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Abstract Change point inference is important in various fields of science. Many
different procedures have been proposed in the literature but most of them rely
on some restrictive assumptions such as the normality of underlying processes or
independence of observations. In this paper, a novel likelihood-based technique is
proposed for identifyingmultiple change points inmultivariate processes. It provides
a way to model various covariance patterns and is robust to skewness observed in
data. Through simulation studies, we demonstrate that the proposed procedure is
superior over its competitors. The application of themethodology to real-life datasets
highlights its usefulness and broad applicability.

1 Introduction

The change point estimation in sequential data has become an important task inmany
areas of active research. It assumes the existence of at least two different processes
observed over some time interval. Since the specific times associated with each
process are typically unknown, they have to be estimated along with the processes
themselves. The applications of change point estimation procedures can be found in
medicine [1], ecology [2], pharmacy [3], engineering [4], finance [5, 6], and many
other fields. The problem of process and change point estimation is also known as
phase I in statistical process control. Then, phase II would deal with the detection of
changes in a process flow based on the already estimated processes.

Researchers have been exploring change point problems for decades but there are
still many questions that remain open. One of the earliest papers on the subject was
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devoted to the estimation of a change point inmeans of univariate normal distributions
[7]. The problem with a constant mean but possible shift in variance parameters was
considered by [8–11]. A generalization of both ideas was considered by [12] who
developed a test capable of detecting a change in mean and variance parameters
simultaneously.

Attention has been paid to multivariate settings as well. [13] and [14] considered
the framework with a single change point in mean vectors of multivariate normal dis-
tributions. Soon after that, the estimation of multiple change points in mean vectors
was studied by [15] and [16]. In the same setting of multivariate normal distribution,
[17] proposed a procedure for estimating a change in covariance matrices under the
assumption of a constant mean vector. Recently, [18] developed a test for estimating
change points in mean vectors and covariance matrices simultaneously, thus general-
izing the above-listed ideas. Other directions of research in the area of change point
estimation include inference for the general exponential family [19, 20], nonpara-
metricmethods [21] including probabilistic pruning based on various goodness-of-fit
measures [22], and some others.

In this paper, we consider the problem of estimating multiple change points in
the framework with multivariate processes. The importance of this problem is rather
substantial but the number of existingmethods is very limited (e.g., see discussion on
this topic in [22]). The most traditional approach taken by the majority of researchers
assumes the independence of observations over time as well as their multivariate nor-
mality. Unfortunately, both assumptions are often inadequate or unrealistic. Among
other alternatives, there are two nonparametric procedures employing probabilistic
pruning with Energy statistic [23] and Kolmogorov-Smirnov statistic [24] that are
available through the R package ecp [22]. It is worth mentioning that this R pack-
age is currently the only one that aims at identifying multiple change points in the
multivariate setting. The lack of developments in this important area of change point
inference motivates our methodology. Our proposed technique is based on a matrix
normal distribution. Due to its form, one can model the covariance structure asso-
ciated not just with variables (given by matrix rows) or time points (provided by
matrix columns), but also the overall covariance structure associated with variables
and times. This effectively eliminates some of the common restrictive assumptions
such as the independence of observations at different time points. To make the pro-
posed procedure more robust to deviations from normality, we propose incorporating
one of several available transformations to near-normality. As a result, the proposed
procedure gains robustness features while being capable of accommodating various
covariance structures in data.

The rest of the paper is organized as follows below. Section2 presents the pro-
posed methodology. Section3 investigates the performance of our procedure and
three competitors in various settings. Section4 applies the developed methods to the
analysis of real-life data. The paper concludes with a discussion provided in Sect. 5.
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2 Methodology

Matrix Normal Distribution

Let y1, y2, . . . , yT be a process observed over T time points with each yi following
a p-variate normal distribution. The entire dataset can be conveniently summarized
in the matrix form as shown below

Y =

⎛
⎜⎜⎜⎝

y11 y12 . . . y1T

y21 y22 . . . y2T
...

...
. . .

