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Abstract In this chapter, we introduce a multivariate gamma distribution whose
marginals are finite mixtures of gamma distributions and correlation between any pair
of variables is negative. Several of its properties such as joint moments, correlation
coefficients, moment generating function, Rényi and Shannon entropies have been
derived. Simulation study have been conducted to evaluate the performance of the
maximum likelihood method.

1 Introduction

Gamma distribution is an important continuous distribution in probability and statis-
tics. Several distributions such as exponential, Erlang, and chi-square are special
cases of this distribution. Several univariate generalizations of gamma distribution
have also been studied. Gamma distribution and its variants have been applied in
different disciplines to model continuous variables that are positive and have skewed
distributions. Gamma distribution has been used to model amounts of daily rainfall
(Aksoy [1]) and in neuroscience this model is often used to describe the distribution
of inter-spike intervals (Robson and Troy [26]). The gamma distribution is widely
used as a conjugate prior in Bayesian statistics. It also plays an important role in
actuarial sciences (Furman [9]).

Several multivariate generalizations of univariate gamma distributions are also
available in the literature. Mathai and Moschopoulos [20, 21] introduced two multi-
variate gamma models as the joint distribution of certain linear combinations/partial
sums of independent three parameter gamma variables. All the components of
their multivariate gamma vectors are positively correlated and have three parameter
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gamma distributions. They have also indicated that their models have potential appli-
cations in stochastic processes and reliability. Furman [9] used the multivariate reduc-
tion technique to derive a multivariate probability model possessing a dependence
structure and gamma marginals. Kowalczyk and Tyrcha [17] used a re-parameterized
form of the gamma distribution to define a multivariate gamma vector and studied
a number of properties of their distribution. Recently, Semenikhine, Furman and
Su [28] introduced a multiplicative multivariate gamma distribution with gamma
marginals and applied their results in actuarial science. They proved that the corre-
lation coefficient between any pair of variables is positive and belongs to (0, 1/2).
Multivariate gamma distributions have been used in diverse fields like hydrology,
space (wind modeling), reliability, traffic modeling, and finance. For further results
on multivariate gamma distribution, the reader may consult articles by Balakrishnan
and Risti¢ [4], Carpenter and Diawara [5], Dussauchoy and Berland [6], Gaver [10],
Krishnaiah and Rao [18], Marcus [19], Pepas et al.[23], Royen [27], Vaidyanathan
and Lakshmi [33], and an excellent text by Kotz, Balakrishnan and Johnson [16].
For a good review on bivariate gamma distributions, see Balakrishnan and Lai [3],
Arnold, Castillo and Sarabia [2], Hutchinson and Lai [14], and Kotz, Balakrishnan
and Johnson [16]. For a review on some recent work and applications the reader is
referred to Rafiei, Iranmanesh, and Nagar [24] and references therein.

In this chapter, we introduce a multivariate gamma distribution whose marginals
are finite mixtures of gamma distributions and correlation between any pair of vari-
ables is negative. We organize our work as follows: In Sect. 2, we introduce the new
multivariate gamma distribution. In Sects. 3 and 4, results on marginal distributions
and factorizations of the multivariate gamma distribution are derived. Sections 5-8
deal with properties such as joint moments, correlation, moment generating func-
tion, entropies and estimations. In Sect. 9, simulations of the new distribution are
performed in different ways, and the results are provided to evaluate the performance
of the maximum likelihood method. Section 10 contains the conclusion. Finally, the
Appendix lists a number of results used in this chapter.

2 The Multivariate Gamma Distribution

Recently, Rafiei, [ranmanesh, and Nagar [24] have defined a bivariate gamma distri-
bution with parameters «, 8 and k and the pdf

I' Q)

f, x5 e, B k) = BT () T (2o £ 6

1
(x1202)* (a1 + x2)* exp [_E(xl + xz)] ,

where x; > 0,x; > 0, > 0, 8 > 0, and k € Ny. A natural multivariate generaliza-
tion of this distribution can be given as follows.
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Definition 1 The random variables X1, ..., X, are said to have a generalized mul-
tivariate gamma distribution, denoted as (X1, ..., X,) ~ GMG(«1, ..., a,; B, k), if
their joint pdf is given by

n n k
FOu o Xsan, o B ) = Clan, e B [ [ (Zm)
i=1

i=1
1 n
xexp(—ﬂin),xi>0,i=1,...,n, (D)
i=1

wherea; > 0,...,a, > 0,8 >0,k € Ngand C(«y, ..., a,; B, k) is the normaliz-
ing constant.

