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Preface

Multivariate statistical analysis has undergone a rich and varied evolution during
the latter half of the twentieth century. Academics and practitioners have produced
much literature with diverse interests and with varying multidisciplinary knowledge
on different topics within the multivariate domain. Due to multivariate algebra being
of sustained interest and being a continuously developing field, its appeal breaches
laterally across multiple disciplines to act as a catalyst for contemporary advances,
with its core inferential genesis remaining in that of statistics.

It is exactly this varied evolution caused by an influx in data production, diffusion
and understanding in scientific fields that has blurred many lines between disci-
plines. The cross-pollination between statistics and biology, engineering, medical
science, computer science and even art, has accelerated the vast amount of questions
that statistical methodology has to answer and report on. These questions are often
multivariate in nature, hoping to elucidate uncertainty on more than one aspect at
the same time—and it is here where statistical thinking merges mathematical design
with real-life interpretation for understanding this uncertainty.

Statistical advances thus benefit from these algebraic inventions and expansions
in the multivariate paradigm. This contributed volume aims to usher novel research
emanating from amultivariate statistical foundation into the spotlight, with particular
significance in multidisciplinary settings. The overarching spirit of this volume is to
highlight current trends, stimulate a focus on and connect multidisciplinary dots from
and within multivariate statistical analysis. Guided by these thoughts, a collection of
research at the forefront of multivariate statistical thinking is presented here which
has been authored by globally recognized subject matter experts.

Outline of This Book Volume

This contributed volume brings together 19 chapters that are organized as follows:
Trends in Multi- and Matrix-Variate Analysis (Part One), Aspects of High-
DimensionalMethodology andBayesianLearning (PartTwo) andFrontiers inRobust

v



vi Preface

Analysis and Mixture Modelling (Part Three). All the chapter contributions have
undergone a thorough and independent review process.

Part One of this book includes 12 papers focusing on recent trends in multi-
and matrix-variate analyses. In Chapter “Association-Based Optimal Subpopulation
Selection for Multivariate Data,” the authors propose a semiparametric statistical
approach for the optimal subpopulation selection based on the patterns of associa-
tions in multivariate data. Mattos, Matos and Lachos relaxes the normal assumption
for linear mixed-effects models with a censored response by considering the multi-
variate skew-normal distribution in Chapter “Likelihood-Based Inference for Linear
Mixed-Effects Models with Censored Response Using Skew-Normal Distribution”.
Chapter “Robust Estimation of Multiple Change Points in Multivariate Processes”
contains the proposition of a novel likelihood-based technique to identify multiple
change points in multivariate processes.

In Chapter “Some Computational Aspects of a Noncentral Dirichlet Family”, the
authors explore computational issues when considering the estimation of the singly
and doubly noncentral Dirichlet distribution. Chapter “Modeling Handwritten Digits
Dataset Using the Matrix Variate t Distribution” discusses the implementation of the
matrix variate t distribution and computational aspects of the resulting EM algo-
rithm when applied to modelling handwritten digits. Byukusenge and coauthors
provide refreshing contributions to matrix residuals of the GMANOVA-MANOVA
model in Chapter “On the Identification of Extreme Elements in a Residual
for the GMANOVA-MANOVA Model”.

In Chapter “Matrix-Variate Smooth Transition Models for Temporal Networks”,
Billio et al. study matrix-valued panel data characterized by nonlinear dynamics and
heavy tails. Chapter “A Flexible Matrix-Valued Response Regression for Skewed
Data” sees a contribution of a new flexible family of matrix-variate distributions
and is implemented with matrix-variate regression by Baghishani and Ownuk. A
nonparametric approach for analysing multivariate functional time series with spec-
trum analysis is discussed in Chapter “Multivariate Functional Singular Spectrum
Analysis: A Nonparametric Approach for Analyzing Multivariate Functional Time
Series”. Greenacre discusses issues emanating from compositional data analysis
when viewed from a matrix-vector representation in Chapter “Compositional Data
Analysis—Linear Algebra, Visualization and Interpretation”. Alzaatreh, Famoye
and Lee define multivariate regression models accounting for positive and nega-
tive correlation in Chapter “Multivariate Count Data Regression Models and Their
Applications”. Finally, in Part One, Chapter “A Generalized Multivariate Gamma
Distribution” introduces amultivariate gammadistributionwhosemarginals are finite
mixtures of gamma distributions, by Iranmanesh, Rafiei and Nagar.

Part Two comprises four chapters that highlights aspects of high-dimensional
modelling and methodology. In Chapter “A Comparison of Different Clustering
Approaches for High-Dimensional Presence-Absence Data”, d’Angella and Hennig
compare the performance of different clustering methods in high-dimensional pres-
ence–absence data environments. Millard et al. utilize the modified elastic net
in Chapter “High-Dimensional Feature Selection for Logistic Regression Using
Blended Penalty Functions” to deal with high-dimensional problems with highly
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correlated predictor variables. Munaweera and coauthors provide an extension of the
non-negative garrote method for greater flexibility in ridge regression in the case of
unequal shrinkage of regression coefficients in Chapter “A Generalized Quadratic
Garrote Approach Towards Ridge Regression Analysis”, and Roozbeh eliminates
structured noises to improve the prediction performance of the LASSO method in
a semiparametric regression framework in Chapter “High Dimensional Nonlinear
Optimization Problem in Semiparametric Regression Model”.

Part Three includes three chapters that focus on the recent emphasis on robust anal-
ysis and mixture modelling. Punzo and Tomarchio apply the eigen decomposition to
covariance matrices to design parsimonious finite mixtures of matrix-variate regres-
sions in Chapter “Parsimonious Finite Mixtures of Matrix-Variate Regressions”. In
Chapter “Robust MultivariateModelling for Heterogeneous Data Sets withMixtures
of Multivariate Skew Laplace Normal Distributions”, the authors consider finite
mixtures of multivariate skew Laplace normal distributions with accompanying EM
algorithm for implementation. Chapter “Robust Estimation Through Preliminary
Testing Based on the LAD-LASSO” concludes the volume with the proposition of
a new estimator for sparse and robust regression that improves the preliminary test
least absolute deviation estimator.
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Association-Based Optimal
Subpopulation Selection for Multivariate
Data

Qing Guo, Xinwei Deng, and Nalini Ravishanker

Abstract In the analysis of multivariate data, a useful problem is to identify a sub-
set of observations for which the variables are strongly associated. One example is
in driving safety analytics, where we may wish to identify a subset of drivers with
a strong association among their driving behavior characteristics. Other interesting
domains include finance, health care, marketing, etc. Existing approaches, such as
the Top-k method or the tau-path approach, primarily relate to bivariate data and/or
invoke the normality assumption. Directly adapting these methods to the multivari-
ate framework is cumbersome. In this work, we propose a semiparametric statistical
approach for the optimal subpopulation selection based on the patterns of associations
in multivariate data. The proposed method leverages the concept of general correla-
tion coefficients to enable the optimal selection of a subpopulation for a variety of
association patterns. We develop efficient algorithms consisting of sequential inclu-
sion of cases into the subpopulation. We illustrate the performance of the proposed
method using simulated data and an interesting real data.

1 Introduction

An interesting and useful problem that arises in the analysis of multivariate data of
any size is the identification of a small subset of the entire data, in which the variables
are strongly associated. We denote such a problem as the association-based optimal
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subdata selection. One example is in transportation safety analytics [30], where we
may wish to identify a subset of locations with a strong association between their
roadway characteristics and traffic accidents. Another example is in epidemiology,
where we are interested in finding a subset of health districts whose COVID-19
characteristics (e.g., the number of hospitalizations) are highly correlated. Thus,
searching for an optimal subdata in terms of association from a potentially large
dataset can be very useful for knowledge discovery, providing data insight, as well
as improving the efficiency of data analysis and decision-making.

However, it is not a trivial problem to extract an optimal subset from the whole
dataset with multivariate dimensions. First, one needs to define a suitable optimality
criterion to quantify the association among variables in the multivariate data. It is
well known that the Pearson correlation is mainly for the linear association, while
nonparametric rank-based measures of association, such as Kendall’s τ or Spear-
man’s ρ can be computationally expensive. Moreover, there can be a large number
of pairwise associations as the dimension of the multivariate data increase. It will
be very useful to define a good statistic to quantify the overall association. Second,
unlike some analyses of multivariate data which correspond to supervised learning,
the problem of selecting an optimal subset is in general unsupervised and is impor-
tant to take scalability into consideration. Third, selecting a subset of data points is
a combinatorial optimization issue due to the discrete nature of the problem. Thus,
it is crucial to find a suitable algorithm to make the subset selection efficient, with
high accuracy.

In the literature, the problem of subdata selection in multivariate analysis has
been investigated from different angles. In the design of experiments literature [26],
the area of optimal design [12] is closely related to the optimal subdata selection.
However, the criterion of searching for an optimal design is often based on certain
parametric regression models, and often a poll of candidate design points needs to be
generated for the search. By contrast, the subdata selection problem does not assume
a response variable. In the literature on data filtering to reduce the data size, also, the
objective is to find a subset of the data which contains as much information as the full
data. For example, [11] recently proposed a clustering-based data filtering for big data
systems in manufacturing, where subsampling is conducted for data points in each
cluster. Along this direction [17, 27], other approaches included probability-based
filtering such as random sampling [6, 16] and stratified sampling [13, 25]. Tau-path
is another approach in the literature used to identify a subset of the observations,
such that the association defined by Kendall’s τ between two variables is maximized
[21, 29, 30]. However, their approach cannot be directly extended to the multivariate
framework, and further it is restricted toKendall’s τ as themeasure of the association.

In this work, we propose a semiparametric statistical approach for optimal sub-
data selection based on the patterns of associations inmultivariate data. The proposed
method leverages the concept of general correlation coefficients [10] to enable the
optimal selection of a subpopulation for a variety of association patterns, includ-
ing the Pearson correlation, Kendall’s τ , and Spearman’s rank correlation. Specif-
ically, we propose an averaged absolute association (AAA) criterion for finding
the association-based optimal subdata from a multivariate dataset. This criterion is
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similar in spirit to the root average squared correlation in the experimental design
literature [2, 14], where the Pearson correlation is used. Our proposed criterion is
more general in the sense that it is not limited to the Pearson correlation, but can be
applied to any general association. The use of the absolute value of the general corre-
lation coefficient for each pair of variables can also make the criterion more robust in
comparison with the use of the squared values. Moreover, we develop efficient algo-
rithms for the proposed criterion non-convex AAA criterion. Three algorithms, i.e.,
a genetic algorithm (GA), a forward selection algorithm, and a backward selection
algorithm, are developed based on the AAA criterion. Through sequential inclusion
and exclusion of data points into the subpopulation, these three algorithms are able
to find an optimal subpopulation with different characteristics. We show that the
backward algorithm appears to be most efficient computationally, while the genetic
algorithm has the advantage of escaping from local optimal solutions. Note that the
genetic algorithm has been successfully used in the design of experiments framework
[15]. The forward algorithm is slow, but in an exact situation, it can provide better
subpopulation solutions than the GA and backward algorithms.

The remainder of the paper is organized as follows. Section2 details the proposed
AAAmethod.We show a set of simulation-based results to examine the performance
of the proposed method in Sect. 3. Section4 shows a case study on multivariate
COVID-19 data in Virginia. We conclude this paper with a discussion in Sect. 5.

2 The Proposed Method

Let X = (X1, . . . , X p) denote a p-dimensional random vector. Suppose that the
observed data are x1, . . . , xn , where xi = (xi1, . . . , xip)′. Denote the full data matrix
as the n × p matrix XF = (x1, . . . , xn)T , which is an n × p matrix. Corresponding
to n independent subjects and p exchangeable variables, the goal is to select a subset
of the rows of the data with size between ml and mu , such that the association of the
p variables on the selected subset is maximized.

Averaged Absolute Association (AAA) Criterion

Let X f be an m × p submatrix which is formed by choosing m out of n rows in X F .
We formulate the problem as

max
X f ⊂XF

h
(
A(Xf)

)

s.t. ml ≤ size(X f ) ≤ mu, (1)

where A(Xf) is a p × p matrix consisting of the associations among the p variables
across them units, and h(·) is a function that yields a suitable scalar metric of A(Xf).
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We describe the idea of the proposed method in the context of a general measure of
association.

We first define a criterion for evaluating the associations, by looking at the p vari-
ables pairwise. Let (xi , yi ) and (x j , y j ) denote observations on any pair of individuals
i and j , for i �= j, i, j ∈ {1, . . . , n}. Let u(x)

i j and u(y)
i j be the score that we assign on

the x and y dimensions, respectively. Then, the general correlation coefficient [10]
can be expressed as

τ(x, y) =
∑

i, j u
(x)
i j u

(y)
i j√∑

i, j (u
(x)
i j )2

∑
i, j (u

(y)
i j )2

. (2)

Note that various correlations, such as Spearman’s rank correlation, Pearson cor-
relation, and Kendall’s τ , can be viewed as special cases of the general correla-
tion coefficient. Let ri and si denote the ranks of (xi , yi ) in the x-dimension and
y-dimension, respectively. One can see that the expression in (2) is Kendall’s τ coef-
ficient if u(x)

i j = sign(ri − r j ) and u(y)
i j = sign(si − s j ). Also, if u

(x)
i j = ri − r j and

u(y)
i j = si − s j , then the expression in (2) is Spearman’s ρ.

Proposition 1 Consider a set of bivariate vectors (x1, y1), . . . , (xn, yn). For the
general correlation coefficient in (2), we have the following:

(a) τ(x, y) will be Kendall’s τ correlation coefficient if u(x)
i j = sign(ri − r j ) and

u(y)
i j = sign(si − s j ).

(b) τ(x, y) will be Spearman’s ρ correlation coefficient if u(x)
i j = ri − r j and u

(y)
i j =

si − s j .

(c) τ(x, y) will be Pearson’s r correlation coefficient if u(x)
i j = xi − x j and u(y)

i j =
yi − y j .

Moreover, even when the entries in X F are categorical, the general correlation
coefficient can still be used to quantify the association among multivariate variables.
For example, the φ coefficient [7], defined as a measure of association between two
binary variables, is a special case of the general correlation coefficient as formalized
by the following statement.

Corollary 1 Consider a set of bivariate binary variables (x1, y1), . . . , (xn, yn)
where xi ∈ {0, 1} and yi ∈ {0, 1}. The general correlation coefficient τ(x, y) in (2)
with u(x)

i j = xi − x j and u(y)
i j = yi − y j is equivalent to the φ correlation, i.e.,

τ(x, y) = φ = n11n00 − n10n01√
n1·n0·n·1n·0

, (3)

where nhl is the number of points with (h, l) for h, l = 0, 1, and nl· is the number
of data points with xi = l, for l = 0, 1. The n1· is the number of data points with
xi = 1. Similar definitions apply for n0·, n·1, and n·0.
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Next, we construct a suitable scalar metric based on the several core coefficients
in order to measure the association among the p variables.Without loss of generality,
we assume that the data points in the subpopulation are stacked row by row to form
a m × p matrix Xf . Let the x

( f )
k be the kth column of Xf . The association among the

p variables can be quantified by

A(X f ) = (τk,l)p×p =

⎛

⎜⎜⎜
⎜⎜⎜
⎝

1 τ(x ( f )
1 , x ( f )

2 ) . . . τ (x ( f )
1 , x ( f )

p )

τ (x ( f )
2 , x ( f )

1 ) 1 . . . τ (x ( f )
2 , x ( f )

p )
...

...
...

...

τ (x ( f )
p , x ( f )

1 ) . . . τ (x ( f )
p , x ( f )

p−1) 1

⎞

⎟⎟⎟
⎟⎟⎟
⎠

(4)

and we propose

h(A(X f )) = 2

p(p − 1)

∑

k<l

|τk,l |. (5)

That is, an optimal subdata X f is obtained by

max
X f ⊂XF

2

p(p − 1)

∑

k<l

|τk,l | ∈ [0, 1]

s.t. ml ≤ si ze(X f ) ≤ mu . (6)

We refer to this criterion as the averaged absolute association (AAA) criterion for
optimal subpopulation selection. Note that when there are only two variables (i.e.,
p = 2) and Kendall’s τ is used for the measure of association, then the tau-path
method in the literature [29, 30] can be viewed as a special case of the proposed
method.

Efficient Algorithms

Note that the optimization for the AAA criterion in (6) is non-convex and discrete
in nature. To address this challenge, we develop three efficient algorithms by taking
advantage of the formulation of the general correlation coefficient.

Proposition 2 Given a set of bivariate vectors (xi , yi ), i = 1, 2, . . . , n, the general
correlation coefficient in Proposition 1 can be expressed as

τ(x, y) =
∑

i, j u
(x)
i, j u

(y)
i, j√∑

i, j (u
(x)
i, j )

2
√∑

i, j (u
(y)
i, j )

2

�= N√
D1

√
D2

(7)
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for Kendall’s τ and Pearson’s ρ. Then we have the following results:
(i) If (xn+1, yn+1) is added, the correlation between (x1, x2, . . . , xn, xn+1) and

(y1, y2, . . . , yn, yn+1) can be calculated by

τ(x (n+1), y(n+1)) =

N
︷ ︸︸ ︷∑

i, j

u(x)
i, j u

(y)
i, j +2

∑
j u

(x)
n+1, j u

(y)
n+1, j

√√√√√

∑

i, j

(u(x)
i, j )

2

︸ ︷︷ ︸
D1

+2
∑

j (u
(x)
n+1, j )

2
√√√√√

∑

i, j

(u(y)
i, j )

2

︸ ︷︷ ︸
D2

+2
∑

j (u
(y)
n+1, j )

2
.

(8)

(ii) If an arbitrary (xk, yk) is deleted, the correlation between (x1, . . . , xk−1,

xk+1, . . . , xn) and (y1, . . . , yk−1, yk+1, . . . , yn) can be calculated by

τ(x(−k), y(−k)) =

N
︷ ︸︸ ︷∑

i, j

u(x)
i, j u

(y)
i, j −2

∑
j u

(x)
k, j u

(y)
k, j

√√√√√

∑

i, j

(u(x)
i, j )

2

︸ ︷︷ ︸
D1

−2
∑

j (u
(x)
k, j )

2
√√√√√

∑

i, j

(u(y)
i, j )

2

︸ ︷︷ ︸
D2

−2
∑

j (u
(y)
k, j )

2
. (9)

The three efficient algorithms, namely the genetic algorithm (GA), forward selec-
tion algorithm (FSA), and backward selection algorithm (BSA), are summarized in
Algorithms 1, 2, and 3, respectively. In all these algorithms, we utilize the one-step
update rule in Proposition 2 to facilitate the computation of the generalized correla-
tions based on their past values, with minimal extra computations.

In the genetic algorithm (Algorithm 1), we start with K candidate subdata sets,
and evolve them toward higher association values. Each evolution step involves two
phases: the mutation phase (Step 2) and the selection phase (Step 4). In the mutation
phase, we construct a new candidate set by either adding or dropping an observa-
tion from each of the subdata sets. For each mutation, since only one observation
will be included or excluded from the original set, we can efficiently compute the
updated correlation coefficient via Proposition 2. In the selection step, we keep a
subset of candidate sets with the highest correlation coefficients, as well as a ran-
dom subset of all the eligible candidates (i.e., the original candidate sets plus the
newly mutated candidate sets). Such a strategy involves a trade-off between explo-
ration and exploitation [4, 5], which aims to find the subdata with high association,
while keeping the possibility of exploring other subdata sets. To avoid redundant
computations, we remove duplicated active sets in each evolution step, and cache all
computed state-correlation pairs with a hash table. We stop the algorithm when the



Association-Based Optimal Subpopulation Selection for Multivariate Data 9

Algorithm 1 Genetic Algorithm for Subpopulation Selection
1: procedure Genetic Algorithm
2:
3: Step 1: Randomly Initialize K candidate sets C0 = {X f,1, X f,2, ..., X f,K }.
4:
5: for g in 1, · · · , N do:
6: Step 2: Mutation: Mutate current candidates with
7: Add: randomly add an observation (add a row in X f )
8: Drop: randomly drop an observation (drop a row in X f )
9: Repeat until we have a size C child candidates C̃g
10: Step 3: Compute the AAA criterion scores for all candidate in C̃g
11: Step 4: Selection: Add to a new candidate sets Cg
12: Fittest: T best candidates in Cg−1 and C̃g
13: Diversity: randomly pick K − T from the remaining candidates
14: Step 5: Stop the evolution if the best score has not improved for the last
15: L iterations (termination rules)
16:
17: Step 6: Return the final subdata sets.

iteration budget has been exhausted, or the best correlation has not been changed for
a pre-defined number of generations.

The forward selection algorithm (FSA, Algorithm 2) starts with all subdata sets
of size three (unless the number of candidate sets is excessively large, then we use
a random subset). The reason for this is that the subdata with size two will result
in the AAA criterion score to be 1. In each step of the FSA, the algorithm adds
one observation to each subdata set and selects the one that gives the highest AAA
criterion. In the case of a tie among several subdata sets, we keep all of them and
continue adding one observation at a time until we break the tie. Similarly, the
backward selection algorithm (BSA, Algorithm 3) starts with the full-sized set, and
progressively removes one observation at a time in accordance with the optimality
criterion. Note that for both FSA and BSA methods, we can take advantage of
the one-step update rule in Proposition 2 to enable computational efficiency in the
implementation of the algorithms.

Algorithm 2 Forward Selection Algorithm
procedure Forward Selection

2:
for g in 3, · · · ,ml do:

4: if g = 3 then
Compute scores for all three possible observation combinations

6: Select the best combinations
else

8: Add one observation to existing selected subpopulations
Compute all possible scores and keep the best subpopulation

10: Return the final subdata sets.
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Algorithm 3 Backward Selection Algorithm
procedure Backward Selection

3: for g in n, n − 1, · · · ,ml do:
if g = n then

Compute the score for all observations
6: else

Delete one observation at a time from current selected subpopulation
Compute all possible scores and keep the best subpopulations

9: Return the best subdata sets.

It is worth remarking that each of these three algorithms has its own merits and
limitations. For the genetic algorithm, it is flexible to add or delete observations. It
also can alleviate the problem of being trapped in a local maximum, although it may
converge to a local maximum. The forward selection algorithm starts with a small
number of observations and adds observations step by step. But, when the sample
size n and lower limitml are large, it will require maintaining more subset candidates
and subsequently need computations to obtain their corresponding AAA criterion
scores. The backward selection algorithm starts with the full sets of observations.
When the lower limit mu is large, the backward method will be fast. However, when
the sample size n is large, the backward algorithm can be computationally intensive.

As stated earlier, all three algorithms utilize the results in Proposition 2 to perform
a one-step update for the calculation of the general correlation. Moreover, these three
algorithms are able to obtain diverse solutions since there often exist different subdata
sets achieving the same optimal AAA criterion. While existing methods such as the
tau-path method can only identify one subdata, our approaches can obtain multiple
optimal and near-optimal subdata sets, allowing more flexibility for investigators
to probe their data of interest. Another key feature of the proposed methods is the
ability to handle high-dimensional data, which is of great importance in machine
learning and data science [3, 23]. Our selection of an optimal subset is based on a
general criterion which includes not only the traditional linear Pearson correlation
but also the non-linear Kendall and Spearman correlation, and other nonparametric
association metrics [8].

3 Simulation Study

In this section,wewill conduct a set of simulation studies to examine the performance
of the proposed method. The code for implementing the proposed method is avail-
able at https://github.com/qingguo666/BSA. All simulations are implemented with
Python. In section “Evaluation of SelectedSubpopulation”,wewill evaluate the accu-
racy of the subpopulation selection under different settings. Section “Comparisons

https://github.com/qingguo666/BSA
 1186 52130 a 1186 52130 a
 
https://github.com/qingguo666/BSA
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of the Algorithms” compares the three algorithms in terms of selection accuracy and
computational time. We also provide a visualization to better understand the charac-
teristics of the selected data points. Section “Comparison with the Tau-PathMethod”
compares the proposed method with the tau-path algorithm in the literature [29, 30].

Evaluation of Selected Subpopulation

With the loss of generality, we assume that the data are centered with zero means.
The simulated population consists of two subpopulations, the first subpopulation
(ground truth) is randomly generated from a multivariate normal distribution with
covariance matrix �1, and the second subpopulation (noise) is randomly generated
from a multivariate normal distribution with covariance matrix �2. Here, �1 has a
strong correlation structure and �2 is an identity matrix. The goal is to correctly
select the correlated subpopulation. Table1 summarizes the settings for simulation
study Table 1. We set the lower bound ml = nα, i.e., the sample size of the first
subpopulation. Both the Pearson correlation and Kendall’s τ are used as an example
of the general correlation in the AAA criterion.

We apply the three algorithms and select the optimal subdata sets with the largest
value of the AAA criterion. Note that for the forward selection algorithm and the
backward selection algorithm, only the lower bound constraint ml is needed. How-
ever, in the case of the genetic algorithm, both lower and upper constraints are needed
since the smaller sample size often leads to higher correlation, we set mu = ml + 3.
To evaluate the performance, we compare the selected subpopulation to the ground
truth subpopulation, and report the true positive rate (TPR) [28].

The values of TPR are reported in Fig. 1. The upper and lower panels of Fig. 1
respectively show the selection results for Pearson correlation and Kendall corre-
lation. In general, it is seen that the TPR is sensitive to the proportion of the first
subpopulation (i.e., α) and the correlation parameter (ρ). As ρ increases, the TPR
values also increase, indicating the higher accuracy of the proposed method. Also,
the value of TPR has a strong dependency on the data dimension p. If we fix all other
parameters, the proposed method often gives better results for larger p. Further, it

Table 1 Settings for simulation study 1 (n > p)

Sample size n = 50 or 100

# of covariates p = 5 or 10

Proportion of the subpopulation α = 0.3, 0.5, or 0.8

Correlation of the first subpopulation ρ = 0.3, 0.5, or 0.8

Covariance matrix of subpopulation �1 =
(
σi j

)

p×p
, σi j =

{
1 if i = j

ρ if i �= j

�2 = I p



12 Q. Guo et al.

Fig. 1 True positive rate in simulation 1 for Pearson correlation (top row) and Kendall correlation
(bottom row)

Table 2 Settings for simulation study 2 when n < p

Sample size n = 30

# of covariates p = 100

Proportion of the subpopulation α = 0.3, 0.5, or 0.8

Correlation of the first subpopulation ρ = 0.3, 0.5, or 0.8

Covariance matrices of the subpopulations �1 =
(
σi j

)

p×p
, σi j =

{
1 if i = j

ρ if i �= j

�2 = I p

appears that the proposed method using the Kendall τ mostly yields better results
than that using the Pearson correlation. For ρ ≥ 0.8, the method using Kendall’s τ

gives TPR values greater than 0.8. Such a pattern even applies when the proportion
of the first subpopulation is small.

We also investigate the performance of the proposedmethod for the situationwhen
n < p, using the backward selection algorithm. The simulation setting is shown in
Table2, and the results are summarized in Table3.We can see that n < p can estimate
the association value (i.e., the AAA score) correctly and identify the subpopulation
accurately with a high value of TPR. Compared to the situation when n > p, the
proposed methods can precisely choose the correct subpopulation better in n < p.
Under the same proportion of the correlated subpopulation, the true positive rate
can be improved with a high correlation coefficient. Even if the proportion of the
correlated subpopulation is small, the proposed method can still perform very well
when the correlation of the true subpopulation is medium. These simulation results
provide convincing support for using the proposed method when n < p.
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Table 3 Results for simulation study 2 (n < p)

Parameter AAA value True positive ratio

Pearson Kendall Pearson Kendall

α = 0.3 ρ = 0.3 0.30 0.23 0.78 0.67

ρ = 0.5 0.48 0.28 1.00 0.78

ρ = 0.8 0.77 0.67 1.00 1.00

α = 0.5 ρ = 0.3 0.23 0.27 0.93 0.87

ρ = 0.5 0.33 0.38 1.00 1.00

ρ = 0.8 0.59 0.64 1.00 1.00

α = 0.8 ρ = 0.3 0.17 0.20 0.96 0.96

ρ = 0.5 0.34 0.31 1.00 1.00

ρ = 0.8 0.57 0.61 1.00 1.00

Comparisons of the Algorithms

We compare the three algorithms, the genetic algorithm, the forward selection algo-
rithm, and the backward selection algorithm, in terms of computational time and TPR
values. For a simulation setting with n = 50, and p = 5, see Table 1. The results are
reported in Table4. It is seen that the forward selection algorithm (FSA) is time-
consuming, because it starts with all possible combinations and there are probably
many ties. The backward selection algorithm (BSA) only calculates p possible sit-
uations in the first step, thus taking less time. However, the BSA cannot always get
the best TPR among the three algorithms, although in general, the TPR for the three
algorithms is comparable.

A visualization of the algorithms can help us to further understand their charac-
teristics. Note that our algorithms may not always find the correlated subpopulation,

Table 4 Comparisons of TPR and computing time for the three algorithmswhen n = 50 and p = 5

Parameter True positive ratio Running time

GA FSA BSA GA FSA BSA

α = 0.3 ρ = 0.3 0.2 0.27 0.47 28.87 73.97 0.79
ρ = 0.5 0.53 0.53 0.53 28.49 77.16 0.76
ρ = 0.8 0.67 0.67 0.67 28.97 169.96 0.81

α = 0.5 ρ = 0.3 0.64 0.64 0.64 51.37 77.28 0.62
ρ = 0.5 0.68 0.76 0.72 51.83 77.34 0.64
ρ = 0.8 0.88 0.84 0.88 51.57 114.04 0.61

α = 0.8 ρ = 0.3 0.9 0.78 0.9 103.11 72.39 0.35
ρ = 0.5 0.85 0.825 0.825 102.60 78.92 0.33
ρ = 0.8 0.98 0.98 0.98 101.86 250.71 0.32



14 Q. Guo et al.

Fig. 2 Visualization of selecting the correlated subpopulation by the BSA when p = 2

especially in lower dimensions. To illustrate, let n = 2 and p = 2 with other settings
being as in Table1. When p = 2, we can provide a good 2-D visualization to under-
stand why the methods may have lower accuracy than that in higher dimensions. In
Fig. 2, we display the simulated points in a scatter plot and distinguish them using
different colors (blue dots for subpopulation 1 and orange dots for subpopulation 2).
We use the backward selection algorithm to find an optimal subpopulation, which is
denoted by red circles. In addition, we fit a regression line for the selected subpop-
ulation. Recall that the objective is to correctly select the correlated subpopulation
(blue dots). The plots show that there are some orange dots and blue dots building
a better path than the path built only by the correlated blue points. However, this
problem can be alleviated by increasing p. As p becomes larger, it will be difficult to
select a data point from the wrong subpopulation (i.e., subpopulation 2). The reason
is that a point from the incorrect subpopulation will be difficult to build a better path
with correlated points in all dimensions.
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Table 5 Results for comparison of Kendall’s correlation and run time based on different ml in the
simulation study

100 200 300 400 500 600 700 800 900 1000

Kendall’s
correlation

FastBCS 0.962 0.868 0.786 0.696 0.607 0.508 0.390 0.268 0.144 0.001

BSA 0.962 0.868 0.786 0.697 0.607 0.508 0.390 0.268 0.144 0.001

Running
time (s) per
solution

FastBCS 17.8 17.8 17.8 17.8 17.8 17.8 17.8 17.8 17.8 17.8

BSA 9.1 13.6 25.9 75.3 97.5 154.0 126.0 93.7 49.5 4.5

Comparison with the Tau-Path Method

Tau-path approach [21, 29, 30] deals with subpopulation selection, but only for
bivariate data (p = 2) using Kendall’s τ as the measure of association. Reference
[21] discussed the tau-path method for large samples with the new code1 (up to
n = 10000). Here, we compare our BSAwith the Fast Backward Conditional Search
(FastBCS) in [21] for p = 2, which can select increasing subsets whose associated
tau coefficients becomemonotonically decreasing. For n = 1000,we sample integers
without replacement from 1 to 1000 to form a two-dimensional data set. Then, we
apply the FastBCS and the BSA to select the optimal subpopulation, where the pro-
posed BSA algorithm uses Kendall’s τ as the measure of association. By increasing
the set size ml , we calculate Kendall’s correlation of subset chosen by FastBCS and
BSA, respectively, with the results reported in Table5. Generally, these two meth-
ods are comparable, giving similar Kendall’s coefficients under different settings. It
is seen that the value of Kendall’s coefficient for the BSA method monotonically
decreases as the size of selected subsets increases, which is similar to the pattern
from the tau-path method. It is worth noting that the BSA method generally needs
more computational time in comparison with the FastBCS method. It is because the
BSA method tracks all optimal subsets along the solution path, and explores more
possibilities. In the comparison of the average running time per solution, it is found
that both methods have their respective merits as shown in Table5.

4 Case Study

In this section, we illustrate our approach using the COVID-19 data from the Virginia
Department ofHealth. Table6 gives some samples of the collected data for eachweek
from 05/15/2020 to 02/05/2021 for the 35 districts in the state of Virginia. The data
consists of accumulative total cases, accumulative number of people hospitalized,

1 https://github.com/acaloiaro/topk-taupath.

https://github.com/acaloiaro/topk-taupath
 -1461 57867
a -1461 57867 a
 
https://github.com/acaloiaro/topk-taupath


16 Q. Guo et al.

Table 6 COVID-19 data in VA from 05/15/2020 to 02/05/2021

Cases
Wk 1

Hosp.
Wk 1

Deaths
Wk 1

PCR
Wk 1

... Cases
Wk 39

Hosp.
Wk 39

Deaths
Wk 39

PCR
Wk 39

West
Piedmont

69 10 2 NA ... 9862 573 188 163095

Hampton 158 29 3 NA ... 7652 241 69 16729

... ... ... ... ... ... ... ... ... ...

Prince
William

4130 398 75 NA ... 41306 1561 366 152350

Fig. 3 Ten highly correlated districts in Virginia (circled) selected by the BSA method

accumulative number of deaths, and accumulative number of people taking the PCR
test. We consider the districts as observation units and weekly accumulative data as
variables. Thus, the data frame contains 35 rows of observations and 156 columns of
variables. We deleted columns with missing entries and then we standardized data
to have zero mean and unit standard deviation.

To evaluate the performance of the proposed method, we first applied the BSA
algorithm to choose 10 highly correlated districts, highlighted in Fig. 3. We can see
that the correlated regions aremostly geographically clustered in the northeastern part
of the state adjacent to the District of Columbia (Loudoun, Fairfax, Prince William,
Rappahannock, Peninsula, and Hampton), slightly extending to the middle of VA
(Three Rivers, Henrico, Blue Ridge, and Piedmont). It is known that Northern Vir-
ginia is a densely populated region with thriving business activities, which could be a
key explanation that these regions share similar characteristics during the pandemic.

Next, we conducted the subselection based on different groups of variables. That
is, we conducted the subselection only based on variables of the accumulative total
cases, and applied the BSA algorithm to choose 10 highly correlated districts. Sim-
ilarly, we apply the BSA algorithm to perform the subselection based on the accu-
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mulative number of people hospitalized and the accumulative number of deaths,
respectively. The results are summarized in Table7. Note that the solutions of the
optimal subpopulation are often not unique. Thus, we report the frequency of districts
to be selected in the optimal solutions. From the results in the table, it is seen that
the districts selected based on different groups of variables can be different, although
there are some overlaps among the selected districts under these three groups of
variables. It is worth pointing out that the analysis results based on the number of
PCR are not reported here, because two optimal subpopulations obtained by the BSA
method have an AAA score of 1 with ml = 22. It implies that almost all districts in
Virginia are highly associated with respect to the number of PCR tests.

Table 7 Optimal selection results based on the number of cases, the number of people hospitalized,
and the number of deaths, respectively

Districts Case Frequency (out
of 2 tied solutions)

Hospitalization
Frequency (out of 4
tied solutions)

Deaths Frequency (out
of 2 tied solutions)

West Piedmont 1 0 0

Hampton 0 0 1

Fairfax 1 1 1

Crater 1 0 0

Chickahominy 0 2/4 0

Henrico 1/2 0 1/2

Chesterfield 0 0 1

Arlington 0 2/4 0

Lenowisco 1 0 0

Virginia Beach 0 0 1

Loudoun 1 2/4 0

Three Rivers 0 1 1

Blue Ridge 1 0 0

Southside 0 0 1

Roanoke 0 1 0

Lord Fairfax 0 1 1

Rappahannock
Rapidan

0 2/4 0

Rappahannock 1/2 1 0

Richmond 1 0 1

Pittsylvania Danville 1 0 0

Piedmont 0 1 0

Peninsula 0 1 1

Prince William 1 1 1/2
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5 Discussion

We propose a new method to select an optimal subpopulation based on association
for the multivariate data, together with three efficient algorithms (GA, Backward
Selection, and Forward Selection) to achieve this goal. It is possible to combine the
backward and forward selection to conduct a stepwise selection procedure, in a spirit
similar to stepwise variable selection in regression [20]. However, the stepwise sub-
population selection procedure for subpopulation can be computationally intensive.
To mitigate this issue, the genetic algorithm appears to be a good alternative. The
GA has similar good properties as a stepwise selection in terms of flexibly adding or
dropping observations. Moreover, the GA can start with any number of observations
and randomly add or drop cases with limited generations.

The top-k method [9, 22] is commonly used in selecting a subpopulation under
the context of ranking lists. The goal is to provide statistical inference on the lengths
of informative top-k lists for multiple ranked input lists (full or partial) representing
the same set of N objects. The popular tau-path method is to provide an ordered list
of observations whose association among variables is gradually decreased. But the
existing tau-pathmethods can only dealwith the bivariate data and the analysis is usu-
ally limited to Kendall’s τ correlation. The angle of our proposed association-based
optimal subpopulation selection is different from the top-k method. The proposed
backward selection can be used to generalize the tau-path approach for multivariate
data since we can track the ordination of observations to be dropped in the algo-
rithm. Moreover, such a generalized tau-path approach is not limited to Kendall’s τ

correlation, but is also applicable to other association metrics.
The proposed method can also be extended to handle compositional data where

the random vector (X1, . . . , X p) has strictly positive components whose sum is
constant, which is closely related with the mixture design [24] in the literature of
experimental design. It is known that there can be a spurious correlation in the
compositional data [19]. To address this challenge, we can consider the additive log-
ratio transformation [1, 18] as Z j = log(X j/X p) to form the vector (Z1, . . . , Z p−1)

and then apply the proposed method based on the transformed data for selecting an
optimal subpopulation.
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paper.
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Appendix

Proof of Proposition 1
For (c), if u(x)

i j = xi − x j and u(y)
i j = yi − y j , it is easy to see that

∑

i, j

u(x)
i j u

(y)
i j =

∑

i, j

(xi − x j )(yi − y j ) = 2
∑

i, j

xi yi − 2
∑

i, j

xi y j

= 2n
∑

i

xi yi − 2n2 x̄ ȳ

= 2n(
∑

i

xi yi − nx̄ ȳ)

= 2n
∑

i

(xi − x̄)(yi − ȳ).

Similarly, we can have

∑

i, j

(u(x)
i j )2 =

∑

i, j

(xi − x j )
2 = 2

∑

i, j

x2i − 2
∑

i, j

xi x j

= 2n
∑

i

x2i − 2n2 x̄2

= 2n(
∑

i

x2i − nx̄2)

= 2n
∑

i

(xi − x̄)2.

Then the expression in (2) can be written as

τ(x, y) =
∑

i, j u
(x)
i j u

(y)
i j√∑

i, j (u
(x)
i j )2

∑
i, j (u

(y)
i j )2

=
∑

i, j (xi − x j )(yi − y j )
√∑

i, j (xi − x j )2
∑

i, j (yi − y j )

= 2n
∑

i (xi − x̄)(yi − ȳ)
√
2n

∑
i (xi − x̄)22n

∑
i (yi − ȳ)2

=
∑

i (xi − x̄)(yi − ȳ)
√∑

i (xi − x̄)2
∑

i (yi − ȳ)2
.

Proof of Corollary 1
For binary variables x ∈ {0, 1} and y ∈ {0, 1} and data points (xi , yi ), i = 1, . . . , n,
we can first check the Pearson correlation coefficient. First, we have
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∑

i

(xi − x̄)(yi − ȳ) =
∑

i

xi yi − nx̄ ȳ = n11 − n
n1·
n

n·1
n

= 1

n

[
n11n − n1·n·1

]

= 1

n

[
n11(n11 + n10 + n01 + n00) − (n10 + n11)(n01 + n11)

]

= 1

n

[
n11n00 − n10n01

]
.

Second, we can get

∑

i

(xi − x̄)2 =
∑

i

x2i − nx̄2 = n1· − n(
n1·
n

)2

= 1

n

[
n1·n − n21·

]

= 1

n

[
n1·n0·

]
.

Similarly, we obtain
∑

i (yi − ȳ)2 = 1
n

[
n·1n·0

]
. Thus,

τ(x, y) =
∑

i (xi − x̄)(yi − ȳ)
√∑

i (xi − x̄)2
∑

i (yi − ȳ)2

= n11n00 − n10n01√
n1·n0·n·1n·0

.
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Likelihood-Based Inference for Linear
Mixed-Effects Models with Censored
Response Using Skew-Normal
Distribution

Thalita B. Mattos, Larissa A. Matos, and Victor H. Lachos

Abstract Mixed-effects models are commonly used to fit longitudinal or repeated
measures data. A complication arises when the response is censored, for exam-
ple, due to limits of quantification of the assay used. Although normal distributions
are commonly assumed for random effects, such assumptions may be unrealistic,
obscuring essential features of among-individual variation. We relax this assump-
tion by considering a likelihood-based inference for linearmixed-effectsmodels with
censored response (LMEC) based on the multivariate skew-normal distribution. An
ECM algorithm is developed for computing the maximum likelihood estimates for
LMEC with the standard errors of the fixed effects and the exact likelihood value
as a by-product. The algorithm uses closed-form expressions at the E-step that rely
on formulas for the mean and variance of a truncated multivariate skew-normal dis-
tribution. The proposed methods are applied to analyze longitudinal HIV viral load
data in an AIDS study.

