Martín & Hernandes-Gomes, 2018; Guedet & Quéré, 2018;
Hochmuth et al., 2014). Relations between them are established mainly through
common mathematics praxeologies. Laplace transformation, notions of trigonome-
try, matrix models, and functions, among other elements, are all taught in math
courses (e.g., Fourier analysis, linear algebra, differential and integral calculus),
while their transposed forms are included in courses in other disciplines (e.g., control
theory, materials strength, circuits, etc.). Faulkner et al. (2020) analysed the relations
between calculus courses in mathematics and engineering courses on circuits and
statics. Specifically, they considered homework problems and, from the perspective
of mathematics-in-use, identified the types of problems, skills –“procedural
sequences of steps used to solve a particular type of problem” (p. 5)– and concepts
involved. Their results demonstrate that concepts from calculus were applied in 20%
of the problems in the course on circuits and 8% of those in the one on statics. They
further identified the existence of mismatches between how the same concepts (e.g.,
derivative, limit, continuity) were taught in calculus versus engineering courses. For
instance, continuity, a crucial notion in calculus, is taught in mathematics
courses as a property to be checked, but in engineering courses it is applied as a
“guarantee desirable of physical properties” (p. 12). Overcoming such mismatches
requires a deeper understanding of transpositions, their origins, and the development
of the disciplines of circuits and statics up to the present, which would constitute
a solid base for relating these courses. For instance, referring to electrical engineer-
ing, Gueudet & Quéré (2018) acknowledge that the transposed trigonometric
forms presented in courses reveal connections among concepts, functions, vectors,
semiotic registers, graphical curves, and arrows.3 Specifically, in the study of
alternating sinusoidal regimes, the trigonometric functions considered as signals –
sðtÞ=A

ffiffiffi

2
p

sinðωt þ ϕÞ – are studied and represented geometrically by vectors, in
this case, a Fresnel vector (phasor). What is the origin of these connections and what
motivated the transpositions from mathematics to electrical discipline? Bissell
(2012, p. 73) stated: “The phasor approach allowed powerful geometrical represen-
tations (based on Argand diagrams) to be used for a wide variety of applications:

3See Chap. 27 by González-Martín et al.



from electrical power transmission to electronic circuits and electromagnetic wave
transmission.” However, the usefulness of mathematics is not the only principle
governing such transpositions. In the case of engineering and based on the work of
various historians (e.g., Dalmedico, 1996; Kline, 1994, 2000), Bissell and Dillon
(2003) recognizes two broad paths in the recent development of electronic engineer-
ing. The first refers to processes of mathematization and “scientification” adopted
and accentuated around World War II, the second to the tradition of producing
knowledge through practice. Bissell goes on to elucidate that the evolution of the
techniques of practice differ in each domain, but observes that this occurs “most of
the time with the objective of avoiding complicated mathematics!” (p. 6). Likewise,
Bissell acknowledges that the need to develop telegraphy and new telephony
motivated the existence of meta-languages (e.g., circuit diagrams) that correspond
to other transposed forms of mathematics. Indeed, meta-languages can be the base
for computational engineering tools, where some mathematical models work as
black boxes. These three criteria –giving scientific status to the discipline, avoiding
complex mathematics, and solving new problems– can be analysed from a didactic
perspective and used to propose new relationships between electrical engineering
and mathematics courses. We see this as a new direction to address the challenges
mentioned in Sect. 26.3.

Another way consists in analysing contemporary engineering research institu-
tions. To illustrate this way, we consider biomedical engineering and the blind
source separation method (BSS), jointly analysed by researchers in biomedical
engineering and mathematics education (Vázquez et al., 2016). The BSS is used to
separate signal mixtures. It is a case of inverse modelling because the sources and the
mixed model are both unknown. In the context of biomedical signal-processing, the
BSS is applied to separate cerebral and extra-cerebral sources (s) under the assump-
tion that an electroencephalogram (EEG) is a linear instantaneous mixing; that is,
source signals reach the sensors simultaneously (Sanei & Chambers, 2007). More
specifically, EEG recordings are the result of a combination of diverse sources,
s (cerebral and extra-cerebral), through a mixing matrix A. Signals are captured by
electrodes placed on the scalp, denominated ‘observations’, x, as shown in Fig. 26.4.
The mixing model is given by x = As.

The BSS praxeology is as follows: task type: separate the sources in cerebral and
extra-cerebral origin; technique: using the BSS algorithms, the inverse B of the
mixing matrix A can be obtained and the original sources can be estimated as y= Bx,
where y represents the estimates of s. Technology: consists of estimating unknown
P signals s (sources) based only on the knowledge of Q mixes of the signals
x (observations). The term ‘blind’ means that both the sources, s, and the mixing
matrix, A, are unknown. The spatial model of the mix at instant k is defined as
follows for the ideal case, without noise: x(k) = As(k), where:
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• x(k) = [x1(k), . . ., xQ(k)]
T is the vector of the observed signals (channels),

• s(k) = [s1(k), . . ., sP(k)]
T is the vector of the sources of origin (unknown), and

• A(Q × P) is the mixing matrix (unknown).

The theory is signal-processing.
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Fig. 26.4 Mix of sources
recorded by the electrodes.
(Similar to figure in Romo-
Vázquez, 2010, p. 35)
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Several BSS algorithms have been proposed to obtain the separation matrix, B,
using either high-order statistics (HOS), thus explicitly addressing the ‘indepen-
dence’ (Independent Component Analysis, ICA), or second-order statistics (SOS) on
time-delayed or windowed signals, as well as combined (ICA + SOS). Vázquez et al.
(2012) presents a broad examination of these BSS algorithms and an analysis in
simulated signals is made. Those authors propose simulated sources, s, and known
mixing matrices, A, to compare s and its estimated sources y. Once the BBS
algorithms were tested, the methodology was applied to real EEG signals. The
BSS praxeology is fascinating, and we argue that it can be an epistemological
referent for designing interdisciplinary teaching proposals (see Sect. 26.4.4). Indeed,
similar contexts, such as radiography and tomography, have been integrated into a
linear algebra course in the IMAGENMath4 project. Access to the materials (instruc-
tor’s notes, students’ notes, solutions to exercises) is available on request, but once
obtained cannot be shared. As a result, it is not possible to determine the use and
impact of this digital resource in engineering education, as proposed by Pepin et al.
(2021). Nevertheless, it is an inspiring project for linking mathematics and
engineering.

Research in engineering and mathematics courses has shown tensions
(Hochmuth, 2020) as an effect of transpositions of mathematical praxeologies that
have led to misunderstandings, incoherent mixtures of concept definitions and
concept images, changes in notations and meanings, and replacing mathematical
concepts with tables and formulas, among others. We believe that a promising
direction for future research consists in analysing the disciplines, including their
historical evolution, or their contemporary development. The purpose here is two-
fold: to understand the factors that motivated the transpositions of mathematics, and
to obtain an epistemological referent to create didactic proposals. From ATD theory,
the epistemological referent could be structured as a nesting of praxeologies of
increasing level: pinpoint, local, regional, and global. We also consider it essential

4Available at www.imagemath.org

http://www.imagemath.org


to analyse the potential of existing didactic devices that promote relationships
between mathematics and engineering courses (e.g., Schmidt & Winsløw, 2021).
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26.4.4 Didactic Proposals for Mathematical Training
for Non-specialists

Promising didactic proposals for the mathematical training of non-specialists have
been generated from the perspectives of mathematics modelling (Kaiser, 2020) using
inter-, trans-, and co-disciplinary approaches. According to Takeuchi et al. (2020),
“interdisciplinarity refers to the amalgamation of two or more disciplines, whereas
transdisciplinarity goes beyond the amalgamation; the relationship among disci-
plines is not additive, rather reflexive and emergent” (p. 11). In this regard,
Chevallard (2013) affirms that co-disciplinarity makes it possible to bring together
tools from different fields, as illustrated in the ‘Questioning the World’ paradigm,
which is characterized by studying open, researchable questions, Q, that lead to the
development of Study and Research Paths (SRP). Determining inter-, trans-, and
co-disciplinary relations in a didactic proposal is, however, closely associated with
the research methodology and design adopted. The emblematic research methodol-
ogy called didactic engineering (Artigue, 2020), for example, has been adapted for
designing SRP. Preliminary analyses –the first phase of this methodology– focus on
the epistemological and didactic dimensions of non-mathematical knowledge that
can come from engineering, economy, or the Arts, etc. In the case of engineering,
Bartolomé et al. (2019) analysed a Strength of Materials course (SM) to determine a
question, Q, that would satisfy three conditions: “being project-oriented and include
some engineering context; involving a real object, which could be taken to the lab for
mechanical tests; and potentially inducing the study of most of the important
chapters of the SM course” (p. 336). Within the same SRP perspective, Galindo
(2019) analysed the Quantitative Structure-Activity Relationships (QSAR) method-
ology that is utilized to predict activities or properties as a function of their chemical
structure, using mathematical models (see Fig. 26.5). This analysis is based on
documents both scientific (e.g., Balaban et al., 1992; Golbraikh et al., 2012) and
scientific-didactic, including one entitled “Molecular Descriptors for
Chemoinformatics” (Todeschini & Consonni, 2009). The Preface to that work
states:

Indeed, this new edition has been conceived not only for experts and professional
researchers but also for PhD students and young researchers who wish to enter the field of
molecular descriptors and related areas, giving special attention to a didactical use of the
book and suggesting some possible routes for didactical purpose (Mannhold et al., 2009,
p. XI).

The analysis of these documents and the proposal of a general Q (see Fig. 26.6) as
the basis for the design of various SRP was carried out in conjunction with an expert
in QSAR.
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Fig. 26.5 QSAR modelling. (Similar to Todeschini & Consonni, 2009, p. XVI)
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Fig. 26.6 Q to chemical engineering training (translation by the authors)

In addition to transposing tasks from the different engineering institutions –
courses, research, practical training, and workplace – it is also possible to transpose
the conditions under which those tasks are developed. Siero et al. (2017), for
example, proposed a project to develop a tactile sensorial therapeutic ramp in three
parallel courses, one mathematics service course, and two majors courses. The
professors involved, one mathematician and two engineers, followed their syllabuses
and the project ran in parallel throughout the semester. Thus, students from different



majors and semesters worked in teams (3–5 students) simulating some workplace
conditions: mathematical work division with a mix of novices and experts.
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Implementing inter- or co-disciplinary activities in the first university semesters
often becomes quite complex because students have such limited backgrounds.
What is required is a balance between non-mathematical tasks (or those of mathe-
matical modelling) and the mathematics that must be taught according to established
study plans. Along these lines, Vázquez (2017) proposed a didactic activity for a
first-year university linear algebra course based on the method BSS (see Sect. 26.4.3)
used to separating mixtures of signals in various areas of engineering (Common &
Jutten, 2010). The Q proposed was: how to separate a mixture of voices (audio
signals) based on their register? The complexity of this question was attenuated by
considering the linear mixture at one sole point in time and replacing real voices with
pure tones, with modelling based on the wave function y(t) = a�sin(2πωt). The
mixture A of n sources (s) registered by n observations (x) is associated with the
matrix model As = x, seen as the transformation T: Rn → Rn. This permits the
emergence of a technique for calculating T-1: Rn → Rn such that T(x) = s. The
didactic design based on a dialogue between the ATD and APOS (Actions, Pro-
cesses, Objects, Schemes) theories allowed the matrix transformation and its
inverse –key elements of the school BSS praxeology– to be constructed as objects
of linear algebra instead of being approached from a utilitarian perspective (Kaiser,
2020).

This discussion demonstrates that inter- and co-disciplinary approaches offer the
possibility to frame teaching proposals that link disciplines and their teachings.
Didactic engineering is postulated as a solid research methodology that can sustain
these didactic designs, SRP, and even proposals developed outside ATD as mini-
(Alpers, 2011) and larger-scale projects. However, a question emerges concerning
the preliminary analyses: what level of analysis is necessary to access the episte-
mology of other disciplines and their teachings? From the institutional perspective,
the epistemological referent could correspond to local, regional, and global praxe-
ological levels. One criterion for determining the optimal level is the type of teaching
proposal intended, as mentioned at the end of Sect. 26.4.2, and the kind of relation-
ship between institutions pursued; that is, inter- or co-disciplinary. According to our
analysis, the participation of experts from other disciplines, and mathematicians or
math professors, in developing inter- or co-disciplinarity is fundamental for gener-
ating a minimal expression of the mixed or interdisciplinary epistemology.
Generally-speaking, the didactic proposals analysed permit the construction of
disciplinary knowledge and the identification and use of resources (e.g., research
articles, software, Internet, experts), while also promoting diverse forms of team-
work (students from one or diverse groups). We see promise in these inter- and
co-disciplinary approaches to address the heterogeneity of students in mathematics
service courses.
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26.5 Conclusion

This historical review of mathematical education for non-specialists shows that the
constant evolution of disciplines, the profession, and social demands have increased
the complexity of achieving educational models characterized by a balance between
theory and practice. Research to date has focused mainly on engineering careers,
which limits its scope. Very often, it has focused, as well, on classic mathematics
service courses, especially differential and integral calculus. As the contributions of
professionals to the latest ICMI study show, there is a need to broaden the spectrum
to include more advanced mathematics. It is also necessary to enhance consider-
ations of the growing role that probabilistic models are taking in all fields of activity,
and question the evolution induced by big data and artificial intelligence whose
techniques break with the usual forms of mathematisation, as Jablonka (2017) points
out. We must also rethink, in light of technological developments, the ongoing issue
of the relationship that is to be established with the digital tools in which mathe-
matical techniques are encapsulated and, in another direction, the role that mathe-
matics plays in software development (Beynon, 2012; Dahl, 2017). Our analysis
reveals that recently developed research has focused on workplaces, mathematics
courses, and courses in other disciplines, as well as on the design of teaching
proposals that have generated contributions at the global and local levels. On the
one hand, a theoretical framework for curricular innovation in engineering mathe-
matics has been generated (Alpers et al., 2013), and didactic perspectives on
mathematical modelling (Kaiser, 2020) and the inter-, trans-, and co-disciplinary
approaches have been further developed. On the other, we have attained a better
understanding of the logic that determines the use of mathematics in workplaces, the
types of problems faced there, the different mathematical modelling activities that
coexist, the relationships among modelers, clients, and experts from different areas,
and the crucial role of the computer tools and levels of transparency associated with
encapsulated mathematics (black box, grey box, white box). All these elements seem
very distant from university mathematics, but investigations focusing on courses in
other disciplines show possible points of convergence with mathematics courses and
the possibility of establishing a university interdisciplinary epistemology (the mixed
epistemology) likely to support new didactic proposals closer to the type of tasks
performed in workplaces. Although research along this line needs to be encouraged,
we consider that identifying praxeologies related to a type of modelling may offer a
way to go beyond applicationist visions. For example, inverse modelling can be
approached through the BSS (Vázquez et al., 2020) since it is used in several areas of
engineering and biology. Likewise, didactic proposals characterized by studying
questions or the development of mini-projects or larger ones based on didactic
engineering show a way to establish more local relationships between teaching
institutions and those that use mathematics. However, the complexity entailed in
entering into the logics of other disciplines makes generating a multiplicity of
proposals difficult, and their diffusion also seems to be limited to the sphere of the
research community in mathematics education. These didactic proposals still



constitute today specific cases that impact only a small number of students. Their
permanent integration into mathematics training will require changes in existing
educational models and in university institutions to foster greater collaboration
between math departments and those of other disciplines, as well as with industries.
In other words, it is necessary to create and ensure solid relations among the
institutions involved in producing, teaching, and using mathematics. To these
challenges we must add those mentioned in Sect. 26.3 regarding the need to take
into account recent scientific developments, such as the increasing influence on
practices of accessing and treating big data.
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Chapter 27
Mathematics in the Training of Engineers:
Contributions of the Anthropological
Theory of the Didactic

Alejandro S. González-Martín, Berta Barquero, and Ghislaine Gueudet

Abstract In recent years, there has been a considerable increase in the number of
studies examining the role of mathematics courses in engineering students’ educa-
tion. Researchers have identified some important differences between the way
mathematics is taught to engineering students and how engineers actually use
mathematics in the workplace. In this chapter, we present tools provided by the
anthropological theory of the didactic (ATD), which offers a useful framework for
investigating issues related to the role and use of mathematics in engineering
courses, as well as for designing innovations in mathematics and engineering
courses. Using examples, we demonstrate how praxeological analyses can uncover
differences in the way mathematical tools are used in mathematics courses and
engineering courses. We also provide examples of implementation of study and
research paths (SRPs) aimed at reducing the gap between educational and profes-
sional practices with respect to mathematics for engineers.
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27.1 Introduction

Around the world, engineers are in demand to help solve many of the challenges
related to sustainability, development, and infrastructure. For this reason, concerns
are being raised in several countries where the number of engineering graduates is in
decline.1 Some reports indicate that, in some cases, up to half of students do not
finish their engineering degree within the expected time frame and a significant
number (in some cases, up to one-third) of students enrolling in an engineering
degree drop out after failing a mathematics course (Faulkner et al., 2019; Faulkner
et al., 2020). This has prompted some engineering departments to take over the
teaching of mathematics courses, with economic repercussions for mathematics
departments (Faulkner et al., 2019). Furthermore, recent technological advances
have had an impact on engineers’ professional practices and needs, making it
reasonable to question the relevance and role of current mathematical training for
engineers; this leads to a need for research to better understand these phenomena.
However, much of university mathematics education (UME) research implicitly
focuses on the practices of mathematicians2 (Artigue, 2016), ignoring the specific
needs of professionals such as engineers.

To tackle these issues, this chapter provides an overview of research examining
how engineering students actually use mathematics, along with a few research-based
interventions. In accordance with this book’s main goal, which aims to present
innovations in the context of theoretically grounded practice, we have chosen to
focus on contributions from the anthropological theory of the didactic (ATD). ATD
can help guide effective change by providing tools for analysing current practices in
engineering courses, identifying gaps between mathematical knowledge taught in
mathematics courses and mathematical knowledge deployed in professional courses
and in the workplace. Furthermore, ATD can also help identify innovative ways of
bridging these gaps, in particular by introducing real-world examples that give
meaning to the knowledge being taught. This approach, through the innovative
proposal of study and research paths (SRPs), aims to introduce students to questions
encountered in today’s engineering workplace, lending prominence to mathematical
modelling. According to Pepin et al. (2021), mathematical modelling has played a
central role when it comes to innovation in education for engineers, as it more
closely resembles actual engineering practices (e.g., designing and testing models).
As a tool, modelling is now used in a variety of ways beyond the more traditional
modelling cycle description (e.g., Blum & Leiß, 2007); for instance, as part of a
mathematical competencies framework (Niss & Højgaard, 2019), to measure stu-
dents’ modelling abilities, when completing tasks in engineering courses as a

1For instance, in the United States, the President’s Council of Advisors on Science and Technology
reported in 2012 that approximately one million more STEM graduates would be needed in order to
meet the demands of the U.S. workplace (PCAST, 2012).
2That is, the use of mathematics and the rigour and structure of content in structure of content in
mathematics research papers.



complement to other problem-solving techniques (Kortemeyer & Biehler, 2017),
and, more recently, in questioning the role of mathematics and of modelling in
engineering education, as part of more institutional perspectives.
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In the case of ATD, mathematical modelling has been linked to the notion of
mathematical activity since the framework was first developed (Chevallard, 1989),
with the assumption that doing mathematics mostly consists in producing,
transforming, interpreting, and developing mathematical models (García et al.,
2006). In the context of engineering education, modelling becomes central to
addressing real-life problems in the engineering workplace, exposing students to
professional practices and deepening their understanding of mathematics’ usefulness
and its applications in various engineering subdisciplines. That said, this chapter
neither focuses on nor examines different approaches that conceptualise modelling
through other epistemological models (see an overview in Barquero et al., 2019). We
also note that our focus is on the training of engineers and not on their workplace,
which is covered in the Chap. 30 by Castela and Romo Vázquez.

This chapter is organised as follows: The next section (Sect. 27.2) provides a
review of literature on issues concerning mathematics in engineering training,3

which leads to an explanation in Sect. 27.3 of tools from ATD that we use to present
and discuss the specific examples given in this chapter. The following two sections
then illustrate how these tools are used: Section 27.4 presents the results of the
analysis of engineering courses, revealing the latter’s use of mathematical tools and
how this use differs from that normally seen in a mathematics course. Section 27.5
presents specific examples of innovations in engineering courses, discussing how
epistemological tools can help inspire a different way of organising content, and how
some of these interventions are being deployed in the institutions where they were
first implemented. We conclude the chapter with some observations based on the
examples of research discussed.

27.2 Problems with Mathematics Courses for Engineers

How should mathematics be taught to engineers? The question is not an easy one,
and its complexity has long been acknowledged (e.g., Howson et al., 1988). In
addition to this, most research studies on UME still consider the practice of math-
ematicians to be an implicit reference (Artigue, 2016), which is not helpful in
addressing this question. This situation is changing, however. Recent years have
seen a considerable increase in the number of studies examining the role of math-
ematics courses in engineering students’ education (González-Martín et al., 2021).
Pepin et al. (2021) observe that, since 2003, the mathematical needs of future

3We keep this section brief and note that a detailed discussion of challenges for research in
mathematics for non-specialists, with examples specific to engineering, is the focus of the
Chap. 26 by Romo Vázquez and Artigue.



engineers have been increasingly addressed in terms of “mathematical competence,”
following Niss’ (2003) definition of this term,4 both in research literature and in
curricular propositions. For instance, the European Society for Engineering Educa-
tion (SEFI) proposes to construct curricula for future engineers based on compe-
tences such as “thinking mathematically,” “reasoning,” “representing,” and
“communicating” (Alpers, 2013).
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One element that the literature has identified as the origin of many difficulties for
engineering students is related to the “classic” structure present in many engineering
programmes around the world, where mathematics courses are presented mostly in
the first years, separate from engineering courses (e.g., Artigue et al., 2007;
Engelbrecht et al., 2017; González-Martín et al., 2021). This structure is influenced
by the original model of the École Polytechnique, founded in France in 1794
(Belhoste, 1994), and it seems to hinder students’ ability to make links between
concepts (Christensen, 2008). Under this approach, mathematics courses are taught
in a purely “mathematical” way, often focusing more on technical skills and “on
mathematical concepts and understanding rather than applications” (Loch &
Lamborn, 2016, p. 30), with significant differences between the mathematical
terminology and notation adopted by engineering and mathematics teachers (Flegg
et al., 2011). Prerequisite mathematics courses have high failure and dropout rates
(Faulkner et al., 2020); the lack of connection between mathematics and engineering
courses may lead students to see mathematics content as irrelevant, reducing their
interest and motivation. Research on the background and practices of teachers in
engineering programmes also shows that teachers with a mathematical background
may focus more on rigour (e.g., González-Martín & Hernandes-Gomes, 2020), and
that teachers with a science or mathematics background may tend to see academic
excellence in mathematics courses as a kind of prerequisite for engineering,
reinforcing approaches to teaching that emphasise formalism and downplay practical
applications (Nathan et al., 2010). In particular, these practices do not seem to
develop the mathematical skills that subsequent engineering courses require
(Faulkner et al., 2019).

In questioning the approaches used in mathematics courses, some researchers
argue that these courses have two major problems: (1) they often fail to develop
competences expected of engineers, such as the ability to transfer knowledge to other
applications (e.g., Harris et al., 2015) and modelling (Faulkner et al., 2019); and
(2) only a small portion of their content is actually applied in engineering courses
(Faulkner et al., 2020). Regarding (1), Faulkner et al. (2019) provided data from
24 teachers of engineering courses that list Calculus I, Calculus II, Calculus III,
Linear Algebra, or Differential Equations as prerequisites or corequisites. These
teachers reported that their students had not developed modelling skills in their
previous mathematics courses. Quéré (2019) also demonstrated that a significant

4Niss (2003) defined mathematical competence as “the ability to understand, judge, do, and use
mathematics in a variety of intra- and extra-mathematical contexts and situations in which math-
ematics plays or could play a role.” (pp. 120–121)



proportion of engineers in the workplace report that their training did not teach them
modelling skills, and that their university mathematical training was not well adapted
to their current professional needs. Regarding (2), Faulkner (2018) and Faulkner
et al. (2020) analysed a first-year engineering statics course, showing that only seven
out of the 84 homework exercises (≈8%) required some explicit knowledge of
calculus; their analysis of a circuits course also revealed that only 14 out of the
70 assigned homework problems (20%) required an understanding of calculus
concepts or skills in order to be solved. Research indicates that, in many cases,
engineers do not recognise the mathematics they use (Artigue et al., 2007;
Gainsburg, 2006; Kent & Noss, 2003), since it is imbedded in their practice in
such a way that “only the vestigial traces of the college mathematics taught [. . .]
remains in the mathematics that they actually use in activity” (Noss, 2002, p. 54).
Therefore, it is reasonable to assume that this phenomenon also occurs in engineer-
ing courses.5

27 Mathematics in the Training of Engineers: Contributions of ATD 563

The literature on these issues tends to conclude that traditional content and
teaching methods are not meeting current professional needs (e.g., van der Wal
et al., 2017) and do not allow students to adequately develop mathematical skills for
the workplace (Sevimli, 2016). Although the number of studies on engineering
students’ difficulties is increasing, more research is needed that provides explicit
analyses and models of engineers’ practices (in university courses and in the
workplace). This could provide a better understanding of students’ mathematical
needs and offer insights into how professional engineers actually deploy mathemat-
ical knowledge. ATD is one approach that has helped provide insight into these
questions. In the next section, we present some of its key aspects.

27.3 Some Key Notions from ATD6

From the perspective of ATD, the concept of knowledge is extremely broad. It
embraces theoretical constructions but also includes the practical dimension of
knowledge – the know-how that underpins all kinds of human activities – and both
components (the practical and theoretical components) can be jointly analysed. The
notion of praxeology is viewed as the basic unit used to analyse human action in
general (Chevallard, 1992) and, in particular, mathematical knowledge in different
institutions. A praxeology is understood as an entity formed by a combination of
praxis – the know-how or ways of doing – and logos – an organised rationale about
the praxis. Praxeologies consist of a type of task, a set of techniques, a rationale
about the technique (called technology), and a theory, and this quartet provides a

5In this section, we focus mainly on research concerning mathematics courses for engineers. Castela
and Romo Vázquez provide more information on the engineering workplace in their chapter.
6In this section, we provide a brief synthesis of notions that are used in the rest of the chapter. For
more details, the reader is invited to read the Chap. 19 by Bosch et al.



unified vision of different activities. Praxeologies are shaped by the institutions
where they take place. While tasks may be similar, the praxeologies can differ
depending on the context (e.g., a mathematics course for future engineers, an
engineering course, or in the workplace). In the Chap. 30 by Castela and Romo
Vázquez, they use ATD for an epistemological analysis of the production of
praxeologies in different institutions (in particular, mathematics courses and indus-
trial settings), and to discuss the transposition of knowledge from one institution to
another. In this chapter, we analyse outcomes of transposition processes by exam-
ining praxeologies involving mathematics in engineering courses (Sect. 27.4).
Drawing on ATD, we then propose possible interventions to reduce the gaps this
transposition creates (Sect. 27.5).
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As Bosch (2018) explains, the dissemination of praxeologies takes place through
what we call didactic systems. A didactic system is a set of three elements S (X; Y; ℘)
formed by a person or a group of persons Y (the teachers) who do something to help
another group of persons X (the students) to learn a given body of knowledge or
praxeology ℘. We can imagine a particular didactic system in a university class,
where X is a group of first-year students, Y is the course teacher, and ℘ is the
praxeology to be taught (for instance, diagonalisation of matrices or methods for
solving differential equations); in this praxeology, the teacher might plan particular
tasks and techniques to teach to her students, as well as rationales justifying this
particular praxis. The evolution of the didactic system S (X; Y; ℘) undoubtedly
depends on what X and Y can do, but also on how the praxeology ℘ is being
transposed. It is also important to analyse the conditions and constraints under
which didactic systems interact and evolve (called the ecology, Barquero et al.,
2013; Chevallard, 2002).

Chevallard (2015) describes several important constraints related to what has
been called the paradigm of visiting works. In this paradigm, didactic systems S (X;
Y; ℘) are determined by the selection of a set of praxeologies ℘ that students are
asked to “visit” under a teacher’s guidance. This situation leads to what the author
calls the “monumentalisation” of curriculum, whereby each selected mathematical
work appears as “a monument that stands on its own, that students are expected to
admire and enjoy, even when they know next to nothing about its raisons d’être,
now or in the past” (p. 175). This stands in contrast to the paradigm of questioning
the world, which offers a quite different perspective. In this paradigm, didactic
systems S (X; Y; Q) are not formed around a given praxeology to be studied, but
rather around a question Q, to which X, under the guidance of Y, might provide a
final answer A.

One recent important contribution of ATD involves the notion of study and
research path (SRP). During the past decade, a considerable amount of research
has been developed by designing and implementing various formats of SRPs in
different universities (see Barquero et al., 2022). The goal of implementing an SRP
is twofold. On the one hand, SRPs can be understood as a didactic device that
promotes a shift from the paradigm of visiting works to the new paradigm of
questioning the world (Bosch, 2018; Chevallard, 2015). On the other hand, SRPs
can also be seen as a research tool, one which can be used to identify and study



didactic phenomena, i.e., regular facts that are observable in teaching and learning
processes and are specific to the content involved.
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SRPs have adopted different instructional formats depending on the educational
level, the conditions assumed, and the constraints and didactic phenomena consid-
ered. However, some commonalities may be observed. The starting point of an SRP
is a generating question Q0 posed by the teacher and addressed to the community of
study: X and Y. The main goal is for X and Y to collaborate on elaborating a final
answer A to Q0. Students are usually divided into small teams Xi, and different
responsibilities are assigned to each team, according to the derived questions Qi

generated by Q0. The community of study’s collective work and the knowledge
involved can be described as a concatenation of derived questions and their associ-
ated answers that will lead to the elaboration of A. The inquiry process combines
moments of “study” of available information with moments of “research” (in the
sense of inquiry) into and creation of new questions and answers.

In the next section, we illustrate the uses of the ATD to uncover specific uses of
mathematics in engineering courses, allowing for a better understanding of the gaps
and disconnections mentioned in the previous section.

27.4 Practices in Engineering Courses

This section illustrates the potential of ATD for analysing how mathematics is used
in engineering courses, with two examples. It also examines how research in this
field has led to developments in ATD constructs.

In the first example, Castela and Romo Vázquez (2011) conducted a study
of reference materials in order to analyse and compare the use of the Laplace
transform in a mathematics course and in two control theory courses,7 which are
considered to be different institutions. They analysed the use of Laplace transforms
in each of these institutions in terms of their relation to knowledge (production,
teaching, and using). Given a function f(x) of real variable, its Laplace transform is
defined as: L[f(t)] = F(p) =

R1
0 e- pt: f tð Þdt: Laplace transforms are necessary in

professional practice as follows:

The problem at stake is the automatic regulation of systems: if a quantity is to be kept
constant, an electronic gauge measures its value; when variation is recorded, an appropriate
regulation process is triggered to go back to the desired value. The less time needed to get the
quantity back to this value, the more efficient the control system. The evolutions of the
different systems involved are described by differential equations, turned to algebraic ones
by the Laplace transform and easily solved, with a rational function F( p) as a solution. To
inverse the Laplace transform, the online textbook recommends using a table of Laplace
transforms. (Castela, 2017, p. 422)

7In detail, the courses were: (1) a mathematics course on holomorphic functions in an engineering
school; (2) an online course in automatics for electrical engineering and industrial computing; (3) a
course in an engineering science and technology programme.



First, Castela and Romo Vázquez (2011) show that, in the control theory courses,
results and properties concerning Laplace transforms are presented as formulae,
while their validity or the conditions that make these properties true are not
addressed; rather, students are provided with justifications based on professional
practices:

[. . .] we assume the following hypothesis: the system that will generate the function f(t) as a
response to a starting excitation must be initially at rest, meaning that f(t) must be constant
before a signal of command is applied. Therefore, in the previous expressions: f’(0) = 0 and
f”(0) = 0 and, in general, all initial values of successive derivatives of f(t) are zero. (Castela
& Romo Vázquez, 2011, p. 105, our translation, bold characters in the original)

Their analyses of the two engineering courses where Laplace transforms are intro-
duced lead the authors to characterise different levels of validation8 of mathematical
properties and results, whereby the mathematics research institution is ignored,
evoked, or invoked as an epistemological guarantee, or convoked (detailing the
mathematical proof) (p. 113). There are also differences at the level of the tech-
niques; for instance, in mathematics courses, rational functions are decomposed
using the general technique which presents each new denominator as one of the
factors of the original denominator:
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2xþ 1
xþ 1ð Þ xþ 3ð Þ =

A
xþ 1

þ B
xþ 3

,

This differs from the technique used in certain areas of engineering; in automatics,
the technique writes the expression in the denominator as: k.(1 + Ͳ1x) (1 + Ͳ2x), etc.
This is due to the fact that if the Laplace transform is written in the format
F( p) = 1

1þ1:5p , then f(t) = k.(1 – e-t/1.5), with 1.5 being the time constant of this

function; its higher value determines the reactivity, and hence the quality, of the
initial system of differential equations that was to be solved and that is transformed
into an algebraic system of equations by the Laplace transform.

Their work leads to an enlarged version of the praxeology model, rendering more
explicit the fact that different sources of knowledge related to a mathematical
technique may exist. While a mathematical institution may produce results that
validate a given technique, the user institution produces and validates its own
norms in order to foster an effective use of techniques. Figure 27.1 shows an initial
version9 of this expanded model. Here, the two θ indicate the coexistence of a
theoretical (mathematical) and a practical (or empirical) rationale for techniques, Iu

Fig. 27.1 Expanded praxeological model proposed by Castela and Romo Vázquez (2011, p. 126)

8See more details in the first section of the Chap. 30 by Castela and Romo Vázquez.
9This model has evolved further. See Castela (2017).



denotes the institution to which mathematical tools have been imported, and P(M )
the institution where mathematical knowledge and techniques are produced.
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Fig. 27.2 Solved example with a uniformly distributed load (Beer et al., 2012, p. 362). The top
right graph represents the shear force (antiderivative of a constant), and the bottom right graph
represents the bending moment (the antiderivative of the shear force). The maximum value of the
bending moment indicates where there is more tension in the beam (in this case, at its mid-point)

This model is considered in our second example, found in the work of González-
Martín and Hernandes-Gomes (2017) and González-Martín (2021). Their work
analyses the use of integrals in reference textbooks and teaching practices in two
engineering courses: in strength of materials, to define bending moments; and in
electricity and magnetism, to define electric potential. Their analysis reveals that,
although integrals are used to define these notions and to introduce related tech-
niques (integrals are present in the logos block), as the above model illustrates, the
techniques’ explanations use elements derived from professional practices, with
certain properties of integrals and derivatives employed only implicitly. An entan-
glement of elements from mathematics and engineering is evident both in the
technique and in the technology, with the mathematical rationale undergoing an
adaptation (for example, limits are not explicitly used).

For instance, in the task concerning the sketching of bending moment diagrams
(see a simple example in Fig. 27.2, and a full analysis of a complex task here), the
final product is the graph of an antiderivative, but the technique is based on
arithmetic procedures and not on calculus techniques. As noted by other researchers
on workplace practices (e.g., Noss, 2002), only vestigial traces of calculus are visible
in the technique and in the final result, confirming that these phenomena also occur
in engineering courses. Moreover, as Faulkner et al. (2020) indicate in their analysis
of engineering course materials, the study of González-Martín (2021) argues that if
the same task were to be solved using integrals explicitly, the technique would
become longer, whereas the simple techniques applied (which are supported implic-
itly by integrals) produce a simpler solution, acceptable for the field of engineering.

https://udemontreal-my.sharepoint.com/:b:/g/personal/a_gonzalez-martin_umontreal_ca/EdOEUb49WnpEq-D6gLvg7dABJtrpjNu8yRWKk1EnRBqaVQ?e=CjjMQs


This fact is confirmed by the teachers of both courses. Their teaching reproduces the
praxeologies present in the reference textbooks, and they state that these praxeol-
ogies are coherent with engineering practices.10 They also both confirm that in their
student assessments, they focus primarily on the mastery of techniques proper to
engineering, and that students’ ability to explicitly use integrals has a low impact on
their mark.
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The two examples discussed in this section illustrate how ATD allows for the
detailed analysis of practices in various fields of engineering, examining the math-
ematical content that is used, how it is used, the rationales that underlie this use, and
the type of tasks that call for this use. The tools provided by ATD facilitate analysis
of the tasks that need to be solved, pinpointing the implicit and explicit mathematical
content at stake. In this sense, it gives researchers a better understanding of the kind
of mathematics that engineering students require and how they use it, which is
connected to the notion of mathematical competence proper to these fields. The
praxeological model also helps identify differences in the actual use of mathematics
and the classic presentation (including techniques and rationales) in mathematics
courses discussed in the second section of this chapter. In the next section, we
illustrate how ATD has enabled the development of teaching interventions.

27.5 SRPs in Engineering Programs

In this section we present and discuss three selected examples of SRPs, illustrating
how ATD can inform practice-oriented research in the context of engineering pro-
grams. These SRPs were designed and implemented to address the issue of the lack
of connection between mathematics and engineering courses or workplace practice.
In Sect. 27.5.1, we present the case of an SRP concerning statistics (Quéré, 2019).
Through this example, we illustrate how ATD provides epistemological tools for
designing and managing such an intervention, and, in particular, the importance of
both the generating question and the use of the question-answer map (Florensa et al.,
2019) to anticipate various possible paths chosen by students. In Sect. 27.5.2, we
present two cases of SRPs in engineering courses, concerning elasticity (Florensa
et al., 2016, 2018) and strength of materials (Bartolomé et al., 2019). These exam-
ples form the basis for a discussion on various modalities of an SRP’s integration
into regular courses in an engineering programme, examining the conditions that
facilitate its implementation and make it sustainable, as well as possible constraints.
For this purpose, we have selected two SRPs with contrasting modalities of integra-
tion: presented at the end of a traditional course, or presented to students at the
beginning of the course and later used to organise subsequent course content based
on the questions raised during the SRP.

10In standard practices, specific values are handled and calculations can be obtained using tables.
Only in the cases of specific designs do these calculations need to be made, usually with the help of
a computer to calculate the integrals.
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In Sect. 27.5.1, we examine an SRP in a mathematics course (statistics, in this
case), while in Sect. 27.5.2 we look at two SRPs in engineering courses. However,
we consider this difference to be superficial, focusing our discussion on the issues
mentioned above.

27.5.1 Epistemological Tools for Designing and Managing
an SRP: An Example in Statistics

Barquero et al. (2013) demonstrated the potential of SRPs for changing the teaching
paradigm within engineering programmes. They analysed the implementation (over
five academic years) of SRPs on population dynamics for first-year chemical
engineering students. Since this early study, a systematic method for designing
and managing SRPs has been progressively developed (see Florensa et al., 2019,
who analysed and compared five different SRPs). In exploring the outcomes of SRPs
and in reviewing the latest developments in their design and management, we draw
on work by Quéré (2019), who designed and implemented an SRP in statistics in the
context of a chemical engineering school in France, with third-year students.

Quéré worked with a colleague, Roger, a chemistry teacher, who also teaches
statistics to third-year students. Quéré outlined the main principles of an SRP for
Roger, providing him with a few research articles on the topic. This collaboration
between a researcher in mathematics education (Quéré) and a specialist in chemistry
(Roger) played an essential role in the design and management of the SRP. Roger
proposed the generating question for this SRP, which was:

Q0: “In the pharmaceutical industry, how can you check that the product (drug) corresponds
to the dosage indications on the package?”

The generating question is the starting point of any SRP. It has to be “a ‘lively’
question of genuine interest to the community of study” (Barquero et al., 2013,
p. 327); this is crucial for the change of paradigm foregrounded by ATD. As a
chemistry specialist with knowledge of statistics, Roger knew that checking to make
sure a drug actually meets the intended dosage is a professional problem that
chemical engineers encounter in their workplace. As evidenced in the Chap. 30 by
Castela and Romo Vázquez, controlling the variability of a production process is a
central type of task in the industry institution. This question provides connections
between the statistics course and the engineering workplace.

One potential difficulty when implementing an SRP is tied to the fact that students
propose and investigate their own sub-questions, derived from the generating ques-
tion. This can give rise to unexpected issues, which can be challenging for teachers.
An essential tool for overcoming this challenge (and to help manage an SRP more
generally), is the question-answer map (Florensa et al., 2019). The a priori question-
answer map for this SRP designed by Quéré and discussed with Roger is represented
in Fig. 27.3. This map presents the general themes of the students’ possible
sub-questions. For example, “if the drug is very expensive, what kind of statistical



570 A. S. González-Martín et al.

Fig. 27.3 Initial question-answer map for the SRP (Quéré, 2019)

tests should we use, given that we should test as small a sample as possible?” is a
question concerning real data and cost.

The SRP was implemented in the context of a project-based course, whose
outcome was to be a website. The students investigated the theme (provided by
the generating question) and presented their results on a website to be consulted by
future third-year students. The students had previously taken a course with Roger on
probabilities and statistics,11 which included statistical tests (in particular Student’s
t-tests and z-tests). Fourteen students took part in the SRP, over five sessions, with
each session lasting between one and two hours.