...

yp1 yp2 . . . ypT

⎞
⎟⎟⎟⎠ . (1)

Here, each row represents a particular variable observed over time, while every
column stands for a p-variate measurement at a specific time point. The overall
variability associated with Y can often be explained by the variation observed in
rows and columns. This leads to the idea of modeling the variability corresponding
to p variables separately from that associated with T time points.

One distribution that can be effectively applied in the considered framework is a
so-called matrix normal one [25] that has the following probability density function
(pdf):

φp×T (Y ; M,�,�) = (2π)−
pT
2

|�| T
2 |�| p

2

exp

{
−1

2
tr

{
�−1(Y − M)�−1(Y − M)�

}}
,

(2)
where Y is the p × T matrix argument defined in (1) and M is a p × T mean
matrix. The p × p matrix� and T × T matrix� are covariance matrices that model
variability associated with rows and columns, respectively. Also, tr{·} denotes the
trace operator. It can be shown that vec(Y) ∼ NpT (vec(M),� ⊗ �), where vec(·)
denotes the vectorization operator that stacks matrix columns on top of each other,⊗
is the Kronecker product, andNpT is the pT -variate normal distribution with mean
vector vec(M) and covariance matrix � ⊗ �. There is a minor non-identifiability
issue caused by the properties of the Kronecker product since a� ⊗ � = � ⊗ a�

for any multiplier a ∈ IR+. One simple restriction on � or � can effectively resolve
this problem. The main advantage of taking into account the matrix data structure
is the ability to reduce the number of parameters to T (T + 1)/2 + p(p + 1)/2 − 1
from pT (pT + 1)/2 in the case of the most general covariance matrix. Hence, the
proposed model effectively addresses a potential overparameterization issue while
still allowing non-zero covariances Cov(y jt , y j ′t ′) for any variables j and j ′ at time
points t and t ′.

As the specific problem considered in our setting deals with vectors observed over
time, matrix � can be conveniently parameterized in terms of a desired time series
process. In this paper, we illustrate the methodology based on the autoregressive
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process of order 1 (AR(1)). Incorporating moving average or higher order autore-
gressive processes is very similar as it affects just the covariance matrix �. In fact,
the AR(1) model has been chosen as an illustration simply because it yields the best
results for the application considered in Sect. 4. Under AR(1), the covariance matrix
� is given by

� = δ2

1 − φ2

⎛
⎜⎜⎜⎝

1 φ φ2 . . . φT −1

φ 1 φ . . . φT −2

...
...

...
. . .

...

φT −1 φT −2 φT −3 . . . 1

⎞
⎟⎟⎟⎠ ,

where φ is the correlation coefficient and δ2 is the variance parameter. Then, one
convenient constraint to avoid the non-identifiability issue associated with � ⊗ � is
to set δ2 = 1 − φ2. This restriction immediately leads to� ≡ Rφ , where Rφ denotes
the corresponding correlation matrix that relies on a single parameter φ. It can be
shown that

|�| ≡ |Rφ| = (1 − φ2)T −1 and �−1 ≡ R−1
φ = 1

1 − φ2
(IT − φ J1 + φ2 J2),

(3)
where J1 and J2 are T × T matrices defined as follows below:

J1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0 0
1 0 1 . . . 0 0
0 1 0 . . . 0 0
. . . . . . . . . . . . . . . . . .

0 0 0 . . . 0 1
0 0 0 . . . 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

and J2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
. . . . . . . . . . . . . . . . . .

0 0 0 . . . 1 0
0 0 0 . . . 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Expressions in (3) are helpful for speedier maximum likelihood estimation as the
potentially time consuming inversion of the T × T covariance matrix � can be
completely avoided.