1 Introduction

Longitudinal studies have attracted considerable interest in clinical trials, biological
psychology, environmental science, and medical research. They enable the study of
change over time of an outcome and the evaluation of determinants of change. Linear
and nonlinear mixed-effect (LME/NLME) models are powerful tools for analyzing
longitudinal data. In these models, random effects are incorporated to accommodate
among-subject variation [9, 20]. The random errors and random effects are routinely
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Fig. 1 UTIdata. (Left panel)Histogram forHIVviral load (in log10) scale. (Right panel) Individual
profiles for HIV viral load (in log10 scale)

assumed to have a normal distribution due to their mathematical tractability and
computational convenience.

Although the normality assumption may be reasonable for many situations, a
severe normality departure will cause a lack of robustness and subsequently lead to
invalid inference and unreasonable estimates [31]. Specially non-normal characteris-
tics such as skewness with heavy right or left tail often appear in virologic responses.
For example, Fig. 1 (Left panel) displays the histogramof the viral loadmeasurements
for 72 children from an AIDS clinical trial study—UTI (refer to Sect. 4 for details
of this dataset). From this figure, it can be seen that the viral load measurements are
left-skewed, suggesting that the normality assumption might be inappropriate.

As an alternative to the weakness of unrealistic normality assumptions and elim-
inating the need for ad hoc data transformations, asymmetric distributions can be
applied to consider this non-ignorable departure from normality. Lachos et al. [18]
proposed a robust generalization of LME, called the skew-normal/independent linear
mixed (SNI-LME) model, by assuming a skew-normal/independent (SNI) distribu-
tion [7] for the random effects and a normal/independent distribution for the random
errors. Ho and Lin [14] proposed a model that provides flexibility in capturing the
effects of skewness and heavy tails simultaneously among longitudinal data; they
consider an extension of LME assuming a multivariate skew-t distribution for the
random effects and a multivariate t distribution for the error terms.

Another complexity of longitudinal studies occurs when the response is censored
for some of the observations, which often arises when assay measures are collected
over time, and the assay procedure is subject to limits of quantification. As a case in
point, the HIV-1 viral load, which is currently the primary marker of HIV infection,
has a lower and upper quantification limit, which depends on the type of assay used.
The viral load of patients receiving antiretroviral treatment will typically decline and
stay for a more extended period below the lower limit of quantification. Figure1
(Right panel) shows the measures of HIV-1 viral loads of 72 children after unstruc-
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tured treatment interruption (UTI). In this case, the HIV-1 RNAmeasures are subject
to censoring below the lower limit of detection of the assay (50 copies/mL or 400
copies/mL). This study presents about 7% of observations below the detection limits
of assay quantification and hence are considered to be left-censored. When response
observations are below the limits of quantification, a common practice is to impute
the censored values by the detection limit or half the detection limit [33]. Such ad hoc
methods may produce biased results, as pointed out by Hughes [16], Jacqmin-Gadda
et al. [17], Matos et al. [24], among others.

In the literature, longitudinal data with censored observations have received
considerable attention. Vaida and Liu [29] proposed an exact EM algorithm for
LME/NLME with censored response (LMEC/NLMEC), which uses closed-form
expressions at the E-step instead of Monte Carlo simulations. Robust extensions of
LMEC and NLMEC based on the multivariate-t distribution, named tLMEC and
tNLMEC, have been introduced by Matos et al. [23]. On the other hand, under
a Bayesian framework, Bandyopadhyay et al. [6] studied LMEC models consid-
ering skewness and heavy tails, replacing the Gaussian assumptions with skew-
normal/independent (SNI) distribution. However, no previous work has investigated
LMEC/NLMEC models based on the skew-normal distributions from a likelihood-
based perspective to the best of our knowledge.

In this work, we are devoted to presenting methodological developments of
the skew-normal linear mixed model with censored responses (SN-LMEC) from a
likelihood-based perspective, which considers the skewness behavior of the random
effects. The SN-LMEC is defined by supposing that, for each subject, the random
effects follow an SN distribution introduced by Azzalini and Valle [5], while the
within-subject errors follow a multivariate normal distribution to prevent identifia-
bility problems. LikeMatos et al. [23], we show that the E-step reduces to computing
the first two moments of a truncated multivariate SN distribution Galarza Morales
et al. [13]. The likelihood function is easily computed as a by-product of the E-step
and is used for monitoring convergence and model selection.

The organization of this work is outlined as follows. Section2 presents the skew-
normal distribution (SN) and someof its fundamental properties. Section3 introduces
the model (SN-LMEC) and describes an efficient ECM algorithm for calculating
maximum likelihood (ML) estimates of parameters.We also discuss the issues related
to empirical Bayes estimates of the random effects and prediction of future responses.
A case study of HIV viral load is analyzed in Sect. 4 to evaluate the proposedmethod.
We conclude the article with some discussions in Sect. 5.

2 The Multivariate Skew-Normal Distribution

This section presents themultivariate skew-normal distribution (SN) andmultivariate
extended skew-normal (ESN) and some of their valuable properties. Some versions,
extensions, and unifications of the SN family are carefully surveyed in works such
as Azzalini [3] and Arellano-Valle et al. [2].
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Definition 1 A random vector Y has multivariate skew-normal distribution with
p × 1 location vector μ, p × p positive definite dispersion matrix � and p × 1
skewness parameter vector λ, and we writeY ∼ SNp(μ,�,λ), if its density is given
by

SNp(y;μ,�,λ) = 2φp(y;μ,�)�1(λ
��−1/2(y − μ)), (1)

where φp(·;μ,�) and �p(·;μ,�) denote, respectively, the probability distribution
function (pdf) and the cumulative distribution function (cdf) of the p-variate normal
distribution Np(μ,�). We have �−1/2 such that �−1/2�−1/2 = �−1. Note that if
λ = 0, then the density of Y reduces to the Np(μ,�) density.

It is worth mentioning that the multivariate skew-normal distribution is not closed
over conditioning. Next, we present its extended version, which holds this property,
called the multivariate ESN distribution.

Definition 2 A random vectorY has multivariate ESN distribution with p × 1 loca-
tion vectorμ, p × p positive definite dispersionmatrix�, p × 1 skewness parameter
vectorλ, and shift parameter τ ∈ R, denoted byY ∼ ESNp(μ,�,λ, τ ), if its density
is given by

ESNp(y;μ,�,λ, τ ) = ξ−1φp(y;μ,�)�1(τ + λ��−1/2(y − μ)), (2)

with ξ = �1(τ/(1 + λ�λ)1/2). Note that when τ = 0, we recover the skew-normal
distribution defined in (1), that is, ESNp(y;μ,�,λ, 0) = SNp(y;μ,�,λ).

Define,

Lp(a,b;μ,�,λ, τ ) =
∫ b

a
ξ−1φp(y;μ,�)�1(τ + λ��−1/2(y − μ))dy.

So, when λ = 0 and τ = 0, we recover the multivariate normal case, and then

Lp(a,b;μ,�, 0, 0) ≡ L p(a,b;μ,�) =
∫ b

a
φp(y;μ,�)dy.

Proposition 1 LetY ∼ SNp(μ,�,λ)andY be partitioned asY = (Y�
1 ,Y�

2 )�, with
dimensions p1 and p2, p1 + p2 = p, respectively. Let

μ = (μ�
1 ,μ�

2 )�, � =
(

�11 �12

�21 �22

)
, λ = (λ�

1 ,λ�
2 )� and ϕ = (ϕ�

1 ,ϕ�
2 )�

be the corresponding partitions of μ, �, λ and ϕ = �−1/2λ. Then,

(i) Y1 ∼ SNp1(μ1,�11, c12�
1/2
11 υ̃); and

(ii) Y2|Y1 = y1 ∼ ESNp2(μ2.1,�22.1,�
1/2
22.1ϕ2, τ2.1),
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where c12 = (1 + ϕ�
2 �22.1ϕ2)

−1/2, υ̃ = ϕ1 + �−1
11 �12ϕ2, �22.1 = �22 −

�21�
−1
11 �12, μ2.1 = μ2 + �21�

−1
11 (y1 − μ1) and τ2.1 = υ̃�

(y1 − μ1).

Proof See Proposition 2 in Galarza Morales et al. [13].

The mean and variance of an ESN random vector are given in the following
lemma.

Lemma 1 Let Y ∼ ESNp(μ,�,λ, τ ). Then,

(i) E[Y] = μ + η�1/2λ,

(ii) E[YY�] = � + μμ� + η
(
μλ��1/2 + �1/2λμ�)+ ητ�1/2 λλ�

1 + λ�λ
�1/2,

(iii) Var(Y) = � − η�1/2λ

(
ηλ − τ

1 + λ�λ
λ

)�
�1/2,

with η = φ1(τ ; 0, 1 + λ�λ)/ξ . When τ = 0, we recover E[Y], E[YY�] and Var(Y)

of the skew-normal distribution.

An interesting discussion about the parametrization ESN distribution is provided
in Castro et al. [8].

Definition 3 Let X ∼ ESNp(μ,�,λ, τ ) and P(a < X < b) > 0. A random vector
Y has a truncated extended multivariate skew-normal (TESN) distribution in the
interval [a,b], denoted by Y ∼ TESNp(μ,�,λ, τ, [a,b]), if its density is given by

fY(y) = ESNp(y;μ,�,λ, τ )∫ b
a ESNp(y;μ,�,λ, τ )dy

, a ≤ y ≤ b.

For the special case of τ = 0, we refer to this distribution as a truncated
multivariate skew-normal (TSN) distribution, i.e., TESNp(μ,�,λ, 0, [a,b]) ≡
TSNp(μ,�,λ, [a,b]).

The following properties of the multivariate truncated ESN distribution are useful
for implementing the ECM algorithm in the SN-LMEC model.

Lemma 2 Let Y ∼ TESNp(μ,�,λ, τ, [a,b]). For any measurable function g(·),
we have that

E

[
g(Y)

φ1(τ + λ��−1/2(Y − μ))

�1(τ + λ��−1/2(Y − μ))

]
= ηL

L E[g(W)],

withη = φ1(τ ; 0, 1 + λ�λ)/ξ , L = Lp(a,b;μ − μ∗,�),L = Lp(a,b;μ,�,λ, τ ),
� = �1/2(Ip + λλ�)−1�1/2, μ∗ = τ�ϕ, and W ∼ TNp(μ − μ∗,�, [a,b]).
Proof See Lemma 1 in Galarza et al. [11].
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Corollary 1 Setting τ = 0, it follows that Y ∼ TSNp(μ,�,λ, [a,b]) and

E

[
g(Y)

φ1(λ
��−1/2(Y − μ))

�1(λ
��−1/2(Y − μ))

]
= L0√

π
2 (1 + λ�λ)L0

E[g(W0)],

with L0 = Lp(a,b;μ,�), L0 = Lp(a,b;μ,�,λ, 0) andW0 ∼ TNp(μ,�, [a,b]).
Proof The proof is straightforward. Setting τ = 0, it suffices to find thatμ∗ = 0 and
η =

√
2/π(1 + λ�λ).

3 The Skew-Normal Linear Mixed-Effects Model
with Censored Responses

The Statistical Model

In order to allow symmetric-asymmetric properties in real data sets, the SN-LMEC
is defined by extending the normal mixed-effects models presented by Vaida and Liu
[29]. The model is specified as follows:

Yi = Xiβ + Zibi + εi , i = 1, . . . , n, (3)

where the subscript i is the subject index, Yi = (Yi1, . . . ,Yini )
� is a ni × 1 vector

of observed continuous responses for sample unit i , Xi is the ni × p design matrix
corresponding to the p × 1 vector of fixed-effects β, and Zi is the ni × q design
matrix corresponding to the q × 1 vector of random effects bi , and εi is the ni × 1
vector of random errors.

In this work, we assume that

(
bi
εi

)
ind.∼ SNq+ni

((
c	
0

)
,

(
D 0
0 
i

)
,

(
λ

0

))
, (4)

where c = −√
2/π ,	 = D1/2δ, δ = λ

(1 + λ�λ)1/2
. The value of the location param-

eter, c	, of bi , is chosen to obtain E[bi ] = 0, as in the normal model. The disper-
sion matrix D = D(α) models the between-subjects variability and depends on the
unknown and reduced parameter vector α of dimension q. The correlation structure
of the error vector is assumed to be
i = σ 2Ei , where the ni × ni matrixEi incorpo-
rates a time-dependence structure. Thus, we adopt a DEC structure for
i , as Munoz
et al. [26] proposed. This correlation structure allows us to dealwith unequally spaced
and unbalanced observations and is defined as


i = σ 2Ei = σ 2Ei (φ; ti ) = σ 2
[
φ

|ti j−tik |φ2
1

]
, i = 1, . . . , n, j, k = 1, . . . , ni ,
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where φ1 is the correlation parameter that describes the autocorrelation between
observations separated by the absolute length of two time points; and φ2 is the
damping parameter that allows the acceleration of the exponential decay of the auto-
correlation function, defining a continuous-time autoregressive model. For practical
reasons, the parameter space of φ1 and φ2 is confined within � = {(φ1, φ2) : 0 <

φ1 < 1, φ2 > 0}. Particular cases of these correlation structures are: (a) compound
symmetry (CS), (b) the first-order autoregressive (AR (1)), and (c) the first-order
moving average model (MA(1)). A more detailed discussion of the DEC structure
can be found in Munoz et al. [26].

According to Lachos et al. [18], model (3) can be written hierarchically as

Yi |bi ind.∼ Nni (Xiβ + Zibi ,
i ),

bi |Ti = ti
ind.∼ Nq(	ti ,�), (5)

Ti
iid.∼ TN(c, 1; (c,∞)),

where � = D − 		�.
It follows from (5) that the density of Yi is

f (Yi ) = 2φni (Yi ;Xiβ + Zi c	,�i )�1

(
λ̄

�
i �

−1/2
i (yi − Xiβ − Zi c	)

)
, (6)

i.e., Yi
ind.∼ SNni (Xiβ + Zi c	,�i , λ̄i ), i = 1, . . . , n, where �i = 
i + ZiDZ�

i ,

�i = (D−1 + Z�
i �−1

i Zi )
−1 and λ̄i = �

−1/2
i ZiDζ√
1 + ζ��iζ

, with ζ = D−1/2λ.

As previously mentioned, the proposed model also considers censored observa-
tions, i.e., we assume that the response Yi j is not fully observed for all i, j . Thus,
we consider the approach proposed by Vaida and Liu [29] to model the censored
responses. Let the observed data for the i-th subject be (Vi ,Ci ), where Vi repre-
sents the vector of uncensored readings (Vi j = V0i j ) or censoring interval (V1i j ,V2i j ),
and Ci is the vector of censoring indicators, such that:

Ci j =
{
1 if V1i j ≤ Yi j ≤ V2i j ,

0 if Yi j = V0i j ,
(7)

for all i ∈ {1, . . . , n} and j ∈ {1, . . . , ni }, i.e., Ci j = 1 if Yi j is located within a
specific interval.

The model defined in (3)–(7) is henceforth called the SN-LMEC model.
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The Likelihood Function

To obtain the likelihood function of the SN-LMEC model, first we treat separately
the observed and censored components of Yi , i.e., Yi = (Yo�

i ,Yc�
i )�, with Ci j = 0

for all elements in Yo
i , and Ci j = 1 for all elements in Yc

i . Analogous, we write
Vi = vec(Vo

i ,V
c
i ), where V

c
i = (Vc

1i ,V
c
2i ) with

μi = (μo�
i ,μc�

i )�, �i =
(

�oo
i �oc

i
�co

i �cc
i

)
, λ̄i = (λ̄

o�
i , λ̄

c�
i )� and ϕi = (ϕo�

i ,ϕc�
i )�,

where μi = Xiβ + Zi c	 and ϕi = �
−1/2
i λ̄i . Then, using Proposition 1, we have

that

Yo
i ∼ SNnoi (μ

o
i ,�

oo
i , ccoi �oo1/2

i υ̃) and

Yc
i |Yo

i = yoi ∼ ESNnci (μ
co
i ,Si ,S

1/2
i ϕc

i , τ
co
i ),

where υ̃ = ϕo
i + �oo−1

i �oc
i ϕc

i , μco
i = μc

i + �co
i �oo−1

i (yoi − μo
i ), Si = �cc

i −
�co

i (�oo
i )−1�oc

i , ccoi = (1 + ϕc�
i Siϕc

i )
−1/2 and τ co

i = υ̃�
(yoi − μo

i ).

Thus, the likelihood for the i th subject is given by

Li (θ) = Li = f (yi |θ) = f (Vi |Ci , θ) = f (yoi |θ)P(Vc
1i ≤ yci ≤ Vc

2i |yoi , θ)

= SNnoi (μ
o
i ,�

oo
i , ccoi �oo1/2

i υ̃)Lnci (V
c
1i ,V

c
2i ;μco

i ,Si ,S
1/2
i ϕc

i , τ
co
i ),

and the log-likelihood function for the observed data is given by 	(θ |y) =∑n
i=1 log Li .

The ECM Algorithm

This section describes how to use the ECM algorithm to compute the Maximum
Likelihood (ML) estimation of the SN-LMEC model. The EM algorithm proposed
initially by Dempster et al. [10] has several appealing features such as stability of
monotone convergence with each iteration increasing the likelihood and simplic-
ity of implementation. Here, we used the ECM algorithm proposed by Meng and
Rubin [25]; the ECM replaces the maximization step of EMwith a set of conditional
maximization steps.

Let y = (y�
1 , . . . , y�

n )�, b = (b�
1 , . . . ,b�

n )� and t = (t1, . . . , tn)�. Also, let V =
vec(V1, . . . ,Vn) and C = vec(C1, . . . ,Cn), where (Vi ,Ci ) is observed for the i th
subject. Treating y,b and t as hypothetical missing data, and augmenting with the
observed dataV,C, we set yc = (C�,V�, y�,b�, t�)� as the complete data. Hence,
it follows from (5) that the complete-data log-likelihood function is of the form
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	c(θ |yc) =
n∑

i=1

[
log f (yi |bi ) + log f (bi |ti ) + log f (ti )

]

=
n∑

i=1

{
−1

2
log |
i | − 1

2
(yi − Xiβ − Zibi )�
−1

i (yi − Xiβ − Zibi )

− 1

2
log |�| − 1

2
(bi − ti	)��−1(bi − ti	)

}
+ C,

where C is a constant that is independent of the parameter vector θ .
The E-step of the ECM algorithm computes the expected value of the complete-

data log-likelihood function given the observed data V, C and current values θ̂
(k)
,

yielding the so-called Q-function

Q
(
θ; θ̂

(k)
)

= E

[
	c(θ; yc)

∣∣∣V,C, θ̂
(k)
]

=
n∑

i=1

Q1i

(
β, σ 2, φ

∣∣̂θ (k)
)

+
n∑

i=1

Q2i

(
α, λ

∣∣̂θ (k)
)

,

where θ̂
(k) = (β̂

(k)�
, σ̂ 2

(k)
, α̂(k)�, φ̂

(k)�
, λ̂

(k)�
)�,

Q1i

(
β, σ 2,φ

∣∣̂θ (k)
)

= −ni
2

log σ̂ 2(k) − 1

2
log |Ê(k)

i | − 1

2σ̂ 2(k)

[
β̂

(k)�
X�
i Ê

−1(k)

i Xi β̂
(k)

− 2β̂
(k)�

X�
i Ê

−1(k)

i

(̂
y(k)
i − Zi b̂

(k)
i

)
+ â(k)

i (φ̂
(k)

)

]
, (8)

Q2i

(
α,λ

∣∣̂θ (k)
)

= −1

2
log |�̂(k)| − 1

2
tr

[
�̂

−1(k)
(

̂bib�
i

(k)
− 	̂

(k)̂tib�
i

(k)
− t̂ibi

(k)
	̂

(k)�

+ t̂2i
(k)

	̂
(k)

	̂
(k)�
)]

, (9)

with â(k)
i (φ̂

(k)
) = tr

[
Ê−1(k)

i

(
̂yiy�

i

(k) − 2̂yib�
i

(k)
Z�
i + Zi

̂bib�
i

(k)
Z�
i

)]
.

The following conditional distributions help obtain the conditional expectations
of missing data. From Lachos et al. [18], we have that

bi |Ti = ti ,Yi = yi ∼ Nq
(
si ti + BiZ�

i 
−1
i (yi − Xiβ),Bi

)
,

Ti |Yi = yi ∼ TN1
(
c + mi , M

2
i ; (0,∞)

)
,

Yi ∼ SNni (Xiβ,�i , λ̄i ),

where Mi = (1 + 	�Z�
i ϒ−1

i Zi	)−1/2, mi = M2
i 	

�Z�
i ϒ−1

i (yi − Xiβ − Zi c	),
Bi = (�−1 + Z�

i 
−1
i Zi )

−1, si = (Iq − BiZ�
i 
−1

i Zi )	, ϒ i = 
i + Zi�Z�
i .

Therefore, theQ-function is entirely determinedby theknowledgeof the following
expectations:
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t̂i
(k) = E

[
Ti
∣∣∣Vi ,Ci , θ̂

(k)
]

= c + M̂2(k)
i 	̂

(k)�Z�
i ϒ̂

−1(k)
i

(̂
y(k)
i − Xi β̂

(k) − Zi c	̂
(k)
)

+ M̂(k)
i κ̂

(k)
i ,

t̂2i
(k) = E

[
T 2
i

∣∣∣Vi ,Ci , θ̂
(k)
]

= M̂4(k)
i 	̂

(k)�Z�
i ϒ̂

−1(k)
i R̂(k)

i ϒ̂
−1(k)
i Zi 	̂

(k) + M̂2(k)
i + c2

+ 2cM̂2(k)
i 	̂

(k)�Z�
i ϒ̂

−1(k)
i

(̂
y(k)
i − Xi β̂

(k) − Zi c	̂
(k)
)

+ M̂3(k)
i 	̂

(k)�Z�
i ϒ̂

−1(k)
i

(
κ̂iy

(k)
i − κ̂

(k)
i

(
Xi β̂

(k) + Zi c	̂
(k)
))

+ 2cM̂(k)
i κ̂

(k)
i ,

t̂iyi
(k) = E

[
TiYi

∣∣∣Vi ,Ci , θ̂
(k)
]

= M̂2(k)
i

(
̂yiy�

i

(k)
− ŷ(k)

i

(
Xi β̂

(k) + Zi c	̂
(k)
)�)

ϒ̂
−1(k)
i Zi 	̂

(k)

+ M̂(k)
i κ̂iyi

(k) + ĉy(k)
i ,

b̂(k)
i = E

[
bi
∣∣∣Vi ,Ci , θ̂

(k)
]

= ŝ(k)i t̂i
(k) + B̂(k)

i Z�
i 
̂

−1(k)
i

(̂
y(k)
i − Xi β̂

(k)
)

,

̂bib�
i

(k)
= E

[
bib

�
i

∣∣∣Vi ,Ci , θ̂
(k)
]

= t̂2i
(k)

ŝ(k)i ŝ(k)�i + 2B̂(k)
i Z�

i 
̂
−1(k)
i

(
t̂iyi

(k) − t̂(k)i Xi β̂
(k)
)
ŝ(k)�i

+ B̂(k)
i Z�

i 
̂
−1(k)
i r̂(k)i 
̂

−1(k)
i Zi B̂

(k)
i + B̂(k)

i ,

̂yib�
i

(k)
= E

[
Yib

�
i

∣∣∣Vi ,Ci , θ̂
(k)
]

=
(

̂yiy�
i

(k)
− ŷ(k)

i β̂
(k)�X�

i

)

̂

−1(k)
i Zi B̂

(k)
i + t̂iyi

(k) ŝ(k)�i ,

̂tib�
i

(k)
= E

[
Tib

�
i

∣∣∣Vi ,Ci , θ̂
(k)
]

=
(

̂tiy�
i

(k)
− t̂i

(k)β̂
(k)�X�

i

)

̂

−1(k)
i Zi B̂

(k)
i + t̂2i

(k)
ŝ(k)�i ,

with R̂(k)
i = ̂yiy�

i

(k) − 2̂y(k)
i

(
Xi β̂

(k) + Zi c	̂
(k)
)� +

(
Xi β̂

(k) + Zi c	̂
(k)
)

(
Xi β̂

(k) + Zi c	̂
(k)
)�

and r̂(k)
i = ̂yiy�

i

(k) − 2̂y(k)
i β̂

(k)�
X�

i + Xi β̂
(k)

β̂
(k)�

X�
i .

It is easy to see that the E-step reduces only to the computation of ŷi , ̂yiy�
i , κ̂i and

κ̂iyi . These expected values can be determined in closed form using Lemma 2 and
Corollary 1, as follows:

1. If the i th subject has only non-censored components, then

ŷ(k)
i = E

[
Yi

∣∣∣Vi ,Ci , θ̂
(k)
]

= yi ,

̂yiy�
i

(k)
= E

[
YiY

�
i

∣∣∣Vi ,Ci , θ̂
(k)
]

= yiy
�
i ,

κ̂
(k)
i = E

[
W�

(̂
λ̄i �̂

−1/2
i

(
yi − Xi β̂ − Zi c	̂

)) ∣∣∣Vi ,Ci , θ̂
(k)
]

= W�

(̂̄λ(k)
i �̂

−1/2(k)
i

(
yi − Xi β̂

(k) − Zi c	̂
(k)
))

,

κ̂iyi
(k) = E

[
YiW�

(̂
λ̄i �̂

−1/2
i

(
yi − Xi β̂ − Zi c	̂

)) ∣∣∣Vi = Vi ,Ci , θ̂
(k)
]

= yi κ̂
(k)
i ,

with W�(x) = φ1(x)/�(x), x ∈ R.
2. If the i th subject has only censored components, then from Corollary 1,
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ŷ(k)
i = E

[
Yi

∣∣∣Vi ,Ci , θ̂
(k)
]

= E

[
Wi

∣∣̂θ (k)
]
,

̂yiy�
i

(k) = E

[
YiY�

i

∣∣∣Vi ,Ci , θ̂
(k)
]

= E

[
WiW�

i

∣∣̂θ (k)
]
,

κ̂
(k)
i = E

[
W�

(̂
λ̄i �̂

−1/2
i

(
yi − Xi β̂ − Zi c	̂

)) ∣∣∣Vi ,Ci , θ̂
(k)
]

= 1√
π
2

(
1 + ̂̄λ(k)�

i
̂̄λ(k)

i

)
Lni

(
V1i ,V2i ; μ̂

(k)
i , �̂

(k)
i

)

Lni

(
V1i ,V2i ; μ̂

(k)
i , �̂

(k)
i ,̂̄λ(k)

i , 0

) ,

κ̂iyi
(k) = E

[
YiW�

(̂
λ̄i �̂

−1/2
i

(
yi − Xi β̂ − Zi c	̂

)) ∣∣∣Vi = Vi ,Ci , θ̂
(k)
]

= E

[
W0i

∣∣̂θ (k)
]
κ̂

(k)
i ,

where Wi ∼ TSNni

(
μ̂

(k)
i , �̂

(k)
i ,̂̄λ(k)

i , [V1i ,V2i ]
)
, W0i ∼

TNni

(
μ̂

(k)
i , �̂

(k)
i , [V1i ,V2i ]

)
, and �̂

(k)
i = �̂

(k)1/2
i

(
Ini + ̂̄λ(k)

i
̂̄λ(k)�
i

)−1

�̂
(k)1/2
i .

3. If the i th subject has censored and uncensored components from Proposition 1
and Lemma 2, we have

ŷ(k)
i = E

[
Yi

∣∣∣Vi ,Ci ,Yo
i , θ̂

(k)
]

= vec(yoi , ŵ
(k)
i ),

̂yiy�
i

(k)
= E

[
YiY�

i

∣∣∣Vi ,Ci ,Yo
i , θ̂

(k)
]

=
(

yoi y
o�
i yoi ŵ

(k)�
i

ŵ(k)
i yo�i

̂wiw�
i

)
,

κ̂
(k)
i = E

[
W�

(̂
λ̄i �̂

−1/2
i

(
yi − Xi β̂ − Zi c	̂

)) ∣∣∣Vi ,Ci ,Yo
i , θ̂

(k)
]

=
φ1

(
τ̂
co(k)
i ; 0, 1 + λ̂

co(k)�
i λ̂

co(k)
i

)

�1(τ̃ )

Lnci

(
Vc
1i ,V

c
2i ; ̂̃μ(k)

i ,
̂̃
�

(k)

i

)

Lnci

(
Vc
1i ,V

c
2i ; μ̂

co(k)
i , Ŝ(k)

i , λ̂
co(k)
i , τ̂

co(k)
i

) ,

κ̂iyi
(k) = E

[
YiW�

(̂
λ̄i �̂

−1/2
i

(
yi − Xi β̂ − Zi c	̂

)) ∣∣∣Vi = Vi ,Ci , θ̂
(k)
]

= vec(yoi , ŵ
(k)
0i )̂κ

(k)
i ,

where

ŵ(k)
i = E

[
Wi

∣∣̂θ (k)
]
, ̂wiw�

i = E

[
WiW�

i

∣∣̂θ (k)
]
, ŵ(k)

0i = E

[
W0i

∣∣̂θ (k)
]
,

with
Wi ∼ TESNnci

(
μ̂
co(k)
i , Ŝ(k)

i , λ̂
co(k)
i , τ̂

co(k)
i , [Vc

1i ,V
c
2i ]
)

,

W0i ∼ TNnci

(
̂̃μ(k)

i ,
̂̃
�

(k)

i , [Vc
1i ,V

c
2i ]
)

,
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and τ̃ = τ co
i

(1 + λco�
i λco

i )1/2
, λco

i = S1/2i ϕc
i , μ̃i = μco

i − τ co
i �̃ iϕ

c
i , �̃ i =

S1/2i (Inci + λco
i λco�

i )−1S1/2i .

It can be noted that we need the first and second moments of a TESN distribution.
These can be determined in closed form using recurrence relations. For more details
on the computation of these moments, we refer to Galarza Morales et al. [13]. These
moments can be obtained in the R package MomTrunc [12].

The CM-steps then conditionally maximizes Q(θ |̂θ (k)
) with respect to θ and

obtains a new estimate θ̂
(k+1)

, as follows:

β̂
(k+1) =

⎛
⎝ n∑
i=1

X�
i Ê−1(k)

i Xi

⎞
⎠

−1 n∑
i=1

X�
i Ê−1(k)

i

(
ŷi

(k) − Zi b̂
(k)
i

)
,

	̂
(k+1) =

∑n
i=1 t̂ibi

(k)

∑n
i=1 t̂

2
i

(k)
,

�̂
(k+1) = 1

N

n∑
i=1

(
̂bib�

i

(k)
− t̂ibi

(k)
	(k+1)� − 	(k+1)̂tibi

(k)� + t̂2i
(k)

	(k+1)	(k+1)�
)

,

σ̂ 2(k+1) = 1

N

n∑
i=1

[
â(k)
i + β̂

(k+1)�X�
i Ê−1(k)

i Xi β̂
(k+1) − 2β̂

(k+1)�X�
i Ê−1(k)

i

(̂
y(k)
i − Zi b̂

(k)
i

)]
,

φ̂(k+1) = argmax
φ∈(0,1)×R+

(
− 1

2
log(|Ei |) − 1

2σ̂ 2(k+1)

[
−2β̂

(k+1)�X�
i Ê−1(k)

i

(̂
y(k)
i − Zi b̂

(k)
i

)

+ β̂
(k+1)�X�

i Ê−1(k)

i Xi β̂
(k+1) + â(k)

i

])
,

where N =∑n
i=1 ni . The skewness parameter vector, and the parameters of the scale

matrix of the random effects b, can be estimated by noting that

D̂(k+1) = �̂
(k+1) + 	̂

(k+1)
	̂

(k+1)�
and λ̂

(k+1) = D̂(k+1)−1/2
	̂

(k+1)

(
1 − 	̂

(k+1)�
D̂(k+1)−1

	̂
(k+1)

)1/2 .

This process is iterated until some distance between two successive evalu-

ations of the log-likelihood 	(θ |y) in Sect. 3, such as |	(̂θ (k+1)
) − 	(̂θ

(k)
)| or

|	(̂θ (k+1)
)/	(̂θ

(k)
) − 1|, becomes small enough.

Approximate Standard Errors

In what follows, we reparameterize D = F2 for ease of computation and theoretical
derivation, where F is the square root of D, i.e., F1/2, containing q(q + 1)/2 distinct
elements α = (α1, . . . , αq(q+1)/2)

�.
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Now, we use the empirical information matrix to compute the asymptotic covari-
ance of the ML estimates. Following the works of Louis [22] and Matos et al. [24],
the individual score can be determined as

s(yi |θ) = ∂ log f (yi |θ)

∂θ
= E

(
∂	ic(θ |yic)

∂θ

∣∣Vi ,Ci .θ

)
,

where 	ic(θ |yic) is the complete-data log-likelihood function formed from the com-
plete observation yic (for more details, see Louis [22]). As a result, the empirical
information matrix Ie(θ |y) is reduced to

Ie (̂θ |y) =
n∑

i=1

ŝî s�i ,

where ŝi = (̂si (β)�, ŝi (σ 2), ŝi (α)�, ŝi (φ)�, ŝi (λ)�
)�
, has elements given by
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i
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i Xi β̂

]
,

ŝi (α) = (̂si (α1), . . . , ŝi (αq(q+1)/2)
)�

,

ŝi (φ) = (̂si (φ1), ŝi (φ2))
� ,

ŝi (λ) = (̂si (λ1), . . . , ŝi (λq)
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,

with âi = tr
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,
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where

�̇αr = ∂�

∂αr

∣∣∣
α=α̂

= FḞr + ḞrF − Fδδ�Ḟr − Ḟrδδ
�F, Ḟr = ∂F

∂αr

∣∣∣
α=α̂

,

�̇λt = ∂�

∂λt

∣∣∣
λ=λ̂

= −F
(

λ̇2t

1 + λ�λ
− 2λtλλ�

(1 + λ�λ)2

)
F,

	̇λt = ∂	

∂λt

∣∣∣
λ=λ̂

= F
(

λ̇t

(1 + λ�λ)1/2
− λtλ
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,

λ̇t = ∂λ

∂λt

∣∣∣
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, λ̇2t = ∂λλ�

∂λt

∣∣∣
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and Ės
i = ∂Ei

∂φs

∣∣∣
φ=φ̂

,

r = 1, . . . , q(q + 1)/2, t = 1, . . . , q, and s = 1, 2.
For the DEC structure, we have that

∂Ei

∂φ1
= |ti j − tik |φ2φ

|ti j−tik |φ2−1

1 ,

∂Ei

∂φ2
= |ti j − tik |φ2 log (|ti j − tik |) log (φ1)φ

|ti j−tik |φ2
1 .

Estimation of the Random Effects

This section considers an empirical Bayes inference for the random effects that are
useful for interpreting the subject-specific variability. From (3)–(4), it implies that
Yi |bi ∼ Nni (Xiβ + Zibi ,
i ) andbi ∼ SNq(c	,D,λ). The conditional distribution
of bi given Yi belongs to the extended skew-normal (ESN), and its pdf is

f (bi |Yi ) = f (Yi |bi ) f (bi )∫
f (Yi |bi ) f (bi )dbi

=
φq

(
bi ; c	 + DZ�

i �−1
i (yi − Xiβ − Zi c	),�i

)
�1

(
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)

�1

(
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�
i �
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) ,

i.e.,

bi |Yi ∼ ESNq

(
c	 + DZ�

i �−1
i (yi − Xiβ − Zi c	), �i ,�

1/2
i ζ , ζ�DZ�

i �−1
i (yi − Xiβ − Zi c	)

)
.

Thus, from Lemma 1, it follows that

E
[
bi
∣∣Yi = yi , θ

] = c	 + DZ�
i �−1

i (yi − Xiβ − Zi c	)

+ �i ζ√
1 + ζ��i ζ

W�

(
λ̄i�

−1/2
i (yi − Xiβ − Zi c	)

)
.
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The minimum mean squared error (MSE) estimator of bi obtained by the condi-
tional mean of bi given Vi and Ci is

b̂i (θ) = E [bi |Vi ,Ci ] = E [E(bi |Yi , θ)|Vi ,Ci ] (10)

= c	 + DZ�
i �−1

i (̂yi − Xiβ − Zi c	) + �iζ√
1 + ζ��iζ

κ̂i , (11)

where ŷi = E[Yi

∣∣Vi ,Ci ] and κ̂i = E[W�(·)∣∣Vi ,Ci ] depend on the censoring pattern
of subject i (see Sect. 3).

The empirical Bayes estimates of random effects are obtained by substituting the
ML estimates θ̂ into bi (θ), leading to b̂i = bi (̂θ). In addition, the fitted values of
responses can be estimated directly by Xi β̂ + Zi b̂i .

Prediction of Future Observations

The prediction problem for longitudinal data is also of great importance in several
practical applications. Rao et al. [27] pointed out that the predictive accuracy of future
observations can be taken as an alternative measure of “goodness-of-fit”. In order to
propose a strategy to generate predicted values from the SN-LMECmodel, we use the
approach proposed by Wang [32]. Thus, let yi,obs be an observed response vector of
dimension ni,obs × 1 for a new subject i over the first portion of time, and yi,pred be the
corresponding ni,pred × 1 response vector over the future portion of time. Moreover,
let X∗

i = (Xi,obs,Xi,pred) and Z∗
i = (Zi,obs,Zi,pred) denote the (ni,obs + ni,pred) × p

and (ni,obs + ni,pred) × q design matrices corresponding to ȳi = (y�
i,obs, y

�
i,pred).

We use the imputation procedure to deal with the censored values existing in yi,obs
by replacing the censored values with ŷi = E[yi |Vi ,Ci , θ̂ ] obtained from the ECM
algorithm. Therefore, a complete dataset, denoted by yi,obs∗ , is obtained when the
censored values are imputed. The reason to use the imputation procedure is that it
avoids computing truncated conditional expectations of the skew-normalmultivariate
distribution originated by the censoring scheme. Hence, we have that

ȳ∗
i = (y�

i,obs∗ , y
�
i,pred)

� ∼ SN(ni,obs∗ +ni,pred)

(
X∗

i β + Z∗
i c	,�∗

i , λ̄
∗
i

)
,

where �∗
i =

(
�

obs∗,obs∗
i �

obs∗,pred
i

�
pred,obs∗
i �

pred,pred
i

)
, λ̄

∗
i = �∗−1/2

i Z∗
i Dζ√

1 + ζ��∗
i ζ

. As mentioned in Wang

[32], the best linear predictor of yi,pred with respect to the minimum mean squared
error (MSE) criterion is the conditional expectation of yi,pred given yi,obs∗ , which,
from Proposition 1, is given by
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ŷi,pred(θ) = μ∗ + W�

⎛
⎝ τ ∗√

1 + v�
2iSiv2i

⎞
⎠ Siv2i√

1 + v�
2iSiv2i

, (12)

where vi=(v�
1i , v

�
2i )

� = �∗−1/2

i λ̄
∗
i , Si = �

pred,pred
i − �

pred,obs∗
i (�

obs∗,obs∗
i )−1�

obs∗,pred
i ,

μ∗ = Xi,predβ + Zi,predc	 + �
pred,obs∗
i (�

obs∗,obs∗
i )−1(yi,obs∗ − Xi,obs∗β − Zi,obs∗c	),

τ ∗ =
(
v1i + (�

obs∗,obs∗
i )−1�

obs∗,pred
i v2i

)� (
yi,obs∗ − Xi,obs∗β − Zi,obs∗c	

)
.

Therefore, yi,pred can be estimated directly by substituting θ̂ into (12), leading to
ŷi,pred = ŷi,pred(̂θ).

4 Illustrative Example—UTI Data

The UTI data is referred to a study of 72 children and adolescents who had HIV-1
infection and stopped their medications at four academic centers in the United States
between January 2000 and September 2004. An unstructured treatment interruption
(UTI) is an issue in the adolescent population because the potential alternative of
suboptimal adherence can lead to antiretroviral (ARV) resistance and diminished
treatment options in the future. More detail about this study can be found in Saitoh
et al. [28].

This study aimed to monitor the HIV-1 viral load (RNA) after unstructured
treatment interruption. The subjects in the study have taken ARV therapy for at
least six months before UTI, and the medication was discontinued for more than
three months. The HIV viral loads were studied from the closest time points at
0, 1, 3, 6, 9, 12, 18, 24 months after UTI. The number of observations from baseline
(month 0) to month 24 are 71, 62, 58, 57, 43, 34, 24, and 13, respectively. Out of
362 observations, 26(7%) were below the detection limits (50 or 400 copies/mL)
and were left-censored at these values.

From a frequentist perspective, this datawas previously analyzed byVaida andLiu
[29] andMatos et al. [23] using theLMECmodel. In aBayesian framework, Lachos et
al. [19] and Bandyopadhyay et al. [6] analyzed this dataset using normal/independent
(NI) distributions and skew-normal/independent (SNI) distributions in the LMEC,
respectively. Moreover, this data is available in the R package lmec [30].

In Fig. 2, we can see the density histogram of random effects obtained after fitting
an LMEC considering the normal distribution (NLMEC). The plot reveals the left-
skewed nature of subject-specific intercepts at the level of random effects. Therefore,
an assumption of symmetric distribution for random effects is not very realistic for
the UTI data set.

We revisit the UTI data in order to provide additional inferences for the use of the
SN-LMEC. Following Vaida and Liu [29], we consider a profile LME model with
random intercepts bi , given by
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Fig. 2 UTI data. The plot
of density histogram of
estimated random effects for
NLMEC

yi j = bi + β j + εi j , (13)

where yi j is log10(HIV RNA) for subject i at time t j , t1 = 0, t2 = 1, t3 = 3, t4 = 6,
t5 = 9, t6 = 12, t7 = 18, t8 = 24, bi is the random intercept for the i-th subject, and
εi j are random errors. The ML estimates were obtained using the ECM algorithm
describes in Sect. 3.