The generating question was presented during the first session. The students were
eager to work on a professional question, and collectively they decided to investigate
it in order to pinpoint sub-questions in advance of the next session. During this
second session, the sub-questions were presented and discussed. Finally, six
sub-questions were selected, and the students were divided into seven pairs. One
pair was in charge of coordinating the work while the other pairs were assigned to
study one sub-question each. The third and fourth sessions were dedicated to
presenting and discussing the results obtained by the various pairs of students

11Generally, students are not usually exposed to an SRP’s content in a previous course. In Sect.
27.5.2 we look at SRPs whose content is presented during the same course.
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(based on their work outside the sessions). The teachers guided the discussions to
ensure the application of content previously studied in the statistics course. During
the fourth session, the students planned the design of the website which would house
the results of their work; this helped coordinate the work of the various groups and
contributed to their understanding of the study’s overall structure. The students’
assessments considered mathematical criteria (correctness and relevance of the
methods proposed), communication criteria (clarity of the website and of the pre-
sentation), while also taking into account each individual student’s involvement.

Quéré observed the students’ activity during the SRP and analysed the logbooks
of each student pair. Due to space constraints, rather than present the full results of
the students’ activity, we have selected a few examples illustrating various important
aspects. After searching for documentation concerning pharmaceutical industry
processes, the students proposed to develop three different methods, distinguishing
between a common drug, a rare drug, and an intermediate drug. The students used
methods and concepts learnt during their statistics course. For example, they used a
Student’s t-test (or a z-test, depending on the kind of drug) to compare the expected
mean (of the active ingredient’s proportion) with the actual mean. They had learnt
these tests in Roger’s course; however, the work they performed during the SRP
contributed to their appropriation of the course praxeologies. In the SRP, they were
responsible for choosing the most relevant test and for choosing the acceptable level
of risk. In the exercises associated with the traditional course, the test and the risk are
provided; students only need to apply the test and to decide, according to its output,
if they accept or reject the hypothesis, based on the given risk (usually 5%).
Moreover, the students also discovered new mathematical content during the SRP.
For example, the tests mentioned above can only be applied to “normal samples”
(those which can be considered as following a Normal law), and in Roger’s course
the students had worked only on normal samples. In the SRP, they had to investigate
the normality of the sample. During their investigations, they discovered tests that
allowed them to accept or reject a sample’s hypothesis of normality.

The students’ final website described the three methods they designed. Each part
of these methods presented what can be interpreted in ATD as a complete praxeol-
ogy: the type of task, the technique to be used, and technological-theoretical
elements (e.g., explanations about the choice of a given risk).

Quéré’s selection of statistics as the theme for this SRP was inspired by a previous
survey of working engineers (Quéré, 2017, 2019), in which more than half the
participants reported using statistics in their professional activity. The generating
question was one that chemical engineers working in the pharmaceutical industry are
apt to encounter in their professional practice. During the SRP, the students
employed statistical software commonly used in the industry. Several other aspects
of the SRP led Quéré (2019) to assert that it can help bridge the gap between the
engineering programmes and the workplace: (1) because the end result was a
website, throughout the process the students were aware of the need to communicate
their results clearly; (2) because the teams working on the sub-questions had to be
effectively coordinated, an important aspect of the workplace.
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Through questionnaires completed by the students and an interview with Roger,
Quéré (2019) observed an overall positive reaction to this SRP. The students
recommended implementing similar SRPs during their fourth and fifth years of
study as well. They noted that while it should not replace a traditional course, it
had helped them deepen their knowledge of previously studied content. Roger noted
that starting with a generating question and asking students to then determine
sub-questions to investigate was a successful process, one he had not experienced
before, even in project-based courses.

27.5.2 Teaching Formats of SRPs and Their Ecology: Two
Examples of Engineering Courses

In this section, we focus on two particular cases of SRP that have been implemented
in two engineering courses: elasticity and strength of materials. We have selected the
cases of Florensa et al. (2016, 2018) and Bartolomé et al. (2019) for two reasons. On
the one hand, both cases examine SRPs that were implemented in the same engi-
neering school, EUSS-School of Engineering (Universitat Autònoma de Barcelona)
in Barcelona. In 2014, this engineering school introduced innovative teaching
practices: first, by having the teacher-researchers guide the SRPs’ implementation
and, soon after, by sharing and transferring this responsibility to non-researcher
teachers. On the other hand, the changes to the way that the SRPs have been
integrated into the compulsory courses are noteworthy. We refer to two main
modalities of integration: an SRP at the end of a course and a course organised
around the question/s introduced by an SRP (see Barquero et al., 2020, 2022 for
more details about the different teaching formats of SRPs).

In the first case, Florensa et al. (2016, 2018) present an SRP that was implemented
at the end of an elasticity course (6 ECTS,12 first semester, third year) in a mechan-
ical engineering undergraduate programme. The course ran over 16 weeks. The first
9 weeks followed a more traditional structure, including lectures and lab sessions in
which students were given hands-on experience related to the course content. This
left the last 7 weeks for the SRP’s implementation. This modality of integrating the
SRP at the end resulted in major changes to the course’s traditional structure. A
careful analysis of the existing syllabus was crucial in deciding what to include in the
first part of the course. The researchers (one of whom taught one of the courses),
started by analysing the kind of tasks proposed and the prevailing pedagogical
approach adopted in previous academic years. This analysis revealed two important
issues: rather than actual workplace-based scenarios, the students were mostly
presented with ideal situations in the form of (easy) analytically solvable prob-
lems/exercises; furthermore, several classes were devoted to lab sessions whose
main goal was to familiarise students with certain computation programmes and

126 ECTS (European Credit Transfer System) represents 60 hours of teaching and 150 hours of
work for students.



methods, far removed from actual professional practices. Based on these findings,
the two teachers reorganised the first part of the course to provide students with the
practical, technical, and theoretical knowledge they believed that students would
need for the SRP.

The SRP implementation was initiated by a generating question addressing the
design of a bike part (such as a brake lever, a gear, or bike lock key), and the choice
of material (with unknown mechanical properties). Students were expected to
produce work that was more similar to workplace tasks and that included the
finite-elements method as part of the primary knowledge mobilised. This SRP was
presented at the beginning of the semester, and students were informed that the first
part of the course would cover material in preparation for the proposed project.
Students worked in small groups of three to four. Each group was tasked with
addressing Q0 with a particular bike part and chosen material. Once the SRP was
initiated, the generating question became a central focus; the goal was to provide a
suitable solution for the bike part problem, while the knowledge required to solve the
problem was incorporated into the content of the engineering activity. The SRP was
assessed by means of weekly reports describing the inquiry activity and a final report
that included the design and justification of the part. First implemented during the
academic year 2014–2015, this process has been repeated in six additional academic
years. This modality of the SRP’s integration seems to offer benefits, as it represents
a balance between the study of works in the first part of the course, and the inquiry
into questions derived from the generating question in the second part.

In the second case, Bartolomé et al. (2019) piloted another modality of an SRP’s
integration – in which the SRP serves to guide the course – resulting in a more drastic
reorganisation of the course content and structure. This SRP was implemented for
the first time in 2016–2017 with second-year mechanical engineering students in a
strength-of-materials course (6 ECTS, second semester). Similar to the previous
case, the initial epistemological analysis of the course revealed that the course
content and exercises did not accurately reflect actual problems engineers encounter
in the workplace. The generating question used in the first implementation of this
SRP concerned the design of a slatted bed. It was presented in the following context
(Bartolomé et al., 2019, p. 337):

You are working as an engineer in a company manufacturing slatted-beds. Your company
supplies beds to an American client (a chain of motels). Recently, you have been commis-
sioned to provide them with single slatted-beds, capable of supporting the weight of a 120 kg
person. You have some slatted-beds in stock, which you could supply immediately if
meeting the clients weight specs. . .
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– Is the slatted-bed able to resist?
– What is the maximum load it can resist?
– If necessary, redesign the slatted-bed to meet the clients’ specs.

The SRP was implemented throughout the entire semester, which ran over 17 weeks
with two two-hour sessions per week. Each class was divided into four parts.13 In the

13In Bartolomé et al. (2019) more details can be found about the question-answer map (Figure 1 on
page 334) and the organisation of work (Figure 2, p. 336).
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first part, the whole class discussed the project’s status and identified the derived
questions that each group of students considered relevant for their work and for the
class. The questions were assessed, and the ones deemed most relevant were then
assigned among the student groups. The students then spent time working on these
questions for the remainder of the session. Finally, each team presented their answers
to the class. As in Florensa et al. (2019), the use of question-answer maps played a
crucial role for the researchers and the teachers with respect to the description and
institutionalisation of knowledge emerging from their work. The teachers used these
maps in class to open and close the sessions and to trace the path followed, together
with students. This tool was also useful for students, who used these maps to
describe their work in terms of the questions addressed, the answers provided and
the new questions raised moving forward. Student assessment was based on the
students’ work as observed by the teachers (question-answer maps generated – with
points for clarity, quality of questions tackled, and sources of information – the
presentation of work to the rest of the class, and teamwork). The students’ final
output was also taken into account.

27.6 Conclusions

In this chapter, we focused on the potential of ATD to offer a theoretically grounded
approach that can inform practice-oriented research. We organised our discussion in
terms of: (1) the tools provided by ATD for analysing existing practices and the
outcomes of such analyses; and (2) work on the instructional design and the analysis
of its implementation in the context of engineering education.

Regarding (1), as we illustrated in Sect. 27.4, ATD offers tools for analysing
engineering practices (both in the workplace and in educational settings). These
tools can be used to reflect on course content and teaching methods in mathematics
courses within engineering programmes, and how these courses prepare students to
take on professional tasks. Considering the difficulties that engineering students
experience with mathematics courses within the classic structure of engineering
programmes (as discussed in Sect. 27.2), and considering the current needs of
professional engineers, research is urgently needed to clarify the differences in
practices between educational and professional settings and to find solutions for
bridging these gaps. As demonstrated, ATD can help reveal precisely how mathe-
matical content is taught and used in a given institution. It is therefore possible to
compare practices in different institutions where the same content is taught. This is
especially relevant in the case of engineers (or other professionals), who encounter
mathematics in mathematics courses, in engineering courses, and ultimately, in the
workplace. However, it is important to note that ATD-based analyses do not lead to
the conclusion that SRPs should replace existing practices. Rather, less drastic
changes to the curriculum are suggested, by indicating that a praxeology, or a part
of a praxeology, is missing and could be productively added. For instance, in the
engineering context, praxeologies about communicating mathematics (e.g., Quéré,



2019) or technological rationales concerning the mathematical content in strength of
materials courses (e.g., González-Martín, 2021) may be developed. Moreover, as we
discuss below, SRPs should not necessarily replace the usual teaching practices and
can instead be combined with them in various ways. Finally, it is worth highlighting
the fact that empirical research has led to theoretical developments within ATD. In
particular, the key notion of praxeology has evolved and been adapted to service
courses, revealing that engineering practices present a mix of rationales originating
from mathematics and from professional practices (e.g., Castela, 2017). In this sense,
Peters et al. (2017) have also proposed an extended ATDmodel, where they consider
that even in the techniques, it is possible to find a mix of steps drawn from
mathematics and from typical professional practices.

Regarding (2), in Sect. 27.5 we focused on the construct of the SRPs and on the
analysis of the conditions put into place in implementing SRP-based interventions.
In these interventions, the traditional course structure and the knowledge to be taught
are questioned and reorganised in response to the need to provide a collective answer
to the generating question(s) presented in the SRP. SRPs have the advantage of
narrowing the gap between course content and real-world practices, since modelling
is a key element. This is an important contribution, since recent research indicates
that engineering teachers complain of students completing mathematics courses
without acquiring modelling skills (e.g., Faulkner et al., 2019), while professional
engineers have also reported that their mathematics courses did not adequately
prepare them for modelling activities (e.g., Quéré, 2019). Therefore, considering
our comments on (1), we can see that the tools ATD provides help achieve two
different, although complementary, goals: pinpointing possible challenges for stu-
dents, as well as proposing interventions that are ecologically more viable and
epistemologically closer to real-world engineering activity. In considering this
epistemological dimension, SRPs go beyond the classic project-based courses and
help change the paradigm of visiting works. Moreover, as shown in this chapter,
there are various ways to implement SRPs and researchers have provided analyses
on the main conditions that facilitate and hinder their implementation (Barquero
et al., 2020, 2022). An analysis of the various SRPs implemented in university
programmes yields the following key points:
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• The need for epistemological tools for questioning and rethinking the knowledge
at stake, as well as the need to place mathematical modelling at the core of the
activity;

• The importance of developing tools (such as question-answer maps) that help
researchers and teachers (non-researchers in mathematics education) to partici-
pate equally in this epistemological questioning;

• The various formats for integrating SRPs into mathematics and engineering
courses, as well as the advantages and inconveniences of these formats;

• The identification of the conditions that facilitate and constrain the dissemination
of SRPs in engineering education.

Since, at present, SRPs are being implemented regularly in various engineering
training programmes (Florensa et al., 2019), future research should be able to



identify the common characteristics of their successful implementation, as well as
the differences that are proper to the institutions in which they are being
implemented. This will provide more information concerning SRPs’ ecological
dimensions. We anticipate that in the years to come, ATD will provide valuable
insights for practice-oriented research on the training of engineers; furthermore, this
practice-oriented research will continue feeding theoretical developments.
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Chapter 28
Modifying Exercises in Mathematics Service
Courses for Engineers Based
on Subject-Specific Analyses of Engineering
Mathematical Practices

Jana Peters

Abstract This contribution presents the idea of modifying exercises from a math-
ematics service course on the basis of analyses (in the sense of the Anthropological
Theory of the Didactic) of mathematical practices from electrical engineering. The
core of this small-scale approach is to use the respective specific conceptualisation of
mathematical knowledge in electrical engineering and in mathematics service
courses for teaching design. In earlier work, this specifically conceptualised math-
ematical knowledge could be methodologically grasped with two different institu-
tional mathematical discourses. The example shows how an existing exercise of a
mathematics service course can be modified to support connections to mathematical
practices from the engineering mathematics discourse. This illustrates exemplarily
the importance of recognising the subject specificity of institutional mathematical
practices in electrical engineering.

Keywords ATD · Mathematical practices of engineers · Modifying exercises ·
Connecting engineering and mathematics · Mathematical discourses

28.1 Introduction

Mathematics has at least two locations in engineering study programs: Firstly, in
mathematical service courses for engineers, usually students from different engi-
neering study programs learn basic mathematical practices, often taught by mathe-
maticians. Secondly, mathematical practices are also taught in specific engineering
courses (e.g. Signal Theory), usually by lecturers of the engineering faculty.
Research on university mathematics education shows, that both, mathematics in
service courses for engineers, and mathematics in engineering courses (see also
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Pepin et al., 2021), are different and often not connected (Hochmuth, 2020; Winsløw
et al., 2018, section 2.5). For example, Gueudet and Quere (2018) show differences
between mathematics in service courses for engineers and mathematics in engineer-
ing courses in terms of connections within the subject matter. With a focus on
trigonometry, they show that while in engineering courses multiple connections
are made between contexts, representations and concepts, hardly any of those
connections are found in the mathematics courses studied. Schmidt and Winsløw
(2018) show that both types of courses are separated on an institutional level. In this
regard, they note that “the selection of mathematical contents to be taught may be
based on needs and priorities from the engineering disciplines, while the actual
teaching [in mathematics service courses] is carried out according to generic stan-
dards and methods for teaching mathematics.” (p. 165). In a study on the views of
engineers and mathematicians on the concept of continuity, Alpers (2018) shows
that this separation is also reflected in the different views of mathematicians teaching
service courses and lecturers of the engineering faculty.
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Most attempts to establish and support connections in mathematics service
courses to mathematics in engineering courses1 are based on the introduction of
application examples from the engineering sciences in mathematical service courses
(e.g. Härterich et al., 2012; Schmidt &Winsløw, 2018) or on more innovative course
structures for mathematical service courses, such as project work (e.g. Alpers, 2002)
and study and research paths (e.g. Barquero et al., 2008).

Both approaches can be problematic: The teaching and learning of mathematics,
like any other subject, is situated in societal and institutional conditions that consti-
tute the possibilities and restrictions of action. From the standpoint of the Anthro-
pological Theory of the Didactic (ATD), Barquero et al. (2013) study institutional
constraints and limitations within the educational system that hinder the large-scale
dissemination of modelling activities.2 In addition to a survey of literature, which
shows that difficulties and barriers in this respect are a general problem, they
systematically identify problems at different levels in a detailed study of one of
their own projects. They categorise the constraints under the headings of
monumentalism, individualism, and protectionism (Barquero et al., 2013, p. 322
ff). Furthermore, consolidated course structures (time tables, distribution of working
hours and teaching, weekly assignments) are not always changeable and teachers are
usually not empowered to change the traditional organisation of the mathematical
content.

1Other approaches that attempt to establish connections to mathematics within engineering courses
are not considered here.
2Within the ATD mathematical modelling is understood as a specific mathematical activity, more
precisely as “processes of reconstruction and connection of praxeologies of increasing complexity
. . . that should emerge from the questioning of the rationale of the praxeologies that are to be
reconstructed and connected.” (García et al., 2006, p. 243). This includes both intra-mathematical
modelling as well as processes starting from extra-mathematical questions.
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In addition to these large-scale approaches, the inclusion of isolated application
examples from engineering in mathematics service courses represents a small-scale
approach that enables changes in teaching under existing conditions. But this can be
problematic in an epistemological sense:3 Using isolated application examples could
promote the image of engineering science as application of mathematics in specific
extra-mathematical contexts (Barquero et al., 2011). This can promote the view of
engineering per se as extra-mathematical and thereby establish a distinction between
a mathematical and an engineering world4 that somewhat contradicts the attempt to
connect: Application examples can provide connections between mathematics and
the engineering context. But those connections must explicitly take the specificity of
mathematics in engineering into account. Otherwise they presuppose an understand-
ing of the relationship of mathematics and engineering as per se disconnected.
However, in everyday teaching, i.e. outside of larger teaching development projects,
recourse to isolated application examples without considering the different
conceptualisation of mathematics in engineering may appear to be the only option,
especially in view of institutional constraints.

In this contribution I present a third approach that focusses on establishing and
promoting connections within mathematical practices. The idea of modifying exer-
cises from a mathematics service course according to reconstructed aspects from
engineering mathematics practices is a small-scale approach that is based on the
research perspective and results from an ongoing research project with Reinhard
Hochmuth (Hochmuth et al., 2014; Hochmuth & Peters, 2020, 2021b; Hochmuth &
Schreiber, 2015; Peters & Hochmuth, 2021). One aspect that distinguishes this
approach from the approach of using application examples (the other small-scale
approach) is that identified important aspects from engineering mathematical prac-
tices are brought into the mathematics service course without also introducing the
engineering context.

In the following, I will build on our theoretical conceptions and the results of our
research (Sect. 28.2); show by means of a detailed example (Sect. 28.3) how an
existing exercise in a mathematical service course can be modified in such a way
that the mathematical discourse related to service courses could be internally
expanded with regard to the engineering mathematical discourse; and finally discuss
(Sect. 28.4) the connections to aspects of mathematics in engineering, that could
possibly be established and supported by this small-scale approach as well as further
considerations.

3See our considerations in (Hochmuth & Peters, 2021a). I would like to note that such epistemo-
logical considerations are also relevant for large-scale projects. In addition, epistemological aspects
are also part of institutional and societal conditions. No teaching development approach is free from
possibly coming into conflict with existing conditions.
4Barquero et al. (2011) refer to this phenomenon as “applicationism”. That the separation of the
non-mathematical engineering context and the mathematical world is not adequate is also observed
by Biehler et al. (2015) in the context of modelling cycles.
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28.2 Theoretical Perspective and Previous Research

The idea of modifying existing exercises in mathematics service courses is based on
the one hand on the general research perspective of ATD on mathematical practices
and on the other hand on concrete study results on mathematical practices in Signal
Theory by Hochmuth and Peters (2021b) and Peters and Hochmuth (2021). There-
fore, I will first give a brief overview of ATD concepts relevant here. I will then
summarise the research context and findings relevant to the exercise modification
from our studies that follows in Sect. 28.3. This then not only provides the back-
ground for exercise modification but also shows how through the process of
analysing materials, connections can be reconstructed that each in itself hold poten-
tial for change.

28.2.1 Concepts of the Anthropological Theory
of the Didactic

ATD is a research programme to study human practices from an institutional
perspective.5 The concept of institution in ATD is based on the work by Douglas
(1986). She elaborates the idea that all knowledge is dependent on (social) institu-
tions and, conversely, that all institutions are based on shared knowledge (p. 45).
Castela (2015) defines an institution I as “a stable social organisation that offers a
framework in which some different groups of people carry out different groups of
activities. These activities are subjected to a set of constraints, – rules, norms,
rituals – which specifies the institutional expectations towards the individuals
intending to act within the institution I.” (p. 7). Any form of knowledge, and thus
also actions in relation to this knowledge, is thus located in institutions and subject to
institutional conditions.

Praxeology is the concept for the detailed subject-specific specification of insti-
tutional knowledge. In ATD praxeology is used to describe knowledge in terms of
two inseparable, interconnected blocks: The praxis block consists of types of tasks
(T) and relevant techniques (τ) used to solve them. The logos block consists of a
two-level reasoning discourse. At the first level, technology (θ) describes, justifies
and explains the techniques and at the second level, theory (Θ) organises, supports
and explains the technique. A praxeology is usually represented in short as the 4 T-
model [T, τ, θ,Θ]. An important aspect of technology, i.e. part of the logos block, is
the raison d’être of a body of knowledge. This is the reason why it exists in an
institution, what it is good for, and why it is studied. When considering a particular
topic in different institutions, different praxeologies emerge: different types of tasks

5Fundamental elaborations on ATD can be found, for example, in Bosch and Gascón (2014) and
Chevallard (1992, 2019); in addition, Bosch et al. (2011) and Bosch et al. (2019) provide insight
into typical studies in this research programme.



are relevant, different solution techniques are adequate, different raisons d’être exists
and different reasoning discourses are acceptable and constitutive. This is referred to
as the institutional dependence of knowledge.
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While praxeologies allow mathematical knowledge to be grasped rather statically
in its institutional conception, the concept of (didactic) transposition offers the
possibility to investigate and describe dynamic aspects of the production, develop-
ment, change and dissemination of knowledge between institutions (e.g. Bosch &
Gascón, 2014). The basic model of the didactic transposition process is based on a
distinction between three relevant institutions: First, scholarly knowledge is pro-
duced by experts in universities or research institutes. The knowledge to be taught is
determined by official curricula. Finally, this becomes the taught knowledge that is
taught in courses. The transition from scholarly knowledge to knowledge to be
taught is also referred to as external didactic transposition, the transition to taught
knowledge as internal didactic transposition. Schmidt and Winsløw (2018) refer to
these concepts and show in particular that the specific institutional conditions of
engineering thus enter into the external didactic transposition, but not into the
internal one. They call this “the parallel model for didactic transposition in engi-
neering education” (p. 165).

28.2.2 Mathematical Practices in Signal Theory

Schmidt and Winsløw (2018) focus on mathematical knowledge for engineering
students that is provided through mathematics service courses. In our own studies,
though, we point out that mathematical practices especially in higher-level engi-
neering courses, such as Signal Theory, are rather a mixture of practices of mathe-
matics from service courses, mathematics as developed and used in basic electrical
engineering courses, and specific signal theory content (Hochmuth & Peters, 2020,
2021b; Peters & Hochmuth, 2021). The various combinations of dark- and light grey
techniques and technologies in Fig. 28.3 are an example of such a mixture. More-
over, our analyses show that mathematical practices in these courses cannot be
understood solely as the application of mathematical concepts taught in mathematics
service courses.

To grasp this mixture of mathematical practices in Signal Theory, we introduced
an extended praxeological 4 T-model and two corresponding mathematical dis-
courses6 (Peters & Hochmuth, 2021). The starting point for the idea of exercise
modification presented in Sect. 28.3 are then analyses of an exercise with a lecturer’s
sample solution in the context of amplitude modulation and associated student
solutions (Hochmuth & Peters, 2021b). The exercise and the lecturer’s sample
solution are presented in the Appendix.

6Our understanding of discourse, i.e. its meaning and analytical status, is clarified and linked to
Weber’s (1904) concept of ideal types in (Hochmuth & Peters, 2021b).
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The amplitude modulation context will provide us with interesting insights into
the role of complex numbers in electrical engineering, which will eventually be used
in the exercise modification. To this end, I will first introduce the context and
contrast the role of complex numbers in electrical engineering with the role of
complex numbers in the mathematics service course.7 Those different roles are
grasp within our work as different mathematical discourses on complex numbers.
The analysis of the roles of complex numbers in electrical engineering and in
mathematics service courses is based on standard literature, lecture notes, and
students’ notes for consolidated standard courses which are held at the University
of Kassel. Both, the mathematics service course and the introductory course on
electrical engineering are courses that students attend before attending the course on
signal theory. The described mathematics service course is also the setting for the
exercise modification in Sect. 28.3. Secondly I will summarise the results of the
analysis of the lecturer’s sample solution and address some of the results of the
analyses of the student solutions.

28.2.2.1 Amplitude Modulation and the Role of Complex Numbers
in Electrical Engineering and in Mathematics Service Courses

Amplitude modulation (AM) is a central topic in signal theory. With amplitude
modulation, several message signals (e.g. for different radio stations) with different
carrier frequencies can be transmitted (e.g. via antenna) and received without
crosstalk between signals at the receiver (e.g. radio set) depending on the chosen
carrier frequency. The principle of amplitude modulation is illustrated in Fig. 28.1:
The amplitude of a high-frequency carrier signal cos(2πf0t) (left) is varied in relation
to that of the low-frequency message signal s(t) ¼ cos(Ωt) (centre). The AM signal
can then be represented as x(t) ¼ A[1 + m cos(Ωt)]cos(2πf0t) (right).

In Fig. 28.1 amplitude modulation is visualised using waveforms of the
corresponding signals. In the exercise we have analysed, an AM signal is to be
represented as a rotating phasor in the complex plane. This change to phasor-
representation (see Fig. 28.6 in the appendix) makes it possible to study properties
of AM that are not apparent in the waveform representation. The connection between
waveform, phasor-representation and algebraic description with complex numbers
of a periodic signal is also a basic topic of introductory courses on electrical
engineering. Albach (2011), a standard textbook for introductory courses on elec-
trical engineering, first introduces phasors with the purpose to graphically describe
time-dependent sinusoidal functions. The relationship between phasor- and
waveform-representation is shown in Fig. 28.2, left side: The phasor with lengthbi,

7The subject-specific context is also relevant in other publications within the research project on
mathematical practices in Signal Theory. These or similar presentations of amplitude modulation
and connections to complex numbers can therefore also be found in (Hochmuth & Peters, 2021a, b;
Peters & Hochmuth, 2021).



rotates constantly counterclockwise with angular velocity ω. The projection onto the
vertical axis provides the waveform of bi sinφ . At the right side of Fig. 28.2 two
sinusoidal currents with different amplitudes bi1 and bi2 and phase difference φ2 are
shown.
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Fig. 28.1 Visualisation of amplitude modulation: high-frequency carrier signal (left),
low-frequency message signal (centre), and AM signal (right), created with GeoGebra

Fig. 28.2 Relationship between phasor and time-dependent functions. (Redrawn similar to Albach,
2011, p. 32)

As both phasors (Fig. 28.2, right side) rotate with the same angular velocity ω, the
rotation of the phasors can be neglected. When analysing electrical components, the
amplitude ratio of the input signal to the output signal and the phase shift between
input and output caused by the components are of primary interest. Therefore,
phasors are important graphic tools for interpretation and analysis of electrical
engineering processes.8 Current- and voltage ratios in electrical networks can be
displayed and analysed graphically in static phasor diagrams (or Argand diagrams).
For the purpose of an algebraic description of phasors, the plane in which phasors
are drawn, is considered as the complex plane. The phasor can now be understood
as a complex quantity that symbolically represents the time-dependent periodic
signal. The compatibility of the geometric rules for manipulating phasors and
the calculation rules of complex numbers is justified via physical relations
(e.g. Kirchhoff’s laws).

8In this contribution I focus on the role of complex numbers in the electrical engineering
conceptualisation of phasor. The introduction of complex numbers in electrical engineering had a
much bigger significance (e.g. Bissell, 2004; Bissell & Dillon, 2000, 2012).
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Furthermore, for a sinusoidal quantity the following holds: A cos ðωt þ φÞ ¼
RðAejðωtþφÞÞ ¼ RðAejωtejφÞ , where A is the amplitude and j denotes the complex
unit in electrical engineering. The algebraic representation of the rotating phasor is
Aejωte jφ. In circuits where all quantities change with the same angular velocity, the
time dependent factor ejωt can be factored out, i.e. the rotation of the phasor can be
neglected. Here the Euler representation is important for separating rotational and
constant components.

In the case of amplitude modulation, rotational aspects can no longer be neglected
because the carrier signal and the message signal have different angular velocities.
The algebraic representation of the phasor for amplitude modulation is given in line
(3) of the sample solution in the appendix. Here, also the Euler representation is
important for separating the different frequencies of carrier- and message signal.

In the mathematics service course, complex numbers are considered in the first
part of the course in the context of Linear Algebra (Strampp, 2012). Their introduc-
tion is motivated by the solvability of the equation x2 + 1 ¼ 0. For this purpose, real
numbers are extended by a number i with the property i2 ¼ � 1. This approach is
typical for the whole chapter: the rational is aimed at an elaboration of the solvability
of equations. Calculation rules for complex numbers are derived without introducing
and proving formal concepts, but by stating that all rules which are relevant for
calculating with real numbers should continue to be applicable (p. 59). Also, it is
pointed out that various terms are an extension of already known concepts from real
numbers. For example, the complex exponential function eϕi, which is introduced to
serve as a pointwise convenient abbreviation for cos(ϕ) + sin(ϕ)i (p. 74). Although
the chapter is clearly designed to develop a practical approach to the concepts and
rules of calculation, it is subject to an orientation towards the inner-mathematical,
generalisation-oriented formal rational of academic mathematics. In addition to the
algebraic view on complex numbers, the chapter also contains a geometric view: An
analogy to vectors is established, but the vector concept is also distinguished from
complex numbers: “We speak of phasors9 [Zeiger] and not of vectors, since complex
numbers, unlike vectors, can also be multiplied. This multiplication extends the
multiplication of real numbers.” (p. 60, translated by author). Phasors provide an
illustrative justification for the formal conceptualisations of complex numbers. As
Felix Klein (1967) notes, this is a view of complex numbers that was already held by
Gauss. Klein states that Gauss “justifies the legitimacy of operating with complex
numbers by the fact that one can give them and the operations with them that
illustrative geometric interpretation. . .” (p. 64, translated by author). This meaning

9We translated the German term Zeiger with the term phasor, which already refers to electrical
engineering concepts. But electrical engineering aspects play no role in the course and Strampp
(2012) does not refer to them either. In German the term Zeiger is used both in electrical engineering
and in mathematics service courses, but with different meanings (reference to electrical engineering
concepts vs. geometrical object with no further references). By using the term Zeiger Strampp
(2012) can thus establish a connection to the electrical engineering courses without dropping the
inner mathematical conception of complex numbers. This aspect of using the same term, that has
different meanings in different course-contexts is in jeopardy of being lost through translation.



of complex numbers in the mathematics service course differs from the meaning of
complex numbers in electrical engineering (see also the work of Steinmetz (1893)
who first introduced complex numbers to electrical engineering). Furthermore, the
compatibility of the rules for graphically manipulating phasors and the calculation
rules of complex numbers are justified via physical laws.
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28.2.2.2 ATD Analyses of the Lecturer’s Sample Solution and Student
Solutions

From the institutional standpoint of the ATD, courses of a study program can be
understood as institutions. In the following we will differentiate two institutions: an
institution HM associated with the mathematics service course and an institution ET
associated with electrical engineering.10 According to the institutional dependence
of knowledge, the different institutions give rise to different conceptualisations
(praxeologies) of complex numbers. The two different characterisations of complex
numbers in the previous section can be understood as descriptions of institutional
aspects that shape the logos blocks of the respective institutional praxeologies and
thus, due to the dialectic of praxis and logos, also the practical part, i.e. they can each
be understood as part of two associated institutional mathematical discourses: one
associated with the institution HM, i.e. the HM-discourse, and one associated with
the institution ET, i.e. the ET-discourse. An important difference between the two
institutional discourses is the difference between the respective raisons d’être: In
electrical engineering the raison d’être for complex numbers is to describe periodic
signals, together with strong connections to phasors and waveforms. In the mathe-
matics service course the raison d’être for complex numbers is to serve for
generalising concepts from real numbers, to solve equations, and as formal objects
of calculation. There is also a connection to phasors but the phasor concept is
different and usually serves to visualise properties of complex numbers.11

In our research on mathematical practices within a signal theory course, we used
the notion of institutional discourses to capture the mixture of mathematical practices
that occurred in a praxeological analysis of the lecturer sample solution of an
exercise in the context of amplitude modulation. We identified the two mathematical
discourses and associated praxeological elements to the HM-discourse (τHM and
θHM) or the ET-discourse (τET and θET) depending on the respective institutional
orientation within the solution steps.

10The acronyms HM and ET were introduced by Peters and Hochmuth (2021) to denote the two
relevant contexts of “Höhere Mathematik” (HM, mathematics service course) and “Elektrotechnik”
(ET, electrical engineering) and the associated discourses. HM and ET are the standard German
acronyms for these contexts.
11Nevertheless, this visualisation aspect is important because it contributes to the logos block,
i.e. the reasoning discourse, e.g. with regard to abstract calculation rules.
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In addition, our approach refers to the work of Artaud (2020) that allows to
connect the two mathematical discourses with two different didactic transposition
processes: Artaud has considered two different ways how mathematical knowledge
arise in fields such as electrical engineering: (1) Either the mathematical knowledge
required in electrical engineering institutions is already elaborated and developed in
other institutions, for example academic mathematical research institutes. This
knowledge then enters the electrical engineering institution via didactic transposition
processes, so to speak externally, and serves the mathematical education of future
electrical engineers. Here, one can localise the HM-discourse and the idea of
mathematics for engineering. Through the didactic transposition process, however,
the academic mathematical knowledge is changed and adapted especially to the
needs of electrical engineering institutions for the education of future engineers, but
maintains the orientation towards academic mathematics. Schmidt and Winsløw
(2018) also note this and it is to this aspect that their parallel model for didactic
transposition refers. (2) Or, the relevant mathematical knowledge has been devel-
oped in the course of a historical process by actors specialising in electrical engi-
neering. In this case, the mathematical knowledge entered the electrical engineering
institution a long time ago via an institutional transposition process to be put to use.
Bissell’s (2004) investigation of the introduction of complex quantities in electrical
engineering, driven by Steinmetz (1893) among others, that allows to manipulate
graphical and pictorial representations instead of complicated mathematical expres-
sions and also led to systems thinking and black box analysis (p. 309), give a glimpse
on such an institutional transposition process. In the course of time this knowledge
was used in electrical engineering and was didactically transformed in order to be
taught. This didactic transposition process is endogenous. Here the ET-discourse and
the idea of mathematics in engineering can be situated.

A graphical representation of our analysis result of the lecturer’s sample solution
is shown in Fig. 28.3, see also the detailed analysis in (Hochmuth & Peters, 2021b).

Fig. 28.3 Graphical representation of the ATD Analysis (Hochmuth & Peters, 2021b)



The exercise is solved in three steps (see Appendix): Transforming mathematical
expressions, interpreting the mathematical expression to draw a diagram, and draw-
ing the phasor diagram. The main part of the exercise, to display x(t) as a rotating
phasor in the complex plane, is a task (T) in the sense of the ATD. We then assigned
techniques and technologies (τHM, θHM in light grey, τET, θET in dark grey) to each
of the three solution steps. This is shown in the bold framed rectangle in Fig. 28.3:
Without focussing on the detailed analysis one can see, that for each solution step
HM-techniques are accompanied with ET-technologies. We characterised this as “an
embedding of HM-techniques in the ET-discourse” (Hochmuth & Peters, 2021b).
We further refined the analysis in a second analysis step, in which the three
techniques assigned to the three solution steps are considered as subtasks T1 to T3,
see the corresponding light framed rectangles in Fig. 28.3: In this step we were able
to further enlight the nature of the respective embeddings.
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Although we will not go into the details of the analysis here, it is clear from
Fig. 28.3, that the two mathematical discourses, the ET-discourse (dark grey) and the
HM-discourse (light grey), interact in various ways. The view that mathematics is
simply applied in electrical engineering is not adequate, practices in Signal Theory
contain aspects of both mathematical discourses. Dealing adequately with both
discourses is therefore a requirement for engineering students.

In Hochmuth and Peters (2021b) we used this result as a reference for analyses of
students solutions. In the following I will show clips from two student solutions12 in
which the adequate switching between the discourses was not present and the correct
phasor diagram was not produced (Fig. 28.4). Two decisive steps in the course of the
sample solution are firstly the calculation step from line (2), in which x(t) could be
interpreted as a real part of three rotating phasors drawn in the origin, to line (3), in
which x(t) can be interpreted as a rotating carrier phasor with time-dependent
amplitude A(t). And secondly the change of representation from the algebraic
expression in line (3) to the phasor diagram.

The student solution on the left side of Fig. 28.4 does not contain the step from
line (2) to line (3) from the sample solution. Instead this student reproduces the
HM-discourse by drawing a diagram similar to diagrams from the mathematics
service course where the Argand diagram and the unit circle are used to illustrate
properties of complex numbers. This student solution also contains further informa-
tion on properties of complex numbers like the complex conjugate e�j2πft that are not
relevant for the solution of the exercise. The three terms from line (2) are drawn as
three separate phasors. Important aspects of amplitude modulation and references to
the ET-discourse are not present.

The student solution on the right side of Fig. 28.4 mainly contains ET-discourse
aspects but significantly deviates from the sample solution. References are made to
previous topics in the lecture (Fourier transform and low pass filter), but these are not

12In order to protect the privacy of the students, the student solutions are translated from German
and rewritten by the author without correction marks. In the detailed analyses in (Hochmuth &
Peters, 2021b) those two student solutions are labelled I2 and I3.



goal-oriented and appropriate. Although this solution maintains an orientation
towards the ET-discourse and some rotational aspects are present, the connection
between the mathematical concepts and their graphic representation in terms of
modulation principles is missing.
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Fig. 28.4 Left: student solution solely within the HM-discourse. Right: student solution mainly
within the ET-discourse (Hochmuth & Peters, 2021b)

28.3 From Analyses of Engineering Mathematical Practices
to Modifying Exercises in Mathematics Service
Courses

The summary of the analyses in the preceding section showed that adequately
working with two different mathematical discourses is a requirement for engineering
students. Furthermore, some difficulties of students, that were not able to flexibly
switch between the two discourses are shown. Subject-specific aspects, that also
seem to be at the core of those difficulties are: dynamic aspects cannot be neglected;
more than one rotating phasor is relevant and phasors have to be drawn in a specific
way; a complex algebraic expression must be represented graphically; time-
dependent exponential function.

Those analyses results now shall serve to inform an exercise modification in the
mathematics service course. The mathematics service course under consideration is a
two-semester consolidated course that is regularly held at the university of Kassel.
Material from this course consists of student lecture notes, standard literature
(Strampp, 2012), and exercise sheets with sample solutions from 2013. It consists
of two lectures, one exercise session and one special exercise session where selected,
important topics are presented, per week. Students are expected to individually work
on weekly exercise sheets, that are eventually handed in and graded. Application
examples are not present in the material. With focus on the chapter of complex
numbers we characterised the mathematical discourse, i.e. the HM-discourse, as
orientated towards the inner-mathematical, generalisation-oriented formal rational of
academic mathematics. The raison d’être for complex numbers is that they allow for



generalisation, they are useful to solve equations, and they are formal objects of
calculation. We also noted that in the chapter of complex numbers no connections to
phasor representations other than for illustrative reasons are made. Furthermore, the
Euler equation, with which the internal relationship of the exponential function, sine
and cosine could be recognised, only serves a useful shortcut to simplify calcula-
tions. Important connections between complex numbers and trigonometric func-
tions, that go beyond this convenient calculation tool, are not present.
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The basic idea behind the proposal for exercise modification is now to modify an
existing exercise from the mathematics service course such that the HM-discourse
on complex numbers could be enriched or expanded towards the ET-discourse in
order to establish connections to mathematical practices that are relevant in electrical
engineering. However, neither the course organisation nor the general orientation
towards academic mathematics is to be changed.

To demonstrate this idea with an example, it is first noted that the exercises in the
chapter of complex numbers are mainly standard exercises: change between Euler-
and Cartesian representation, training of basic calculations, and determining the
roots of polynomials. The following exercise is an exception.13 It is the only exercise
in which a time-dependent exponential function occurs:

Which curves are described in the complex plane by

ae�ti þ beti, a, b 2 ℝ constant, t 2 ℝ?

This exercise was marked “too difficult” in the student’s notes.
The sample solution from the student’s notes is:

ae�ti þ beti ¼ að cos ð�tÞ þ sin ð�tÞiÞ þ bð cos ðtÞ þ sin ðtÞiÞ
¼ að cos ðtÞ � sin ðtÞiÞ þ bð cos ðtÞ þ sin ðtÞiÞ
¼ ðaþ bÞ cos ðtÞ þ ð�aþ bÞ sin ðtÞi
¼ xþ yi

¼ x
aþ b

� �2
þ y

�aþ b

� �2
¼ 1

This then is recognised as the equation of the ellipse, that was introduced in the
preceding special exercise session. The cases aþ b ¼ 0 and �aþ b ¼ 0 are treated
separately, in which the ellipse becomes a straight line: for aþ b ¼ 0 we get
2b sin ðtÞi, a straight line on the imaginary axis between�2bi and 2bi. For�a + b¼ 0
we get 2a cos(t), a straight line on the real axis between �2a and 2a.

