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Abstract. This paper is concerned with the problem of ensuring both the first
eigenfrequency of the a two-support beam and its first critical force by determining
the required stiffness of supports. This is a quite complex mathematical problem
and well-known scientific literature usually offers a solution only in graphic or
tabular form. One of the main problems is the highly nonlinear dependence of
results on supports stiffness at free vibrations and stability loss. In the paper, these
difficulties are overcome by approximation of nonlinear dependencies using the
least-squares method and getting analytical quadratic approximating functions
instead. As a result, we get a closed-form solution for the problem in the form of
a fourth-degree resolving equation that has an analytical solution. This solution
allows determining support stiffness which provides the first eigenfrequency of
a two-support beam and its first critical force. Replacing the strongly nonlinear
dependencies with simpler quadratic functions, however, adversely affected the
calculation error which can reach 10%. To reduce this error, it is recommended
that the stiffness of both supports be equal or of the same order.
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1 Introduction

There are many beam structures subject to forced vibration along with compressive axial
force. In this case, these structures have to provide the values of the first eigenfrequency
and the first critical force. These conditions can be written as:

f1 ≥ [
f
]
, Pcr1 ≥ [P] (1)

where [f ] and [P] are the allowable frequency and force values, respectively.
The dynamic behavior of the Euler-Bernoulli beam is governed by two 4th-order

differential equations with specified boundary conditions, which reflect beam support
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features. Simple support conditions, like a hinge, fixed-ended, and their combinations,
lead to trivial solutions of the governing equations that can be found in the numerous
scientific literature and dynamics guides [1–4]. In fact, the real supports have some finite
stiffness, which affects both the value of the first vibration frequency and the first critical
force.

Taking into account the finite stiffness of the supports complicates the solution since
it has a form of the transcendent equation without an explicit analytical solution. In
dynamic, different types of support are taken into account in the formof so-called support
coefficients, which are obtained from the numerical solution of governing equations.
In simple cases of fixation, when the support stiffness is zero or infinity, the values
of these coefficients are given in the scientific literature. Finite support stiffness with
corresponding values of support coefficients usually are presented in the literature in the
formofgraphs or tables on thebaseof their separate values.Thismethodof representation
is less convenient in calculations than analytical expressions, since the required stiffness
value usually does not coincide with the presented data.

This paper proposes amethodof solution for the governing equations through approx-
imation of these nonlinear dependencies using the least-squares method and getting ana-
lytical quadratic functions. As a result of which we can solve reverse problems for the
determination of the required supports stiffness, which provides both values of the first
eigenfrequency and critical force for a two-support beam.

2 Methods

Let’s consider the mathematical description of the free vibration and stability problem
for an Euler-Bernoulli beam on elastic supports and get the fundamental equations.

2.1 Governing Equations

Let us consider a straight beam fixed in hinged supports with some stiffness k1, k2 and
exposed to external action in the form of axial force P and uniform temperature ΔT
(Fig. 1). The dynamic behavior of the beam is evaluated by the first eigenfrequency of
bending vibrations and the first critical force.

Fig. 1. Beam with elastic supports.



Analytical Calculation of Beam Supports Stiffness 443

The equation of free vibration of the beam taking into account the action of the
compressive axial force P has the form [1–4]:

EJmin
∂4y

∂x4
+ P

∂2y

∂x2
+ m

∂2y

∂t2
= 0, (2)

where y= y(x, t) is the deflection function; E is the elastic modulus; Jmin is the minimum
moment of inertia of cross section; m is the unit weight, m = ρS, ρ is the density; S is
the cross-sectional area; P is the axial force.

If axial force P reaches a certain critical value, it can lead to a beam buckling. The
stability equation has the form [5–16]:

EJmin
∂4y

∂x4
+ P

∂2y

∂x2
= 0, (3)

The solution of the Eq. (2) for the first eigenfrequency at P = 0 has the form:

f1 = α2

2π l2
·
√
EJmin

m
, (4)

where α is the support coefficient at vibrations, which reflects support stiffness.
The first critical force can be found from Eq. (3) in the form:

Pcr1 = π2EJmin

μ2 · l2 , (5)

where μ is the support coefficient at beam buckling or the so-called column effective
length factor, which also determined by the beam supports.

With the simultaneous action of axial force and free vibration, the obtained solutions
(4, 5) are connected to each other by Galef’s formula [16]:

(6)

where is the first eigenfrequency under action of axial force P; f 1(P = 0) is the
first eigenfrequency in absence of axial force P; Pcr1 is the first critical force.