Change Point Estimation

Consider the problem of estimating change points in the given framework. Let μ0

be the p-variate mean vector associated with the main process. Suppose, there are
K alternative processes with means μ1,μ2, . . . ,μK . Then, the mean matrix M can
be written as M = ∑K

k=0 μkm
�
k , where mk (k = 0, 1, . . . , K ) is the vector of length

T consisting of zeros and ones, with ones being located in those positions where the
kth process is observed. From the definition, it follows that

∑K
k=0 mk = 1T , where

1T is the vector of length T with all elements equal to 1. It can be noted that vectors
mk can present various permutations of zeros and ones. However, in the case of K
shift change points at times t1, t2, . . . , tK , the mean matrix is given by
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M =
⎛
⎜⎝μ0, . . . ,μ0︸ ︷︷ ︸

t1−1

,μ1 . . . ,μ1︸ ︷︷ ︸
t2−t1

, . . . ,μK−1, . . . ,μK−1︸ ︷︷ ︸
tK −tK−1

,μK , . . . ,μK︸ ︷︷ ︸
T −tK +1

⎞
⎟⎠ .

Also, mk =
⎛
⎜⎝0, . . . , 0︸ ︷︷ ︸

tk−1

, 1, . . . , 1︸ ︷︷ ︸
tk+1−tk

, 0, . . . , 0︸ ︷︷ ︸
T −tk+1+1

⎞
⎟⎠ with boundary conditions t0 = 1 and

tK+1 = T + 1. As a result of such parameterization, the mean matrix M involves
p(K + 1) parameters.

The log-likelihood function corresponding to Eq. (2) has the following form:

logL(Y ; M,�,�) = − pT

2
log(2π) − T

2
log |�| − p

2
log |�|

− 1

2
tr

{
�−1(Y − M)�−1(Y − M)�

}
.

Oftentimes, the normality assumption is not adequate and inference based on such
a model may be incorrect or misleading. One possible treatment of such a situation
is to employ a transformation to near-normality. Incorporating a transformation into
the model makes it considerably more robust to possible violations of the normality
assumption. Several immediate candidates include the famous power transformation
proposedby [26], alternative families of power transformations as in [27], or the expo-
nential transformation proposed by [28]. Let T be an invertible and differentiable
mapping representing the transformation operator such that T (y; λ) is approximately
normally distributed upon the appropriate choice of the transformation parameter λ.
In the p-variate setting, the traditional assumption is that the coordinatewise trans-
formation leads to the joint near-normality [29–31], i.e., the p-variate transformation
is given by T ( y;λ) = (

T (y1; λ1), T (y2; λ2), . . . , T (yp; λp)
)�
, where the transfor-

mation parameter vector is given by λ = (
λ1, λ2, . . . , λp

)�
. This idea can be readily

generalized to the matrix framework with T (Y ;λ) representing data transformed to
matrix near-normality based on the p-variate vector λ.

Taking into account the special forms of � and M and implementing the trans-
formation idea, the log-likelihood function can be further written as

logL(μ0, μ1, . . . , μK , �, φ, λ) = − pT

2
log(2π) − T

2
log |�| − p(T − 1)

2
log(1 − φ2)

− 1

2(1 − φ2)
tr
{
�−1(T (Y ; λ) −

K∑
k=0

μkm
�
k

) (
IT − φ J1 + φ2 J2

)

× (
T (Y ;λ) −

K∑
k=0

μkm
�
k

)�}
+ log

∣∣∣ ∂T (Y ; λ)

∂Y

∣∣∣,

(4)
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where the term log
∣∣∣ ∂T (Y ;λ)

∂Y

∣∣∣ represents the log of Jacobian associated with the trans-
formation.

Maximum likelihood estimation leads to the following expressions for μk :

μk =
(
T (Y ;λ) −

K∑
k′=0
k′ �=k

μk ′m�
k ′

)
R−1

φ mk
(
m�

k R−1
φ mk

)−1
,

where R−1
φ is as in (3). Solving a system of K + 1 equations leads to the expressions

for μ0,μ1, . . . ,μK . Maximum likelihood estimation for �k yields the following
expression:

� = (T (Y ;λ) − ∑K
k=0 μkm

�
k )R−1

φ (T (Y ;λ) − ∑K
k=0 μkm

�
k )�

T
.

Substituting expressions for μ0,μ1, . . . ,μK and � into the log-likelihood func-
tion (4) makes the log-likelihood a function of the parameters φ and λ. The max-
imization with respect to these parameters can be done numerically using one of
many available optimization algorithms.