The question of the exercise already points to the raison d’être of the
ET-discourse (complex numbers are useful to describe periodic signals). But in the
sample solution, only elementary relations such as Euler’s equation and Pythagorean
identity are used to give the expression a form that could be recognised from

13Exercise and sample solution are translated from German by the author.



previous lectures. Why ae�ti + beti describes an ellipse, or why the special cases
generate straight lines is not explained, periodic or rotational aspects are not present.

This changes when software like GeoGebra (Hohenwarter et al., 2018) is used.
With digital tools like GeoGebra, dynamic aspects can be visualised and explored
and an otherwise too difficult exercise becomes accessible. Since students may be
inexperienced in using GeoGebra, I will present the modified exercise with a step-
by-step construction of the ellipse with phasors below:14

Which curves are described in the complex plane by

C tð Þ ¼ ae�ti þ beti, a, b 2 ℝ constant, t 2 ℝ?

• Plot the corresponding locus curve in GeoGebra by following the steps below:
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– Write C ¼ a e^(�i t) + b e^(i t) in the Input and confirm.
– Create sliders for a, b, and t.
– Write Locus in the Input and chose

Locus (<Point Creating Locus Line>, <Slider>).
– Replace <Point Creating Locus Line> with C and <Slider> with t.

Try different values for a and b and describe the curves. Use the slider for t to
explore how the point C moves on the curve. What happens for a ¼ 0, b ¼ 0,
a ¼ b and a ¼ � b?

• In the next step we construct phasors for ae�ti and beti:

– Write P¼ a e^(�i t) in the Input and confirm.
– Write u ¼ Vector in the Input, chose Vector (<Point>) and replace <Point>

with P.
– Write v¼ Vector in the Input, chose Vector (<Start Point>, <End Point>). and

replace <Start Point> with P and <End Point> with C.

We have now represented the point C as the sum of the two phasors. Again, try
different values for a and b and explore how the rotating phasors construct the
curve. What is the consequence of the different signs in the exponents?

By using software like GeoGebra, dynamic aspects can be visualised (see also
Fig. 28.5). In addition, connections can be made to the phasor representation,
which now goes beyond only serving to visualise properties. In this exercise, it
can be explored how the combination of two rotating phasors describes a closed
curve and how the algebraic representation of a complex number is connected to its
phasor-representation. The cases a ¼ 0 or b ¼ 0 result in circles with one phasor

14For more experienced students, this exercise could be formulated in less detail:

(a) Create the locus curve in GeoGebra including sliders for a, b and t. How does the locus curve
change depending on values for a and b?

(b) Represent the components of the equation ae�ti and beti as phasors respectively (use the
GeoGebra Vector function) and represent C(t) as the result of adding the two phasors so that
point C moves on the locus as you vary t. What is the consequence of the different signs in the
exponents?



each. This is familiar from the lecture, as properties of complex numbers, in
particular the introduction of Euler’s formula, are illustrated with the unit circle.
So, connections to previous aspects of the lecture are established. Furthermore, the
raison d’être for complex numbers in the HM-discourse can be extended by the
aspect that complex numbers are suitable to describe periodic functions or closed
curves.
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Fig. 28.5 Ellipse with corresponding phasors, created with GeoGebra

This modified exercise also fits in the course structure, e.g. this exercise can be
part of a weekly exercise sheet. The exercise does not violate the orientation towards
the rational of academic mathematics of the HM-discourse. It is also possible to
embed the task in a mathematical-historical context: The method of constructing the
ellipse by two rotating phasors is very similar to historical conic section drawers
(e.g. Van Maanen, 1992).

28.4 Discussion

The aim of this contribution is to show, and illustrate with an example, how subject-
specific analyses of mathematical practices from signal theory can serve to modify
exercises from mathematics service courses, even within restricted institutional
conditions. The focus is to support connections between mathematical practices
from service courses and from electrical engineering within the mathematics. The
approach presented here thus represents, in addition to large-scale development
projects and the inclusion of application examples, a further possibility for changes
in teaching.
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The ATD concept of the institutional dependence of knowledge is at the core of
this approach: The same mathematic topic, e.g. complex numbers, is conceptualised
differently in different institutions, the subject-specific rationales and meanings, the
raisons d’être, overall, the mathematical discourses are different. This is associated
with a specific research stance: Within this approach, mathematical practices of
engineers are acknowledged as institutional mathematical practices in their own
right. This stance is not compatible with the introduction of application examples in
the sense of applicationism, i.e. without taking the engineering specific
conceptualisations of mathematical knowledge into account. From this stance, it is
possible to reconstruct engineering-specific mathematical discourse aspects like,
besides other, the engineering-specific raison d’être of a mathematical concept.
These aspects are mathematical aspects, and not aspects from an extra-mathematical
engineering context, that have been endogenously developed and modified over time
within engineering institutions (cf. Artaud, 2020). Therefore, they can be included in
the mathematical discourse of mathematics service courses, that are often oriented
towards academic mathematics. At this point changes are necessary: The ET-context
should be removed but the discourse aspect kept. The analysis of the AM exercise
shows that the orientation towards academic mathematics is important in engineer-
ing courses such as Signal Theory. This is also one of the reasons for maintaining
this orientation for the HM-discourse in this approach for exercise modification. In
the example, the raison d’être for complex numbers in the ET-discourse was, among
other things, describing periodic signals. In the HM-discourse, this can be
changed to: describing periodic functions or curves. If the students encounter
complex numbers in engineering the mathematical discourse on complex numbers
(i.e. the raison d’être) in the ET-discourse, to describe periodic signals, is not entirely
different from the extended mathematical HM-discourse. Therefore this approach
can contribute to reduce the metaphorical distance between the mathematical dis-
course of the mathematics service course and the engineering mathematical dis-
course inner-mathematically. This concerns both the internal didactic transposition
(cf. Schmidt & Winsløw, 2018) and the establishment of connections within the
subject matter (cf. Gueudet & Quere, 2018), e.g. connections of HM-techniques with
ET-technologies. Many of the differences in the views of mathematicians and
engineers addressed by Alpers (2018) can also be understood as aspects of a
respective institutional mathematical discourse. From the perspective presented
here, however, it is not enough for a mathematician to read engineering books and
talk to engineers, for example. To really take the engineering view seriously, it is
necessary to take it seriously in its own institutional conception. Under this precon-
dition, however, discussions with engineers, textbooks by engineers, but also his-
torical and philosophical studies are useful in order to characterise mathematical
discourses specific to engineering.

Of course, this small-scale approach presented here is not free from problems and
of coming into conflict with societal and institutional conditions either. I have shown
how, in the process of analysing institutional mathematical practices, potential for
change in teaching can be identified within existing conditions. This is double-
edged, as it can also support the position of not needing to change social and



institutional conditions, and thus act as a counter-argument for approaches that aim
precisely to such changes. On the other hand, while acknowledging this criticism, it
can be stated that the ATD-specific research stance is also relevant for lecturers and
entails that retreating to the position that changes in teaching are entirely possible
without conflict with and change in social and institutional conditions is short-
sighted. The approach presented here presupposes lecturers to question their own
institutional standpoint, their own mathematical discourse. But this stance does not
solve contradictions and possible conflicts. There is no clear solution for societal and
institutional conflicts. Societal struggles cannot be solved on the basis of ATD15

analyses. However, such an analysis, as presented here, offers a differentiated view
of what is possible at the exercise level and what is not.

ATD focuses specifically on institutional and subject-specific conditions. In order
to take social struggles and contradictions into account, a research perspective that
addresses a more general level is necessary. A promising approach in this direction is
the subject-scientific approach from the field of critical psychology (e.g. Holzkamp,
1985; Schraube & Osterkamp, 2013). Various studies have already shown that this
approach is compatible with ATD (Hochmuth, 2018; Hochmuth & Schreiber, 2015;
Ruge et al., 2019).

Consideration of the relationship between lecturers of mathematics service
courses and teaching approaches developed in research brings the focus to the
sustainability of teaching development research and therefore also to professional
development. Ruge and Peters (2021) develop an understanding of professional
growth based on the subject-scientific approach which, besides other things, adopts
a view of professional development that goes beyond deriving practical and appli-
cable tools from research. In this sense, the approach to exercise modification
presented here also does not provide a directly applicable tool, but shows how
there is potential for teaching development within the process of analysing respec-
tive institutional mathematical discourses and reflecting the institutional situatedness
of mathematical practices.

Appendix: Exercise with Lecturer Sample Solution

The exercise under consideration is structured in three items:
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1. A message signal s(t) ¼ cos(Ωt) has to be amplitude modulated. The result is
x(t) ¼ A[1 + m cos(Ωt)]cos(2πf0t)

2. The result of item 1. Has to be written as the sum of three harmonics. The result is
xðtÞ ¼ A cos ð2πf 0tÞ þ Am

2 cos ð2πf 0t þ ΩtÞ þ Am
2 cos ð2πf 0t � ΩtÞ

3. The result of item 2. Has then to be displayed graphically in the complex plane as
a rotating phasor with varying amplitude.

15Or any other theoretical approach.
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The ATD analysis focusses item 3. of the exercise. The exact problem definition of
item 3 is (my translation):

Graphically display x(t) in the complex plane as a rotating phasor with varying
amplitude using the relationship cos 2πftð ÞR exp j2πftð Þf g and the result
under item 2.

Lecturer Sample Solution
One first writes

xðtÞ ¼ A cos ð2πf 0tÞ þ Am
2

cos ð2πf 0t þ ΩtÞ þ Am
2

cos ð2πf 0t �ΩtÞ 1Þ

¼ Af exp ðj2πf 0tÞg þ Am
2

f exp ðjð2πf 0t þ ΩtÞÞg þ Am
2

f exp ðjð2πf 0t � ΩtÞÞg ð2Þ

¼ f exp ðj2πf 0tÞ½Aþ Am
2

exp ðjΩtÞ þ Am
2

exp ð�jΩtÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
AðtÞ

g 3Þ

and interprets the expression in the square bracket as a real-valued time-dependent
amplitude A(t), which modulates the carrier phasor exp( j2πf0t) rotating at frequency
f0 in Fig. 28.6.

Fig. 28.6 Representation of x(t) ¼ A[1 + m cos(Ωt)]cos(2πf0t) as the real part of a rotating phasor
A(t)exp( j2πf0t) with ω0 ¼ 2πf0
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Chapter 29
Learning Mathematics in a Context
of Electrical Engineering

Frode Rønning

Abstract This paper reports from an early phase of a project where first-year
students on a programme in electronic systems learn mathematics in close contact
with their engineering specialisation. Using concepts from the Anthropological
Theory of the Didactic (ATD), the connection between mathematics and electrical
engineering will be analysed based on concrete examples. On the basis of interviews
with teachers in both fields, challenges and opportunities with teaching mathematics
in an engineering context are described. The analysis reveals a complex interplay
between mathematics and engineering, and the teachers emphasise division of labour
as a crucial issue.

Keywords Mathematics for engineers · Electrical engineering · ATD · Praxeology

29.1 Introduction

Mathematics has always been regarded as an important subject for engineering
students, and many different approaches to the teaching of mathematics for engi-
neers can be identified. The traditional approach is to teach mathematics as part of a
package of general courses, often over the first two years, assuming that this will
provide the students with the necessary background to make use of the mathematics
in engineering courses later (Winkelman, 2009). A critique towards this approach is
that it may lead to mathematics being taught with a focus only on mathematical
concepts and understanding and not on applications (Loch & Lamborn, 2016).
Another critique, of a more general nature, can be connected to the challenges of
transferring knowledge from one context to another (e.g. Evans, 2000). Acknowl-
edging that knowledge is context dependent, one might argue that mathematics for
engineering should be learnt within the engineering context where it is going to be
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used. And indeed, at many universities mathematics is taught in courses specially
designed for particular engineering programmes (Alpers, 2008; Enelund et al., 2011;
Klingbeil & Bourne, 2014). This model gives good opportunities for including
programme specific problems in the mathematics teaching, and it is assumed that
this will increase the perceived relevance of mathematics. However, this solution
also raises some issues. Providing specialised mathematics courses for each study
programme will be expensive if the university offers a large number of study
programmes, and it may cause complications for students who wish to switch
from one study programme to another. Another argument used in favour of general
mathematics courses is that one of the strengths of mathematics is exactly the fact
that it is general and that one of the competencies that students should acquire by
studying mathematics is to adapt to new and unknown situations. There are, how-
ever, strong arguments for creating better connections between mathematics and the
engineering subjects since many students find it challenging to apply mathematics
they are supposed to have learned when they need it later in the engineering courses
(Carvalho & Oliveira, 2018; Harris et al., 2015). There seems to be no obvious
solution to these issues and therefore it is of interest to try out different models and
study these models in practice.
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In this paper I will report from an early phase of a project at the Norwegian
University of Science and Technology, NTNU, where the aim is to redesign
mathematics courses for engineering programmes. The project is given the acronym
MARTA, and its full title would translate to English as Mathematics as a Thinking
Tool. MARTA is so far restricted to one study programme, Electronic Systems
Design and Innovation (ELSYS), but will later also include other engineering
programmes. MARTA is part of a process aiming at redesigning all the technology
programmes at NTNU, a process referred to as Technology Studies for the Future
(Fremtidens teknologistudier, 2022). This paper is based on experiences from the
first semester of the project MARTA, where a basic course in mathematics is taught
in close connection with the course Electronic System Design and Analysis (ESDA)
to first-year students. Using the Anthropological Theory of the Didactics (ATD),
(e.g., Bosch & Gascón, 2014; Chevallard, 2006), I study the discourses that develop
to see how the praxeologies in mathematics and engineering influence and interact
with each other. I will inquire into the challenges and opportunities that arise at the
interface between mathematics and electronics, as seen from the viewpoint of the
teachers in the two subjects.

29.2 Background and Context of the Study

Engineering education has from early on experienced a tension between theory and
practice, between academic and professional aims. Edström (2018) describes engi-
neering education in the United States before 1920 as highly practical. After that
time a change took place, influenced by European-educated engineers with a more
mathematically oriented background. Edström writes that the development was



slow, with some exceptions in “newer fields, such as chemical and electrical
engineering, which grew from science disciplines” (2018, p. 40). The development
got a boost after the Second World War. This is reflected in a report from a
committee appointed to review the state of the education at Massachusetts Institute
of Technology. In this report there are several warnings against a development of
engineering education towards becoming too far separated from practice and also a
critique against routine learning:
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[M]any students seem to be able to graduate from the Institute on the basis of routine
learning, and . . . though fully equipped with knowledge of standard procedures . . ., they
lack the critical judgement, the creative imagination, the competence in handling unique
situations (Lewis, 1949, pp. 28–29).

Further, it is emphasised in the report that it is important to “explore vigorously
every means for confronting the student with basic data in genuine problem situa-
tions”, and a belief is expressed that it is possible to find problems that “are simple
enough to be used in the early years and complex enough to be challenging” and that
“abstract concepts are best taught through their applications” (Lewis, 1949, p. 29).
Edström (2018) remarks that many of the issues in the Lewis report are still valid
today. The more specific question of what kind of mathematics should be taught to
engineers also has a long history (Alpers, 2020, p. 5). First, this question addressed
only the actual content of mathematics for engineers but later also issues about the
connection between mathematics and engineering and who should be teaching
mathematics to engineers were included (Ahmad et al., 2001; Bajpaj, 1985; Cardella,
2008).

Several recent studies show that the tension between usefulness and scholarliness,
and the challenges with applying theory to practical engineering problems, still
persist (Carvalho & Oliveira, 2018; Harris et al., 2015; Loch & Lamborn, 2016).
The Conceive, Design, Implement, Operate (CDIO) Initiative, launched in 2000,
addresses this issue. It is described as “an innovative educational framework for
producing the next generation of engineers” (www.cdio.org). Further details are
given below.

The CDIO approach has three overall goals: To educate students who are able to

1. Master a deeper working knowledge of technical fundamentals
2. Lead in the creation and operation of new products, processes, and systems
3. Understand the importance and strategic impact of research and technical devel-

opment on society (Crawley et al., 2014, p. 13)

Crawley et al. (2014) emphasise that it is not memorisation of facts and definitions,
nor the simple application of a principle that is important, but conceptual under-
standing, seen as ideas that have lasting value. In addition, the CDIO approach
values contextual learning. This means, among other things, that new concepts
should be presented in situations familiar to students and in situations they recognise
as important to their current and future lives (Crawley et al., 2014, pp. 32–33). The
CDIO approach involves combining ideas of learning in context and maintaining
deep, or conceptual, understanding (Marton & Säljö, 1976). These ideas are in line

http://www.cdio.org


with those presented by Scanlan in 1985 in a talk about mathematics in engineering
education. In his talk Scanlan concluded by stating that mathematics should be an
essential part of the students’ formation and “not a set of ‘tools’ to be acquired before
proceeding to the ‘important’ part of the course” (Scanlan, 1985, p. 449).
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The project MARTA that I am reporting from, has as its main aim to create a
closer connection between mathematics and engineering programmes, while
maintaining conceptual understanding in both fields. An overarching goal for the
project is to develop mathematics as a ‘tool for thinking’. The programme Electronic
Systems Design and Innovation (ELSYS) has been chosen as a pilot for MARTA.
Other programmes will follow. ELSYS is one of 17 five-year Master of Technology
programmes at NTNU, admitting approximately 1700 new students in total each
year, approximately 100 in ELSYS. All these programmes traditionally contain four
mathematics courses distributed over the first three semesters, with almost identical
content for all programmes. MARTA represents a break with the traditional model.
In MARTA, the idea is to make adaptations by shifting the emphasis on various
topics as well as changing the sequencing of the topics, in order to better suit the
needs of the engineering programmes. It is expected that this approach will make the
students better see the relevance of mathematics for their engineering specialisation.
The approach is in line with the idea of contextual learning from CDIO.

This paper is based on experiences from the first semester of the five-year
programme, which is also the first semester of the project. Based on these experi-
ences, my aim is to get a better understanding of the interplay between mathematics
and topics from electrical engineering, which may be of value when developing the
project further.

29.3 Theory and Methodology

Concepts from ATD will be used in the analysis. A central notion in ATD is the
notion of praxeology, “the basic unit into which one can analyse human action at
large” (Chevallard, 2006, p. 23). A praxeology is composed of two blocks, the praxis
block, P, and the logos block L. P is seen as consisting of two parts, types of tasks (T )
and a set of techniques (τ) to carry out the tasks. L also consists of two parts, a
technology (θ), or justification for the techniques used to carry out the tasks, and the
theory (Θ), which provides the basis and support for the technological discourse
(Bosch & Gascón, 2014, p. 68). I will write P = [T, τ], L = [θ, Θ], and P = [P/
L] = [T, τ, θ, Θ] for the whole praxeology. This is often referred to as the 4 T-model

A social situation is called a didactic situation

whenever one of its actors (Y ) does something to help a person (x) or a group of persons (X)
learn something (indicated by a heart ♥). A didactic system S(X; Y; ♥) is then formed. The
thing that is to be learned is called a didactic stake ♥ and is made up of questions or
praxeological components (Bosch & Gascón, 2014, p. 71).

In my case X can be seen as made up of students at the ELSYS programme. Y is made
up of two components, YM and YE, where YM consists of teachers and learning



o

resources involved in the teaching and learning of mathematics to X, and YE consists
of the corresponding components in the Electronic System Design and Analysis
(ESDA) course.
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The driving force in a praxeology is the desire for X to find answers (A) t
questions (Q). The questions depend on the praxeology they emerge within. In the
process of finding the answers, a didactical milieu, M, is developed, consisting of
material and immaterial tools that X gathers, with the help of Y, in the process of
inquiring into the question Q. This situation is represented with the reduced
Herbartian schema S(X; Y; Q) ↪ A (Chevallard, 2020). The milieu is seen as
consisting of several components: existing answers (Ai) offered by other persons
or institutions, works (Wj) of different kinds that can be accessed, and new questions
(Qk) that may arise during the work: M = {A1, A2, . . .,Am, Wm + 1, Wm + 2, . . ., Wn,
Qn + 1, Qn + 2, . . ., Qp} (Chevallard, 2020, p. 44).

Since there are separate courses in mathematics and electronic systems, there will
also be separate didactic stakes, ♥M ≠ ♥E. Hence, there are two didactic systems, S(X;
YM; ♥M) and S(X; YE; ♥E), and two praxeologies, one for mathematics, PM= [TM, τM,
θM, ΘM], and another for electronic systems, PE = [TE,τ E, θE, ΘE]. Learning in
context should have as a consequence that the didactic stakes in the two praxeologies
should overlap (♥M \ ♥E ≠∅), and therefore I find it of interest to study the interplay
between PM and PE, within the didactic system S(X; YE; ♥E). I focus on the system
S(X; YE; ♥E) since I consider PE to be the central praxeology in ELSYS, with PM

playing a role as a “supporting praxeology” for PE. On the basis of selected questions
from PE, I will identify elements of the milieu used to answer these questions. In
particular, I will be looking for similarities and differences regarding technologies
(θ) and techniques (τ) that are applied to solve a given task, coming from PE. The
aim of this investigation is to answer the following question: In which ways can
techniques and technologies from mathematics and electronic systems in combina-
tion contribute to finding answers to questions arising in S(X; YE; ♥E)?

29.4 Previous Relevant Research

One issue regarding mathematics in engineering education is to find the right balance
between theory and practice. Flegg et al. (2012, p. 718) argue that “[w]ithout the
explicit connection between theory and practice, the mathematical content of engi-
neering programs may not be seen by students as relevant”. They also claim that in
cases where mathematics departments teach the mathematical content to the engi-
neering students, the engineering departments may have little idea of what mathe-
matical content the students are exposed to. Loch and Lamborn (2016) observed that
first-year mathematics is often seen as irrelevant and distracting by engineering
students, who are more interested in applied engineering subjects. This lack of
relevance was attributed partly to mathematics being taught in a ‘mathematical’
way, “with a focus on mathematical concepts and understanding rather than appli-
cations” (Loch & Lamborn, 2016, p. 30). Loch and Lamborn report from a project
where higher year engineering students were asked to create multimedia artefacts



meant to show the relevance of mathematics. The project resulted in two animated
videos showing how mathematics was used to plan and construct a building and a
car. In interviews with first-year students after they had seen the videos, some
students said that the videos did demonstrate the relevance of mathematics, and
that “there is probably a reason we’re being taught what we’re being taught” (Loch
& Lamborn, 2016, p. 38). However, students also reported that they found the videos
overwhelming because of the amount of mathematics that was shown. Regarding the
purpose of mathematics for engineers, Cardella (2008) claims that mathematics
should be more than learning some specific topics. It is about learning a way of
working and thinking that is of value for the work as an engineer. Faulkner et al.
(2019) use the term “mathematical maturity” to cover what many teachers in
engineering subjects hope that students learn from their mathematics coursework.

608 F. Rønning

Booth (2004) discusses various approaches to learning mathematics by
presenting a table of different strategies, with corresponding intentions and goals.
These approaches constitute a hierarchy where the lowest level is made up of the
strategy “Just learning” with the intention “To learn the content” and the goal “To
know the content for use when needed”. The highest level is made up of the strategy
“Studied reflection” with the intention “To be able to take different perspectives on
problems” and “To relate content to the world outside of mathematics”. The goal is
here formulated as “To be able to use mathematics to solve problems” and “To
understand how mathematics applies to other situations” (Booth, 2004, p. 15).
Scanlan, a professor of electrical engineering, warned against seeing mathematics
for engineers just as a set of tools, but rather as an essential part of the students’
formation (Scanlan, 1985, p. 449). It could be argued that in order to be able to use
mathematics in a meaningful way, e.g. in engineering, it is necessary to learn
mathematics to the level of studied reflection (Booth, 2004). This could also be
related to mathematical maturity (Faulkner et al., 2019).

Booth also argues that mathematics should not be taught by engineers but that
“mathematicians and engineers could unite some of their courses so that the students
experienced a team of teachers leading their learning of mathematics in the world of
engineering they intend to enter” (Booth, 2004, p. 21). This is in line with the ideas
of contextual teaching from CDIO (Crawley et al., 2014), and also with the ideas
behind MARTA.

Gueudet and Quéré (2018) report that a gap can be observed between mathemat-
ics taught in mathematics courses and the way mathematics is used to solve problems
in engineering courses. An important explanation that they give for this gap is that
the mathematics courses do not make enough connections. As examples of relevant
connections, the authors list links between mathematics and the real world, between
different mathematical contents and between different representations (Gueudet &
Quéré, 2018). Connections are also seen as important by Wolf and Biehler (2016)
who present 10 examples of what they denote as authentic problems in mathematics
for mechanical engineering. To secure connection, one of the basic principles that is
presented, is that the problem should be authentic in the sense that it should not just
be a dressed-up mathematical problem with unrealistic numbers (Wolf & Biehler,
2016).
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Authentic problems are also discussed by Schmidt andWinsløw (2021), using the
theory of didactic transposition (part of ATD). They create a model for what they call
Authentic Problems from Engineering, defined as “a problem which comes from
current research and innovation in some specific institution of scholarly engineering”
(Schmidt & Winsløw, 2021, p. 266). In their paper, they present a model for task
design, where tasks in the mathematics course are created, based on the problems
from engineering. As an example, they present an assignment based on the problem
to compute and control the magnetic field induced by a so-called Halbach magnet
(Schmidt & Winsløw, 2021, p. 272).

Recently several researchers have shown how ATD can be a useful tool for
investigating mathematics for engineering students, (e.g. González-Martín, 2021;
González-Martín & Hernandes-Gomes, 2017, 2018, 2019; Peters et al., 2017). The
main focus of González-Martín and Hernandes-Gomes is to compare presentations
in Calculus textbooks with presentations in textbooks for professional engineering
courses, to identify connections between the fields. Most of the examples presented
by these authors are from mechanical engineering, but also a course in electricity and
magnetism is studied (González-Martín, 2021). The results, in particular in mechan-
ical engineering, indicate a lack of connection between the praxeologies. A similar
analysis on the topic of Fourier series in mathematics and signal theory has been
made by Rønning (2021). Also here, there are differences but it seems that signal
theory makes more explicit use of results from mathematics than what may seem to
be the case in mechanical engineering.

Summing up, it seems that there are two main challenges that are reported
on. One is that students do not see the relevance of mathematics for their engineering
profession. This in turn may reduce the motivation for mathematics, and perhaps
also for the study as a whole, and may lead to drop-out (Faulkner et al., 2019). The
second challenge is the lack of connection between mathematics and engineering
subjects (e.g., Flegg et al., 2012; Gueudet & Quéré, 2018; Loch & Lamborn, 2016).
Recently, some approaches to create connections have been presented (e.g., Schmidt
& Winsløw, 2021; Wolf & Biehler, 2016). There seems to be agreement that it is
important to develop problem solving abilities. This can be expressed as making
mathematics a tool for thinking. And for this to happen, deep knowledge is required
(e.g., Booth, 2004; Cardella, 2008; Crawley et al., 2014; Scanlan, 1985), as well as
good problems.

29.5 Analysis of Data

The question raised in this paper is the following: In which ways can techniques and
technologies from PM and PE contribute to finding answers to questions arising in the
didactic system S(X; YE; ♥E)? As data for the study, I used teaching material
(problem sheets, lecture notes, textbooks, video lectures) from the ESDA course.
With the video lectures (Lundheim, 2019) as the main source, supported by a
textbook that was recommended for the students (Nilsson & Riedel, 2011),



I performed an open coding of utterances as representing a technique or a technol-
ogy. In each case, I also coded according to whether I saw the utterance as arising
from PM or from PE. To further strengthen my analysis, I conducted a joint interview
with both the mathematics and the ESDA teacher after the end of the semester. The
purpose of the interview was to get further insight into issues arising from studying
the teaching material, as well as getting insight into the teachers’ experiences from
the first semester of the project. The interview was audio recorded and partly
transcribed. From the teaching material I selected as my main example a situation
with modelling an electric circuit (see Fig. 29.1). This example provides the main
question for the reduced Herbartian schema S(X; Y; Q) ↪ A (see Sect. 29.5.1). In the
interview, I inquired into the techniques and technologies behind the main example
and I asked both teachers to formulate their ideas about learning and teaching in
context, and to explicate their view on how the two subjects could mutually support
each other. I intend to show some possibilities for making connections between
mathematics and electrical engineering, and to show the interplay between the
praxeologies PM and PE in making this connection. The analysis will show that
knowledge from both praxeologies is needed to solve the given problem.
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29.5.1 Example: An Electric Circuit

The electric circuit I will use as an example is illustrated in Fig. 29.1. This, and
similar circuits, are used frequently in the early phase of the ESDA course and can
therefore be seen as an important basic example for the students at ELSYS. The
circuit consists of two resistors, with resistance R1 and R2, a capacitor with capac-
itance C and an inductor with inductance L. The problem is to determine the voltages
v1 and v2 at the points A and B shown in Fig. 29.1, given the input voltage v(t).

v(t) R2

CR1

L

A
v1

B
v2

Fig. 29.1 A circuit with a given input voltage and two unknown voltages
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This is a problem from PE where the question Q is to find the voltages v1 and v2.
The expression for these voltages will be the answer A. I will discuss the reduced
Herbartian schema S(X; Y; Q) ↪ A for this problem by identifying elements of the
didactical milieu coming both from PE and from PM. My data for this discussion
come from video lectures by Lundheim (2019) and a textbook on electric circuits
(Nilsson & Riedel, 2011). Both these resources are central in the ESDA course, and
hence in the didactic system S(X; YE; ♥E).

In the video lectures, two Equations, (29.1) and (29.2), are presented, based on
the currents at the points A and B, with voltages v1 and v2 respectively.

v1 - v
R1

þ 1
L

Z

v1 tð Þdt þ C
d
dt

v1 - v2ð Þ= 0 ð29:1Þ

C
d
dt

v2 - v1ð Þ þ v2
R2

= 0 ð29:2Þ

Equation (29.1) models the current out of the node at the point A (v1). The left-hand
side of (29.1) contains three terms, one for the resistor, one for the inductor and one
for the capacitor. I will look at how each of these terms are justified in Lundheim’s
(2019) presentation. For each justification, I will indicate, either by θE or by
θM, which praxeology I interpret the justification to be based on. The first term is
justified by saying that “this is just regular circuit analysis”, i.e. Ohm’s law is used:
The current through the resistor is proportional to the voltage over the resistor (θE).
The two other terms are more interesting. For the second term, it is said that “the
current through an inductor is proportional to the integral of the voltage over the
inductor” (θE), and for the third term that “the current through a capacitor is
proportional to the derivative of the voltage over the capacitor” (θE). Furthermore,
the principle used is what is known as Kirchhoff’s law of currents, stating that the
sum of the currents out of the node at v1 is zero (θE). Equation (29.2) is obtained in a
similar way by analysing the current going out of the node at the point B (v2). Now
Lundheim observes that Eq. (29.2) is a first order differential equation whereas
Eq. (29.1) contains terms including both an integral and a derivative (an integro-
differential equation). To transform this to a “pure differential equation” he takes the
derivative with respect to time on both sides of (29.1) to obtain (τ M)

d
dt

1
R1

v1 - vð Þ þ 1
L
v1 tð Þ þ C

d2

dt2
v1 - v2ð Þ= 0 ð29:1 ′ Þ

Lundheim now observes that a system of differential Eqs. (29.1′) and (29.2), has
been obtained and that in principle this system can be solved (within PM). He says
that he finds this to be complicated, and therefore he will look for an alternative way
to find the answer A to the question Q. This “alternative way” is based on the
assumption that the input signal (v) is sinusoidal. This is a reasonable assumption in
PE, but in PM it would probably be seen as a (very) special case.
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The following reasoning is presented. For a given trigonometric signal
x(t) = A cos (ωt + φ), define its complex form X(t) = Ae j(ωt + φ) = Ae jφe jωt. Then
x(t) = Re X(t). The complex number Ae jφ is called the phasor or the complex
amplitude of the signal1. An important point made is that d

dt X tð Þ= jωX tð Þ and
R

X tð Þdt= 1
jωX tð Þ. Although this technique is purely mathematical, it would rarely

be seen as a technique for differentiating and integrating in PM, since it would apply
only to a very limited choice of functions. These functions, however, play a very
important role in PE and therefore it makes sense to introduce this technique.

Applying this technique to the system of Eqs. (29.1) and (29.2) and replacing the
voltages v with their complex form V, the following system of algebraic equations is
obtained.

V1 -V
R1

þ 1
Ljω

V1 þ CjωðV1 -V2Þ= 0 ð29:3Þ

CjωðV2 -V1Þ þ V2

R2
= 0 ð29:4Þ

Solving this system for V1 and V2 the unknown voltages v1 and v2 are obtained by
taking the real part. The given task T belongs to PE but the techniques and
technologies belong to PM (properties of complex numbers). However, the tech-
niques, although purely mathematical, would not have been given such a prominent
role in a mathematical praxeology. This shows that the choice of technique may
depend on the praxeology: A technique (τM) from PM is considered more important
because it is used in PE compared to if it had been used in PM.

I now return to the modelling process resulting in the system of the integro-
differential equation Eq. (29.1) and the differential equation Eq. (29.2), to take a
closer look at the justifications for setting up these equations. Of particular interest
are the terms 1

L

R

v1 tð Þdt and C d
dt v1 - v2ð Þ in Eq. (29.1). For the term with the

integral (the inductor), the principle used is that the current through an inductor is
proportional to the integral of the voltage. For the term with the derivative (the
capacitor), it is claimed that the current through a capacitor is proportional to the
derivative of the voltage. These are technologies (θE) from PE leading to the
application of techniques (τM) from PM.

Concerning the capacitor, Nilsson and Riedel (2011) write:

[A]pplying a voltage to the terminals of the capacitor . . . can displace a charge within the
dielectric. As the voltage varies with time, the displacement of charge also varies with time,
causing what is known as the displacement current. At the terminals, the displacement
current is indistinguishable from the conduction current. The current is proportional to the
rate at which the voltage across the capacitor varies with time (p. 204).

This technology (θE) gives the relation I=C dv
dt. For the inductor, Nilsson and Riedel

just state that the following relation holds, v= L dI
dt (Eq. 6.1, p. 198). Then they state:

1j is used for the imaginary unit, in accordance with the tradition in PE.
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“Note from Eq. 6.1 that the voltage across the terminals of an inductor is propor-
tional to the time rate of change of the current in the inductor” (p. 198). Hence, they
give a mathematical interpretation of a relation between electrotechnical quantities,
without justifying why this particular relation, v= L dI

dt, holds. Accepting this, again
by mathematical techniques (τM), one gets I= 1

L v t dt.
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Table 29.1 The didactical milieu for the electric circuit in Fig. 29.1

PM PE

Main ques-
tion, Q

Determine the voltages v1 and v2 given an
input voltage v.

Sub-ques-
tions, Qj

How to solve a system of differ-
ential equations
How to solve a system of algebraic
equations

Model the current flow at the nodes v1 and
v2

Works, Wk Transforming Eq. (29.1) to
Eq. (29.1′)
Solving a system of algebraic
equations
Properties of complex numbers

Kirchoff’s current law
Behaviour of current over resistors, capaci-
tors and inductors
Properties of the phasor

Partial
answers, Ai

The Eqs. (29.1′) and (29.2)
The Eqs. (29.3) and (29.4)
Solution of the system of
Eqs. (29.3) and (29.4)

Main
answer, A

The values v1 and v2

For the circuit in Fig. 29.1 I expressed the question Q as determining the voltages
v1 and v2 at the points A and B, given an input voltage v. The answer A in S(X; Y; Q)
↪ A contains the values of the unknown voltages. In search of this answer a
didactical milieu M was generated, M = {A1, A2, . . .,Am, Wm + 1, Wm + 2, . . ., Wn,
Qn + 1,Qn + 2, . . .,Qp}, consisting of partial answers, Ai, works (results),Wj, and new
questions Qk (sub-questions), used to find the answer A to the original question Q.
Some of these components are formulated within PM and some within PE. Table 29.1
shows the didactical milieu associated with the electric circuit in Fig. 29.1.

Table 29.1 shows the interplay between the praxeologies PM and PE for the given
problem. Although both Q and A belong to PE the didactical milieu also includes
questions and answers of a purely mathematical character, and the process of finding
the values v1 and v2 draws on works from PM. However, works from PM are not
sufficient. In order to model the current flow, justifications from PE are needed to
formulate the system of Eqs. (29.1) and (29.2). I find the behaviour of current over
capacitors and inductors to be of particular interest. Why can this be modelled with
derivatives and integrals as shown in Eqs. (29.1) and (29.2)? I will return to this
question in Sect. 29.5.2. I have previously pointed out that a key word pertaining to
the challenge of teaching mathematics for engineers is connections (e.g. Gueudet &
Quéré, 2018). The analysis resulting in Table 29.1 shows how the didactical milieu
involved in solving the problem with the circuit consists of elements from both
praxeologies PM and PE and that both praxeologies are essential in the path leading



to the solution of the problem. In the next section I will look into how the project
MARTA creates opportunities for connections, as well as going deeper into some of
the justifications given in the analysis of the circuit.
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29.5.2 Opportunities for Connections

The example described in Sect. 29.5.1 comes from PE, but the analysis shows that
elements from both PE and PM are used to solve the problem (Table 29.1). Therefore,
it is necessary that the students have some knowledge from mathematics in order to
make sense of what is going on. This is in itself nothing special, so to see what extra
can be gained by teaching mathematics and electronics in close connection, I
interviewed the teachers Marc, who was teaching the mathematics course, and
Eric, who was teaching the ESDA course to the same students in their first semester.
When asked about the main differences in the current approach compared to a
traditional approach, Marc emphasises that in addition to changing the sequencing
of topics, he tries to include circuits into mathematics as often as possible. He
continues: “But I don’t know the electronics and it is difficult to find circuits that
give good mathematical problems. Then I have to ask Eric or look in a textbook”.
Here Eric comments that a crucial point is division of labour. “I think that mathe-
matics must live on its own premises, and that the learning goals in mathematics
must be mathematical. We cannot make plans that presuppose that the mathemati-
cians know a lot of electronics. The most important is continuous communication.”

Marc gives an example of a circuit which is modelled by a non-linear differential
equation. The mathematical purpose of this example was to motivate the introduc-
tion of numerical methods for solving differential equations, and Marc felt that the
students thought it was fun. The problem was given as solving the differential
equation using Euler’s explicit and implicit methods, and it was just claimed that
the differential equation would model the given circuit. The purpose of this example
was purely mathematical, namely to introduce Euler’s methods. This could have
been done without connection to the electrical circuit, but the circuit worked as a link
between the praxeologies, perhaps contributing to the students seeing increased
relevance.

Below is a dialogue following another of Marc’s examples.

Eric The mathematicians have a habit of setting all values of the components equal to one,
because then it gets much tidier. With this, the physics disappear.

Marc I defend this based on the principle of division of labour. The mathematical principles are
easier to comprehend if you leave out the physical constants.

Eric Then you are left with the structure of the problem. I think this is the kind of division of
labour we should have. We can “dress the problem up” later.

Marc I think it is a good pedagogical trick to clean away the mess when you learn something for
the first time.
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This dialogue shows a fundamental difference between the praxeologies. In
engineering one is concerned with units and with physical constants that are impor-
tant for understanding the physical principles. In mathematics, however, one is more
concerned with the structure, and this structure may come better to the fore if for
example (non-zero) constants are set equal to one. Based on the principle of division
of labour, both teachers find that this difference is not problematic, but on the
contrary, that it can be an asset.

One issue that Eric finds particularly important is that the close connection to
mathematics gives the possibility to justify principles from electrical engineering
better. As an example, he mentions the principle of superposition. This is explained
in the following way by Nilsson and Riedel:

A linear system obeys the principle of superposition, which states that whenever a system is
excited, or driven, by more than one independent source of energy, the total response is the
sum of the individual responses (Nilsson & Riedel, 2011, p. 144).

The strategy chosen in the book by Nilsson and Riedel is to deactivate all sources of
energy but one, and study the system that is then created (τE). Solving for the
currents in each of the circuits with just one source of energy, it is claimed, with
reference to the principle of superposition (θE), that the complete solution is obtained
by adding the currents. Eric finds this argument unsatisfactory, and he is happy that
he can use mathematical arguments to justify the principle. Eric says: “I was always
told that, ‘this is how it is’. Now we can argue that this is actually how it has to be”.
The mathematical justification of the superposition principle is based on linear
algebra. Each of the circuits with only one source of energy can be modelled with
a system of linear equations Axi = bi, i = 1, . . ., n, where n is the number of energy
sources. The complete circuit can then bemodelled byAx= b,where b= b1 + . . .+ bn.
Since A is a linear operator, the complete solution is given by x = x1 + . . . + xn (θM).
This is an example that a technology from mathematics is used to justify a technique
in electrical engineering.

In Sect. 29.5.1 it would appear both from Lundheim (2019) and from Nilsson and
Riedel (2011) that the justification for the modelling of the circuit shown in Fig. 29.1
was somewhat unsatisfactory. I therefore asked Eric in the interview how he would
justify the modelling of Eq. (29.1). Regarding the capacitor, Eric says:

Current is the derivative of charge with respect to time. How much charge passes through a
crosscut per unit of time. The number C indicates how much charge a capacitor can hold.
Q = CV, so I = dQ/dt = C dV/dt.

In the justification he bases his argument on the definition of current, as the rate of
change of charge (Q) with respect to time (θE). And the charge that a capacitor can
hold is proportional to the voltage, where the proportionality constant C is a
characteristic of the capacitor. This is in line with the argument given in Nilsson
and Riedel (2011) that “[t]he current is proportional to the rate at which the voltage
across the capacitor varies with time” (p. 204).