By integrating the joint density of X, ..., X, over its support set, the normalizing
constant is derived as

00 0o N n k n
(Clat, ... an; B, 0] " =/0 /0 i]]xf’f*‘ <§xi) exp(—;gx,) dx; -+ - dx,

= prizi otk |:l_[ F(Oli)i| (a1 + -+ an,

i=1

where the last line has been obtained by using Lemma 2. Finally, from the above
expression

[+ + o)

Clag,...,on; B, k) = —= - )
: ﬁZi:]aiJrk [1—1521 F(Ol,')] Moy +---+a,+k)

2

For k = 0, the multivariate gamma density simplifies to the product of n indepen-
dent univariate gamma densities with common scale parameter . For k = 1, the
multivariate gamma density can be written as

n a;j O\ X exp(—x;/B) L x% exp(—xi/B)
Z(ZLI(X,) ﬂaf+lr(0lj+l)il:! ’Ba,-l"(ai) , X1 >O,...,xn > 0.

j=l1 i<l
i#]

3)

For n = 2 in (1), the bivariate gamma density is obtained as
aj—1_ar—1 k 1
Clay, az; B, k)x)" " x,7 " (X1 + x2)" exp —E(Xl +x2) |, x>0, x>0, (4)

where
INCTE D) ﬂ_(al+‘12+k)

Clar, az; B, k) = C(a)T (o) T(ay +ar + k)
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In a recent article, Rafiei, [ranmanesh, and Nagar [24] have studied the above distri-
bution for & = orp. Substitutingn = 21in (3) or k = 11in (4), the generalized bivariate
gamma density takes the form

ar x xS expl—(x1 4 x2) /8]
ap+ay pUtetIT(a; + DI (an)
Ot]*l [0%)

L% B % exp[—(x1 + x2)/B]
ar +ay pUtetiDie)N(a; + 1)

, x1 >0, xp, >0,

which yields the marginal density of X as
ar x'exp(-x1/B) | a  x'exp(=x1/p)

, X1 > 0.
oar+on BT +1)  ar+ar BT (e + 1)

Clearly, the marginal density of X is a mixture of two gamma densities indicating
that, in general, marginal density of any subset of X1, ..., X, is not a generalized
multivariate gamma.

It may be noted here that the multivariate gamma distribution defined above
belongs to the Liouville family of distributions (Sivazlian [30], Gupta and Song [12],
Gupta, and Richards [13], Song and Gupta [31]). Because of mathematical tractabil-
ity, this distribution further enriches the class of multivariate Liouville distributions
and may serve as an alternative to many existing distributions belonging to this class.

3 Marginal Distributions

In this section, we derive results on marginal distributions of the generalized multi-
variate gamma distribution defined in this chapter. By using multinomial expansion

of (X7, xi )k, namely,

n k k
— ki ka ky
Xi = X1 Xpm o0 Xy
. _ klvkz»"'skn
i=1 ko =k

in (1), the joint density of X, ..., X,, can be restated as
Croomaifil) Y e (<530
b N Y B=)
ky+ko+ -k, =k i=1 i=1

wherex; > 0,i = 1,2, ..., n. Thus, the generalized multivariate gamma distribution
is a finite mixture of product of independent gamma densities.
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In the remaining part of this section and the next section, we derive marginal
distributions, distribution of partial sums and several factorizations of the generalized
multivariate gamma distribution.

Theorem 1 Let (X4,..., X)) ~ GMG(«y, ..., a,; B, k). Then, for1 <s <n —1,
the marginal density of X1, ..., X; is given by

o 5 oot [T o (1 50) (£1)

i=s+1
k s —j
n k i i
xﬁzi-ﬁ‘a"Z()F(Z a,- +j> <Z:—‘x) x> 0i=1, s
im0 M i=s+1 B
Proof Integrating out x,41, ..., x, in (1), the marginal density of X,,..., X; is
derived as

C(otl,...,ozn;ﬁ,k)lljx;""_lexp (_lix’)
/ / [T+ (sz+2x1> exp< 5 3 x ) [T dx

i=s+1 i=s+1 i=s+1 i=s+1

s -~ 1<
=C(Ol1,~~-9an;/37k)1_[x1q‘ lexp(—gZ%’)
i=1 i=1

k
1_[1 =s+1 F(Ot ) Z;’:Hl a;—1 - 1
x P e Jo ! ij ) e <_Ex) & ®

i=1

where the last line has been obtained by using (16). Substituting x/ Y ;_, x; = z in
(5), the marginal density of X1, ..., X; is rewritten as

K Z;X:HID"‘H‘
C (al, Z a;; B, k) Hxa’ exp <——Zx,> (in)
i=1

i=s+1

) / i (14 )k exp [_% (Z Xi> Z] " ©
0 ;

i=1

Now, writing (1 4+ z)* using binomial theorem and integrating z in (6), the marginal
density of X, ..., X; is derived. O
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Alternately, the density of X, ..., X given in (7) can be written as
n " S ‘ 1 5
Clag,...,q, Z o B, k ﬁzf'ﬂﬂa"*knx;’“*l exp| —— in
i=s+1 i=1 p i=1
k Ty j
xZ() Za,—i—k—] ( ’ll>,x,->0,i=1,...,s.
Jj=0 J i=s+1 ’3