For the purpose of illustration, in this paper we focus on the exponential transfor-
mation of Manly given by T (y; λ) = yI (λ=0)

(
exp{λy − 1}λ−1

)I (λ �=0)
, where I (·) is

the indicator function. In this setting, the log of Jacobian in (4) is given by λ�Y1T ,
where 1T = (1, 1, . . . , 1)� with cardinality |λ| = T .

The problem of change point estimation requires assessing the number of pro-
cesses. To avoid potential problems with the adjustment for multiple comparisons,
simplify calculations, and avoid testing procedures in general, we employ the variant
of the Bayesian Information Criterion (BIC) [32] proposed by [33] specifically for
the change point framework. BIC is also an appealing option due to its connection
to the Bayes factor commonly used in Bayesian inference for comparing competing
models.

As a final note in this section, wewould like to remark that the proposed procedure
focuses on processes with mean vectors μ1,μ2, . . . ,μK . In real-life applications, it
is possible that just some parts of these vectors will be different while the remaining
variables exhibit no change point behavior. The task of detecting changes in specific
variables is a challenging standalone problem that is beyond the scope of this work.
One practical approach can be to search for such variables after detecting differences
in mean vectors first. Such a scenario is considered in Sect. 4.

3 Experiments

In this section, we consider simulation studies devoted to the rigorous evaluation
of the proposed methodology. We investigate the performance of the change point
estimation procedure in two general settings. In both cases, we assume the existence
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Table 1 Parameter values used in the simulation study of Sect. 3

j μ0 μ1 μ2 � λ φ

1 1 1.2 1.1 0.133 −0.033 0 3 {0.1, 0.5, 0.9}
2 1.2 1.7 1.5 −0.033 0.067 −0.033 2

3 −2.3 −2.2 −2.0 0 −0.033 0.033 −0.5

of three processes observed over 100 time points. In the first case, the first process is
observed until the change point at t1 = 10, when the second process starts. Then, the
second process runs until the next change point at t2 = 20, when the third process
starts and runs for the remaining time. In the second setting, the change points are
set to be at times t1 = 10 and t2 = 50. The difference between these two settings is
that in the first situation, the first two processes are observed for a relatively short
period of time, while the third process is observed for much longer. On the contrary,
in the second experiment setting, just the first process is observed for a short period
of time as opposed to the other two processes. The parameters used in the simulation
study are provided in Table1.

Various levels of correlation and scaling as reflected by parameters φ and
�, respectively, are studied. In particular, we consider φ = 0.1, 0.5, 0.9 and
�,�/2,�/4. 250 datasets were simulated for each combination of the covariance
matrix and correlation parameter in both considered setting, thus, yielding 4,500
simulated datasets in total. The proposed technique assumes that the exact location
of change points is known. The quality of the model fit is assessed by means of BIC.
It can be noticed that in the search for the optimal model with K change points,
(T − 1)!/(T − 1 − K )! alternatives should be considered. As K is usually rather
low, the approach is computationally feasible even for moderate T values. In our
experiments, each model could be fitted in under one second. In addition, parallel
computing can be readily implemented if the number ofmodels becomes restrictively
high.

The illustration of some simulated datasets can be found in Fig. 1. Here, plots (a)
and (b) show datasets simulated with φ = 0.1 but with different covariance matrices
� and�/4, respectively. Plots (c) and (d) correspond to the same covariancematrices
� and �/4 but with high correlation of φ = 0.9. The four considered datasets rep-
resent the first setting with change points at t1 = 10 and t2 = 20. Within each of the
four plots, there are three subplots representing the coordinatewise behavior of the
processes reflected by means of the black, blue, and red colors. The top subplot cor-
responds to the first coordinate, the middle stands for the second one, and the bottom
plot represents the third coordinate. Horizontal lines show the true back-transformed
values of the corresponding coordinates of vectors μ0, μ1, and μ2.