I observed in Sect. 29.5.1 that the argument in Nilsson and Riedel (2011) for the
behaviour of the inductor was rather vague. Below is the explanation provided by
Eric in the interview.
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For the inductor it is more tricky. You cannot use the concept of charge. You need flux,
which is physically much heavier. So here I often use some analogies, e.g. analogy with
mass. Imagine you will push a car. It is heavy in the beginning but as the car starts to roll, you
need less and less force and finally the car rolls by itself. Mass as inertia. An inductor
functions as inertia for the current. In the beginning high voltage is needed to get the current
going, but as the current starts to flow, the voltage goes down. So an inductor exerts inertia
towards changes in current. If you want a quick change in the current you need high voltage.
When the current evens out, the voltage goes down. When the current is zero, the inductor
works as a short circuit.

The justification he gives is in the form of an analogy, thinking of the inductor as an
element that resists change, like mass at rest. The crucial formulation here is “[i]f you
want a quick change in the current you need high voltage”. This means that to get a
large value of dI

dt, v needs to be large, motivating the relation v= L dI
dt. This example

shows that Eric draws on yet another praxeology for his justification, by comparing
with pushing a car. This he does because the justification within PE (using flux)
would not be accessible for the students at this point. Then, using a mathematical
technique (τM), the relation can be written as I= 1

L v t dt, as in Eq. (29.1).
Although recognising the value of the interplay between the two praxeologies, the

teachers argue that they also, to some extent, should be kept apart. This is expressed
using the expression division of labour. It is the role of PM to work with the structure
of a problem, and the role of PE to see the problem, and its solution, in an
engineering context.

29.6 Discussion

In the literature, there are some particular challenges that are frequently mentioned:
lack of relevance of mathematics for engineers, lack of connections between math-
ematics and engineering, and challenges with applying mathematics to engineering
problems (e.g., Carvalho & Oliviera, 2018; Flegg et al., 2012; Gueudet & Quéré,
2018; Harris et al., 2015; Loch & Lamborn, 2016). There is also criticism against
mathematics being taught too “mathematically” (Loch & Lamborn, 2016). However,
there is evidence to support that there is a need for a deep knowledge of mathematics,
to avoid mathematics becoming just a set of tools (e.g., Booth, 2004; Cardella, 2008;
Crawley et al., 2014; Scanlan, 1985).

An intention with the project MARTA is to teach mathematics and engineering in
close connection, with much of the mathematics contextualised through problems
and examples from engineering, in line with the ideas of the CDIO approach
(Crawley et al., 2014). An overarching goal is to develop mathematics as a way of
thinking (Cardella, 2008; Faulkner et al., 2019) and obtaining deep learning, both in
mathematics and in the engineering subject (Crawley et al., 2014; Marton & Säljö,
1976; Scanlan, 1985).

With the above principles as a background, I performed a praxeological analysis
of an example from PE in order to investigate how techniques and technologies from



PE and PM in combination contribute to finding answers to questions arising in the
didactic system S(X; YE; ♥E). The analysis shows that applications of mathematics in
electrical engineering involve a complex interplay between the praxeologies to
establish a functional didactical milieu. Techniques and technologies from two
praxeologies are intertwined and although both the problem and the answer lie
within PE, it is necessary to use elements from PM to get to the answer. This interplay
between the praxeologies I see as evidence that deep knowledge in both fields is
necessary. Not only techniques, but also technologies (justifications) from PM are
necessary, so using mathematics just as “a set of ‘tools’” (Scanlan, 1985, p. 449) will
not suffice. A certain degree of “mathematical maturity” (Faulkner et al., 2019) is
needed to master the interplay between the praxeologies.
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I also identified some issues that are seen as important from the viewpoint both of
the mathematics teacher and of the electronic systems teacher. Their main message is
that of division of labour. They recognise that they enter the work with the students
with different competencies. They work closely together but the mathematics teacher
says that “I don’t know the electronics” and he admits that he finds it difficult to find
examples from electrical engineering that give good mathematical problems. The
electronic systems teacher says that “I think that mathematics must live on its own
premises”, and he recognises the value of mathematics for example to see the
structure behind a method. It will be of great interest in the further work with the
project to get information from the students, both in surveys reflecting their percep-
tions of the collaboration between the fields, and in direct observation of students
working on problems. Another issue is to see the effect of including other study
programmes into the project. It will not be sustainable to have specially designed
mathematics courses for each study programme, so an important line of inquiry will
be to study the interplay between the praxeology PM and a given praxeology PZ,
where Z represents an engineering field, for various choices of Z.
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Chapter 30
Towards an Institutional Epistemology

Corine Castela and Avenilde Romo-Vázquez

Abstract In higher education, the difficulties of implementing teaching sequences
in which several academic and engineering disciplines, or even professional worlds,
coexist have been widely documented. We hypothesize that these difficulties stem,
especially, from a series of conditions and constraints that determine the knowledge
life in these different universes. In this chapter, we propose using tools from the
Anthropological Theory of Didactics (ATD) to analyze these epistemologies and
illustrate their application with examples from land surveying, industrial, and com-
puter science contexts.

Keywords Anthropological theory of the didactic · Engineering education ·
Interdisciplinary mathematics · Inter-institutional transposition · Institutions’
epistemic activities · Industrial epistemology

30.1 Introduction

Several didactic approaches in higher education relate mathematics to other disci-
plines: the competency-based approach (Niss & Højgaard 2019), mathematical
modelling perspectives (Kaiser, 2020), project-based learning (Kolmos, 2009),
challenge-based learning (Gallagher & Savage, 2020), interdisciplinary education
(Roth, 2020), and transdisciplinary mathematics education (Jao & Radakovic, 2018;
Klein, 2013). But integrating these approaches in the medium and long term poses a
major challenge that requires considering several epistemological and didactical
aspects, including the nature of professional knowledge (González-Martín et al.,
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2021), the role of technologies that encapsulate the mathematics used in workplaces
(Kent et al., 2007), the variety of student profiles in engineering, economics, and
management, among other fields (Winsløw et al., 2018), assessment beyond content
(Borrego & Cutler, 2010), institutional teaching conditions, and the tensions that
professors face (Hernandez-Martinez, et al., 2021). On the epistemological level, it is
important to recognize that insufficient knowledge of professional contexts may
cause curricular conflicts –on a small or large scale— between disciplinary theoret-
ical knowledge and other kinds of knowledge (Young & Muller, 2016), in our case,
professional knowledge. This necessitates making the different epistemologies
underlying these distinct kinds of knowledge visible to build a solid reference for
curricular and didactic innovation. Specifically, in this chapter, Sect. 30.2 proposes
using tools from the Anthropological Theory of Didactics (ATD) to analyze the
different epistemologies. Sections 30.3, 30.4 and 30.5 illustrate their functionality
with examples from surveying, industry, and computer science.
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30.2 Theoretical Framework

A socio-cultural conception of humans underpins ATD, one centered on institutions
as an absolute precondition for humanity’s development and social activities. An
institution is a stable social organization that provides a framework in which
different groups carry out different groups of activities. Institutions foster collective
processes to confront and solve human problems. They favor disseminating innova-
tions and provide the necessary resources (material and cultural) for activities to
proceed. Conversely, institutions also constrain the different types of activities that it
expects people to carry out in the social environment they build. The fact that an
institution I enables and imposes on its subjects, �the people who held the different
positions in I- specific ways of doing and thinking is presented by Chevallard (2003,
p. 82) as a feature of institution.

The ATD thus considers that human activities are framed institutionally. Some
institutional constraints are universal, others derive from the resources, norms, and
values of the institution I, which are partly determined by a network of institutions
that influence I. Consequently, the praxeologies1 related to these activities are guided
by institutional influences. This explains why Chevallard (2006, p. 23) considers
praxeologies as social idiosyncrasies, we would rather adopt a more explicit formu-
lation: institutional idiosyncrasies.

What derives from these epistemological hypotheses is that when praxeologies
produced in one institution move to another, such boundary-crossing processes are
likely to generate transformations, called transposition effects, due to changes in the
conditions and constraints (Chevallard, 1999, p. 231). In Sect. 30.3 we present an

1For a presentation of the concept of praxeology, see the 3rd section of the chapter by González-
Martín, Barquero and Gueudet.
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example of such a scenario, involving mathematics and land surveying. This phe-
nomenon of institutional transposition is a generalization of the didactic transposi-
tion outlined in the second edition of La transposition didactique (Chevallard, 1991,
p. 214).
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Multiple institutions converge and, presumably, collaborate in training engineers
and technicians: academic sciences, engineering sciences and professions, at least
through the didactic corresponding institutions; for example, mathematics, physics,
mechanics, and the machining industry in mechanical engineering curriculum. We
argue that to analyze the complexity of such educational environment, epistemolog-
ical studies must recognize the central role of institutions in issues involving the
production and circulation of knowledge. We propose calling this an institutional
epistemology.

The fundamental unit that ATD gives to these epistemologies can be schematized
as [T, τ, θ,Θ] I, where T is a task type, τ a technique used to perform some tasks
from T, θ a rational discourse, called a technology, about the praxis [T, τ],and Θ a
second level of discourse, called a theory. This scheme, present in Castela (2016,
2017), is not limited to indexing the praxeology by I, but also introduces as study
topics, the processes, represented by the arrow, by which I produces, legitimizes and
institutionalizes the praxeology. This means that some I’s subjects perform specific
task types whose objects are the praxeologies used at I. These task types develop the
institution’s knowledge capital, or its institutional épistémê. Therefore, we have
chosen to use the adjective ‘epistemic’ to qualify these task types and related
praxeologies.

What epistemic task types are involved? We must recognize, first, that, under the
above assumptions, an institution’s subject must be sufficiently lucid that they do not
pretend to know everything about the epistemic activity of another institution,
including the task types involved. While some task types can be assumed as
universal, others are specific and, at best, shared by certain categories of institutions.

To propose an initial list of epistemic task types, we hypothesize that the
technology of a technique accounts, though perhaps succinctly, for the epistemic
activities to which it has been subjected. Based on an analysis of three university
courses on the Laplace transformation for future engineers or senior technicians,
Castela and Romo (2011) introduce six categories, expressed as verbs, that fits well
with the idea of task type: Describing the technique; Validating it (i.e. proving that
this technique actually does produce what is expected); Explaining why it is efficient
(concerning causes); Motivating its different stages (regarding objectives); Facili-
tating its use; and, finally, Appraising it (with respect to the field of efficiency and to
the comfort of use relative to other techniques available). We illustrate here the final
four categories using technological elements of the technique derived from the
integration by parts theorem for calculating an integral b

a u t dt:

Two differentiable functions f and g are chosen, with continuous derivatives so the product f.
g0 u.

Facilitating: an invariant presentation of the calculations, such as
f xð Þ f 0 xð Þ
g0 xð Þ g xð Þ can help

remember the formula and prevent confusions.
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Motivating the choice of functions: f and g are chosen such that deriving f eliminates the
problem of calculating an antiderivative of u f. g0.

Explaining efficiency: this technique may be effective because, in some cases, the
derivation changes the nature of the function, e.g., logarithm.

Appraising: this technique seems to be particularly suitable when integrating a product of
functions but can also be tried if no product is visible, by taking g0 1 (see u ln).

Not all integrals can be calculated with this technique. Other techniques exist, even for
products (see u f 0. f n).

Section 30.5 presents an analysis of a technology that will exemplify some of these
categories (for additional examples from different scientific or professional contexts,
see Castela, 2017; Castela & Elguero, 2013; Covián, 2013; Solares-Pineda et al.,
2016).

Following the formulation in Chevallard’s definition of praxeology,2 Castela and
Romo (2011) considered these epistemic task types to be functions of the technol-
ogy, but now we ask if the associated praxis can be strictly discursive in nature? The
answer is yes, for Describing, Motivating and Explaining. Otherwise, although in
mathematics a logos (a demonstration) suffices to Validate a technique, this is not
true for most praxis, especially in the experimental sciences. This also holds for
Appraising. The answer is probably negative for Facilitating if this task type is
conceived as the ergonomic dimension of a process Designing-Appraising-Improv-
ing a technique. In summary, for most institutions, and for most epistemic task types
involving a P praxis, the technology of P at least states the conclusions of the
epistemic study, which are institutionally certified in this way. It can also include the
discursive part of the epistemic work realized and specify explicitly the knowledge
used throughout this work.

Finally, we must mention certain task types not yet mentioned. These aim to
Define the institutional specifications of a given praxis by, first, characterizing the
task type: what exactly is to be done? and under what conditions? If there is no
description of what is expected, it is impossible to validate a technique. The next step
is to describe the requirements related to the technique, what Castela (2020) calls
technical standards. Briefly, these standards may address the technique validity, with
criteria related not only to its effectiveness (completing the task), but also to its
efficiency (reliability, generality, etc.), usability, safety; its rational intelligibility; its
adequacy for dissemination and learning. Appraising the degree to which the
technique complies with institutional standards is for us an essential aspect of the
praxeology legitimation process in an institution. Section 30.4 presents examples of
technical standards for measurement praxis and production processes in relation to
the associated praxeologies of Appraising, Validating, and Improving, to evidence
their close relation in the industrial world.

2« une deuxième fonction de la technologie est d’expliquer, de rendre intelligible, d’éclairer la
technique. [. . .] Enfin une dernière fonction correspond à un emploi plus actuel du terme de
technologie: la production de techniques. » (1999, pp. 226–227).
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30.3 From Mathematics to Land Surveying, an Example
of Transpositive Effects

In this section, we illustrate the phenomenon of the institutional transposition of a
mathematical praxeology. This approach allows us to highlight another source of
difficulties that may arise in the training of engineers and technicians; namely, that it
is often considered essential to teach these students more sophisticated mathematics
than the ones that are employed in normal professional practices because they may
be useful for possible career advance, but also for adapting to future changes in
professional practice, or, in the short term, for dealing with certain critical situations.
This means that it is difficult to design interdisciplinary sequences based on authen-
tic professional situations that give mathematics teachers opportunities to make
students work with the knowledge to teach.

Our example comes from Covián’s PhD dissertation (2013) on the contribution of
mathematics to topographic surveying and plotting activities in historical, profes-
sional, and academic contexts. We borrow the following from a professional context
in which an expert is asked to describe the technique he would use professionally to
compute the area of a polygonal terrain (see Figs. 30.1 and 30.3). The technique he
advocates and considers the one most often used today, is based on coordinate
geometry in orthonormal bases, with the following formula for the lot in question:

2S ¼ x0 y1 � y5ð Þ þ x1 y2 � y0ð Þ þ x2 y3 � y1ð Þ þ x3 y4 � y2ð Þ þ x4 y5 � y3ð
þ x5 y0 � y4ð Þ

This formula assumes that the coordinates of the polygon’s vertices are determined
in a given orthonormal system. The practice in topography is to choose a West-East

Norte
Magnético

Arroyo

Familia
González

Carretera a Ciudad Juárez

Finca
“Los Manzanos” 1

2

3

4

0

Fig. 30.1 Polygonal terrain. (Redrawn similar to Covián, 2013, p. 142)
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oriented axis as the x-axis, a South-North one as the y-axis, and the origin in a way
which ensures that the coordinates are positive.3

What steps does the expert’s technique follow to compute these coordinates?

Measurement phase: produce a geometric model of the terrain (Fig. 30.3) using the
‘closed traverse’ technique
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S 65°E

N 45°E

N 85°W S 70°W

S

N

C

N
A

S
D

B

Fig. 30.2 Examples of bearings. (Redrawn similar to Natural Resources Conservation Service-US
Department of Agriculture, 2008, p. I–24)

• Measure the length of the sides in meters.
• Measure the bearing of side 0–1. A bearing (rumbo magnético) is an angle of

0–90� measured from the north or south pole, whichever is closer, and from
east or west (see Fig. 30.2). The conventional notation in Mexico and the US is
N45�E.

• Measure the angles of the polygon by placing the instrument at each vertex,
traveling in a counterclockwise direction. The measurement of the angles is
made in a clockwise direction. The internal angles of the polygon are therefore
measured (Fig. 30.3).

Calculation phase

• Check the measurements of the angles.

Measuring errors in a closed traverse can be quantified by the sum of the interior
angles of the polygon so formed. The sum should be (n � 2)180�, where n is the
number of sides in the traverse. Empirical usage in surveying holds that the total
angle should not vary from the correct value by more than

ffiffiffi
n
p

times the precision of

3For Anglo-Saxon references, see for example Chapter 1, Part 650- Engineering Field Handbook
edited by the Natural Resources Conservation Service of the US Department of Agriculture (2008)
https://directives.sc.egov.usda.gov/OpenNonWebContent.aspx?content 25276.wba

https://directives.sc.egov.usda.gov/OpenNonWebContent.aspx?content=25276.wba
https://directives.sc.egov.usda.gov/OpenNonWebContent.aspx?content=25276.wba
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the instrument (10 in the present context). If the difference is reasonable, it is evenly
distributed among the angles; if not, the measurements are repeated (Table 30.1).
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97°38'

90°18'

269°46'

105°28'
77°44'

0
399.00

58.50
435.10

324.08

Fig. 30.3 Geometric model of the polygonal terrain. (Redrawn similar to Covián, 2013, p. 149)

Table 30.1 Corrected measures (Covián, 2013, p. 150)

Lados
Ángulos internos
observados

Ángulos internos
corregidos

Rumbos magnéticos
calculados

Distancias en
metros

0– 79�050 79�05010 00 NE 82�00000 00 399.0

1– 97�380 97�38010 00 NW 0�21050 00 153.00

2– 90�180 90�18010 00 SW 89�56020 00 58.50

3–4 269�460 269�4601000 NW 0�17030 00 142.00

4–5 105�280 105�2801000 NW 74�49020 00 324.08

5– 77�470 77�4701000 SW 2�54050 00 435.10

Sumas 719�590 720� 1511.68

• Successively calculate the bearings of the sides based on the measures of the
internal angles and the bearing of the side 0–1.

• Compute the side projections on the axes (Table 30.2).

The multiplication by the cosine of the bearing determines the North (+) and South
(�) projections (on the y-axis), while the sine gives the East (+) and West (�) ones.
See Fig. 30.4 for an example with data retrieved from a Civil Engineering Analysis
project at University of Memphis, available online.4

• Calculate the coordinates of the vertices using the corrected projections.

4Unknown author and date. http://www.ce.memphis.edu/1112/notes/project_3/traverse/Surveying_
traverse.pdf

http://www.ce.memphis.edu/1112/notes/project_3/traverse/Surveying_traverse.pdf
http://www.ce.memphis.edu/1112/notes/project_3/traverse/Surveying_traverse.pdf
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Table 30.2 Computing the projections (Covián, 2013, p. 157)

Lados
Rumbos Magnéticos
calculados

Distancias En
metros Cálculo de Proyecciones

Norte
(+)

Sur
( )

Este
(+)

Oeste
( )

0–1 NE 82�00000 00 399.0 55.53 395.12

1–2 NW 0�21050 00 153.00 152.99 0.97

2–3 SW 89�56020 00 58.50 0.06 58.49

3–4 NW 0�17030 00 142.00 141.99 0.72

4–5 NW 74�49020 00 324.08 312.77

5–0 SW 2�54050 00 435.10 22.12

Sumas 1511.68 435.36 434.59 395.12 395.07

Error en las y:
Ey 0.77

Error en las x:
Ex 0.05

B

W A E

N

S 6° 15'W
189.53 ft.

S

— W = — (189.53ft.) sin(6°15')= —20.63ft. 
— S = — (189.53ft.) cos(6°15')= —188.40ft. 

Fig. 30.4 Side projection. (Redrawn similar to Civil Engineering Analysis-university of Memphis,
p. 3)

In this surveying work, a mathematician will recognize a task type that can be
described succinctly as calculating the Cartesian coordinates of a vector in an
orthonormal coordinate system when its polar coordinates are known. To this end,
they will refer to the functions of a real variable sine and cosine defined through the
trigonometric circle. The supposedly known angle in a classic situation corresponds
to the angle of the x-axis with the vector considered, with no differentiation of the
quadrants. This is measured in radians. The measure is generally chosen between
[�π, π]. The coordinates are x ¼ rcosα, y ¼ rsinα , where r stands for the vector
norm. This technique is taught from high school onwards in countries like France
and Brazil (see Fig. 30.5).

This is not the praxeology the surveyor uses, for his is based mathematically on
the trigonometry of the right-angle triangle, through the key-notion of ‘bearing’.
Contrary to the mathematical usage just outlined, the bearing is an angle measured
from the y-axis, that is the North-South direction whose predominance reflects the



influence of astronomy and navigation on the development of topography. Another
specificity is how the technique considers the quadrants in order to obtain the
algebraic value of the projections by translating the symbols N, S, E, and W present
in the bearing notation in + for N and E, � for S and W. Note that these algebraic
values are avoided in Table 30.2, where only positive values appear in the four
columns differentiated by a reference to a cardinal point (in association with a sign).
Another semiotic difference with mathematics involves the representation of the
length measures which appear in decimal form always with two figures after the
decimal point, even if they are 0. This corresponds to the notion of significant figures
that links numerical writing to the precision of the measurements.
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Fig. 30.5 Circular
definition of sine and cosine.
(Redrawn similar to Loeng,
2019, p. 296)

cos�

sin�

�

�
�

�

�

In summary, we offer the following comments: The source of the surveyor’s
praxeology can be understood as a mathematical praxeology developed in the
trigonometry of the right-angled triangle, but it has undergone transposition pro-
cesses to adapt to the profession. Therefore, if we take the type of surveying tasks
(Calculating the area of a polygonal terrain) analyzed above as the basis for an
interdisciplinary sequence, the mathematics teachers will be disappointed if they
wish to have the students work with circular trigonometry, unless they impose a
technique that does not consider the real conditions of surveying work. This will
likely entail agreeing to work with knowledge that is not included in the course
syllabus and whose importance in surveying is probably unknown to them: triangle
trigonometry, the sum of polygon angles. Yet, due to the transposition effects that we
could denominate adaptations of the mathematical knowledge in the Double
Approach framework, students may encounter difficulties that could surprise both
the mathematics and the topography teacher; for instance, when they determine the
bearing from the internal angle (sexagesimal calculations such as180 � �179 � 38010

00
)

or the projections (using the formulas x ¼ rcosa, y ¼ rsina when the bearing is not
the polar angle). This illustrates the importance of working conjointly.
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30.4 Aspects of an Industrial Epistemology

This section discusses some results of an inquiry into metrological practices in
industrial contexts that we were encouraged to pursue by Aldape-Carillo’s Master
thesis (2016). In order to design Study and Research Activities (or Paths5) for high
school, Aldape-Carillo looked for potential questions in the automotive industry, a
major job provider for young Mexicans with a Bachelor’s degree. The thesis pre-
sents the epistemological investigation conducted, based on the field study of a car
door production plant (visits to production lines, interviews with production and
quality control engineers), and an analysis of a metrology handbook recommended
by the general manager (Chrysler Group LLC et al., 2010, MSA-2010 in the
following).

MSA-2010 was developed by a Measurement Systems Analysis Work Group,
sanctioned by three automotive companies (Chrysler, Ford, General Motors)
under the auspices of the Automotive Industry Action Group (AIAG). During our
research for this chapter, we came across a similar document: The Statistical Quality
Control Handbook published in 1956 by Western Electric (WE-1985in the follow-
ing) for internal use. This manual was provided by the company’s personnel
department. It was republished ten times until 1985.6 According to the Editorial
Board Preface:

This book is not a treatise on statistical quality control. [. . .] Its main purpose is to describe
procedures that, if followed, will tend to preserve the essential aspects of the quality control
at Western Electric. It can be considered as a kind of a collection of techniques and methods
that have proven to be most useful for the success of these programs. Much of the material is
based on training courses that have been given over the past six or seven years to engineers,
managers, and executives at all levels of management (p. 5).

Note that the AT & T group, a Western Electric subsidiary, has been a pioneer (since
1924) in developing statistical quality control through a specific department in its
research center. Therefore, we hypothesize that most praxeologies presented in the
manual are transposed versions of praxeologies developed at that research institu-
tion, enriched by their use in production contexts, a process represented in the
following figure inspired by (Castela, 2017, p. 422):

Here, Ir stands for a research institution that produced the praxeology and Iu for
an institution that uses it. The asterisks represent the transposition changes in the
components of the original praxeology, which are examined by I�r , a noosferian7

institution created by Ir and Iu. The latter adds its own technologico-theoretical
contribution θu – Θu.

These two manuals reveal the extent to which a company, or branch of industry,
operates as an institution by disseminating to their subjects praxeological resources

5For a presentation of this pedagogy, see the chapter by González-Martín, Barquero and Gueudet.
6The Western Electric Company closed in 1985. The book is now almost impossible to find, but a
French translation is available online.
7See Chevallard (1991, p. 214).



that constitute a reference which constrains the practices. In addition to organizing
the related training courses, publishing these handbooks contributes to institution-
alizing certain praxeologies.

MSA-2010 focuses on the analysis of measuring systems, while WE-1985 deals
with the control of production processes. The questions we pose concerning these
manuals are: why are these issues so important in industrial contexts? And, why do
all the praxeologies presented contain a statistical component?

30.4.1 General Conditions and Constraints

In a specific industry, a core activity, broken down into a set of task types, is the
production of a certain product (e.g., semiconductors, screws). This product must
comply with the specifications issued by R & D teams and clients. Two aspects are
decisive for an industrial epistemology:
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On a manufacturing line, the quality characteristics of a product vary from one
realization to another.8

Five basic components of the process are possible sources of variability: machinery,
labor, method, environment, and input material. Some causes can be identified and the
company can seek to correct them, others are inherent to the production process. The
latter are called the random variability component. This explains why variability cannot
be eliminated, but only reduced to a minimum. Due to this uncertainty regarding
manufactured objects, specifications are always accompanied by tolerance limits.

Variability control cannot be achieved once and for all; over time, new process
disturbances will appear.

We can now begin to perceive the epistemological distance that lies between the
scientific world and the world of industrial production. Although both the experi-
mental and engineering sciences confront the problem of uncertainty because mea-
surement systems are not free of variability, they work with models that simplify
reality, allowing them to assume that “all things are otherwise equal”. But this
assumption is not applicable in industrial contexts. When a technique produced by
an R & D laboratory, and validated in the model, is imported into a factory for large-
scale, long-term use, the ‘things’ assumed to be constant begin to vary, while others
that the model ignored (e.g., workers’ skills, vibrations in the workshop) turn out to
influence the production. As a result, the technique implemented becomes an object
of epistemic activities specific to industrial institutions. Due to the causes of the
random variability component and the impossibility of inspecting every part pro-
duced, techniques based on statistical theory are widely used in a procedure called
Statistical Process Control (SPC). SPC is a set of praxeologies that permits, first,

8We rely here on Bettayeb (2012), especially p. 36.



appraising the extent to which a production process actually does what is expected of
it by producing items that conform to specifications and, second, adjusting the
process when this does not occur. SPC is defined by the AFNOR (the French Branch
of ISO) as
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. . . a set of actions to appraise, regulate and maintain a production process in a state where it
manufactures all its products in accordance with the specifications adopted and, above all,
with characteristics that are stable over time. SPC is one of the dynamic elements of the
quality system and, as such, contributes to the continuous improvement of production. [. . .] a
monitoring system allows a quick and efficient reaction to any drift, thus avoiding the mass
production of non-compliant products (quoted by Bettayeb, 2012, p. 35, our translation).

Here, we highlight the importance of three task types: Appraising, Improving, and
Monitoring the process. Due to the variability, the specifications applied do not take
the form of measures to be exactly achieved. Rather, they define tolerance intervals.
Production is described through intervals that must be estimated and compared to the
specifications. It is important to add that, as is expected in descriptive statistics, the
answer given is not fixed but at a certain statistical threshold. On this basis, the
process will be validated or not. In the latter case, an investigation into the causes
will be undertaken to improve the process by acquiring better knowledge of the
variables that influence the effective implementation of the process in the specific
context of the workshop. This is an extension of the designing activity conducted by
R & D which generates an evolution of the process (see Fig. 30.6). This point is
central in WE-1985, which stresses the importance of monitoring all processes
(see 30.4.3).

30.4.2 Measurement System Analysis

Appraising a production process requires using measurement systems (MS) that are
by no means free of variability.9 Indeed, the true value of the quantity being
measured is inaccessible. “Uncertainty is the value assigned to a measurement result
that describes, within a defined level of confidence, the range expected to contain the
true measurement result” (MSA-2010, p. 63). This condition means that MS can
only be used on production sites if they are subject to regular assessments of their
qualities within specific context of use. The aim is to appraise their adequacy with
what is expected of them. But what are the qualities that can be expected from an MS
(MSA-2010 Ch. I. A, pp. 6–7)?

Fig. 30.6 From Ir to Iu, the
transposition model �� , 	, 
 , ��  ← ��  ��*,	*, �


* , �*


� , ��

← �*�

← ��

9For a complete presentation of this problematic, see (Joint Committee for Guides in Metrology,
2008).
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• Sensitivity: responsiveness of the MS to changes in a measured feature. Quan-
tified by the smallest input that results in a detectable output signal.

• Accuracy: “closeness” to the true value, or to an accepted reference value.

The accuracy of an MS is appraised according to three components.10

Bias: difference between the observed average of measurements and the reference
value.

It quantifies a defect in the accuracy of an MS. If it is significant in size relative to the
required measurement accuracy, a correction can be applied to compensate for the
effect (see Sect. 30.3, angle measurement checking) (Fig. 30.7a).

Linearity studies quantify changes in bias over the normal operating range
(Fig. 30.7b).

Stability studies quantify changes in bias over time (Fig. 30.7c).

Fig. 30.7a Bias. (Redrawn
similar to MSA-2010, p. 6)

Measurement System's
Average

Reference Value

BIAS

Size 1 Size N

BIAS
BIAS

Fig. 30.7b Linearity. (Redrawn similar to MSA-2010, p. 6)

10Associating a specific level of confidence requires certain assumptions regarding the probability
distribution, characterized by the measurement result and its standard deviation. Normal distribu-
tion is often applied as a principle assumption for MS, this explains the shape of the curves in the
figures.
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Fig. 30.7c Stability.
(Redrawn similar to
MSA-2010, p. 6)

Reference Value

Time

• Precision: “Closeness” of repeated readings to each other.

The precision of an MS is appraised according to two components.

Repeatability studies quantify the variation in measurements obtained with one
gage11 when used several times by an appraiser who measures an identical
characteristic on the same part over a short time period.

Commonly referred to as E.V. – Equipment Variation (Fig. 30.8a).
Reproducibility studies quantify the measurement average variation of measure-

ments made by different appraisers using the same gage when measuring a
characteristic of one part.

Commonly referred to as A.V. – Appraiser Variation (Fig. 30.8b).

The extent to which an MS possesses these qualities is the subject of various
praxeologies. One example is presented below. The results provide the basis for the
institutional validation of the system.

Example of praxeology: A Gage Repeatability and Reproducibility (GRR) study

A GRR study helps investigate:

• Repeatability: how much of the variability in the MS is caused by the gage?
• Reproducibility: howmuch of the variability is due to differences among operators?
• Whether the MS variability is small compared to that of the production process.
• Whether the MS can differentiate among distinct parts.

Various techniques are available for conducting studies of this kind (see MSA-2010
for a detailed presentation). We focus on the Average and Range technique used by
the engineers that Aldape-Carillo (2016) interviewed in the automobile factory.

11Measurement device
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Description of the technique
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Fig. 30.8a Repeatability.
(Redrawn similar to
MSA-2010, p. 7)

Repeatability

Fig. 30.8b Repeatability.
(Redrawn similar to
MSA-2010, p. 7)

Reproducibility

Appraiser A C B

• Obtain a selection of n parts (n �10) that represent the expected range of the
production variation of a given part.12 Three operators (A, B, C) measure the
n parts, three times per part, in random order.

• Calculate the average and range (largest reading - smallest reading) of the three
readings for each part and each appraiser.

• Calculate the average (RA, RB, RC) of the ten ranges and the average (XA, XB, XC)
of the ten averages for each appraiser.

• Calculate the average of the 9 readings for each part and the average X of these
10 results, which is also the average of XA, XB, XC: Then determine the range of
the part averages (Rp), i.e., the largest part average – the smallest one.

• Calculate the average R of RA, RB, RC and the range of the averages XA, XB, XC

XDIFF

Once collected (see Table 30.3), the data are subjected to graphical and numerical
analysis. We focus on the second dimension.

R quantifies the average variation of three measures regardless of the part and the
appraiser, XDIFF

� �
quantifies the variation among appraisers. These figures are used

to estimate, respectively, the MS repeatability variation EV and reproducibility
variation AV using formulas not shown here due to space limitations. We simply
state that they entail constants derived from the probability distribution of the
statistic parameters.13

12This choice supposes that the enterprise’s metrology laboratory has a good knowledge of the
range of variation of a given product.
13See (Clément, 2017), p. 15.
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The MS variation for repeatability and reproducibility (GRR) is calculated by the
following formula:

GRR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EVð Þ2 þ AVð Þ2

q

The part variation PV (part-to-part variation without measurement variation) is
estimated from the range of part averages Rp. Total variation TV is then
calculated by:

TV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GRRð Þ2 þ PVð Þ2

q

The following standard14 can be used to determine whether the MS is acceptable:

• GRR under 10% of TV: acceptable MS
• GRR over 30% of TV: MS needs improvement.
• Between 10% and 30%, decision will depend on use.

In this example, GRR ¼ 26,68% of TV, so the MS will likely not be validated
without improvement.

In the praxeology shown, variation is quantified on the basis of range. The
Analysis of Variance method, in contrast, uses variance and standard deviation, it
is preferred because of its flexibility, as long as the user has access to appropriate
software and a solid grounding in statistics.

30.4.3 Process Capability Analysis

We are now interested in validating a new manufacturing process, based on the
appraisal of a capability index that is considered to quantify the extent to which the
process meets certain specifications. Of course, the MS must be previously appraised
under what may be considered as reference conditions. For the process stability
being checked, the statistical parameters of the process are estimated through a
Repeatability and Reproducibility study with Analysis of the Variance. The capa-
bility of the process is quantified by the following index where σ is an estimate of the
standard deviation (see Fig. 30.9 for an illustration):

Cpk ¼ distance from mean to the nearest specification limit
3σ

The process is appraised as being “capable” if Cpk is greater than 1.33.

14Automotive Industry Action Group (AIAG) sustains these positions. They appear in MSA-2010:
Table II-D 1.
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Mean
Mean to Proccess Edge

(Spread)

Mean to Nearest Spec Limit
(Location)

LSL USL

Fig. 30.9 Interpretation of the index Cpk. (Redrawn similar to 1.Factory: https://www.1factory.
com/quality-academy/guide-to-process-capability-analysis-cp-cpk-pp-ppk.html)

Example of praxeology: Improving the process through graphic analysis

As mentioned above, this index is relevant for stable processes, but when a new
process is being implemented, it may show variations deemed abnormal because
they do not show a random distribution. Highlighting such anomalies to identify and
correct the causes, if possible, at the moment they exert a negative effect on
production, is what (WE-1985) calls a “Process Capability Study”, an approach
based, essentially, on producing Control Charts (introduced by W.A. Shewhart, a
statistician working in the R & D branch at AT & T, see Clément, 2017, p. 10). For
each one of at least 20 samples of the same number n of parts with probable
homogeneity, i.e., produced over a short period, the average and range of the
n measures are calculated and plotted to obtain Average & Range charts, which
(WE-1985) posits as the most sensitive indices. The grand average X and control
limits (UCL and LCL for Upper and Lower Control Limit) determined using the
average range15 are also plotted. See Fig. 30.10 for an example (5 units samples
every hour for 20 h) (Fig. 30.10).

These maps are examined for anomalies. What is a normal profile? First, its points
fluctuate randomly, so there is no recognizable order. Moreover, since the values of
distributions tend to cluster near the mean, most points on the control graph will
naturally fall close to the X line and balance on either side. Finally, since most
distributions have “tails” up to �3σ, it is natural that a point on the graph sometimes
approaches a limit of 3σ. In this case, the process is considered stable. The profile is
considered abnormal if one of these three characteristics is missing. Western Electric
has laid down rules for distinguishing among different profiles. We illustrate some of
them in Fig. 30.11a–c.

The first meaning of an abnormal profile is that important causes with the capacity
to exert a great influence on the process are present in a form that can be studied
(WE-1985, p. 42). Abnormal variations produce significant profiles on a control
chart that, in turn, allows detection and studies of the cause-and-effect relations

15See (Clément, 2017), p. 10.

https://www.1factory.com/quality-academy/guide-to-process-capability-analysis-cp-cpk-pp-ppk.html
https://www.1factory.com/quality-academy/guide-to-process-capability-analysis-cp-cpk-pp-ppk.html


30 Towards an Institutional Epistemology 639

Sa
m

p
le

 R
an

g
e

Sa
m

p
le

 M
ea

n
Xbar-R Chart of Strength

157
UCL-156.860

X=155.561
=

LCL-154.262

UCL-4.761

LCL-0

R=2.252
-

Sample

Sample

156

155

154

4.8

3.6

2.4

1.2

0.0

1 3 5 7 9 11 13 15 17 19

1 3 5 7 9 11 13 15 17 19

Fig. 30.10 Average & Range charts. (Redrawn similar to Minitab 18 Support: https://support.
minitab.com/en-us/minitab/18/help-and-how-to/quality-and-process-improvement/control-charts/
how-to/variables-charts-for-subgroups/xbar-r-chart/before-you-start/overview/)

1
3 6

Test 1: One point more
than 3σ from the center
line

Test 3: Six points in a
row, all increasing or
all decreasing

Test 6: Four out of five
points more than 1σ from
the center line (same side)

(a) (b) (c)

Fig. 30.11 (a–c) Abnormal profiles. (Redrawn similar to Minitab 19 Support)
aThe rules give rise to 8 tests in the software Minitab. https://support.minitab.com/en-us/minitab/19/
help-and-how-to/quality-and-process-improvement/control-charts/how-to/variables-charts-for-sub
groups/xbar-r-chart/interpret-the-results/all-statistics-and-graphs/#control-limits

involved. Based on their knowledge of the process, and of the kinds of causes
associated with abnormal profile types, the engineers and technicians who conduct
the study can make hypotheses about the possible causes of the anomalies. After
correcting one of these causes, a new sampling will generate new maps, possibly
easier to interpret because fewer causes are superimposed. WE-1985 (p. 48) presents
an example: the study included 5 samplings, each followed by a development

https://support.minitab.com/en-us/minitab/18/help-and-how-to/quality-and-process-improvement/control-charts/how-to/variables-charts-for-subgroups/xbar-r-chart
https://support.minitab.com/en-us/minitab/18/help-and-how-to/quality-and-process-improvement/control-charts/how-to/variables-charts-for-subgroups/xbar-r-chart
https://support.minitab.com/en-us/minitab/18/help-and-how-to/quality-and-process-improvement/control-charts/how-to/variables-charts-for-subgroups/xbar-r-chart
https://support.minitab.com/en-us/minitab/19/help-and-how-to/quality-and-process-improvement/control-charts/how-to/variables-charts-for-subgroups/xbar-r-chart/interpret-the-results/all-statistics-and-graphs/#control-limits
https://support.minitab.com/en-us/minitab/19/help-and-how-to/quality-and-process-improvement/control-charts/how-to/variables-charts-for-subgroups/xbar-r-chart/interpret-the-results/all-statistics-and-graphs/#control-limits
https://support.minitab.com/en-us/minitab/19/help-and-how-to/quality-and-process-improvement/control-charts/how-to/variables-charts-for-subgroups/xbar-r-chart/interpret-the-results/all-statistics-and-graphs/#control-limits
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applied to the production process, until an acceptable capability index resulted.
(WE-1985) advocates that such studies, in lighter forms, should be performed
regularly in workshops for adequate process monitoring.

In summary, we have shown that measurement systems and production processes
are appraised through analyses of certain qualities for which the user institutions
define standards to be met. If necessary, cycles of appraisal and improvement will be
conducted recursively until validation is possible. Concerning the praxeologies of
appraising, improving, and validating implemented in this field, we argue that the
techniques are not entirely discursive since they require sampling. Moreover, and
despite the absence of a specific study, we assume that the logos has a strong
statistical component and contains empirical knowledge on the manufacturing
reality (θu in Fig. 30.6). Finally, it is important to recognize that the list of expected
qualities presented here is not exhaustive because, for example, it leaves out the
dimensions of profitability and duration.

30.5 Making the PageRank Algorithm Intelligible

Section 30.4 focused on analyzing the praxis component of the praxeologies that
correspond to the appraising, improving, and validating task types, in an effort to
show that they are not entirely discursive. This section, therefore, focuses on the task
types that Sect. 30.2 presented as discursive: describing and above all motivating and
explaining, two aspects of making intelligible. Note that these task types contribute
to the transmission of the technique, they fulfill didactical functions.

Our example is based on the work Patricio-Martínez (2016) has devoted, in his
Master thesis, to the PageRank algorithm, in order to design mathematical modeling
activities that make it possible to link a modeling activity, derived from professional
practice, to mathematics teaching for computer systems engineering students.

What is the task type that the PageRank algorithm proposes to solve? A search
engine determines all the sites where the object of the search appears, but because it
must be able to choose among the multitude of sites found, it has to rank them.
PageRank was developed “to improve the quality of web search engines” (Brin &
Page, 1998, p. 108) and help users find answers in the first 10 sites proposed. This
entails working on the ranking criteria.

The main difficulty of Patricio-Martínez’s project lies in the secrecy imperatives
that govern R & D institutions in cutting-edge competitive sectors. In their article
published in a research review, Brin and Page (1998), PageRank’s developers,
revealed very little about the algorithm. Therefore, Patricio-Martínez had to rely
on documents written by mathematicians for clearly didactic purposes, that show the
mathematics hidden behind PageRank (D’Andrea, 202016; Fernández, 2004). These

16Patricio-Martinez has worked with a 2012 version of d’Andrea’s paper, which is no longer
available. We refer to a 2020 version, similar to the previous one, edited in a review. English
translations of the citations are ours.



texts propose a reconstruction of the steps that led to the development of the
algorithm. In this didactic logos on the Pagerank technique, the task types Describe,
Appraise and Motivate occupy a central place, with the results of the evaluation
providing the rationale for successive adaptations of the model. To illustrate this, we
rely on D’Andrea (2020).