Corollary 1 The marginal density of X, is given by

n
n 1
¢ (a“ > h. k) prizerth i exp <_Ex1>

i=2

k n j
xZ(f)l" (Zai —|—k—j> <%>] , x> 0.
j=0 i=2

Corollary 2 The marginal density of X and X, is given by

- ’ 1
C (051,052, Z“i; B, k) ﬂZ’ZBQiJrkx?l_]xgz_l exp |:_E(xl +X2)]

i=3

k k " . X1+ x2 J
XZ )r Z%"Fk—] , x1 > 0,x, > 0.
im0 M i=3 p

Substituting u = z/(1 + z) withdz = (1 — 1)~2du in (6), one gets

K i1 itk
C (al, Z a;; B, k) Hxa’ exp <——Zx,> (in)
i=1

i=s+1

1 S .
x / iz @ (=) T D oy _(Eix)u du. (7)
0 B —u)

Now, writing

(1— u)f(Z?:Hl a;+k+1) exp |: (%:(11 1 xl :| Z jL(Z =41 @i TK) (leB] Xi )

in (7) and integrating u, the marginal density of X, ..., X;, in series involving
generalized Laguerre polynomials, is derived as
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n s Z?:H—] otk
C(ozl,..., o, Z a;; B, k)l_[xa’ exp(——le) (Zx,)
i=1

i=s+1

(i ith) (Z}-=1 x,»)

X E —_ L~ .
Z j=s+1 o + ] / :8

Theorem 2 Let (X, ..., X,) ~ GMG(«y, ..., a,; B, k). Then, for2 <r <n, the
marginal density of X,, ..., X, is given by

r—1 n n
c <Zai,cxr, o By k) prin etk [Tx" " exp <_% Zx’)
i=1 i=r i=r
k r—1 n ¢
E (e ) (E oo
=0 i=1

Proof Similar to the proof of Theorem 1. ]
Corollary 3 The marginal density of X,, is given by

n—1
n— 1
¢ (Z o, s B, k) primt etk ya exp <—Exﬂ)

i=1

k n—1 L
XZ <IZ>F <Za; +k—£> (%) , X, > 0.
=0 i=1

Theorem 3 Let (Xi,...,X,) ~GMG(«y, ..., a,; B, k). Then, forr =1,...,n,
the marginal density of X, is given by

n
. e itk k=1 xr
C E ai, ap; Bk | pricn= x) exp| ——

i(£r)=1 p
k k n X, j
XZ(,)F Za[—i—k—j <E>,x,>0.
j=o i(#n)=1

4 Factorizations

This section deals with several factorizations of the multivariate gamma distribution
defined in Sect. 2.

In the next theorem, we give the joint distribution of partial sums of random
variables distributed jointly as generalized multivariate gamma.
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Letny, ..., ny be non-negative integers such that Zle n; = n and define

n} i
o) = E aj, ny=0, ni—g nj, i=1,...,¢
Jj=1

j=ni_j+1

Theorem 4 Let (Xi,...,X,) ~GMG(oy, ..., an; B, k). Define Z; = X;/Xq),
j=nl_,+1,...,nf —land X :Zj’;nLHXj,i: 1,...,L Then,

(i) Xy, - X)) and (Zpr 415 .-+ Zpr—1),1 = 1, ..., ¢, areindependently dis-
tributed,

(ll) (Zn,iﬁ-l’ ey Z,,‘{f_l) ~ Dl(a,ﬁl]_‘_l, ey Ol,,;f_l; Oln:f), i = 1, ey Z, and

(lll) (X(l), ey X(g)) ~ GMG(O{(I), cees Oy, ,3, k)

*

Proof Substituting x(;y = Z?;n?‘fﬁl xjand z; = xj/x@, j=n_;+1,...,nf —
1,i =1,..., £ with the Jacobian

JXUs ooy X = 20y oo e Zny =1 X(1)s + o o5 Tut 15+« -5 Zn—15 X(0))

¢
= l_[ JXn 15 oo Xnp = Tz 1o e 2= 15 X))
i=1

4
_1_[ n;—1
= x(i) .

i=1

in the density of (X, ..., X;) given by (1), we get the joint density of Z,» i, ...,
Zn’%«,l, X(,'),i =1,...,¢as

k
¢ ¢ ¢
oy —1 1
Clag, ..., o0, ) | |X(,~()) (E x(i)) exp (-B E x(i))
i=1 i=1 i=1
nr—1 ni—1

4 i an,{ffl
XH 1_[ z_‘;"fl <1— Z z,-) , 8)

j=ni_+1

. ; s
where x;) > 0,i=1,...,4,z; >0, j=n]_+1,...,n" — 1,2?1:,1?71+1Zj <1,
i =1, ..., £ From the factorization in (8), it is easy to see that (X(y), ..., X(») and
(Znr 15 -5 Zpr—1),1 = 1, ..., ¢, are independently distributed. Further (X (), . . .,
X(@))"\‘GMG(O{(U, cees Q) ﬂ, k) and (an?:]-&-l» ceey an—l) ""Dl(OCn’tl_’_l, ey
a,,;,l;an;),i :l,...,g. g

Corollary 4 Let (Xy, ..., X,) ~ GMG(«y, ..., ay; B, k). Define Z; = X;/Z, i =
1,....n—1, and Z = Z;f:l Xj. Then, (Zy,...,Z,—1) and Z are independent,
(Zy,.... Zyo)) ~ DU, ...,y ) and Z ~ G (Y1, o + k., B).
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Corollary 5 If (X, ..., X,) ~ GMG(«y, ..., ay; B, k), then ) ']1.:1 Xjand %;:‘ ;
i=1 X
are independent. Further