Let’s decompose the axial force P into two components according to the principle
of superposition:

P = PΔT + PF = αt · ΔT · ES + PF , (7)

where PΔT is the axial force from temperature change; PF is the external force action;
αt is the coefficient of thermal expansion.

Substituting (4, 5, 7) in Eq. (6) gives the equation for the first eigenfrequency, taking
into account temperature and force effects, as well as the method of fixation in the form
of:

(8)

Values of support coefficients α and μ for common cases of supports can be found
in dynamics guides [17–19] or calculated from governing equations solution (2, 3).
However, existing reference books offer a small number of these coefficients for simple
types of beam supports, which have zero or infinity stiffness.
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2.2 Functions of Support Coefficients

Consider the case of the stiffness of the supports k1, k2 between zero and infinity, thenwe
get that the coefficients of the supports will be some functions of their stiffness (Fig. 1):

α = α(k1, k2), μ = μ(k1, k2). (9)

Express the support coefficients through the relative stiffness Ci:

C1 = k1
l

EJmin
,C2 = k2

l

EJmin
. (10)

Then we get new functions:

α = α(C1,C2), μ = μ(C1,C2). (11)

Functions (11) are strongly non-linear and cannot be expressed by simple analytical
dependences; this is a reason that in the reference literature they are presented in tabular
or graphical form only. In our previous papers [20, 21] analytical functions (11) were
obtained for three ranges of stiffness C1, C2.

3 Determination of Required Support Stiffness

3.1 Governing Equation

Let’s express Eq. (9) in a condition form:

f 1 =
(

α(C1,C2)

π l

)2

·
√

1

4m

[
π2EJmin − μ2(C1,C2) · l2 · (αt · ΔT · ES + PF )

] ≥ [
f1

]
.

(12)

Next, we rewrite an Eq. (12) in abbreviated form:

A − μ2(C1,C2) · B = C

α4(C1,C2)
, (13)

where

A = π2EJmin; B = l2 · (αt · ΔT · ES + PF ); C = 4m
[
f1

]2
π4l4. (14)

The solution of Eq. (13) regarding the stiffnesses ofCi requires not the functions (11)
themselves, but their 2nd and 4th degrees, which we denote as μ2 and α4, respectively.
We get these new functions in a few steps. Firstly, we calculated two sets of initial data
from the obtained functions (11) for the stiffness range C = 0…1000. Then we increase
the values in the data sets till the required power. Finally, we approximate the new dataset
using the least squares method and check the quadratic functions as

μ2(C1,C2) = a1 ·
(
C2
1 + C2

2

)
+ a2 · (C1 + C2) + a3, (15)
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α4(C1,C2) = b1 ·
(
C2
1 + C2

2

)
+ b2 · (C1 + C2) + b3. (16)

The calculated coefficient values in the functions (15, 16) are given in Table 1.
Equation (13) takes the form:

A − μ2(C1,C2) · B = C

α4(C1,C2)
. (17)

Table 1. Coefficient values.

Parameter μ2 α4

a1 a2 a3 b1 b2 b3

Zone I: C = 0…10 1,9E−04 1,5E−05 2,5E−07 −1,4 −0,023 −4E−05

Zone II: C = 10…100 −0,01381 −0,00592 −0,000515 34 4,36 0,08

Zone III: C = 100…1000 1 0,938 0,545 97,5 257 456,5

The solution of Eq. (17) has the uncertainty in the form of an infinite number of C1

and C2 combinations, which satisfy a problem. To eliminate this uncertainty, we take
C2 = n·C1· then instead of (15, 16) we get:

μ2(C1) = a1 ·
(
C2
1 + n2 · C2

1

)
+ a2 · (C1 + n · C1) + a3, (18)

α4(C1) = b1 ·
(
C2
1 + n2 · C2

1

)
+ b2 · (C1 + n · C1) + b3. (19)

For the short, we enter new coefficients:

a1n = a1 ·
(
1 + n2

)
; a2n = a2 · (1 + n), (20)

b1n = b1 ·
(
1 + n2

)
; b2n = b2 · (1 + n). (21)

Then Eq. (17) takes the form:

A −
(
a1nx

2 + a2nx + a3
)

· B = C

b1nx2 + b2nx + b3
. (22)

Let’s rewrite:

c1 = −Ba1 ·
(
1 + n2

)
; c2 = −Ba2 ·

(
1 + n2

)
; c3 = −Ba3 + A;

d1 = b1 · (
1 + n2

)

C
; d2 = b2 · (

1 + n2
)

C
; d3 = b3

C
.