The technique may be described through a list of subtask types (see Chaachoua
et al., 2019):
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Fig. 30.12 The internet
graph. (Redrawn similar to
D’Andrea, 2020, p. 27)

2

1

5

4

3

T1: Representing the Web structure mathematically.

In PageRank, the web is a directed graph in which the websites are the nodes and the
links between them are the edges (see Fig. 30.12).

T2: Defining a process to assign an importance score (or PageRank) to the sites.

The key issue here is to define a criterion of importance. The appraising-improving
process gives rise to four successive proposals described below.

One potential criterion would be to count, equally, the citations that a website
receives from other websites. D’Andrea appraises this criterion as one that can be
manipulated easily because “one could quickly ‘inflate’ the importance of a given
website by simply creating several websites that have links to the same website”
(ibidem, p. 28). This negative appreciation motivates the introduction of a second
criterion, this one based on PageRank’s postulate that “the importance xi of page Pi
is directly proportional to the sum of the importance of the websites linking to it.”
(ibidem, p. 28). This is illustrated by a new graph (see Fig. 30.13) where “C” is more
important than “F” though both count one citation since “E” is less important than “B”.

D’Andrea proposes moving to a matrix representation, motivated by the ineffi-
ciency and huge computational cost of a graph representation for the number of
websites involved. He thus introduces the so-called incidence matrix of a graph, a
classical tool of graph theory. MI is defined as the square matrix of size equal to the
number of nodes in the graph, so that mi,j¼ 1 if there is a link from the page Pi to the
page Pj and 0 if not.

This matrix may be used to represent the system of linear equations that derives
from the PageRank postulate: “If MI is the incidence matrix of the Web graph and



x ¼ (x1, . . ., xn) the importance vector in (R+)n, thenMt
Ix

t ¼ λxt, where λ 2 R+� is the
proportionality constant.” (ibidem, p. 29). At this point, D’Andrea introduces math-
ematical technological elements: definition of eigenvector and eigenvalue. He then
states the following property: the importance vector is an eigenvector of MI that
corresponds to a strictly positive eigenvalue (Fig. 30.14).
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Fig. 30.13 Importance graph. (Redrawn similar to D’Andrea, 2020, p. 28)

After experimenting with this technique for the example shown above using a
software to determine the five eigenvalues and corresponding eigenvectors,
D’Andrea inquires as to the unicity of the eigenvalues related to a single eigenvector:

One might assume that what happens in this example is a general fact, that of any square
matrix with zeros and ones there will be a single positive eigenvalue, and associated with it a
single positive eigenvector which will be the solution to our problem (ibidem, p. 30).

We may assume that unicity allows PageRank to avoid the need to choose among
several solutions. Regarding the eigenvector, the answer lies in the following remark
by Brin and Page (1998, p. 110): “PageRanks forms a probability distribution over
web pages, so the sum of all web pages’ PageRanks will be one”.

A third proposition is introduced, motivated by the following negative appreci-
ation of the previous proposition: “if a page has only one link, this link is worth the
same as any other link from another page that produces a million links” (D’Andrea,
2020, p. 31). In the incidence matrix, the mi,j term is divided by the number of links
leaving from Pi. The new matrix denotedMI, E is a right stochastic one in which the
sum of each line terms is 1.
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Fig. 30.14 Linear Equations and matrix representation associated with Fig. 30.12. (Redrawn
similar to d’Andrea, 2020, p. 30)

Fig. 30.15 The perturbed incidence matrix. (d’Andrea, 2020, p. 34)

This brings us back to the issue of unicity, for the third proposition must now be
appraised on its ability to always provide matrices with at least one simple, strictly
positive eigenvalue (1), with one associated eigenvector with strictly positive coor-
dinates (2). If there are several such values, a criterion must be proposed to select
one. One theorem from Perron-Frobenius’s theory provides a selection technique
(rank the values in descending order of their modulus) and sufficient conditions for
successful use of the matrix: one that has only strictly positive entries has a unique
eigenvalue strictly larger in modulus than the other ones (dominant eigenvalue) and
satisfying (1) and (2) conditions. But the incidence matrices do not meet these
conditions because some entries mi,j are equal to 0.

This motivates the proposition to slightly perturb the mathematical model, a
rather common procedure in computational mathematics and numerical linear alge-
bra. Thus, a convenient matrix is added to the incidence matrix to obtain a matrix
with only strictly positive entries. The perturbed matrix is defined as follows, with ε
being a very small strictly positive real number (Fig. 30.15).

The fact that such perturbation provides a correct technique for the Ranking task
type is explained as follows:

The underlying principle of this idea is that the “importance” function is continuous, and if I
can calculate it “close” to the situation where I am, it is already enough for what I want,
which is to order the importance and not actually calculate them (ibidem, p. 34).

This, the final evolution of the technique presented by D’Andrea, returns us to the
last subtask type.

T3: Calculating the site’s importance

D’Andrea notes that this calculation is extremely large, so that techniques from a
linear algebra course cannot be used. He explains that PageRank uses the ‘power
method’, an algorithm which, in the case of a diagonalizable matrix with a dominant
eigenvalue λ, produces a number and a non-zero vector, which approximate λ and its
eigenvector. The elements of mathematical logos provided allow us to understand



the need to work with a dominant eigenvalue. However, one question remains: is it
possible to choose the perturbed matrix so that it is always diagonalizable?
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What should be highlighted in this example of didactic transposition related to
PageRank?

It is not possible to assess the distance of this reconstruction from PageRank because
of secrecy constraints. Moreover, the reconstruction is not unique: “Several options
exist for modeling the behavior of a random Web surfer after landing on a dangling
node,17 and Google does not reveal which option it employs.” (Wills, 2006, p. 6).
This is not important because the rationale of the transposition project is to teach
certain mathematical knowledge. However, the logos is not limited to theoretical
mathematics. Rather, if one pays close attention to the motivation behind the
successive changes to the model, it is possible to observe appraisal steps that are
largely based on practical knowledge related to the Web and computational prac-
tices. Finally, we should mention a technique not found in D’Andrea (2020): the use
of analogies to make the technique intelligible. For instance, Fernández (2004) refers
to the way in which play-offs are determined in the USA to show the interest in
“normalizing” the importance of the sites.

30.6 Conclusion

This chapter draws on the hypothesis that every institution develops the following
epistemic activities: designing-transforming, legitimating (Castela, 2020), and dis-
seminating praxeologies. Sections 30.4 and 30.5 illustrate seven epistemic task types
relating to the praxes used in an institution: Describing, Motivating, Explaining,
Appraising, Improving, Validating, and Monitoring. Two dialectics are especially
highlighted: Appraising-Improving in designing-transforming activities and
Appraising-Motivating in didactical ones. The praxeologies so derived take specific
forms that reflect institutional conditions and constraints: nature of the
institutional objectives (Sect. 30.4: industrial production, Sect. 30.5: teaching math-
ematics), product specifications, role of measurement, conditions variability, secrecy
constraint. The techniques applied may involve mathematical knowledge as
evidenced by the didactic resources provided by the industrial companies, this
suggests possible developments for mathematics education in higher education.
These possibilities, unfortunately, can hardly be described as straightforward, due
to the phenomenon of transposition that goes hand-in-hand with the circulation of
praxeologies (Sect. 30.3).

17Both Brin and Page (1998) and Fernández (2004) mention this analogy to a “random surfer” who
clicks on a page and then randomly links to another one.
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Each institution has its own epistemic regime. We assume that this hypothesis
explains the difficulties encountered in efforts to design didactic activities for higher
education based on inter- and transdisciplinary approaches (Klein, 2013; Jao &
Radakovic, 2018; Roth, 2020; Takeuchi et al., 2020) and mathematical modeling
perspectives (Kaiser, 2020). We defend the idea that mathematics teachers should
collaborate with representatives of different institutions of production and use of the
knowledge involved (Schmidt & Winsløw, 2021; Siero et al., 2017), but this is no
easy task due to institutional constraints. Hence, we advocate for further research on
the mathematics used in workplaces, such as Frejd and Bergsten (2016), Gainsburg
(2007), and of course, the three theses by Mexican students on which this chapter is
based. We sustain that this approach will provide mathematics teachers with a better
knowledge of institutions using mathematics in non-academic ways such as other
sciences and professions. In this way, they might design, even (almost) alone,
sequences based on concrete, genuine problems that occur in those institutions.
Clearly, this a complex task, but one that is unavoidable in the training of pro-
fessionals in light of the demands of the twenty-first century.
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Chapter 31
Concept Images of Signals and Systems:
Bringing Together Mathematics
and Engineering

Margret A. Hjalmarson , Jill K. Nelson , John R. Buck ,
and Kathleen E. Wage

Abstract This paper will examine students’ reasoning with conceptual problems in
signals and systems, a subfield of electrical engineering. In particular, we study how
students consider multiple representations that model real phenomena. Also, signals and
systems problems require students to think about multiple representations of the same
signal, namely interpreting amplitude variation as a function of time and energy variation
as a function of frequency. We aim to understand how students connect representations
across different domains for the same signal. We adapt a framework to describe repre-
sentational contexts and process-objects to signal and systems concepts. While some of
these mathematical applications are unique to electrical engineering, this provides one
example of exploring students’ concept images that include applications of mathematics.

Keywords Electrical engineering · University education · Engineering education ·
Student learning · Mathematics learning

31.1 Background

Mathematics is “the queen of the sciences” according to a quote widely attributed to
Carl Friedrich Gauss. This is sometimes interpreted as mathematics being necessary
for all the sciences. However, the sciences and, in our case, engineering have their
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own influence and interpretation of mathematics. The relevant purposes and struc-
tures of mathematics may be different for other disciplines. The engineering student
is learning mathematics as a necessary tool for engineering - not for the sake of
mathematics itself. In addition, advanced engineering coursework includes mathe-
matical content taught from the perspective of its role in engineering. We use the
framework of concept image (Tall & Vinner, 1981) to adapt Zandieh’s framework
for describing derivatives to signals and systems concepts. Zandieh’s framework
provides the opportunity to describe the different aspects of signals and systems in
terms of different representations or contexts (e.g., graphical, symbolic). The frame-
work for derivatives is useful for adapting to signals and systems because they have a
clear physical form that is characterized using symbolic and graphical contexts.
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Signals and systems problems require students to consider multiple representa-
tions of the same signal, namely interpreting amplitude variation as a function of
time and energy variation as a function of frequency. We aim to characterize how
students employ representations across different domains for the same signal and
how they also make connections to applications they will need as engineers. Overall,
our chapter explores the following. How do students interpret, describe and reason
with graphical representations of signals and systems problems as part of a concept
image of signals and systems?

31.2 Literature Review

Our study explores students’ conceptual understanding of signals and systems. More
specifically, the students need to interpret graphical representations that describe
different aspects of a signal. The connection between graphical representations and
engineering is compelling as an example of the intersection between the disciplines
because signals and systems (and electrical engineering more generally) is a partic-
ularly mathematics-intensive part of engineering.

31.2.1 Engineering and Mathematics

Faulkner et al. (2019) studied the views of engineering faculty about their definitions
of mathematical maturity for students. They found three themes that were important
practices of mathematically mature students: (1) “uses and interprets mathematical
models”, (2) “chooses and manipulates symbolic and graphical representations” and
(3) “Computational tools reshape ‘what needs to be known’ to be mathematically
mature” (p. 111). For our purposes, we are most interested in the first two. The
representation of a signal could be described as a model consisting of both a
symbolic and a graphical representation. This model also represents a real phenom-
enon and attempts to describe a real situation. However, students need understanding
of the related symbolic and graphical representations in order to understand the



phenomenon. The engineering faculty perspective on the role of mathematics in their
study affirms both the disciplinary needs and the necessity of mathematical reason-
ing as part of engineering.
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From the student perspective, Harris et al. (2015) describe how students under-
stand the role of mathematics in engineering programs. Some students were sur-
prised at the extent of the mathematics required both in terms of mathematics courses
and how much mathematics is in engineering courses. At the same time as mathe-
matics was seen as essential, the students were also seeking to better understand the
connections and applications of mathematics to engineering and felt it would support
their learning to have those connections made explicit in courses (e.g., via engineer-
ing examples in mathematics courses). Similarly, Flegg et al. (2012) found variation
in how students identified the relevance of mathematics to engineering either in
terms of engineering coursework or later professional practice.

There has not been extensive investigation into students’ conceptions of signals
and systems. However, other studies of students’ conceptions of signals examine the
different praexologies of mathematics and engineering (Hochmuth & Peters, 2021;
Rønning, 2021). For instance, textbooks for mathematics and engineering describe
or foreground different concepts (Hochmuth & Peters, 2021). Coppens et al. (2017)
explored students’ understanding of frequency and phase shifts, and they point to
students being able to define phase shifts but not being able to consider the physical
context. A common theme in all of the above studies is how students need to access
different contexts for considering signals and systems concepts including physical
applications, mathematical representations, and engineering representations.

31.2.2 Use of Representations as Contexts

The use, creation and interpretation of multiple representations for phenomena is a
common practice of engineering and mathematics. Different frameworks for work-
ing across different representations include the Lesh translation model which
includes symbolic, graphical, real-world phenomenon, written descriptions, and
images (Cramer, 2003). In this model, the focus is on how the same phenomenon
can be represented in different ways that might highlight some aspects of the
phenomenon and obscure other aspects. Mathematical representations in this sense
are a key component of modeling, which is often a goal in engineering work
(Magana et al., 2020; Magana & de Jong, 2018). Zandieh characterizes these
different representations as “contexts” (2000) including symbolic, physical, verbal,
and graphical. These contexts are then part of students’ concept image of a topic.

Other studies have examined how students use representations in engineering
tasks. For example, Johnson-Glauch and Herman investigated representations in
statics and digital logic (2019). In a second study, they investigated students’
conceptual knowledge and the connections to domain-based representations
(Johnson-Glauch et al., 2020). A salient recommendation from their study is “Our
findings suggest that we should be careful about documenting only students’



misconceptions without considering the factors that may prompt them and the useful
knowledge that students may be employing.” (p. 460, 2020) Their study explored
which aspects of a representation students found “task-relevant” as part of under-
standing how students’ interpret and use such representations in problem-solving.
Their study also explored the role of disciplinary notational conventions in obscur-
ing or highlighting task-relevant features of representations. In signals and systems,
this could include how students interpret both the symbolic representations and the
graphical representations. Part of their findings include updating the Lesh translation
model to include salient representations for engineering.
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31.3 Signals and Systems Courses in Engineering

Signals and Systems, also sometimes called Linear Systems, are electrical engineer-
ing classes focusing on the mathematical representations of physical signals and the
manipulations of these signals by linear and time-invariant systems. Within the
engineering curriculum, these classes bridge the theory students learn in differential
equations with the implementation learned in circuits. These classes present com-
mon techniques used to embed, transmit, and extract the information in signals. In
physical terms, these signals include, for example, electromagnetic and acoustic
waves, temperatures, tides and sea level, and populations of healthy or infected
individuals. These techniques for manipulating information are critical infrastructure
for much of the modern information economy, as well as foundational technologies
like AM and FM radio, radar, sonar, and GPS. In mathematical terms, signals are
represented by functions where the independent variable most commonly represents
time. Systems are operators on these functions. Most, but not all, of the systems
studied, belong to the class of linear time-invariant systems. These systems are the
subset of linear operators represented by a Toeplitz matrix, possibly of infinite
dimension. For continuous-time signals and systems, the domain of the signal
function is the set of real numbers.

Frequency domain representations are a central theme in signals and systems
classes. Students learn dual representations both for representing signals and the
behavior of systems. Central to these representations is the role of complex expo-
nentials as eigenfunctions of linear time-invariant systems. Students gain practice
with properties of frequency representations commonly used in filters and modula-
tion systems. For example, the convolution operator in one domain corresponds to
Hadamard multiplication in the dual domain. In engineering systems, such filters can
be designed to keep signals at some frequencies while removing others (e.g., an ideal
lowpass filter). This property underlies the filters selecting a single television
channel or mobile phone user from among many simultaneous transmissions.

As engineering classes, signals and systems classes explore practical
implementations as well as the ideal mathematical systems. These classes encourage
students to develop rich concept maps providing them with the tools to reason with
dual representations such as time and frequency. When successful, students can use



the intuition developed in these classes to reason about the behavior of signals and
systems without explicit mathematical equations or formulas for the systems.
This framework empowers students to make sound strategic choices about which
domain simplifies the analysis of a given system or signal: “When the going gets
tough, the smart switch domains.” In other words, a problem often lends itself to the
time domain or the frequency domain; knowing which domain allows for an elegant
solution is critical to mastering signals and systems material. This conceptual and
graphical reasoning is frequently an important basis for innovation in signal
processing.
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A first course in continuous-time signals and systems requires differential equa-
tions as a prerequisite. Students are also expected to have a firm grasp of complex
numbers and to have experience with phasors and with representing complex
numbers in the complex plane. The topics in the signals and systems courses
considered in this study are designed to help students master the analysis of signals
and systems via differential equations, the Laplace transform, and the Fourier
transform. In a typical schedule, the course would begin with system properties
and convolution, all treated in the time domain. Fourier series would follow to
introduce the frequency domain and filtering. Fourier series would then be extended
to the Fourier transform, and properties of the Fourier transform (notably the
convolution property) would be studied. Interpretation of magnitude and phase of
the Fourier transform, in particular what magnitude and phase of the frequency
response tell us about a system, would also be studied. The Laplace transform, its
application for computing system outputs, and its relationship to differential equa-
tions, may be introduced before, during, or after the study of Fourier transforms
depending upon the textbook used and instructor preferences.

As mentioned above, continuous-time signals and systems can be viewed as an
application of differential equations characterize signals and systems. Analog cir-
cuits are the most common physical realization of signals and systems in the
electrical engineering curriculum. How signals and systems and circuits courses
are sequenced in the curriculum varies across institutions, but students are often
taking an introductory circuits course concurrently with or immediately before/after
a signals and systems course. As such, students are building connections among the
mathematical foundations of differential equations; application of differential equa-
tion modeling to continuous-time signals and systems; and design, implementation,
and analysis of physical signals and systems through analog circuits. In addition,
they are learning new domains (Fourier and Laplace) and the use of those domains in
signal/system analysis. Anecdotally, students are often most comfortable working in
the time domain, as it has been the predominant domain in their math courses and in
mathematics applications throughout their education. Hence, helping students
achieve fluency working in multiple domains and selecting the best domain for a
particular task is an important objective of a signals and systems course. The extent
to which students are explicitly challenged and encouraged to draw connections
across domains and representations (equations, graphs) depends upon the instructor;
helping students learn to build these connections was a primary goal for the
instructors teaching the signals and systems courses considered in this study.
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31.4 Interviews and Analysis

This study considers interviews conducted as part of an effort to better understand
students’ thinking when solving problems in the Signals and Systems Concept
Inventory (SSCI) (Wage et al., 2005). The 47 participants had recently taken a
signals and systems course, typically in the second or third year of their undergrad-
uate coursework in electrical engineering. The students interviewed were from two
different institutions involved in the study. The interviews were conducted over two
consecutive years, so the students were not necessarily from the same section of the
course even if they were enrolled at the same institution. The interviewers were
faculty in electrical engineering; they were the designers of the SSCI and are three of
the co-authors of this paper. The interviewers did not interview students from their
own classes, but given the technical nature of the problems, we found it important for
interviewers to have the relevant expertise to be able to prompt students for more
information or respond to students’ questions.

The interview protocol included two parts: a set of signals and systems problems
and a set of open-ended questions about students’ perceptions of the content, the
tasks, and the course. The interview protocol was initially designed as a cognitive
interview using tasks from the Signals and Systems Concept Inventory (Buck et al.,
2007; Wage et al., 2005, 2006) in order to understand students’ interpretations of the
tasks. We describe the problems as conceptual because they required students to
interpret graphs and symbolic representations without the necessary numerical
values to perform calculations or write equations. We explore later how students
interpreted the lack of ability to write equations or perform calculations, but this
structure forced them to reason with the graphs and explain what they noticed about
them that illustrated their conceptual understanding rather than use of procedures or
algorithms. This is similar to how Engelbrecht et al. characterize
conceptual vs. procedural tasks (2012).

Other analyses of this set of interview transcripts have focused on the concepts
that students found difficult or important (Nelson et al., 2010) and what can be
learned from the interviews to help instructors consider how to teach signals and
systems courses. Using the transcripts of the interviews, we looked for instances
where students specifically discussed graphing and how they were making sense of
the content. Our focus in this analysis arises from things we noticed in the process of
prior analyses that focused on the correctness of students’ reasoning and their
approaches to reasoning through the tasks. The two lead authors conducted an
initial, open coding of the interviews looking first for evidence of students’ use
and interpretations of graphing and their perceptions of the mathematics in the
course. The first author focused on the open-ended questions and the second author
focused on the signals and systems tasks. They discussed the themes that were
emerging and brought together their perspectives as a mathematics educator and an
electrical engineer. The third and fourth authors are electrical engineering faculty
who designed the SSCI and participated in earlier analyses of the transcripts.
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Excerpts were identified from a set of the tasks themselves and the general
questions at the end of the interview using Dedoose. For their perceptions of
mathematics, graphing and their relationship to engineering, students described
this most often when explaining the most important and most difficult concepts in
the course. Given this is not something we explicitly asked students about but was
emergent, we do not make claims about how many students might hold these
epistemic beliefs about mathematics and engineering knowledge. Rather, we point
to themes that emerged across multiple students or comments that seemed to point in
directions for further investigations. Zandieh’s (2000) framework was introduced
later as a framework for organizing the findings in terms of the major concepts of
signals and systems and the associated contexts or representations.

All 47 interviews had at least one excerpt we initially coded as “graphing” to
indicate they were discussing an aspect of graphing, and there were 215 excerpts
coded as “graphing”. Following the initial coding, we refined the coding scheme and
coded excerpts for three types of graphing comments: connect graphs across
domains (n = 73), connect math to visual (n = 28), connect visual to phenomenon
(n = 88). Only one interview did not have at least one of these codes assigned to an
excerpt. All other transcripts had an excerpt with at least one of these sub-codes. In a
different coding from the graphing focus, we also used the code “real world
applications” for any excerpts (n= 39) where students described connections (or lack
of connections) to real world problems or real engineering work. The graphing
excerpts and the real-world applications excerpts provided a sense of their concept
images and point to a few intriguing aspects of their thinking about the concepts as
well as comments that were less frequent but still illuminating.

31.5 Signals and Systems Concept Image and Conceptual
Problems

31.5.1 Concept Image for Signals and Systems

For our study, we suggest an interpretation of the components of signals using a
framework adapted from Zandieh’s characterization of the derivative (2000). In her
paper, she explains two dimensions of the concept image: process-objects and
contexts. She includes three process-objects within the layers of her derivative
framework: ratios, limits, and functions. We examine two layers in our study for
signals and systems: frequency and filtering. Zandieh defines process-objects as
structures that can be interpreted both as actions or dynamic processes and as
objects. This sense of dynamic action (or process) paired with an object is useful
for signal processing tasks because each component can be considered to be dynamic
and as an object. Similar to considering the limits of ratios as part of the concept
image of derivatives, filtering is an operation on frequency of a signal. The filter is
similar to a function in that it operates on input signals which then have output



signals, but the filter can also be described as an object. Each of these layers can be
represented within different contexts (e.g., graphical, symbolic, physical). Other
authors have expanded Zandieh’s characterization of the contexts for derivative
(Roundy et al., 2015).
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Table 31.1 Process-objects and Contexts for Signals and Systems

Process-
object Graphical Physical/Applications Symbolic Verbal

Frequency Time-domain Energy Equations “Squished”, “slower”,
“more oscillations”,
“not as stretched out”

Frequency
domain (see
question 7 for
graphs)

Energy Equations “Not as active”

Filtering Amplifying or attenuat-
ing frequencies (e.g.,
low-pass filters), noise

Equations “Passed through”, “cut
off”, “magnify the
output”

We have adopted Zandieh’s (2000) terminology of “contexts” since it is a broader
term to describe ways of thinking about a concept than representations, and “con-
texts” can include spaces that do not necessarily have the structure of a representa-
tional system such as physical applications (p. 105). Filtering tasks include two
graphical contexts. The first is a time-domain plot that shows the amplitude of the
signal as the dependent variable and time as the independent variable. The second
graphical context is a frequency-domain plot which shows the signal in terms of
energy variation across different frequencies. Table 31.1 describes these two dimen-
sions of a concept image for signals and systems and includes some examples of the
students’ terminology (in quotes from the interview analysis described later).
Zandieh’s framework refers to the physical context to include velocity as part of
derivative. In Table 31.1, we have modified this to be “physical/applications”. As we
will discuss later, the applications of the concepts are important for helping engi-
neering students make meaning of the concepts. These applications are physical
contexts for considering signals.

Students who participated in the interviews were asked to think aloud as they
solved several conceptual signals and systems problems, most of which were drawn
from the Signals and Systems Concept Inventory (SSCI). For this paper, we ana-
lyzed students’ think-aloud solutions to three of these problems, all of which tie to
the concepts of frequency and/or filtering and all of which include graphical contexts
in both the time and frequency domains. While students typically bring some
intuition about the concept of frequency, the Fourier transform is often introduced
for the first time in a signals and systems course. Representation and analysis of
signals and systems in the frequency domain, as well as connecting time- and
frequency-domain representations, is key content in a signals and systems course.
Figure 31.1 shows Problem A, one of the problems students were asked to solve in
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Fig. 31.1 Problem A (Question 7/9 on the SSCI)



the interviews. This problem demonstrates a task that requires connecting time- and
frequency-domain representations of signals.
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Fig. 31.2 Problem B Additional Interview Question
Sections of two signals x1 (t) and x2 (t) are shown on the left
hand side of Figure 2(a). The Fourier transform magnitude,

|X1 (jω) |, for signal x1(t) is shown on the right side of the

figure.
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Specifically, Problem A deals with relating time and frequency-domain represen-
tations of a narrow-band signal (specifically a windowed sinusoid). Students are
given a time-domain graph of a low-frequency sinusoid and a graph of its Fourier
transform magnitude. They are then given a time-domain graph of a higher-
frequency sinusoid and asked to identify the correct frequency-domain graph from
a set of four possible answers.

Problem B (Fig. 31.2) is similar in structure to Problem A but rather than
considering windowed sinusoids, the problem considers realizations of random
noise with different bandwidths (i.e., low-pass filtered white noise). Students are
given the time and frequency-domain graphs of one random noise signal. They are
also given the time-domain graph of a second random noise signal with narrower
bandwidth than the first. They are asked to identify the correct frequency-domain
graph of the second signal from a set of four possible answers, one of which is “none
of the above.”
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Problem C considers time and frequency representations of signals and also
integrates a filtering operation (see Fig. 31.3). Students are given the time- and
frequency-domain graphs of a signal that includes two windowed sinusoid pulses,
one at four times the frequency of the other. Students are also given the frequency-
domain graph (Fourier transform magnitude) of a low-pass filter. They are asked to
identify the correct time-domain graph of the filter output when the given signal is
the input to the filter.

31.6 Analysis of Concept Inventory Questions

31.6.1 Students’ Descriptions of Frequency

In all three problems analyzed, students needed to understand how to interpret
frequency from a time-domain plot. Based on the interview data, students were
comfortable with verbal descriptions of the relative frequency of two windowed
sinusoids. When asked to explain how they knew which signal had a higher
frequency, some described the rate of oscillation using terminology from the field,
e.g. “The frequency of x2(t) is greater than that of x1(t). There’s more oscillations in
the period of time” or “There are more periods within the same timeframe.” In other
cases, students described frequency in a more colloquial way (e.g., “x2(t) has a
higher frequency than x1(t) cause it’s more squished”) but still suggesting an image
of frequency and how it appears in time-domain representations. Problem B required
students to consider the frequency of time-domain signals in a more challenging
task. In this case, the random signals contain energy across a range of frequencies.
Several students recognized that these signals did not have a closed-form equation
representation and instead were more of a “real world” example. Still, many students
were able to extend their conceptual understanding of frequency to compare the
frequency content of the two signals, using descriptions such as “In x1(t), there’s a lot
more going on. . . . So, this one (x2(t)) has less going on in the given time. So, it
seems like it should have a smaller frequency.”

Moving beyond interpreting frequency from time-domain graphs, in all three
problems students needed to connect time-domain graphs to frequency-domain
graphs. For Problems A and C, this involves understanding that the frequency-
domain representation of a windowed sinusoid shows the signal’s energy centered
around the frequency of the sinusoid (i.e., a magnitude peak at that frequency).
Hence, for a higher-frequency windowed sinusoid, the peak in the frequency-domain
representation will occur at a larger value on the horizontal axis, farther from the
origin. The majority of students were able to make this connection and to use it to
select the correct answer to Problem A. For many students, however, it was not clear
from their think-aloud responses that they understood that the frequency-domain
representation was showing the amount of energy at each frequency. Instead, they
may have been relying on a memorized “rule” that a higher frequency corresponds to
the peak moving out in the frequency-domain representation. One student expressed



this thinking explicitly: “The trick that I learned from one of my classmates was if
you see double the cycles, it’s just shifted off that much in the Fourier transform . . .
almost like a match game kind of thing.” It is worth noting that this student explicitly
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Fig. 31.3 Problem C. Note:
Question previously
appeared in Wage et al.
(2006). Used with
permission



counted the number of cycles in each windowed sinusoid to determine the frequen-
cies rather than leveraging the relative frequency difference through visual
inspection.
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In Problem B, students needed to move beyond knowing how the frequency-
domain representation changes when the frequency of a windowed sinusoid
increases. To identify the correct solution, they needed to understand how a random
baseband signal with a narrower range of frequencies would be represented in the
frequency domain. Working with this signal required them to extend beyond a
single-frequency pulse and beyond signals with clear equation-based representa-
tions. To attack this problem, students had to first recognize that the second signal
was lacking the higher frequency components present in the first. One student
described the second signal as “not as active as the first one.” Students who were
able to identify the correct answer expressed that the reduced frequency content
would correspond to larger magnitudes closer to the origin in the frequency domain.
Many applied the duality principle, even though they didn’t name it, “The period of
x2(t) seems more stretched out. It seems like just slower and therefore the frequency
would be more compact in the Fourier transform.”Others relied on an understanding
of Fourier series (and by extension the Fourier transform) and perceived the random
signals as combinations of sinusoids, e.g. “This has a bunch of signals all added
together. I would look at it as being a bunch of things all added together.” Another
student explained their reasoning as “If you look at x1(t) . . . when you do a Fourier
series representation, it’s gonna be a sum of a whole bunch of cosines and likewise
with x2(t), and since you have a sum of a whole bunch of cosines you have several
omega values. That’s why you have all these multiple spikes in the spectrum
representation.” Several students did not have a strong enough understanding of
how the reduced-bandwidth signal would be represented in the frequency domain,
instead expecting a lower magnitude in the frequency-domain representation or a
frequency-domain representation with less rapid oscillation, similar to the difference
between the two time-domain representations.

Students’ responses to all three problems indicated that the time domain was the
preferred “native” domain for interpreting signals. Even when they could easily
translate from time to frequency, they studied the time-domain signal first. One
student described their thought process this way: “I’m going to look for similarities
between x1(t) and x2(t). If I can define x2(t) in terms of x1(t) or somewhat close to that,
then I could define X(jω) of x2(t) in terms of X(jω) of x1(t).” Students’ think-aloud
responses to Problem C provided insight about how their preferred representations
differed for signals vs. systems. Students were given both time- and frequency-
domain graphs of the input to the system. The system response is shown in the
frequency domain, but the possible system outputs are shown in the time-domain.
Problem C revealed that the frequency-domain representation provided more intu-
ition for systems. Students’ responses suggested that they were most comfortable
thinking of systems as ideal filters (or approximations thereof) with frequency-
domain representations. When considering the signals in all three problems, most
students began by studying the time-domain graph and then translated that informa-
tion to the frequency domain. In contrast, students gleaned information about the



system response directly from the frequency-domain plot provided; none of the
participants attempted to determine a time-domain representation for the system or
identify the correct system output using time-domain approaches. Arguably, filters
and filtering are most intuitive in the frequency domain, as filters are conceptualized
in terms of how they act on signal content at different frequencies. We speculate that
students’ comfort with frequency-domain representations of systems may be related
to a simplified view of systems as idealized filters that pass (retain) some frequencies
while eliminating others. This is supported by previous analysis in which we studied
common misconceptions tied to students’ responses to SSCI problems (Wage et al.,
2006).
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Across the problems analyzed and across the students interviewed, there were
several instances in which students grasped for numbers and/or equations rather than
relying on conceptual understanding. For example, some students computed the
frequencies of the signals in Problems A and C (by counting the number of peaks in a
certain time period) rather than using the information readily available in the
frequency-domain plots to determine approximate frequencies or recognizing that
the problem required only a qualitative characterization of the signals’ frequencies.
The random signal in Problem B did not allow students to compute/estimate a
frequency, and some expressed discomfort with this. In describing their lack of
confidence in their answer to Problem B, one student said “I don’t have the actual
values for x1(t)and x2(t). I need to actually be able to do the math. . . . This seems that
it was just data gathered somewhere, so we don’t actually have an equation for it. . . .
If it had an equation then I’d be able to manipulate that.”

31.6.2 Connections Between Graphical and Symbolic
Contexts

Eighteen interviews included some comments about how they were thinking about
connecting the math and the visual (28 excerpts across these interviews). Within
student responses either to the signals and systems problems or to the more general
questions about their understanding and perceptions of the content, we noticed some
comments within the code initially described as “connecting the math to the visual”
of students distinguishing “doing the math” from either interpreting the graphs as
visual representations or from thinking about the concepts they were using. In terms
of the concept image in Table 31.1, they make a distinction between the symbolic
context, graphical context, and the applications. Some of them describe this explic-
itly as a translation process between the visual representation and the “math”.
Based on their choice of wording in the tasks, we interpret their reference to “the
math” as being writing equations or working with symbolic representations. The
following exchange is an example where a student refers to “doing the math”.

Interviewer: Any inkling as to why Fourier series was so hard?
Student: It has more to do with the math behind it. I’m hoping that when I

graduate, I’m a senior this year, and hoping when I graduate that



some of this stuff can be done in computers and I don’t have to worry
about, doing that stuff by hand. It was the math. It’s the
understanding of... I have... I have to tell you, I’ve heard this
feedback from a lot of the students from the year before, which is
when I took it, we had a hard time really translating the visual to the
math. There were some people who the hardest time was translating
the visuals that were given to how the math came out.
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In other comments, there is also a disconnect for students between the graph and
“the math” such that they don’t know how to or don’t feel confident about what to do
with the graph alone. For example, “I wouldn’t have much trouble figuring it out but
if - you know - I just see an image and like I don’t know how to do it in math.” An
intriguing phenomenon is how some of them sought an equation or symbolic
representation in order to confirm their interpretation of the graph. For instance,
“in order for me to be very confident, I would actually need to get an equation for it”
in response to how confident they were about an answer. But, also recognized when
the graph might represent real phenomenon or real data sets that might not have a
clear equation. For instance, “...this seems that it was just data gathered somewhere
so we don’t actually have an equation for it. . . so if I could. . . if it had an equation
then I’d be able to manipulate that or at least I had the raw data and I was able to
manipulate that. . .” This student seems to be seeking some numbers rather than the
graph as a source of certainty or as confirmation of their interpretation.

In a related set of comments, some students also identified that “the math” was
harder than the graph or that the graph helped them understand “the math”. For
instance, “Really in calculus we used to integrate one term or just a straight double
integral and this required actually conceptualizing the shifting. As soon as [you] put
it visually that you were flipping and shifting then the integral made sense”. They
recognize that there should be a connection between the two representations - the
symbolic and the graphical - but may find it either challenging or illuminating to
identify that connection. In this way, their concept image includes both graphical and
symbolic contexts. However, students may have difficulty finding the relationships
between those. Or, the relationships may be complicated because it may be easier to
create a graphical representation for the real signal than to create a symbolic
representation of the signal.

31.6.3 Applications and the Concept Image

We identified excerpts in 29 interviews that discussed connections to applications of
the content or real-world engineering. Not all students mentioned connections to
either real world applications or other engineering content, but there was a consistent
emphasis on making connections among the responses to describing the most
important concept or the most difficult concepts. For real world connections, under-
standing the applications of the technique and when it would be useful was an



indicator of importance. Some students pointed to specific applications (e.g., trans-
mitters, cell phones, music technology), and others referenced this in a more general
way. The other indicator of importance was connections to other engineering content
usually noted by referencing other engineering courses where the concept
re-occurred in some fashion. Students’ concept image included connections to
other topics or content in engineering.
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Conceptual understanding was described as finding meaning, making connec-
tions, or identifying applications. A few students recognized the need for conceptual
understanding as part of real-world engineering in the workplace. This is consistent
with Harris et al.’s (2015) study where engineering students described the value of
mathematics as an applied tool for the workplace. One student had a clear statement
about these connections: “I actually think it helped me a lot having tests like the one
we just had, where it was very conceptual, it made me understand the material better
as opposed to going and listening to a professor lecture and say and do all this math. I
mean don’t get me wrong we have to do the math to actually understand that stuff
too, but it’s very good to understand real world applications and do these kind of
conceptual problems because that’s what you do in the real world.” In Table 31.1, we
combine physical contexts and applications because for the students these contexts
are linked.

One student was particularly detailed in making the connection between appli-
cations in the workplace and the importance of conceptual knowledge. The student
explains in the excerpt below how the conceptual knowledge of mathematics is
needed as a check on a simulation (i.e., a computer-generated output). As with other
students, “doing the math” appears to imply doing the calculations or working with
symbols. Conceptual understanding for the student is for making sense of the
quantitative information.

I am more technical minded. I used to work in the field. I feel it’s better if you can put more
conceptual questions in the class. Even in the class, I think we had one part out of the five or
six questions in a quiz or exams, but I think it’s very important because doing the math is a
matter of practice, and this is the way I put it, but understanding is the hard part. This course
is more of understanding, because in the field we may not do a lot of math except for quick
checks. We do a quick check for a system, but when you do real design, accurate design, we
need to put it through a simulator, but at the end of the day I need to know conceptually, does
that make sense, plus of course, I need to do a quick math just to make sure that I’m having a
good result or it’s just the simulator is not doing its job. We cannot trust that all the time.

This student may be exceptional in recognizing these connections, but we found it
important to note as an example of how students might understand the relationship
between mathematics and engineering knowledge and practice. In terms of the
students’ concept image, the student seems to consider the “math” (or the symbolic
context) in an intuitive or informal way as a check for the interpretation of the
physical or applied context for the problem. One question this raises relative to
concept images is how students move between formal mathematics and more
informal checks or intuitions that may be essential to their future work as engineers.
In particular, the graphical context may be easier or more accessible for real
engineering tasks than symbolic contexts that do not have simple (relatively speak-
ing) representations.
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31.7 Discussion

In this paper, we have explored components of students’ concept images for signals
and systems. The tasks presented to the students focused on the graphical contexts
for presenting the signals and systems. Overall, the students made some connections
to the physical contexts and had a foundational understanding of frequency. What
becomes more challenging for them is reconciling the two graphical contexts of
time-domain and frequency-domain. A basic question for us is whether this is simply
because students have more experience with functions generally where time is the
independent variable. Other authors point to students’ challenges with signals that
include more than one frequency (Coppens et al., 2017) which suggests students
may have a less formulated concept image overall for thinking about frequency as a
variable within a system.

Zandieh’s framework for process-objects was originally developed for calculus
tasks, but we found it useful for organizing the different aspects of the signals and
systems concepts we explored here, and we suggest it may be helpful as an organizer
for other applied mathematics topics. In the case of signals and systems, students
need to learn to use all of the representations available (e.g., symbolic, graphical) and
connect these representations to the real phenomena that they are used to describe
and interpret. Zandieh’s framework helps to make explicit that the phenomena are
dynamic and that there are multiple representations of a process that students need to
understand. The concept image includes both signals and systems that act upon those
signals (e.g., filters). As seen in the figures for the tasks, the graphs are complex and
the symbolic representations are similarly complex (or more complex). In the
interviews, students’ concept-images then include pieces of the different compo-
nents (e.g., graphical, symbolic, verbal), but they are still developing their under-
standing and learning to connect these pieces together.

Practical questions continue to exist between engineering and mathematics
departments about how and when mathematics content should be taught for engi-
neering students (Engelbrecht et al., 2012; Faulkner et al., 2019), including how
mathematics content should be distributed among departments. Students may expe-
rience mathematics as shaped by different departments, but there are some common
recommendations and implications. First, engineering students recognize engineer-
ing as an applied discipline and are concerned with real-world applications of
mathematics (Harris et al., 2015). This shapes their use of it as a resource and a
tool. It also shapes their perspective on the relative importance of different aspects of
the concept image (e.g., symbolic, graphical). Students reported relying on symbolic
representations as part of mathematical certainty when faced with tasks that were
largely graphical. Students tend to equate “doing the math” with symbolic contexts.
Admittedly, we have inferred this meaning from their statements in context but they
present “doing the math” in relationship to either graphical representations or
conceptual knowledge. However, it raises the question of how math plays into
their conception of engineering knowledge. Which parts of other concepts in
mathematically-heavy engineering courses are mathematics or engineering from
students’ perspectives?
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As in other studies, students in interviews were seeking understanding of real-
world applications to find meaning for the mathematics and as part of coming to
understand what was happening in the system represented. At the same time, there
are examples of where knowledge they developed in mathematics classes is not
necessarily translating to the engineering context. For instance, they are sometimes
challenged by graphs with frequency as the independent variable and magnitude as
the dependent variable. We connect this to what other researchers have called “task-
relevant features” (Johnson-Glauch et al., 2020) so that it may be harder for students
to interpret frequency and magnitude as relevant to the problem. These graphical
contexts highlight different aspects of the signals and systems represented while
obscuring other aspects but need to be used in concert to reason through the task.