%Eﬁli ~ Bl (Za" Z ,‘),S<n.
i=1

i=s+1
Theorem 5 Ler (Xy,..., X,) ~ GMG(ay, ..., an; B, k). Define Wi = X;/Xx,
j=nltl+1,...,n?‘—1andX(,~)=Z"’: +1 j.i=1,...,¢ Then,
(i) Xy, ..., Xw) and (W,,LH, [ ), i=1,..., 6, are independently
distributed,
(ll) (Wn;ll-H’ ceey an—l) ~ Dz(anf7]+ly ceey anf—l; Olnf)a i = 17 ey E; and

(lll) (X(]), ey X(z)) ~ GMG(CI(]), ey Oy ,B, k)
Corollary 6 Let (X, ..., X,) ~ GMG(ay, ..., a,; B, k). DefineW; = X;/X,,i =
l,....n—1and Z = Z;:l Xj. Then, (Wy,...,W,_1) and Z are independent,
(Wls DR Wn—l) ~ Dz(al’ ey Oy an) and Z ~ G(Z:l:] Q;, ﬁ’ k)

Corollary 7 If (Xi,...,X,) ~GMG(ay,...,a,; B, k), then Z;'.:lXj and

X )
% are independent. Further
i=s+1 1

ZZ,,+,X B2<Za,,z i),s<n.

i=s+1
In next six theorems, we give several factorizations of the generalized multivariate
gamma density.
Theorem 6 Ler (Xi,...,X,) ~GMG(«ay, ..., a,; B, k). Define Y, = 2?21 X;
andY; = Z, X /Z’+l X;,i=1,....,n—1Then Yi,...,Y, are independent,
Y; ~ BI(X:]:l aj,aip1), i=1,...,n—1and ¥, ~ G !_, o; +k, ).

Proof Substituting x; = y, ]_[:.’;11 Vi, X2 = yu (1 — y1) ]_["_21 Visewos Xpo1 =y, (1 —

yn_z)y,,__l and x, = y,(1 — y,_;) with the Jacobian J(x{, ..., X, = Y1,..., V) =
[T, v ~!in (1) we get the desired result. O
Theorem 7 Let (Xi,...,X,) ~GMG(ay,...,a,; B, k). Define Z, = Z;zl X;

and Z; = X,~+1/Z;:l Xj,i=1,...,n—1 Then, Z,...,Z, are independent,
Zi ~B2cis1. Y@, i=1,....n—1,and Z, ~ G(X|_ oj + k. B).

Proof The desired result follows from Theorem 6 by noting that (1 —Y;)/Y; ~
B2(ai+1, D 5oy ). U
Theorem 8 Let (X1,...,X,) ~ GMG(ay, ..., a,; B, k). Define W, = Z;f:l X;
and W; = Zj’:l Xi/Xiy1,i=1,...,n—1 Then, Wy, ..., W, are independent,
Wi ~B2(Y ey i), i=1....n— 1 and W, ~ G(L\_, o + k. B. k).



274 A. Iranmanesh et al.

Proof The result follows from Theorem 7 by noting that 1/Z; ~ BZ(Z;=l oj,
®it1)- O

Theorem 9 Let(X,,...,X,) ~ GMG(ay, ..., a,; B, k). Define Y,= Zj’:l X;and
Y, = X,'/Z;f:i X;,i=1,...,n—1 Then, Yi,...,Y, are independent, Y; ~ Bl
(o, Z?ziﬂaj), i=1,....,n—1and¥, ~GQ_|_, a; +k, p).

Proof Substituting x; = y,y1, %2 = yuy2(1 — y1), ..., Xt = Y Yac1 (1 — y1) -+
(1 —y,—2),and x,, = y,(1 — y;)--- (1 — y,_1) with the Jacobian J (xy, ..., x, —
Viyevoes Yn) = y,’f’l ]_[;';12(1 — y)"~=Vin (1), we get the desired result. O

Theorem 10 Let (X1,..., X,) ~ GMG(ay, ..., ay; B, k). Define Z, = Z?:l X;
and Z; = Xi/Z?:,'H Xj,i=1,....,n—1. Then, Zy,...,Z, are independent,
Z; ~ B2(e;, Z;'.:Hl a),i=1,....,n—1,and Z, ~ G |_, o + k, B).

Proof The result follows from Theorem 9 by observing that ¥; /(1 — ¥;) ~ B2(«;,

Z?:i-kl ;). O
Theorem 11 Let (X4, ..., X,) ~GMG(ay, ..., a,; B, k). Define W, = Z;l':l X
and W; = Z?:iﬂ X;/X,,i=1,...,n—1. Then, Wy, ..., W, are independent,

Wi ~B2(Y ). i=1,....n— 1, and W, ~ G(LI_, o; + k. B).