Tables1 and 2 present the ML estimates and standard errors under the different
correlations structures for the SN-LMEC and NLMEC models, respectively. The

Table 1 UTI dataset. Parameter estimates of the SN-LMECmodel for UTI dataset under different
correlation structures The SE values are estimated as mentioned in Sect. 3

Parameter AR(1) CS DEC UNC

Estimate SE Estimate SE Estimate SE Estimate SE

β1 3.6105 0.1183 3.6107 0.1158 3.6063 0.1159 3.6092 0.1106

β2 4.1739 0.1736 4.1733 0.1613 4.1700 0.1633 4.1725 0.1583

β3 4.2486 0.1956 4.2479 0.1990 4.2434 0.2011 4.2473 0.1944

β4 4.3704 0.1828 4.3695 0.1863 4.3635 0.1853 4.3690 0.1829

β5 4.5756 0.1963 4.5739 0.1997 4.5673 0.2010 4.5743 0.1960

β6 4.5677 0.2362 4.5666 0.2375 4.5593 0.2412 4.5665 0.2362

β7 4.6745 0.1999 4.6728 0.2048 4.6642 0.2134 4.6733 0.1995

β8 4.7850 0.3464 4.7842 0.3494 4.7752 0.3619 4.7838 0.3461

σ 2 0.3414 0.4059 0.392 0.3414

α 1.9112 1.7273 1.7853 1.9112

φ1 2e–04 0.1572 0.1541 –

φ2 – – 0.0603 –

λ –5.3038 –7.877 –7.0462 –5.2288

Loglik –406.7471 –406.8604 –406.7113 –406.7474

AIC 837.4942 837.7209 839.4226 835.4948

BIC 884.1939 884.4206 890.014 878.3029
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Table 2 UTI dataset. Parameter estimates of the NLMEC model for UTI dataset under different
correlation structures

Parameter AR(1) CS DEC UNC

Estimate SE Estimate SE Estimate SE Estimate SE

β1 3.6188 0.1253 3.6188 0.1253 3.6194 0.1252 3.6188 0.1253

β2 4.1815 0.1285 4.1815 0.1285 4.1830 0.1283 4.1815 0.1285

β3 4.2565 0.1304 4.2565 0.1304 4.2567 0.1303 4.2565 0.1304

β4 4.3755 0.1307 4.3755 0.1307 4.3740 0.1307 4.3755 0.1307

β5 4.5815 0.1398 4.5815 0.1398 4.5795 0.1398 4.5815 0.1398

β6 4.5846 0.1485 4.5846 0.1484 4.5823 0.1487 4.5846 0.1485

β7 4.6930 0.1646 4.6930 0.1646 4.6892 0.1655 4.6930 0.1646

β8 4.8092 0.2018 4.8093 0.2017 4.8069 0.2038 4.8093 0.2018

σ 2 0.3414 0.6432 0.4266 0.3414

α 0.7654 0.4636 0.6786 0.7654

φ1 2e–04 0.4692 0.225 –

φ2 – – 0.0475 –

Loglik –412.0448 –412.0421 –411.9436 –412.0421

AIC 846.0896 846.0842 847.8872 844.0842

BIC 888.8977 888.8923 894.5869 883.0007

values of the log-likelihood function and the AIC and BIC criteria are also presented
in these Tables. We can see that the SN-LMEC outperforms the normal consistently
in all cases. In particular, the lowest value for both criteria is the one from the
SN-LMEC with uncorrelated (UNC) structure, and therefore, this model is selected
for further analyses. Considering the SN-LMEC and NLMEC with uncorrelated
(UNC) structures, we performed a likelihood ratio test (LRT) to test the hypothesis
H0 : λ = 0. The LRT statistic was 10.589, resulting in a p-value of 0.0011, i.e., we
conclude that the asymmetric model is necessary for modeling the UTI data set.

Themeanviral loadE[yi j ] = β j , for j = 1, . . . , 8, increases gradually throughout
24months for all models; this is evidence of the negative effect of the antiretroviral
therapy interruption on the viral load’s levels. For the SN-LMEC under UNC struc-
ture, the mean viral load increases from 3.61 at the time of UTI to 4.78 at 24months.
The between-subject variance (α) andwithin-subject variance (σ 2) estimates are 1.91
and 0.34, respectively. In addition, the estimate of skewness parameter λ is −5.23,
indicating left-skewness. Figure3 (Left panel) shows some individual profiles (in
log10 scale) for HIV viral load and estimated trajectories for the SN-LMEC model
under UNC structure.

We are also interested in investigating the performance of the prediction for future
values described in Sect. 3. We exclude the last two measurements of each individual
in the datasets with more than 7 (inclusive) observations (total of 30 individuals), and
we compute the predicted values under the SN-LMEC model with UNC correlation
structure. Figure3 (Right panel) shows the comparison between the estimated, the
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Fig. 3 UTI data. (Left panel) Viral loads in log10 scale (black, solid line) for six random subjects
and estimated trajectories for the SN-LMEC model under UNC structure. (Right panel) Evaluation
of the prediction performance for six random subjects, considering the SN-LMEC model under
UNC structure

predicted values, and the real ones, indicating the good performance of the SN-LMEC
in terms of prediction.

In conclusion, these results suggest that our proposedmodel, SN-LMEC, provides
precise parameter estimates for our motivating HIV viral load dataset that exhibits
departure from the traditional normality assumptions due to skewness.

5 Conclusions

In this work, we have proposed an approach to a linear mixed model with censored
responses where the random effects are assumed to have a multivariate skew-normal
distribution.We adopted a DEC structure proposed byMunoz et al. [26] to model the
autocorrelation existing among irregularly observed measures. The proposed model
generalizes previous proposals, such as the SN-LME model proposed by Arellano-
Valle et al. [1] (see also, Lin and Lee [21]) and in the context of censored data,
the NLMEC model proposed by Vaida and Liu [29] (see also, Matos et al. [24]),
which are restricted to left or right censored problems. We developed a computation-
ally tractable ECM algorithm for carrying out ML estimation. The algorithm has a
closed-form expression for the E-step, based on formulas for the mean and variance
of the truncated extended multivariate skew-normal distribution Galarza Morales et
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al. [13]. The computation procedures for estimating random effects and predicting
future responses are easy to implement once theML estimates are obtained. The pro-
posed methods were applied to the AIDS study, providing support for the usefulness
and effectiveness of our proposal. All the R code is freely available at the GitHub
repository: https://github.com/thalitadobem/snlmec.

Although the SN-LMECmodel showed flexibility tomodel asymmetric data, they
can be seriously affected by the presence of outliers. A natural generalization of our
method is to extend by considering the skew-t distribution [4] or the multivariate
skew-elliptical distribution [7]. Another promising avenue for future research is to
propose methods that combine both skewness and change-points (see, Huang et al.
[15]) within a unified framework in LMEC models, including serial correlation for
the random errors.
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Robust Estimation of Multiple Change
Points in Multivariate Processes

Yana Melnykov, Marcus Perry, and Volodymyr Melnykov

Abstract Change point inference is important in various fields of science. Many
different procedures have been proposed in the literature but most of them rely
on some restrictive assumptions such as the normality of underlying processes or
independence of observations. In this paper, a novel likelihood-based technique is
proposed for identifyingmultiple change points inmultivariate processes. It provides
a way to model various covariance patterns and is robust to skewness observed in
data. Through simulation studies, we demonstrate that the proposed procedure is
superior over its competitors. The application of themethodology to real-life datasets
highlights its usefulness and broad applicability.

1 Introduction

The change point estimation in sequential data has become an important task inmany
areas of active research. It assumes the existence of at least two different processes
observed over some time interval. Since the specific times associated with each
process are typically unknown, they have to be estimated along with the processes
themselves. The applications of change point estimation procedures can be found in
medicine [1], ecology [2], pharmacy [3], engineering [4], finance [5, 6], and many
other fields. The problem of process and change point estimation is also known as
phase I in statistical process control. Then, phase II would deal with the detection of
changes in a process flow based on the already estimated processes.

Researchers have been exploring change point problems for decades but there are
still many questions that remain open. One of the earliest papers on the subject was
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devoted to the estimation of a change point inmeans of univariate normal distributions
[7]. The problem with a constant mean but possible shift in variance parameters was
considered by [8–11]. A generalization of both ideas was considered by [12] who
developed a test capable of detecting a change in mean and variance parameters
simultaneously.

Attention has been paid to multivariate settings as well. [13] and [14] considered
the framework with a single change point in mean vectors of multivariate normal dis-
tributions. Soon after that, the estimation of multiple change points in mean vectors
was studied by [15] and [16]. In the same setting of multivariate normal distribution,
[17] proposed a procedure for estimating a change in covariance matrices under the
assumption of a constant mean vector. Recently, [18] developed a test for estimating
change points in mean vectors and covariance matrices simultaneously, thus general-
izing the above-listed ideas. Other directions of research in the area of change point
estimation include inference for the general exponential family [19, 20], nonpara-
metricmethods [21] including probabilistic pruning based on various goodness-of-fit
measures [22], and some others.

In this paper, we consider the problem of estimating multiple change points in
the framework with multivariate processes. The importance of this problem is rather
substantial but the number of existingmethods is very limited (e.g., see discussion on
this topic in [22]). The most traditional approach taken by the majority of researchers
assumes the independence of observations over time as well as their multivariate nor-
mality. Unfortunately, both assumptions are often inadequate or unrealistic. Among
other alternatives, there are two nonparametric procedures employing probabilistic
pruning with Energy statistic [23] and Kolmogorov-Smirnov statistic [24] that are
available through the R package ecp [22]. It is worth mentioning that this R pack-
age is currently the only one that aims at identifying multiple change points in the
multivariate setting. The lack of developments in this important area of change point
inference motivates our methodology. Our proposed technique is based on a matrix
normal distribution. Due to its form, one can model the covariance structure asso-
ciated not just with variables (given by matrix rows) or time points (provided by
matrix columns), but also the overall covariance structure associated with variables
and times. This effectively eliminates some of the common restrictive assumptions
such as the independence of observations at different time points. To make the pro-
posed procedure more robust to deviations from normality, we propose incorporating
one of several available transformations to near-normality. As a result, the proposed
procedure gains robustness features while being capable of accommodating various
covariance structures in data.

The rest of the paper is organized as follows below. Section2 presents the pro-
posed methodology. Section3 investigates the performance of our procedure and
three competitors in various settings. Section4 applies the developed methods to the
analysis of real-life data. The paper concludes with a discussion provided in Sect. 5.
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2 Methodology

Matrix Normal Distribution

Let y1, y2, . . . , yT be a process observed over T time points with each yi following
a p-variate normal distribution. The entire dataset can be conveniently summarized
in the matrix form as shown below

Y =

⎛
⎜⎜⎜⎝

y11 y12 . . . y1T

y21 y22 . . . y2T
...

...
. . .

...

yp1 yp2 . . . ypT

⎞
⎟⎟⎟⎠ . (1)

Here, each row represents a particular variable observed over time, while every
column stands for a p-variate measurement at a specific time point. The overall
variability associated with Y can often be explained by the variation observed in
rows and columns. This leads to the idea of modeling the variability corresponding
to p variables separately from that associated with T time points.

One distribution that can be effectively applied in the considered framework is a
so-called matrix normal one [25] that has the following probability density function
(pdf):

φp×T (Y ; M,�,�) = (2π)−
pT
2

|�| T
2 |�| p

2

exp

{
−1

2
tr

{
�−1(Y − M)�−1(Y − M)�

}}
,

(2)
where Y is the p × T matrix argument defined in (1) and M is a p × T mean
matrix. The p × p matrix� and T × T matrix� are covariance matrices that model
variability associated with rows and columns, respectively. Also, tr{·} denotes the
trace operator. It can be shown that vec(Y) ∼ NpT (vec(M),� ⊗ �), where vec(·)
denotes the vectorization operator that stacks matrix columns on top of each other,⊗
is the Kronecker product, andNpT is the pT -variate normal distribution with mean
vector vec(M) and covariance matrix � ⊗ �. There is a minor non-identifiability
issue caused by the properties of the Kronecker product since a� ⊗ � = � ⊗ a�

for any multiplier a ∈ IR+. One simple restriction on � or � can effectively resolve
this problem. The main advantage of taking into account the matrix data structure
is the ability to reduce the number of parameters to T (T + 1)/2 + p(p + 1)/2 − 1
from pT (pT + 1)/2 in the case of the most general covariance matrix. Hence, the
proposed model effectively addresses a potential overparameterization issue while
still allowing non-zero covariances Cov(y jt , y j ′t ′) for any variables j and j ′ at time
points t and t ′.

As the specific problem considered in our setting deals with vectors observed over
time, matrix � can be conveniently parameterized in terms of a desired time series
process. In this paper, we illustrate the methodology based on the autoregressive
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process of order 1 (AR(1)). Incorporating moving average or higher order autore-
gressive processes is very similar as it affects just the covariance matrix �. In fact,
the AR(1) model has been chosen as an illustration simply because it yields the best
results for the application considered in Sect. 4. Under AR(1), the covariance matrix
� is given by

� = δ2

1 − φ2

⎛
⎜⎜⎜⎝

1 φ φ2 . . . φT −1

φ 1 φ . . . φT −2

...
...

...
. . .

...

φT −1 φT −2 φT −3 . . . 1

⎞
⎟⎟⎟⎠ ,

where φ is the correlation coefficient and δ2 is the variance parameter. Then, one
convenient constraint to avoid the non-identifiability issue associated with � ⊗ � is
to set δ2 = 1 − φ2. This restriction immediately leads to� ≡ Rφ , where Rφ denotes
the corresponding correlation matrix that relies on a single parameter φ. It can be
shown that

|�| ≡ |Rφ| = (1 − φ2)T −1 and �−1 ≡ R−1
φ = 1

1 − φ2
(IT − φ J1 + φ2 J2),

(3)
where J1 and J2 are T × T matrices defined as follows below:

J1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0 0
1 0 1 . . . 0 0
0 1 0 . . . 0 0
. . . . . . . . . . . . . . . . . .

0 0 0 . . . 0 1
0 0 0 . . . 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

and J2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
. . . . . . . . . . . . . . . . . .

0 0 0 . . . 1 0
0 0 0 . . . 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Expressions in (3) are helpful for speedier maximum likelihood estimation as the
potentially time consuming inversion of the T × T covariance matrix � can be
completely avoided.

Change Point Estimation

Consider the problem of estimating change points in the given framework. Let μ0

be the p-variate mean vector associated with the main process. Suppose, there are
K alternative processes with means μ1,μ2, . . . ,μK . Then, the mean matrix M can
be written as M = ∑K

k=0 μkm
�
k , where mk (k = 0, 1, . . . , K ) is the vector of length

T consisting of zeros and ones, with ones being located in those positions where the
kth process is observed. From the definition, it follows that

∑K
k=0 mk = 1T , where

1T is the vector of length T with all elements equal to 1. It can be noted that vectors
mk can present various permutations of zeros and ones. However, in the case of K
shift change points at times t1, t2, . . . , tK , the mean matrix is given by
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M =
⎛
⎜⎝μ0, . . . ,μ0︸ ︷︷ ︸

t1−1

,μ1 . . . ,μ1︸ ︷︷ ︸
t2−t1

, . . . ,μK−1, . . . ,μK−1︸ ︷︷ ︸
tK −tK−1

,μK , . . . ,μK︸ ︷︷ ︸
T −tK +1

⎞
⎟⎠ .

Also, mk =
⎛
⎜⎝0, . . . , 0︸ ︷︷ ︸

tk−1

, 1, . . . , 1︸ ︷︷ ︸
tk+1−tk

, 0, . . . , 0︸ ︷︷ ︸
T −tk+1+1

⎞
⎟⎠ with boundary conditions t0 = 1 and

tK+1 = T + 1. As a result of such parameterization, the mean matrix M involves
p(K + 1) parameters.

The log-likelihood function corresponding to Eq. (2) has the following form:

logL(Y ; M,�,�) = − pT

2
log(2π) − T

2
log |�| − p

2
log |�|

− 1

2
tr

{
�−1(Y − M)�−1(Y − M)�

}
.

Oftentimes, the normality assumption is not adequate and inference based on such
a model may be incorrect or misleading. One possible treatment of such a situation
is to employ a transformation to near-normality. Incorporating a transformation into
the model makes it considerably more robust to possible violations of the normality
assumption. Several immediate candidates include the famous power transformation
proposedby [26], alternative families of power transformations as in [27], or the expo-
nential transformation proposed by [28]. Let T be an invertible and differentiable
mapping representing the transformation operator such that T (y; λ) is approximately
normally distributed upon the appropriate choice of the transformation parameter λ.
In the p-variate setting, the traditional assumption is that the coordinatewise trans-
formation leads to the joint near-normality [29–31], i.e., the p-variate transformation
is given by T ( y;λ) = (

T (y1; λ1), T (y2; λ2), . . . , T (yp; λp)
)�
, where the transfor-

mation parameter vector is given by λ = (
λ1, λ2, . . . , λp

)�
. This idea can be readily

generalized to the matrix framework with T (Y ;λ) representing data transformed to
matrix near-normality based on the p-variate vector λ.

Taking into account the special forms of � and M and implementing the trans-
formation idea, the log-likelihood function can be further written as

logL(μ0, μ1, . . . , μK , �, φ, λ) = − pT

2
log(2π) − T

2
log |�| − p(T − 1)

2
log(1 − φ2)

− 1

2(1 − φ2)
tr
{
�−1(T (Y ; λ) −

K∑
k=0

μkm
�
k

) (
IT − φ J1 + φ2 J2

)

× (
T (Y ;λ) −

K∑
k=0

μkm
�
k

)�}
+ log

∣∣∣ ∂T (Y ; λ)

∂Y

∣∣∣,

(4)
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where the term log
∣∣∣ ∂T (Y ;λ)

∂Y

∣∣∣ represents the log of Jacobian associated with the trans-
formation.

Maximum likelihood estimation leads to the following expressions for μk :

μk =
(
T (Y ;λ) −

K∑
k′=0
k′ �=k

μk ′m�
k ′

)
R−1

φ mk
(
m�

k R−1
φ mk

)−1
,

where R−1
φ is as in (3). Solving a system of K + 1 equations leads to the expressions

for μ0,μ1, . . . ,μK . Maximum likelihood estimation for �k yields the following
expression:

� = (T (Y ;λ) − ∑K
k=0 μkm

�
k )R−1

φ (T (Y ;λ) − ∑K
k=0 μkm

�
k )�

T
.

Substituting expressions for μ0,μ1, . . . ,μK and � into the log-likelihood func-
tion (4) makes the log-likelihood a function of the parameters φ and λ. The max-
imization with respect to these parameters can be done numerically using one of
many available optimization algorithms.

For the purpose of illustration, in this paper we focus on the exponential transfor-
mation of Manly given by T (y; λ) = yI (λ=0)

(
exp{λy − 1}λ−1

)I (λ �=0)
, where I (·) is

the indicator function. In this setting, the log of Jacobian in (4) is given by λ�Y1T ,
where 1T = (1, 1, . . . , 1)� with cardinality |λ| = T .

The problem of change point estimation requires assessing the number of pro-
cesses. To avoid potential problems with the adjustment for multiple comparisons,
simplify calculations, and avoid testing procedures in general, we employ the variant
of the Bayesian Information Criterion (BIC) [32] proposed by [33] specifically for
the change point framework. BIC is also an appealing option due to its connection
to the Bayes factor commonly used in Bayesian inference for comparing competing
models.

As a final note in this section, wewould like to remark that the proposed procedure
focuses on processes with mean vectors μ1,μ2, . . . ,μK . In real-life applications, it
is possible that just some parts of these vectors will be different while the remaining
variables exhibit no change point behavior. The task of detecting changes in specific
variables is a challenging standalone problem that is beyond the scope of this work.
One practical approach can be to search for such variables after detecting differences
in mean vectors first. Such a scenario is considered in Sect. 4.

3 Experiments

In this section, we consider simulation studies devoted to the rigorous evaluation
of the proposed methodology. We investigate the performance of the change point
estimation procedure in two general settings. In both cases, we assume the existence
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Table 1 Parameter values used in the simulation study of Sect. 3

j μ0 μ1 μ2 � λ φ

1 1 1.2 1.1 0.133 −0.033 0 3 {0.1, 0.5, 0.9}
2 1.2 1.7 1.5 −0.033 0.067 −0.033 2

3 −2.3 −2.2 −2.0 0 −0.033 0.033 −0.5

of three processes observed over 100 time points. In the first case, the first process is
observed until the change point at t1 = 10, when the second process starts. Then, the
second process runs until the next change point at t2 = 20, when the third process
starts and runs for the remaining time. In the second setting, the change points are
set to be at times t1 = 10 and t2 = 50. The difference between these two settings is
that in the first situation, the first two processes are observed for a relatively short
period of time, while the third process is observed for much longer. On the contrary,
in the second experiment setting, just the first process is observed for a short period
of time as opposed to the other two processes. The parameters used in the simulation
study are provided in Table1.

Various levels of correlation and scaling as reflected by parameters φ and
�, respectively, are studied. In particular, we consider φ = 0.1, 0.5, 0.9 and
�,�/2,�/4. 250 datasets were simulated for each combination of the covariance
matrix and correlation parameter in both considered setting, thus, yielding 4,500
simulated datasets in total. The proposed technique assumes that the exact location
of change points is known. The quality of the model fit is assessed by means of BIC.
It can be noticed that in the search for the optimal model with K change points,
(T − 1)!/(T − 1 − K )! alternatives should be considered. As K is usually rather
low, the approach is computationally feasible even for moderate T values. In our
experiments, each model could be fitted in under one second. In addition, parallel
computing can be readily implemented if the number ofmodels becomes restrictively
high.

The illustration of some simulated datasets can be found in Fig. 1. Here, plots (a)
and (b) show datasets simulated with φ = 0.1 but with different covariance matrices
� and�/4, respectively. Plots (c) and (d) correspond to the same covariancematrices
� and �/4 but with high correlation of φ = 0.9. The four considered datasets rep-
resent the first setting with change points at t1 = 10 and t2 = 20. Within each of the
four plots, there are three subplots representing the coordinatewise behavior of the
processes reflected by means of the black, blue, and red colors. The top subplot cor-
responds to the first coordinate, the middle stands for the second one, and the bottom
plot represents the third coordinate. Horizontal lines show the true back-transformed
values of the corresponding coordinates of vectors μ0, μ1, and μ2.

From examining Fig. 1, it is easy to conclude that the task of change point estima-
tion is far from trivial in these cases. Especially in those cases when the variability is
higher (left column of plots), we can observe a number of points that can be mistak-
enly thought of as change points. Thus, it is fully expected that false change points
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Fig. 1 Datasets generated in the course of the simulation study in Sect. 3 with different scaling
(reflected by � and �/4) and correlation (φ = 0.1, 0.9). Horizontal lines represent true back-
transformed values of the corresponding coordinates of parameters μ0, μ1, and μ2

will be found oftentimes.Moreover, we can observe that the first change point should
be considerably easier to find than the second one due to the substantial gap in the
second coordinate of means related to the first two processes (i.e., between black and
blue horizontal lines).

As pointed out by [22], the number of procedures capable of estimating multiple
change points in multivariate processes is rather limited. In this section, the devel-
oped methodology is compared with one parametric approach that we call naive
and two nonparametric procedures available for practitioners through the R pack-
age ecp [22]. The naive method is mimicking the most common practical approach
with all observations assumed independent and following multivariate normal pro-
cesses. The two nonparametric procedures are based on probabilistic pruning with
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Table 2 Interpretation of notation used in Tables3 and 4

Notation Interpretation

{t1, t2} Both change points are correctly found

{t1, t2, x} Both change points are correctly identified, but
there are false change

Points found as well

{t1, t̃2}/{t̃1, t2} One change point is identified correctly, the
other one is close by, i.e.

|tk − t̂k | ≤ 3

{t1}/{t2} one change point is identified correctly and it is
the only one found

{t1, !t2}/{!t1, t2} One change point is identified correctly, the
others are not close, i.e.,

|tk − t̂k | > 3

Energy statistic [23, 34] and Kolmogorov-Smirnov statistic [24] used as goodness-
of-fit measures. Tables3 and 4 provide the results of the simulation study in the first
(t1 = 10, t2 = 20) and second (t1 = 10, t2 = 50) settings, respectively. The tables
include proportions of times various solutions, as per description in Table2, were
found.

As we can observe from Table3, the proposed method can rather effectively
identify change points. Expectedly, the performance of the procedure improves con-
siderably when the variability decreases. For example, in the case with φ = 0.9 and
�, we are able to correctly identify the combination of change points in 14.8% of all
cases. The percentage improves to 49.2% and 93.2% for �/2 and �/4, respectively.
The performance of the procedure somewhat degrades for lower values of parameter
φ. In particular, the correct setting was found in 63.2% and 55.6% of cases for �/4
with φ = 0.1 and φ = 0.5, respectively. In the settings with higher variability, the
task of estimating both change points correctly is considerably more difficult. It is
worth mentioning that in these settings our procedure is capable of identifying at
least one change point effectively. In particular, we can notice that there is a rela-
tively low proportion of times when our method identified one point correctly and
the other change point estimate was considerably off. Another observation can be
made with regard to a low number of false change point detections made by our pro-
cedure. In addition, due to a strong penalty carried out by BIC, there is no tendency
to overestimate the number of change points as we can see from the line {t1, t2, x}.

From examining Table3, we can conclude that the closest competitor is the naive
procedure. In particular, it demonstrates quite similar results in terms of the propor-
tion of correct solutions for the majority of cases unless φ = 0.9. When φ is high,
the naive procedure is substantially outperformed by the proposed method in all set-
tings. This observation is not surprising since the cases with lower correlations are
more similar to the naive model assuming the independence of observations. Our
developed method dramatically outperforms the two nonparametric methods. In the
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Table 3 Simulation study from Sect. 3 assuming two change points at times t1 = 10 and t2 = 20.
The fourmethods considered are our proposed procedure, naive procedure, and probabilistic pruning
with Energy statistic and Kolmogorov-Smirnov statistic (KS) used as the goodness-of-fit measure.
The notation interpretation is provided in Table2. The bold font highlights the proportion of times
the correct combination was found

K = 2 � �/2 �/4

t1 = 10, t2 = 20 φ =
0.1

φ =
0.5

φ =
0.9

φ =
0.1

φ =
0.5

φ =
0.9

φ =
0.1

φ =
0.5

φ =
0.9

Method {10, 20} 0.060 0.032 0.148 0.332 0.168 0.492 0.632 0.556 0.932

{10, 20, x} 0 0 0 0 0 0 0 0 0

{10, 2̃0}/{1̃0, 20} 0.200 0.084 0.012 0.336 0.168 0.016 0.304 0.160 0

{10}/{20} 0.576 0.736 0.692 0.212 0.516 0.424 0.012 0.140 0.040

{10, !20}/{!10, 20} 0.104 0.112 0.136 0.120 0.148 0.068 0.052 0.144 0.028

Naive {10, 20} 0.060 0.044 0.048 0.344 0.232 0.116 0.628 0.536 0.308

{10, 20, x} 0 0 0 0 0 0 0 0 0

{10, 2̃0}/{1̃0, 20} 0.188 0.192 0.028 0.362 0.224 0.048 0.308 0.252 0.056

{10}/{20} 0.488 0.108 0 0.136 0.036 0 0.004 0.080 0

{10, !20}/{!10, 20} 0.212 0.604 0.880 0.152 0.504 0.828 0.060 0.142 0.636

Energy {10, 20} 0 0 0.004 0 0 0.028 0.036 0.020 0.356

{10, 20, x} 0 0 0.004 0 0 0.008 0.016 0.008 0.044

{10, 2̃0}/{1̃0, 20} 0 0 0 0.004 0 0.004 0.028 0.012 0.016

{10}/{20} 0 0 0 0 0 0.004 0.012 0.004 0.068

{10, !20}/{!10, 20} 0.024 0.020 0.120 0.080 0.060 0.188 0.192 0.176 0.148

KS {10, 20} 0.024 0 0.004 0.020 0.016 0.012 0.044 0.028 0.024

{10, 20, x} 0 0 0 0 0 0 0 0.004 0.004

{10, 2̃0}/{1̃0, 20} 0.116 0.076 0.044 0.148 0.092 0.052 0.224 0.132 0.076

{10}/{20} 0.040 0.032 0.020 0.056 0.092 0.040 0.064 0.132 0.060

{10, !20}/{!10, 20} 0.024 0.016 0.032 0.016 0.024 0.048 0.028 0.020 0.060

easiest case considered with φ = 0.9 and�/4, the probabilistic pruning with Energy
statistic is capable of finding the correct combination of change points in 35.6% of
cases. In all other cases, both procedures face considerable challenges. One can
also notice that nonparametric methods struggle to find even one of the two change
points correctly. In the case of �/4, the Kolmogorov-Smirnov statistic (denoted as
KS) shows some improvement for φ = 0.1. It is able to estimate one change point
correctly and the other one in close proximity to the true change point in 22.4% of
all cases.

The inference drawn from Table4 is mostly similar. In the meantime, we can
notice that our method improves the performance in all cases. This happens due
to the fact that the number of time points is more evenly distributed among the
processes and thus more accurate estimation of parameters is possible. As a result,
the difference between the proposed and naive approaches can now be observed for
the case with �/4 and φ = 0.9. It is worth mentioning that similar analysis has been
repeated for negative parameters φ = −0.9,−0.5,−0.1. The results and findings of
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Table 4 Simulation study from Sect. 3 assuming two change points at times t1 = 10 and t2 = 50.
The description of the table is similar to that of Table3

K = 2 � �/2 �/4

t1 = 10, t2 = 50 φ =
0.1

φ =
0.5

φ =
0.9

φ =
0.1

φ =
0.5

φ =
0.9

φ =
0.1

φ =
0.5

φ =
0.9

Method {10, 50} 0.232 0.116 0.216 0.384 0.324 0.576 0.632 0.624 0.948

{10, 50, x} 0 0 0 0 0 0 0 0 0

{10, 5̃0}/{1̃0, 50} 0.368 0.156 0.008 0.460 0.248 0.008 0.336 0.220 0

{10}/{50} 0.068 0.376 0.600 0 0.096 0.316 0 0.004 0.044

{10, !50}/{!10, 50} 0.276 0.332 0.168 0.156 0.332 0.100 0.032 0.152 0.008

Naive {10, 50} 0.228 0.152 0.100 0.404 0.320 0.240 0.632 0.556 0.520

{10, 50, x} 0 0 0 0 0 0 0 0 0

{10, 5̃0}/{1̃0, 50} 0.372 0.256 0.132 0.432 0.284 0.168 0.336 0.284 0.128

{10}/{50} 0.036 0.008 0 0 0 0 0 0 0

{10, !50}/{!10, 50} 0.288 0.548 0.696 0.152 0.388 0.588 0.032 0.160 0.352

Energy {10, 50} 0 0 0 0 0 0.008 0.008 0.004 0.128

{10, 50, x} 0 0 0 0.004 0.004 0 0.008 0 0.064

{10, 5̃0}/{1̃0, 50} 0 0 0.004 0 0 0.012 0 0 0.012

{10}/{50} 0.068 0.036 0.156 0.128 0.116 0.412 0.296 0.284 0.580

{10, !50}/{!10, 50} 0.012 0.024 0.076 0.052 0.052 0.088 0.084 0.088 0.152

KS {10, 50} 0 0 0.004 0 0.004 0.004 0.008 0.004 0

{10, 50, x} 0 0 0 0 0 0 0 0 0

{10, 5̃0}/{1̃0, 50} 0 0 0.004 0.004 0.008 0.008 0.012 0.004 0.016

{10}/{50} 0.036 0.028 0.016 0.056 0.024 0.044 0.060 0.068 0.076

{10, !50}/{!10, 50} 0.104 0.056 0.064 0.112 0.096 0.096 0.176 0.104 0.136

these experiments were similar and consistent with those presented in this section.
To conclude this section, we can remark that the proposed procedure proves to be a
powerful tool for identifying change points.

4 Applications

Illustration on Crime Rates in US Cities

First, we apply the proposed methodology to the US cities crime data obtained from
the US Department of Justice, Federal Bureau of InvestigationWebsite (http://www.
ucrdatatool.gov/Search/Crime/Crime.cfm). There are seven crime types grouped
into two general categories: violent and property crimes. The former includes Mur-
der, Rape, Robbery, and Aggravated Assault. The property crimes are Burglary,
Larceny Theft, and Motor Vehicle Theft. We focus on crime rates observed between
2000 and 2012. As an example, we choose the data reported by Austin and Cincin-
nati Police Departments. Figure2 illustrates violent (left column) and property (right

http://www.ucrdatatool.gov/Search/Crime/Crime.cfm
 29512 48668 a 29512 48668 a
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Fig. 2 Violent and Property crime rates in Austin and Cincinnati over the 13-year time period
(2000-2012). The blue and red colors represent two processes detected. Horizontal lines stand for
the means of the processes

column) crime rates. As the value T = 13 is quite low, instead of assuming models
with shift-related change points only, we consider all possible orderings of processes.

In the case ofAustin, theBICvalue associatedwith a single process (i.e., no change
points) is equal to -9.933. After running the developed procedure over all possible
orderings of processes, the lowest BIC of−47.081 was found. It is worth mentioning
that the naive procedure outlined in Sect. 3 yields BIC −45.225 and the model with
the AR(1) structure of � but no transformation parameters produces BIC −44.099.
This suggests that even for so few data points as in the considered application, the
proposed procedure can be useful. The parameter estimates associatedwith themodel
can be found in Table5. A corresponding illustration is provided in the first row of
plots in Fig. 2. Here, the years 2004, 2006, 2007, 2008, and 2009 are associated with
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Table 5 Parameter estimates, log-likelihood, and BIC values for Austin and Cincinnati
City μ̂0 μ̂1 �̂ λ̂ φ̂ logL BIC

Austin 168.234 524.023 4422.5 105136.9 17.258 −0.402 39.831 −47.081

4941.351 8870.934 105136.9 5810, 522 1.548

Cincinnati 4.130 5.478 1.372 0.004 2.148 0.315 19.693 −6.804

2.394 2.480 0.004 0.0001 −0.375

the second process (provided in the red color), while the rest of the years represent the
first process (given in the blue color). The horizontal lines reflect back-transformed
parameters μ̂0 and μ̂1 detected by our methodology. As we can clearly see, the
separation into two processes is strongly driven by the variable Violent Crime. In
the meantime, the variable Property Crime demonstrates considerable variability
associated with both processes.

The opposite situation is observed for Cincinnati (second row in Fig. 2): the vari-
able Property Crime contributes to the separation of the processes more than Violent
Crime. Model parameters are also provided in Table5. The BIC value of the best
model detected is equal to−6.804 which is considerably better than that of the model
with a single process, 19.568. The years 2000, 2007, 2008, 2009, and 2012 are asso-
ciated with the first process (presented in the blue color), while the rest of the years
represent the other process (given in the red color). The BIC value associated with the
naive approach is equal to −10.846 suggesting that AR(1) structure of � as well as
transformation-related parameters do not bring an improvement to the naive model
in this case.

Effect of Colorado Amendment 64

In this section, we demonstrate how our proposed methodology can be applied to
the analysis of the effects of public policies. As an example, we focus on studying
the effects of the Colorado Amendment 64 which makes the private consumption,
production, and possession of marijuana legal. Amendment 64 has been added to
the constitution of Colorado in December 2012 but the stores officially opened in
January 2014.

The crime rate data have been obtained from the Colorado Bureau of Investigation
Department of Public Safety Website (https://www.colorado.gov/pacific/cbi/crime-
colorado1) for 10 years: from 2007 to 2016. The same seven variables as described
in Sect. 4 have been explored without combining them into the two categories. The
goal of our analysis was to check whether the last three years, when the use of

https://www.colorado.gov/pacific/cbi/crime-colorado1
 14987 48097 a 14987
48097 a
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marijuana was legal, were any different from the previous seven years. The value of
BIC corresponding to the model with no change points is equal to−996.2, while that
related to the model with the change point in 2014 yields BIC equal to −1,006.1.
The likelihood ratio test conducted to verify the significance of the change yields
P-value 1.47 × 10−6. As we can see, there is very strong evidence in favor of the
change point model based on both BIC and likelihood ratio test.

Figure3 illustrates the obtained results. The first column consisting of four plots
represents violent crimes, while the second column with three plots shows property
crimes. The description of individual plots is similar to that of Fig. 2. As we can
see, some variables such as Rape or Burglary seem to contribute substantially to the
difference between the twomodels analyzed. To formalize the analysis, we employed
a variable selection procedure. As the number of variables in our experiment is
relatively low, we decided to test the model with no change point against the model
with the change point at 2014 over all possible combinations of involved variables.
The lowest P-value of 1.36 × 10−6 was observed for the combination of variables
Murder, Rape, and Burglary. Thus, the most dramatic change in 2014 has been
observed for these three variables considered jointly. The corresponding P-value is
just marginally lower than the P-value observed for the full model when all seven
variables are included, but it gives a good idea about the combination of variables that
contribute themost to separating the processes. By examining the contributions of the
three variables, we can notice that the crime rate of Burglary dropped considerably,
while Rape and to some extent Murder are grown in the last 3 years. Indeed, the
proposed analysis does not assume any cause-and-effect conclusions. In fact, we can
notice a considerable decrease in Murder rates in 2014 and we can also observe that
the increase inRape rates began in 2013, i.e., 1 year earlier thanwhenAmendment 64
became effective. Nevertheless, it is obvious that the proposed methodology presents
a powerful exploratory tool for studying the effects of public policies.

5 Discussion

In this paper, we developed an efficientmethod capable of estimatingmultiple change
points in multivariate processes. The proposed technique relies on the matrix normal
distribution adjusted by the exponential Manly transformation. Such an adjustment
makes the proposed methodology robust to violations of the normality assumption.
Thematrix setting has an appealing form as rows can represent variables and columns
can be associated with time points. Based on the results of challenging simulation
studies, we can conclude that the proposed technique is very promising. It outper-
forms the two nonparametric competitors in all settings. Two applications to crime
data considered in the paper demonstrate the usefulness of the developed method.
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Fig. 3 Crime rates in Colorado over the 10-year time period. The blue and red colors represent two
processes. Horizontal lines stand for the back-transformed means of the processes



60 Y. Melnykov et al.

References

1. Kass-Hout,A. T.,Xu, Z.,McMurray, P., Park, S., Buckeridge,D., Brownstein, J. S., et al. (2012).
Application of change point analysis to daily influenza-like illness emergency department visits.
Journal of the American Medical Informatics Association, 19, 1075–1081.

2. Patel, S. H., Morreale, S. J., Panagopoulou, A. P., Bailey, H., Robinson, N. J., Paladino, F.
V., et al. (2015). Changepoint analysis: A new approach for revealing animal movements and
behaviors from satellite telemetry data. Ecosphere, 6, 1–13.

3. Baddour, Y., Tholmer, R., & Gavit, P. (2009). Use of change-point analysis for process moni-
toring and control. BioPharm international (Vol. 22).

4. Nigro, M. B., Pakzad, S. N., & Dorvash, S. (2014). Localized structural damage detection: A
change point analysis. Computer-Aided civil and infrastructure engineering, 29, 416–432.

5. Lenardon, M. J., & Amirdjanove, A. (2006). Interaction between stock indices via changepoint
analysis. Applied Stochastic Models in Business and Industry, 22, 573–586.

6. Pepelyshev, A., & Polunchenko, A. S. (2015). Real-time financial surveillance via quickest
change-point detection methods. Statistics and its interface (Vol. 0, pp. 1–14).

7. Page, E. S. (1957). On problem in which a change in parameter occurs at an unknown points.
Biometrika, 42, 248–252.

8. Hsu, D. A. (1977). Tests for variance shifts at an unknown time point. Applied Statistics, 26,
279–284.

9. Davis, W. W. (1979). Robust methods for detection of shifts of the innovation variance of a
time series. Technometrics, 21, 313–320.

10. Inclán, C. (1993). Detection of multiple changes of variance using posterior odds. Journal of
Business and Economics Statistics, 11, 189–300.

11. Chen, J., & Gupta, A. K. (1997). Testing and locating variance changepoints with application
to stock prices. Jornal of the American Statistical Association, 92, 739–747.

12. Horváth, L. (1993). The maximum likelihood method for testing changes in the parameters of
normal observations. Annals of Statistics, 21, 671–680.

13. Sen, A. K., & Srivastava, M. S. (1973). On multivariate tests for detecting change in mean.
Sankhyá, A35, 173–186.

14. Srivastava,M. S., &Worsley, K. J. (1986). Likelihood ratio tests for a chance in themultivariate
normal mean. Journal of the American Statistical Association, 81, 199–204.

15. Zhao, L. C., Krishnaiah, P. R., & Bai, Z. D. (1986). On detection of the number of signals in
presence of white noise. Journal of Multivariate Analysis, 20, 1–25.

16. Zhao, L. C., Krishnaiah, P. R., & Bai, Z. D. (1986). On detection of the number of signals when
the noise covariance matrix is arbitrary. Journal of Multivariate Analysis, 20, 26–49.

17. Chen, J., & Gupta, A. K. (2004). Statistical inference of covariance change points in Gaussian
model. Journal of Theoretical and Applied Statistics, 38, 17–28.

18. Chen, J., &Gupta, A. K. (2011). Parametric statistical change point analysis, 2nd ed. Springer.
19. Perry, M. B., & Pignatiello, J. J. (2008). A change point model for the location parameter of

exponential family densities. IIE Transactions, 40, 947–956.
20. Nyambura, S., Mundai, S., &Waititu, A. (2016). Estimation of change point in Poisson random

variable using the maximum likelihood method. American Journal of Theoretical and Applied
Statistics, 5, 219–224.