31.8 Limitations

All students interviewed had taken electrical engineering coursework, so our anal-
ysis is situated in that sub-discipline of engineering. However, other studies report
similar experiences in statics tasks about students translating between representa-
tions and considering different features of the representations (Johnson-Glauch &
Herman, 2019; Johnson-Glauch et al., 2020). Also, we are interviewing engineering
students who are not yet professional engineers. They are upper-level students in
their third or fourth year of the program. They are making the transition from
mathematics courses taken in the early years of their program to upper-level engi-
neering courses that are building on that mathematical experience so are building
more specialized content knowledge. Some students also report experience in the
field via internships or other jobs. This is a relatively small sample of students at two
institutions so may not be representative of the experience at other institutions. Even
with those limitations, there are some important areas to explore based on students’
responses.

31.9 Conclusion

Across the analysis of the students’ thinking in the tasks and the open-ended
questions about their perceptions of the content, we found examples of how they
incorporated different pieces of their concept image for signals and systems. They
may start from their foundations in other mathematics topics in the graphical
contexts that are most familiar (e.g., preferring time-domain to frequency-domain
graphs). They are also still learning how to translate and choose among graphical
contexts and symbolic contexts for interpreting the signals and systems phenome-
non. As students in an engineering course with significant levels of mathematics
content, they are also seeking to understand or recognizing the ways in which the
mathematics is applied and looking for connections to their future work as engineers.



Some students also recognize the need for conceptual understanding that goes
beyond procedures and calculations, but that helps them when interpreting graphical
or physical contexts that may not have clear symbolic representations.
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What is the relationship of mathematics and engineering? While this is not a new
question, it is still an open question. Other studies suggest a greater emphasis and
focus on engineering tasks when teaching mathematics courses for engineering
students. As a logistical issue, the two disciplines have some divergence in terms
of notation (e.g., i and j both used for complex numbers depending on the discipline)
that can create difficulties for students when moving between mathematics courses
and engineering courses while trying to make sense of what is relevant for each
(Rønning, 2021). These differences may seem simple to engineers or mathemati-
cians but may not be simple for students who are still building mental frameworks of
important concepts. In addition, is the mathematics coursework attending to some of
the subtleties engineering students experience when “doing the math”? If students
perceive “doing the math” as limited to working with symbols, then is graphical
interpretation of a real phenomenon mathematical for them? However, the concept
image we suggest includes aspects that might be referred to as either mathematics or
engineering. Students were conscious of the different contexts as representations or
ways of thinking about the concepts. As students are developing a concept image,
both disciplines are at play and may be indistinguishable as the mathematics is
applied in engineering. For describing concept images in other topics, we may
explore how these contexts and process-objects come together to inform students’
understanding and use of what they’re learning.
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Chapter 32
Analyzing the Interface Between
Mathematics and Engineering in Basic
Engineering Courses

Jörg Kortemeyer and Rolf Biehler

Abstract This chapter studies the mathematical skills required in technical subjects
of bachelor programs in engineering. The interface between mathematical subjects
and introductory engineering courses is conceptualized to study this topic. We
developed a transferable framework for the analyses of exercises, related problem-
solving strategies, and typical sources of errors. In exercises from an engineering
exam after the second semester, the transitions between engineering contexts and the
use of mathematical methods, whose use and shape can stem from courses on
mathematics for engineering or from their use in lectures on engineering themselves,
are characterized, also concerning the tensions they create. Finally, we present the
results of applying this framework to an exercise used in an exam, which was given
after the first year studies in electrical engineering.

Keywords Normative solutions of engineering exercises · Expert interviews for
competence expectations · Mathematics in engineering education · Ordinary
differential equations in engineering sciences · Solution processes of experts · Basic
electrical engineering courses

32.1 Introduction

Engineering education for students usually consists of two strands: courses in the
engineering sciences and courses in mathematics. This separation is based on the
conviction that offering a course that integrates the necessary mathematics into
engineering science is not a satisfactory solution. However, the separation requires
students to make a high transfer effort to use the mathematical resources they have
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learned in the mathematics course when solving problems in the engineering sci-
ences. Other mathematical resources stemming from school mathematics education
or learned in an integrated way in the engineering course may be relevant in the
solution process. There is some evidence that this integration does not always work
successfully. Innovative approaches suggest that the mathematics courses should be
explicitly and better related to engineering as a field of application. Vice versa, it
may be productive for mathematical resources to be taught when needed in engi-
neering courses. Two examples of such innovations are the following: The study by
Wolf (2017), who developed mathematical modeling tasks from the context of
mechanical engineering to be included in a mathematics course for engineering
students and the study of Hennig and Mertsching (2013), who developed situated
mathematical resources in a course “Foundations of Electrical Engineering”.
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Within mathematics education research, including applications in a course is – as
a rule – conceptualized as adding mathematical modeling tasks to the course. The
conceptualizations of mathematical modeling include a distinction between mathe-
matics and “the rest of the world”, implying that after a phase where the mathemat-
ical model is set up, the mathematical problem is solved and then reinterpreted in the
context at a later stage. However, when we look into exercises in standard books on
engineering or physics, the tasks to be solved do not appear as “mathematical
modeling” tasks. There is no clear separation between mathematics and, say, elec-
trical engineering (EE). The basic concepts are physical magnitudes that are related
by equations. Therefore, it is unclear when and how students must enter into
decontextualized mathematics in the problem-solving process. In this process, they
can apply the decontextualized methods they have learned in the mathematics
course. The situation is even more complicated as the implicit mathematical practice
in engineering contexts is different from the practice in mathematics courses. Well-
known examples are the use of differentials as “infinitely small” quantities in most
courses and the use of vectors as directed quantities – very different from how
differential equations and vectors (as elements of vector spaces) are treated in a
mathematics course.

Our study aims at a deeper understanding of this situation, i.e., how mathematics
and what kind of mathematics is used and needed when students are asked to solve
problems in their engineering course.

As a case study, we took four tasks from a final course examination on Funda-
mentals of Electrical Engineering (FoEE) at the end of the first study year. We aimed
at combining several perspectives. First, we analyzed the tasks from our own
(external) focus regarding the kind of mathematics needed. Second, we asked EE
experts to explain what competencies and skills they require from their students
when solving the tasks. Based on these analyses, we looked into students’ written
solutions in an authentic final exam of a FoEE-course, and we designed an obser-
vational study watching students (not part of the course but with similar prerequi-
sites) working on the same problems. We used our theoretical analyses as an a priori
analysis and analytical background to better understand students’ cognitive pro-
cesses and difficulties in the written solutions.
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This chapter presents the results of the analyses on these issues on one of these
exercises dealing with oscillating current.

32.2 Theoretical Backgrounds

This section presents the theoretical tools used to develop the newly constructed
methodology for our investigations. We build on conceptualizations of mathematical
modeling processes and mathematical problem solving and related heuristics. In
addition, we add perspectives from the didactic of physics, namely the analysis of the
relation between mathematics and physics by Bing (2008) and Tuminaro and Redish
(2007). Moreover, we refer to the reconceptualization of the mathematical modeling
process from the perspective of physics education (Uhden et al., 2012).

32.2.1 Different Mathematical Practices and Disparities
in Mathematics and Engineering Courses

Engineering students often learn mathematics in two parallel contexts: through the
“Math for Engineering Students” (MfES) course and the usage of mathematics in
courses on engineering sciences, such as the “Fundamentals of Electrical Engineer-
ing”, FoEE, which we will analyze in this paper. The students are expected to use
their mathematical competencies and skills to analyze and solve exercises in
EE. This situation entails several challenges: There are asynchronicities between
lectures on MfES and FoEE so that mathematical methods required in FoEE-courses
may be taught only later in MfES-courses. The MfES-course has the deductive
conceptual structure of typical lectures in mathematics, while the FoEE-course also
has a specific order of its topics according to traditions in structuring courses
according to electromagnetic topics and theories. Moreover, the mathematics in
MfES and FoEE can be characterized as different mathematical practices (Alpers,
2017) or different praxeologies in the sense of the Anthropological Theory of
Didactics (ATD, see, e.g., Winsløw et al., 2014). A praxeology consists of four
related components: theory and technology (the theoretical block with justifications
for the practical block), techniques and tasks (the practical block). This approach
allows us to characterize the different usages of “the same” mathematical methods
such as differential equations in mathematics (MfES) and FoEE. Rønning (2021)
applies ATD in mathematics in/for engineering, and the Chap. 30 of Castela and
Romo and Chap. 27 of Gonzales-Martin et al. in this book provide further uses. The
different practices may compete as resources in students’ minds when an EE task
requires, for instance, solving ordinary differential equations (ODE), and resources
from MfES or FoEE for solving ODEs can be applied. Moreover, a recent study by
Hochmuth and Schreiber (2016) addresses this challenge using ATD to determine



what content, concepts, and heuristic strategies are relevant for successfully com-
pleting advanced engineering courses, such as “Signals and Systems”, where prax-
eologies from MfES are also competing.
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Redish (2005, p. 2) elaborates on how mathematics is used differently in physics,
for example, regarding the use of constants and variables: “We mix things of physics
and things of math when we interpret equations.” Symbols in physics are not chosen
arbitrarily but are associated with particular mental ideas about physical quantities or
measurement results. This assignment of physical meaning to mathematical expres-
sions is both powerful and valuable, allowing one to work with complex mathemat-
ical expressions without going into mathematical depth. The critique of the
separation of mathematics and the rest of the world in the conceptualisations of
the modeling process is also elaborated by Schürmann (2018a, b). Fettweis (1996)
gives three explanations for the specific practices of using mathematics in engineer-
ing that differ from mathematics itself: (1) solution methods are based mainly on
existing mathematical theories, (2) solution correctness can be substantiated by
physical principles, and (3) the universality of physically motivated principles with
which applicability can be justified, which goes beyond what has been shown in the
mathematics courses, as long as there are no mathematical contradictions.

Alpers (2017) does a document analysis of typical engineering and mathematics
textbooks to conceptualize differences in two domains, the use of vectors and the use
of differentials. In school mathematics, vectors are usually understood as a class of
arrows of equal length, parallel and in the same direction, which can be transferred
into each other by shifting. Force vectors in statics are bound vectors that can be
moved along a so-called line of action without losing their static effect. This affects
the vector operations because if two vectors that are not on the same line of action are
added, they are treated as free vectors, and the line of action of the resulting free
vector must be determined. Other differences arise in connection with the terms
component, coordinate and magnitude of a vector. For this purpose, different notions
are used in the MfES and FoEE-courses, leading to inconsistencies. Alpers (2017,
p. 138) describes a further difference in the use of differentials, which tend to be
regarded as “infinitely small quantities” in the engineering sciences. In engineering,
a part that is infinitely small in at least one dimension is selected and multiplied by an
infinitely small length (dl), area (dA), volume (dV) or mass (dm), which again results
in an infinitely small quantity. These infinitesimally small quantities are “added up”
by integration, resulting in a (finite) property of the whole object.

32.2.2 Conceptions of Mathematical Modeling

As we mentioned in the introduction, the modeling cycle’s conceptualization may
not be adequate for FoEE. A prominent view of the modeling cycle is provided by
Blum and Leiss (2007) to describe idealized modeling processes of real-world
problems that can be solved using mathematics. In broad outline, it divides the
modeling process into two distinct parts, the so-called “rest of the world” and



“mathematics”. The solving of a mathematical modeling exercise is divided into
seven steps: (1) understanding of the exercise and the underlying situation as well as
the construction of the so-called “situation model”, (2) simplifying and structuring of
the situation and construction of the so-called “real model”, (3) translating into a
mathematical problem (entering the “world of mathematics”), (4) carrying out
mathematical work, (5) interpreting the result in the real world, (6) validating and
(7) presenting of the results. The cycle consists of two parts, the “rest of the world”
with steps (1), (2), (6), (7), and the step within mathematics (4). The changes
between the two worlds happen in steps (3) and (5). This modeling cycle description
is considered as an idealization, probably only applicable in school contexts. Nev-
ertheless, this approach is helpful for us as a tool to show essential features of our
“modeling example”, which differ even on an idealized level.
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Uhden et al. (2012) suggest a “physical-mathematical model” which distin-
guishes different degrees of mathematization. The starting point is as well the
“world”, which, in a physical problem, has to be structured and simplified to enter
the physical-mathematical model, which is left for validation in the final step. The
physical-mathematical model names three facets of mathematization:
(a) mathematization, (b) interpretation, (c) technical mathematical operation. (c) is
the only part in which “pure mathematics” is entered. Through this conceptualization
of the modeling process, it should be emphasized that mathematics cannot be
reduced to computational techniques in Pure Mathematics. Instead, there is a strong
conceptual interdependence between mathematics and physics in tasks from physics.
This interdependence is not well enough reflected in the conceptualization by Blum
and Leiss (2007). That is why we will also suggest an adapted version of the
conceptualization of mathematical modeling.

32.2.3 Conceptions of Problem-Solving

Our third perspective is mathematical problem solving by Polya (1949), who
intended to advise students on how to solve mathematical problems as well as
applied problems using mathematics. He divides solving processes into four phases:

1. understanding the problem
2. devising a plan
3. carrying out the plan
4. looking back.

Polya (1949, p. 93–94) also uses his conceptualization of problem-solving on
applied mathematical problems and states: “Practical problems are different in
various respects from purely mathematical problems, yet the principal motives and
procedures of the solution are essentially the same. Practical engineering problems
usually involve mathematical problems.” In applied problems, the unknowns, con-
ditions and data are more complex and less sharply formulated than in mathematical
exercises. In his example, the construction of a dam, data refer to topography,



geology, meteorology, economics, etc. As much of this data as possible should be
considered in devising a plan, but others must be neglected. Therefore, it is difficult
to answer the questions “Did you use all the data?” and “Did you use the whole
condition?” Because of this, the solution to the problem is often approximate
precisely because it makes sense to allow for minor inaccuracies in the calculations
in favor of a simpler model.

32.2.4 Conceptualizations About the Use of Mathematics
in Physics

For the analysis of actual solution processes of students, which are not part of this
chapter, we use theoretical approaches developed by Redish and his working group,
i.e., by Tuminaro and Redish (2007) and Bing (2008), in addition to the normative
solution.

32.3 Synthesis of Frameworks with a View Towards
the Electrotechnical Tasks

Regarding the exercises we will analyze, it pays to use a more straightforward
structure and redefine the activities.
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1. Mathematization: Understanding the task and setting up a mathematical-
electrotechnical model

2. Mathematical-electrotechnical symbolic-conceptual manipulation and reasoning:
solution of the exercise using a “mathematics of quantities.”

3. Validation: Critical review of the results

Mathematization (1). Unlike more open modeling problems, a task is presented
where – in the terminology of thematical modeling community, cf. Blum and Leiss
(2007) – the idealized real model is implicitly provided and has to be recognized by
the students. A standard help for this is a conventionalized diagram. Students are not
asked to make their own idealizations and simplifications. These are often implicit
parts of the knowledge taught in the course on FoEE. The identification of relevant
magnitudes and equations between them is mediated by the electrotechnical theory
based on physics. This first phase is well described by the first stage of Polya’s
applied problem-solving.

Mathematical-electrotechnical symbolic-conceptual manipulation and reasoning
(2). Instead of entering the “world of mathematics”, students enter into a “mathe-
matics of physical quantities”, i.e., numbers with units. (Differential) equations,
integrals etc. are usually formulated with a formula where the symbols represent
physical quantities. Exercises differ as to which degree further abstractions into



Typically, there is a division at German universities into lecture and small
group tutorials in Electrical Engineering courses. The lecture is held by a profes-
sor who is responsible for the course. PhD-students supervise the small group
tutorials at the EE institute. They prepare the exercises for the students in
consultation with the lecturer and are familiar with the teaching tradition.

mathematics are needed or are helpful. For instance, it is necessary to think of
mathematical functions and variables instead of physical quantities when looking
for a mathematical solution. Thus, we approach this phase more in the sense of
Redish (2005), Bing (2008), Uhden et al. (2012), and Schürmann (2018a).

In a rough sketch, phase 1 can be characterized as setting up equations (with
knowns and unknowns) and phase 2 using mathematical procedures to solve these
equations.

Validation (3). In the modeling cycle, validation checks whether the models are
adequate against situational knowledge or real data. It is not the task of students from
FoEE to question fundamental assumptions of electrotechnical theory. Therefore,
they are not asked and usually do not carry out a validation as described in the
modeling cycle. Still, they review the calculations done in the mathematical-
electrotechnical work critically. This step is similar to “looking back” in Polya’s
framework, however, it does not include the question of whether the result or the
method is transferable to other exercises.

This structuring will be used as a theoretical framework for understanding the
cognitive processes needed for solving the exercise.

32.4 Research Questions

Based on the four theoretical approaches, the research questions for our studies are:
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1. How can we reconstruct the competencies and skills needed for solving these
exercises from the perspective of electrical engineering teachers?

2. How can we reconceptualize these competencies and skills from the perspective
of what kind of mathematics is needed, and how can we conceptualize the
interface between mathematics and electrical engineering?

32.5 Methodology and Data Collection

32.5.1 Overview

To answer the first two research questions, we followed the following process

1. RQ1: Expert interviews were used to identify the explicit and implicit compe-
tence expectations.



Therefore, they are experts in teaching practice, and for this reason, they are
interviewed in our expert interviews. The interviews will provide information on
typical mistakes, alternative solution paths, and validation methods.
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Fig. 32.1 Diagram of the connection of the different elements of our analyses

2. RQ 2. A normative a priori analysis of the four exercises, the so-called “student-
expert-solution” (SES), was developed using the theoretical approaches and
expert interviews.

As shown in Fig. 32.1, the primary theoretical tool and result of our analysis is the
so-called student expert solution (SES), a specific type of an a priori analysis, which
builds on expert interviews and the four theoretical frameworks. The SES charac-
terizes idealized solution processes, which we can expect from first-year students. Of
course, students are not expected to write all this down in their real solution
processes. Still, the SES identifies necessary background knowledge for solving
the exercises, which students may have to activate and reason explicitly when their
working process is observed. It depends on the course how much explanation and
justification the students have to write down in a written exam. The development of
the SES consists of two successive versions: SES1 and SES2. Our specific approach
is to use expert interviews based on SES1 to develop the revised version of SES2.
Both versions make an essential distinction between the object and the meta-level,
being represented in an “object-column” and “meta-column” in the SESs. The
“object-column” contains the solution steps on an object-level (for SES2 using
results of phase 1 from the interview). The “meta-column” contains a meta-level
where cognitive steps, resources, and anticipated obstacles were explicated. The
conceptualizations on the meta-level are based on our theoretical framework and not
just a repetition of the wordings of the interviewee.
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1. For developing SES1, the brief official solution outline is first complemented on
the object-level in the object-column. Then, intermediate steps for the calcula-
tions are added, and the underlying mathematical theory is pointed out by an
expert of the teaching practice in MfES, which is similar to EE described above.
Finally, the relevant physical mechanisms and laws are added from the perspec-
tive of FoEE. Usually, students are not required to explicate all these laws in their
written solution, but they are expected to know them. The meta-level in the meta-
column consists of the supplement of cognitive resources necessary as well as
conceptualizations of the processes on the object-level using the previously
mentioned theoretical frameworks.

2. For SES2, the data of the expert interviews are used to enhance and check the
object and the meta-level of SES1. Moreover, we reconstruct the didactical
aspects of an exercise and add them to the meta-level of SES2. We interview
the experts to get a deeper insight into the interface between mathematics and
EE. The SES1 is necessary for the interviewer to prepare questions, mainly
aiming at the implicit competence expectations in the tasks. SES2 is a revised
version of SES1, which also contains additional aspects.

The following section describes how the expert interviews were carried out.

32.5.2 Goals andMethods for Interviewing EE Experts About
the Tasks

We asked the exercise designer and EE experts to solve the exercises from the
perspective of the knowledge taught in the course, i.e., from what they expect
students who have well understood the course contents would do. Afterward, we
interviewed them concerning their solution processes, intending to reconstruct
implicit reasoning processes. We asked for didactical aspects of the task and tried
to determine how they conceived of the interface between mathematics and EE. We
conducted the interviews building on the Precursor-Action-Result-Interpretation
(PARI) method by Hall et al. (1995), an exercise-based interview technique aiming
at reconstructing problem-solving skills of experts in troubleshooting situations. In
the first phase of the interviews, the experts are asked to solve tasks while thinking
aloud without interruptions. In a second phase, they are asked for the precursors of
and the information required for their actions and the interpretation of their results. In
the third phase, the interviewer asks for alternative results and interpretations,
alternative actions and alternative precursors to collect data on additional ways to
solve the task. We adapted this methodology for use in our research study, which
requires new interpretations and changes in the last phase of the interview:

Our adapted version of the PARI-interview with its three phases is as follows:

1. Documentation of the oral and written solution of the expert (imaging students’
work). In the first phase, the experts are asked to solve the exercise themselves
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with the knowledge and techniques of second-semester students and not based on
their “expert knowledge” as advanced researchers in EE. They are initially
provided only with the tasks but not the official solution outline (provided to
the correctors of the exam). They are asked to think aloud to identify solution
steps that they would execute otherwise without speaking during their solution
processes. Unlike the original PARI interview, a written solution has to be also
provided by the expert.

2. Reconstructed reasons for the actions and used resources. In phase two, the task
solution process is to be gone through step by step to supplement the solution
created in phase one. In the PARI methodology, this questioning is guided by the
interviewer’s task analysis. In our case, the guidance is based on the analysis in
SES1. The aim is to determine what prior knowledge and resources have to be
used by the students, and what else needs to be considered during the solution
process. This step contains questions concerning reasons for the actions and the
intermediate steps in the solution process, including the interpretation of the
results.

3. Reconstructed didactical aspects. The goal of the third phase is to obtain more
general information about the exercise type, which means all the considerations
that an expert has taken or has to take into account when developing the task.
With the help of these questions, a didactic reconstruction of the tasks’ aims takes
place. Roughly, these questions can be divided into three subphases
corresponding to the additional information:

(1) Acquisition of several possible ways for solving the tasks, usually expected
hurdles for second semester students, alternative ways of solution with
knowledge from higher semesters, sources of errors, and methods of critically
checking the answers.

(2) Analysis of the interface between mathematics and EE: focussing on the
transitions between mathematics and EE in the problem-solving process and
how they are intertwined.

(3) Educational motives of the lecturers when designing the task and competen-
cies expected from students when setting such a task: reasons for selecting the
task, possible variations of the task.

specifications in 2. and 3. Stem from our specific research questions.The

32.5.3 Methods for Developing the Student-Expert-Solution

The starting point for creating the SES was the official solution outline provided by
the EE-staff as a basis for the correction of the written exams. These solutions are
relatively brief, as they are written for experts in EE who have a good knowledge of
the underlying theory, which has not to be made explicit.

We used the following procedure to develop the SES1 (step 1 to 4) and SES2
(step 5):
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1. Supplementing the solution outline with intermediate steps (object-column): This
step aims to close gaps in the existing solution. In the analyzed exercise, the
solving process of the ordinary differential equation is part of this step.

2. Embedding in physical theory. (object-column): In the official solution outline,
hardly any statements are made about the electrotechnical background or the
physical processes considered in the exercises. We interpret this in the terminol-
ogy of ATD that students are not required to reproduce parts of the theoretical
block (justification of techniques used) of the lecture for justifying their actions
and decisions in the written solutions. However, they might have to consider
elements of this theoretical knowledge when searching for a problem solution.
The source for this supplement was the lecture notes for the course the exam was
taken.

3. Structuring the exercises and solutions according to the synthesis of theoretical
approaches in the object-column. In this step, the solutions of the exercises are
broken down into sub-steps and thus roughly structured, using the language of the
modeling cycle and problem-solving. Such sub-steps can be, for example, the
setting up of a formula and the calculation of a quantity with the help of the set-up
formula, whereby the phases according to Polya (1949) allow a more refined
structure.

4. Adding the cognitive resources (meta-column): In this step, the solutions
obtained by the previous steps are supplemented by the cognitive resources,
i.e., competencies to solve the task like reading the sketch or forming an equation.

5. Supplementing with data from expert interviews (object-column and meta-
column): In this fifth step, the developers of the SES add further information
from the expert interviews using the PARI-methodology described above. In this
step, we aim to find differences in problem-solving processes by experts (rather
than novices in the steps before) and to answer questions that arose while going
through the previous steps.

Examples for complete student expert solutions on all four exercises of the first-year
course on EE can be found in Kortemeyer (2019). The topics of the exercises are
magnetic circuits, oscillating circuits and compensation processes (using ordinary
differential equations, signal analysis (using integration in one variable), and com-
plex alternating current (using complex numbers).

32.6 The Exercise on Oscillating Current as an Example
and Its Solution Outline for the First Two Subtasks

This section presents the exercise on oscillating circuits, exercise B in the analyses.
We first show the subtasks and the official solution outline. The translation was done
by the authors.
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Fig. 32.2 Diagram of an
oscillating circuit with two
open switches

C
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32.6.1 The Subtasks B1 and B2 and the Official Solution
Outline

Remark on the used notation: In FoEE, 0� stands for the limit from the left,
analogously 0+ stands for the limit from the right.

The following network with the resistor R, the inductor L, the capacitor C, and the
ideal voltage source U0 is given (Fig. 32.2).

The switches S1 and S2 are open for t � 0s, and the inductor and the capacitor are
fully discharged. At the time t 0, switch S1 is closed. The switch S2 remains open.¼
Subtask B1 Give the values of uC(t 0�), iL(t 0�), and iC(t 0�). Give reasons¼ ¼ ¼
for your answers.

Solution

uC(t 0�) 0, Since according to the task: completely discharged.
iL(t 0�) 0, Since capacitor and inductor are completely discharged

according to the task.
iC(t 0�) 0, Since capacitor and inductor are completely discharged

according to the task.

Subtask B2 Give the values of uC(t 0+), iL(t 0+) and iC(t 0+) and give reasons¼ ¼ ¼
for your answers.

Solution

uC(t 0+) 0, Since the voltage at the capacitor cannot change by leaps.
iL(t 0+) 0, Since the current through an inductor cannot change by leaps.
iC(t ¼ 0+) ¼ U0/
R,

Since the total voltage U0 is completely applied to R (because
uC(t 0+) 0) and iL(t 0+) 0.



32.6.2 Summary of the SES of Subtasks B1 and B2

We only summarize the SES on B1 and B2, as both subtasks do not include
mathematical competencies in their solving processes. Still, physical argumentation
is required: As both switches are open initially, all components are discharged as
there is no possibility of charging them with a network not being closed. Therefore,
all quantities are zero at 0�. When closing S1, the voltage at a capacitor, uC(t), and
the current at an inductor, iL(t), cannot change by leaps. That is knowledge from the
lecture. However, because of the open switch S2, the inductor is not even part of the
setting. Following Ohm’s law, the current at the ohmic resistance is given by
iR(t

+) ¼ U0/R. It is not addressed in the lecture to what extent this discontinuity is
an idealization that is adequate for the (macroscopic) situation.

32.7 Development of the Student Expert Solution
for Exercise B3: Setting Up the Differential Equation)

This section and the following Sect. 32.7 show how the described methodology is
used to create a normative solution for answering research questions 1 and 2, i.e., to
reconstruct the competencies and skills needed to solve the exercise as well as to
conceptualize the interface between mathematics and EE by using the expert inter-
view. Section 32.6 deals with forming an ordinary differential equation (subtask B3)
and Sect. 32.7 with its solving (subtask B4).

32.7.1 Official Solution Outline of Subtask B3

In the following, we have added letters in square brackets for reference purposes:

Subtask B3 Deduce the differential equation for uC(t) for t � 0.
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Solution
Component equations:

uR tð Þ ¼ iR tð ÞR A½ �
C _uC tð Þ ¼ iC tð Þ B½ �



¼

¼ ¼
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Mesh equation:

U0 ¼ uR tð Þ þ uC tð Þ C½ �
iC tð Þ ¼ uR tð Þ

R
¼ U0 � uC tð Þ

R

C _uC tð Þ ¼ U0 � uC tð Þ
R

RC _uC tð Þ þ uC tð Þ ¼ U0

32.7.2 SES1 Object-Level: Extended Structured Solution
Outline, Knowledge from EE-Theory Relevant
for the Solving Process

The challenge for the students can be reconstructed as

1. Mathematization: Understanding the task and setting up a mathematical-
electrotechnical model

In this context, this means to remember and activate the equations.

(1) Equations of resistor [A] and capacitor [B].
(2) Mesh equation [C].

To arrive at the requested solution, a further equation has to be used, using physical
knowledge.

(3) iR iC (constancy of current) – [D].

Here knowledge from FoEE is required (see below).
The next step is

2. Mathematical-electrotechnical symbolic-conceptual manipulation and reason-
ing: solution of the exercise using a “mathematics of quantities.”

The situation is characterized by four unknown functions uR(t), iR(t), uC(t), iC(t). The
student has to find relations between these functions (and their derivatives) aiming at
one single (differential) equation with only the unknown function uC(t).

What now has to follow is what we call “equation management”. [A],
[B] > uR(t) C _uC(t)R [E].

As the equation on the right still contains two unknowns, uR and uC, students have
to use another equation, the mesh-equation [C], giving:

E½ �, C½ � ¼> U0 � uC tð Þ ¼ C _uC tð Þ R ¼> CR _uC tð Þ þ uC tð Þ ¼ U0

Students can arrive at these three equations when analyzing the idealized physical
situation. After the closing of switch S1, students work with a network containing a
capacitor C, an ohmic resistance R, and an ideal voltage source U0. The



¼

mathematization works by translating the components capacitor and resistance into
their component equations known from the FoEE-course. They also need to consider
the experimental set-up, as after closing S1, the left part forms a so-called mesh, in
which Kirchhoff’s voltage law can be applied to get another equation.
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To consider the physical background, it is essential to know that a capacitor stores
an electric charge q, and the two electrodes each carry charges of opposite signs. In
this case, the equation q(t)¼ Cu(t) holds (with a capacity C), and using i(t)¼ _q(t), we
get the component equation for the capacitor [B].

Kirchhoff’s rule of meshes must be applied to take the experimental set-up into
account. It states that in a closed part of a network, a so-called mesh, the sum of all
directed voltages is zero. The left part of the diagram becomes a mesh when the
switch S1 is closed. The rule of meshes uses the idealization that the voltage is not
depending on the current going through the ideal voltage source U0, i.e., the voltage
source does not have an inner resistance. Using the physical knowledge that iL(t)�
0 implies [D] according to Kirchhoff’s law of nodes (stating the identity
iR iC. + iL).

32.7.3 SES1 Meta-Level: Viewing the Solution According
to the Theoretical Approaches and Identifying
Cognitive Resources

Mathematization In the perspective of the modeling cycle, the exercise shows the
characteristics mentioned above. However, in contrast to more open modeling
problems, an idealized real model is provided in the form of a conventionalized
diagram. Thus, the students do not have to make their own simplifications and work
with an idealized model without the necessity to know which idealizations are used
in the exercise. Instead, they have to extract all relevant information from the
diagram to get enough equations to set up a solvable (differential) equation by
equation management.

From the view of problem-solving, the conventionalized diagram is used to clarify
the problem in the form of an informative figure. It represents the components and
how the setting is arranged, which helps to mathematize it. At the starting point of
exercise B, the students have to be able to read the conventionalized diagram of the
network containing an oscillating circuit. They require to know the technical terms
and the physical properties of the components. For the determination of the values
for uC(t), iL(t) and uR(t), they must read circuit diagrams and apply general physical
knowledge on circuits as well as the voltage curve and current course of capacitors
and inductors.

The students saw similar problems in the lectures and exercise classes, so they do
not have to create new heuristics for solving this exercise but can rely on their
experience from similar problems.
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Mathematical-Electrotechnical Symbolic-Conceptual Manipulation and Reasoning
In the second step, a “world of mathematics” is not entered because the mathematical
electrotechnical work uses quantities instead of just numbers. With this extension of
mathematics by units, students can nevertheless apply formula manipulation skills.
However, what we call “equation management skills” is not something that was
explicitly taught in the mathematics courses and has the following characteristics:

• Students must regard functions as objects and unknowns in an equation and
interpret formulas according to known and unknown functions and quantities
(similar to Polya’s applied problem solving).

• Students need skills in manipulating a set of equations so that one equation
remains, where only one function and its derivative are unknown. No straight-
forward method for solving “systems of equations” exists.

In an actual solution process, it can happen that students have set up more or
fewer equations or other equations than the three equations above and have to go
back to the physical situation and their knowledge to add further equations. In other
words, the mathematization and the symbolic manipulation steps can be intertwined.

32.7.4 Developing SES2 of B3 Based on the Expert
Interviews

The PARI based interview, cf. Hall et al. (1995) and Sect. 32.5.2, was conducted
with an EE-expert, who was, in this case, not the creator of the exercise but had a
similar background and function in teaching and organizing EE courses. In the
following, we cannot reproduce the three PARI-phases (see Sect. 32.5.2) but exem-
plarily summarize how we transformed the SES 1 into SES 2 based on the results of
the PARI interview.

Remark In the second part (subtasks B5 to B7), the switch S1 is opened at the time
t ¼ t1. The transient is defined as totally finished at this time. Furthermore, switch S2
is closed.

We focus in the following on possible misunderstandings in the mathematization
phase that we asked the expert for. They concern:

1. The notation 0� resp. 0+

2. The understanding of the conventionalized diagram
3. The dealing with implicit idealizations

The notation 0� (resp. 0+) is important to note, as it is not part of the notations in
MfES. Mathematically speaking, it stands for the limit to 0 from the left (right) of the
respective function. In order words, the functions could have a discontinuity at
0. The FoEE terminology avoids the mathematical language of limits and continuity.
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Fig. 32.3 Alternative
circuit, sketched by the
interviewed expert

In the second part, the expert thinks that students might read over that S1 is
reopened when S2 is closed, giving them a more complicated situation of an RLC
circuit. However, this possible hurdle can be clarified by working with another type
of switch, the so-called changeover switch, which adds further information to the
diagram and clarifies that both switches are closed at no time (Fig. 32.3).

The expert sees a further possibility of misunderstandings due to other implicit
idealizations: “I also don’t think it’s very clever here to talk about an inductor.
I would find inductance a little more suitable because it would symbolize at least an
ideality to me. So, it specifies that there is no ohmic component in the inductor.
When I talk about an inductor, I mean an inductor that is practically realizable, and
this inductor is not practically feasible. That’s why I would find it more pleasant if it
said inductance and not inductor. The same with capacitor and capacity.”

This quote shows some variability in dealing with implicit idealizations in the
context of FoEE (remember that our expert was different from the task designer).
Obviously, the inductor in the diagram stands for an idealized inductor with no
ohmic resistance. The wording of the task assumes that this is “clear”, but of course,
this may be a source of problems if students interpret the diagram as showing a real
inductor.

Given these three aspects, the interview extended the SES1 to a SES2 by remarks
on possible misunderstandings, which can be on different levels, e.g. the notation,
the diagram or the interpretation of used words. It deepens the SES1 by remarks, in
which way information is compressed in the exercise presentation of FoEE and
which effects small changes can have.



32.8 Development of the Student Expert Solution
for Exercise B4 (the Solving of the Differential
Equation)

32.8.1 Official Solution Outline

Subtask B4 Solve the differential equation. Which is the significant time constant
of this circuit?

686 J. Kortemeyer and R. Biehler

Solution
Solution of the homogeneous part with uch t Uch0e�

t
τð Þ ¼

RC � 1
τ

� �
Uch0e

�t
τ þ Uch0e

�t
τ ¼ 0

RC � 1
τ

� �
¼ �1

τ ¼ RC

Solution of the inhomogeneous part:

uci tð Þ ¼ U0 for t ! 1

From this, the general solution follows:

uC tð Þ ¼ uch tð Þ þ uci tð Þ
uC tð Þ ¼ Uch0e

�t
τ þ U0

Substitution of the initial values:

uC t ¼ 0ð Þ ¼ 0

uC tð Þ ¼ Uch0e
�0 þ U0 ¼ 0

Uch0 ¼ �U0

From this, the solution follows:

uc tð Þ ¼ �U0e
� t

RC þ U0 ¼ U0 1� e�
t

RC

� �
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32.8.2 SES1 Object-Level: Extended Structured Solution
Outline, Knowledge from EE-Theory Relevant
for the Solving Process

Mathematical-Electrotechnical Symbolic-Conceptual Manipulation and Reasoning
The equation set up in subtask B3 is an inhomogeneous ODE of order one in uC.
The solution process in MfES and the solution from FoEE have in common that they
both split up the solving process into the solving of the homogenized ODE and
finding a solution of the inhomogeneous ODE. In the perspective of MfES-courses,
students can solve such equations as follows: At first, they have to homogenize,
which is done in this case by omitting the U0-term, as this term neither contains uC(t)
nor its derivatives. This leads to RC _uC(t) + uC(t) ¼ 0. The solving can be done in
two ways:

1. The knowledge that all solutions of ordinary differential equations of the form
_y tð Þ � ay tð Þ ¼ 0 have the form y ¼ ceat, c2ℝ, as the conditions of the Picard-
Lindelöf-theorem hold for the function y(t). I.e., as ay(t) is uniformly Lipschitz
continuous in y and continuous in t, there is a unique solution to the initial value
problem for each choice of t ℝ, see Bruckner et al. (2001) for more details

2. Using the “separation of variables” as the general method for homogenized ODE
of order 1.

The use of these resources would yield for the constant a ¼ 1/RC and that c ¼ y(0),
so the solution in the last line of the official solution outline. In MfES, properties of
function y (differentiability etc.) have to be provided. Students have to check
whether the conditions for applying the mathematical theorems are fulfilled to justify
their solution referring to the mathematical technologies in the sense of ATD.

However, the solution outline shows a different approach, rooted in the FoEE
way of solving differential equations in the context of electrical circuits
(a praxeology different from that of MfES). The concept of the time constant τ is a
characteristic quantity of electric networks. This, in a sense, assumes that the ODE
has already been solved. For the determination of τ, the approach uch tð Þ ¼ Uch0e�

t
τ is

taught in the lecture. Instead of an approach like in Castela (2017) (see above), the
time constant τ is introduced as an additional factor of t in the exponent with an
EE-meaning. As long as τ 6¼ 0, this does not influence the solvability of the
homogenized ODE, as τ is constant. As Uch0 6¼ 0, the insertion in the homogenized
ODE results in the equation τ ¼ RC (uch stands for the homogeneous solution, uci for
the inhomogeneous one)

To find a solution to the inhomogeneous ODE, besides using the method of
separation of variables, i.e. [2], the MfES-course presented the technique:

Finding a special solution of the inhomogeneous ODE: in this case, this method can be done
fast, as uCi(t) U0 solves the inhomogeneous ODE CR _uCi(t) + uCi(t) U0.
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However, the solution outline from FoEE shows different reasoning, namely
suggesting that uCi(t) ¼ U0 is a solution when “t ! 1 ”. This is a typical problem
that we clarified with interviewing the EE expert. Below, we will point out that this is
an instance of hybrid reasoning combining arguments from mathematics and FoEE.

Using the initial value uC(0) ¼ 0, students can calculate the value Uch0, the
particulate solution of the initial value problem. The method is the same except for
choosing the constant’s name, which can be freely chosen in MfES. The adding of
the homogeneous and the particular solution, the complete solution is,

uc tð Þ ¼ �U0e
� t

RC þ U0 ¼ U0 1� e�
t

RC

� �
:

The EE-theory is used in two aspects in the solution of B4:

1. The negligence of the solution Uch0 0.
2. The critical review of the results.

From the FoEE-course, it is known that the capacitor loads up to the value of the
voltage source, U0, via an exponential function. If Uch0 were 0, the solution of the
homogenized ODE would be 0. No exponential function would be part of the
solution, as no exponential function could be a particular solution of the inhomoge-
neous ODE. This shows aspects of transposed praxeologies using pragmatic rela-
tions to the MfES-praxeology, see Castela (2017). Additionally, as the capacitor
loads up to U0, students know that this is the limit value for t towards infinity.

The students can review their solutions critically by looking at the physical
situation. The function uc(t) starts at 0 and converges to U0. This behavior corre-
sponds to the physical behavior of a capacitor that charges up to the value of an ideal
voltage source in the network.

32.8.3 SES1 Meta-Level: Structuring the Solution According
to the Theoretical Approaches and Identifying
Cognitive Resources

The enhanced solution sketch shows well that no complete entering into an abstract
world of mathematics occurs. The symbols keep their EE-meaning, and even the
reasoning in solving the inhomogeneous ODE contains hybrid arguments from
mathematics and EE. The usual conceptualization of the modeling process suggests
that one can separate the two processes: working in the world of mathematics and
reason with mathematical means of reasoning only and interpreting the mathematical
results later in the context. Hybrid reasoning is suggested. Moreover, mathematical
justifications are not explicitly asked for, e.g., if the function uC(t) fulfills the
conditions of the mathematical theorem that specifies the solution space of the
ODE. Students however may have difficulties when both resources from FoEE
and MFES are activated in their problem-solving process.
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Moreover, students have further qualitative resources to validate the solution of
the ODE. For example, the answer, uc tð Þ ¼ U0 1� e�

t
RC

� �
, describes a function

uC(t), which grows exponentially with an asymptote at uC(t)¼ U0. This corresponds
to the charging of the capacitator until it reaches the maximal value U0 in the
experimental set-up.