Proof The result follows from Theorem 10 by noting that 1/W; ~B2(Z’}=[ 11
aj, a;). U
S Joint Moments

By definition

[ee) oo N n k
E(Xq'...X;n):C(al,...,an;ﬂ,k)/o /0 l_[x;lﬂrr,-fl in
i=1 i=1
1 n
X exp <—Ble-) dx; - - - dx,

i=1
_ Clay, ..., B k)
CC(@ 0 T BR)

Now, simplifying the above expression by using (2), one gets

n

L T(@)TI(a+r+k) 1—[ (e + 1)
Mo+ (a+7) (o)

E(XI‘ ce X;n) = ﬂ

)

i=1

wherea =Y ' ayandr =)"_ r;.
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Further, substituting appropriately in the above expression, one gets

retry L@ (@ +re + 1 + k) Tloe + 1)U (0t + 1)
Do+ (o +7r+71,) INCHINCH

EX,/ X)) =B )
2 Qe (@ + k) (o +k + 1)

E(XXy) =8 2@+ 1)

’

E@ﬂzﬂﬁ%;ﬁ,

and
yajla; + Do+ k)(a+k+1)

a(a+1)

E(X)) =8

Finally, by using appropriate definitions, we get

s+ el +1) + (@ —a))k]

var(Xj) = # @+ 1)

k]

5 00ty (0t + k)

cov(Xe, Xp) = —kB 2@ D’

QpQy

corr(Xe, Xpn) = ‘k\/ [ + 1) + (@ —aklla(e + 1) + (@ — an)k]’

6 Moment Generating Function

By definition, the joint mgf of X, ..., X,, is given by

k
00 0o N n
MX] ~~~~~ x,,(l‘],...,t,l)=C(Ol1,...,0£n;ﬂ,k)/ -..\/\ l—['x?i_l (Z'xl)
0 0 =1

i=1
n 1 n
X exp (Zt,-xi - szi) dx; - -dx,. ©)]
i=1 i=1

Substituting x; = rys, ...x,—] = rp—1s and x, = s(1 — Zl':ll r;) in (9) with the
Jacobian J(xy, ..., Xp_1, Xy —> Fly ..., Fn_1,5) =" and integrating s, we get
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n n—1 n—1 an=1
:C(a,,...,a,,;,s,k)ﬁi?’—laf*kr<Zai+k> // ]_[rf""l( Zn)

i=1 Pty <11=1
O<ri,i=1,...,n—1

n—1 n—1 =i @itk
X [Z(l — Btri + (1 — Bty) (1 - Zri)i| dry---dry—1, (10)

i=1 i=1

where 1 —#,8 > 0,i =1, ..., n. Now, writing

n—1 n—1 =iy i th)
[Z(l — Btri + (1 — pt,) (1 - Znﬂ
i=1 i=1

n—1 *(Z;Z:l a;j+k)
=(1— ,nﬁ)—(Z,»":l a;+k) ri < 'B> ,
i=1 1- IBtn

l—tiﬁ
<
1_tnﬂ

in (10) and integrating r, we get
Mxl,...,Xn (t,...,t)

= C(a1,....an: B, k)= 4T (Za,- + k) (1 =1, )~ L= et

i=1

n—1 n—1 - n—1 '8(1‘-—[) *(Z,ﬂzlarfk)
x f/ 1‘[ “"( Zr,) [1—2},.’"} dry---dry_y

N . 11— :Bln
Fietro1 <115 1 i=1 i=1
O<ri,i=l,....n—1

Stk (N Sy ath iz D@
= C(ar, ..., on; B )BZ=1 T Y "0y 4k ) (1= 1, ) &= 470 S= —
' ; ’ " PO, )
n n
_ n — [n) ,B(tn—l - tn)
FO=b i ko, ..., an-1; ,ﬁ( ,
xFp Ea, + Kk, ap op—1 ;al =g, 1 71,

where the last line has been obtained by using the integral representation of the
fourth hypergeometric function of Lauricella given in (15). Finally, substituting for
C(ayq, ..., on; B, k) and simplifying, we get
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My, x, (s 1) = (1= 1, )~ izt 40

n

n
(n—1) . . ,3(11 —In) ﬂ(tn—l —In)
F i +k,ar, .. 01 i; ey .
xFp (Za, + Kk, ap o1 Za, =TS 1= B,

i=1 i=1

Forty =---=1t, =t, we have

which is the mgf of a gamma random variable with shape parameter ) ._, o; + k
and scale parameter f3.

7 Entropies

In this section, exact forms of Rényi and Shannon entropies are derived for the
multivariate gamma distribution defined in this article.