From examining Fig. 1, it is easy to conclude that the task of change point estima-
tion is far from trivial in these cases. Especially in those cases when the variability is
higher (left column of plots), we can observe a number of points that can be mistak-
enly thought of as change points. Thus, it is fully expected that false change points
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Fig. 1 Datasets generated in the course of the simulation study in Sect. 3 with different scaling
(reflected by � and �/4) and correlation (φ = 0.1, 0.9). Horizontal lines represent true back-
transformed values of the corresponding coordinates of parameters μ0, μ1, and μ2

will be found oftentimes.Moreover, we can observe that the first change point should
be considerably easier to find than the second one due to the substantial gap in the
second coordinate of means related to the first two processes (i.e., between black and
blue horizontal lines).

As pointed out by [22], the number of procedures capable of estimating multiple
change points in multivariate processes is rather limited. In this section, the devel-
oped methodology is compared with one parametric approach that we call naive
and two nonparametric procedures available for practitioners through the R pack-
age ecp [22]. The naive method is mimicking the most common practical approach
with all observations assumed independent and following multivariate normal pro-
cesses. The two nonparametric procedures are based on probabilistic pruning with
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Table 2 Interpretation of notation used in Tables3 and 4

Notation Interpretation

{t1, t2} Both change points are correctly found

{t1, t2, x} Both change points are correctly identified, but
there are false change

Points found as well

{t1, t̃2}/{t̃1, t2} One change point is identified correctly, the
other one is close by, i.e.

|tk − t̂k | ≤ 3

{t1}/{t2} one change point is identified correctly and it is
the only one found

{t1, !t2}/{!t1, t2} One change point is identified correctly, the
others are not close, i.e.,

|tk − t̂k | > 3

Energy statistic [23, 34] and Kolmogorov-Smirnov statistic [24] used as goodness-
of-fit measures. Tables3 and 4 provide the results of the simulation study in the first
(t1 = 10, t2 = 20) and second (t1 = 10, t2 = 50) settings, respectively. The tables
include proportions of times various solutions, as per description in Table2, were
found.

As we can observe from Table3, the proposed method can rather effectively
identify change points. Expectedly, the performance of the procedure improves con-
siderably when the variability decreases. For example, in the case with φ = 0.9 and
�, we are able to correctly identify the combination of change points in 14.8% of all
cases. The percentage improves to 49.2% and 93.2% for �/2 and �/4, respectively.
The performance of the procedure somewhat degrades for lower values of parameter
φ. In particular, the correct setting was found in 63.2% and 55.6% of cases for �/4
with φ = 0.1 and φ = 0.5, respectively. In the settings with higher variability, the
task of estimating both change points correctly is considerably more difficult. It is
worth mentioning that in these settings our procedure is capable of identifying at
least one change point effectively. In particular, we can notice that there is a rela-
tively low proportion of times when our method identified one point correctly and
the other change point estimate was considerably off. Another observation can be
made with regard to a low number of false change point detections made by our pro-
cedure. In addition, due to a strong penalty carried out by BIC, there is no tendency
to overestimate the number of change points as we can see from the line {t1, t2, x}.

From examining Table3, we can conclude that the closest competitor is the naive
procedure. In particular, it demonstrates quite similar results in terms of the propor-
tion of correct solutions for the majority of cases unless φ = 0.9. When φ is high,
the naive procedure is substantially outperformed by the proposed method in all set-
tings. This observation is not surprising since the cases with lower correlations are
more similar to the naive model assuming the independence of observations. Our
developed method dramatically outperforms the two nonparametric methods. In the
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Table 3 Simulation study from Sect. 3 assuming two change points at times t1 = 10 and t2 = 20.
The fourmethods considered are our proposed procedure, naive procedure, and probabilistic pruning
with Energy statistic and Kolmogorov-Smirnov statistic (KS) used as the goodness-of-fit measure.
The notation interpretation is provided in Table2. The bold font highlights the proportion of times
the correct combination was found