21. Pettitt, A. N. (1979). A non-parametric approach to the change point problem. Journal of the
American Statistical Association, 28, 126–135.

22. James, N. A., &Matteson, D. S. (2014). ECP: AnR package for nonparametric multiple change
point analysis of multivariate data. Journal of Statistical Software, 62, 1–25.

23. Rizzo, M., & Szekely, G. (2005). Hierarchical clustering via joint between-within distances:
Extending Ward’s minimum variance method. Journal of Classification, 22, 151–183.

24. Kifer, D., Ben-David, S., & Gehrke, J. (2004). Detecting change in data streams. International
Conference on Very Large Data Bases, 30, 180–191.

25. Krzanowski, W. J., & Marriott, F. H. C. (1994). Multivariate analysis, part 1: Distributions,
ordination and inference. Wiley.



Robust Estimation of Multiple Change Points in Multivariate Processes 61

26. Box,G. E.,&Cox,D. R. (1964). An analysis of transformations. Journal of the Royal Statistical
Society, Series B, 26(2), 211–252.

27. Yeo, I.-K., & Johnson, R. A. (2000). A new family of power transformations to improve
normality or symmetry. Biometrika, 87, 954–959.

28. Manly, B. F. J. (1976). Exponential data transformations. Journal of the Royal Statistical
Society, Series D, 25(1), 37–42.

29. Andrews, D. F., Gnanadesikan, R., & Warner, J. L. (1971). Transformations of multivariate
data. Biometrics, 27(4), 825–840.

30. Lindsey, C., & Sheather, S. (2010). Power transformation via multivariate Box-Cox. The Stata
Journal, 10(1), 69–81.

31. Zhu, X., & Melnykov, V. (2018). Manly transformation in finite mixture modeling. Computa-
tional Statistics and Data Analysis, 121, 190–208.

32. Schwarz, G. (1978). Estimating the dimensions of a model. Annals of Statistics, 6(2), 461–464.
33. Shen, G., & Ghosh, J. (2011). Developing a new BIC for detecting change-points. Journal of

Statistical Planning & Inference, 141, 1436–1447.
34. Rizzo, M., & Szekely, G. (2010). Disco analysis: A nonparametric extension of analysis of

variance. The Annals of Applied Statistics, 4, 1034–1055.



Some Computational Aspects
of a Noncentral Dirichlet Family

Tanita Botha, Johannes T. Ferreira, and Andriette Bekker

Abstract The Dirichlet distribution is arguably the most well-known multivariate
distribution for implementation on the unitary simplex. Different generalizations
exist, one of which is the noncentral counterpart. The noncentral representation
depends on the noncentrality parameters through the confluent hypergeometric func-
tion of several variables and admits both singly and doubly noncentral representa-
tions. This chapter explores the computational aspects when the estimation of this
singly and doubly noncentral Dirichlet is of interest. It investigates to what degree the
additional parameter(s) and their effect on the doubly noncentral Dirichlet, compared
to the singly alternative, affects the practical implementation of the model. Real data
examples are used for this investigation by using maximum likelihood estimation for
the parameters and further strengthened by simulation studies.

Keywords Singly · Doubly · Likelihood Ratio · Household expenditure · Pekin
duckling

1 Introduction

The Dirichlet distribution is well known when working with data on the unitary
simplex (0, 1) and is a multivariate generalization of the beta distribution. This
distribution has many applications in fields such as biological, financial, and cyber
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analytics where compositional data and measurements apply and is also a conjugate
prior for the multinomial distribution in Bayesian statistics [5].

This distribution is known for its mathematical properties and ease of parameter
interpretation [13] but is poorly parameterized and cannotmodelmany different types
of dependence patterns [2]. Several generalizations of the Dirichlet distribution have
been developed, one of which is the noncentral Dirichlet distribution. A recent study
from [16] illustrated how the noncentral Dirichlet has seen more applications during
the last few years, including [5, 18].

Reference [5] used a noncentral Dirichlet distribution as a previously unconsid-
ered priorwhen estimatingTsallis entropy in aBayesian framework for amultinomial
likelihood. Here the noncentral Dirichlet distribution was constructed via the use of
Poisson mass function weights, inspired by [7]. They showed how this construc-
tion of the pdf (probability density function) isolated the noncentrality parameters
by retaining them as parameters in independent Poisson mass functions. Reference
[4] extended this work by introducing new bivariate noncentral gamma distribu-
tions emanating from a scale mixture of the normal class by also showcasing the
noncentrality as infinite Poisson mass function mixtures. Reference [5] focussed on
the multivariate analogue of the singly and doubly noncentral beta distribution of
[14], but the investigation did not focus on the parameter estimation as such. For
the interest of the reader, [18] discussed a new noncentral generalization of the beta
distribution, the doubly noncentral beta (DNCB) distribution, which is presented as
a new non-negative matrix factorization model for (0, 1) bounded-support data.

This chapter explores inferential aspects between the singly and doubly noncen-
tral Dirichlet distributions and investigates whether the additional parameter, which
distinguishes the singly from the doubly, has a significant effect when fitting a non-
central Dirichlet distribution to data. These aspects include (1) parameter estimation,
(2) goodness-of-fit measures (using the Akaike information criteria (AIC) and the
Bayesian information criteria (BIC)), (3) the Likelihood ratio (LR) test statistic, and
(4) runtime. Since the noncentral distribution exhibits an infinite sum construction,
an additional truncation investigation is done to show how the estimated results
converge once the truncation of infinite summations become sufficiently large, thus
eliminating the computational challenge of implementing infinite sums.

Reference [3] has shown that flexible distributions are powerful models for data
fitting but there are challenges when estimating the parameters. This chapter con-
siders maximum likelihood estimation (MLE) and a two step estimation adaption
of the MLE. In this context, the aim of the chapter is to deal with some computa-
tional aspects of MLE, particularly in a noncentral Dirichlet family with a specific
focus on the doubly and singly constructions. This multivariate investigation, ema-
nating from a data-driven approach, is the pathway to understand and investigate this
conventionally computationally challenging multivariate distribution.

The chapter is outlined as follows. Section2 discusses the foundation of the
Dirichlet family. In Section 3, the methodology used within the chapter is discussed.
Section4 reports the results of two data examples as well as two simulation studies.
Section5 contains the discussion and final thoughts.
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2 Foundations of the Dirichlet

This section is intended to give a brief overview of the components which will be
used in the rest of the chapter. The Pochhammer coefficient is defined as

(s)k = �(s + k)

�(s)
= s(s + 1)(s + 2) · · · (s + k − 1); s > 0. (1)

The generalized hypergeometric function with r upper and q lower parameters
can be defined as (see [11])

r Fq(a1, . . . , ar ; b1, . . . , bq; x) =
∞∑

i=1

(a1)i · · · (ar )i
(b1)i · · · (bq)i

x i

i ! , x ∈ R. (2)

The Dirichlet distribution can be derived by considering ratios of functions of
independent gamma random variables. A random variable X has a gamma distribu-
tion with parameter (π > 0 ) and (θ > 0), denoted by X ∼ Ga(π, θ), if the pdf is
given by

f (x) = exp
(− x

θ

)
xπ−1

θπ�(π)
; x > 0 (3)

where �(·) denotes the usual gamma function. Let X1, . . . , XK+1 be independent
random variables, Xi ∼ Ga(πi , θ), i = 1, . . . , K + 1, and let

pi = Xi∑K
i=1 Xi + XK+1

, i = 1, . . . , K and 0 < pi < 1. (4)

The joint pdf of p = (p1, . . . , pK ) (4) will then have a Dirichlet distribution (of
type 1, see [9, 17]) of order K ≥ 2 and parameters � = (π1, π2, . . . , πK+1) for
πi > 0, i = 1, . . . , k + 1, with pdf with respect to the Lebesgue measure on the
Euclidean space RK given by

h(p;�) = �(π+)
∏k+1

i=1 �(πi )

K+1∏

i=1

pπi−1
i (5)

where π+ = ∑K+1
i=1 πi , on the K dimensional simplex defined by

p1, p2, . . . , pK > 0

p1 + p2 + · · · + pK < 1

pK+1 = 1 − p1 − · · · − pK ,

and 0 otherwise.
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The noncentral Dirichlet distribution can be obtained by using noncentral gamma
variables. A random variable X has a noncentral gamma distribution with parameters
(π > 0), (θ > 0) and (λ ≥ 0), denoted by X ∼ Ga(π, θ, λ) and the pdf is given by
[8]

f (x) =
∞∑

j=0

exp
(−λ

2

) (
λ
2

) j

j !
exp

(−x
θ

)
xπ+ j−1

θπ+ j�(π + j)
; x > 0. (6)

If (6), instead of (3) is considered for the construction in (4) then the doubly
noncentral Dirichlet distribution can be represented as

h(p;�, �)

=
∞∑

j1=0

. . .

∞∑

jK+1=0

exp
( −λ1

2

) (
λ1
2

) j1

j1! . . .
exp

( −λK
2

) (
λK
2

) jK

jK !
exp

( −λK+1
2

) (
λK+1

2

) jK+1

jK+1!

× �(π1 + j1 + · · · + πK + jK + πK+1 + jK+1)

�(π1 + j1)�(πK + jK )�(πK+1 + jK+1)
p
π1+ j1−1
1 . . . p

πK + jK −1
K

⎛

⎝1 −
K∑

i=1

pi

⎞

⎠
πK+1+ jK+1−1

(7)

where � denotes the vector of noncentral parameters (λ1, . . . , λK , λK+1) with
λi > 0 ∀ i .

The pdf in Eq. (7) reflects a parametrization of the noncentralDirichlet distribution
of [17] and can be represented via the confluent hypergeometric function of several
variables where h(p;�) denotes the (unconditional) Dirichlet distribution (see (5))
with parameter �:

h(p;�, �)

= h(p;�) exp

⎛

⎝−
K+1∑

i=1

λi
2

⎞

⎠

×
∑

φ

(π+) j1+···+ jK+1
(π1) j1 . . . (πK+1) jK+1 j1! . . . jK+1!

(
λ1
2

p1

) j1
. . .

(
λK
2

pK

) jK
⎛

⎝ λK+1
2

⎛

⎝1 −
K∑

i=1

pi

⎞

⎠

⎞

⎠
jK+1

(8)

= h(p;�) exp

⎛

⎝−
K+1∑

i=1

λi
2

⎞

⎠ �
(K+1)
2

⎛

⎝π+;π1, . . . , πK+1; λ1
2

p1, . . . ,
λK
2

pK ,
λK+1

2

⎛

⎝1 −
K∑

i=1

pi

⎞

⎠

⎞

⎠

and where
∑

φ = ∑∞
j1=0 . . .

∑∞
jK+1=0 and �

(K+1)
2 (·) is the confluent hypergeometric

function of several variables.
The distribution in (7) and (8) is thus the multivariate analogue of the dou-

bly noncentral beta distribution (see [14]). This representation paves the way for
the multivariate analogue of the singly noncentral beta distribution of [14] where
�

(K )
2 (

∑K
i=1 πi ;π1, . . . , πK ; λ1

2 p1, . . . ,
λK
2 pK ) (i.e., k variate confluent hypergeo-

metric function of several variables instead of K + 1). The pdf is given by
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h(p;�,�)

= h(p;�) exp

(
−

K∑

i=1

λi

2

)
�

(K )
2

(
K∑

i=1

πi ;π1, . . . , πK ; λ1

2
p1, . . . ,

λK

2
pK

)
(9)

where

�
(K )
2

(
K∑

i=1

πi ;π1, . . . , πK ; λ1

2
p1, . . . ,

λK

2
pK

)

=
∑

φ

(π1 + · · · + πK+1) j1+···+ jK

(π1) j1 . . . (πK ) jK j1! . . . jK !
(

λ1

2
p1

) j1

. . .

(
λK

2
pK

) jK

and
∑

φ = ∑∞
j1=0 . . .

∑∞
jK=0.

The doubly (8) and singly (9) construction are infinite multivariate mixtures of
the Poisson mass function on the conditional Dirichlet distribution and it can be
seen that the major difference between the singly (9) and doubly (8) construction
is the additional parameter λK+1. It is of interest to investigate what effect, and if
this effect is significant, this additional parameter has when considering parameter
estimation. This needs to be explored as the parameter λK+1 is the representative for
the (1 − ∑K

i=1 pi ) component in (8) and may be expected to have a larger influence
than any other individual λi for i = 1, 2, . . . , K and has meaningful computational
implications.

3 Methods and Approach

MLE was used in order to find the estimates of the parameters of interest. This
method maximizes the log-likelihood functions for the distributions of interest and
are investigated in the following sections for K = 2.

Log-Likelihood

Doubly Noncentral Dirichlet Distribution

Suppose N vector observations p1, . . . , pN of dimension Kx1 are drawn indepen-
dently from the doubly noncentral Dirichlet distribution given in (8), then the log-
likelihood will take the following form [15]:
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LogL(p;�,�)Doubly

= N log�(π+) − N (log�(π1) + log�(π2) + log�(π3))

+ N
(
(π1 − 1)log p̄1 + (π2 − 1)log p̄2 + (π3 − 1)(1 − log p̄1 − log p̄2)

)

− N (λ1 + λ2 + λ3)

2
+

N∑

i=1

log�(3)
2 (·) (10)

where log p̄k = 1
N

∑N
i=1 logpik and �

(3)
2 (·) can be expressed as

�
(3)
2 [π+;π1, π2, π3; λ1

2
p1,

λ2
2

p2,
λ3
2

(1 − p1 − p2)]

=
∞∑

j1=0

(π+) j1
(π1) j1

(
λ1
2 p1

) j1

j1!
�

(2)
2 [π+ + j1;π2, π3; λ2

2
p2,

λ3
2

(1 − p1 − p2)]

=
∞∑

j1=0

(π+) j1
(π1) j1

(
λ1
2 p1

) j1

j1!
∞∑

j2=0

(π+ + j1) j2
(π2) j2

(
λ2
2 p2

) j2

j2! �
(1)
2 [π+ + j1 + j2;π3; λ3

2
(1 − p1 − p2)]

=
∞∑

j1=0

(π+) j1
(π1) j1

(
λ1
2 p1

) j1

j1!
∞∑

j2=0

(π+ + j1) j2
(π2) j2

(
λ2
2 p2

) j2

j2!
∞∑

j3=0

(π+ + j1 + j2) j3
(π3) j3

(
λ3
2 (1 − p1 − p2)

) j3

j3!

=
∞∑

j1=0

(π+) j1
(π1) j1

(
λ1
2 p1

) j1

j1!
∞∑

j2=0

(π+ + j1) j2
(π2) j2

(
λ2
2 p2

) j2

j2! 1F1[π+ + j1 + j2;π3; λ3
2

(1 − p1 − p2)]

where 1F1(·) represents the confluent hypergeometric function. This function (10) is
used in the MLE estimation of the parameters in the applications that follow.

Singly Noncentral Dirichlet Distribution

Suppose N vector observations p1, . . . , pN of dimension Kx1 are drawn indepen-
dently from the singly noncentralDirichlet distribution given in (9), the log-likelihood
will be represented by

LogL(p;�,�)Singly

= N log�(π+) − N (log�(π1) + log�(π2) + log�(π3))

+ N
(
(π1 − 1) p̄1 + (π2 − 1) p̄2 + (π3 − 1)(1 − p̄1 − p̄2)

)

− N (λ1 + λ2)

2
+

N∑

i=1

log�(2)
2 (·) (11)

where �
(2)
2 (·) can be expressed as
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�
(2)
2 [π+;π1, π2; λ1

2
p1,

λ2

2
p2]

=
∞∑

j1=0

(π+) j1

(π1) j1

(
λ1
2 p1

) j1

j1! �
(1)
2 [π+ + j1;π2; λ2

2
p2]

=
∞∑

j1=0

(π+) j1

(π1) j1

(
λ1
2 p1

) j1

j1!
∞∑

j2=0

(π+ + j1) j2
(π2) j2

(
λ2
2 p2

) j2

j2!

=
∞∑

j1=0

(π+) j1

(π1) j1

(
λ1
2 p1

) j1

j1! 1F1[π+ + j1;π2; λ2

2
p2]

where 1F1(·) represents the confluent hypergeometric function. This function (11) is
used in the MLE estimation of the parameters in the applications that follow.

Method for Investigating λ3

The effect of λ3 will be evaluated by fitting both the singly (9) and doubly (8) noncen-
tral Dirichlet distributions to the same datasets and investigating the differences in
results using these two distributions. The model performance will be assessed using
different goodness-of-fit measures, namely, AIC and BIC, defined as

AIC = 2k − 2LogLmax and BIC = klogN − 2LogLmax

where k is the number of free parameters, N is the number of observations in the
data and LogLmax is the maximized log-likelihood value. Models with lower AIC
and BIC are considered models with better performance. Since the models being
compared consist of a different number of parameters (when estimating the full set
of parameters compared to the two alternative two-step approaches which chooses
the π to be fixed hence only the estimates of � are required), the LR test will be
used to compare the goodness-of-fit between the two different models in order to
determine if the restricted models performed adequately.

The LR test, having an asymptotic Chi-squared distribution (with the number of
degrees of freedom equal to the number of parameters fixed by H0 [15]), can be used
when comparing two statistical models which differ in the number of parameters, the
complex model containing more parameters than the restricted model. The interest
would then be to evaluate if the additional parameters in the full/unrestricted model
makes the model significantly more accurate.

The LR test statistic is given by −2(LogLmaxrestricted − LogLmaxunrestricted ) where
LogLmaxrestricted would be the maximum log-likelihood of the model under the
null hypothesis (which is the restricted model or model with less parameters) and
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LogLmaxunrestricted is the log-likelihood of the full/unrestricted model (which would be
the model with more parameters).

• Ho: The restricted model should be used.
• Ha : The full/unrestricted model yielded significantly more accurate results.

This means that rejection of the null hypothesis would indicate that the full model
(estimating all the parameters of interest) is significantly more accurate than the
restrictedmodel. For this investigation, the restrictedmodelswill consist of two cases:
(1) the πs will be fixed to be equal to 1, then only the � would need estimation, and
(2) the πs would be assigned the values of the estimates obtained when estimating
the Dirichlet distribution (5) and once again only the � would need to be estimated.

A graphical guide is also considered in order to display the behaviour of the
deviance function. This is expressed as

D(π;�) = 2
(
LogLmax − LogL prof ile

)
(12)

where LogLmax is the log-likelihood of the model with the estimates which maxi-
mized the relevant log-likelihood and LogL prof ile is the profile log-likelihood func-
tion obtained by varying the values of π1 and λ1 while the values of π2;π3; λ2 and
λ3 in the doubly (8) construction and the values of π2;π3; λ2 in the singly (9) con-
struction remain fixed to the parameter estimates. The combination of π2 and λ2 was
not considered, as the outcome will remain the same due to the symmetry of the
distribution.

Initial Parameters for MLE Search

Due to the potential complexity of the distributions, a wide range of starting values,
via the use of a grid search, were considered in order to determine the best possible
starting values. An additional two-step estimation process was also investigated of
which the steps are explained below. This method explored the use of the Dirichlet
estimates (for the π) as well as making the π = 1 and then only estimating the values
of the �. For the two data examples, as well as the simulations, three estimation
approaches were investigated:

1. Estimation of all parameters (π1;π2 andπ3 andλi where i = 1, 2, 3 for the doubly
(8) construction and i = 1, 2 for the singly (9) construction) by using MLE.

2. Two-step estimation approaches

a. Setting theπ = 1 and estimating only theλi s (where i = 1, 2, 3 for the doubly
(8) construction and i = 1, 2 for the singly (9)) using MLE;

b. Setting the π equal to the Dirichlet (5) estimates (π1;π2 and π3) and esti-
mating only the λi s (where i = 1, 2, 3 for the doubly (8) construction and
i = 1, 2 for the singly (9)) using MLE.
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The choice of π = 1 was made as this will ensure that the focus will be on
estimating � rather than π . Together with obtaining the estimates which will yield
the best model fit, the run time was also investigated as the most accurate estimates
calculated in a quick and simple way would be the optimal process.

4 Data Fitting

For this section, two different datasets were identified and the parameters estimated.
The investigation was strengthened by including two simulation studies as well. The
MLE for the log-likelihoods discussed above, were determined by using the optim
function in R (statistical software). For the first simulation study, data was generated
from each of the three distributions of interest (the Dirichlet (5) distribution, the
doubly noncentral Dirichlet (8) distribution and the singly (9) noncentral Dirichlet
distribution), while the data generated for the second simulation consisted of a sin-
gle dataset on which all three distributions were fit. All estimated parameters were
reported together with the standard error (SE).

Simulation Study 1

200 bivariate observations from the Dirichlet distribution with parameters (π1 =
3.2154;π2=20.3818; π3 = 21.6859), for the doubly noncentral Dirichlet distribu-
tion (π1 = 3.2154;π2=20.3818;π3 = 21.6859; λ1 = 7.8564, λ2 = 26.6966; λ3 =
3.596) and for the singly noncentral Dirichlet distribution (π1 = 3.2154;π2 =
20.3818;π3 = 21.6859; λ1 = 7.8564, λ2 = 26.6966), were simulated according to
the Acceptance Rejection algorithm (as adapted, see [5]).

Table1 reports the results for both the singly (9) and doubly (8) constructions,
Table2 reports the LR test results and Fig. 1 overlays the scatter plot and contour
plots for the simulated and fitted results.

It can be seen that in all three cases, the models where all the relevant parameters
were estimated (the full/unrestricted models) yielded the best AIC results when
compared to the restricted models although not being significantly better in all cases.

The LR test showed that, for the singly (9) instance, both sets of constraints (when
π are set equal to 1 as well as when π are set to the Dirichlet estimates) resulted
in a rejection of the null hypothesis. This shows that the unrestricted model yielded
estimates which had a significantly better fit. For the doubly (8) construction, the
null hypothesis could be rejected for the restricted model where π = 1 (showing
the unrestricted model yielded a significantly improved model fit), while for the
case where π was chosen as the Dirichlet estimates, the unrestricted model did not
perform significantly better.

Figure2 illustrates how the deviance increases as the values of π1 and λ1 increases
with the white dot indicating the estimated parameter values. The other parameters
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Table 1 Parameter estimates and standard errors for the Dirichlet (5), doubly noncentral Dirichlet
(8) and the singly noncentral Dirichlet (9) distributions together with the goodness-of-fit measures

Dirichlet (5) estimates Doubly (8) estimates Singly (9) estimates

Estimate all parameters

π̂1 3,2608 (0,0958) 0,0061 (0,0864) 0,0026 (0,1831)

π̂2 22,8908 (0,7421) 10,8783 (0,0271) 38,2250 (0,2227)

π̂3 23,7218 (0,7795) 13,3265 (0,1714) 24,7172 (0,1849)

λ̂1 n/a 11,6468 (0,0593) 17,1634 (0,2385)

λ̂2 n/a 27,5281 (0,2997) 4,5135 (0,3634)

λ̂3 n/a 6,9626 (0,1710) n/a

AIC –655,7234 –617,5583 –664,2661

BIC –647,9079 –609,7428 –656,4506

Time (sec) 0,17 43,64 0,65

Two step estimation where π = 1

λ̂1 n/a 5,8477 (0,1506) 0 (0,6563)

λ̂2 n/a 30,5153 (0,5269) 3,9142 (0,4525)

λ̂3 n/a 21,7476 (0,3507) n/a

AIC –655,7234 –549,163 –218,1457

BIC –647,9079 –541,3475 –210,3302

Time (sec) 0,17 17,14 0,37

Two step estimation where π are the Dirichlet estimates

λ̂1 n/a 8,9649 (0,2723) 9,9267 (0,5070)

λ̂2 n/a 25,3784 (0,8008) 27,6297 (1,6249)

λ̂3 n/a 1,1000 (0,4844) n/a

AIC –655,7234 –614,7539 –616,51

BIC –647,9079 –606,9384 –608,6945

Time (sec) 0,17 7.79 0,42

Table 2 LR test results for simulation study 1

LR test results

Full doubly model compared to the
restricted models

dof Test statistic p-value

Doubly (π = 1) 3 68,3953 <0,0001

Doubly (π̂ is set to the Dirichlet
estimates)

3 2,8043 0,4228

Full singly model compared to the
restricted models

Singly (π = 1) 3 446,1203 <0,0001

Singly (π̂ is set to the Dirichlet
estimates)

3 47,7561 <0,0001
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Fig. 1 Scatter plots of the simulation study 1 dataset and contour plots of the fitted results

were kept equal to their estimated values while π1 and λ1 were varied. It can be
seen that, as these parameters move away from the optimal estimates, the deviance
is originally not that sensitive, but becomes more sensitive as the parameters become
larger.

Simulation Study 2

For this illustration, a single dataset was simulated, and all threemodels (theDirichlet
(5), the doubly (8) noncentral Dirichlet as well as the singly (9) noncentral Dirichlet
distributions) were fitted to this single dataset.

This data was simulated using the following steps:

1. Generate 100 random variables from aWeibull distribution Xi ∼ Weibull(ki , θi )
for i = 1, 2, 3 where k1 = 2, k2 = 7, k3 = 5 and θ1 = 0.2, θ2 = 0.9, θ3 = 1.

2. Define p = (p1, p2, p3) as pi = Xi∑3
i=1 Xi

for i = 1, 2, 3 and then generate the

random sample.
3. The Dirichlet, noncentral doubly Dirichlet, and noncentral singly Dirichlet dis-

tributions are then fitted to p.



74 T. Botha et al.

Fig. 2 Deviance function for simulation study 1

Fig. 3 Scatter plots of the simulation study 2 dataset and contour plots of the fitted results

Table3 reports the results for both the singly (9) and doubly (8) constructions,
Table4 reports the LR test results and Fig. 3 overlays the scatter plot and contour
plots for the generated and fitted results.
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Table 3 Parameter estimates and standard errors for the Dirichlet (5), doubly noncentral Dirichlet
(8) and the singly noncentral Dirichlet (9) distributions together with the goodness-of-fit measures

Dirichlet (5) estimates Doubly (8) estimates Singly (9) estimates

Estimate all parameters

π̂1 3,6491 (0,0931) 0,0519 (0,1400) 0,0019 (0,0897)

π̂2 17,7015 (0,5129) 13,8592 (0,0783) 18,1034 (0,0274)

π̂3 19,3169 (0,5694) 24,6011 (0,1267) 19,8102 (0,0326)

λ̂1 n/a 9,9120 (0,1477) 8,7957 (0,1534)

λ̂2 n/a 19,9680 (0,2434) 1,4466 (0,0618)

λ̂3 n/a 2,0128 (0,1546) n/a

AIC –586,5146 –656,1447 –629,1464

BIC –578,6991 –648,3292 –621,3309

Time (sec) 0,24 37,57 1,18

Two step estimation where π = 1

λ̂1 n/a 5,9679 (0,1880) 0 (0,0721)

λ̂2 n/a 30,6960 (0,6569) 1,7340 (0,0514)

λ̂3 n/a 35,8423 (0,9089) n/a

AIC –586,5146 –601,7124 –154,7021

BIC –578,6991 –593,8969 –146,8865

Time (sec) 0,24 31,95 0,4

Two step estimation where π are the Dirichlet estimates

λ̂1 n/a 6,5269 (0,2026) 0,1405 (0,1023)

λ̂2 n/a 26,8695 (0,8908) 0 (0,1207)

λ̂3 n/a 30,7942 (0,9817) n/a

AIC –586,5146 –625,1907 –586,6108

BIC –578,6991 –617,3752 –578,7953

Time (sec) 0,24 18,01 0,44

Table 4 LR test results for simulation study 2

LR test results

Full doubly model compared to the
restricted models

dof Test statistic p-value

Doubly (π = 1) 3 54,4323 <0,0001

Doubly (π̂ is set to the Dirichlet
estimates)

3 30,9540 <0,0001

Full singly model compared to the
restricted models

Singly (π = 1) 3 474,4443 <0,0001

Singly (π̂ is set to the Dirichlet
estimates)

3 42,5356 <0,0001
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Fig. 4 Deviance function for simulation study 2

When estimates for the parameters were determined for the same dataset, it can be
seen that the full/unrestrictedmodels (estimating all parameters) yieldedmodels with
better performance than the restricted cases (for both the doubly (8) and the singly (9)
constructions). It can also be seen that the noncentral Dirichlet distributions resulted
in more flexible fits to the simulated data. Both the singly (9) and the doubly (8)
fitted results seem to fit the simulated data shapes.

Similar to simulation study 1, Fig. 4 illustrates how the deviance increases as the
values of π1 and λ1 increases with the white dot indicating the estimated parameter
values.

Dataset 1—Household Expenditure Data

The first dataset that was considered, obtained from [6], was collected through house-
hold budget surveys aimed at studying consumer demand. This dataset was also used
in studies such as [13] and reports the household expenditures (inHongKongDollars)
on two commodity groups of a sample of 40 individuals. The variables considered are
the proportions spent on housing (including fuel and lights) (p1), foodstuffs (includ-
ing alcohol and tobacco) (p2), and the rest are classified as services and other goods
(including transport and vehicles, clothing, footwear, and durable goods). Table5
reports the results for both the singly (9) and doubly (8) constructions and Fig. 5
overlays the scatter plot and contour plots for the simulated and fitted results.

From Table5, it can be seen that the full/unrestricted models yielded the best AIC
results with the LR test in Table6 indicating that for both the doubly (8) and singly
(9) constructions, the null hypothesis was rejected (reporting that the full model with
no restrictions has significantly better model performance).
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Table 5 Parameter estimates and standard errors for the Dirichlet (5), doubly noncentral Dirichlet
(8) and the singly noncentral Dirichlet (9) distributions together with the goodness-of-fit measures

Dirichlet (5) estimates Doubly (8) estimates Singly (9) estimates

Estimate all parameters

π̂1 2,6284 (0,0459) 1,4574 (0,1189) 3,3934 (0,0082)

π̂2 1,1749 (0,0152) 0,0004 (0,0715) 0,0021 (0,0213)

π̂3 2,3097 (0,0375) 3,1973 (0,1783) 4,7542 (0,0109)

λ̂1 n/a 5,8467 (0,0151) 4,5663 (0,0159)

λ̂2 n/a 4,6404 (0,0151) 6,5546 (0,0125)

λ̂3 n/a 1,8552 (0,0151) n/a

AIC –84,1573 –128,1886 –124,9050

BIC –79,0907 –123,1220 –119,8384

Time (sec) 0,14 40,89 2,45

Two step estimation where π = 1

λ̂1 n/a 3,1755 (0,0835) 0 (0,0048)

λ̂2 n/a 2,3016 (0,1289) 0,3404 (0,0342)

λ̂3 n/a 8,5647 (0.3159) n/a

AIC –84,1573 –83,4674 –84,5856

BIC –79,0907 –78,4008 –79,5189

Time (sec) 0,14 5,84 0,49

Two step estimation where π are the Dirichlet estimates

λ̂1 n/a 3,0546 (0,1480) 0 (0,0048)

λ̂2 n/a 3,4754 (0,1536) 0,3404 (0,0342)

λ̂3 n/a 1,7723 (0,0759) n/a

AIC –84,1573 –89,6995 –84,5856

BIC –79,0907 –84,6328 –79,5189

Time (sec) 0,14 10,32 0,26

A consideration when determining the estimates of the parameters is the fact that
the log-likelihood function contains multiple infinite summations, inherited from
�

(3)
2 (·), which complicates the computation of the parameters. We show that since

those summations stem from Poisson distribution, one can expect convergence as the
number of summations increases. Table7 shows that from15 summations onward, the
results remain equal to 4 decimal places. This confirms that the use of 20 summations,
as was used in the Household data example, yields the required results.
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Fig. 5 Scatter plots of the Household dataset and contour plots of the fitted results

Table 6 LR test results of the Household dataset

LR test results

Full doubly model compared to
the restricted models

dof Test statistic p-value

Doubly (π = 1) 3 44.7212 <0.0001

Doubly (π̂ is set to the Dirichlet
estimates)

3 38.4892 < 0.0001

Full singly model compared to the
restricted models

Singly (π = 1) 3 40.3194 < 0.0001

Singly (π̂ is set to the Dirichlet
estimates)

3 40.3194 < 0.0001

Dataset 2—Pekin Duckling Data

The second dataset that was considered was obtained from [12], referenced in studies
like [1], and reported the blood serum proportions (pre-albumin, albumin, and glob-
ulin) in 3-week old Pekin ducklings. Table8 reports the results for both the singly (9)
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Table 7 Summation truncation confirmation for the Household dataset

Singly (9)

Summation truncation 10 15 20 30 50

π̂1 3,2246 3,3934 3,3934 3,3934 3,3934

π̂2 0,0004 0,0021 0,0021 0,0021 0,0021

π̂3 4,4448 4,7542 4,7542 4,7542 4,7542

λ̂1 4,4521 4,5663 4,5663 4,5663 4,5663

λ̂2 6,1203 6,5546 6,5546 6,5546 6,5546

Time (sec) 1 1,68 2,19 4,23 11,13

AIC –124,51 –124,91 –124,91 –124,91 –124,91

BIC –123,82 –124,21 –124,21 –124,21 –124,21

Doubly (8)

Summation truncation 10 15 20 30 50

π̂1 3,7347 1,4574 1,4574 1,4574 1,4574

π̂2 0,0034 0,0004 0,0004 0,0004 0,0004

π̂3 3,3343 3,1973 3,1973 3,1973 3,1973

λ̂1 2,5902 5,8467 5,8467 5,8467 5,8467

λ̂2 6,11 4,6404 4,6404 4,6404 4,6404

λ̂3 2,1889 1,8552 1,8552 1,8552 1,8552

Time (sec) 8,79 17,05 29,18 49,31 64,998

AIC –130,5 –128,19 –128,19 –128,19 –128,19

BIC –129,81 –127,5 –127,5 –127,5 –127,5

and doubly (8) constructions, Table9 report the LR test results and Fig. 6 overlays
the scatter plot and contour plots for the simulated and fitted results.

For the Pekin Ducklings dataset, it can be seen that the full parameter models had
the highest AIC values. The LR test results in Table9 indicate that for the doubly
(8) construction, the null hypothesis was rejected when π = 1 (showing that the full
unrestricted model yielded a better fit), while for the π which was set to the Dirichlet
estimates did not have enough evidence to reject the null hypothesis (indicating that
the restricted model performance was sufficiently close to the full model). For the
singly (9) construction in both the restricted cases, the null hypothesis was rejected
indicating that the restricted models resulted in much less impressive performance.

5 Final Thoughts and Future Directions

This chapter aimed to investigate the impact that the additional parameter for K + 1
of the doubly (8) construction has on parameter estimation and run time. From the
above data examples and simulations, it can be seen that the additional parameter (and
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Table 8 Parameter estimates and standard errors for the Dirichlet (5), doubly noncentral Dirichlet
(8) and the singly noncentral Dirichlet (9) distributions together with the goodness-of-fit measures

Dirichlet (5) estimates Doubly (8) estimates Singly (9) estimates

Estimate all parameters

π̂1 3,2154 (0,0805) 0,0092 (0,0439) 0,0005 (0,0314)

π̂2 20,3818 (0,5674) 10,9633 (0,0824) 38,5011 (0,2122)

π̂3 21,6859 (0,6206) 23,9699 (0,0247) 46,2162 (0,2600)

λ̂1 n/a 7,8564 (0,0973) 14,4756 (0,1142)

λ̂2 n/a 26,6966 (0,2008) 12,1713 (0,1117)

λ̂3 n/a 3,5696 (0,0152) n/a

AIC –140,2500 –154,2719 –159,5879

BIC –136,8435 –150,8654 –156,1814

Time (sec) 0,17 33,95 2,43

Two step estimation where π = 1

λ̂1 n/a 4,1783 (0,1965) 0.000 (0,0631)

λ̂2 n/a 30,5914 (0,0846) 2,0289 (0,0635)

λ̂3 n/a 34,4858 (0,1331) n/a

AIC –140,2500 –137,1889 –32,6149

BIC –136,8435 –133,7824 –29,2084

Time (sec) 0,17 24,56 0,48

Two step estimation where π̂ are the Dirichlet estimates

λ̂1 n/a 4,9133 (0,0522) 0,0951 (0,0404)

λ̂2 n/a 26,3713 (0,2957) 0,2613 (0,0562)

λ̂3 n/a 28,8659 (0,3402) n/a

AIC –140,2500 –147,3002 –140,2650

BIC –136,8435 –143,8937 –136,8585

Time (sec) 0,17 19,63 0,34

Table 9 LR test results of the Pekin Ducklings dataset

LR test results

Full doubly model compared to the
restricted models

dof Test statistic p-value

Doubly (π = 1) 3 18.0830 <0.0001

Doubly (π̂ is set to the Dirichlet
estimates)

3 6.9717 0.0728

Full singly model compared to the
restricted models

Singly (π = 1) 3 126.9730 <0.0001

Singly (π̂ is set to the Dirichlet
estimates)

3 19.3228 <0.0001
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Fig. 6 Scatter plots of the Pekin Ducklings dataset and contour plots of the fitted results

additional model complexity) did yield more accurate models. Model complexity
should be carefully considered as the data shape is likely to have an effect on the
parameter estimation results.

The overall run time of the doublymodels was always higher but still short enough
to imply reasonably quick estimation. Awide range of starting values, via the use of a
grid search, had to be considered to ensure the best model fit (more so for the doubly
(8) than for the singly (9) constructions) and further investigations included two
additional estimation approaches using a two-step estimation proses. Figures5 and
6 showed that the doubly construct was able to better capture the outliers. Reference
[10] investigated improved Dirichlet models with respect to outlier detections in
more detail. It was also shown that, although the noncentral Dirichlet has an infinite
sum construction, the summations converge quickly, which makes this form usable
when estimating parameters.

Through the parameter estimation study, it was observed that the flexibility of the
noncentral Dirichlet (5) resulted in cases where there could be more than one set of
parameters that yielded valid results. This was also seen for the
Skewed t-distribution investigation by [3]. This means that even though the sim-
ulated example was produced using a single set of parameters, several models exist
which yielded good fits, but with different parameters. Investigations showed that
this persists even for larger samples.
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A possible future consideration includes investigating the new noncentral gener-
alization of the beta distribution introduced by [18] and considering, implementing,
and investigating the corresponding noncentral Dirichlet distribution.
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Appendix

The following functions were used within the optim function in the R, to find the
MLE of the doubly noncentral Dirichlet distribution.

loglik <- function(par ,X) {

# Data info
log.pbar <- colMeans(log(X))
pbar <- colMeans ((X))
N <- nrow(X)
K <- ncol(X)

# Parameters
pi1 = par[1]
pi2 = par[2]
pi3 = par[3]

lambda1 = par[4]
lambda2 = par[5]
lambda3 = par[6]

LogLA <- N*(lgamma(pi1+pi2+pi3))
LogLB <- - N*(lgamma(pi1)+ lgamma(pi2)+ lgamma(pi3))
LogLC <- N*((pi1 - 1)*log.pbar [1] + (pi2 - 1)*log.pbar [2] +
(pi3 - 1)*log.pbar [3])

LogLD <- -N*(lambda1/2 + lambda2/2 + lambda3/2)

itterations = 20
sumall = 0
for(j1 in 0: itterations)
for(j2 in 0: itterations)
{

A = (( gamma(pi1+pi2+pi3+j1))/(gamma(pi1+pi2+pi3)))/
(( gamma(pi1+j1))/(gamma(pi1)))

B = ((( lambda1/2)*pbar [1])^j1)/factorial(j1)
C = ((gamma(pi1+pi2+pi3+j1+j2))/(gamma(pi1+pi2+pi3+j1)))/
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(( gamma(pi2+j2))/(gamma(pi2)))
D = ((( lambda2/2)*pbar [2])^j2)/factorial(j2)
E = genhypergeo(pi1+pi2+pi3+j1+j2,pi3 ,( lambda3/2)*(pbar [3]))

sum = A*B*C*D*E
sumall = sumall + sum
}

LogLE <- N*log(sumall)

LL <- LogLA + LogLB + LogLC + LogLD + LogLE

return(-LL)
}
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Modeling Handwritten Digits Dataset
Using the Matrix Variate t Distribution

Y. Murat Bulut and Olcay Arslan

Abstract In this paper, we consider matrix variate t distribution and explore some
of its distributional properties to model handwritten digits dataset. In particular, we
show that the marginal and the conditional distributions are also matrix variate t
distribution. We provide parameter estimation of the matrix variate t distribution
using the EM algorithm. We give a small simulation study to show the performance
of the proposedEMalgorithm for finding the estimates for the parameters of interests.
A real data example illustrates that the matrix variate t distribution can be used as
a robust alternative to the matrix variate normal distribution for modeling matrix
variate datasets with some atypical observations.