. (23)

Finally, we get the 4th degree governing equation in the form:

c1x
2 + c2x + c3 = 1

d1x2 + d2x + d3
. (24)
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or

c1d1x
4 + (c1d2 + c2d1)x

3 + (c1d3 + c2d2 + c3d1)x
2

+ (c2d3 + c3d2)x + (c3d3 − 1) = 0
. (25)

This algebraic equation of the 4th degree (31) determines the required value of the
support stiffness, which is one of its 4 roots. Graphically, this solution can be shown as
one of the intersection points of two 4th degree curves.

3.2 Analytical Solution of the Governing Equation

The 4th degree is the highest order of algebraic equation for which analytical solution
exists [22]. The 4th degree equation has several analytical methods of solution. In this
paper, we use method developed by Nesmeev that presented in his papers [22, 23]. To
do so, let’s transform Eq. (31) so that the coefficient at the highest degree becomes equal
to one:

x4 + a3x
3 + a2x

2 + a1x + a0 = 0. (26)

where

a3 = c1d2 + c2d1
c1d1

; a2 = c1d3 + c2d2 + c3d1
c1d1

; a1 = c2d3 + c3d2
c1d1

; a0 = c3d3 − 1.

(27)

Next, we find the coefficients of the auxiliary cubic equation:

a = 1; b = −a2; c = a1a3 − 4a0; d = −a21 − a0a
2
3 + 4a0a2. (28)

Solution of the auxiliary cubic equation in canonical form requires finding its
coefficients:

p = 3ac − b2

9a2
; q = (ab)3

27
− bc

6a2
+ d

2a
; k = p3 + q2. (29)

Check of the coefficient number signs (29) shows that for the considered range of
support stiffness we get p < 0, q > 0, k < 0. In this case, characteristic angle ϕ can be
defined as:

ϕ = arctg

⎛

⎝

√
|p|3
q2

− 1

⎞

⎠. (30)

From the three roots of the auxiliary cubic equation, the maximum root is correct
only. This root can be found from the equation:

u1 = 2r · cos
(

π − ϕ

3

)
− b

3
. (31)
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Next solution involves two square equations. Let’s find the auxiliary coefficients for
the square equations:

d1 = a23
4

+ u1 − a2; d2 = u21
4

− a0; d3 = a3u1 − 2a1. (32)

sre = 0, 5a3 + √
d1

4
− u1

2
+

√
d2. (33)

The first square equation has a form:

k1x
2 + k2x + k3 = 0. (34)

where

k1 = 1; k2 = a3
2

+
√
d1; k3 = u1

2
−

√
d2; . (35)

Its real root is:

x1 = 1

2k1

(
−k2 +

√
k22 − 4k1k3

)
. (36)

Similarly, we solve the second square equation:

l1x
2 + l2x + l3 = 0. (37)

where

l1 = 1; l2 = a3
2

−
√
d1; l3 = u1

2
+

√
d2; . (38)

Its real root is:

x4 = 1

2l1

(
−l2 −

√
l22 − 4l1l3

)
. (39)

The required support stiffness is the smallest of the previously found real roots:

C1 = x = min(x1, x4); C2 = C1 · n. (40)

Finally, the beam support stiffness can be defined as:

k1 = C1 · EJmin

l
; k2 = C2 · EJmin

l
. (41)

Calculated support stiffness (41) provides the required value of the beam first
eigenfrequency at the specified temperature or axial force.
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4 Discussion

Here, the solution of this problem is reduced to an algebraic equation of the fourth-order
(24) or (25). The solution of this governing equation can be graphically represented as
the intersection of two approximating quadratic functions (Fig. 2). Intersection point
determines required stiffness of supports C1 (40).

The error of the stiffness calculation depends mainly on the accuracy of the approx-
imate functions (18, 19). It is quite difficult to provide high accuracy by using quadratic
functions (18, 19), since the original curves (11) are highly non-linear. In this paper, the
reasonable accuracy is achieved by dividing the full stiffness range into sub-bands, in the
same way as it was done in [20, 21]. Comparative calculations showed that acceptable
accuracy of calculation, up to 10%, is achieved with the support stiffness of one order;
otherwise, error can greatly increase.

Fig. 2. Graphical interpretation of the solution.

5 Conclusion

In this paper, we proposed the solution for the problem of determining the required
stiffness of the beam supports, which provide specified values of the first eigenfrequency
and first critical force. The least-squares method allowed to approximate the non-linear
dependencies by quadratic functions and made it possible to deduce the problem to the
fourth-order algebraic equation. We used analytical method to solve the fourth-order
equation and got calculation error less 10%, which is quite acceptable for engineering
calculations as the first approximation.
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