K = 2 � �/2 �/4

t1 = 10, t2 = 20 φ =
0.1

φ =
0.5

φ =
0.9

φ =
0.1

φ =
0.5

φ =
0.9

φ =
0.1

φ =
0.5

φ =
0.9

Method {10, 20} 0.060 0.032 0.148 0.332 0.168 0.492 0.632 0.556 0.932

{10, 20, x} 0 0 0 0 0 0 0 0 0

{10, 2̃0}/{1̃0, 20} 0.200 0.084 0.012 0.336 0.168 0.016 0.304 0.160 0

{10}/{20} 0.576 0.736 0.692 0.212 0.516 0.424 0.012 0.140 0.040

{10, !20}/{!10, 20} 0.104 0.112 0.136 0.120 0.148 0.068 0.052 0.144 0.028

Naive {10, 20} 0.060 0.044 0.048 0.344 0.232 0.116 0.628 0.536 0.308

{10, 20, x} 0 0 0 0 0 0 0 0 0

{10, 2̃0}/{1̃0, 20} 0.188 0.192 0.028 0.362 0.224 0.048 0.308 0.252 0.056

{10}/{20} 0.488 0.108 0 0.136 0.036 0 0.004 0.080 0

{10, !20}/{!10, 20} 0.212 0.604 0.880 0.152 0.504 0.828 0.060 0.142 0.636

Energy {10, 20} 0 0 0.004 0 0 0.028 0.036 0.020 0.356

{10, 20, x} 0 0 0.004 0 0 0.008 0.016 0.008 0.044

{10, 2̃0}/{1̃0, 20} 0 0 0 0.004 0 0.004 0.028 0.012 0.016

{10}/{20} 0 0 0 0 0 0.004 0.012 0.004 0.068

{10, !20}/{!10, 20} 0.024 0.020 0.120 0.080 0.060 0.188 0.192 0.176 0.148

KS {10, 20} 0.024 0 0.004 0.020 0.016 0.012 0.044 0.028 0.024

{10, 20, x} 0 0 0 0 0 0 0 0.004 0.004

{10, 2̃0}/{1̃0, 20} 0.116 0.076 0.044 0.148 0.092 0.052 0.224 0.132 0.076

{10}/{20} 0.040 0.032 0.020 0.056 0.092 0.040 0.064 0.132 0.060

{10, !20}/{!10, 20} 0.024 0.016 0.032 0.016 0.024 0.048 0.028 0.020 0.060

easiest case considered with φ = 0.9 and�/4, the probabilistic pruning with Energy
statistic is capable of finding the correct combination of change points in 35.6% of
cases. In all other cases, both procedures face considerable challenges. One can
also notice that nonparametric methods struggle to find even one of the two change
points correctly. In the case of �/4, the Kolmogorov-Smirnov statistic (denoted as
KS) shows some improvement for φ = 0.1. It is able to estimate one change point
correctly and the other one in close proximity to the true change point in 22.4% of
all cases.

The inference drawn from Table4 is mostly similar. In the meantime, we can
notice that our method improves the performance in all cases. This happens due
to the fact that the number of time points is more evenly distributed among the
processes and thus more accurate estimation of parameters is possible. As a result,
the difference between the proposed and naive approaches can now be observed for
the case with �/4 and φ = 0.9. It is worth mentioning that similar analysis has been
repeated for negative parameters φ = −0.9,−0.5,−0.1. The results and findings of
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Table 4 Simulation study from Sect. 3 assuming two change points at times t1 = 10 and t2 = 50.
The description of the table is similar to that of Table3