1 Introduction

After data collection techniques have developed rapidly, in many applied areas such
as medical research, data has been started to store as three-way data. For example,
functional Magnetic Resonance Imaging (fMRI) data, electroencephalograph data,
and Nuclear Magnetic Resonance (NMR) data contain matrix variate structure (Niu
et al. [15]). The importance of the matrix variate distributions has started to increase
to model the data mentioned above. Also, parallel to the rapid developments in com-
puter technology, estimation of the parameters of the matrix variate distributions has
become more accessible. Due to these reasons, defining new matrix variate distri-
butions has been taken much more interest. Especially in robust statistical analysis,
heavy-tailed distributions are essential such as slash and t distributions. For this
reason, univariate and multivariate slash and t distributions are studied extensively.
Some examples of these works can be given as follows. Joarder [12] was interested
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in the expectation of the Wishart distribution based on the multivariate t distribution.
Nadarajah [14] proposed an alternative t distribution. Also, the conditional distribu-
tion of the multivariate t distribution is studied by Ding [4]. Recently, Doǧru et al. [6]
obtained the maximum Lq (MLq) estimator of the multivariate t distribution. In the
last decades, the applications of the multivariate t distribution have increased. As an
example of the applications, Pesevski et al. [16] used the multivariate t distribution
in the clustering. For further details on the multivariate t distribution, the reader can
look into the book of Kotz and Nadarajah [13]. However, in the matrix variate case,
the literature is very limited. Dickey [3] proposed matrix variate t distribution, but, in
his work, estimation of the parameters of the distribution has not been studied. After
the work of Dickey [3], Javier and Gupta [11] looked at distributional properties of
the matrix variate t distribution. Also, Gupta et al. [10] introduced a matrix variate
Pearson type VII distribution, and the matrix variate t distribution can be obtained as
a particular case of this distribution. Thompson et al. [20] used the matrix variate t
distribution in classification problem. Bulut [1] redefinedmatrix variate t distribution
as a scale mixture of matrix variate normal and gamma distribution to estimate the
parameters of the matrix variate t distribution using the Expectation-Maximization
(EM) algorithm. Then,Doǧru et al. [5] introduced the finitemixtures ofmatrix variate
t distributions. Recently, Bulut and Arslan [2] have defined the matrix variate slash
distribution as a heavily tailed alternative of the matrix variate normal distribution
and studied some statistical properties of it. The main aim of this study is to model
the handwritten digits dataset via matrix variate t distribution. The dataset has been
used by Dryden and Mardia [7] and Sánchez et al. [19].

The paper is organized as follows. In Sect. 2, we first define the matrix variate t
distribution as the scalemixture of thematrix variate normal andgammadistributions.
We study some distributional properties, such as expectation, variance, characteristic
function, andmarginal and conditional distributions of thematrix variate t distribution
in the same section. In Sect. 3, we first consider theML estimation and then show that
the ML estimators can be obtained using the EM algorithm. In Sect. 4, we provide a
small simulation study to illustrate the performance of the proposed EM algorithm
for finding the ML estimates for the parameters of the matrix variate t distribution.
We also give a real data example to demonstrate the robustness capability of the
matrix variate t distribution for handling outliers in the matrix variate datasets.

2 Matrix Variate t Distribution

A n × p-variate random matrix X is said to have a matrix variate t distribution
with mean matrix M of size n × p and variance-covariance matrices � and � of
size n × n and p × p, respectively, denoted by Mtn,p (M, �,�,m), if it has the
probability density function given by
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f (X) = |�|− p
2 |�|− n

2 �
( np+m

2

)

(πm)
np
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, (1)

where
δX (M, �,�) = tr

{
�−1 (X − M)�−1 (X − M)′

}

which is the Mahalanobis distance from X to the center M with respect to � and �.
Matrix variate t distribution can be obtained as a scale mixture of matrix variate

normal and gamma distributions [10]. The scale mixture representation of matrix
variate t distribution is given in the following definition. Also, Gupta and Nagar
[9] gave details of matrix variate t distribution using Wishart distribution as a scale
distribution.

Definition 1 Let Z ∼ Nn,p
(
0, In, Ip

)
andY ∼ Gamma

(
m
2 , m

2

)
be two independent

random matrix and random variable and let X be a new random matrix defined as

X = M + �
1
2 Z�

1
2 Y− 1

2 ,

where MεRn×p, �, and � are positive definite symmetric matrices and �
1
2 , �

1
2 are

the positive definite square root of � and �, respectively. Then X has matrix variate
t distribution with pdf given in (1).

The matrix variate t distribution given in the above definition is a special case
of matrix variate Pearson type V I I distribution defined by [10], when q is taken
as q = np+m

2 . When m = 1, we obtain matrix variate Cauchy distribution, which is
given by [18]. Note that if p = 1 and � = I then our distribution reduces to the
multivariate t distribution.

In the following propositions we will give some properties of the matrix variate t
distribution.

Proposition 1 Let X ∼ Mtn,p (M, �,�,m) then the expectation and the covari-
ance of X are given by

E(X) = M (2)

Cov(X) = m

m − 2
(� ⊗ �) , m > 2. (3)

Proof It can be easily seen that conditional distribution of X given Y is
Nn,p

(
M, y−1�,�

)
.

E(X) = M + �
1
2 E(Z)�

1
2 E(Y− 1

2 ) = M
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Cov(X) = EY (Cov (X | Y ))

= EY
(
Y−1 (� ⊗ �)

)

= EY
(
Y−1

)
(� ⊗ �)

= m

m − 2
(� ⊗ �) .

Proposition 2 If X ∼ Mtn,p (M, �,�,m) , then the characteristic function of X is

φX (T ) = etr
(
iT ′M

) 2
(
m
2

) m
2

�
(
m
2

)

(
tr
(
T ′�T�

)

m

) m−2
4

K m
2

(√
m × tr (T ′�T�)

)
,

(4)

where Kλ (s) = 1
2

∞∫

0
uλ−1 exp

{− 1
2 s
(
u + u−1

)}
du, s > 0 is the modified Bessel

function of the third kind (or MacDonald function).

Proof We know conditional expectation of X given Y and characteristic function of
matrix variate normal distribution. So we can obtain characteristic function of the
matrix variate t distribution using these two properties as follows:

φX (T ) = E
[
etr
(
i XT ′)] = EY

[
EX |Y

[
etr
(
i XT ′)]]

= EY

[
etr

(
iT ′M − 1

2
y−1T ′�T�

)]

= EY

[
etr
(
iT ′M

)
etr

(
−1

2
y−1T ′�T�

)]

= etr
(
iT ′M

)
EY

[
etr

(
−1

2
y−1T ′�T�

)]

= etr
(
iT ′M

)
∞∫

0

exp

{
− y−1

2
tr
(
T ′�T�

)}
(
m
2

) m
2

�
(
m
2

) y
m
2 −1 exp

{
−m

2
y
}
dy

= etr
(
iT ′M

)
(
m
2

) m
2

�
(
m
2

)

∞∫

0

y
m
2 −1 exp

{
− y−1

2
tr
(
T ′�T�

)− m

2
y

}
dy

= etr
(
iT ′M

)
(
m
2

) m
2

�
(
m
2

)

(
tr
(
T ′�T�

)

m

) m−2
4

K m
2

(√
m × tr (T ′�T�)

)
.

Proposition 3 Let X ∼ Mtn,p (M, �,�,m) and V = A + BXC where A is an
n × p matrix, B and C are n × n and p × p non-singular matrices, respectively.
Then V ∼ Mtn,p

(
A + BMC, B�B ′,C ′�C,m

)
.
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Proof This can be easily proved using the characteristics function as follows:

φV (T ) = E
[
etr
(
iV T ′)]

= E
[
etr
(
i(A + BXC)T ′)]

= etr
(
i AT ′) E

[
etr
(
XCT ′B

)]

= etr
(
i AT ′) E

[
etr
(
XT ′

1

)]

= etr
(
iT ′ (A + BMC)

) 2
(
m
2

) m
2

�
(
m
2

)

(
tr
(
T ′
1�T1�

)

m

) m−2
4

×K m
2

(√
m × tr

(
T ′
1�T1�

)
)

= etr
(
iT ′ (A + BMC)

) 2
(
m
2

) m
2

�
(
m
2

)

(
tr
(
T ′(B�B ′)T (C ′�C

)

m

) m−2
4

×K m
2

(√
m × tr (T ′(B�B ′)T (C ′�C)

)
.

So, V ∼ Mtn,p
(
A + BMC, B�B ′,C ′�C,m

)
.

Proposition 4 Let X ∼ Mtn,p (M, �,�,m), and partition X, M, � and � as

X = (X1r

X2r

)
, M = (M1r

M2r

)
, � =

(
�11 �12

�21 �22

)
and � =

(
�11 �12

�21 �22

)
where X1r and M1r

are s × p matrices, �11 is s × s matrix.
Then (i) X1r ∼ Mts,p (M1r , �11, �,m) .

(ii) X2r | X1r ∼ Mt(n−s),p
(
M2|1, �2|1, �,m

)
, where

M2|1 = M2r + �21�
−1
11 (X1r − M1r )


2
1 = tr

{
�−1

11 (X1r − M1r )�−1 (X1r − M1r )
′}

�22.1 = �22 − �21�
−1
11 �12

�2|1 = m + 
2
1

ps + m
�22.1.

Proof (i) In Proposition3, when we take as A = 0, B = (Is 0) and C ′ =(
Ip 0

)
, we get density of X1r .

(ii) We can sketch the proof of part (ii) as follows. Firstly,

(X − M)′ �−1 (X − M) = (X1r − M1r )
′ �−1

11 (X1r − M1r )

+ (X2r − M2|1
)′

�−1
2.1

(
X2r − M2|1

)
.
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Then,

P (X2r | X1r ) =
|�|− p

2 |�|− n
2 �
(

pn+m
2

)

(πm)
pn
2 �( m

2 )

[
1 + tr

{
�−1(X−M)�−1(X−M)′

}

m

]− pn+m
2

|�11|−
p
2 |�|− s

2 �
(

ps+m
2

)

(πm)
ps
2 �( m

2 )

[

1 + tr
{
�−1
11 (X1r−M1r )�−1(X1r−M1r )

′}

m

]− ps+m
2

=
|�22.1|− p

2 |�|− n−s
2 �

(
p(n−s)+α

2

)

(πm)
p(n−s)

2 �
(

α
2

)

[

1 + 
2
1 + 
2

2

m

]− pn+m
2
[

1 + 
2
1

m

] ps+m
2

=
|�22.1|− p

2 |�|− n−s
2 �

(
p(n−s)+α

2

)

(
π
(
m + 
2

1

)) p(n−s)
2 �

(
α
2

)

[

1 + 
2
2

m + 
2
1

]− p(n−s)+α
2

=
∣∣�2|1

∣∣− p
2 |�|− n−s

2 �
(

p(n−s)+α
2

)

(πα)
p(n−s)

2 �
(

α
2

)

×
⎡

⎣1 +
tr
{
�−1

2|1 (X2r − M2r ) �−1
}

(X2r − M2r )
′

α

⎤

⎦

− p(n−s)+α
2

,

where
α = ps + m.

Therefore, X2r | X1r ∼ Mtn−s,p
(
M2|1, �2|1, �, α

)
.

3 Parameter Estimation

In this section,wediscuss parameter estimation of thematrix variate t distribution.We
use maximum likelihood estimation method and EM algorithm to estimate parame-
ters of interest. We show that the maximum likelihood estimators are equivalent to
the estimators obtained from the EM algorithm.

Maximum Likelihood Estimation

We assume that we have i.i.d. data matrices X1, X2, ..., Xl in Rn×p and model
these dataset with matrix variate t distribution with parameters M , �, and �. The
log-likelihood function is obtained as follows:
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l(M, �,�; X) = pl

2
ln
∣
∣�−1

∣
∣+ nl

2
ln
∣
∣�−1

∣
∣+ l ln

{
�

(
np + m

2

)}
(5)

−npl

2
ln (πm) − l ln

{
�
(m
2

)}

−np + m

2

l∑

i=1

ln

{
1 + δXi (M, �,�)

m

}
.

Whenwe take the derivatives of the log-likelihood functionwith respect to the param-
eters M, �,�, and setting them to zero yield the following estimating equations:

M̂ =

l∑

i=1
wi Xi

l∑

i=1
wi

(6)

�̂ = 1

pl

l∑

i=1

wi
(
Xi − M̂

)
�̂−1

(
Xi − M̂

)′
(7)

�̂ = 1

nl

l∑

i=1

wi
(
Xi − M̂

)′
�̂−1

(
Xi − M̂

)
, (8)

where
wi = np + m

m + tr
{
�̂−1

(
Xi − M̂

)
�̂−1

(
Xi − M̂

)′} , i = 1, 2, ..., l (9)

are the weights. Since the weights are dependent on the estimators, Eqs. (6)–(8) are
not the explicit forms of the estimators. The numerical methods should be used to
solve these equations. Further, if we want to estimate the degrees of freedom (m),
we have to solve the following equation along with the equations given above:

l

2
ϒ

(
np + m

2

)
− npl

2m
− l

2
ϒ
(m
2

)
− 1

2

l∑

i=1

ln

{
1 + δXi (M, �,�)

m

}

+np + m

2m

l∑

i=1

δXi (M, �,�)

m + δXi (M, �,�)
= 0. (10)

When we rewrite this equation, we get
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m̂ =
np

(
l −

l∑

i=1

δXi (M,�,�)

m̂+δXi (M,�,�)

)

lϒ
(
np+m̂

2

)
− lϒ

(
m̂
2

)−
l∑

i=1
ln
(
1 + δXi (M,�,�)

m̂

)
+

l∑

i=1

δXi (M,�,�)

m̂+δXi (M,�,�)

, (11)

where ϒ is the Digamma function. For the sake of robustness the degrees of free-
dom m will be taken as fixed. The reason for this can be explain as follows. When
δXi (M, �,�) tends to ∞, Eq. (10) also tends to ∞, which means that the obser-
vations with larger Mahalanobis distance will ruin the estimates of the m. That is,
from the robustness point of view, the influence function will be unbounded when
we estimate the degrees of freedom along with the other parameters. This is not a
desired case in robustness, therefore, from now on, we will assume that the degrees
of freedom m is fixed and will use it as the robustness tuning constant. Since when
m tends to infinity the matrix variate t distribution tends to matrix variate normal
distribution. We will prefer to take small values of m to maintain robustness.

Estimation via EM Algorithm

In this section, theEMalgorithm to obtain theMLestimates of (M, �,�) is given. To
use EM algorithm, we will use the scale mixture representation of the matrix variate
t distribution given in definition (1). We take Y’s as missing and X’s as observed data
and form the complete data as (X,Y). The log-likelihood function for the complete
data (Xi ,Yi ), for i = 1, 2, ..., l can be obtained as

L (M, �,�) = −npl

2
ln (2π) − pl

2
ln |�| − nl

2
ln |�| (12)

+ml

2
ln (m) − ml

2
ln (2) − l ln

{
�
(m
2

)}

+
(
np + m

2
− 1

) l∑

i=1

ln yi − 1

2

l∑

i=1

yi
[
m + δXi (M, �,�)

]
.

We can easily maximize the complete data log-likelihood function but Y is a latent
variable andwe cannot observe it. Maximization of this function depends on Y. Since
we cannot observe Y , we cannot use them. To handle this problem, we will take
conditional expectation of L (M, �,�) given the observed data Xi and the current
estimates of parameters. When we take conditional expectation of L (M, �,�), we
get
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Q (M, �,�) = E
(
L (M, �,�) |Xi , M̂, �̂, �̂

)
(13)

= −npl

2
ln (2π) − pl

2
ln |�| − nl

2
ln |�|

+ml

2
ln (m) − ml

2
ln (2) − l ln

{
�
(m
2

)}

+
(
np + m

2
− 1

) l∑

i=1

E
(
ln Yi |Xi , M̂, �̂, �̂

)

−1

2

l∑

i=1

E
(
Yi |Xi , M̂, �̂, �̂

) [
m + δXi (M, �,�)

]
,

where E
(
ln Yi |Xi , M̂, �̂, �̂

)
and E

(
Yi |Xi , M̂, �̂, �̂

)
are conditional expectations

of ln Yi and Yi given the observed data Xi and current estimates of parameters. To find
this conditional expectation, we need conditional distribution of Y given X. After
some straightforward algebra, we obtain conditional distribution that has gamma
distribution with parameters np+m

2 , m+δX (M,�,�)

2 as follows:

fY |X (y) =
(
m+tr{�−1(X−M)�−1(X−M)′}

2

) np+m
2

�
( np+m

2

) y
np+m

2 −1 exp

{
−m + δX (M, �,�)

2
y

}
.

(14)
Using this conditional distribution, we get

ηi = E
(
ln Yi |Xi , M̂, �̂, �̂

) =
∞∫

0

ln yi f (yi |Xi ) dyi (15)

and
wi = E

(
Yi |Xi , M̂, �̂, �̂

) = np + m

m + δXi (M, �,�)
. (16)

It should be noticed that the weight functions wi are the same with the weights
given in the ML estimation. If the conditional expectations E

(
ln Yi |Xi , M̂, �̂, �̂

)

and E
(
Yi |Xi , M̂, �̂, �̂

)
are replaced by ηi and wi we get the following objective

function to be maximized:

Q (M, �,�) = C − pl

2
ln |�| − nl

2
ln |�| (17)

+
(
np + m

2
− 1

) l∑

i=1

ηi − 1

2

l∑

i=1

wi
[
m + δXi (M, �,�)

]
.

Taking the derivatives of Q (M, �,�) with respect to the parameters M, � and �

then setting them equal to zero yield the following estimators:
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M̂ = ave {wi Xi }
ave {wi } (18)

�̂ = 1

p
ave

{
wi
(
Xi − M̂

)
�̂−1 (Xi − M̂

)′}
(19)

and

�̂ = 1

n
ave

{
wi
(
Xi − M̂

)′
�̂−1 (Xi − M̂

)}
, (20)

where “ave” stands for the arithmetic average over i = 1, 2, ..., l. The solutions of
these equations can be obtained using the following iteratively reweighting algorithm.

Iteratively reweighting algorithm

1 Set iteration number k = 1 and select initial estimates for the parameters M, �

and �.

2 Using the current estimates M (k), �(k) and �(k) for k = 1, 2, 3, ..., and the equa-
tion given in (16) calculate the weight w(k)

i for i = 1, 2, 3, ..., l, and find the

averages ave
{
w(k)
i

}
and ave

{
w(k)
i Xi

}
.

3 Use the following updating equations to calculate the new estimates:
M (k+1), �(k+1) and �(k+1)

M (k+1) =
ave

{
w(k)
i Xi

}

ave
{
w(k)
i

}

�(k+1) = 1

pl

l∑

i=1

w(k)
i (Xi − M (k+1))

(
�(k+1)

)−1
(Xi − M (k+1))′

�(k+1) = 1

nl

l∑

i=1

w(k)
i (Xi − M (k+1))′

(
�(k+1)

)−1
(Xi − M (k+1)).

4 Repeat these steps until convergence. The stopping rule is taken as 10−10.

4 Simulation Study and Real Data Example

In this section, we give a small simulation study to show performance of the proposed
algorithm. Also, a real data example is given to show that our proposed method can
be applied to the matrix variate datasets in real world.
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Simulation Study

In this part of the study, we give a simulation study to show the robustness property of
the matrix variate t distribution.We compare the matrix variate t distribution with the
matrix variate normal distribution when the dataset contains outlier(s). In simulation
study,we take n = 2, 3, 4, p = 2, 4, andm = 3, 5.The data are generated using scale
mixture representation given in Definition 1. Also, we randomly choose positive
definite variance-covariance matrices. We compute the mean Euclidean distance
given in [8] and [2] to compare the performance of the estimates. To illustrate the
superiority of the matrix variate t distribution toward the outliers, we add one and
two outliers to the dataset. The iteratively reweighting algorithm given in Sect. 3 is
used to obtain the estimates. The results are shown in Tables1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 16, 17, and 18. In these tables, we give the mean iteration
numbers with standard error and the mean Euclidean distances for the parameters.
All simulations are done in the R software program [17].

We give the results when there is no outliers in the dataset in Tables 1, 2, 3, 4, 5,
and 6, the results are given when dataset includes one outlier in Tables 7, 8, 9, 10,
11, and 12. The results for the case, which includes two outliers, are given in Tables
13, 14, 15, 16, 17, and 18. For all simulation designs, the mean Euclidean distances
for the matrix variate t distribution’s parameters are smaller than that of the matrix
variate normal distribution.

When we look primarily at the mean Euclidean distances for the � parameter,
the matrix variate normal distribution distances are larger than the distances for the
matrix variate t distribution.

For example, when we analyze the estimations of the location matrices M , the
estimations using the matrix variate t distribution are closer to the true parameter
matrices than the estimations with the matrix variate normal distribution. We give
the true parameter matrices and the obtained estimates with matrix variate normal
and matrix variate t distributions as follows:

• 2 × 2 case without outlier (m = 3):

M =
[
1 2
2 3

]
M̂MV t =

[
1.02579 1.99764
2.07785 3.07007

]
M̂MV N =

[
1.05434 2.07219
2.07839 3.08469

]
.

• 2 × 2 case with one outlier (m = 3):

M =
[
1 2
2 3

]
M̂MV t =

[
1.04607 2.07781
2.16318 3.08066

]
M̂MV N =

[
1.13911 2.27243
1.71526 2.47729

]
.

• 2 × 2 case with two outliers (m = 3):
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M =
[
1 2
2 3

]
M̂MV t =

[
1.06798 2.05100
2.16018 3.19864

]
M̂MV N =

[
1.32406 2.53885
2.76579 4.08112

]
.

• 3 × 2 case without outlier (m = 3):

M =
⎡

⎣
1 2
2 3
3 4

⎤

⎦ M̂MV t =
⎡

⎣
1.05280 1.91374
2.21235 2.99623
3.19964 4.07000

⎤

⎦ M̂MV N =
⎡

⎣
0.80346 1.80379
2.20842 3.08979
3.20990 4.09955

⎤

⎦ .

• 3 × 2 case with one outlier (m = 3):

M =
⎡

⎣
1 2
2 3
3 4

⎤

⎦ M̂MV t =
⎡

⎣
1.17342 2.03351
2.26554 3.23642
3.05007 3.96752

⎤

⎦ M̂MV N =
⎡

⎣
1.38366 2.52874
2.36595 3.69411
3.32959 4.34463

⎤

⎦ .

• 3 × 2 case with two outliers (m = 3):

M =
⎡

⎣
1 2
2 3
3 4

⎤

⎦ M̂MV t =
⎡

⎣
1.03132 2.12592
2.09868 3.13250
3.17662 4.44383

⎤

⎦ M̂MV N =
⎡

⎣
0.89290 2.74668
2.18187 3.98364
3.98512 6.40407

⎤

⎦ .

• 4 × 4 case without outlier (m = 3):

M =

⎡

⎢⎢
⎣

1 2 3 4
2 3 4 5
3 4 5 6
4 5 6 7

⎤

⎥⎥
⎦ M̂MV t =

⎡

⎢⎢
⎣

0.89207 1.95076 2.97223 4.03787
2.14901 3.11992 3.85708 4.93792
3.13713 3.91302 4.99331 5.93357
4.10254 5.39211 6.07825 7.35972

⎤

⎥⎥
⎦ M̂MV N =

⎡

⎢⎢
⎣

1.35678 2.03718 2.76801 4.11028
2.56443 3.00045 3.87414 5.02325
3.04378 4.00131 4.65277 6.12111
4.22871 5.45834 5.92372 7.68975

⎤

⎥⎥
⎦ .

• 4 × 4 case with one outlier (m = 3):

M =

⎡

⎢
⎢
⎣

1 2 3 4
2 3 4 5
3 4 5 6
4 5 6 7

⎤

⎥
⎥
⎦ M̂MV t =

⎡

⎢
⎢
⎣

0.73220 1.95560 3.17691 3.86809
1.97699 2.92470 3.73882 5.17241
2.95812 3.61036 5.23018 6.15853
4.21818 5.22513 6.04554 7.11775

⎤

⎥
⎥
⎦ M̂MV N =

⎡

⎢
⎢
⎣

1.33423 2.25872 3.82733 4.65344
1.95235 3.49446 4.71045 6.02251
3.39677 4.39333 6.27633 7.28391
5.22891 6.47515 6.82254 8.21866

⎤

⎥
⎥
⎦ .

• 4 × 4 case with two outliers (m = 3):

M =

⎡

⎢
⎢
⎣

1 2 3 4
2 3 4 5
3 4 5 6
4 5 6 7

⎤

⎥
⎥
⎦ M̂MV t =

⎡

⎢
⎢
⎣

1.05188 1.77309 3.31074 4.04982
1.91885 2.87254 3.67961 4.89278
3.19680 4.25647 5.43013 6.16060
4.31925 5.40456 6.43534 7.32990

⎤

⎥
⎥
⎦ M̂MV N =

⎡

⎢
⎢
⎣

1.27886 2.29372 3.66465 5.49613
1.94104 3.83083 4.60531 6.77915
4.12300 5.60599 6.74433 8.37796
5.15879 6.50417 7.87118 9.38572

⎤

⎥
⎥
⎦ .
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Table 19 Loglike values for real data

Model Loglike without outlier Loglike with outlier

Normal −1128.66 −1667.11

t (3) −1470.31 −1642.61

t (5) −1465.32 −1648.01

Real Data Example

In this section, we give a real data example to show that parameter estimation proce-
dure is working as claimed. The dataset, which is used in this study, is used by [7] and
[19]. The description of the dataset is as follows which is taken from [7]. There are
n = 13 landmarks and k = 2 dimensions for m = 30 handwritten records of digit
3. A landmark is a point of correspondence on each object. The first landmark 1 is
at the extreme bottom left, landmark 4 is at the maximum curvature of the bottom
arc, landmark 7 is at the extreme of the central protrusion, landmark 10 is at the
maximum curvature of the top arc, and landmark 13 is the extreme top left point. The
other landmarks are pseudo-landmarks, localized at approximately equal intervals
between the previous landmarks.

We will use the dataset to estimate mean and variance-covariance matrices by
using proposed algorithm. We take different degrees of freedom to compare which
model is the best for the dataset. We use log-likelihood value to select the best model
(Table19).

We estimate the mean and variance-covariance matrices for this data using the
matrix variate normal and matrix variate t distributions. The estimation procedure
described in Sect. 3 is used to estimate the parameters. We observe that results are
similar. They both give similar estimates for the mean matrix and similar covariance
estimates for � and �. To see the effect of the outliers we change the location
of two observations to make them as potential outliers and then we again estimate
the mean and variance-covariance matrices using matrix variate normal and matrix
variate t distributions. Table 19 summarizes the log-likelihood values obtained from
original dataset and the dataset with outliers. From this table, we can see that the
log-likelihood values for the matrix variate normal distribution are smaller than
the log-likelihood value for matrix variate t distribution when there are no outliers.
On the other hand, for the dataset with outliers, the log-likelihood value for matrix
variate t is getting smaller compared to the log-likelihood value for the matrix variate
normal distribution. Figure 1 displays the scatter plot of the dataset without and with
outliers along with the estimated mean matrices obtained frommatrix variate normal
and matrix variate t distributions. We can observe that without outliers the figures
are very similar (first column of Fig. 1). However, we can observe that, unlike the
matrix variate t distribution case, the estimatedmeanmatrix obtained from thematrix
variate normal distribution is affected by the outliers. Therefore, the matrix variate
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Fig. 1 Data and estimated mean matrix

t distribution can be used to estimate the location and scatter matrices of the matrix
variate data to obtain robust estimators.

5 Conclusions

In this paper, the matrix variate t distribution, which is redefined as the scale mixture
of the matrix variate normal distribution, using the univariate gamma distribution, is
discussed, and some of its distributional properties are given. Parameter estimation is
conducted with the maximum likelihood estimation method, and the EM algorithm
is given to compute the estimates of the parameters. It is shown thatML estimators of
the location and the scatter matrices are alternative robust estimators to the sample
mean and the sample covariance estimators. A simulation study and a real data
application are given to compare the modeling performances of the matrix variate
distribution over the matrix variable normal distribution.

The main purpose of this article is to provide an alternative model for modeling
matrix variate datasets with possible outliers. The results of the simulation study
and the real data example show that the matrix variate t distribution can be a good
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alternativemodel to thematrix variate normal distribution in case of a possible outlier
problem.
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On the Identification of Extreme
Elements in a Residual
for the GMANOVA-MANOVAModel

Béatrice Byukusenge, Dietrich von Rosen, and Martin Singull

Abstract Two different matrix residuals in a special GMANOVA-MANOVAmodel
have previously been established (see Byukusenge et al., 2021, “On residual analysis
in the GMANOVA-MANOVA model”). The residual that is studied in this article is
constructed via the difference of the observed group means and the estimated mean
structure. The residual provides information about the appropriateness of the model
assumptions concerning the mean structure. The aim of this paper is to study the
distribution of the largest elements (by absolute value) of the residual via two data
sets. Parametric bootstrap is used to identify thresholds so that extreme elements of
the residuals can be identified.

1 Introduction

In statistics, when we have a random sample or dataset reflecting a practical phe-
nomenon, usually the aim is to interpret estimators or to build a predictivemodel. The
model presented in this paper belongs to the class of multivariate models called the
GMANOVA-MANOVAmodel. References to the MANOVAmodel can be found in
many textbooks on multivariate analysis, for example [1] or [15]. The GMANOVA
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is a generalization of the MANOVA (see, e.g., [12, 14]), and the GMANOVA-
MANOVA model is a special case of the Extended Growth Curve model (EGCM).
The model was introduced by [5], and particularly, it can be used for the analysis of
balanced repeated measurements with covariates.

Residuals usually play an important role in the model validation process and are
often based on the difference between the predicted and observed values. Among
other things, they can be used to check if model assumptions are satisfied.

Residuals for the GMANOVAmodel were introduced by von Rosen [13] and have
been studied by several authors. In [13], some basic properties of the residuals were
derived. Hamid and von Rosen [10] studied the residuals in the Extended Growth
Curve model.

In the GMANOVA-MANOVA model, the mean follows a bilinear structure, e.g.,
see [14], and hence the residuals are more structured than for the MANOVA model,
which is a linear model. Moreover, the GMANOVA model and its extension belong
to the curved exponential family whereas the MANOVAmodel belongs to the expo-
nential family. This makes the assessment of the model validation more difficult
compared to, for example, univariate linear models. Recently, Byukusenge et al. [2,
3] have established two important residuals for handling the GMANOVA-MANOVA
model.

Particularly, it has been shown by [2] that one residual follows a matrix normal
distributionwhereas the second residual obeys a complicated distribution,which only
can be approximated. The second residual matrix contains the difference between the
groupmeans and the estimatedmean structure and is the residual, which is considered
in this article.

The distribution of the “extreme” elements of the residual matrix is approximated
via parametric bootstrap samples. We are interested to decide if “extreme” elements
of the residual lie in the tails of their distributions. Thus cut-off points for being
“extreme” are needed to be established.

The following notations will be used. For any matrix A, we denote by A′ the
transpose of A. The column vector space generated by the columns of A is written
C(A) and its orthogonal complement C(A)⊥ (always assuming a standard inner
product). Furthermore, letC(A) � C(B)denotes the orthogonal sumof the twovector
spaces. Let V be a positive definite matrix. For projectors, the following notation is
used: if V = I , i.e., the identity matrix, P A = A

(
A′A

)−
A′ and otherwise P A,V =

A
(
A′V−1A

)−
A′V−1. Here− denotes an arbitrary generalized inverse. Furthermore,

QA = I − P A, i.e., is the orthogonal projection on C(A)⊥. Lastly, in this paper, 1a
stands for the column vector of a ones whereas 0a stands for the column vector of a
zeroes.

This paper is organized as follows: in Sect. 2, the model discussed in this work is
introduced, and the two residuals useful for evaluating the GMANOVA-MANOVA
model are presented. Data analysis in Sect. 3 shows and motivates the idea that the
residual, which is studied, is essential for the understanding of the model. Some
concluding remarks are given in Sect. 4.
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2 Background

This section comprises the model under consideration, together with the maximum
likelihood estimators of the unknown parameters and expressions for residuals. The
parametric bootstrap technique for obtaining simulated distributions of the “extreme”
elements of the residual is also presented.

Residuals in the GMANOVA-MANOVA Model

The model considered in this paper is defined as follows:

Definition 1 (GMANOVA-MANOVA model) The model for the observation matrix
X : p × n is defined via

X = AB1C1 + B2C2 + E, E ∼ Np,n(0,�, In), (1)

where Np,n(0,�, In) the matrix normal distribution with independently distributed
columns, A: p × q, is the within-individuals designmatrix, C1: k1 × n, the between-
individuals design matrix, C2: k2 × n, is a matrix including covariate information,
continuous or discrete, Bi , i ∈ {1, 2}, consist of the unknown mean parameters and
� is an unknown positive definite dispersion matrix.

Remark 1 The expression B2C2 is the MANOVA part of the model and AB1C1 is
the GMANOVA part.

In this paper, we focus on the use of residual matrices for theGMANOVA-MANOVA
model. The derivation and the interpretation of these residuals are detailed in [2, 3].
The expression of the residuals matrices follows from

X − AB̂1C1 − B̂2C2, (2)

i.e., these residuals are obtained in the usual way as for example in linear mod-
els. Under full rank conditions on A,C1 and C2 that is r(A) = q, r(C1) = k1 and
r(C2) = k2 and under the assumption that C(C ′

1) ∩ C(C ′
2) = {0} the parameter esti-

mators B̂1 and B̂2 in (2), are uniquely expressed as follows:

B̂1 = (A′S−1A)−1A′S−1X QC ′
2
C ′

1(C1QC ′
2
C ′

1)
−1, (3)

B̂2 = (X − AB̂1C1)C ′
2(C2C ′

2)
−1, (4)

where S is given by

S = X QC ′
2
(I − P QC′

2
C ′

1
)QC ′

2
X ′, (5)
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and QC ′
2
= I − PC ′

2
. It is assumed that the inverse of S exists, which is true with

probability 1 if parameters are estimable.
The estimated covariance matrix equals

n�̂ = S + (I − P A,S)X P QC′
2
C ′

1
X ′(I − P ′

A,S). (6)

Moreover, the expression for the estimated model X̂ in the GMANOVA-MANOVA
model (1) is presented in Theorem 1.

Theorem 1 Let B̂1 and B̂2 be the MLEs given in (3) and (4), respectively. Then the
predicted values equal

X̂ = A1 B̂1C1 + B̂2C2 = X PC ′
2
+ P A,SX P QC′

2
C ′

1
. (7)

Remark 2 The relation in (7) holds also without full rank conditions.

It should be noted that

QC ′
2
= QC ′

1:C ′
2
+ P QC′

2
C ′

1

which follows from the space decomposition C(C ′
2)

⊥ = C(C ′
1 : C ′

2)
⊥ �

C(C ′
1 : C ′

2) ∩ C(C ′
2)

⊥, and where C(C ′
1 : C ′

2) ∩ C(C ′
2)

⊥ is identical to C(P QC′
2
C ′

1
).

Moreover, (2) equals

X QC ′
1:C ′

2
+ X P QC′

2
C ′

1
− AB̂1C1QC ′

2
C ′

1 = X QC ′
1:C ′

2
+ (I − P A,S)X P QC′

2
C ′

1

and the next definition concerning residuals makes sense.

Definition 2 (see [2]) For the GMANOVA-MANOVA model given in (1), the fol-
lowing residuals are defined:

R1 = X(I − PC ′
1:C ′

2
) = R11 + R12,

R2 = (I − P A,S)X P QC′
2
C ′

1
,

where R11 = P A,SX(I − PC ′
1:C ′

2
) and R12 = (I − P A,S)X(I − PC ′

1:C ′
2
).

The residuals R1, R11, R12 and R2 are illustrated in Fig. 1 where a decomposition
of the tensor space connected to the model is shown and illustrates the model and
its residuals. Note that since S is included in the projection P A,S the distribution for
R2 it is complicated and is not available in a simple form.

Residual R1 can be utilized to indicate if individual observations deviate from the
rest of the observations and will not be considered in this work. Instead the focus
will be on residual R2, which is suitable for checking assumption about the mean
structure (the model). Moreover, it is possible to calculate the mean and dispersion
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Fig. 1 The model in Definition 1 is illustrated where the mean and the residual spaces are
shown. Spaces connected to the between-individual decomposition are given by, V1 = C(C ′

2),
V2 = C(C ′

2)
⊥ ∩ C(C ′

1 : C ′
2) and V3 = C(C ′

1 : C ′
2)

⊥. The residuals are introduced in Definition 2

for the residuals. It can also be noted that the residuals are uncorrelated with the
estimated mean, X̂ = AB̂1C1 + B̂2C2, but the residuals are not independently dis-
tributed with the estimated mean. For details about these facts see [2]. To evaluate
the distribution for “large” elements of R2, we are suggesting to generate parametric
bootstrap samples to study the distribution of the “largest” elements of the residual.

The GMANOVA-MANOVA Model and the Parametric
Bootstrap Technique

The bootstrap philosophy was introduced in 1979 by Efron [7]. Over the years,
many authors have continued to develop the approach. For nice introductions and
overviews, see for example [6, 8]. In this paper, we use a technic often called para-
metric bootstrap to provide the distributions for the “largest” elements of the residual
R2 in the GMANOVA-MANOVA model. Parametric bootstrap has been applied in
many non-standard situations (see, e.g., [4]). When studying the “largest” elements
of R2, the problem is that we study extreme values of dependent and non-identical
observations.

For parametric bootstrap, the underlying distribution assumption for the data is
taken into account. This is not the case for the usual bootstrap approach that is com-
pletely based on the observations at hand. In fact, parametric bootstrap assumes that
the data come from a known class of distributions. In our case, as it is in many
applications, the distribution involves unknown parameters which have to be esti-
mated from a given data set. The “estimated distribution” is then used to simulate
the “bootstrap” samples.
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In this paper,weuse the parametric bootstrap technique to obtain an approximation
of the distribution for the three “largest” values in R2 and define cut off points so
that with high probability a certain value is extreme. The approach runs as follows:
Given a data set and using (3)–(6) maximum likelihood estimates B̂1, B̂2 and �̂

are obtained; then random numbers which are elements of E∗ ∼ Np,n(0, �̂, In) are
generated m times (m is large) and for each m,

X∗ = AB̂1C1 + B̂2C2 + E∗ (8)

is calculated; thereafter, using Definition 2, R∗
2 = (I − P A,S)X∗P QC′

2
C ′

1
is con-

structed. To indicate that the process is repeated m times it is written

R∗
2i = (I − P A,S)X∗P QC′

2
C ′

1
, i ∈ {1, . . . ,m}. (9)

We are interested in “large” values of the residual and the distributions of the three
“largest” residuals are of interest.

Definition 3 Define the largest by the absolute value of R2 by 1R2, the second
“largest” by 2R2 and the third “largest” by 3R2, and the largest by absolute value of
R∗
2i by 1R∗

2i , the second “largest” by 2R∗
2i and the third “largest” by 3R∗

2i .

Moreover, cut-off points for identifying extreme residuals in these statistics are
obtained through quantiles (95%, 99%) of the estimated distribution.

The proposed parametric bootstrap approach is described in the below given algo-
rithm.

Algorithm 1 Parametric bootstrap procedure
1: Set m to be the number of required bootstrap samples.
2: For a given data set compute the parameter estimates B̂1, B̂2 and �̂, presented in (3)–(6).
3: For i ∈ {1, . . . ,m} sample E∗ from Np,n(o, �̂, In) and compute X∗ according to (8).
4: Compute the residual components j R∗

2i , j ∈ {1, 2, 3}, i ∈ {1, . . . ,m}, via (9).

3 Data Analysis

In this section, we will study the distribution of the three largest residuals by absolute
value of R2 for a realistic but artificial data set, which consists of 69 patients suffering
from a disease. The data set, given in the Appendix (see Table3)1, is also considered
by [3] and it is similar to some real studies which have taken place (see [9, 11]).

To initiate the parametric bootstrap, it is needed to estimate B1, B2 and � when
the GMANOVA-MANOVA model is applied, and in the study, participants were

1 Both data and code for this data analysis can be found at https://gitlab.liu.se/maroh70/on-the-
identification-of-extreme-elements-in-a-residual-for-the-gmanova-manova-model.

https://gitlab.liu.se/maroh70/on-the-identification-of-extreme-elements-in-a-residual-for-the-gmanova-manova-model
 21028 56766 a 21028 56766 a
 
https://gitlab.liu.se/maroh70/on-the-identification-of-extreme-elements-in-a-residual-for-the-gmanova-manova-model
https://gitlab.liu.se/maroh70/on-the-identification-of-extreme-elements-in-a-residual-for-the-gmanova-manova-model
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assumed to be randomly assigned to one out of two different treatment groups. All
participants in Group 1 received treatment one whereas those in Group 2 received
treatment two. For each participant, a measure of estimated autoimmunity (EA) was
obtained at each clinical visits. EA is the response that is to be analyzed. The clinical
visits took place at baseline (time 0, initiation of the treatment) 6, 12 and 18 months
after initiation. The disease is expected to have a negative effect on EA. For each
participant, it was recorded whether the patient had been previously treated for the
disease. Participants in Group 1 who were not treated previously constitute Group
1a, whereas the remaining ones constituted Group 1b. Similarly, we have Group 2a
and Group 2b. Thus, there are four groups of individuals that are considered. To
analyze the data with the GMANOVA-MANOVA model given in (1), the following
design matrices will be used:

A =

⎛

⎜⎜
⎝

1 0
1 6
1 12
1 18

⎞

⎟⎟
⎠ , C1 =

(
1′
35 0

′
34

0′
35 1

′
34

)
, C2 = (

0′
13 1

′
22 0

′
10 1

′
24

)
. (10)

The covariate effect B2C2 with the above choice of C2 implies that the effect from
previous treatment is the same for both treatment groups. Other choices can also be
used, e.g.,

C2 =
(
1′
13 ⊗

(−1
0

)
1′
22 ⊗

(
1
0

)
1′
10 ⊗

(
0

−1

)
1′
24 ⊗

(
0
1

))
,

which yields a different interpretation of the covariate effect than when using C2 in
(10). However, the main purpose with this article is to discuss the residual R2 and not
different choices of C2, which has been discussed in [3]. Therefore only the design
matrices in (10) will be considered.