Let (X, B, P) be a probability space. Consider a pdf f associated with #, dom-
inated by o —finite measure p on X. Denote by Hgy (f) the well-known Shannon
entropy introduced in Shannon [29]. It is define by

Hyn (f) = — fX £ log f(x) du. (11

One of the main extensions of the Shannon entropy was defined by Rényi [25]. This
generalized entropy measure is given by

log G(n)

Hg(n, f) = = (for n > O and n # 1), (12)

where
Gn) = / fldu.
X

The additional parameter 7 is used to describe complex behavior in probability mod-
els and the associated process under study. Rényi entropy is monotonically decreas-
ing in n, while Shannon entropy (11) is obtained from (12) for n 1 1. For details see
Nadarajah and Zografos [22], Zografos and Nadarajah [36] and Zografos [35].
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Theorem 12 For the generalized multivariate gamma distribution defined by the
pdf (1), the Rényi and the Shannon entropies are given by

n

1
Hr(m, f) = m[ﬂlnc(al,---,an;ﬂyk)+[nZ(ai—1)+n+nk]ln (g)

i=l1

+ ) InTn(e; — l)+l]+lnF|:nZ(a,» - 1)+n+nk:|

i=l1

—lnF[nZ(ai - 1)+n:|

i=I

i=l1

and

Hsy(f) = —InClon, ..., an; B, k) — [(Zai +k—n> Inp — (Za,- +k>
i=1 i=1
+Z(Oli — D (o) + (Zai +k —”)l/f<20li +k>
i=1 i=1 i=1

-(emr)e(34)]

respectively, where yr(z) = diz InT'(z) = % diZF(z) is the digamma function.
Proof For n > 0 and n # 1, using the joint density of X1, ..., X, given by (1), we
have

o) 00 n
G(n):f / fﬂ(xl,...,xn;(xl,...,(xn;ﬂ,k)dei

‘ ’ i=1

00 oo M n nk

=[C(ot1,...,oz,,;ﬂ,k)]’7/ / l_[xin(af—l) in

0 0 = i=1

x exp (—%Zx,) [Tax
i=l1 i=1

[T2; Tn(e; — D+ 1]
LY (i —1) +n]

e x
X/ T =Dkl oy (_%) dx,
0

where the last line has been obtained by using (16). Finally, evaluating the above
integral by using gamma integral and simplifying the resulting expression, we get

=[C(ay,...,a,; B, k)]"
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I'[n Z —1(@ = 1) +n]

B n Y iy (i —D+n+nk
< <7) .
n

" T — 1) +1 "
G = [C(ay, ..., an?ﬁsk)]nl_[ =L )+] |:nZ(0li—1)+n+7lk:|
i=1

Now, taking logarithm of G(n) and using (12) we get Hg(n, f). The Shannon
entropy is obtained from Hg(n, f) by taking n 1 1 and using L’Hopital’s rule. [

8 Estimation

Let (X11,..., X1) .., (XN1, ..., Xnyn) be arandom sample from GMG(«y, ...,
o,; B, k). The log-likelihood function, denoted by [ (1, .. ., a,; B), is given by

l(ar,...,an; B) =N |:1nl"(a)—(a+k)ln,3—Zln[‘(ai)—lnf‘(a+k):|

i=1

—|—ZZ(O[1 — D Inxy; +kZln (thz) -2 szhl*

h=1i=1 hlll

where o = Z:’zl o;. Now, differentiating [ («y, . . ., oy; B) W.I.L. o, We get

T @) N e — 0 — ¥ @) — e+ O]+ Zlnxm

Further,

Bl ... ani ) _ N(oz—i—k)
aﬂ ﬂz ;;xhlv

(ay, ..., 0 B)
a()(ia()lg

=N[yi(@) —Yila+k)], 1<i#Ll=<n,

(ay, ..., B)
8041.2

= N[y () — Y1) — (e + k)],

where v (z) is the trigamma function defined as the derivative of the digamma
function, ¥ (z) = ;—ZW(Z),

821((11,...,05”;,8)_ N
da; 0P B’
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Ry, ..., 0 B) N@+k) 2 L&
= - Xpi -
ap> B? /33;;

Now, noting that > ;_, X; ~ G(« + k, B) and the expected value of a constant is the
constant itself, we obtain

F(ay, ..., a0 B)
dor; 0oy

9ie=94i=E[ i|=N1ﬂ1(0l)—N1ﬁ1(05+k),151'7'555”,

(g, ..., 0, B) N
it = Ouiri = E[—ﬁ} —-

3o 0

:|=Nl/fl(a)—Nl/fl(Oli)—Nllﬁ(a-i-k), 1 <i<n,

Opnyint1 = E

3y, ..., o0 B) _ N(a+k)
[ 0p? }“ g

The Fisher information matrix for the multivariate gamma distribution given by
the density (1) is defined as

O O - O Orlan
O On - O Oaug
enl 0n2 9nn 9nn+l
Ont11 Ont12 -+ Opin Onging
Further
N n
al(ay, ..., oy B) N(a + k) 1
= — + _— x/’ti = 0
9B B B? ;;
gives
(@+kp =) % (13)
i=1
and
3l an: B) N
S = N @ — =y () — e+ R+ Y I =0
o

h=1

gives
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Ya+k)—v@+hn+yv () =lnx;,i=1,...,n,

= N _1/N . .
where x; = Hh:l x,ﬂ./ ,i1 =1,2,..., n. Further, using

m—1 1
(Y(z+m)—Y(z) = —
; Z+7J

we have
k—1

1
Zm+1nﬁ+w(ai):1nf,-, i=1,...,n. (14)
j=0

Thus, by solving numerically (13) and (14), the MLEs of «; and 8 can be obtained.