K = 2 � �/2 �/4

t1 = 10, t2 = 50 φ =
0.1

φ =
0.5

φ =
0.9

φ =
0.1

φ =
0.5

φ =
0.9

φ =
0.1

φ =
0.5

φ =
0.9

Method {10, 50} 0.232 0.116 0.216 0.384 0.324 0.576 0.632 0.624 0.948

{10, 50, x} 0 0 0 0 0 0 0 0 0

{10, 5̃0}/{1̃0, 50} 0.368 0.156 0.008 0.460 0.248 0.008 0.336 0.220 0

{10}/{50} 0.068 0.376 0.600 0 0.096 0.316 0 0.004 0.044

{10, !50}/{!10, 50} 0.276 0.332 0.168 0.156 0.332 0.100 0.032 0.152 0.008

Naive {10, 50} 0.228 0.152 0.100 0.404 0.320 0.240 0.632 0.556 0.520

{10, 50, x} 0 0 0 0 0 0 0 0 0

{10, 5̃0}/{1̃0, 50} 0.372 0.256 0.132 0.432 0.284 0.168 0.336 0.284 0.128

{10}/{50} 0.036 0.008 0 0 0 0 0 0 0

{10, !50}/{!10, 50} 0.288 0.548 0.696 0.152 0.388 0.588 0.032 0.160 0.352

Energy {10, 50} 0 0 0 0 0 0.008 0.008 0.004 0.128

{10, 50, x} 0 0 0 0.004 0.004 0 0.008 0 0.064

{10, 5̃0}/{1̃0, 50} 0 0 0.004 0 0 0.012 0 0 0.012

{10}/{50} 0.068 0.036 0.156 0.128 0.116 0.412 0.296 0.284 0.580

{10, !50}/{!10, 50} 0.012 0.024 0.076 0.052 0.052 0.088 0.084 0.088 0.152

KS {10, 50} 0 0 0.004 0 0.004 0.004 0.008 0.004 0

{10, 50, x} 0 0 0 0 0 0 0 0 0

{10, 5̃0}/{1̃0, 50} 0 0 0.004 0.004 0.008 0.008 0.012 0.004 0.016

{10}/{50} 0.036 0.028 0.016 0.056 0.024 0.044 0.060 0.068 0.076

{10, !50}/{!10, 50} 0.104 0.056 0.064 0.112 0.096 0.096 0.176 0.104 0.136

these experiments were similar and consistent with those presented in this section.
To conclude this section, we can remark that the proposed procedure proves to be a
powerful tool for identifying change points.

4 Applications

Illustration on Crime Rates in US Cities

First, we apply the proposed methodology to the US cities crime data obtained from
the US Department of Justice, Federal Bureau of InvestigationWebsite (http://www.
ucrdatatool.gov/Search/Crime/Crime.cfm). There are seven crime types grouped
into two general categories: violent and property crimes. The former includes Mur-
der, Rape, Robbery, and Aggravated Assault. The property crimes are Burglary,
Larceny Theft, and Motor Vehicle Theft. We focus on crime rates observed between
2000 and 2012. As an example, we choose the data reported by Austin and Cincin-
nati Police Departments. Figure2 illustrates violent (left column) and property (right

http://www.ucrdatatool.gov/Search/Crime/Crime.cfm
 29512 48668 a 29512 48668 a
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Fig. 2 Violent and Property crime rates in Austin and Cincinnati over the 13-year time period
(2000-2012). The blue and red colors represent two processes detected. Horizontal lines stand for
the means of the processes

column) crime rates. As the value T = 13 is quite low, instead of assuming models
with shift-related change points only, we consider all possible orderings of processes.

In the case ofAustin, theBICvalue associatedwith a single process (i.e., no change
points) is equal to -9.933. After running the developed procedure over all possible
orderings of processes, the lowest BIC of−47.081 was found. It is worth mentioning
that the naive procedure outlined in Sect. 3 yields BIC −45.225 and the model with
the AR(1) structure of � but no transformation parameters produces BIC −44.099.
This suggests that even for so few data points as in the considered application, the
proposed procedure can be useful. The parameter estimates associatedwith themodel
can be found in Table5. A corresponding illustration is provided in the first row of
plots in Fig. 2. Here, the years 2004, 2006, 2007, 2008, and 2009 are associated with
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Table 5 Parameter estimates, log-likelihood, and BIC values for Austin and Cincinnati
City μ̂0 μ̂1 �̂ λ̂ φ̂ logL BIC

Austin 168.234 524.023 4422.5 105136.9 17.258 −0.402 39.831 −47.081

4941.351 8870.934 105136.9 5810, 522 1.548

Cincinnati 4.130 5.478 1.372 0.004 2.148 0.315 19.693 −6.804

2.394 2.480 0.004 0.0001 −0.375

the second process (provided in the red color), while the rest of the years represent the
first process (given in the blue color). The horizontal lines reflect back-transformed
parameters μ̂0 and μ̂1 detected by our methodology. As we can clearly see, the
separation into two processes is strongly driven by the variable Violent Crime. In
the meantime, the variable Property Crime demonstrates considerable variability
associated with both processes.