The students saw similar problems in the lectures and exercise classes and know
that this qualitative behavior of the system is considered correct. However, the
qualitative knowledge that the solution is an increasing function with an asymptote
does not imply that this function needs to be exponential. Moreover, although –

mathematically speaking – U0 is not reached at any finite time, it is interpreted in
FoEE that the system practically reaches the maximum after a finite time, which
however cannot be theoretically calculated. In similar cases, this practical interpre-
tation of a limit is generally done in physics. Students are not asked to validate the
results against experimental data from a real circuit that could yield knowledge about
when the voltage is practically identical to 0.

These activities would be something that would be suggested if we see the
example from the perspective of mathematical modeling, and students may be
asked to do this in EE practical courses later in their studies. The conceptualization
of mathematical modeling may better fit such courses.

32.8.4 Developing SES2 to B4, Based on the Expert
Interviews

The following focuses on possible problems in the hybrid ways of solving ODEs
using arguments from MfES and FoEE. The expert said concerning solving a
differential equation: “For me, it is not necessary now to solve this differential
equation formally because I see directly what form it will have. In the end, the
capacitor will be charged to U0. In the beginning, it has the value 0. Since it is only
one energy store, a balancing process with an exponential function will occur
between the two quantities.” The “now” in his wording highlights his use of expert
knowledge. He knows the behavior of such test arrangements and chooses to adjust
the parameters to fit the given situation. He supports this statement with a drawing of
a graph showing the qualitative increase of the voltage uC(t). With those arguments,
he writes down the correct solution of the ODE and reviews it critically by inserting
minimal and maximal values of t, i.e., t ¼ 0 resp. t ¼1. This practice is purposeful
in the context of EE, as it leads to a correct solution. He uses values of the function at
two points to determine the constant k in uc tð Þ ¼ k 1� e�

t
RC

� �
. For this purpose, he

inserts t equal to1, which gives k¼ U0 (mathematically speaking, a limit of t!1
was taken). So, in contrast to determining a homogeneous and inhomogeneous ODE
solution in mathematical praxeology, the expert works with his physical knowledge.
We regard this as a possible interpretation of the shorthand “t ! 1” at uci(t) in the



solution outline for correctors, which makes no sense in terms of the mathematical
praxeology.
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Being asked for the learning goals of the exercise, the expert states that there are
two goals: (1) solving differential equations, (2) working with principles of capacity
and inductance, e.g., that both cannot change by leaps. The expert says that the
treatment of ODEs in MfES is not sufficient for practical applications, which calls
for contextualized solving strategies, and FoEE fills this gap.

To sum up: The interview extended the SES1 to a SES2 by remarks on hybrid
strategies using both mathematical and EE arguments. By knowing physical mech-
anisms, the charging behavior of a capacitor (known by experiments) and determin-
ing unknown constants of functional expressions by physical ideas, the function uc(t)
can also be set up. This alternative practice supplements the SES1 we had developed
for B4.

32.9 Summary and Outlook

We presented and exemplified a methodology for developing theory-based “student
expert solutions”. They can be used to express competence expectations related to
the application of mathematics in EE.

The developed methodology of the SES1 and SES2 gives a reconstruction of
competencies and skills required in the EE exercises, i.e., it answers RQ1. The SES1
has two levels: The institute’s solution is mathematically and physically augmented
at the object-level. On the meta-level, a classification into theoretical frameworks
and the addition of cognitive resources takes place. Then, through expert interviews,
both levels of the SES1 are extended to the SES2, which includes implicit compe-
tence expectations. This is illustrated in Chaps. 3 and 4, starting with a SES1, which
is theoretically enhanced by expert interviews to a SES2.

Sects. 32.7.4 and 32.8.4 present the reconceptualization of competencies and
skills and provide a closer description of the interface between mathematics and
electrical engineering, i.e., an answer to RQ2. In dealing with ordinary differential
equations, two techniques from MfES can be applied: the so-called separation of
variables or the superposition of a general homogeneous and a particular inhomo-
geneous solution. Examples of the interface are the translation of conventionalized
sketches to set up mathematical formulas and hybrid methods like curve fitting to
solve ODEs using specific values known from the experimental set-up.

We have used the SES to analyze related empirical studies in which students do
the presented exercises (Kortemeyer, 2019). Our goal was to determine how students
actually solve the exercises and what challenges, errors, and solution strategies
occur. In addition to this use in empirical studies of students’ solution processes,
we see our paper making a twofold contribution. It is a methodological contribution
to doing an a priori analysis of a task from an authentic teaching context supported
by interviews of designers of these tasks. Last but not least, we see our analysis as
support for aiming at an alternative conceptualization of the mathematical modeling



cycle suitable for describing the mathematical practices in courses on electrical
engineering or physics in general.
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Chapter 33
Tertiary Mathematics Through the Eyes
of Non-specialists: Engineering Students’
Experiences and Perceptions

Eva Jablonka and Christer Bergsten

Abstract This chapter brings together insights from studies of students’ experi-
ences from a position that takes into account the social and cultural conditions and
the institutional context of mathematics for non-specialists. It complements and
expands our earlier analyses of interview data from first-year engineering students
in Sweden, with a focus on their appreciation of specificities of mathematical
discourse encountered in the core mathematics, their perceptions of the usefulness
of mathematics, and their experiences of studying mathematics as compared to other
subjects. Drawing on Bourdieu’s notions of field and habitus, we consider the
control of content and pedagogy of mathematics as a service-course as an element
of a larger symbolic struggle. This puts engineering students in a social position
where they might be confronted with conflicting ‘rules for the game’ in core
mathematics as compared to mathematics in the engineering sciences. Our findings
reflect that success in the service-courses depends on recognising the criteria of
pure mathematics rather than mathematical applications or modelling. We also
reconstructed four different modes of perceived usefulness of mathematics. Further,
we grouped students’ perceptions of relations between mathematics and other sub-
jects into three major dimensions, considering if and how hierarchies between these
subjects were produced.
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33.1 Introduction – Students’ Perceptions
and the Curriculum

It has been well established that mathematics is a stumbling block for many students
who are enrolled in “service-courses” for non-specialists with institutionalised
curricula and teaching practices, for which mathematics faculty staff is responsible
(Hochmuth, 2020). Major concerns in this context are low pass-rates and the
resulting impact of failing a mathematics course on engineering graduation numbers
(Faulkner et al., 2019; Heublein, 2014).

As some of these problems have been attributed to the perceived irrelevance of
the course content, authentic course tasks that appear more significant for the
targeted engineering knowledge have been designed (e.g., Alpers, 2017; Schmidt
& Winsløw, 2021; Wolf & Biehler, 2016). However, in some places, as Faulkner
et al. (2019, p. 97) observe, “engineering departments are increasingly looking at
drastic options of taking students out of mathematics courses and teaching students
mathematics themselves”. In return, such a move might be perceived as a threat as
the budget of mathematics departments often depends on the number of students
enrolled in service-courses (Rota, 1997, cited in Faulkner et al., 2019, p. 98).

In this context, students´ experiences and perceptions have been investigated
from a range of vantage points, mostly aiming at identifying motives, (self-)beliefs
and specific needs of different groups of students, which, if they were taken into
account by mathematics faculty, eventually would help to overcome the problems.
For example, from the perspective of educational psychology, attempts have been
made to relate differences in motivation, self-regulation and beliefs about the nature
of mathematics to the students’ mathematics performance (e.g., Berkaliev &
Kloosterman, 2009; Code et al., 2016). Self-efficacy beliefs regarding (specific)
mathematical capabilities have also been studied (Lent et al., 1991; Matsui et al.,
1990; Zakariya, 2021) with the aim to establish “mechanisms” regarding sources of
these beliefs and relations to programme choices or performance. These types of
investigations, however, tend to essentialise individual differences and thereby
construct fixed categories of more or less “problematic students”. Hence, these
studies ignore both the experiences in which students’ perceptions originate and
the social and cultural conditions of curriculum and teaching practices.

Kleanthous and Williams (2013) also investigated mathematics self-efficacy
beliefs, which they conceive of as part of a “mathematical habitus”
(as conceptualised by Zevenbergen, 2005) that is shaped by their family and their
experiences at school, integrating constructs from social cognitive theory with
aspects of Bourdieu’s sociology of cultural reproduction. Their quantitative model-
ling suggests that the family influence concerns choice of (core or advanced)
mathematics at school and has “inculcated an inclination towards mathematics that
mediates students’ dispositions towards studying mathematically-demanding



HE [higher education] courses” (p. 64). With regard to beliefs about mathematics
and its usefulness, Gainsburg (2015) offers a taxonomy of “levels” of epistemolog-
ical views of mathematics by engineering students, of which she sees a progression
towards a more sophisticated understanding of its contribution to engineering
practices as the wished outcome. The “highest level” includes an “increasingly
expert-like knowledge of when to enact relativistic thinking or sceptical reverence”
(p. 160). This points to a shift in faith in the significance of mathematical consider-
ations as a basis for judgement. It does, however, obviously not develop at univer-
sity, as the few students who exhibited it in Gainsburg’s interviews were drawing on
their own or a parent’s experience of work as a civil engineer. Further, regarding the
entire curriculum for engineering education, a growing discrepancy between
demands from new professional practices and university education has been diag-
nosed (Adams & Forin, 2014; Crawley, 2001; Trevelyan, 2014). Consequently, the
perceived difference between “theory” exposed to in their studies and the future
professions the students aim at, might lead to questioning the rationale for identify-
ing the knowledge base in terms of academic subjects on the whole, not only for core
mathematics.

33 Tertiary Mathematics Through the Eyes of Non-specialists 695

Altogether, studies that attend to the social and cultural conditions of the students’
and teachers’ activities are still rare. They have the potential of contributing to
understanding differences in (emerging) identities between students specialising in
mathematics and others who study mathematics as a service subject (e.g., Bergsten
& Jablonka, 2013; Black et al., 2010). While in the context of the “socio-cultural
turn” in research on university mathematics education (cf. Artigue, 2021), the
cultural dimension (regarding specific mathematical cultures) is well theorised by
the ATD, researchers interested in the social and political dimensions mostly draw
on theories external to mathematics education (e.g., Adiredja & Andrews-Larson,
2017; Anastasakis et al., 2020; Bergsten & Jablonka, 2019; Jablonka et al., 2013;
Williams & Choudry, 2016).

The investigation presented in this chapter complements and expands earlier
analyses of data from interviews with first-year engineering students conducted in
the context of a larger study of the transition between school and tertiary mathemat-
ics education in Sweden (cf. Bergsten et al., 2015). We first outline the theoretical
horizon for our analysis, before we explicate the research questions and briefly
present the context and methods, which we explain in more detail in the findings.
These are structured in three parts, which concern (i) the students’ appreciation of
specificities of mathematical discourse encountered in the core mathematics,
(ii) their perceptions of the usefulness of mathematics, and (iii) their experiences
of studying mathematics as compared to other subjects. Finally, we discuss the
outcomes.
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33.2 Theoretical Horizon – Mathematics as a Service
Subject, Disintegrated Practice and the Position
of Engineering Students

From the perspective of Bourdieu, a field is “a relatively autonomous domain of
activity that responds to rules of functioning [. . .] specific to it and which define the
relations among the agents” (Hilgers & Mangez, 2014, p. 5). The academic field is
characterised by similar effects as other social fields, in which we find,

multiple material and symbolic positions occupied by purposive subjects, who, within their
relationally structured spaces of action and interaction, compete over access to resources,
influence, status and – ultimately – power (Susen, 2016, p. 4).

Academic fields are (re)produced “by agents with the habitus needed to make them
work” (Bourdieu, 2013, p. 67), who acquire the cultural capital embodied in this
habitus through (long term) pedagogic processes (in the widest sense). Central to
Bourdieu’s notion of habitus is the dialectic between experiences and perceptions, as
the habitus “ensures the active presence of past experiences, which, deposited in
each organism in the form of schemes of perceptions, thought and action, tend to
guarantee the ´correctness´ of practices and their constancy over time” (Bourdieu,
2013, p. 54).

The synchronisation between the professional habitus and the field defines the
scope of possible actions and the way these are performed. Mastery includes
automatised enactment of operational schemes, for example manipulating of formu-
lae and instruments (Bourdieu, 1993; Bourdieu, 2013; Moore, 2014). The profes-
sional habitus of an established member is tuned to the current definition of what
constitutes a problématique worth researching and includes mastery of specific
techniques and knowledge based on a shared faith in the importance of the whole
endeavour.

In engineering education, the relation between pure mathematics that aims at its
own development and applications of mathematics in engineering practices has a
complex and long history (Karp & Schubring, 2014). This history indeed reflects
changing conceptions of the epistemological value of mathematics. Conflicting
conceptions related to “classicality” versus “modernity” were in some places
institutionalised in different tertiary institutions, for example, in Germany and
Sweden (Schubring, 2014; Heinonen, 2006). Hierarchies between theoretical and
applied mathematical subjects have been established in particular by the association
between the level of abstraction with a concomitant level of alleged epistemic
certainty (Oki, 2014).

In Bourdieu’s view, the outcomes of such struggles about classifications and
ranks outlast the collective reflective memory of what has been at stake. As a
consequence, the professional habitus is not only constituted by current character-
istic repertoires of techniques, schemes of perception and convictions, but also
reflects the historically evolved status of the discipline in relation to others
(Bourdieu, 1993). Any hierarchising between pure mathematics and applications
of mathematics in engineering sciences would then have survived in faculty habitus.
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Bergsten et al. (2010) illustrated this claim by means of statements from inter-
views with mathematics faculty members with regard to the teaching of the funda-
mental theorem of calculus in core mathematics. Similarly, in a study about
mathematics lecturers teaching at different departments, Bingolbali and Ozmantar
(2009) found that “they consciously privileged different aspects of mathematics”
(p. 597), depending on whether mechanical engineering students or mathematics
students were their audience. Yet, those views contrast with these of engineers from
a study in South Africa and Sweden, who deemed “conceptual understanding” in
mathematics as important, in particular regarding the use of mathematical technol-
ogy (Engelbrecht et al., 2017).

Altogether, this points to a disintegration of mathematical practices, in particular
regarding mathematics for engineering. In a view based on Bourdieu’s notion of
field, the cultural capital needed for acquiring the feeling for the ‘rules of the game’
and the associated symbolic capital (such as distinctions of disciplines as rigorous or
inexact, evidence-based or unscientific, hard or soft etc.) as well as economic
resources are a focus of a symbolic struggle, in which members strive for
establishing a superiority of their own distinctive features and an official sanction
for these. The resulting classifications undergo a process of naturalisation. In the
context of academic research (in mathematics and beyond), external funding has
increasingly become what is at stake in exchange for symbolic capital. In this
context, Malek-Madani and Saxe (2019) observe that applied and computational
mathematics receive comparatively more grants. Viewed from the perspective of
Bourdieu, this might have increased the status and influence of researchers who
work in these subfields. On the other hand, in particular in the context of “shaping
and selecting” new entrants, (rites of passage, examinations etc.)” orthodox
approaches dominate (Bourdieu, 2013, p. 68), which we see reflected in the exam-
ples above from first-year core mathematics courses.

As a whole, these considerations help us sharpening the perception of the social
position of students who study mathematics in service-courses, acknowledging that
the control of the content and pedagogy of such courses is an element of a larger
symbolic struggle. From this point of view, the engineering students are in a
precarious position. They are not just relative mathematical newcomers who after
investment of time and effort have the prospect of becoming insiders (like the
mathematics majors with whom they share the introductory courses in the contexts
we have investigated). Moreover, they will perhaps occupy a position as permanent
outsiders whose habitus will not become synchronised with the field. That is, they do
not and will not share with their teachers and fellow students the “schemes of
perception, thought and action” (Bourdieu, 2013, p. 54) including their epistemic
ideals and fundamental faith in the importance of the endeavour that defines the
habitus of future mathematicians. In addition, they might be confronted with
conflicting ‘rules for the game’ in core mathematics and mathematics in the engi-
neering sciences.
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33.3 Research Questions, Context and Data

Based on the considerations presented in the previous section, our investigation was
guided by the following questions:
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• How will the engineering students acquire the ‘rules of the game’ in
mathematics?

• How do they construct the importance of mathematics for their chosen engineer-
ing fields and their career?

• How do they develop a motive for investing time and effort, in particular in
comparison to other courses from their chosen programmes of study?

The study took place at two Swedish universities. We interviewed 60 students
enrolled in five-year engineering education (“civil engineering”). These students
were purposefully selected from five study programmes (Table 33.1) and different
achievement levels in mathematics (in a diagnostic entrance test) in order to allow
for differentiated insights, in particular as the programmes are not similar regarding
the alleged or imagined usefulness of mathematics.

The mathematics courses attended by these students were delivered by mathe-
matics faculty and were also attended by mathematics majors. Neither this practice
nor the content of the courses has undergone substantial changes since we conducted
the interviews in 2011. The interviews were semi-structured and individual,
conducted in the middle and at the end of the first year of study.1 They were
audio-taped, transcribed and analysed in the original language.

The specific prompts used in the interviews to pursue the research questions and
further details regarding methodology are integrated in the next sections.

Table 33.1 Study programmes and number of students interviewed at the two universities

Study programme University 1 University 2 Total

Computer technology (C
Energy and environment (E
Industrial economy (I
Mechanical engineering (M
Technical physics and electric engineering (T 9 4

Total 47 13 60

1During the first year the programmes included a foundation course in mathematics and courses in
linear algebra and calculus in one or (for two programmes) several variable(s). The programme C
included discrete mathematics.
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33.4 Findings

33.4.1 Recognising a “Mathematics Text”

In the interview with the students after the first series of exams, we were interested in
the extent to which students know what counts as a legitimate mathematical activity
and how they recognise and articulate this (Jablonka et al., 2017). The characteristics
of university mathematics, as delivered by staff from mathematics faculty, have
commonly been described in terms of rigour, high level of abstraction, and
formalisation (e.g., Gueudet, 2008), which not only contrasts with school mathe-
matics but also with other forms of more applied mathematics found in some of the
engineering core subjects. We were also interested in the students’ achievement,
because – at least theoretically – the course examinations test whether new modes of
producing and communicating mathematical ‘truths’ have become part of the stu-
dents’ habitus. The achievement we categorized in three levels, based on their grades
on all mathematics courses during the first year.2

In order to investigate the students’ recognition of criteria we (i) asked the
students to compare and rank four excerpts from different calculus textbooks in
terms of which they felt were “more mathematical”; (ii) showed four authentic
calculus exam tasks with (fictitious) student solutions and asked to mark these and
provide reasons. The selected textbooks represented a variety of expositions of
introductory calculus, which we analysed in terms of stronger or weaker “classifi-
cation” of the knowledge and “framing” (Bernstein, 1996) of the pedagogic relation
between author-teacher and reader-student. Based on these differences, we then
ranked the four textbooks. We also asked mathematics faculty staff (who teach the
core mathematics) in a focus group interview for their ranking, which accorded with
our theoretically derived one (see Jablonka et al., 2017).

We expected a correspondence between students’ recognition of realisation
principles for the text that was considered ‘most mathematical’ and their success
in the exams. Our findings confirmed this expectation (for details, see Jablonka et al.,
2017). More interestingly, the arguments for the rankings provided by students at
different achievement levels differed in terms of focus. Academically successful
students pertained to the content, level of technicality and coherence as
characterisations of mathematics texts, as for example:

these here now [the strongly classified texts] deal more with the mathematics itself. . .
describe things within the mathematics (1E3-H).3

much palaver about greater than zero and such stuff (1M7-H).
this is proof . . .with lots of intervals and continuous (1E4-H).

2We denoted these levels L (low), M (middle) and H (high). See Jablonka et al. (2017, p. 81) for a
description of how the levels were constructed.
3The code 1E3-H for identifying this student indicates that he/she studied at university 1 and
followed the programme E (see Table 33.1) listed as number 3, with achievement level H.



In contrast, academically less successful students often talked about how they
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experienced the accessibility of the texts and provided a different ranking:

this one [a weakly classified text] I think feels clear and good. . . this one I like. . . structured
and such. . . most academic possibly. . . doesn’t mix so much letters and numbers but
partitions it like this. . . so that the brain can more easily register if each stands in its own
line (1I12-M).

simply harder to understand [a strongly classified text]. . . here they assume things all the
time. . . very very much theory (1M1-L).

As to the second interview prompt, the high-achieving students tended to focus more
clearly on the mathematical content in the solutions than the others, which in
Ashjari’s (2013) interpretation indicates awareness of a more developed mathemat-
ical praxeology (e.g., Chevallard, 1999). Moreover, we also observed differences in
certainty regarding the level of detail required in written solutions.

33.4.2 The Usefulness and Role of Mathematics

In the last interview towards the end of the first year, one prompt concerned how the
students thought about the usefulness of mathematics for their (imagined) future
workplace or other potential gains from studying (some) mathematics. In the fol-
lowing we focus on this part of the interview and present a new analysis of the full
set of data, which we have only partly analysed previously (Bergsten & Jablonka,
2013). We started with a question about concrete uses of mathematics at work places
associated with their programme of study, followed up by questions about applica-
tions in other courses or possible other gains, if any. The latter also was intended to
allow reference to the symbolic capital of high marks in mathematics (e.g., for
finding a job); something, as it turned out, none of the students mentioned.

In the analysis, our initial attention focussed on whether the answers referred to an
embodied mental schema or to examples of useful mathematics as a more specific
professional (material or thinking) tool. From this starting point, in an open process
of coding, we distinguished seven modes of the usefulness of mathematics in their
ideas.

33.4.2.1 General Mathematico-Logical Thinking

In this category we included references to general “ways of thinking” acquired
though mathematical activity or to a particular mathematical “gaze” and other
forms of embodied changes of the epistemological functioning of the self that the
students saw as an outcome of mathematical learning, such as in the following
examples:

It is more like an understanding. . . a mathematical gaze that you have (1M3-M).
developing the head a little. . . thinking logically (2I2-M).
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to bring in the mathematical thinking is always good whatever you’re up to do. . . to
acquire a logical thinking. . . not solving equations and such things (1M1-L).

maths I think is something that is always good ‘cause you develop a special way of
thinking and the brain develops in a good way (1I7-M).

you learn to take in. . . to understand mathematical relations. . . then you learn to
understand relations kind of generally (1C6-L).

33.4.2.2 Schema for Learning

Under this category we subsumed statements about changing or expanding ways of
learning through the activity of learning mathematics, such as:

to learn how to learn (1E8-M).
learn how to learn new systems (1I7-M).
learn to understand relationships in general. . . learn to learn. . . easier to understand new

things. . . (1C5-H).

33.4.2.3 Ways of Thinking for Systematic Problem-Solving

In contrast to the acquisition of mental schemes that were directed towards percep-
tion, insight and learning, we found many explanations of “ways of thinking” that
referred to the activity of solving problems. Many of the students described changes
in common terms associated with analytical thinking as in some of the examples
below:

one does learn a certain way of thinking and to break up a problem into smaller parts and
then solve each part kind of separately. . . and so finally solve the whole thing (1M9-H).

one always has a structured way. . . in maths to solve a problem and then one can bring
that way of thinking into many other things in life (2I2-M).

it is to acquire this problem-solving-thinking and that is I guess what it means to be an
engineering masters. . . to be a problem solver (2E1-L).

you more easily see through the problem. . . you can put it into small pieces somehow so
that it doesn’t get so big [. . .] I already feel that one has kind of changed as a person by the
maths (1I12-L).

if not doing the calculations it is more this way of thinking. . . the problem-solving-ability
(1I9-H).

33.4.2.4 Understanding of the Mathematical Underpinnings
of Activities at Work Place

In a few statements students referred to activities at (imagined) work places related to
their programmes of study. Rather than giving concrete examples of mathematical
techniques that could be useful tools, their explanations indicated that they referred
to understanding the principles of an activity.

the calculations are done by the computer but the very understanding of what you are
actually doing. . . the process. . . is perhaps important but not calculation (2M1-L).
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you have to understand the basis. . . otherwise there is no purpose. . . if you don’t
understand what you are doing you can’t understand if something gets wrong (2M5-M).

will be better programmer if you can do [mathematics]. . . but not necessary (1C4-H).
well. . . understand what the computer does. . . reasonableness (2T3-H).

33.4.2.5 Understanding of Mathematical Underpinnings of Other
Academic Subjects

As in the category above, the statements refer to the foundational, theoretical
character of mathematics, that is to “understanding” of other subjects, rather than
to listing concrete mathematical techniques they identified as useful.

you can only see from the courses we read that are not mathematics that most of them are
based on some kind of mathematics that we have learned. . . linear algebra in mechanics. . .
even integrals (1M6-H).

very foundational for physics as we have started now so you need the mathematical
knowledge (1T1-M).

a lot is based on it [mathematics]. . . only if you are going to have it for some courses you
have. . . then build on. . . for the understanding. . . have the foundation before getting deeper
into it (1T8-H).

33.4.2.6 Applications of Mathematics at Workplace

Only very few statements we interpreted as referring to concrete applications of
mathematical techniques in problem contexts that might emerge in their future
professions.

we as engineers are supposed to develop the new technology and for that we need mathe-
matics (1T1-M).

you can make calculations on pollution and. . . there is mathematics everywhere. . . there
is so much in technical solutions (1E4-H).

mathematics is in the programs. . . the closer to the hardware the more you have to do
[mathematics] (1C10-M).

33.4.2.7 Applications of Mathematics in Other Academic Subjects

Very few students talked about applications of specific mathematical techniques in
their other academic subjects, but many assumed that this will happen in the course
of their studies.

software courses. . . some applications (1C2-H).
the few courses we have read we have still used in thermodynamics perhaps and in

mechanics (1M10-M).
good for the courses that come later (1I7-M).
the benefit does not come out in the [maths] courses. . . but in the later courses you see it

[. . .] depends on what you choose next (1M6-H).
the differential equation bit is quite useful. . . integrals and derivatives a lot in physics

(1E11-H).



We organised the dimensions as depicted in Table 33.2. An interpretation of the
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Table 33.2 Modes of perceived usefulness of mathematics

Orientation for perception Orientation for action

Useful mental
schema

General mathematico-logical think-
ing
Schema for learning

Ways of thinking for systematic
problem-solving

Useful tool (mate-
rial or mental)

Understanding of underpinnings of
activities at workplace
Understanding of underpinnings of
other academic subjects

Applications of mathematics at
workplace
Applications of mathematics in
other academic subjects

usefulness of mathematics as providing an orientation for action when faced with
tasks at work place for which a specific mathematical tool was available (lower right
cell), would clearly define it as an applied subject. This was not reflected in the
students’ comments. We rather found the usefulness of mathematics seen as provid-
ing a general orientation for action via acquisition of a mental schema for problem-
solving (upper right cell). This view was often complemented by comments on its
foundational nature for other subjects or activities related to engineering work places
(lower left cell).

We observed a stark contrast between the sparseness of concrete examples of
useful mathematical tools and the repeated articulation of the idea of using a
particular way of thinking acquired in mathematics for solving non-mathematical
problems, not necessarily only in engineering contexts. Regarding examples of
applications at workplace, there were only very few general ones mentioned. Most
students were not sure about the concrete usefulness of particular techniques, which
for them appeared to be compensated by having acquired general schemes for
thinking and problem solving; only very few said they considered mathematics as
useless. For some, the application of mathematics appeared as mediated through
other academic subjects, which in turn rely on mathematical principles or directly
employ specific mathematical techniques. Mathematical modelling was not
mentioned.

33.4.3 Ways of Studying Mathematics Compared to the Other
Subjects

This section presents new findings from the same interview as the previous one, here
concerning comparisons of mathematics and other subjects. The question was posed
as, “How is it to study mathematics in comparison with the other subjects you have?”

In their answers, the students referred to a range of aspects. In our coding we
grouped these into three major dimensions, which are relevant in the theoretical
framing of the study. For the presentation in this chapter, we looked at the data with a
particular sensitivity towards if and how hierarchies between subjects were



produced. The following examples illustrate the rationale for our grouping; excerpts
that appear to fit into more than one group were checked against the context of the
statement. As obviously the dimensions are related and contextualise each other, this
was not always possible.

704 E. Jablonka and C. Bergsten

33.4.3.1 Knowledge Structures, Criteria for Accomplishment
and Intellectual Demands

The knowledge structure of mathematics in relation to other subjects was described
in different ways, but some commonality relates to a form of verticality:

I think maths is the most structured to study. . . that’s what’s easiest really now (1T8-H).
with maths [you need to deal] all the time. . . if you are lagging behind in something (1D5-

H).

Hence, in mathematics it is “much more important to keep up” (1D9-H) in contrast
to, for example, programming where “you like sit there and try” (1T7-H), and “there
are a lot of propositions and axioms to remember”, while economics is “more pure
facts and then not as important if you forget something” (1I1-L).

Some described mathematics as a collection of well-defined methods with typical
problems solved by following “a specific template to arrive at the answer” in contrast
to “a performance to present a finished result” (1D3-H) such as in programming. In
contrast to mathematics, in other subjects “you can take a little different paths”
(1M5-M). This amounts to contrasting “that you know the type problems and then
you can do it” with having “to work in a completely different way with the
understanding” (1T9-H).

Precision, clarity and exactness was felt as being important in mathematics, often
mentioned in sharp contrast to economics, as “in economics you can happen to be
careless and it can be good anyway” (1I8-H), or:

economics feels very slack. . . a little more fuzzy [. . .] it can be right in so many ways. . .
math is usually one way that is right and the others you try to come up with are wrong. . . so it
is more black and white (1M6-H).

it’s like night and day. . . so economics lectures [. . .] it feels like they do not have
anything real. . . it feels quite unsound [. . .] the economics book I read almost like a fiction
book (1I12-L).

The perceived precision and coherence also entailed a clarity of criteria for accom-
plishment in contrast to other “more fuzzy” subjects where “you do not really know
what to do” (1T9-H), while in mathematics:

[you] get a problem [check whether] it is wrong. . . it is quickly okay so I can go ahead and
try to solve some new. . . in other courses it may be that you are completely lost and do not
know what to do (1I11-H).

on the whole I think it is more fun. . . that it is exciting to solve problems... there is only
one solution it is not something that you can discuss about [. . .] it is nice (1I7-M)



This difference in clarity also applies to exams. As mathematics is more
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“

theoretically. . . controlled and very strict [. . .] the exams also feel more controlled”,
while “in the other courses it can be a little harder to know” (1M5-M). In economics
“you can only argue for it so you can be right whatever you say. . . so it is also on the
exams the math is so all-out exact” (1M6-H).

The perceived abstract nature of mathematics for some felt more demanding, for
example:

[other subjects] are more practical. . . create programs and calculate circuits. . . the maths is
the more theoretical [. . .] practical things are always easier you can see what’s happening
(1D7-L).

Higher intellectual demands were also described as mathematics being “heavy”
(1E7-M) or needing more “focus” (1T7-H) or making you “exhausted” (1M3-M).

Some other subjects were recognised as “mixed subjects” in relation to mathe-
matics, like mechanics and thermodynamics (1M8-H), physics and programming
(1T10-H), statics (1M3-M) and others, where additional subject specific features
were perceived as either theoretical or practical:

it [thermodynamics and chemistry] is reminiscent of math but there is much more theory
behind. . . easier to calculate [. . .] (1E4-H).

waves physics is quite similar to calculations but you have it more in a practical way
(1T1-M).

Table 33.3 summarises these contrasts, most of which are represented in the selected
excerpts above.

Table 33.3 Contrasts between mathematics and other subjects related to knowledge structure,
criteria for accomplishments and intellectual demands

Mathematics (Some) other subjects

Logical structure
Connected
Closed range of solutions and methods

Collection of wide-ranging facts
Independent areas
Open range of solutions and methods

Types of tasks and legitimate methods
Explicit methods and criteria
Precision needed
Control of solutions needed

General understanding implicit criteria in
discussion and argument
Precision not needed
Control not needed

Less demanding because of
- clear criteria and coherence
More demanding because of
- abstractness, intensity and required focus

More demanding because of
- lack of clear criteria and unconnected
nature
Less demanding because of
- practical nature, lack of rigour and less
needed focus

Mixed subjects (e.g., thermodynamics, mechanics, electronics)

Similar to mathematics but more subject-related theory
Similar to mathematics but more practical
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33.4.3.2 Forms and Habits of Working and Thinking, and Their
Appreciation

Differences in forms and habits of working and thinking were by some directly
related to differences in knowledge structure and also were a source of positive
appreciation:

[in other subjects it is] just reading and take in lots of facts. . .maths is more calculation and a
little more about understanding [. . .] it is nice to get the maths and. . . start thinking like more
logic (1E6-H).

economics is not logical the way that maths is [. . .] economics you can cram [. . .] a maths
course you have to understand more [. . .] (1I6-M)

you have to be formal you should not be careless. . . it becomes somehow more
interesting . . .you have got so many connections so you see that things are connected in
all possible ways . . .strange ways (1M7-H).

On the other hand, the relative closure of the subject, in which there is not much to
discuss about (see above), also featured as a source for positive appreciation.

Differences in ways of working through examples featured as a comparison,
which made mathematical work less cumbrous:

like maths you learn how to do and so you do so because if you do not do so it does not
work. . . electronics is difficult to get a grip on. . . it is wrong somewhere along the way and
you do not know where. . . maths runs pretty well (1D6-L).

maths is quite nice it is. . . against for example thermodynamics [. . .] chemistry [. . .]
which is quite messy. . . very broad facts where you like have no further help [. . .] it is not
that hard then in math. . . more often you can just sit down and calculate a bit (1E11-H).

Differences in the ways of working were also framed by a contrast between
extracting information from texts and dealing with numbers:

environmental engineering is quite different. . . there is more sitting and grinding in [sic]
books than sitting and grinding in [sic] numbers (1E2-H).

practice practice practice [and in the other subjects] read. . . take in information yes (1I9-
H).

[maths]. . . is more fun and easier. . . not so much fun to just sit and read read and read. . .
you avoid it. . . here you sit and calculate and it’s well practical in that sense (1I4-M).

A lack of applicability was for some a source for lack of positive appreciation or
interest:

to sit and study maths one night it is not as tempting. . . [programming and logical design] are
the applications you immediately feel that this is something I can enjoy. . . in maths. . . it is
abstract (1D5-H).

more interesting. . . the economics. . . that you can followmore in the news and stuff (1I10-
M).

I’m more interested in technology. . . it feels a bit dry I think with maths. . . it feels like
you do a lot of things but. . . it does not feel that you can use it just now (1T5-H).

The different comparisons illustrated above are summarised in Table 33.4.
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Table 33.4 Contrasts between mathematics and other subjects related to forms of habits of working
and thinking, and their appreciation

Mathematics (Some) other subjects

Exciting to solve problems with one solution
Clear methods and smooth solutions
Easy, fun and more practical to calculate
Calculating and understanding
Easy to calculate and check

Just discuss about issues
Difficult to oversee complex facts
Just sitting and reading
Just remembering lots of facts
Difficult to identify errors

Abstract and not tempting to deal with
Dry feeling
Less interesting

Applications immediately enjoyable
Feeling of usefulness
Helps following the news

Intense practicing
Continuous understanding

Intense reading
Cramming before the exam

33.4.3.3 Investment of Time and Effort, and the Worth of Credit Points

The need for more investment of time and effort was established as an immediate
consequence of the difference in knowledge structure, intellectual demands or
related to perceived importance:

maths is more. . . pure. . . difficult. . . maths is simply another way of thinking. . . so I have to
spend more time (1M9-H).

maths needs almost more time it takes a while before you get into it all (1T1-M).
the other subjects are less demanding [. . .] [for maths] you probably have to spend more

time [. . .] it feels like the maths subjects are very important for you to understand the other
subjects. . . it feels fundamental [. . .] you apply mathematics in all subjects (1M10-M).

The organisation in the form of lectures as compared to projects and labs leads to
more continuous investment of time:

[in contrast to project-based work in environment and energy]. . . chemistry and thermody-
namics are probably more like maths that you work with all the time (1E5-M).

[In economics it] is more to sit in a group and discuss. . . in programming no extra
work. . . just delivering the product (1M1-L)

These differences also have a consequence for passing:

[in economics] you can often get a few points lab like. . . in math everything is on the exam
(1E9-L).

As a consequence of the investment, the worth of credit points in mathematics and
other subjects differs:

two points in maths are worth more than two points in economics (1I8-H).
the four-point course in economics. . . it is half. . . if even that. . . as difficult as the maths

courses of four points (1I12-L).
the economics course. . . is very, very simple compared to maths. . . it is the same with the

environmental courses that have been. . . it is maybe 10 or 20 times more you spend on the
maths course (1E8-M).

In Table 33.5 the students’ comparisons of investment are summarised.
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Table 33.5 Contrasts between mathematics and other subjects related to investment of time, effort,
and the worth of credit points

Mathematics (Some) other subjects

More time needed because
- special difficult way of thinking
- slower process to get into it
- more demanding

Less time needed

More continuous work needed because
- organisation in lectures
More difficult to pass because
- only one exam

Less continuous work needed for
- labs and project-based work
Less difficult to pass because
- variety of forms of examination

More investment because
- more important and foundational
- more respected subject
- more demanding and more fun
- more intense and extensive

Less investment needed

More work, time and effort per credit Less work, time and effort per credit

In summary, the students described the knowledge structure of mathematics in
different ways, ranging from connections between axioms and theorems to a collec-
tion of methods. The verticality of the subject, also reflected in its organisation in the
form of regular lectures, amounted to a more continuous engagement with the
subject. Many forms and habits of working, which are related to the knowledge
structure, were appreciated by the students in contrast to other subjects, which they
perceived as less coherent, unprincipled or lacking clarity of criteria. Doing calcu-
lations and obtaining solutions was described as more enjoyable than extracting
information from texts.

There were only a few who expressed a lack of appreciation in relation to
intellectual demands, abstractness and theoretical outlook. Other mathematics-
heavy subjects, “mixed subjects”, were seen as either more theoretical (in terms of
conceptual structure of the other subject) or more practical (in terms of applications).

The perceived intellectual demand, the amount of material in combination with
the pace, and the perceived importance and status of mathematics led to more
investment of time or effort. As an outcome, a symbolic economy of credit points
emerged, with different exchange rates between mathematics and economics. Hier-
archies were also established in terms of the amount of the matter covered, with
mathematics ranking over or similar with electronics, and over programming. Also,
the stronger coherence, its function as basis for other subjects, and more clear criteria
for a legitimate knowledge production contributed to a higher ranking of mathemat-
ics as compared to for example chemistry, economics and environmental
engineering.
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33.5 Discussion

The framing and findings of our investigation of students’ perceptions and experi-
ences of mathematics in the form of service-courses alert to the institutional envi-
ronment, in which these are situated. As we outlined in the second section, without
overusing the idea of a profession-specific habitus of mathematicians in distinction
from engineers, the concept still might help to draw attention to processes of how a
stratified organisation of the academic field is (re)produced at the level of interaction
at the micro-level in emerging hierarchies of subjects and students. Other examples
pertain to mathematics service-courses in teacher education regarding the future
careers that separate groups of students (Hanke & Schäfer, 2018) or the transition
from school to university (Stender & Stuhlmann, 2018). A distinction between types
of students is most salient in concerns about support-centres for statistics, in partic-
ular for students from the ‘soft’ sciences (Lawson et al., 2020).

While it might be that “[t]he ‘pure and applied’ dichotomy is just a false
opposition” (Alsina, 2001, p. 10), we have argued with reference to Bourdieu that
it still might be inherited via a habitus that reflects the socio-historical background of
the organisation of the field, embedded in a struggle for status, resources, the ‘best’
students and influence on the curriculum. Our findings concerning the recognition of
what counts as a mathematics text proper, in which students as well as mathemati-
cians ranked textbook-excerpts, reflect that the success in the service-courses
depends on recognising the criteria of pure mathematics, and not of mathematical
applications or modelling in the engineering sciences. Hence, in the context we have
investigated, the distinction between ‘pure’ and ‘applied’ mathematics still (re)-
produces in the socio-cultural practice, in which service-courses are embedded, a
specific social hierarchy based on implicit rules and the values and schemes of action
embodied by its members.

Regarding the usefulness of mathematics, the students indeed recognised some
mathematics in other courses, despite the incongruency of knowledge criteria in the
core mathematics with what counts as mathematics in the programme-related core
courses (such as mechanics, electronics or programming). The idea of mathematical
modelling (either in the form of theoretical models or through the use of mathematics
as an empirical language of description) did not surface, just as little as any concrete
examples of useful mathematical techniques. However, some alerted to the
importance of knowing mathematics for understanding outputs of mathematical
black-boxes. As Artigue et al. (2007) noted in the context of (mis)recognition of
mathematics by engineers, it is the definition of mathematics that is at stake. The
characterisation of different mathematical cultures in terms of “praxeologies”
(Hochmuth & Schreiber, 2015; Job & Schneider, 2014; Winsløw et al., 2014), in
which the concomitant knowledge norms emerge from socialisation in
institutionalised practices, certainly relates to the idea of a professional habitus that
follows a repertoire of practical schemes as per the writings of Bourdieu.
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Despite the lack of perceived usefulness, the students in general did not resemble
the often quoted dissatisfied group of customers of service-courses, which do not fit
their needs. However, they did not conceive of mathematical methods as tools for
solving profession-related problems either. The mathematical content featured as
unrelated or as foundational for methods used in other disciplines (‘understanding
what one is doing’), reminiscent of the idea of many mathematicians that theory
must precede applications.