9 Simulation

In this section, a simulation study for p = 3 is conducted to evaluate the performance
of maximum likelihood method. For p = 2, see Rafiei, Iranmanesh, and Nagar [24].
Samples of size n = 50, 200, 500 from Equation (1) for selected values of param-
eters are generated by MCMC methods (Gibbs Metropolise, Markov Chain Monte
Carlo Metropolise, Metropolise, Metropolise gaussian, random walk Metropolise
and Metropolise-Hastings). We have performed the simulation for particular val-
ues of parameters, namely, o) = 1, 0p =2, 03 =3, 8 =2,k =4,8, and o) = 2,
a =2,a3 =1, 8 =2,k =4,8. The results were similar for other choices. MLEs
for parameters based on the numerical procedures were computed. This procedures
was repeated five hundred times and (a7, @3, @3, E ), the average of biases (Ab) and
the mean squared errors (MSE) were obtained by using Monte Carlo methods (the
parameter k is an integer and the derivative method is not used to calculate its MLE).

Different packages such as MCMC, MCMCpack, gibbs.met, LearnBayes,
MHadaptive, MetroHastings and walkMetropolis in R were used for simulation.
After performing simulation using the above methods and comparing results, it was
observed that the Gibbs sampling method provides better results. Therefore, the out-
put of Gibbs method is presented in Tables 1, 2, 3, 4 and Figs. 1, 2, 3, 4 and 5. The
MLEs of parameters and correlation cofficients are reported in Tables 1 and 2. The
DEoptim package in R was used to calculate the MLEs. The average of biases and the
mean squared errors of all the estimators are reported in Tables 3 and 4. In particular,
biases for the maximum likelihood estimators of «, «,, a3 and S are close to 0 and
the mean squared errors of all estimators always decrease with increasing n.

Figure 1 shows 3D scatter plot of the simulation data foro; = 1, p = 2, 3 = 3,
B =2,k =4,n=50,500.Figure 2 shows 3D plot of the simulation data for o} = 1,
ay =2,a3 = 3,8 = 2,k = 4.Figs. 3 and 4 show pairs style of the simulation data for
o =2,y =2,03=2,=2,k=8n=50ando; =2, 0p =2, 03=1,8 =2,
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Fig. 1 3D scatter plot of simulation data witho) = 1,00 =2, 03 =3, 8 =2,k = 4,n = 50,500

Fig. 2 3D plot for x1
simulation data, a; = 1, 2 4 6 8

a=2,03=3,=2,

o= LA
|
|
|

k = 8,n = 500, respectively. Figure 5 shows Trace plot fora; = 1, p = 2, 3 = 3,
B =2,k =8, n =500. Finally, simulation points and 3D contour plot for different
selected values of parameters are shown in Figs. 6, 7, 8 and 9.
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Fig.3 Pairsplotfora; =2, 00 =2, 03 =1,=2,k=8,n=50

10 Conclusion

In this chapter, a new multivariate gamma distribution whose marginals are finite
mixtures of gamma distributions is defined. It is shown that the correlation between
any pair of variables is negative. Therefore, the newly introduced distribution could
be suitable for fitting multivariate data with negative correlations. Several of its prop-
erties such as joint moments, correlation coefficients, moment generating function,
Rényi and Shannon entropies have been derived. In Sect.8, the method of MLE
has been applied to estimate the parameters. Because the resulting likelihood equa-
tions are nonlinear, numerical methods have been used to solve them. Simulation
studies have been conducted to evaluate the performance of the maximum likelihood
method. Moreover, various tables and figures have been provided to confirm a proper
simulation and results of the MLE method for estimating the parameters.
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Fig.5 Traceplots fora; = 1,00 =2, 03 =3, =2,k =28,n =500
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Fig. 6 Simulation points and 3D contour plot fora; = 1,00 =2, 03 =3, =2,k =4,n =50

Fig. 7 Simulation points
and contour plot for o] =1,
a=2,a3=3,8=2,
k=4,n=50
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0.010
= 0.005
@ 0.000

x2

Fig. 8 Simulation points and contour plot foro; =2, 0 =2, 03 =1, =2,k =4,n =50

Fig. 9 Simulation points
and 3D contour plot for
o) =2, =2,a3 =1,
B=2k=4,n=50

x2
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Appendix

In this section, we give definitions and results that will be used in subsequent sections.
Throughout this work we will use the Pochhammer symbol (a), defined by (a), =
aa+1)---(a+n—-1)=(@y_1(a+n—-1forn=1,2,...,and (a)y = 1.