Using the data given in the Appendix, Table3, the maximum likelihood estimates
(3)–(6) equal

B̂1 =
(

12.6 12.5
−0.17 −0.22

)
, B̂2 =

⎛

⎜⎜
⎝

0.93
1.12
1.00
1.24

⎞

⎟⎟
⎠ ,

�̂ =

⎛

⎜⎜
⎝

4.71 1.78 1.93 1.53
4.84 2.98 1.55

5.44 2.12
4.80

⎞

⎟⎟
⎠ . (11)

Fitted “growth curves” can be presented through AB̂1c1 + B̂2c2 where c1 is a
vector which equals either

(1
0

)
or

(0
1

)
and c2 equals either 1 or 0. By choosing c1 and

c2 the “growth curves” can be expressed for each of the four groups. Fitted “growth
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Fig. 2 Fitted growth curves for the GMANOVA-MANOVAmodel defined via (10). The previously
untreated subgroups are modeled as baselines with linear growths given by B̂1 in (11), and the
previously treated subgroups are equally shifted from the baselines through B̂2 presented in (11)

curves” for the four groups are shown in Fig. 2. The broken lines show the pretreated
groups of individuals and a small effect of pre-treatment can be seen. In the model,
the previously untreated subgroups act as baselines with a linear growth B̂1 and the
previously treated subgroups are shifted from the baseline groups by B̂2. There is a
clear decreasing trend of EA in each subgroup.

The residual R1, given in Definition 2, is shown in Fig. 3. This figure shows that
no one of the individuals is far away of the group means. Thus, there is no presence
of “outliers” in the given data.

The main focus in this paper is, however, on the residual elements in R2. Numer-
ically, the residual R2 equals

R2 =
⎛

⎜
⎝1′

13 ⊗

⎛

⎜
⎜
⎝

0.074
−0.12
−0.014
0.032

⎞

⎟
⎟
⎠ : 1′

22 ⊗

⎛

⎜
⎜
⎝

−0.088
0.14

−0.051
−0.01161

⎞

⎟
⎟
⎠ : 1′

10 ⊗

⎛

⎜
⎜
⎝

0.24
−0.39
0.083
0.055

⎞

⎟
⎟
⎠ : 1′

24 ⊗

⎛

⎜
⎜
⎝

0.081
−0.13
0.046
0.011

⎞

⎟
⎟
⎠

⎞

⎟
⎠ .

(12)

The residuals R2 are shown in Fig. 4, and all residual values are between −0.39
and 0.24. The main question is at what level a deviating residual in Fig. 4 can be
acceptable. To answer the question, the residual distribution of the three “largest”
elements of R2, i.e., j R2i , j ∈ {1, 2, 3}, given in Definition 3, is explored.

Our approach is to investigate the distribution of the three largest elements of the
matrix R2 through 10,000 parametric bootstrap samples obtained using Algorithm 1
in Sect. 2. The complete marginal bootstrap distributions of the “largest” elements in
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Fig. 3 The residuals R1, introduced in Definition 2, are presented for the model defined via (10).
For each individual, the four time points are presented in different colors

Fig. 4 All elements in residual R2 given in (12) are presented. Note that the elements are identical
within each subgroup

R2 are presented in Fig. 5. Moreover, in Table1, the 95% and 99% quantiles for the
marginal parametric bootstrap estimated distribution of the “largest” elements in R2

are presented. It follows that 1R2 = 0.39, 2R2 = 0.24 and 3R2 = 0.14 are below the
thresholds defined via the 95% and 99% percentiles of the bootstrap distributions.
Thus, there are no indications that the model does not fit.

Finally, it will be shown that the presented approach has the potential to indicate
when a model does not fit data. To see this, a synthetic data set is generated that is
presented in the Appendix, Table4. Moreover, Fig. 6 illustrates the mean structure
used to generate the data, and it can be seen that Group 1 follows a quadratic mean
model. All groups will now be modeled under the assumption of a linear mean
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Fig. 5 The approximative distribution for the three “largest” elements for R2 in (12), obtained
when 10,000 bootstrap samples have been generated

Table 1 The estimated percentiles (95% and 99%) for the three largest residual elements (in
absolute values) in the residual R2

Percentile (%) 1R∗
2i 2R∗

2i 3R∗
2i

99 1.2042 0.8775 0.6950

95 0.9641 0.7035 0.5514

structure, where the design matrices are given in (10). The following maximum
likelihood estimates are obtained:

B̂1 =
(

15.9 12.71
−0.34 −0.24

)
, B̂2 =

⎛

⎜⎜
⎝

0.09
−1.3
−1.2
2.18

⎞

⎟⎟
⎠ ,

�̂ =

⎛

⎜⎜
⎝

3.42 −1.19 −0.61 0.42
14.83 11.05 −1.23

12.65 0.03
4.20

⎞

⎟⎟
⎠ . (13)

Moreover, the residual R2 is given by
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Fig. 6 Illustration of the GMANOVA-MANOVA model where Group 1 follows a quadratic mean
model and Group 2 follows a linear model

R2 =
⎛

⎜
⎝ 1′

13 ⊗

⎛

⎜
⎜
⎝

1.26
−5.77
−4.37
1.09

⎞

⎟
⎟
⎠ : 1′

22 ⊗

⎛

⎜
⎜
⎝

0.46
−2.33
−2.05
0.49

⎞

⎟
⎟
⎠ : 1′

10 ⊗

⎛

⎜
⎜
⎝

0.38
−1.30
−0.45
0.16

⎞

⎟
⎟
⎠ : 1′

24 ⊗

⎛

⎜
⎜
⎝

−0.42
2.14
1.88

−0.45

⎞

⎟
⎟
⎠

⎞

⎟
⎠ .

(14)

Fig. 7 The distribution for the three “largest” elements for R2 obtained after 10,000 bootstrap
samples when Group 1 follows a quadratic mean
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Table 2 The estimated percentiles (95% and 99%) for the three largest residual elements (in
absolute values) of the residual R2 in (14)

Percentile (%) 1R∗
2i 2R∗

2i 3R∗
2i

99 2.4923 2.0744 1.6025

95 2.0222 1.6272 1.2276

With the help of the estimates in (13) for j R2, j ∈ {1, 2, 3}, a bootstrap sample of
10, 000 observations is generated. The bootstrap distributions are presented in Fig. 7.
Correspondingly to Table1, in Table2, the 95% and 99% quantiles for the parametric
bootstrap estimated marginal distribution of the “largest” elements in R2 are given.

From (14), it follows that 1R2 = 5.77, 2R2 = 4.37 and 3R2 = 2.33. Hence since
all these values are above the given quantiles in Table2, this indicates that the linear
model that is used in the analysis is not correct, which is exactly how it should be.

4 Concluding Remarks

The elements of the residual R2 in the GMANOVA-MANOVA model under con-
sideration are complicated functions in the observations. Since the interest is in the
largest (by absolute value) elements of R2, it is impossible to find the exact distri-
butions for these elements. Therefore, the parametric bootstrap approach has been
applied. It was chosen to consider the three “largest” elements in R2. This is of
course an arbitrary approach and most often only the “largest” value is considered.
The three values providemore information than only one value but wewould come in
an unpleasant situation if only the second “largest” observation would be deemed to
be an outlier but not the “largest” element of R2. Finally, it is noted that the residual
R2 showed to be a useful matrix, i.e., the values of R2 became large only when the
model in the analysis deviated from the true model.
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Appendix

In the Appendix, the data sets that are used in the analysis are presented (Tables3
and 4).
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Table 3 Repeated measurements for individuals, together with the covariates ‘Previously treated’
(see also [3])

Clinical visits Previously

Id 0 6 12 18 Group Treated

1 10.50 11.20 12.60 10.90 1 0

2 11.90 9.80 12.70 9.50 1 0

3 9.50 11.40 5.40 10.50 1 0

4 13.90 14.70 15.00 10.80 1 0

5 15.10 11.20 9.80 10.10 1 0

6 12.50 12.40 7.60 6.50 1 0

7 11.80 12.40 13.40 8.20 1 0

8 11.80 10.20 9.00 11.80 1 0

9 14.00 13.40 11.30 9.30 1 0

10 13.40 11.70 11.10 7.90 1 0

11 13.00 11.20 9.00 9.70 1 0

12 14.10 10.60 9.00 9.50 1 0

13 14.70 11.30 8.20 9.20 1 0

14 17.00 16.90 15.00 12.30 1 1

15 15.20 13.90 13.00 14.40 1 1

16 11.20 15.20 11.20 12.50 1 1

17 15.20 13.70 14.90 13.20 1 1

18 12.20 11.70 9.50 7.70 1 1

19 12.60 13.70 13.00 13.40 1 1

20 15.10 11.70 10.10 9.70 1 1

21 14.80 13.80 15.10 10.70 1 1

22 9.90 11.80 10.90 13.10 1 1

23 12.20 12.50 8.80 11.20 1 1

24 14.40 8.60 10.10 10.00 1 1

25 14.70 14.50 15.60 16.10 1 1

26 14.90 13.30 10.70 7.90 1 1

27 11.40 10.20 11.10 8.90 1 1

28 18.70 13.10 12.10 11.70 1 1

29 13.00 14.20 10.30 9.00 1 1

30 9.90 13.50 8.90 8.10 1 1

31 10.80 8.00 7.70 8.10 1 1

32 10.90 10.30 8.20 9.80 1 1

33 10.20 14.70 13.00 11.00 1 1

34 15.70 13.60 10.80 9.50 1 1

35 15.50 12.20 17.30 10.20 1 1

(continued)
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Table 3 (continued)

Clinical visits Previously

Id 0 6 12 18 Group Treated

36 16.10 11.80 9.00 9.40 2 0

37 15.70 10.10 10.70 10.50 2 0

38 10.20 9.40 10.50 4.70 2 0

39 13.30 12.30 12.80 12.90 2 0

40 13.70 13.70 12.40 11.10 2 0

41 15.10 12.50 10.30 9.50 2 0

42 12.10 10.80 13.20 11.40 2 0

43 8.00 10.20 7.60 2.00 2 0

44 13.30 8.90 9.30 8.00 2 0

45 8.80 5.70 6.40 6.50 2 0

46 11.20 10.00 8.50 5.80 2 1

47 15.70 11.80 10.90 12.40 2 1

48 9.70 13.60 12.40 7.30 2 1

49 11.80 10.00 10.40 10.90 2 1

50 15.40 17.00 12.60 10.60 2 1

51 11.60 5.50 5.40 6.40 2 1

52 12.90 14.00 13.50 11.70 2 1

53 11.60 12.20 9.90 9.80 2 1

54 15.40 14.60 13.00 11.50 2 1

55 16.20 13.20 10.30 8.10 2 1

56 14.00 11.90 9.30 8.50 2 1

57 14.40 14.00 10.70 10.40 2 1

58 16.10 10.80 8.30 8.80 2 1

59 15.00 7.20 9.00 10.40 2 1

60 12.20 12.70 10.10 7.90 2 1

61 14.60 16.40 10.80 11.40 2 1

62 16.20 15.40 11.60 12.20 2 1

63 14.00 11.70 11.40 11.30 2 1

64 14.50 14.20 14.50 7.30 2 1

65 10.90 10.60 9.00 13.10 2 1

66 14.60 14.50 12.50 6.80 2 1

67 11.80 11.30 11.20 10.10 2 1

68 14.70 11.40 13.30 8.90 2 1

69 10.60 9.50 8.40 10.50 2 1
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Table 4 Repeated measurements for individuals, together with the covariates ‘Previously treated’.
Data for Group 1 follows a quadratic model

Clinical visits Previously

Id 0 6 12 18 Group Treated

1 19.86 7.96 9.81 11.30 1 0

2 18.32 9.18 12.51 11.98 1 0

3 18.32 8.57 6.15 12.73 1 0

4 18.11 5.69 5.96 12.22 1 0

5 16.65 9.63 10.30 9.72 1 0

6 15.41 4.81 2.93 12.52 1 0

7 15.57 6.75 5.24 12.30 1 0

8 19.30 11.21 6.98 11.52 1 0

9 16.53 10.24 8.38 8.42 1 0

10 16.47 8.07 8.27 9.49 1 0

11 15.21 9.98 7.09 12.19 1 0

12 14.62 5.75 6.31 10.86 1 0

13 16.86 7.81 7.96 11.62 1 0

14 16.95 13.28 12.27 10.97 1 1

15 16.29 10.84 13.73 15.80 1 1

16 18.72 11.45 8.92 12.53 1 1

17 17.26 6.93 7.63 9.46 1 1

18 13.34 11.19 8.82 11.69 1 1

19 16.57 12.15 8.99 14.85 1 1

20 16.53 13.21 8.81 9.37 1 1

21 19.64 13.84 10.15 13.30 1 1

22 18.34 7.68 3.43 14.14 1 1

23 16.43 11.32 10.15 12.52 1 1

24 17.47 10.80 6.15 11.01 1 1

25 17.27 9.10 6.01 10.26 1 1

26 19.12 10.94 6.88 13.16 1 1

27 13.97 7.83 5.65 13.10 1 1

28 14.64 15.29 12.41 12.81 1 1

29 15.77 8.10 8.20 15.79 1 1

30 16.61 8.88 9.45 10.51 1 1

31 15.25 7.17 3.28 6.49 1 1

32 16.99 10.56 10.59 13.20 1 1

33 15.54 7.61 7.19 12.43 1 1

34 18.10 8.74 6.53 9.76 1 1

35 14.84 7.65 9.72 11.27 1 1

(continued)
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Table 4 (continued)

Clinical visits Previously

Id 0 6 12 18 Group Treated

36 12.47 12.95 12.42 11.35 2 0

37 13.74 5.05 7.51 8.77 2 0

38 14.62 9.04 5.90 8.55 2 0

39 13.58 12.86 11.43 5.90 2 0

40 12.82 9.50 6.26 7.13 2 0

41 17.17 12.13 11.26 8.15 2 0

42 13.34 11.07 11.20 9.74 2 0

43 12.64 6.99 6.32 4.05 2 0

44 12.62 11.33 11.66 8.83 2 0

45 10.56 7.89 7.33 4.84 2 0

46 12.19 10.21 6.26 7.68 2 1

47 12.49 12.32 7.81 9.14 2 1

48 8.90 10.09 9.94 11.04 2 1

49 11.14 9.51 7.87 8.48 2 1

50 13.92 10.90 10.80 10.87 2 1

51 15.30 10.20 17.32 9.61 2 1

52 9.99 8.47 8.62 10.14 2 1

53 10.23 13.11 10.64 8.37 2 1

54 13.31 11.39 10.53 8.95 2 1

55 11.77 12.25 12.63 14.19 2 1

56 10.43 13.32 12.03 11.56 2 1

57 12.33 11.21 8.75 9.45 2 1

58 14.57 12.80 12.35 8.40 2 1

59 13.32 12.82 8.54 9.46 2 1

60 13.22 12.81 10.50 11.50 2 1

61 10.74 11.30 7.02 7.63 2 1

62 9.51 14.12 9.53 10.63 2 1

63 13.93 7.57 7.98 10.93 2 1

64 10.87 14.14 12.93 12.75 2 1

65 9.35 11.45 9.41 12.47 2 1

66 13.68 14.80 9.45 10.79 2 1

67 14.18 16.47 12.95 9.86 2 1

68 15.93 16.45 14.02 9.19 2 1

69 13.54 12.88 13.95 14.42 2 1
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Matrix-variate Smooth Transition
Models for Temporal Networks

Monica Billio, Roberto Casarin, Michele Costola, and Matteo Iacopini

Abstract In many fields, network analysis is used to investigate complex relation-
ships. The increased availability of temporal network data opens the way to the sta-
tistical analysis of the network topology and its dynamics. In addition network data
are subject to measurement errors and random fluctuations. This calls for realistic
time series models which account for relevant features of the data. In this chapter, we
propose a new modeling and inference framework for studying matrix-valued panel
data characterized by nonlinear dynamics and heavy tails. We assume a smooth tran-
sition model for the dynamics and a matrix-variate t distribution for the error term
and show how the model can be used in temporal network analysis. Some properties
of the model including the close-form expression for the predictor are given. We
adopt a Bayesian approach to inference and design an efficient Markov chain Monte
Carlo algorithm for approximating the posterior distribution. We apply the proposed
model to a volatility network among European firms and an international oil produc-
tion network and show its ability to account for structural changes. Our framework is
motivated by temporal network data, nevertheless, it is general and can be of interest
to all researchers interested in the analysis of matrix-variate time series.
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1 Introduction

Scientific applications more and more involve datasets where the sampling unit is
in the form of a matrix instead of a vector. Examples of matrix-valued time series
include financial variables, such as balance sheet data for a set of firms; economic
indicators, includingGDP, industrial production, and unemployment rate, for a group
of countries. The two motivating examples considered in this chapter are from the
financial and commodity literature, where time series of networks are used to encode
the connectivity structure of the markets. The sequence of networks can be repre-
sented as a collection of adjacency matrices. In the financial application, an element
of a matrix describes a link between two financial entities, such as firms, institutions,
or financial assets. Instead, in the energy application, an element of an adjacency
matrix describes a link between two oil producers, such as countries or private com-
panies.

Matrix-valueddata has receivedparticular attention in statistics and,more recently,
in econometrics. An excellent review of the most frequently used matrix-variate
distributions and their properties is provided in [45]. Regression models for matrix-
valueddata focusedonparticular aspects including temporal persistence [25], fat-tails
innovation [11], missing data [73], hierarchical models [52], matrix factor models
[24, 74, 77], and graphical models [17, 53, 75]. It is widely recognized that eco-
nomic and financial time series exhibit abrupt changes, especially during downturns
and crisis periods. To account for these stylized facts, nonlinear models with time-
varying parameters, such as smooth transition and regime-switching dynamics, have
been introduced [31, 46]. Most of the existing approaches focus on vector-valued
data or vectorized matrix data.

In this chapter, we propose a new class of nonlinear models for matrix-valued
panel data. We assume smooth transition (STR) dynamics in the conditional mean
of a matrix regression model (STR-MAR) to account for regimes and structural
changes in the data. In addition, we assume heavy-tailed innovations to account for
outliers and departure from normality in the data due to excess kurtosis. STRmodels
involve the change from one linear regime to the other [7]. The STR models have
been successfully applied in several fields, including economics and finance, to deal
with nonlinearities and parameter instability [e.g. 55, 70]. Several extensions have
been provided for investigating panel data [43], and to account for dependence on
past realizations, leading to smooth transition autoregressive models (STAR) [27,
33, 69]. See also [31, 72] for a review. Other extensions have been proposed to
allow for a smooth transition in higher order conditional moments [4, 20, 21, 37, 44,
58, 60]. STR models have been also extended to the multivariate setting with many
applications in macroeconomics and finance [16, 29, 59, 66, 67]. Our STR-MAR
models extend multivariate smooth transition models to the matrix-variate setup. We
show how STR-MAR models can be used in network modeling and provide some
theoretical properties such as analytical expression for the optimal predictor of the
network degree.
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We adopt a Bayesian approach to inference since it accounts for extra-sample
information and for soft parameter restrictions through the specification of the prior
distribution as argued in [40, 54, 56, 57, 63] and in the STAR models literature [22,
42]. Also, the Bayesian approach allows us to make the likelihood function more
tractable by following a data augmentation approach. We exploit the scale mixture
representation of the matrix t distribution [45] and rely on data augmentation to
obtain closed-form full conditional distributions for the locations and scale matrices
and to design an efficient Markov chain Monte Carlo algorithm for approximating
the posterior distribution.

As an illustration, we provide two applications where we investigate the dynamics
of networks arising in two areas of economics, that are commodity and financial
markets. The number of theoretical [e.g., 1, 34] and empirical studies [e.g., 12, 30]
on financial networks has increased over the last decade.We apply the proposed STR-
MAR model to investigate the volatility spill-over effects in the stock returns of the
50 most capitalized European firms. Starting with the global financial crisis and the
European sovereign debt crisis, researchers and policy authorities have focused on the
study of the (in)stabilitywithin the financial and banking sectors. During the outbreak
of COVID-19, central banks re-introduced asset purchase programs to support the
stability of the financial system. The analysis of the financial connectedness has
provided insights into policymakers on the effect of COVID-19 on the system [10].

In the application to the commodity market, we consider the international oil
production of 17 major oil-producing countries. As argued in [3, 18] the analysis
of linkages among oil-producing countries allows for unveiling the micro-economic
relationships between producers and the developments in the global oil production.
Our model can be used to identify and predict the regimes of connectivity and, con-
sequently, to hedge geographical or geopolitical risks affecting global oil production.

The proposed model detects structural changes in both applications in correspon-
dence to well-defined events (i.e., the outbreak of COVID-19 and the oil cut pro-
duction). We remark that our approach is general and can be applied in any analysis
involving matrix-variate data.

The remaining of the chapter is structured as follows. Section2 introduces a novel
econometric framework for matrix-valued panel data. Section3 presents a Bayesian
inference procedure. Section4 illustrates the empirical analysis and the main results.
Section5 concludes.

2 A Smooth Transition Matrix Model

Transition Mechanisms

Let Yt ∈ R
n×m , t ∈ N, be a sequence of n × m random matrices with real-valued

entries and let � j : Rk × D �→ (0, 1)n×m , j = 1, . . . , J , be a sequence of smooth
transition matrix functions � j (x;d) ∈ (0, 1)n×m with transition variables x ∈ R

k
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and transition parameters d ∈ D, satisfying �1(x;d) + . . . + �J (x;d) = ιnι
′
m for

all x ∈ R
k and d ∈ D, where ιr = (1, . . . , 1)′ ∈ R

r denotes the unit vector.
Our STR-MAR model with J regimes is defined as follows:

Yt =
J∑

j=1

� j (xt ;d) ◦ Bj + Et , t ∈ N (1)

where B1, . . . , BJ ∈ R
n×m is a sequence of regime-specific matrices, ◦ denotes the

element-by-element Hadamard’s product and Et is a matrix-variate error term. The
class of models is very general and includes the following transition functions as a
special case:

(a) row-specific transition, where the transition functions are the same across
the columns of Yt and differ cross rows, that is the transition functions are
� j (xt ;d) = φ j (xt ;d) ⊗ ι′m , j = 1, . . . , J , where ⊗ denotes the Kronecker
product and φ j (xt ;d) = (φ j1(xt ;d1), . . . , φ jn(xt ;dn))′ is a n-dimensional vec-
tor of transition functions.

(b) column-specific transition, where the transition functions are the same across
the rows of Yt and differ cross columns, that is the transition functions are
� j (xt ;d) = ιn ⊗ φ j (xt ;d)′, j=1, . . . , J , where φ j (xt ;d) = (φ j1(xt ;d1), . . . ,

φ jm(xt ;dm))′ is a m-dimensional vector of transition functions.
(c) common transition, where the transition function is the same for all the ele-

ments of Yt , that is the transition functions are � j (xt ;d) = φ j (xt ;d)ιmι′n ,
j = 1, . . . , J , where φ j (xt ;d) is a univariate transition function.

Motivated by the application and the type of research questionswewill introduce later
on in this paper, we choose the common transition specification with one covariate
xt = xt and transition parameter vector d j = (α j , δ j )

′. The resulting STR-MAR
model is

Yt =
J∑

j=1

φ j (xt ;α j , δ j )Bj + Et , (2)

where the collection of regime-specific parameters isψ = (B1, . . . , BJ , α1, . . . , αJ ,

δ1, . . . , δJ ) with Bj , j = 1, . . . , J , a sequence of m × n matrices. The conditional
mean of the process Yt is denoted byMt = g(xt ;ψ) and is a nonlinear function of the
covariate xt . The functional form of the smooth transition φ j (xt ;α j , δ j ) is discussed
here below.

For the sake of exposition and without loss of generality, let us consider a 2-
regimes model, that is J = 2, denote φ(·) = φ1(·), and assume the second regime is
the reference one, that is φ2(·) = 1 − φ(·). Also, we define α = α j and δ = δ j , for
j = 1, 2. Some common choices for the smooth transition function are:
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(a) logistic (LT)

φ(x;α, δ) = 1

1 + exp(−α(x − δ))
, α > 0, δ ∈ R

(b) exponential (ET)

φ(x;α, δ) = 1 − exp(−α(x − δ)2), α > 0, δ ∈ R

(c) absolute logistic (ALT)

φ(x;α, δ) = 1 − exp(−α
∣∣x − δ

∣∣)
1 + exp(−α

∣∣x − δ
∣∣)

, α > 0, δ ∈ R

(d) quadratic logistic (QLT)

φ(x;α, δ1, δ2) = 1

1 + exp(−α(x − δ1)(x − δ2))
, α > 0, δ1 ≤ δ2, δ1, δ2 ∈ R

The slope parameter α > 0 determines the speed of the transition between two
regimes, and the threshold parameter δ is the threshold to the impact of the transition
variable, x , on the transition function.

In the logistic transition, the function φ(x;α, δ) is monotonically increasing with
inflection point at δ. For very large values of the slope parameter, the function con-
verges to a step-wise function that gives a sudden shift between regimes that is
φ(x;α, δ) → H(x) for α → +∞, where H(x) is the Heaviside function. When
α = 0 the STR function becomes constant and the transition mechanism disap-
pears that is φ(x;α, δ) → 1 for α → 0. In the other transition models, the function
φ(x;α, δ) attains the minimum value at δ and is monotonically decreasing for x < δ

and increasing for x > δ. In Fig. 1, the transition functions are drawn for δ = 1 and for
different values of the slope parameter (α = 1, 3, 5, 10). For all transition functions,
the transition speeds up in a neighborhood of δ and is relatively slow for low values of
α, and faster for larger values of α. In the following, we choose the absolute logistic
transition, since we expect a symmetric behavior of the regime-switching dynamics
in our applications. Nevertheless, a model comparison procedure can be applied to
select the best transition model for the dataset considered following, for example, a
Bayes factor [64, Chap.5] or the DIC criterion [19].

Furthermore, we propose a robust model with t-distributed errors. [78] introduced
Student’s t errors in Bayesian linear models since the Student’s t has the Cauchy
and normal distributions as special cases and allows for outliers and departure from
normality in the data due to excess of kurtosis. This assumption has been employed
in many papers [e.g., see 41, 68] and extended along different directions to allow for
more flexible and robust models [e.g., see 26, 61, 62]. Recently, [11] showed that
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(a) Logistic (b) Exponential

(c) Absolute Logistic (d) time

Fig. 1 Transition functions φ(x; α, δ) for different transition parameter values. Note The threshold
parameter is taken as δ = 1. Functions are drawn for different values of the slope parameter α = 1
(solid), α = 3 (dashed), α = 5 (dotted), α = 10 (dashed-dotted)

matrix-variate t errors can be useful in modeling network-valued data to filter out
outliers due to measurement and network estimation errors. In our model, we assume
the error term Et follows a matrix-variate t distribution. A randommatrix X ∈ R

n×m

follows a matrix-variate t distribution [see 45, Chap.4], X ∼ tn,m(ν, M, �1, �2), if
it has probability density function

P(X |ν, M, �1, �2) = κ−1∣∣�1
∣∣−m

2
∣∣�2

∣∣− n
2
∣∣In + �

−1
∣∣

1 (X − M)�−1
2 (X − M)′

− ν+m+n−1
2

(3)
where κ is the normalizing constant

κ−1 = 	n
(

ν+m+n−1
2

)

π
mn
2 	n

(
ν+n−1

2

)
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and	n(·) is themultivariate gamma function and | · | denotes thematrix determinant.
The matrix M ∈ R

n×m is the location parameter, ν > 0 is the degrees of freedom
parameter, and the positive definite matrices �1 ∈ R

n×n and �2 ∈ R
m×m are scale

parameters driving the covariances between each of the n rows and the m columns
of X , respectively.

In summary, the STR-MAR model with ALT transition considered in the appli-
cation on square matrices (i.e., n = m) is

Yt = Mt + Et Et ∼ tn,n(0, �1, �2)

Mt = B1φ(xt ;α, δ) + B2(1 − φ(xt ;α, δ))

φ(xt ;α, δ) = 1 − exp(−α
∣∣xt − δ

∣∣)
1 + exp(−α|xt − δ|)

(4)

with α > 0, δ ∈ R, and xt ∈ R is a predetermined variable. Let us define the infor-
mation set as the sigma-algebra It = σ({Yu, xu}u≤t) generated by the past values of
the dependent variable Yu and the transition variable xu . Thanks to the properties of
the matrix-variate t distribution, for any choice of the transition functions and any
number of regimes, the conditional mean and variance of Yt are E(Yt |It−1) = Mt ,
if ν > 1, and Var(Yt |It−1) = �2 ⊗ �1/(ν − 2), if ν > 2.

In smooth transition models, the parameters have continuous dynamics, and the
transition function can describe different types of behavior including sudden shifts.
The model class can be extended along with different directions. Besides the direct
extension to J > 2 regimes [e.g., following the strategy in 60], the proposed model
can be generalized to account for multiple covariates and edge-specific transitions,
as discussed in Sect. 2.

Latent variable models for the underlying network Mt represent an alternative
framework. Continuously varying random parameters (e.g., parameters with random
walk dynamics) can be more flexible, nevertheless, they are less tractable from the
inference perspective and pose computational challenges. We leave this topic for
future research.

Nonlinear Network Models

An emerging field in econometrics is the analysis of network-valued time series data.
Since a network can be represented by means of a square matrix, called adjacency
matrix, our model (2) can be directly applied to investigate the dynamic effects in
time series of networks. In this chapter, we introduce a model for weighted networks,
which can find direct application to signed weighted graphs [e.g., see 9].

Let us denote withG = (Gt )t∈N a temporal network, where Gt = (V, Et , Zt ) is a
weighted network [13], V = {1, . . . , n} the vertex set, Et ⊂ V × V the edge set, and
Zt ∈ R

n×n
+ the weighted adjacency matrix, such that Zi j,t = 0 for each (i, j) /∈ Et

and Zi j,t ∈ R+, otherwise.
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The general class of models in eq. (2) can be used to fit and predict temporal
networks, that is sequences of weighted adjacencymatrices Zt , t ∈ N.When the edge
weights are real-valued, STR-MAR applies directly to Zt , whereas, for edge weights
constrained to a subset ofR, the model can be applied on a suitable transformation of
theweighted adjacencymatrix. The transformations commonly used are logarithmic,
when the edge weights are positive, that is,

Yi j,t = log(Zi j,t ), Zi j,t ∈ R+, i, j = 1, . . . , n (5)

and the logistic, when the edge weights belong to the unit interval, that is,

Yi j,t = logit(Zi j,t ), Zi j,t ∈ (0, 1), i, j = 1, . . . , n. (6)

Network statistics are often used to describe the dynamics of the network topology;
thus, the researcher is usually interested in forecasting them. In addition, in temporal
networks, the laggedvalues of the network statistics canbeused to capture persistence
effects in the structure of the network, which means they can be used as transition
variables to build a parsimonious STR autoregressive model.

In network analysis, the most frequently used statistics include direct connectiv-
ity measures, such as network degree, and indirect connectivity measures, such as
clustering coefficient and eigenvector centrality. See [9] for a review on connectivity
measures. In this chapter, these statistics are obtained from the binary adjacency
matrix representation of the network, At , which in our notation is defined by setting
a threshold on the edge weights, Ai j,t = I(Zi j,t < 0.05). We define the degree of the
node i as kit = ∑n

j=1 Ai j,t . Then, the total network degree (dt ), the weighted degree
(dW

t ), the average clustering coefficient (ct ), and the average eigenvector centrality
(et ) are defined as

dt =
n∑

i=1

n∑

j=1

Ai j,t dW
t =

n∑

i=1

n∑

j=1

Zi j,t

ct = 1

n

n∑

i=1

Ci,t Ci,t = 1

kit (kit − 1)

n∑

j=1

n∑

k=1

Ai j,t A jk,t Aki,t

et = 1

n

n∑

i=1

Ei,t Ei,t = 1

kit (kit − 1)

n∑

j=1

n∑

k=1

Ai j,t A jk,t Aki,t ,

(7)

where Ci,t and Ei,t are the clustering coefficient and eigenvector centrality, respec-
tively, of node i at time t . In this chapter, we consider mainly the total network degree
and the average clustering coefficient.

Our STR-MAR model can be used to forecast the network structure and the
statistics. In the logit transform case, which will be used later on in this chapter,
it is possible to find an analytical expression for the expected network degree. The
predicted total degree of the graph Gt+1 given It is
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E(dt+1|It) =
n∑

i=1

n∑

j=1, j �=i

P(Yi j,t > 0.05)

=
n∑

i=1

n∑

j=1, j �=i

⎛

⎝1

2
− 1

2
�

⎛

⎝ logit−1(0.05) − μi j t√
2σ 2

i j

⎞

⎠

⎞

⎠ (8)

where �(·) denotes the cumulative density function (CDF) of the standard normal
distribution.

Following the results in [48] on the moment of the logit-normal distribution and
by applying Proposition 1 in [47], the expected weighted total degree can be written
as

E(dW
t+1|It ) =

n∑

i=1

n∑

j=1, j �=i

E(Yi j ) =
n∑

i=1

n∑

j=1, j �=i

(
1

2
+ bi jt + ci j t

ai j t

)
(9)

where

ai jt = 1 + 2
∞∑

r=1

exp(−σ 2
i j r

2/2)cosh(rμi j t ) (10)

bi jt =
∞∑

r=1

exp(−σ 2
i j r

2/2)sinh(rμi j t )tanh(σ
2
i j r/2)) (11)

ci j t = 2π

σ 2
i j

∞∑

r=1

exp(−(2r − 1)2π2/2σ 2
i j ) sin((2r − 1)πμi j t/σ

2
i j )

sinh((2r − 1)π2/σ 2
i j )

(12)

where μi j t = B1i jφ(xt ;α, δ) + B2i j (1 − φ(xt ;α, δ)) is the time-varying parameter,
σ 2
i j = �1i j�2i j/(ν − 2) is the scale parameter, and sinh(·), cosh(·), and tanh(·) are

the hyperbolic sine, cosine, and tangent functions, respectively. The coefficients
ai jt , bi jt , and ci j t are evaluated by applying the truncation rule in [47], that is,
all terms are included in the summation until r = r∗, where r∗ = min{|μi j t/σ

2
i j −√

2 log(1/ε)/σ |, |μi j t/σ
2
i j + √

2 log(1/ε)/σi j |, �1/2 + σi j

√
log(2/ε)/2/π�} and

ε = 10−8.
Figure2 shows the expected total degree E(dW

t+1|It ) as a function of the previous
period degree, that is xt = dW

t , for the following parameter setting: Bi j,1 ∼ N(−1, 1)
and Bi j,2 ∼ N(3, 1) i.i.d for all i, j = 1, . . . , 50 and σ 2

i j = 1.3. When the transition
variable dW

t converges to the value of the threshold parameter, a large proportion of
edge weights converge to one and the total degree increases. For smaller values of α,
the peak in the expected degree is less concentrated about the threshold parameter
value.
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Fig. 2 Expected total degree E(dt+1|It ) (left) and weighted total degree E(dWt+1|It ) (right) for
a 50 nodes network as a function of the previous period degree dt (horizontal axis). In each plot,
the expected degree for α = 0.02, δ = 1000 (solid line), α = 0.02, δ = 1200 (dash line), and α =
0.008, δ = 1000 (dotted line)

Extensions

The model presented in Eq. (1) includes many special cases which can be used to
extend the common transition model given in Eq. (2). In the following, we provide
three directions to follow to extend the common-transition model.

1. Smooth transition in the t-distribution. The regime transition may involve also the
degrees of freedom and/or the scale matrices in the t-distribution. Therefore, the
smooth transition function φ j (x; d) can be included in those elements, as follows:

ν =
J∑

j=1

ν̄ jφ j (x;d)

� =
J∑

j=1

�, jφ j (x;d),  = 1, 2.

2. Modelling the smooth transition function using a set of covariates. The smooth
transition function can be expressed according to a set of covariates
x = (x1, . . . , xk)′ ∈ R

k that may exert an impact on the change of the regime.
We provide here below an example of three specifications for the absolute logis-
tic function (ALT),
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φ(x;d) = 2

1 + exp(−α
∏k

i=1

∣∣x
i
∣∣ − δi )

− 1, (13)

φ(x;d) = 2

1 + exp(−α
∑k

i=1

∣∣x
i
∣∣ − δi )

− 1, (14)

φ(x;d) = 2

1 + exp(−α
∣∣x

∣∣′β − δ)
− 1, (15)

where d = (α, δ1, . . . , δk) in Eq. (13) and (14), and d = (α, δ1, . . . , δk, β) in
Eq. (15).

3. Entry-specific smooth transition As discussed in the presentation of our general
STR-MAR model, a smooth transition function specific for each entry of the
matrix Yt can be specified. In this setting, the number of parameters to estimate
increases and either parsimonious parametrization strategies or suitable inference
procedures should be considered.

3 Bayesian Inference

Prior Specification

In this section, we present the prior distributions for the model parameters. Bayesian
inference for STR and STAR models for scalar response has been developed in [22,
42, 63], then [15] proposed an extension to the multivariate case. In this chapter, we
provide a further extension to thematrix-variate case, following the prior specification
strategy given in [11] for matrix-variate models.

For the coefficient matrices Bj , with j = 1, 2, we assume a matrix normal distri-
bution

Bj ∼ MNn,n(0,�1,�2), (16)

where�1 = ω1 In , and�2 = ω2 In , withω1 > 0 andω2 > 0 fixed.A (n × p) random
matrix X is said to be distributed as a matrix normal [45, Chap.2] with mean M and
covariance matrices �1, �2, with �1 of size (n × n) and �1 of size (p × p), written
X ∼ MNn,p(M, �1, �2), if its probability density function is

P(X |M, �1, �2) = (2π)−
np
2

∣∣�2
∣∣− p

2
∣∣�1

∣∣− n
2 exp

(
− 1

2
tr

(
�−1
2 (X − M)′�−1

1 (X − M)
))

.

(17)
The distribution is equivalent to a multivariate normal distribution with a product-
separable covariance structure, that is, X ∼ MNn,p(M, �1, �2) is equivalent to
vec(X) ∼ Nnp(vec(M),�2 ⊗ �1), where vec(·) is a vectorization operator that



148 M. Billio et al.

stacks all the columns of a matrix into a column vector. Since �2 ⊗ �1 = (�2/a) ⊗
(a�1) for any a �= 0, the noise covariance matrices of the matrix-variate t distribu-
tion,�1, �2, are not identifiable.We address this issue by restricting the trace of each
covariance matrix to a given value, that is by imposing tr(� j ) = � j , for j = 1, 2.
For the noise covariances, �1 and �2, we assume the following independent prior
distributions:

�1 ∼ W∗
n(�

−1
1 , κ1, S1), �2 ∼ IW∗

n(�2, κ2, S2), (18)

where W∗
n(�, κ, S) and IW∗

n(�, κ, S) denote the truncated Wishart and inverse
Wishart distributions, respectively, with densities proportional to

W∗
n(�1|�−1

1 , κ1, S1) ∝ Wn(�1|�−1
1 , κ1)IS1(�1), S1 = {�1 : tr(�1) = �1},

IW∗
n(�2|�−1

2 , κ2, S2) ∝ IWn(�2|�−1
2 , κ2)IS1(�2), S2 = {�2 : tr(�2) = �2},

where Wn and IWn denote the Wishart and inverse Wishart distributions, respec-
tively. We use the scale parametrization for the Wishart and inverse Wishart distri-
butions [see 39, Appendix A, p.577], where �−1

1 and �2 are the scale matrices and
κ1 and κ2 are the degrees of freedom hyper-parameters.

Since the variance ofYt is defined only for ν > 2,we assume the following gamma
prior distribution truncated on the interval (2,+∞):

ν ∼ TGa(aν, bν; 2,+∞). (19)

The gamma prior distribution for the degrees of freedom parameter has been pre-
viously considered, for example, in [42, 76]. For the use of an improper prior, see
[36]. Owing to the use of proper prior distributions for B1 and B2, their posterior
distributions are well defined for ν > 0 [42], whereas the constraint ν > 2 is required
when using improper prior distributions.

Regarding the slope parameter, α, and the threshold parameter, δ, [56] show that
the posterior estimates are insensitive to the prior specification according to the
DIC criterion. Nevertheless, the RMSE andMAE are significantly higher when both
prior distributions are uniform. Thus, we assume the following non-uniform and
independent prior distributions:

δ ∼ N(μ
δ
, σ 2

δ ), α ∼ Ga(aα, bα). (20)

We summarize our Bayesian model in the Directed Acyclic Graph representation of
Fig. 3.
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aα bα
μ

δσ2
δ

αδΩ1 Ω2

Bj

xt

Ψ1 κ1 Ψ2 κ2

Σ1 Σ2

Yt

Fig. 3 Directed Acyclic Graph of the proposed Bayesian STR-MARmodel for temporal networks.
It exhibits the conditional independence structure of the observation model for Yt with covariate
xt (gray circles), the parameters Bj , �1, �2, α, δ (white solid circles) and the fixed hyperparam-
eters aα, bα, μ

δ
, σ 2

δ , �1, κ1, �2, κ2 (white dashed circles). The directed arrows show the causal
dependence structure of the model

Posterior Approximation

Denote the collection of parameters with θ = (B1, B2, �1, �2, ν, α, δ), let x =
(x1, . . . , xT ) be the collection of covariates, and let Y = (Y1, . . . ,YT ) be the col-
lection of all observed networks. The likelihood of the model in Eq. (4) is

P(Y|x, θ) =
T∏

t=1

c · ∣∣In + �
−1

∣∣
1 (Yt − Mt )�

−1
2 (Yt − Mt )

′
− ν+2n−1

2

, (21)

where

c = 	n
(

ν+2n−1
2

)

π
n2
2 	n

(
ν+n−1

2

)
∣∣�1

∣∣− n
2
∣∣�2

∣∣− n
2 .