Much more salient and held by most was the idea that mathematical activities
develop their ‘faculty of reason’ (cf. Sect. 33.2), which we, however, further
differentiated into descriptions of ‘introversive’ mental schemes (e.g., logical think-
ing) and ‘extroversive’ mental schemes in the form of approaches to solving
problems. The latter were described in similar ways by many, even in a reified
form as “problem-solving-thinking”. Hence, a form of a not directly useful mathe-
matics, in which nevertheless much time and effort was invested, was – perhaps as a
compensation – interpreted as at least providing some orientation for action
(in contrast to only for perception), which we might interpret as in line with an
engineering habitus rather than with a general “mathematical habitus” (Kleanthous
& Williams, 2013).

In the students’ perceptions and experiences in comparison with other subjects,
not only contrasts, but also hierarchies emerged between subjects. Mathematics
enjoyed a high status based on a set of values related to perceived coherence,
precision, clarity of criteria or associated higher intellectual demands. Lower ranked
subjects were, for example, programming, chemistry, environmental engineering
and economics. The latter featured as paradigmatic example of a subject lacking
rigour, clarity and verifiable criteria for knowledge production, which obviously
irritated the habitus of many students. Based on the greater amount of time and effort
spent for work in mathematics, a symbolic economy of credit points emerged, with
mathematics credits as the stronger currency.

Altogether the students’ views reflect a hierarchy in two dimensions. One con-
cerns the difference between foundational and applied subjects, the other between
‘rigorous’ and ‘inexact’ sciences. The disavowal of features attributed to ‘soft’
sciences can be interpreted as a socialisation into engineering professions, with a
habitus that (mis)interprets these as detached from social or political contexts. It
would be interesting to investigate whether the role of mathematics and the ‘soft’
sciences is seen differently by those who have chosen the programme Energy and
Environment, for which we find some indication in our data.
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Chapter 34
Early Developments in Doctoral Research
in Norwegian Undergraduate Mathematics
Education

Helge Fredriksen, Simon Goodchild, Ninni Marie Hogstad, Shaista Kanwal,
Ida Landgärds, Yannis Liakos, Floridona Tetaj, and Yusuf F. Zakariya

Abstract This chapter reports from the early development of a Norwegian centre
for excellence in (higher) education that was initially proposed to promote a vision of
improved learning experiences in service-mathematics for students of other study
programmes such as engineering, economics and science. The chapter considers the
initial focus of the Centre’s programme that sought to develop an international
network of expertise and to learn from literature that exposed possible reasons for
students’ poor performance in mathematics. The second part of the chapter com-
prises seven brief reports from doctoral research promoted by the Centre. This
research forms an important part of the Centre’s effort to develop a programme of
research into undergraduate mathematics education (RUME) in Norwegian higher
education contexts, the scope of which is briefly described. The doctoral research
reported offers an overview of inquiries into issues of concern central to the Centre’s
vision – active learning approaches and students’ attitudes. The studies are mostly
qualitative inquiries, these explore alternative teaching approaches such as “flipped
classroom” online and blended learning, the use of digital simulations and model-
ling, competence development, and targeted provision for weaknesses in prior
knowledge. Additionally, one study employs cutting edge statistical models to
expose causal effects of students’ self-efficacy on learning performance. As with
all doctoral research, these studies make individual contributions to the international
body of knowledge in the topics researched, together they represent an important
foundation for RUME in Norway.
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The purpose of this chapter is to describe early developments of research that focuses
on university mathematics education in Norway. Until the creation of a Centre for
Excellence in Education (MatRIC) that addressed mathematics teaching and learning
in Norwegian higher education institutions, there had been limited engagement in
research in university mathematics education in the country. The mission of MatRIC
is to improve the quality of teaching and learning through the sharing and dissem-
ination of good practice, to encourage and support innovation in instruction and
learning support, and to develop research into undergraduate mathematics education.
This chapter does not report a single study, nor does it set out to inform about results
that could influence instruction in other institutional or national contexts. Rather, the
chapter describes some of the contributions to knowledge creation that form part of
MatRIC’s endeavour. More than anything, the chapter places a marker that lays out
early developments of the research field and a statement of the present position. It is
possible the true value of the chapter may lie in the future, as the foundations are
evaluated and examined for characteristics that have advanced, or possibly
obstructed development of the research field.

A major part of the chapter is composed of seven brief accounts of research
pursued by doctoral fellows whose projects contribute to the knowledge creation
endeavour of MatRIC, Centre for Research, Innovation and Coordination of Math-
ematics Teaching. The common ground for the research projects reported is their
focus on teaching and learning mathematics as a service subject within Norwegian
universities. The research projects adopt a variety of approaches to address concerns
about teaching development (flipped classroom and blended learning approaches),
shortcomings in students’ prior knowledge, use of digital technology in learning,
mathematical modelling, and exposing causal relationships between learning
approaches and outcomes. The range of projects pursued is indicative (not
encompassing) of the breadth of challenge confronting a Centre established with a
vision that focuses on “students enjoying transformed and improved learning expe-
riences of mathematics in higher education.” Before introducing these brief
accounts, the background of MatRIC and challenges faced by mathematics learners
and teachers in Norwegian universities are described.

MatRIC is a Norwegian Centre for Excellence in Education (CEE), the CEE
status was awarded at the beginning of 2014; each centre receives national funding
for a period of 5 or 10 years. The CEEs are expected to disseminate excellence in
education, and promote teaching and learning based on, and informed and enriched
by, cutting edge research and development. CEE status is awarded on the basis of
evidence of existing excellence in education together with a convincing action plan
for achieving the national CEE programme’s goals.

Initially, MatRIC focused on teaching and learning mathematics as a service
subject, that is mathematics within other educational programmes such as econom-
ics, engineering, and science. This focus reflects the balance of mathematics



education at the host institution, University of Agder (UiA). The university evolved
from several smaller institutions that were especially concerned with professional
education such as teacher education, engineering, health care, etc. Consequently,
professions-oriented education is well-developed at UiA, and several hundred stu-
dents study mathematics for economics and engineering. Although the proposal for
MatRIC pointed to several evaluations of the university’s educational provision that
indicated excellence in mathematics teaching,1 high failure rates at the end of
students’ first mathematics courses were endemic. Regularly around 40% of stu-
dents, or more, would not achieve a pass grade resulting in unacceptably high
repetition and dropout from programmes.
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International research suggests there could be two fundamental reasons for the
failure rates noted above – large classes and deficiency in prior knowledge. It must
be admitted that much of the research relating to the effect of class size comes from
school classes and is restricted to classes of less than 50 students (Englehart, 2007).
The interpretation of the research is contested, it is used both to argue that class size
has no effect and does have a significant effect on students’ performance. However,
the research to which the reader is directed here is the widely cited meta-study of
Freeman et al. (2014). In this meta-study of 225 research reports relating to the
positive effect of active learning approaches it is noted that the larger gains
(by students in active-learning classes) were noted in classes with fewer than
50 students. At UiA, service mathematics for economics and engineering students
could number between 250 and 500 students. Service mathematics classes of this
size are not unusual in Norwegian universities.

Reasons for the inferior performance of students in very large classes may
be hypothesised by extrapolating from research at school level mathematics and
educational/psychological research. In the context of an under-developed research
context, such as Norwegian research into university mathematics education, such
extrapolation from related contexts – international, educational level and disciplin-
ary knowledge – provides a useful starting point. The first issue we note is that with
large groups it is difficult to provide timely and constructive feedback on individual
student’s work; the positive effect of feedback is well-known (e.g., Black &Wiliam,
1998; Hattie, 2008) and not contested. MatRIC addresses this issue by
exploring alternative forms of assessment and feedback provision, in particular the
use of computer aided assessment. Another consequence of the very large classes,
perhaps not leading to high failure rates directly, but resulting in diminished student
motivation and interest is that summative assessments tend to be based on routine
tasks. Such tasks are favoured because they are easier and quicker to mark and
apparently have greater statistical reliability than open problem-solving tasks that
make greater demands on the markers’ judgement. Students’ preparation for assess-
ment is likely to be extrinsically motivated and focus on procedural fluency rather
than conceptual understanding, and extrinsic motivation is argued to reduce

1Most of these were programme or institutional evaluations conducted by the Norwegian Agency
for Quality Assurance in Education (NOKUT).



engagement (Deci & Ryan, 2000). Motivation and interest are also likely to fall
victim to the practice of forming large groups of students from several programmes
of study, thus obstructing attempts to present the mathematics as relevant to indi-
vidual students’ interests. Furthermore, in an attempt to provide learning support to
smaller groups of students, considerable use is made of student learning assistants
(SLAs). At UiA these are drawn from cohorts in their later years of study on
bachelor- and master-level courses. These students are committed and enthusiastic
and MatRIC has developed a programme to provide them with some preparation for
the task and on-going support. Nevertheless, SLAs lack the depth of knowledge and
experience of course teachers.
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As noted, students’ poor performance could also arise from weaknesses in their
prior knowledge and basic mathematical skills on joining courses. In Norway, many
students embark on courses with weak grades in mathematics from their high school,
or they may have followed a mathematics course at high school that does not provide
the foundation required (Opstad et al. 2017). The Norwegian Mathematics Council
has tested students at the beginning of their first semester biennially for over two
decades, the tests consistently reveal around half the students registered on service
mathematics courses are unable to cope with around 50% of the grade 10 mathemat-
ics curriculum.2 MatRIC addresses this issue through the development of online
video tutorials (in Norwegian) and Drop-in support centres following the pattern
developed by the sigma network in the UK and Ireland (Grove et al. 2020).

In the UK an investigation into reasons for students dropping out of university
programmes was undertaken for the Government (National Audit Office, 2007).
There has not been a similar investigation in Norway, but the findings of the UK
report may be relevant to demonstrate the above observations. Albeit apposite, the
report may only expose a more complex situation than suggested in the foregoing.
The UK study revealed that STEM3 students “considered together, . . . are less likely
to continue to a second year of study than students following other subjects”
(National Audit Office, 2007, §1.25, p. 19.). However, dissatisfaction with the
course or institution and lack of preparation were only two of several categories of
reason for withdrawal, other factors were personal, lack of integration, wrong
choice, financial, and to take up a more attractive opportunity (ibid., §1.28, p. 23).

Internationally, there already exists a substantial body of research that can be
called upon to lead developments in teaching and learning in university mathematics
reported in journals4 and specialist conferences and topic study groups.5 However,
prior to the founding of MatRIC, research in undergraduate mathematics education

2Reports from the tests, in Norwegian, are available at https://matematikkraadet.wixsite.com/
matematikkraadet/forkunnskapstesten
3STEM: Science, Technology, Engineering, and Mathematics.
4E.g., Teaching Mathematics and its Applications, and International Journal of Research in
Undergraduate Mathematics Education.
5E.g., The MAA SIG RUME Conference, INDRUM Conferences and CERME and ICME Topic
Groups.

https://matematikkraadet.wixsite.com/matematikkraadet/forkunnskapstesten
https://matematikkraadet.wixsite.com/matematikkraadet/forkunnskapstesten


was under-developed in Norway. To convince teachers in Norwegian universities of
the need to reflect critically on practices and consider alternative approaches to
teaching and learning mathematics, MatRIC has sought to develop research-based
evidence from Norwegian higher education settings to reveal the relevance of the
corpus of international research to local conditions. MatRIC has approached this in
several ways, such as using small “seed-corn” grants to promote lecturers’ action
research projects and supporting PhD fellows’ research.
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In Norway, PhD fellowships are usually funded by the Ministry of Education and
Research. Fellowships include temporary employment at the university and aca-
demic costs; occasionally the latter may be subsidised from other funding sources.
Fellowships are allocated to the university to distribute. MatRIC was provided with
four fellowships to focus on researching undergraduate mathematics education
(RUME). These created a small community of fellows that attracted others with
open (not tied to a project or Centre) mathematics education fellowships to join the
group. To date, around ten PhD projects have focused on RUME. The research
pursued by the fellows tends to reflect opportunities rather than a sharply focused
knowledge creation agenda, this may explain the rather disparate collection of brief
reports that follows. Opening a broad front in this way is a means of making quick
connections to existing international research, the downside is that it does not make a
strong contribution to existing knowledge in the field. Although the fellowships have
been distributed through UiA, the research has been conducted in several universi-
ties within Norway. Despite the variety of projects pursued, they all focus on the
fundamental issues outlined above: characteristics of teaching and learning in large
and small classes, relevance to the programme of study served by the mathematics
studied, prior knowledge and use of technology to support learning. The chapter
continues with these brief accounts. It is possible the reader may feel somewhat
disappointed by the brevity of the accounts because they provide little more than an
abstract of the research described. In most cases there has been an attempt to publish
preliminary findings, in some cases where the research is more advanced several
papers are in the public domain. The interested reader is encouraged to refer to these
other published sources or contact the author directly.

34.1 Examples of Doctoral Research in RUME Supported
by MatRIC

34.1.1 Researching Flipped Classroom Approaches by Helge
Fredriksen

This research comprised a case-study of three consecutive cohorts of engineering
students taught using the approach often referred to as flipped classroom (Bergmann
& Sams, 2012). The qualitative research, based within a naturalistic paradigm
(Moschkovich & Brenner, 2000), considered various aspects of mathematical



learning when students are subject to this form of learner-centred teaching (Stephan,
2014). Research on flipped classroom approaches (FC) has increased substantially
during the last decade. However, most studies consider mainly student satisfaction
and performance comparisons between traditional lecture-based and FC teaching. As
such, they provide little insight into the fundamental aspects of what makes the FC in
tertiary mathematics education efficient or not. There is a notable lack of research
providing qualitative socio-cultural studies of FC teaching and learning. A central
aim of this study was to address these shortcomings in the research field in addition
to a more general investigation of how FC teaching impacted on the learning of
undergraduate mathematics. This goal led to various research questions that consid-
ered aspects of students’ learning of mathematics in an FC environment. Special
attention was given to how the knowledge gained from the videos became integrated
into the mathematical discourse in the learning community of students and teachers.
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The research design is framed in terms of an initial, an intermediate and a final
study, each involving different cohorts of students. Data for this thesis were mostly
collected through classroom filming of group work in addition to students’ inter-
views. The methodological aspects of the thesis involved inductive coding informed
by the various theoretical frameworks (Braun & Clarke, 2006; Patton, 2002), in
addition to commognition.

The initial study showed that the transition towards FC teaching was not without
obstacles for the students, leading to a consideration of dialectical contradictions in
the activity system of the FC (Fredriksen & Hadjerrouit, 2020a). An important result
from this initial study showed that students’ participation in the mathematical
discourse were crucial for the success of FC. Thus, the commognitive framework
of Sfard (2008) became a reasonable choice to further analyse students’ participation
in mathematical problem-solving in-class, extending the leading discourse from out-
of-class videos (Fredriksen & Hadjerrouit, 2020b).

The work on studying students’ engagement in the mathematical discourse
showed how important task design was for facilitating it. The task design heuristics
of Realistic Mathematics Education (RME) was found to align well with FC
principles of collaborative learning in-class. In the third paper, students’ work at
the situational level of RME (Gravemeijer & Doorman, 1999) was extended to
formally include pre-situational activity through the out-of-class video-preparation
(Fredriksen, 2021a). Finally, drawing on insights gained from the three studies,
further consideration was given to the affordances and constraints students encounter
in a flipped mathematics classroom (Fredriksen, 2021b). Based on the second-
generation activity model of Leont’ev (1974), the study presented operational
affordances out-of-class, action affordances at the mathematical task level, and
finally activity affordances at the collective level.

A major finding from the research was the unveiling of contradictions in students’
sense of autonomy and willingness to consider conceptual tasks in a collaborative
learning environment. Moreover, alignment of out-of-class video content and
in-class task design greatly impacted learning experiences, according to interviews
and observations in-class. This latter finding emerged from both commognitive and
RME perspectives. Under such circumstances, there was empirical evidence for



students’ reification of procedural content from videos during in-class work with
mathematics. During the RME sessions, the teacher as well as the pre-situational
video stage had an important impact on students’ transitioning between modelling
stages. A key finding from the study of affordances related to students’ opportunities
for interacting with the mathematical topics through various ways in a FC context,
advantageous for retention purposes. Constraints for conceptual learning may
emerge if activities in-class appear disconnected from out-of-class preparation.
However, out-of-class videos could form an effective medium for procedural learn-
ing, preparing students for in-depth conceptual learning through in-class efforts on
tasks facilitated through group-work.
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34.1.2 Researching Online and Blended Learning
Approaches in Mathematics for Engineering Students
by Shaista Kanwal

In the present digital era, various possibilities of technology integration in mathe-
matics education have given rise to online and blended instructions models (Borba
et al., 2016). Many technological resources including internet-based automatic
systems, online tools for graphing and visualising mathematical properties, online
calculators, and programming are integrated in mathematics teaching and learning
activities. However, little research has been done on students’ interactions with the
technology enhanced learning environments and their ultimate engagement with
mathematics (Borba et al., 2016; Webel et al., 2017). This project set out to study the
impact of the technology enhanced learning environments on the quality of students’
engagement with mathematics. The collected findings (Kanwal, 2020) focus on
undergraduate engineering students’ learning activities in an online and in a blended
learning environment, and illuminate the role of the factors from the environments in
students’ engagement with mathematics.

The project, based within a naturalistic paradigm, adopts case study research
design. Two case studies were conducted in consecutive semesters of 2017 involv-
ing four participants from the same cohort of electronics engineering students in
calculus courses. The first case study concerned the online environment, and the
second case study concerned blended environment. The online environment
involved administration of homework and assessments through an automated system
(MyMathLab), lectures in the form of tutorial videos, and the final examination in
digital format. In the blended environment, face-face lectures and students’ group
engagement in paper-based tasks were included in addition to the online homework
and assessments. Data were collected in form of video-recorded observations of
students’ work, screen-recordings of the computer-based activity, and students’
weekly journals about their use of different resources in their mathematics work.

Cultural historical activity theory (Engeström, 2014; Leont’ev, 1974) was used as
an overarching theoretical framework. Engeström’s (2014) model of activity was
utilised to trace the contributing macro elements from the collective activity system.



Leont’ev’s (1974) theoretical model of hierarchical layers was utilised to make sense
of students’ micro level interactions with tools and ultimate engagement in mathe-
matics. In particular, the analysis of action and operation dynamics was central to
micro-analysis of engagement with mathematics (Kanwal, 2019). In an earlier study
(Kanwal, 2018), the documentational approach to didactics (Gueudet & Pepin,
2018) was used to study students’ use of resources and their rationales for the
selection and use of particular resources. Furthermore, students’ mathematical
reasoning processes were explored in technological and paper and pencil environ-
ment (paper under review).
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With regards to students’ activity in the online environment, the findings show
that students incorporated several online resources including GeoGebra,
WolframAlpha, and online calculators for solving posed tasks in MyMathLab
(Kanwal, 2018). These tools offered wide action possibilities due to their different
functionalities. Regarding the quality of engagement with mathematics, students’
actions were focused on process of solving a task whereby engaging with mathe-
matical properties at the one end and obtaining final solutions at the other end. The
relationship between posed mathematical tasks and the available tools played a part
in how effectively students made use of the tools. The tasks which required appli-
cation of algorithms could be solved using online calculators and therefore did not
require engaging with the solution process. On the other hand, the tasks which did
not ask for direct application of algorithms led students to effectively use tools for
exploring involved mathematical properties. Moreover, the internal conditions of
MyMathLab also played a significant role in the sense that it had no mechanism for
ensuring students’ engagement with the process of solving the tasks as it could only
evaluate the final answers. One of the reasons for students’ selection of tool use was
found to be the macro-condition of the online examination in the course as the
students opted for the resources that they could use during final digital examination
(Kanwal, 2019).

The quality of students’ engagement with mathematics depended on how and
which tools were used in relation to the posed tasks. In this regard, the research
points to the need for ensuring integration of technology in such a manner that it
facilitates students in exploring mathematical properties instead of bypassing the
involved mathematics. This argument resembles that of Borba (2009), who asserts
that in a technological environment, mathematical tasks require thoughtful consid-
erations if we want students to engage with mathematics effectively.

34.1.3 Researching Learning with a Visualisation
and Simulation Program by Ninni Marie Hogstad

This research, framed within commognitive theory (Sfard, 2008), sets out to study
first-year engineering students’ discourse about the mathematical object ‘definite
integral’. In the professional work life of engineers, mathematical objects are used



and operated upon for specific practical goals in industry. Within engineering
studies, students are introduced to and learn how to operate on several mathematical
objects (e.g., functions, the derivative, and equations) where one of the most often
applied key objects is the definite integral. Thus, it is important to investigate how
engineering students make meaning of and communicate about this object as a
foundation for its further applications.
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Fig. 34.1 The visual interface of Sim2Bil

Within engineering studies, students also meet different interactive digital tools
designed for educational purposes. One such tool is Sim2Bil which has been
designed at UiA for university students to realize the definite integral in an algebraic
operator (ʃ), an area under a graph and an area-accumulation function. Each of these
three realizations are characterized to be perceptually accessible and contribute to the
students’ meaning of the object ‘definite integral’. The tool offers an animation of
two cars travelling in a straight line from a start line to a finish line. Figure 34.1
shows the interface of this tool. The animation is shown in the upper left corner. The
cars’ behaviors are modelled by two velocity functions (see the lower right corner).
Two functions are already typed in as a default: v1(t) = 100 and v2(t) = 50t. These
functions make the cars run with different velocities and arrive at the finish line
simultaneously after 4 s (see the description of the second assignment below given to
the students). Students can insert other functions themselves. Also displayed are two
graphs (lower left corner) one for each of the velocity functions and a shaded region
beneath each of the graphs.6

6Sim2Bil is an application in SimReal and can be accessed here: https://simreal.no

https://simreal.no
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The aim of the research is to gain insight into engineering students’ mathematical
discourse while using Sim2Bil. Four groups of first year engineering students
working within four task situations participated in the study. This account focuses
on two groups (six students in total) that had access to the digital tool. The
assignments the students worked on were as follows:

• Press “Start” in the program and explain to each other what happens. What do the
shaded areas represent?

• Determine other numbers in the table, so that the cars run with different velocities,
and arrive at the finish line at the same time.

• What can you do to make the green car be only halfway when the red car reaches
the finish line?

• Find the velocities of the green and the red car (v1 and v2), so that v2 is half of v1
when they reach the finish line simultaneously at 4 sec. Can you prove that your
answer is correct?

The first research question concerns the engineering students’ communication, while
the second research question concerns the affordances and constraints of Sim2Bil
experienced by the students when they engage in the group work. By following the
students’ journey in becoming “capable of agentive participation” (Lavie et al.,
2019, p. 424) in the mathematical discourse, it is hoped to gain insights into how
to adapt the teaching in order to prepare the engineering students for further studies.
Within the analysis of discourse, the close relationship between thinking and
communication is considered and features of the students’ discourse such as word
use, visual mediators operated upon, routines applied, and narratives established are
studied.

Until now, different visual mediators operated upon by the students and the
purposes for which they have been used have been identified. These mediators
were within Sim2Bil, paper-based (such as sketches and symbols) and gestures of
the cars’ path and graphs (for identification of gesture as a mediator in students’
discourse, see Ng (2016)). The students used these mediators to communicate about
mathematical aspects and kinematical applications within different stages of the
group work (Hogstad et al., 2016).

To scrutinize the interaction between students and Sim2Bil, the Instrumental
Approach was chosen (Trouche, 2004). With this approach, the techniques the
students applied for the different assignments with Sim2Bil have been analyzed
while acknowledging both the mathematical and technical aspects. The analysis
reveals that the students used both instrumented and pencil-and-paper techniques.
When the students pressed the Start-button, the students were introduced to the
functionalities of the tool and the conditions of the assignments. By starting the
animation, the students were shown how the velocity functions provided the graphs
and the running of the cars. Starting the animation was also used to check if their
suggested velocity functions met the requirements in the assignments. Pencil-and-
paper techniques were used to calculate the integral as an anti-derivative and to find
equal areas beneath the graphs (Hogstad & Isabwe, 2017).
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Currently a study of students’ routine course of action is in progress. In this study,
the relationship between students’ different engagement is being investigated. To
analyze the relationship between these different kinds of engagement, an adapted
methodological lens by Nachlieli and Tabach (2019) will be used. The study derives
from the study reported by Hogstad and Viirman (2017).

34.1.4 Researching Economics Students’ Performance
in Mathematics by Ida Landgärds

Poor performances and high failure rate in the compulsory mathematics course has
endangered the continued inclusion of all students in the University Economics
programme. Especially students who studied a practical mathematics route7 in upper
secondary school face difficulties (failure rates of about 40% are not unusual) (e.g.,
Busch, et al., 2017). A mathematics content gap between the national requirements
for admission to the programme and the local expectations of prior student experi-
ence was identified and indicated unequal opportunities to access the content of the
mathematics course (Landgärds, 2019).

For this reason, building on the educational philosophy of Carroll (1989, p. 30),
that is: “we should seek mainly to achieve equality of opportunity for students,” a
blended-learning pre-course intervention was designed and implemented in 2018 at
UiA. In order to give students, in Carroll’s terms, the “opportunity to learn” topics
that their school course had omitted, or students had not mastered, the intervention
comprised a diagnostic test and a bridging course covering the crucial prerequisites.

It is generally assumed that remediation courses have a positive effect on stu-
dents’ mathematics skills and mitigate the heterogeneity of students’ mathematics
background on entry. However, the few European studies (Büchele, 2020a, b; De
Paola & Scoppa, 2014; Di Pietro, 2014; Lagerlöf & Seltzer, 2009; Laging &
Voßkamp, 2017) show no consensus about the effectiveness of remedial mathemat-
ics courses for raising student performance within the study of Economics. This
study adds to the European literature on remedial course effectiveness. Research into
the effect of the intervention aims to gain an understanding of the aspects of the
pre-course actions that can contribute to equal opportunities and increased inclusiv-
ity of the Mathematics for Economists course, and consequently reduce the
failure rate.

The research set out to investigate the relationship between students’ participation
in the bridging course and their subsequent performance in the Mathematics for
Economists course. Data generation was integrated within the intervention actions,
for example, students’ participation was derived from students’ attendance in

7
“Practical Mathematics” is an optional route for students in Norwegian upper secondary/high
schools that includes limited new theoretical abstractions beyond those encountered up to Grade
10 compulsory school.
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workshops and learning analytics on students’ use of training fields (online quizzes
with help-options where the student can pause and learn more about how to solve
such exercises through videos and written explanations before continuing with the
exercise), written exercises with worked solutions, and written theory documents.
Accordingly, the first research question focuses on process variables (derived from
data about participation) that predict student achievement in the shorter-term (on a
bridging course post-test) and in the longer-term (on the Mathematics for Econo-
mists course exam). The second research question, especially focusing on the group
of at-risk students, is whether the least mathematically prepared students benefit
from participation in the bridging course. To analyse relationships between process
and outcome variables, ordinary-least-square regression (OLS) in several hierarchi-
cal stages with blockwise entry was used.

Results from the first intervention (Landgärds, 2021) indicate students’ use of the
bridging course online resource of ‘training fields’ is a significant predictor of exam
performance. The training fields were intended to guide students in their learning,
taking account of the students’ prior knowledge. They took the form of training
through self-assessment, but whenever the student felt the need for learning about
the topic before answering a question, they could click on “show steps” where they
found written explanations and/or a video about the particular task and topic. Hence,
students themselves set their pace and decided on the content to be learned. The
diversity of pathways is a key to promote equal opportunities to learn the basic
mathematics needed. Individually, the other process variables did not prove good
predictors of the achievement variables. Moreover, there was a significant positive
effect of course participation (composite process variable) on the post-test score and
on the examination score within the whole group of students. And importantly,
participation was found particularly valuable for students who followed the practical
mathematics route in school as the benefits of stronger participation were markedly
higher levels of capability on the exam.

A new round of data collection is in progress. More data will enable further
investigations of significant educational aspects of the bridging course. The goal is to
further develop the design of the pre-course intervention to best support the students
in their learning of basic mathematics skills needed in studies of economics to
achieve equitable education.

34.1.5 Researching the Development of Mathematical
Competency of Biology Students by Yannis Liakos

Evaluating competencies in education has been the focus of several studies (Hartig,
et al., 2008). However, little has been done at the higher education level, with several
studies pointing out the need for competence models of assessment (e.g., Blömeke
et al., 2013a, b). Several instruments for assessing competencies are available
(OECD, 2010; Blömeke et al., 2013a, b; Hill et al., 2005). However, the assessment
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of competencies at the undergraduate level is still an area under development, and
further study for the underlying competence structures is needed.

This study aims to add knowledge to this area by exploring and assessing
competency development in undergraduate studies and creating individual compe-
tency profiles for the students. The research pursues an interest in exploring the
progress of students’ competency development during a series of calculus sessions
where they engage in solving non-routine mathematical tasks in the context of
biology.

STEM studies are becoming increasingly interdisciplinary (e.g., Drake & Burns,
2004), and mathematical competencies are deemed necessary for all students. Smith
and Karr-Kidwell (2000) conceptualize the interdisciplinary nature of STEM as
“[a] holistic approach that links the [individual] disciplines so that learning becomes
connected, focused, meaningful, and relevant to learners.” (p. 24). Different disci-
plines may require different mathematical competencies without excluding the
possibility that some mathematical competencies are considered necessary for
most disciplines. Adding to this assumption, how students in biology departments
develop their mathematical competencies will presumably differ from the develop-
ment in other STEM fields. In the light of these assumptions, the following research
questions are addressed in this project: (1) What is the progress of individual
competency development over time for a student who participates in a series of
calculus sessions working on non-routine mathematical tasks set in a biology
context? What is the competence profile of each student after this series of calculus
sessions? (2) Are the competencies interrelated and, if so, how?

This research includes a series of calculus sessions in a Norwegian university’s
biology department. Participants were first-year students following their main cal-
culus course during autumn semester. They agreed to attend these sessions as part of
an additional learning opportunity offered by their department. They would work on
tasks that addressed four mathematical areas: periodic functions, exponential growth
and regression, population dynamics, and integration and modelling.

For the data generation, traditional uses of observation methods were adopted,
including video recordings, researcher’s field notes, and the use of smartpens to
secure the documentation of students’written work in digital form. The data analysis
developed a competence framework that mainly built on an already existing one,
namely, the KOM model (Niss, 2003), and can be thought of as an intersection of
some of the literature’s main sets of competencies (e.g., Niss & Højgaard, 2011;
Maaß, 2006). This framework includes various sets of competencies (e.g., mathe-
matical thinking and reasoning) believed to be necessary for undergraduate students
in STEM programmes. Employing this framework and applying a thematic analysis
on students’ transcribed work, codes (corresponding to each of the mathematical
competencies) were assigned to occurrences that were hypothesised to signify the
activation of a particular competency(ies) while the students were working on their
assigned tasks. Once the competency activation was identified, a scaling instrument
constructed to assess (in levels) the quality of this activation, was employed to
explore student’s competency level. Quality of activation is an evaluation of a set
of attributes that characterize a mathematical competency. These attributes concern
the student’s awareness of the task solution vision (T.S.V.), their use of



728 H. Fredriksen et al.

Fig. 34.2 Development graph for the interpret and translate elements of a model (Int.El.) compe-
tency aspect

mathematical language (M.L.V.), and how independently the student worked (Pr.In.
T) to activate that competency. The analysis was accompanied by a graphical
illustration (Fig. 34.2) of the competency development.

This research determined that the students displayed development of a set of
mathematical competencies that varied from student to student and from one math-
ematical area to another. This variation was explored by employing the afore-
mentioned scaling instrument. The students displayed evidence of competency
development when working on the population dynamics sessions, and evidence
was also found during the exponential growth and regression sessions. For example,
Fig. 34.2, shows the profile of one student regarding the development of a particular
aspect (competence to interpret and translate elements of a model, coded: Int.El.) of
the mathematical modelling competency. Each shaded area represents one calculus
unit (blue: periodic functions, orange: exponential growth and regression, grey:
population dynamics, and green: integration and modelling). It can be seen that
the most frequent activation occurred during the population dynamics unit.

The illustration in Fig. 34.2 provides additional information, besides the fre-
quency of these activations, that gives an account of competency development.
This study also inferred that particular pairs of competencies appeared to be acti-
vated concurrently more often than others and that the activation of a particular
competency may exclude the possibility of activation of another competency.

34.1.6 Researching Biology Students’ Use of Mathematics by
Floridona Tetaj

The field of modern fisheries stock assessment is heavily dependent on mathematical
models (MMs) which help fisheries biologists understand how fish populations
respond to exploitation and harvesting. This project, focusing on a Norwegian
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graduate course called Ecosystem and Fisheries Assessment Models (EFAM) which
introduces various MMs used in fisheries stock assessment, addresses the nature of
students’ engagement with MMs. The rationale for the study comes as a response to
various calls for research aimed at understanding the mathematical needs of biology
students (e.g., Steen, 2005; Scheaffer, 2011; Duran &Marshall, 2019). In the current
literature, there is a lack of research that provides qualitative analysis of biology
students’ engagement with MMs and this study aims at contributing specifically
towards this issue.

The research is an exploratory case-study of the course EFAM and the investi-
gation focuses on the lecturer of the course and six students who engaged with
different assignments that employed MMs. This qualitative study, located within a
naturalistic paradigm (Lincoln, 2007), aims at exploring students’ expected engage-
ment with MMs from the lecturer’s perspective and at analyzing students’ perfor-
mance. A commognitive framework (Sfard, 2008) was adopted as an overarching
theoretical framework. Making use of the idea that each discipline (mathematics or
biology) can be conceptualized and operationalized through the notion of discourses
and their respective discursive properties (vocabulary, visual mediators, endorsed
narratives and routines). Characteristics of mathematics discourse (MD), fisheries
discourse and their interactions in the lecturer’s and students’ discourses were
identified. For this purpose, the project was divided into two phases.

The first phase focused on exploring the type of participation that is expected
from biology students with regard to mathematical discourse. This phase takes a case
study approach, which uses multiple sources of evidence (Yin, 2014) such as the six
assignments with which the students enrolled in EFAM engaged during one semes-
ter where the course took place. A semi-structured interview with the lecturer, and
video recordings of the lectures where the lecturer discusses the solutions of the
assignments were also used. The analysis set out to identify the characteristics of the
mathematical discourse present in the task situations and to expose the relationships
that this discourse has with the biological context. To this end, two separate analyses
were undertaken.

The first analysis used a scheme presented in Tetaj (2021) that elaborates an
analytical tool for investigating the characteristics of MD found in contextualized
tasks. The characteristics of mathematical wordings, visual mediators, the nature of
the expected mathematical routines and interactions between discourses present in
the formulations and solutions of the six assignments were investigated. The ana-
lyses revealed that contrary to what is traditionally presupposed, biology students are
expected to engage with a complex subsumed discourse that involves a variety of
mathematical concepts, models, and methods. Moreover, the role that mediators play
in shaping students’ solving trajectories, were explored and thereby two types of
transitions between discourses, named explicit and implicit transitions, were
identified.

Next, using the work of Leont’ev (1974) on activities’ levels, the exploration
focused on the intentions of the lecturer regarding students’ engagement with MD
during the work on the assignments. Through the analysis of the interview and the
video-recordings of his lectures, it was possible to identify assumptions, goals and
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chosen strategies of the lecturer for teaching MMs in EFAM. The results of this
analysis indicated that the lecturer’s motive for engaging students with the MD was
to enable them become part of the fisheries community. This main motive was then
observed in various goals such as the learning of applicability and limitations of
mathematical models, giving students a sense of identity as future fisheries biologists
and of belonging to the fisheries community, and various operations that the lecturer
practiced during his teaching.

The second phase of the project focuses on analyzing students’ work on the
assignments. This phase is currently in progress and the data is yet to be analyzed.
The goal of this phase is to characterize students’ MD and identify challenges that
students face when engaging with MD and transitioning to the biological context.
The data collection for this case includes video-recordings of students while solving
the assignments in groups. The plan of the project is to compare the results of two
phases, hence, obtain a picture of EFAM students’ mathematical needs.

34.1.7 Researching Relationships Between Prior Knowledge,
Self-Efficacy and Approaches to Learning
Mathematics of Engineering Students by Yusuf
F. Zakariya

The motivation for this project is the recurrent poor performance of engineering
students in a first-year calculus course at UiA. In the project, attempts are made to
produce empirical evidence on the areas of concentration, as it concerns the student-
source factors, to alleviate this problem. Previous studies suggest that prior mathe-
matics knowledge, approaches to learning, and self-efficacy, among other student-
source factors, serve crucial roles in fostering students’ performance in mathematics.
However, most of these studies are either old or correlational (e.g., traditional
regression-based studies), which make it difficult to argue for the effectiveness of
interventions on these factors as proxies to enhance performance (Zakariya, 2021).
Thus, the aim of the project is to investigate the effects of prior mathematics
knowledge, approaches to learning mathematics, and self-efficacy on students’
performance in a first-year calculus course.

Two well-established psychological theories are combined to form the conceptual
framework for justifying appropriateness and usefulness of chosen constructs under
investigation coupled with hypothesised relationships among the constructs. These
theories are student approaches to learning theory (Marton & Säljö, 2005) and self-
efficacy theory (Bandura, 2012). A survey research design is adopted with a focus on
first-year engineering students aimed at addressing three research questions. These
research questions are formulated as follows:
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1. Do approaches to learning mathematics differ with respect to the prevalence of
deep and surface approaches among first-year engineering students?

2. Does self-efficacy influence adoption of either deep or surface approach to
learning mathematics among first-year engineering students?

3. What are the direct and indirect effects of prior mathematics knowledge,
approaches to learning, and self-efficacy on performance in mathematics among
first-year engineering students?

The study is framed within the quantitative research paradigm and the data are
generated by using questionnaires, a pre-test of students’ basic mathematical knowl-
edge and final examination scores in an introductory calculus course. Eight research
hypotheses are formulated based on the postulates of the theories coupled with some
insights from the literature. The hypotheses are tested by using some techniques of
structural equation modelling.

The first set of results confirm some psychometric properties such as construct
validity and reliability of a measure of approaches to learning (Zakariya, 2019;
Zakariya et al., 2020a, b). Engineering students’ approaches to learning mathematics
are sufficiently characterised with deep and surface approaches. A novel measure of
students’ self-efficacy on calculus tasks is developed and validated. The results of
the development/validation study confirm an acceptable construct validity, discrim-
inant validity and reliability of the measure (Zakariya et al., 2019). Item qualities
such as difficulty indices, discrimination indices, and item reliability of a measure of
prior mathematics knowledge are also investigated and documented (Zakariya et al.,
2020a, b, c). The results of the item analysis study shape the use of the measure in the
main study.

The second set of results concern the research questions two and three. It is found
that self-efficacy influences adoption of either deep or surface approaches to learning
mathematics among the engineering students. (Zakariya et al., 2020d). It is also
found that prior mathematics knowledge (test performance) has substantial negative
and positive effects on surface approaches to learning and self-efficacy, respectively.
However, its effect on performance was only significant when self-efficacy is not
included in the model. The surface approaches to learning have a negative effect on
students’ performance in the course. Surprisingly, there was no substantial evidence
to justify any considerable effect of the deep approaches to learning on students’
performance (Zakariya, 2021; Zakariya et al., 2021). Accumulated evidence from
this project points to the fact that self-efficacy (i.e., engineering students’ convictions
to solve first-year introductory calculus tasks successfully) has the most substantial
effect on the students’ performance in the course (Zakariya, 2021). Its effect out-
shines the effects of both (measured) prior mathematics knowledge and approaches
to learning mathematics on students’ performance in the course. Therefore, a major
conclusion drawn from the findings of this project is the identification of self-
efficacy as a prime factor whose interventions could enhance students’ performance
in the course.
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34.2 Conclusion

Findings from the projects are disseminated through MatRIC events (conferences,
workshops and seminars), research conferences and national subject councils.
Locally, within UiA, projects are influential in programme developments. It will
also be noticed from the foregoing accounts that the research has already resulted in
several publications, one reason for this is the custom promoted in Scandinavia of
producing a dissertation as a collection of published articles together with an
embracing introduction.

There are many ways in which the research might be classified. The above brief
descriptions indicate the breadth and scope of MatRIC-supported doctoral research
against several classification schemes. For example, although most of the research
takes a qualitative approach, Zakariya’s study is intensely quantitative, and his
analysis depends on advanced and cutting-edge statistical measurement/structural
models. The research includes naturalistic inquiry, intervention research and data
extraction approaches. Both exploratory and developmental research are
represented, and all fit with the so-called “Pasteur’s quadrant” of use-inspired
basic research (Stokes, 1997). The research focuses on several teaching and learning
contexts, from action research on flipped classroom approaches, outsider inquiry of
blended learning, clinical approaches inquiring into students’ use of visualisation,
intervention research with economics and natural sciences. Mathematics as a service
subject in engineering, economics and natural science are also included. Although
MatRIC’s research agenda has been intended to convince local teachers of the
relevance of international research findings to their own practice it is evident from
the individual accounts that the doctoral fellows are intent on making a substantive
contribution to the corpus of international research. Our hope is that their efforts fix
Norwegian RUME firmly in the global arena.

The foregoing accounts reveal considerable diversity in research design, theoret-
ical framing and issues researched. It could be argued that the research field would
have been provided with a more resilient and robust foundation if there had been an
attempt to focus more sharply on fewer issues and ensure more coherence. The
argument for the more open and free approach taken is that it has allowed individual
research fellows, their supervisors and research groups to follow their own interests
and thus, possibly, be better motivated in the research pursued. One positive
consequence of the diversity has been the connections made with a wide interna-
tional network of researchers in university mathematics education reflecting the
variety of Norwegian interests. In the opening paragraph it was suggested that the
value of the chapter may lie at a later moment when MatRIC’s strategy to develop
the research field can be evaluated. The questions that may be of interest could
include whether the research field was sufficiently rooted – both nationally and
internationally. Also, given that MatRIC’s funding will cease at the end of 2023,
whether researchers in the field within Norway have achieved the critical mass that
ensures sustainability and continued development and growth in contributions to the
international community.
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