The fourth hypergeometric function of Lauricella, denoted by F g’) , in n variables
Z1, - - -5 Zy 18 defined by

oo j
Z @)ty (b)) - () 2] - 2
Fgl)(a’b]""7bn;c; Z]?""Zn) = ( )]1+ +jn( 1)]] ( n)]n l z 9

Jlseeus jn=0 (C)jl+"'+jn ]1' te jn!
where |z;| < 1,i = 1,...,n. An integral representation of F}’ in Exton [7, p. 49,
Eq. (2.3.5)] is given as
F,(j'")(a, biy....,by;c; 21,000y Zm)

B r'(c)
IR VRGO Z? lb')
)C*Z? 1bi—1

/fn”’ m2mw) g, ()
(1= 30 ziti)

> lx,<1
O<x;,i=l1,..., n

For further results and properties of this function the reader is referred to Exton [7]
and Srivastava and Karlsson [32].

Let f(-) be a continuous function and «; > 0,7 = 1, ..., n. The integral
Dy(ar, ... 0 f) = / / [1="r (in) [dx
0 0 = i=1 i=1
is known as the Liouville-Dirichlet integral. Substituting y; = x;/x, i =1,...,n —
landx = Z:’:l x; with the Jacobian J (x1, . .., Xp—1, Xn = Y1, - .. Yu_1, X) = x|
it is easy to see that
' s
Dy, ... an; f) = iy M) ( ) Lize=l £ (x) dx. (16)

T @)

Finally, we define the beta type 1, beta type 2 and Dirichlet type 1 distributions.
These definitions can be found in Wilks [34], Fang, Kotz and Ng [8], Johnson, Kotz
and Balakrishnan [15], and Kotz, Balakrishnan and Johnson [16].

Definition 2 A random variable X is said to have the beta type I distribution with
parameters (a, b), a > 0, b > 0, denoted as X ~ Bl(a, b), if its pdf is given by
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I'(a+b)

a—1 _ b—1
—F(a)l"(b)x (1—x)",0<x<1.

Definition 3 A random variable X is said to have the beta type II distribution with
parameters (a, b), denoted as X ~ B2(a, b),a > 0,b > 0, if its pdf is given by

r b

Mx"_](l +x)"@ x> 0.

C(@)T'(b)
Definition 4 The random variables Uy, ..., U, are said to have a Dirichlet type 1
distribution with parameters «q,...,®, and «,4;, denoted by (Uy,...,U,) ~

Dl(ay, ..., ay; ayt1), if their joint pdf is given by

PO ) !
l—[n+l F(Ol,) 1_[ : ( ZM,) ’

i=l

O<u,~,i=1,...,n,2u,~<l, a7)

whereo; >0,i =1,...,n+ 1.

The Dirichlet type 1 distribution, which is a multivariate generalization of the
beta type 1 distribution, has been considered by several authors and is well known in
the scientific literature. By making the transformation V; = U; /(1 — Y_/_, Uy), j =
1,...,n,in (17), the Dirichelt type 2 density, which is a multivariate generalization
of beta type 2 density, is obtained as

F( n+1 ) ) _Zf:1l“i
m]_[ u <I+Zu,> , vi>0,i=1,....n. (18)

We will write (Vi, ..., V,) ~ D2(ay, ..., ay; oyeq) if the jointdensityof Vi, ..., V,
is given by (18).

The matrix variate generalizations of beta type 1, beta type 2 and Dirichlet type 1
distributions have been defined and studied extensively. For example, see Gupta and
Nagar [11].

Definition 5 Multinomial Theorem: For a positive integer k and a non-negative

integer m,
k
@+t = ) R
kiy ..oy km
O

k B k!
ki,....ky)  kyle-ky!

where
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The numbers appearing in the theorem are the multinomial coefficients. They can
be expressed in numerous ways, including as a product of binomial coefficients of
factorials:

k B k! ki\ (ki + ko ki+ky+---+ky
kiskys o k) Ktk k! \Kk ks ko

Lemmal Fora; >0,...,a, > 0andk € N, we have

(al)kl s (am)k,,,
KD TR St
l++ m=

C(ai+ - +an + )
Fa+-+an)

Proof Writing (1 —@)~@*+an) a5 (1 —9)=@ ... (1 — @)% and using power
series expansion, for 0 < 6 < 1, we get

k=0

A1—6)“...(1 —0) % = i Z (a])k, . (am)k,,, Dk - m )k g4tk

— Qk Z (al)kl v (am)km

Veoik, !
k=0 ki +-tkn=k kl . km.
and
[e%e} ((11+"'+am)k i
_ gy (@ttan) _ (a1 + -+ amk
TR
k=0
Now, comparing coefficients of 6%, we get the desired result. 0

Lemma 2 Let

00 oo m | m k L
g(al,---,am;ﬂ,k)=‘/0 /0 1_[2?’7 ZZi exp —EZzi dzy---dzm,
i=1 i=1 i=1

(19)
wherea; > 0,...,a, > 0andk € N. Then

8(@r. ... ay; B k) = P+ [l_[ F(a)} @+ + )

i=1

Proof Expanding (3_7", Z,-)k in (19) by using multinomial theorem and integrating
21, ..., Zm, We Obtain
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Y (T ( )
Z; expl| ——=zi ) az;
KLk ) p

glay, ...,an; B, k)

itk =
" k m
— 2imy itk '(a; k).
B > (kl,...,km)n (@ + k)
Ky =k i=1
Now, using Lemma 1, we get the desired result. O
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