The opposite situation is observed for Cincinnati (second row in Fig. 2): the vari-
able Property Crime contributes to the separation of the processes more than Violent
Crime. Model parameters are also provided in Table5. The BIC value of the best
model detected is equal to−6.804 which is considerably better than that of the model
with a single process, 19.568. The years 2000, 2007, 2008, 2009, and 2012 are asso-
ciated with the first process (presented in the blue color), while the rest of the years
represent the other process (given in the red color). The BIC value associated with the
naive approach is equal to −10.846 suggesting that AR(1) structure of � as well as
transformation-related parameters do not bring an improvement to the naive model
in this case.

Effect of Colorado Amendment 64

In this section, we demonstrate how our proposed methodology can be applied to
the analysis of the effects of public policies. As an example, we focus on studying
the effects of the Colorado Amendment 64 which makes the private consumption,
production, and possession of marijuana legal. Amendment 64 has been added to
the constitution of Colorado in December 2012 but the stores officially opened in
January 2014.

The crime rate data have been obtained from the Colorado Bureau of Investigation
Department of Public Safety Website (https://www.colorado.gov/pacific/cbi/crime-
colorado1) for 10 years: from 2007 to 2016. The same seven variables as described
in Sect. 4 have been explored without combining them into the two categories. The
goal of our analysis was to check whether the last three years, when the use of

https://www.colorado.gov/pacific/cbi/crime-colorado1
 14987 48097 a 14987
48097 a
 
https://www.colorado.gov/pacific/cbi/crime-colorado1
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marijuana was legal, were any different from the previous seven years. The value of
BIC corresponding to the model with no change points is equal to−996.2, while that
related to the model with the change point in 2014 yields BIC equal to −1,006.1.
The likelihood ratio test conducted to verify the significance of the change yields
P-value 1.47 × 10−6. As we can see, there is very strong evidence in favor of the
change point model based on both BIC and likelihood ratio test.

Figure3 illustrates the obtained results. The first column consisting of four plots
represents violent crimes, while the second column with three plots shows property
crimes. The description of individual plots is similar to that of Fig. 2. As we can
see, some variables such as Rape or Burglary seem to contribute substantially to the
difference between the twomodels analyzed. To formalize the analysis, we employed
a variable selection procedure. As the number of variables in our experiment is
relatively low, we decided to test the model with no change point against the model
with the change point at 2014 over all possible combinations of involved variables.
The lowest P-value of 1.36 × 10−6 was observed for the combination of variables
Murder, Rape, and Burglary. Thus, the most dramatic change in 2014 has been
observed for these three variables considered jointly. The corresponding P-value is
just marginally lower than the P-value observed for the full model when all seven
variables are included, but it gives a good idea about the combination of variables that
contribute themost to separating the processes. By examining the contributions of the
three variables, we can notice that the crime rate of Burglary dropped considerably,
while Rape and to some extent Murder are grown in the last 3 years. Indeed, the
proposed analysis does not assume any cause-and-effect conclusions. In fact, we can
notice a considerable decrease in Murder rates in 2014 and we can also observe that
the increase inRape rates began in 2013, i.e., 1 year earlier thanwhenAmendment 64
became effective. Nevertheless, it is obvious that the proposed methodology presents
a powerful exploratory tool for studying the effects of public policies.

5 Discussion

In this paper, we developed an efficientmethod capable of estimatingmultiple change
points in multivariate processes. The proposed technique relies on the matrix normal
distribution adjusted by the exponential Manly transformation. Such an adjustment
makes the proposed methodology robust to violations of the normality assumption.
Thematrix setting has an appealing form as rows can represent variables and columns
can be associated with time points. Based on the results of challenging simulation
studies, we can conclude that the proposed technique is very promising. It outper-
forms the two nonparametric competitors in all settings. Two applications to crime
data considered in the paper demonstrate the usefulness of the developed method.
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Fig. 3 Crime rates in Colorado over the 10-year time period. The blue and red colors represent two
processes. Horizontal lines stand for the back-transformed means of the processes
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