Since the joint posterior distribution implied by the prior distributions in Eq. (16)–
(18)–(19) and the likelihood inEq. (21) is not tractable,we followadata augmentation
approach [65, Chap.9]. We exploit the representation of the matrix t distribution
as a scale mixture of matrix normal distributions, with Wishart mixing distribu-
tion [71]. From Theorem 4.3.1 in [45], if S ∼ Wp(�

−1
1 , ν + p − 1) and X |S ∼

MN p,m(M, S−1, �2), then X ∼ tp,m(ν, M, �1, �2). By assuming th parametriza-
tion of the inverse Wishart proposed in [39], we obtain the equivalent representation
W = S−1 ∼ IW p(�1, ν + p − 1) and X |W ∼ MN p,m(M,W, �2). We apply this
result to Yt ∼ tn,n(ν, Mt , �1, �2) and obtain the complete data likelihood
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P(Y,W|x, θ) =
T∏

t=1

[
(2π)−

n2
2

∣∣Wt
∣∣− n

2
∣∣�2

∣∣− n
2 exp

(
− 1

2
tr

(
�−1

2 (Yt − Mt )
′W−1

t (Yt − Mt )
))

·
∣∣�1

∣∣ ν+n−1
2

2
(ν+n−1)n

2 	n(
ν+n−1

2 )

∣∣Wt
∣∣− ν+2n

2 exp
(
− 1

2
tr(�1W

−1
t )

)]
, (22)

where W = (W1, . . . ,WT ) is the collection of auxiliary variables, with Wt ∼
IWn(�1, ν + n − 1).

The data augmentation approach combined with our prior assumptions allows
us to derive analytically the full conditional distributions of B1, B2, �1, �2, and
W. Since the joint posterior distribution is not tractable, we implement an MCMC
approach based on a Gibbs sampling algorithm to sample from the posterior dis-
tribution and to approximate all posterior quantities of interest. The Gibbs sampler
generates iteratively from the full conditional distributions of the parameters. See
Appendix for the details of the approximated inference procedure.

4 Empirical Analysis

In this section, we first describe the network extraction method and then illustrate
the inference results for our model to oil and financial market datasets.

We estimate networks among statistical units such as firms and oil-producing
countries following the pairwise Granger-causality approach proposed in [12]. In
the proposed framework, the networkGt is directed, each node denotes a firm and an
edge from node i to node j indicated that i Granger causes j at time t . The weighted
adjacency matrix Zt contains the p-values of the pairwise Granger test.

We apply a rolling window approach, with a window length of τ observations and
estimate the following VAR(m) model for the time series of interest:

xi,t =
m∑

l=1

b11l xi,t−l +
m∑

l=1

b12l x j,t−l + εi t

x j,t =
m∑

l=1

b21l xi,t−l +
m∑

l=1

b22l x j,t−l + ε j t

(23)

where xi,t = σ̂i,t and i, j = 1, . . . , N . The entry Zi j,t , i �= j , of the weighted adja-
cency matrix is defined as the p-value of the F-statistic under the null hypoth-
esis bi j,1 = bi j,2 = . . . = bi j,m = 0, of the Granger test. Therefore, the element
Zi j,t ∈ (0, 1) represents the probability that the relationship between xi,t and x j,t

is statistically significant.

Remark 1 The Granger-causality (GC) approach is a simple and flexible approach
in dealing with large dimensional data, but it may introduce estimation errors, also
due to spurious relationships [e.g., see the discussion in 2]. Our proposed model
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accounts for those issues via the specification of a noise term, Et , with matrix-variate
t distribution. We expect our model can be used for other types of network data. For
example, tail networks can be considered especially when focusing on the returns
dimension [i.e., quantile regression approaches, as in 23]. We leave this application
to future extensions of the proposed STR-MAR model.

Volatility Networks

We investigate the dynamics of financial risk spillovers by considering a network
of volatility linkages among the following companies.1 The data sample includes
the 50 European firms with the largest market capitalization and ranges from 4
January 2016 to 30 September 2020, at the weekly frequency (Friday–Friday), thus
including the period before and after the outbreak of COVID-19. The analyzed firms
(22 German, 24 French, 4 Italian) belong to 11 GICS sectors: Financials (7 firms),
Communication Services (4 firms), Consumer Discretionary (11 firm), Consumer
Staples (5 firms), Health Care (6 firms), Energy (2 firms), Industrials (5 firms),
Information Technology (3 firms), Materials (2 firms), Real Estate (1 firms), Utilities
(3 firms), and not classified in a specific GICS sector (1 firm).2

The weekly volatility for firm i , σ̂ 2
i,t , is computed using the estimator of the

variance proposed by [38]:

σ̂ 2
i,t = 0.511(Hi,t − Li,t )

2 − 0.383(Ci,t − Oi,t )
2 (24)

− 0.019[(Ci,t − Oi,t )(Hi,t + Li,t − 2Oi,t ) − 2(Hi,t − Oi,t )(Li,t − Oi,t )],

i = 1, . . . , n, t = 1, . . . , T ∗, where Hi,t is the weekly logarithmic high price, Li,t is
the weekly logarithmic low price, Oi,t is the weekly logarithmic opening price, and
Ci,t is the logarithmic closing price. The weekly prices have been obtained by taking
in a given week the maximum among the daily high prices (weekly High Price), the
minimum among the daily low prices (weekly Low Price), the opening price of the
first available day in a week (weekly Opening Price), and the closing prices of the
last available day in a week (weekly Closing Price).

We use a rolling window length of τ = 104 weeks (2 years) and estimate a
sequence of Granger-causal networks from the collection of weekly time series of
length T ∗ = 248. In the proposed framework, the nodes represent the institutions and
the graph encodes the Granger-causality relationships among them. As our causal
financial networks are directed, each adjacency matrix is asymmetric.

1 The study of financial spillovers can also be performed by focusing on tail networks obtained
from return quantile regressions [14]. We leave this application to future extensions of the proposed
STR-MAR model.
2 The list of the firms, the countries, and the information about their GICS sectors and industries
are available upon request to the Authors.
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(a) Volatility networks

(b) Total degree

Fig. 4 Top: volatility networks for 50 large capitalization European firms (nodes) on 20 December
2019 (left) and 20March 2020 (right). We show the pairwise directed edges extracted with pairwise
Granger procedure. The edges are clockwise-oriented and the node size is based on the node degree
centrality. Bottom: network total degree (black, solid line), together with sample average (red,
dashed line), and sample median (blue, dash-dotted line). Note Network visualization have been
made with Gephi software [8]

We consider a logistic link function Yi j,t = logit(Zi j,t ) to obtain the edges of a
volatility network. It represents the connectivity patterns among the stock volatility
of a set of European institutions. We get from the rolling window analysis a sample
of T = 145 adjacency matrices, covering the period from 29 December 2017 to 20
October 2020.3

As exogenous variable, we consider (i) the degree of the network dt (see Eq.7);
(ii) the average clustering coefficient ct ; and (iii) the implied volatility on the Euro
STOXX 50 index (V2X). All the covariates are lagged by one period.

Panel a in Fig. 4 shows the volatility network on 20 December 2019 (left) and 20
March 2020 (right), and Panel b, the evolution of the total degree over time (black,
solid line), together with sample average (red, dashed line), and samplemedian (blue,

3 The estimation algorithm has been parallelized and implemented in MATLAB on two nodes at
the High-Performance Computing (HPC) cluster at VERA, Ca’ Foscari University of Venice. Each
node has 2 CPUs Intel Xeon with 20 cores 2.4GHz and 768 GB of RAM.
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(a) Degree (b) Clustering coefficient (c) Volatility index (V2X)

Fig. 5 First row: transition function φ(x; α̂, δ̂), evaluated on a grid of values for x , where α̂ and
δ̂ are the posterior means of α, δ, respectively. Other rows: posterior distribution (histograms) and
posterior mean (dashed line) of the transition, threshold, and degrees of freedom parameters. Note
in the columns the results for different choices of the transition variable

dash-dotted line). We observe a change in the network structure in correspondence
with the outbreak of COVID-19 in March 2020. This suggests the adoption of non-
linear models that accounts for multiple regimes.

Figure5 includes the transition function for the degree, clustering coefficient, and
the volatility index (first row) using the Bayesian estimates of the parameters, that are
the posterior mean of α (second row), δ (third row), and ν (last row). The posterior
distribution of the degrees of freedom parameter, ν, is concentrated on values right
above 2, which provides evidence of the excess of kurtosis in the distribution of the
error term. It follows that the Student’s t represents a more suitable alternative with
respect to the Gaussian case. The posterior distribution of α concentrates on values
far away from zero, which supports the assumption of a smooth transition. When the
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Fig. 6 Posterior mean of the transition function φ(xt ; α̂, δ̂) for degree (top panel), clustering coef-
ficient (middle panel), and the volatility index (bottom panel)

V2X is used as covariate, the observed network is close to the configuration B2 when
the volatility level approaches to δ̂ = 30.15 which is far above the average volatility
level. Conversely, in the clustering coefficient case, the estimated threshold (0.55) is
below the average value of the covariate (0.67). Comparing these two cases, we also
find that the estimated slope parameter, α̂, is substantially higher for the Clustering
Coefficient (2.61) than for the V2X (0.23), suggesting that transitions occur faster for
the volatility index. Figure6 shows the posterior mean of the transition function for
the degree (top panel), the clustering coefficient (medium panel), and the volatility
index (bottom panel). Interestingly, the dynamic for the degree and clustering coeffi-
cient shows a structural change in the correspondence of the outbreak of COVID-19
in March 2020. This highlights the network topology has suddenly changed and
has been persistently affected due to the spread of the pandemic. Differently, the
volatility index indicates a structural change after the spread of COVID-19 but with
a mean-reverting behavior towards the previous regime.

Finally, with reference to the model using the volatility index as covariate, Fig. 7
shows the networks implied by the matrices B1 and B2. Specifically, the networks
are obtained by applying a threshold of 0.05 to the matrix of p-values, and the
node size is proportional to the total node degree. The different topology of the two
networks provides evidence of a change in the dependence structure across the states.
Therefore, we conclude that the proposed model can successfully describe time-
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Fig. 7 Networks implied by the matrices B1 (left) and B2 (right) for the model with the economic
activity index as covariate. The networks are obtained by applying a threshold of 0.05 to the matrix
of p-values. The node size is proportional to the total node degree

varying network sequences that evolve smoothly between different states. Similar
results have been obtained when using the degree or the clustering coefficient.

Oil Production Networks

Our model can be used to study the dynamics of the linkages between oil-producing
countries in the international oil market. We aim at modeling the dependence among
the 17 biggest producers: Algeria (AL), Angola (AN), Brazil (BR), Canada (CA),
Colombia (CO), India (IN), Kuwait (KU), Mexico (ME), Nigeria (NI), Norway
(NO), Oman (OM), Qatar (QA), Saudi Arabia (SA), the UAE (UA), the UK (UK),
the USA (US), and Venezuela (VE). This study analyzes monthly data from March
1998 to January 2015 and has been downloaded from the Monthly Oil Data Service
(MODS) database provided by the International Energy Agency (IEA). We estimate
the Granger-causal networks using a rolling window of length τ = 60 months, and
obtain a monthly time series of T = 143 networks.

As for the previous application,we include thedegree and the clustering coefficient
as exogenous variables. Given the relationship between the oil production and the
global business cycle, we also include the index of global real economic activity
in industrial commodity markets [32, 35, 49, 50] which measures the changes in
the global demand and is based on ocean transportation fares. All the covariates are
lagged by one period.

Panel a in Fig. 8 shows the oil network between June 2006 (left) and March 2009
(right), while Panel b reports the evolution of the total degree over time. Interestingly,
we observe an increasing trend in the connectivity level from the beginning of 2007
to 2010. Our proposed model is able to capture this smooth transition.

Figure9 includes the transition function for the degree, clustering coefficient, and
the economic activity index (first row) using the posterior mean of α (second row), δ
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Fig. 8 Top: oil production networks for 17 countries (nodes) before the outbreak of the 2008
financial crisis (June 2006, left) and after it (January 2009, right). We show the pairwise directed
edges extracted with the pairwise Granger procedure. The edges are clockwise-oriented and the
node size is proportional to the node total degree centrality. Bottom: network total degree (black,
solid line), together with sample average (red, dashed line), and sample median (blue, dash-dotted
line). The vertical dashed line indicates an episode of a very low connectivity network (June 2006).
Note Network visualization have been made with Gephi software [8]

(third row), and ν (last row). The posterior distribution for the degrees of freedom, ν,
concentrates around 2, which provides evidence of fat tails for the noise distribution
and confirms that the Student’s t represents a proper choice of the model with respect
to the standardGaussian case. The estimated value ofα supports the smooth transition
hypothesis. For all covariates, the posterior mean of the threshold parameter, δ̂, is
above the sample average of the variable. Figure10 shows the posterior mean of the
transition function (i.e., φ(·)) for degree (top panel), clustering coefficient (medium
panel), and the economic activity index (bottom panel). Interestingly, the dynamic
for degree shows a transition in the correspondence of March 2004 when OPEC
members unanimously agree to implement a cut on oil production. This indicates that
the connectivity of the oil production network exhibits a structural change during that
episode. Another peak in the transition function for degree is found around October
2005 after the outbreak of Hurricanes Katrina and Rita in August of the same year.
The extreme weather events shut down oil and gas production in the Gulf of Mexico
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(a) Degree (b) Clustering coefficient (c) Economic activity index

Fig. 9 First row: transition function φ(x; α̂, δ̂), evaluated on a grid of values for x , where α̂ and
δ̂ are the posterior means of α, δ, respectively. Other rows: posterior distribution of the transition,
threshold, and degrees of freedom parameters. Other rows: posterior distribution (histograms) and
posterior mean (dashed line) of the transition, threshold, and degrees of freedom parameters. Note
in the columns the results for different choices of the transition variable
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Fig. 10 Posterior mean of the transition function φ(xt ; α̂, δ̂) for degree (top panel), clustering
coefficient (middle panel), and the economic activity index (bottom panel). The vertical dashed line
indicates an episode of very low connectivity network (June 2006)

which represented 25% of US crude oil production and 20% of natural gas [51]. The
disruption continued until June 2006 representing a total cut in the oil production
close to 450,000 bbl/d for the Gulf of Mexico [28]. Other subsequent episodes have
occurred during the Global and European financial crises but have involved lower
values for the smooth transition function. Regarding the clustering coefficient and
the economic activity index, the patterns of the smooth transition functions show that
there are no particular structural changes over the considered period thus indicating
that those variables maintain a linear relationship with the oil network over time.

Figure11 plots the networks implied by thematrices B1 and B2, estimated from the
model with the economic activity index as covariate.We find a remarkable difference
between the two network structures; however, we stress that our smooth transition
model represents an observed network sequence as a convex combination of two
latent ones, perturbed by random noise. Therefore, the empty network implied by
B2 should not be interpreted as a state of the world that characterizes some periods
of the sample (as would be in Markov-switching models).

There are few cases in the sample where the matrix B2 is assigned a combination
weight close to one. It is possible to see that those cases correspond to very low
connectivity network episodes. For example, the estimated STR-MARmodel assigns
weights close to zero and one to B̂1 and B̂2, respectively, in correspondence of June
2006 (see the dashed vertical line in Figs. 8 and 10). This date corresponds to a
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Fig. 11 Networks implied by the matrices B1 (left) and B2 (right) for the model with the economic
activity index as covariate. The networks are obtained by applying a threshold of 0.05 to the matrix
of p-values. The node size is proportional to the total node degree

network of our dataset with low connectivity level. This structure is associated to the
stagnation of oil supply and the corresponding increase in oil price that led to a low
interdependence among oil-producing countries.

5 Conclusion

In this chapter, we have introduced a smooth transitionmodel formatrix-valued panel
data to account for nonlinearity in time series and heavy tails in the innovations,
and we have provided the relevant properties of the model including closed-form
expression for the predictors. The adopted inference approach is within a Bayesian
framework and an MCMC algorithm is proposed for the approximation of the poste-
rior distribution. In the empirical analysis, we have provided applications to financial
volatility and oil production networks showing the ability of the model in detecting
the change in the network structure. The proposed framework is general and can be
applied to several fields of data science that involve matrix-variate data.
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Appendix—Posterior approximation

The Gibbs sampler iterates the following steps:

1. Draw (ν,W) from the joint posterior distribution P(ν,W|Y, x, B1, B2, �1, �2,

α, δ) with a collapsed-Gibbs step that first samples ν ∼ P(ν|Y, B1, B2, �1, �2,

α, δ) and thenW∼ P(W|Y, x, B1, B2, �1, �2, ν, α, δ).
2. Draw vec(Bj ) from the multivariate normal distribution P(vec

(
Bj

)|Y, x,W,

�1, �2, α, δ).
3. Draw �1 from the Wishart distribution P(�1|W, ν).
4. Draw �2 from the inverse Wishart distribution P(�2|Y, x, B1, B2,W, α, δ).
5. Draw α and δ from their joint full conditional distribution P(α, δ|Y, x, B1, B2,

W, �2) using an adaptive Metropolis–Hastings algorithm.

In the following, we provide the derivation of the full conditional distributions used
in the Gibbs sampler and discuss the sampling methods.

Sampling B1. Let Ỹt = Yt − (1 − φ(xt ;α, δ))B2. The coefficient matrix B1 is drawn
from the posterior full conditional distribution

P(B1|Y,W, x, B2, �1, �2) ∝ P(B1)P(Y,W|x, B1, B2, �1, �2, α, δ)

∝ exp
(
− 1

2
tr

(
vec

(
B1

)′
(�2 ⊗ �1)

−1vec
(
B1

))

− 1

2

T∑

t=1

tr
(
vec

( ˜Y
)
t
− φ(xt ;α, δ)B1

′
(�2 ⊗ Wt )
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( ˜Y

)
t
− φ(xt ;α, δ)B1

))
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tr
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−1 +
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,

where
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t

meaning that vec
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(
M

)
1,�1).
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Sampling B2. Let Ȳ t = Yt − φ(xt ;α, δ)B1. The coefficient matrix B2 is drawn from
the posterior full conditional distribution

P(B2|Y,W, x, B1, �1, �2, α, δ) ∝ P(B2)P(Y,W|x, B1, B2, �1, �2, α, δ)

∝ exp
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where
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Sampling Wt . The auxiliary covariance matrices Wt , t = 1, . . . , T , are drawn from
the posterior full conditional distribution

P(Wt |Y, x, B1, B2, �1, �2, ν, α, δ) ∝ P(Y,W|x, B1, B2, �1, �2, ν, α, δ)

∝ ∣∣Wt
∣∣− n+ν+n+1+n−1

2 exp
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2
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where

W = �1 + (Yt − Mt )�
−1
2 (Yt − Mt )

′, ν = ν + 2n − 1.

Sampling �1. Given a Wishart prior, the posterior full conditional distribution for
�1 is conjugate and obtained as follows:
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P(�1|W, ν) ∝ P(�1|γ )P(W|�1, ν)
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∣∣
κ1−n−1

2 exp
(
− 1

2
tr

(
�1�1

)) T∏

t=1

∣∣�1

∣∣ ν+n−1
2 exp

(
− 1

2
tr

(
�1W

−1
t

))

∝ ∣∣�1

∣∣
(κ1+T (ν+n−1))−n−1

2 exp
(
− 1

2
tr

(
�1�1 +

T∑

t=1

[W−1
t ]�1

))

∝ Wn(�1, κ1)

where
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, κ1 = κ1 + T (ν + n − 1).

Sampling �2. Given an inverse Wishart prior, the posterior full conditional distribu-
tion for �2 is conjugate. Using the properties of the Kronecker product and of the
vectorization and trace operators, we obtain

P(�2|Y, x, B1, B2,W, α, δ) ∝ P(�2)P(Y,W|x, B1, B2, �2, α, δ)
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where we defined S2 = ∑T
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t (Yt − Mt ) and

�2 = �2 + S2, κ2 = κ2 + Tn.

Sampling ν. Combining the prior distribution and the likelihood in Eqs. (19)–(21),
one gets

P(ν|Y, x, B1, B2, �1, �2, α, δ) ∝ P(ν)P(Y|x, B1, B2, �1, �2, ν, α, δ)
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where

aν = aν bν =
[ 1

bν

+ 1

2

T∑

t=1

log
(∣∣In + �−1

1 (Yt − Mt )�
−1
2 (Yt − Mt )

′∣∣
)]−1

.

We sample from this distribution using an adaptive RWMH step with truncated
lognormal proposal distribution [5, 6].
Sampling α and δ. Combining the prior distribution and the likelihood in Eqs. (20)–
(21) one gets

P(α, δ|Y, x, B1, B2,W, �2) ∝ P(α)P(δ)P(Y|x, B1, B2,W, �2, δ, α)

∝ αaα−1 exp(−α/bα) exp(−(δ − μ
δ
)2(2σ 2
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)))

We sample from this distribution using an adaptive RWMH step [5, 6, see] with
lognormal proposal for the parameter α. Let η = (logα, δ)′ the value of the MCMC
chain the iteration ( j − 1), the candidate is generated as follows:

η∗ = η( j−1) + λ( j)Chol(S( j−1))ε( j), ε( j) ∼ N(0, I2) (25)

and η( j) = η∗ with probability ρ( j) = min(1, r ( j)), where r ( j) = and η( j) = η( j−1)

with probability 1 − ρ( j). The updating scheme for the adaptation parameters is as
follows

log λ( j) = log λ( j−1) + γ ( j)(ρ( j) − ρ∗) (26)

μ( j) = μ( j−1) + γ ( j)(η − μ( j)) (27)

ϒ( j) = ϒ( j−1) + γ ( j)((η − μ( j))(η − μ( j))′ − ϒ( j−1)) (28)

where γ ( j) = C/jκ with κ = 0.65, and the target acceptance rate is ρ∗ = 0.30.
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A Flexible Matrix-Valued Response
Regression for Skewed Data

Hossein Baghishani and Jamil Ownuk

Abstract Newly applied situations generate data with complex structures in which
both response and explanatory variables are three-way/matrix-valued. In real appli-
cations, outliers usually contaminate matrix-valued data. This chapter introduces a
new flexible family of matrix-variate distributions that includes the matrix normal
distribution as a particular member. By considering the introduced distribution for
the error term, we develop a regression model for skewed matrix-valued responses
with covariates that can be either a scalar, a vector, or a matrix. We extend the pro-
posed matrix-variate regression using the envelope methodology to construct a more
parsimonious parameterized model. The model fit is illustrated and compared with
a new matrix-variate skew-normal model, as well as a matrix-variate normal model,
on both simulated and real examples.

1 Introduction

In the framework of regression models, matrix-valued (three-way) responses are
commonly observed in various applications when multivariate responses are mea-
sured on different occasions. Examples include:

• Data from crossover designs;
• Longitudinal multivariate responses;
• Multivariate growth curve data;
• Imaging data
• Multivariate temporal and spatial data, as well as spatio-temporal data.

The application we are considering here is related to a study on twin crossover
bioassay [31], where the response can be treated as a matrix-valued random variable.
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Modeling matrix-valued data has received a lot of attention recently. Considering
applications with only matrix-valued covariates, we can refer to [9–11, 24, 27, 32].
For dealing with matrix-valued responses, we can mention the works of [8, 12, 22,
23, 30].

In most of the proposed models, it is assumed that the error term follows a matrix-
variate normal (MatN) distribution. However, such an assumption is often violated
due to the non-symmetric/skewed errors and the presence of outliers in the data. There
are a few works on modeling skewed matrix data. For example, [15, 18] developed
four skewed matrix-variate distributions. References [16, 17] also proposed using
the skewed distributions in a class of mixturemodels for clustering and classification.
Other related works include [1, 21, 33].

Introducing relevant regression models for dealing with skewed matrix-valued
data is relatively limited in the literature. To fill this gap, we propose a regression
model for skewed matrix-valued responses with covariates that can be either a scalar,
a vector, or a matrix. To this end, we first develop a new flexible matrix-variate distri-
bution by extending the recently introduced univariate distribution of [26], which is
named unimodal-bimodal normal (UBN). The matrix-variate UBN (MatUBN) dis-
tribution incorporates skewness as well as other flexible features such as bimodality;
it also includes the MatN distribution as a particular member. Following [12], we
also develop an envelope extension of the regression model. By applying the enve-
lope method, when the matrix-variate dimension is large, we can achieve dimension
reduction in the analysis by excluding redundant information, leading to substantial
efficiency gains in estimation.

The remainder of this chapter is laid out as follows. In Sect. 2, we present a detailed
background as well as construct the MatUBN distribution. Section3 introduces the
new class of matrix variate regression model incorporating a skewed error term with
a MatUBN distribution. Furthermore, the development of envelope methods for the
proposed matrix-variate regression is exhibited. A simulation study and a real data
application displaying the benefit of the proposed model are discussed in Sects. 4 and
5. Finally, Sect. 6 achieves some conclusions and possible avenues for future work.

2 Background

Generally, we suppose that the data takes the form of a matrix with r rows (represent-
ing occasions) and m columns (representing variables) for each subject. Therefore,
we have an r × m observed matrix for each subject.

Matrix-variate Normal Distribution

The MatN distribution is the most well known among the matrix-variate distribu-
tions, and its different properties, as well as parameter estimation, are thoroughly
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reviewed in the literature ([13, 25]). A random matrix X of dimension r × m, with
the realization X , follows a MatN distribution with parameters μ, �1 and �2 if its
probability density function is as

f (X|μ,�1,�2) = 1

(2π)
rm
2 (det�1)

m
2 (det�2)

r
2

e− 1
2 tr{�−1

1 (X−μ)�−1
2 (X−μ)′},

where μ is an r × m location (mean) matrix, �1 is an r × r symmetric and positive
definite scalematrix for the rowsofX,�2 is anm × m symmetric andpositive definite
scale matrix for the columns of X and det as well as tr(·) mean the determinant and
trace operations, respectively. We denote the MatN distribution by Nr,m (μ,�1,�2).
The MatN distribution of dimension r × m is a special case of the rm-dimensional
normal distribution when its covariance matrix is separable in the form �2 ⊗ �1 in
which ⊗ denotes the Kronecker product. Therefore, it can be confirmed that

vec(X) ∼ Nrm(vec(μ),�2 ⊗ �1)

iff X ∼ Nr,m (μ,�1,�2), where vec(·) denotes the vectorization operator.
If X ∼ Nr,m (μ,�1,�2) and A is any constant matrix with proper dimension,

then some useful properties of the MatN distribution, as given in [20], are as follows:

(1) X′ ∼ Nm,r
(
μ′,�2,�1

)
.

(2) Let covc(X) = E[(X − E[X]) (X − E[X])′] be the covariance matrix over the
columns ofX and let covr (X) = E[(X − E[X])′ (X − E[X])] be the covariance
matrix over the rows of X. Hence, if cov(vec(X)) has the Kronecker structure,
then

covc(X) = tr
(
�2

)
�1, covr (X) = tr

(
�1

)
�2.

Consequently, we also call �1 and �2 the column and row covariance matrices
of X, respectively.

(3) E[(X − E[X])A (X − E[X])′] = tr
(
A′�2

)
�1, A ∈ R

m×m

(4) E[(X − E[X])′ A (X − E[X])] = tr
(
�1A′)�2, A ∈ R

r×r .

In the context of matrix-valued data analysis, the MatN distribution is extensively
applied. However, there is a lack of skewedmatrix-variatemethodology in the regres-
sion framework. In the following, we will develop a flexible skewed matrix-variate
distribution based on the UBN distribution. We first briefly introduce the univariate
UBN distribution.

Unimodal–bimodal Normal (UBN) Distribution

The UBN distribution, introduced by [26], is a generalized version of the normal dis-
tribution that can account for skewness and bimodality. This distribution ismore flex-
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ible than the normal distribution andmany of its generalizations. A univariate random
variable Z follows a standard UBN distribution, denoted by Z ∼ UBN(0, 1, k, a),
when its probability density function could be written as

f (z|k, a) = ck,ae
k|z|φ (z − a) z ∈ R,

where k ∈ R and a ∈ R are the shape parameters, c−1
k,a = e

k2

2
(
eka�(k + a) + e−ka�

(k − a)), and φ(·) as well as �(·) denote the density and distribution functions of
standard normal distribution, respectively. The first and second moments of Z are
given by

E(Z) = ek,a = (k + a) eka� (k + a) − (k − a) e−ka� (k − a)

eka� (k + a) + e−ka� (k − a)

E(Z2) = e2k,a = (1 + (k + a)2)eka� (k + a) + (1 + (k − a)2)e−ka� (k − a) + 2ke−kaφ (k − a)

eka� (k + a) + e−ka� (k − a)
.

When a �= 0, the distribution is skewed; for k = a = 0, we will have a normal dis-
tribution.

Skewed Matrix-Variate UBN (MatUBN) Distribution

To construct the matrix-variate UBN distribution, we assume that rm independent
random variables Zi j follow an identical UBN(0, 1, k, a) distribution. Therefore,
the random matrix Z = (Z1, Z2, ..., Zm) of dimension r × m has the probability
density function as

f (Z) = �r
i=1�

m
j=1 f (zi j ),

where, for j = 1, . . . ,m, Z j = (Z1 j , Z2 j , . . . , Zr j )
′. In a matrix notation, it could

be shown that

f (Z) = crmk,a (2π)−
rm
2 ektr{J′

r×m |Z|}e− 1
2 tr{(Z−aJr×m )(Z−aJr×m )′}, (1)

where k and a are the shape parameters, Jr×m is an r × m matrix of ones, and | · |
represents the elementwise absolute value of a matrix or a vector.

The proof of the following proposition is easily achieved by using the same argu-
ments for the given results of the MatN distribution.

Proposition 1 If the random matrix Z has the probability density given in (1), for
any constant matrix A with proper dimension, we have
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E[Z] = ek,aJr×m

covc(Z) = vk,a tr
(
Im×m

)
Ir×r

covr (Z) = vk,a tr
(
Ir×r

)
Im×m

E[(Z − E[Z])A (Z − E[Z])′] = vk,a tr
(
A′)Ir×r ,A ∈ R

m×m

E[(Z − E[Z])′ A (Z − E[Z])] = vk,a tr
(
A′)Im×m,A ∈ R

r×r ,

where vk,a = e2k,a − (ek,a)2 and Ir×r is an r × r identity matrix.

Now, we can construct the MatUBN distribution. Let X = �
1
2
1Z�

1
2
2 + μ, where

μ ∈ R
r×m , �1 and �2 are r × r and m × m positive definite scale matrices, respec-

tively, and �
1
2 means the square root of matrix �. Hence, X follows a MatUBN

distribution and has the following probability density:

f (X|μ,�1,�2) = crmk,ae
ktr

{
J′
r×m

∣
∣
∣
∣�

− 1
2

1 (X−μ)�
− 1

2
2

∣
∣
∣
∣

}

(2π)
rm
2 (det�1)

m
2 (det�2)

r
2

×

e
− 1

2 tr

{
�−1

1

(
X−μ−a�

1
2
1 Jr×m�

1
2
2

)
�−1

2

(
X−μ−a�

1
2
1 Jr×m�

1
2
2

)′}

, (2)

where k and a are the shape parameters and μ is the location matrix. Furthermore,
according to Proposition 2 in the following, �1 and �2 could be interpreted as
column and row covariance matrices. For a = 0, the distribution is symmetric and
asymmetric otherwise. TheMatN distribution is a special case of theMatUBN family
when k = a = 0. We denote this distribution by MatUBN(μ,�1,�2, k, a).

Proposition 2 For the randommatrixX ∼ MatUBN (μ,�1,�2, k, a) and any con-
stant matrix A with proper dimension, we have

E[X] = ek,a�
1
2
1 Jr×m�

1
2
2 + μ

covc(X) = vk,a tr
(
�2

)
�1

covr (X) = vk,a tr
(
�1

)
�2

E[(X − E[X])A (X − E[X])′] = vk,a tr
(
A′�2

)
�1,A ∈ R

m×m

E[(X − E[X])′ A (X − E[X])] = vk,a tr
(
�1A′)�2,A ∈ R

r×r .

Interestingly, a multivariate version of UBN (MUBN) distribution could be
obtained when m = 1. In this case, the corresponding probability density of vec-
tor X is

f (x) = crk,ae
kJ′

r×1

∣
∣
∣�− 1

2 (x−μ)

∣
∣
∣

(2π)
r
2 (det�)

1
2

e
− 1

2

(
x−μ−a�

1
2 Jr×1

)′
�−1

(
x−μ−a�

1
2 Jr×1

)

, (3)
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Fig. 1 Plots of the MUBN density for μ = 0, vech (�) = (1, 0.5, 1)′ and some selected values
for shape parameters: (a) k = −1 and a = 4; (b) k = −2 and a = −2; (c) k = −2 and a = 0; (d)
k = 0 and a = 0

where k and a are the shape parameters, μ is the location vector of length r and �

is the r × r positive definite scale matrix. We denote it by MUBN(μ,�, k, a).

Proposition 3 For X ∼ MUBN (μ,�, k, a) we have

E[X] = ek,a�
1
2 Jr×1 + μ

E[(X − E[X]) (X − E[X])′] = vk,a�.

Figure1 shows some of the possible surfaces of a bivariate UBN density for
selected values of the parameters. The figure illustrates the appropriate flexibility
of the distribution. Similar to the MatN distribution, an attractive property of the
MatUBN distribution is its close relationship to the MUBN, presented in the follow-
ing proposition.

Proposition 4 If the random matrix X ∼ MatUBN (μ,�1,�2, k, a), we have

vec(X) ∼ MUBN(vec(μ),�2 ⊗ �1, k, a).
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3 Proposed Regression Model

Our goal here is to develop a regression model for skewed matrix-valued responses
and a set of covariates. Let Y i ∈ R

r×m be the observed matrix for each subject,
with i = 1, . . . , n. The non-stochastic covariates can be matrix-valued X i ∈ R

p1×p2 ,
vector-valued X i ∈ R

p, or scalar. The first approach that could come to mind is
using the vec operator to stack the columns of a matrix and introduce a standard
vector-variate regression:

vec(Y i ) = μ + γ vec(X i ) + εi , (4)

whereμ ∈ R
rm , γ ∈ R

rm×p1 p2 and ε ∈ R
rm is the error vectorwith covariancematrix

� ∈ R
rm×rm . When imposing a sparsity assumption is not applicable, such a model

may be over-parameterized and hard to interpret. [12] proposed a comparably parsi-
monious model that reflects the underlying structure of the matrix-variate response
and covariates as follows:

Y = μ + β1Xβ ′
2 + ε, (5)

where μ ∈ R
r×m is the overall mean, β1 ∈ R

r×p1 and β2 ∈ R
m×p2 are the row and

column coefficient matrices, which are uniquely defined up to a proportionality con-
stant, and ε ∈ R

r×m is the zero-mean matrix-variate normally-distibuted random
error with the covariance matrix cov(vec(ε)) = �2 ⊗ �1, that is assumed be inde-
pendent of X .

The proposed model of [12] provides a general framework for regression mod-
eling, including simple regression, multiple regression, and multivariate multiple
regression as special cases. It also has significant advantages over the vectorized
model (4):

• We will lose dependency information of a matrix-variate response by vectorizing
the response or modeling the row or column vectors separately. Therefore, we will
fail to take the underlying data structure into account. Model (5) avoids the issue
by applying the matrix-variate structure of the data.

• The covariances of the column vectors of ε are all proportional to �1 and the
covariances of the row vectors of ε are all proportional to �2. These relations are
desirable for matrix-valued variables, especially for multivariate repeated mea-
sures and multivariate longitudinal data.

• An essential advantage, especially when the matrix dimensions of response
and covariates are relatively high, is reducing the number of parameters from
rmp1 p2 + rm(rm+1)

2 to rp1 + mp2 − 1 + ( r(r+1)
2 + m(m+1)

2 − 1). This results in a
significant efficiency gain.

• Model (5) can be implemented when the sample size n is smaller than the dimen-
sion of vec(X), while model (4) is not useful in such a case without forcing
additional constraints.
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It is common to assume that the error term is zero-mean; however, this assumption
may not be appropriate for skewed data. Accordingly, we propose a new setting
proper for the skewed matrix-valued response by incorporating a MatUBN error
term in model (5).

Model Formulation

To develop a skewed matrix-variate regression model, we assume that the error term
in (5) has a MatUBN distribution with zero location μ = 0, scale matrices �1 and
�2, and shape parameters k and a. Then, ε has covariance matrix cov(vec(ε)) =
vk,a�2 ⊗ �1, where as aforementioned, �1 = covc(ε)

vk,a tr(�2)
and �2 = covr (ε)

νk,a tr(�1)
are called

the column and row covariance matrices of ε. Note that E(ε) = ek,a�
1
2
1 Jr×m�

1
2
2 ,

which is not generally zero.
The column coefficient matrix β2 is restricted to have unit Frobenius norm and

positive element in its first row and column for identifiability. As [12] have noticed,
various constraints essentially change the scale of the parameter matrices and do
not affect model fitting or prediction. Moreover, we need �2 to have unit Frobenius
norm and positive first diagonal element to identify the two covariance matrices �1

and �2 uniquely. Note that if no constraints are given on β2 and �2, the Kronecker
products β2 ⊗ β1 and �2 ⊗ �1 are still identifiable.

For fitting the model, we use the maximum likelihood (ML) approach. The log-
likelihood of the model is given by

L = rm log(ck,a) + ktr

{
J′
r×m

∣∣
∣
∣�
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2
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Y − μ − β1Xβ ′

2

)
�

− 1
2

2

∣∣
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∣

}

− rm

2
log(2π) − m

2
log (det�1) − r

2
log (det�2)

−1

2
tr
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�−1

1

(
Y − μ − β1Xβ ′

2 − a�
1
2
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1
2
2

)
�−1

2

(
Y − μ − β1Xβ ′

2 − a�
1
2
1 Jr×m�

1
2
2

)′}
.

Unfortunately, closed-form ML estimators of β1, β2, �1, and �2 do generally not
exist. [12] proposed a two-step iterative algorithm to compute the ML estimators
for their model. However, it is not possible to develop such an algorithm for our
model. Specifically, for the known β2 and �2 in the MatN model, closed-form esti-
mators for the remaining parameters could be determined. It is not the case for the
MatUBN model due to its two additional shape parameters as well as the presence
of the absolute value function in the likelihood. The total number of parameters in
our model isT = rm + rp1 + mp2 + r(r+1)

2 + m(m+1)
2 + 2.When the dimensions of

parameters are not large, we can directly maximize the log-likelihood of the model,
supporting the normalization constraints on β2 and �2. To do this, we use the BFGS
quasi-Newton numerical optimization method (proposed by [2, 14, 19, 29] inde-
pendently), implemented in the optim function of R package ([28]). Moreover, to
approximate the standard errors of ML estimates of parameters, we can obtain them
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by taking the square roots of the diagonal elements of the observed information
matrix evaluated at ML estimates. Such a matrix can also be obtained numerically
using software packages such as the optim function. However, these estimates of
standard errors could not be efficient due to propagating errors in numerical approx-
imation of second derivatives. Hence, we use a bootstrap approach by treating the
covariates as non-stochastic and resampling from the residuals of the fitted regression
model to compute standard errors of the ML estimates of parameters.

The existence of theML estimators with theMatN error term requires mild condi-
tions [12], which implies the model can be directly applied to the high-dimensional
setting where n < dim(vec(X)). Given the straightforward generalized structure of
our model, it would be easy to show that a similar result is established for the skewed
matrix-variate regression model.

With high dimension X and Y , T is large, and, consequently, we will lose the
efficiency in fitting the model. To address the issue, we apply the envelope approach
for the introduced model.

Extending the Model Using Envelope Formulation

The idea of envelope methodology for parsimonious parameterizations and pro-
ducing substantial gains in efficiency was introduced by [5] in a multivariate linear
regressionmodel. Furthermore, they illustrated that these gainswould influence other
tasks such as prediction. In effect, envelopes separate the relevant and irrelevant parts
of the responses and then improve efficiency. As a few related works, we can suggest
studying [3, 4, 6, 7].

As inherited from the multivariate linear regression model, the motivation for
enveloping in the matrix-variate regression stems from the fact that there may be
linear combinations of the rows or columns of Y whose distribution is invariant
to changes in X . [5] called such linear combinations X-invariants. To establish the
envelope structure for the skewed matrix-variate regression model, we will use the
similar notations and definitions employed by [12].

Let span(B) denote the subspace of Rr that is spanned by the columns of matrix
B ∈ R

r×u . Let also PB = B(B′B)†B′ is the projection onto span(B) and QB = Ir −
PB is the orthogonal projection, where “†” denotes the Moore–Penrose inverse. It
is said that a subspace S ⊂ R

r is a reducing subspace of M ∈ R
r×r whenever M is

decomposed by S as M = PSMPS + QSMQS, where PS is the projection onto S
and QS is the orthogonal projection. In this case, we say that S reduces M.

Ding and Cook [12] extended enveloping method to the matrix-variate regression
by allowing the possibility that there are X-invariants in both the rows and the
columns of Y . To this end, they suppose that there are subspaces SL ⊂ R

r and
SR ⊂ R

m so that

(a) QSL
Y |X ∼ QSL

Y & (b) covc(PSLY,QSL
Y |X) = 0 (6)
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(a) YQSR
|X ∼ YQSR

& (b) covr (YPSR ,YQSR
|X) = 0. (7)

Let B1 = span(β1) and B2 = span(β2). Conditions (6a) and (7a) result in the
marginal distributions of QSL

Y and YQSR
are not dependent on X . This is equiv-

alent to B1 ⊂ SL and B2 ⊂ SR . Conditions (6b) and (7b) imply that QSL
Y is not

affected by changes in X through a linear association with PSLY and that changes in
X do not change YQSR

through a linear association with YPSR . Moreover, condi-
tion (6b) holds iff PSL�1QSL

= 0, which is equivalent to requiring that SL reduces
�1, and hence,�1 = PSL�1PSL + QSL

�1QSL
. Similarly,SR reduces�2; therefore,

�2 = PSR�2PSR + QSR
�2QSR

.
The intersection of all reducing subspaces SL of �1 that contain B1 is called the

�1-envelope of B1 and denoted by E�1(B1) ≡ E1. As well, the intersection of all
reducing subspaces SR of �2 that contain B2 is the �2-envelope of B2, denoted as
E�2(B2) ≡ E2. The subspaces E�1(B1) and E�2(B2) are the fundamental constructs
that provide row and column reduction of Y and are uniquely defined. Indeed, they
indicate that changes in X change Y only through PE1YPE2 , and they take the
promise of a much better estimation of β1 and β2.

We can now use E�1(B1) and E�2(B2) to apply the envelope methodology
to reparametrize the skewed version of model (5). Let L ∈ R

r×u1(u1 ≤ r) and
R ∈ R

m×u2(u2 ≤ m) be semiorthogonal bases ofE�1(B1) andE�2(B2), respectively,
where u1 and u2 are the known dimensions of the corresponding row and column
envelopes. There are two coordinate matrices η1 ∈ R

u1×p1 and η2 ∈ R
u2×p2 such that

β1 = Lη1 and β2 = Rη2. By letting (L,L0) and (R,R0) to be orthogonal matrices,
the model (5) with the MatUBN error term can be reparameterized as the following
envelope model:

Y = μ + Lη1Xη′
2R

′ + ε, (8)

where�1 = L�1L′ + L0�10L′
0,�2 = R�2R′ + R0�20R′

0, and� j > 0 and� j0 >

0, for j = 1, 2, are unknown. A similar reparameterization is used for � j . The total
number of parameters in model (8) is rm + u1 p1 + u2 p2 + r(r+1)

2 + m(m+1)
2 . We

can see that the envelope model (8) further reduces (r − u1)p1 + (m − u2)p2 + 2
parameters from model (5).

To fit the proposed envelope model, we apply the same approach performed for
fitting model (5).

4 Simulation Study

To assess the performance of the proposed skewed matrix-variate regression (5) and
its extended envelopematrix-variate regression (8) in the presence of outliers/skewed
matrix-valued data, in this section, we designed a simulated example. We compared
the produced results with the results of the regression model under the MatN error
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term. Moreover, to have a more relevant comparison with a competing model that
could take into account the skewness of the data, we introduced a newmatrix-variate
skew-normal (MatSN) distribution, denoted by MatSN(μ,�1,�2, b), with the fol-
lowing probability density function:

f (X|μ,�1,�2, b) = 2φr×m(X;μ,�1,�2)�(b′�− 1
2

1 (X − μ) �
− 1

2
2 1m),

where μ is an r × m location matrix, �1 is an r × r symmetric and positive definite
scale matrix for the rows ofX, �2 is anm × m symmetric and positive definite scale
matrix for the columns of X, b is an r × 1 skewness vector, φr×m (X;μ,�1,�2)

represents the probability density function of a MatN random variable, �(·) is the
distribution function of the standard normal distribuation, and 1m is an m × 1 vec-
tor of ones. For developing related matrix-variate skew-normal regression and its
extended envelope models, we also assumed that the error term in (5) and (8) has a
MatSN(0,�1,�2, b).

Similar to [12], we simulated data based on model (8), considering a MatUBN
error term, using the following settings:

r = m = p1 = p2 = 5, u1 = u2 = 2, k = −1, a = 4

�1 = σ 2Iu1 , �10 = σ 2
0 Ir−u1 , �2 = σ 2Iu2 , �20 = σ 2

0 Im−u2

σ 2 = 0.5, σ 2
0 = 2.5.

We generated the semiorthogonal matrices L and R using orthogonalizing matrices
of independent standard uniform random variables. We also generated the elements
in μ, η1, η2 as well as covariates from independent standard normal distributions.
Finally, we considered three different sample sizes n = 50, 100, 200, and, for each
sample size, 100 replicates were simulated.

We fitted six models to the data based on (5) and (8): two assuming the error
term has the MatN distribution, two assuming the error term follows the MatSN
distribution, and two allowing the error term has the MatUBN distribution. We set
the envelope dimensions to the true dimensions u1 = u2 = 2 for model (8). To eval-
uate the estimation accuracy of the coefficient parameters as well as the covariance
estimators in each model, we computed the following criteria using the Frobenius
norm:

‖β̂1 ⊗ β̂2 − β1 ⊗ β2‖F, ‖�̂1 ⊗ �̂2 − �1 ⊗ �2‖F.

The average estimation errors were calculated over the 100 random samples for each
sample size under each model and are depicted in Fig. 2. Panels (a) and (b) of the
figure show the average estimation errors forβ2 ⊗ β1 and�2 ⊗ �1, respectively. The
envelope approach, excluding theMatNmodel, improved estimation accuracy in both
regression coefficients and covariances for all sample sizes, compared to the matrix-
variate regression model without enveloping, by effectively removing X-invariants
from estimation. The MatN model without enveloping has a better performance
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in estimating only regression coefficients. Skewed MatSN and MatUBN envelope
models are more efficient in parameter estimation than the envelope regression with
MatN error term. This efficiency gain is more evident in estimating covariances. The
same results hold for modeling without enveloping in estimating covariances. The
improvement of the envelope estimation in the Kronecker product of covariances
is substantial, while it is moderate for the regression coefficients. Furthermore, the
MatUBNmodel is superior to the MatSNmodel in estimating covariances, while the
result is reversed for the regression coefficients.

5 Applications

We applied our proposed models to analyze multivariate bioassay data regarding a
cross-over assay of insulin based on rabbit blood sugar concentration ([31]). We also
compared the results with the ones from theMatN regression. A thorough analysis of
these data is reported in the Supplementary file of [12] under their proposed models.

There are four groups of animals with nine rabbits in each group and different
treatments assigned to the groups. So the sample size is 36. Let K1 and K2 express
the low and high dose levels, 0.75 units and 1.5 units of the standard treatment; let
also T1 and T2 are the same two dose levels of the test treatment. The treatment
assignments are given in Table18 of Supplementary of [12]. The blood sugar of
each rabbit was measured at 0, 1, 2, 3, 4, and 5h after injection of the insulin dose
each day. Similar to [12], we also considered the percentage decreases of the blood
sugar concentration at 1, 2, 3, 4, and 5h relative to the initial concentration at 0h.
Therefore, for each rabbit, we have a measured matrix Y ∈ R

5×2. The two columns
show the percentage decreases under two different treatments on the first and second
days, and the rows show the hourly percentage decreases each day. Treatment effects
and dose levels also indicate covariates in the data, defined as a matrix X ∈ R

2×2

for each rabbit, whose rows represent standard and the test treatments, and columns
show day 1 and day 2.

We fitted the two following models on the data

Y = μ + β1Xβ ′
2 + ε (9)

Y = μ + Lη1Xβ ′
2 + ε, (10)

where μ ∈ R
5×2, β1 ∈ R

5×2, β2 ∈ R
2×2, L ∈ R

5×1, and η1 ∈ R
1×2. We assumed

that the error term ε ∈ R
5×2 is distributed as a MatUBN, MatSN or MatN with

two covariance matrices �2 ∈ R
2×2 and �1 = L�1L′ + L0�10L′

0 ∈ R
5×5 for both

models, in which�2 > 0 and�10 > 0 are unknown. The elements in the upper-right
corner of β2 were set to zero because blood sugar concentration levels observed on
the first day cannot be affected by the treatment received on the second day. Tables1
and 2 describes the estimation results for models (9) and (10), respectively. We
reported estimates (ESs) and estimated standard errors (SEs) for each element in
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Fig. 2 Average estimation errors of (a) β2 ⊗ β1 and (b) �2 ⊗ �1 in models (5) with MatUBN
( ), MatN ( ) MatSN ( ) and (8) with MatUBN ( ),
MatN ( ) and MatSN ( )
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Table 1 ES and SE of the parameters in model (9) considering MatUBN, MatN, or MatSN dis-
tributed errors

MatUBN MatSN MatN

ES SE ES SE ES SE

vec(β̂1) −5.451 2.404 −9.196 3.346 −7.677 5.848

−12.837 2.220 −19.304 2.936 −16.232 9.069

−19.918 1.897 −29.182 2.281 −24.809 21.173

−13.721 3.044 −23.632 3.006 −19.850 18.855

−3.858 2.553 −8.581 3.734 −7.406 8.443

−5.499 2.423 −9.031 3.320 −7.468 5.765

−11.520 2.256 −19.077 2.990 −15.867 9.304

−18.189 2.050 −29.533 2.378 −25.212 21.845

−11.495 3.010 −23.401 3.009 −19.546 18.967

−1.069 2.451 −7.949 3.701 −6.593 8.160

vec(β̂2) −2.219 0.276 −9.588 0.431 −7.285 8.353

−1.074 0.300 −8.933 0.452 −6.505 9.282

−1.206 0.354 −0.743 0.215 −0.861 1.714

vech(�̂1) 19.960 4.313 12.328 2.351 8.248 5.103

16.337 3.785 11.375 1.966 7.600 4.471

13.316 3.336 9.368 1.856 6.300 3.654

7.213 3.266 4.476 2.073 3.067 2.287

2.166 2.103 2.021 1.698 1.408 1.423

22.690 4.792 17.480 2.361 11.644 6.586

19.742 4.316 15.384 1.736 10.296 5.668

11.109 3.410 8.277 2.010 5.562 3.383

2.680 2.550 4.366 1.855 2.935 2.016

35.735 6.589 23.956 1.957 16.080 8.998

28.892 4.597 17.866 1.888 11.997 6.948

12.600 2.978 10.675 1.818 7.150 4.093

45.541 7.434 29.101 2.724 19.511 11.694

22.623 4.383 18.584 2.342 12.467 7.235

19.872 4.442 19.643 2.816 13.186 8.062

vech(�̂2) 55.881 11.118 4.838 1.418 7.226 6.559

11.095 4.778 1.271 0.690 1.902 2.094

55.185 11.130 4.764 1.386 7.135 6.057

AIC 2458.685 2485.43 2483.74

the tables for all proposed regression models. For computing SEs, we considered
100 bootstrap samples. In each bootstrap sample, observations are constructed as
Y ∗ = Ŷ + E∗, where Ŷ are the fitted values from the original model, and E∗ are the
resampled residuals. Direct computing of SEs of estimates ofβ1 and�1 inmodel (10)
is one of the advantages of the bootstrap method. According to the AIC criterion, the
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Table 2 ES and SE of the parameters in model (10) considering MatUBN, MatN, or MatSN
distributed errors

MatUBN MatSN MatN

ES SE ES SE ES SE

vec(β̂1) 19.701 4.278 13.170 3.550 12.018 3.203

32.370 5.507 22.075 5.365 20.145 4.761

48.998 7.674 31.862 7.807 29.077 6.870

39.093 11.044 29.055 8.051 26.515 7.149

14.138 8.338 16.011 5.130 14.611 4.715

17.944 4.426 12.821 3.512 11.700 3.246

29.483 5.681 21.491 5.248 19.612 4.835

44.628 7.965 31.019 7.694 28.307 7.001

35.607 10.822 28.285 7.870 25.812 7.138

12.877 8.041 15.587 5.081 14.224 4.709

vec(β̂2) −3.345 0.290 0.918 1.381 1.005 1.608

0.582 0.286 0.453 1.409 0.495 1.634

0.619 0.276 0.706 0.332 0.773 0.305

vech(�̂1) 20.422 8.407 8.013 2.270 8.098 2.452

18.678 8.263 7.671 2.123 7.753 2.303

14.968 7.538 6.340 2.115 6.408 2.238

5.756 4.756 2.625 1.965 2.653 2.015

0.169 2.522 0.548 1.442 0.554 1.462

29.957 12.343 12.423 3.363 12.555 3.702

28.082 12.049 11.571 3.317 11.694 3.611

12.812 7.234 5.808 2.757 5.869 2.925

1.325 3.366 1.827 1.898 1.847 1.926

48.525 19.672 18.268 5.391 18.463 5.942

30.798 13.862 12.286 4.609 12.417 5.003

7.683 5.756 5.093 2.890 5.148 3.021

41.124 18.035 18.061 5.944 18.254 6.564

18.389 8.425 10.038 3.883 10.145 4.243

19.142 7.849 11.346 4.054 11.467 4.523

vech(�̂2) 25.611 9.313 7.653 2.174 7.572 2.385

5.517 2.510 1.694 0.894 1.677 0.912

23.267 8.492 7.025 2.110 6.951 2.327

AIC 2472.689 2489.454 2487.454

best-selected model is (9) with the MatUBN error term. Furthermore, in comparison
to the fit from the model without enveloping, the envelope model (10) shows smaller
standard errors for the most elements (Tables1 and 2).



184 H. Baghishani and J. Ownuk

6 Concluding

In this manuscript, we introduced the skewedMatUBN regression that could bemore
efficient than the matrix regression with a normal-distributed error when the data are
skewed or have outliers. Then, we applied the envelope methodology to construct
a further parsimonious parametrized model for skewed matrix-valued responses.
We also presented a new matrix-variate skew-normal model as a relevant compet-
ing model. Both proposed models are flexible for modeling skewed data, while the
MatUBN model could also be applied to bimodal responses. Computed numerical
results explain that the proposed skewed models are preferred.

However, our MatUBNmodel has disadvantages: (i) Due to the absolute function
in the kernel of MatUBN density, designing an efficient fitting algorithm similar to
the one proposed by [12] in the normal matrix-variate regression is difficult if not
possible. Therefore, developing an efficient estimation method for the model could
be interesting. (ii) We did not investigate the asymptotic properties of the proposed
estimators. It could open avenues for future work.

Acknowledgements The authors wish to thank two anonymous reviewers for careful reading and
constructive suggestions, leading to this improved version of the book chapter.
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Multivariate Functional Singular
Spectrum Analysis: A Nonparametric
Approach for Analyzing Multivariate
Functional Time Series

Jordan Trinka, Hossein Haghbin, and Mehdi Maadooliat

Abstract In this chapter, we developmultivariate functional singular spectrum anal-
ysis (MFSSA) over different dimensional domains with the goal of decomposing a
multivariate functional time series (MFTS) into interpretable partitions such asmean,
periodic, and trend components. The approach is flexible in the sense that the MFTS
signal may be composed of functional observations such as curves and surfaces and
the offered flexibility can lead to richer signal extraction results for correlated data. In
the following, we first review (a) the singular spectrum analysis (SSA) algorithm, (b)
the functional extension of SSA (FSSA), and (c) the multivariate extension of SSA
(MSSA) where these methods serve as decomposition routines for scalar, univariate
functional, andmultivariate scalar time series data, respectively. Second,we use these
backgrounds to derive theMFSSAalgorithm. Third,we discuss two other approaches
to MFSSA known as horizontal MFSSA (HMFSSA) and vertical MFSSA (VMF-
SSA) and we find that VMFSSA gives the same decomposition results as MFSSA
due to isomorphic vector spaces. Fourth, we showcase the superior signal extrac-
tion results of MFSSA as compared to other approaches of MFTS decomposition
by way of a simulation study and real data study applications of remote sensing and
temperature data. We also developed a user-friendly R package called Rfssa used to
implement the proposed method and we developed an R Shiny web application that
can be used to further explore the algorithm.
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1 Background

One of the popular approaches in the decomposition of time series data is accom-
plished using rates of change. In this approach, the observed time series is parti-
tioned (decomposed) into informative trends plus potential seasonal (cyclical) and
noise (irregular) components.Alignedwith this principle, singular spectrumanalysis-
based approaches are model-free procedures that are commonly used as a nonpara-
metric techniques in analyzing time series. The methods are intrinsically motivated
as exploratory and model building tools rather than confirmatory procedures [6].
These algorithms do not require restrictive assumptions such as stationarity, linear-
ity, and normality. They can be used for a wide range of purposes such as trend and
periodic component detection and extraction, smoothing, forecasting, change-point
detection, gap filling, causality, and so on (see, e.g., [6, 7, 17, 19–21, 24]). The goal
of this chapter is to establish an SSA-based procedure to perform signal extraction
on time-dependent, multivariate functional data. In order to motivate the proposed
approach, we first present the univariate singular spectrum analysis (SSA) algorithm,
it’s functional extension, and the multivariate extension (not functional) and we find
that these routines serve as the building blocks of our novel method.

General Scheme of Univariate Singular Spectrum Analysis

The goal of SSA is to extract out modes of variation in time series data. It provides a
representation of the given time series in terms of rank one approximations generated
froma singular value decomposition (SVD) of a so-called trajectorymatrix [1]. These
rank one approximations are built from so-called eigentriples where an eigentriple
is defined in SSA literature as a set that contains a singular value, corresponding left
singular vector, and corresponding right singular vector that are found using the SVD
technique [6, 13]. Presently, many studies have been published with extensions and
applications of SSA. The extension to multivariate SSA (MSSA) is straightforward
[4, 5, 8, 13, 14], and an extension of SSA to a two-dimensional setting can be found
in Golyandina et al. [4] and references therein. For now, we continue on with our
review of the SSA algorithm.

Univariate Singular Spectrum Analysis Algorithm

Throughout this subsection, we consider yi ’s as elements of the Euclidean space, R.
Suppose that yN = [y1, y2, . . . , yN ]� is a realization of size N from a time series. The
basic SSA algorithm consists of four steps: Embedding, Decomposition, Grouping,
and Reconstruction. The purpose of the first step of embedding is to generate a
trajectory matrix that corresponds with the time series where the matrix can be
decomposed using SVD.
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Step 1. Embedding

This step generates a matrix by tracking a moving window of size L over the original
time series, where L is an integer called the window length parameter and 1 < L <

N/2. Embedding can be regarded as a mapping operator, T , that transfers the series,
yN , into a so-called trajectory matrix, X, of dimension L × K , defined by

X = T (yN ) = [xxx1 · · · xxxK ] ,

where K = N − L + 1 and xxx j = [
y j , y j+1, . . . , y j+L−1

]� ∈ R
L is known as the j th,

L-lagged vector for j = 1, . . . , K . Note that the trajectory matrix, X, is a Hankel
matrix which means that the elements along the anti-diagonals are equal. Indeed, the
embedding operator, T , is a one-to-one mapping fromR

N intoRL×K
H whereRL×K

H is
the space of all L × K Hankel matrices in the space of L × K real-valued matrices.
In addition, we also have that the columns of X describe time series behavior over
sub-intervals of time and we now extract out the dominant modes of variation shared
between these L-lagged vectors in the following step.

Step 2. Decomposition

In this step, an SVD for the trajectory matrix, X, is computed as

X =
r∑

i=1

√
λiuiv�

i =
r∑

i=1

Xi , (1)

where r is the rank of X,
√

λi is the i th singular value, ui ∈ R
L is the associated left

singular vector, and vi ∈ R
K is the associated right singular vector ofX. In addition,

we define the set, {√λi ,ui , vi }, as the i th eigentriple ofX, and we use the elements of
this eigentriple to construct the i th rank one elementary matrix of dimension L × K
given by Xi = √

λiuiv�
i . In the next step, we form disjoint groups of eigentriples

where the eigentriples in each group describe similar time series behavior. We then
add rank one elementary matrices together within each group where each elementary
matrix is built using the corresponding eigentriple.

Step 3. Grouping

Consider a partition of the set of indices, {1, 2, . . . , r}, into m disjoint subsets,
{I1, I2, . . . , Im}. For any positive integer q, i.e., 1 ≤ q ≤ m, the L × K matrix, XIq ,
is defined asXIq = ∑

i∈Iq Xi . Thus, by the expansion of Eq. (1), we have the grouped
matrix decomposition

X = XI1 + XI2 + · · · + XIm . (2)
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Each group in Eq. (2) should correspond to a component in the time series decompo-
sition such as mean, seasonality, trend, etc. Exploratory plots of eigentriple elements
(such as plots of singular values, left/right singular vectors, etc.) can be leveraged as
helpful tools when making decisions on how to form the disjoint groups [6]. In the
final step of SSA, we extract out a time series from each XIq .

Step 4. Reconstruction

The resulting matrices,XIq , are transformed back into the form of the original series,
yN , by the inverse operator T −1 : RL×K

H → R
N . In order to do this, it is necessary

that eachXIq is approximated by a matrix inRL×K
H . This approximation is performed

optimally in the sense of orthogonal projection ofXIq onto R
L×K
H with respect to the

Frobenius norm. Denote this projection by �H : RL×K → R
L×K
H . It is shown that

applying �H to some L × K matrix is the same as averaging of the matrix elements
over the anti-diagonals (where i + j = constant). As such, wemay define the L × K
matrix, X̃Iq = �HXIq , as the projection of XIq onto R

L×K
H and from here, we define

the q th reconstructed time series of length N as ỹqN = T −1
(
X̃Iq

)
for q = 1, . . . ,m.

We have that each ỹqN describes a mode of variation present in the original series, yN
such as mean, periodicity, etc.

It is well known that SSA does not require restrictive assumptions; however, it is
ideal to have a time series with additive components. If a time series is composed of
such additive components, then we call the series separable. Therefore, we present
tools to measure the separability of components in the following.

Separability

Let yN = [y1, . . . , yN ]� and zN = [z1, . . . , zN ]� be two time series. The weighted-
correlation (w-correlation) between yN and zN is defined as

ρ(w)(yN , zN ) =
〈
yN , zN

〉
w

‖yN‖w‖zN‖w

, (3)

where
〈
yN , zN

〉
w

= ∑N
i=1 wi yi zi , wi = min{i, L , N − i + 1}, and ‖yN‖w =√〈

yN , yN
〉
w
. We call yN and zN w-orthogonal if ρ(w)(yN , zN ) = 0 for appropri-

ate values of L (see the next paragraph for more details). Note that ỹqN , q = 1, . . . , r ,
is the reconstructed time series produced by the group, Iq , and the matrix, ρ(w) =[
ρ(w)(ỹiN , ỹ j

N )
]r

i, j=1
, is called the w-correlation matrix [6]. If ỹiN and ỹ j

N are approx-

imately w-orthogonal, then it is recommended that we perform the grouping stage of
SSA in such a way where i and j belong to different groups of indices so that we do
not mix together dissimilar modes of variation in our reconstructions. It is clear that
the w-correlation matrix can help in determining how to perform the grouping stage
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of SSA. The determination of L and the grouping parameters is essential in the SSA
algorithm and we now discuss techniques used to select values for these parameters.

Parameter Selection

There are two basic parameters in the SSA procedure: window length (L) and group-
ing parameters. Choosing improper values for these parameters yields an incomplete
reconstruction and misleading results in subsequent analysis. In spite of the impor-
tance of choosing L and grouping parameters for SSA, no ideal solution has been
proposed yet. A thorough review of the problem shows that the optimal choice of the
parameters depends on the intrinsic structure of the data and the purposes of the study
[6, 8]. However, there are several recommendations and rules that work well for a
wide range of scenarios. It is recommended to select the window length parameter,
L , to be a large integer that is multiple of the periodicities of the time series, but not
larger than N/2.

In addition, there are several methods for effective grouping. These techniques
include analyzing the periodogram, paired plot of the singular vectors, scree plot of
the singular values, and w-correlation plot; see Golyandina et al. [6] for more details.
We also note that these techniques used in parameter selection for the SSA routine
hold true for all forms of the algorithm including the functional, multivariate, and
multivariate functional versions to be discussed later. From here, we continue on
with a review of the functional extension to the SSA algorithm.

General Scheme of Functional Singular Spectrum Analysis

Functional data analysis (FDA) embodies the evaluation and exploration of data
that is comprised of functions such as curves or surfaces [23]. Functional principal
component analysis (FPCA) is a technique that is used to find the most informative
directions in a time-independent collection of functional subjects [23]. Functional
SSA (FSSA)was developed byHaghbin et al. [10] as a novel technique that is used to
decompose a time-dependent collection of functional subjects, known as a functional
time series (FTS), into mean, seasonal, trend, and noise components. FSSA works
to decompose a FTS in a similar fashion as SSA using a functional SVD (FSVD).
This method was compared with other techniques of dimension reduction of a FTS,
including dynamic FPCA (DFPCA) [16], and it was found that FSSA is the ideal
approach in terms of reconstruction accuracy of the true signal assumed to be present
in the data. Now we present the FSSA methodology.

From hereafter, we consider yN = (y1, . . . , yN ) as an FTS of length N such that
each function vector, yi : [0, 1] → R, belongs to the Hilbert space H = L2([0, 1]).
We define the inner product equipped to H as 〈x, y〉H = ∫ 1

0 x(s)y(s)ds, where
x, y ∈ H. For a positive integer k, the Hilbert space, Hk , is defined as the Carte-
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sian product of k copies of H, i.e., a length k function vector, xxx ∈ H
k , evalu-

ated at a point s = [s1, s2, . . . , sk]� ∈ [0, 1]k is a vector of length k denoted by
xxx(s) = [x1(s1), x2(s2), . . . , xk(sk)]

�, where xi ∈ H. We define the inner product
equipped toHk as 〈xxx, yyy〉Hk = ∑k

i=1〈xi , yi 〉H for xxx, yyy ∈ H
k . The norms are denoted by

‖ · ‖H and ‖ · ‖Hk in the spacesH andHk , respectively. For function vectors x ∈ H1,
and y ∈ H2, where H1 and H2 are two Hilbert spaces, we define the tensor (outer)
product corresponding to the operator x ⊗ y : H1 → H2, as (x ⊗ y)h = 〈x, h〉H1 y,
where h ∈ H1 and 〈·, ·〉H1

is the inner product equipped to H1.
For positive integers L and K , we denote HL×K as the linear space spanned by

operators Z : RK → H
L , specified by function vectors (zi, j )

j=1,...,K
i=1,...,L , where

Za =
⎛

⎝
K∑

j=1

a j z1, j , . . . ,
K∑

j=1

a j zL , j

⎞

⎠ , zi, j ∈ H, and a = [a1, . . . , aK ]
� ∈ R

K .

We call an operator Z̃ = (
z̃i, j

) ∈ H
L×K Hankel if for all i = 1, . . . , L , and j =

1, . . . , K , we have ‖z̃i, j − gs‖H = 0 for some gs ∈ H where s = i + j . The space

of such Hankel operators is denoted byHL×K
H . For two given operatorsZ1 =

(
z(1)
i, j

)

and Z2 =
(
z(2)
i, j

)
in HL×K , define

〈Z1,Z2〉F =
L∑

i=1

K∑

j=1

〈z(1)
i, j , z

(2)
i, j 〉H.

It follows immediately that 〈·, ·〉F , which defines an inner product on H
L×K . We

call 〈·, ·〉F as the Frobenius inner product of two operators in HL×K . The associated
Frobenius norm is ‖Z‖F = √〈Z,Z〉F . Before discussing the FSSA algorithm, we
present a lemma that is used in the last step of the method.

Lemma 1 Let xi ∈ H for i = 1, . . . , N. If x̄ = 1
N

∑N
i=1 xi , then

N∑

i=1

‖xi − x̄‖2
H

≤
N∑

i=1

‖xi − y‖2
H
,

for all y ∈ H.

Proof We add and subtract x̄ to obtain

N∑

i=1

‖xi − y‖2
H

=
N∑

i=1

‖xi − x̄‖2
H

+ 2
N∑

i=1

〈xi − x̄, x̄ − y〉H + N‖x̄ − y‖2
H
.

Notice that
∑N

i=1〈xi − x̄, x̄ − y〉H=0, then we have
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N∑

i=1

‖xi − y‖2
H

=
N∑

i=1

‖xi − x̄‖2
H

+ N‖x̄ − y‖2
H

≥
N∑

i=1

‖xi − x̄‖2
H

which completes the proof. �

Now we present the steps of the FSSA methodology.

Functional Singular Spectrum Analysis Algorithm

For an integer 1 < L < N/2, let K = N − L + 1 and define

xxx j = (
y j , y j+1, . . . , y j+L−1

)
(4)

to be the j th, L-lagged function vector in H
L corresponding to FTS, yN , for

j = 1, . . . , K . The following provides the FSSA procedure where the FSVD tech-
nique is applied to an operator whose range is defined by the linear span of the xxx j ’s
where such L-lagged function vectors capture FTS behavior over sub-intervals of
time.

Step 1. Embedding

Define the operator X : RK → H
L with

Xa =
K∑

j=1

a jxxx j , a = [a1, . . . , aK ]
� ∈ R

K . (5)

We call X the trajectory operator. It is easy to see that X = T yN , where T is
an invertible operator from H

N to H
L×K
H . Evaluating Xa at a given L-dimensional

vector, s ∈ [0, 1]L , is the same as the matrix product X(s)a, where X(s) is an L × K
Hankel matrix given by

X(s) = [xxx1(s) · · · xxxK (s)] .

Now we define the adjoint of X in the following proposition.

Proposition 1 The operator,X , is a bounded linear operator. If we define the oper-
ator X ∗ : HL → R

K , given by the vector

X ∗zzz = [〈xxx1, zzz〉HL , 〈xxx2, zzz〉HL , . . . , 〈xxxK , zzz〉HL ]� , zzz ∈ H
L , (6)

then X ∗ is the adjoint operator for X .

Proof The boundedness and linearity ofX is straightforward from the definition of
the operator. Now we show the form of the adjoint ofX . For a given vector, a ∈ R

K ,
and length L function vector, zzz ∈ H

L , we have
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〈Xa, zzz〉HL =
K∑

j=1

a j 〈xxx j , zzz〉HL =
L∑

i=1

K∑

j=1

a j 〈yi+ j−1, zi 〉H

=
〈⎡

⎢
⎣

a1
...

aK

⎤

⎥
⎦ ,

⎡

⎢
⎣

∑L
i=1〈yi , zi 〉H

...∑L
i=1〈yi+K−1, zi 〉H

⎤

⎥
⎦

〉

RK

= 〈a,X ∗zzz〉RK

which completes the proof. �

From here, we enter into step two with the goal of extracting out time-dependent
modes of variation from X .

Step 2. Decomposition

In this step, we decompose the trajectory operator,X , into a set of rank one operators.
To this end, we denote the range of X by R(X ). Clearly, R(X ) = span

{
xxx j
}K
j=1 is

r−dimensional, where r is a positive integer less than or equal to K . Therefore X
is a finite-rank (r -dimensional) operator. The following theorem provides us with an
FSVD of X and X ∗.

Theorem 1 Consider the trajectory operator, X , in Eq. (5). There exists orthonor-
mal elements, {ψψψ i }ri=1, fromH

L and orthonormal vectors, {vi }ri=1, fromR
K such that

Xa =
r∑

i=1

√
λi 〈vi , a〉RKψψψ i , f or all a ∈ R

K , (7)

where the λi ’s are non-ascending positive scalars. We also obtain

X ∗zzz =
r∑

i=1

√
λi 〈ψψψ i , zzz〉HLvi , f or all zzz ∈ H

L . (8)

Proof SinceX andX ∗ are finite-rank operators, they are also compact and as such,
the proof immediately follows from Theorem 7.6 of Weidmann [30]. �

We call
√

λi as the i th singular value, ψψψ i as the i th left singular function, and vi as
the i th right singular vector of the trajectory operator,X . The following proposition
expands further on the properties of the elements found in an FSVD of X .

Proposition 2 In Theorem1, the set, {ψψψ i }ri=1, forms a basis system for R(X ), and
each vector, vi , can be written as

vi = X ∗ψψψ i√
λi

=
[ 〈ψψψ i , xxx1〉HL√

λi
, . . . ,

〈ψψψ i , xxxK 〉HL√
λi

]�
, i = 1, . . . , r. (9)
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Proof We first derive the form of the right singular vectors and then we show that
the left singular functions span R (X ). We use Eqs. (7) and (8) to obtain Xvi =√

λiψψψ i and X ∗ψψψ i = √
λivi . We use Eqs. (7), (8), and (6) to obtain Eq. (9). Now by

substituting Eq. (9) into Eq. (7), we obtain

xxx j =
r∑

i=1

〈xxx j ,ψψψ i 〉HLψψψ i .

Since R(X ) = span
{
xxx j
}K
j=1 , it follows that {ψψψ i }ri=1 is an orthonormal basis for

R(X ). �

The collection {√λi ,ψψψ i , vi } is defined as the i th eigentriple of X , and the right
singular vectors, vi ’s, can be used to produce paired plots similar to paired plots
seen in SSA literature [6]. Let Xi : RK → H

L be the rank one operator defined by
Xi = √

λivi ⊗ ψψψ i , for i = 1, . . . , r . We use Eq. (7) and decompose X as

X =
r∑

i=1

Xi . (10)

Similar to SSA, we group eigentriples together in disjoint sets to separate out sources
of variation and then we add the corresponding rank one operators together within
groups. This routine is given in the following step.

Step 3. Grouping

The grouping step consists of rearranging and partitioning the elementary operators,
Xi ’s, in Eq. (10). To do this, we mimic the approaches used in the grouping step of
Sect. 1 for the univariate SSA and implement the equivalent function version of those
in Haghbin et al. [11]. We consider a partition, {I1, I2, . . . , Im} of the set of indices,
{1, . . . , r}, and we define the operator, XIq : RK → H

L , given by XIq = ∑
i∈Iq Xi ,

such that we have the expansion

X = XI1 + XI2 + · · · + XIm . (11)

The grouping should be done so that each operator,XIq ∈ H
L×K , captures a unique

component of variation present in the original FTS such as mean, periodic, or trend
behaviors for q = 1, . . . ,m. In step four, we have the goal of extracting out an FTS
that corresponds with each XIq .

Step 4. Reconstruction

We use the operator T −1 : HL×K
H → H

N to transform back each operator,XIq , seen
in Eq. (11), to an FTS, ỹqN . Since XIq ∈ H

L×K is not necessarily Hankel, we first
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projectXIq toH
L×K
H . Note thatHL×K

H is a closed subspace ofHL×K , then byTheorem
3.2.3 of Shalit [25], there exists a unique operator, X̃Iq ∈ H

L×K
H , such that

‖XIq − X̃Iq‖2F ≤ ‖XIq − Z̃‖2F , for any operator Z̃ ∈ H
L×K
H .

To specify X̃Iq , we denote the elements of XIq and X̃Iq by the function vectors,(
xqi, j

)
and

(
x̃qi, j

)
, respectively. Using Lemma1, it is easy to extend the diagonal

averaging approach inGolyandina et al. [6] toHL×K andobtain x̃qi, j ’s in the following:

x̃qi, j = 1

ns

∑

(l,k):l+k=s

xql,k, (12)

where s = i + j and ns stands for the number of (l, k) pairs such that l + k =
s. This diagonal averaging technique may be viewed as an orthogonal projection
operator, ���H : HL×K → H

L×K
H , and we find that X̃Iq = ���HXIq . Now we define

ỹqN = T −1X̃Iq as a reconstructed FTS. Similar to SSA, the goal of FSSA is to separate
out an FTS into additive components. The extension of separability to the FTS realm
is easily made based on the SSA discussion of separability. From here, we give a
review of the MSSA algorithm.

General Scheme of Multivariate Singular Spectrum Analysis

Often times, many variables are observed as a result of a single stochastic process
and investigation of time series components can be made richer by performing a
multivariate analysis of these vector observations. The MSSA algorithm is a tech-
nique that has seen success over SSA in decomposing a multidimensional time series
into interpretable components if the covariates are moderately correlated [4]. MSSA
also has been broken up into two approaches of vertical MSSA (VMSSA) and hori-
zontal MSSA (HMSSA) where VMSSA involves the vertical stacking of univariate
Hankel trajectory matrices while HMSSA works with the horizontal stacking of the
same elements [14]. These two approaches to MSSA have both been extended to
allow for prediction of multidimensional time series via recurrent and vector fore-
casting algorithms where the extensions for the horizontal approach are presented in
Golyandina et al. [4] and extensions for both approaches are presented inHassani and
Mahmoudvand [14]. Over the course of the last 15 years MSSA has seen significant
success in various areas of application see [4, 9, 15, 27]. From here, we offer the
two approaches of VMSSA and HMSSA.
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Multivariate Singular Spectrum Analysis Algorithm

Given p univariate time series of length N , {y( j)
i } j=1,...,p

i=1,...,N , a multivariate time
series can be considered as a series of length N of p-dimensional vectors, #—y i =[
y(1)
i , . . . , y(p)

i

]�
. This allows us to write the multivariate time series in the form of

the N × pmatrix, yN = [
#—y 1 · · · #—y N

]� ∈ R
N×p. In the first step ofMSSA,we form a

matrix that we may apply an SVD to with the goal of extracting out time-dependent
modes of variation and the manner in how we perform the first step gives rise to
VMSSA or HMSSA.

Step 1. Embedding

We choose an integer L , where 1 < L < N/2, set K = N − L + 1, and create the
set of L × K , univariate trajectory matrices, {X( j)}pj=1. These trajectory matrices
have the form

X( j) =
[
x( j)
1 · · · x( j)

K

]
, (13)

where x( j)
k =

[
y( j)
k , . . . , y( j)

k+L−1

]� ∈ R
L is referred to as the kth , L-lagged vector of

yN , associated with variable j . In HMSSA, we concatenate the univariate trajectory
matrices horizontally to obtain an L × pK multivariate trajectory matrix

X = [
X(1) · · ·X(p)

]
, (14)

whereas in theVMSSAapproach,we concatenate those univariate trajectorymatrices
vertically to obtain the associated pL × K multivariate trajectory matrix

X =
⎡

⎢
⎣

X(1)

...

X(p)

⎤

⎥
⎦ . (15)

We note that since each univariate trajectorymatrix,X( j), is Hankel (antidiagonal ele-
ments are all equal), the multivariate trajectory matrices generated by the embedding
step of HMSSA and VMSSA are block Hankel.

As shown in Sect. 3, there is an interchangeable relationship between the func-
tional extension of VMSSA andmultivariate FSSA (MFSSA).Without loss of gener-
ality, in the remainder of this section we review VMSSA and so hereafter, we define
the pL × K multivariate trajectory matrix, X : RK → R

pL , to be that of Eq. (15).
Often times, this embedding step is viewed as applying an invertible transformation
T : RN×p → R

pL×K
H such that

X = T (yN ),
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where RpL×K
H is the space of all pL × K block Hankel matrices. In the next step,

we extract out time-dependent modes of variation from X.

Step 2. Decomposition

We obtain an SVD of the rank r ∈ N (1 ≤ r ≤ K ) multivariate trajectory matrix, X,
given by

X =
r∑

i=1

√
λiuiv�

i =
r∑

i=1

Xi ,

where {√λi }ri=1 are the singular values of X, {ui }ri=1 are the orthonormal left sin-
gular vectors in R

pL , and {vi }ri=1 are the orthonormal right singular vectors in R
K .

We define the i th eigentriple of X as the set {√λi ,ui , vi } and from each eigentriple,
we calculate a rank one pL × K elementary matrix, Xi = √

λiuiv�
i , to be used in

grouping. In step three, we group eigentriples together that describe similar multi-
variate time series behavior such as mean, periodicity, trend, etc.

Step 3. Grouping

For grouping we partition the set of indices, {1, 2, . . . , r}, into m disjoint subsets,
{I1, I2, . . . , Im}, such that for any positive integer q = 1, . . . ,m, the pL × K matrix,
XIq , is defined as XIq = ∑

i∈Iq Xi . This allows us to write the original multivariate
trajectory matrix, X, as

X = XI1 + XI2 + · · · + XIm . (16)

The grouping should be done so that each XIq describes a different feature of the
original multivariate time series such as trend or seasonality. The grouping can be
achieved by looking at exploratory plots like paired plots or scree plots [6, 14]. In
step four, we extract out a multivariate time series from each XIq that captures a
different component of variation present in yN .

Step 4. Reconstruction

Note that the XIq ’s (q = 1, . . . ,m), given in Eq. (16), are not necessarily block Han-
kel, and therefore we cannot use the T −1 transformation to extract out a multivariate
time series from each XIq . A popular remedy in literature is to use the orthogo-
nal projection approach and approximate the XIq ’s with appropriate block Hankel
matrices.

The matrix, XIq , can be written in the block form:

XIq =

⎡

⎢⎢
⎣

X(1)
Iq
...

X(p)
Iq

⎤

⎥⎥
⎦ ,
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where X( j)
Iq

is an L × K matrix for j = 1, . . . , p. The orthogonal projection of XIq
onto the space of block Hankel matrices is done by averaging the antidiagonal ele-
ments of each X( j)

Iq
. We denote this approximated pL × K block Hankel matrix as

X̃Iq , and use the inverse transformation, T −1 : RpL×K
H → R

N×p, to obtain the q th

reconstructed multivariate time series

ỹqN = T −1(X̃Iq ) ∈ R
N×p.

We define the w-correlation of two multidimensional time series as 〈yN , zN 〉 =∑p
j=1

∑N
i=1 wi y

( j)
i z( j)

i and from here, we find that the extension of separability for a
multivariate time series is straightforward from the discussion of separability offered
in the review of SSA.

Given the discussions on FSSA and MSSA, it is natural to combine ideas from
both of these methods to develop an algorithm that can perform the decomposition
process on time-dependent multivariate functional data. Multivariate functional data
are observed when a stochastic process gives rise to multiple different functions over
possibly different dimensional domains. Multivariate FPCA (MFPCA) was devel-
oped so that more than one variable of functional subjects could be included in the
decomposition routine. Chiou et al. [2] extended MFPCA to include a normalized
approach which accounts for differences in degrees of variability in the covariates
as well as differences in units. MFPCA was further extended by Happ and Greven
[12] to account for different dimensional domains so that one could perform dimen-
sion reduction on multivariate functional data that might be comprised of curves,
surfaces, or any other finite dimensional domain altogether. A primary assumption
of MFPCA is that the functional data are independent of time. With the goal of
performing decomposition on a multivariate FTS (MFTS), one might conjecture to
use FSSA on the covariates independently of one another but such an approach fails
to capture any cross-correlations between variables. MFSSA provides us a way to
perform decomposition of a MFTS while capturing these cross-correlations to fur-
ther enrich analysis and strengthen reconstruction accuracy of the true signal. In
addition, MFSSA is developed in the following to handle functions taken over any
finite dimensional domain. This can allow the user to explore relationships between
time-dependent curves, images, or any other function whose domain is compact.

The rest of the chapter is organized as follows. In Sect. 2, we derive the MFSSA
algorithmandwe give the computer implementation strategy of the proposedmethod.
In Sect. 3, we derive the functional extensions to VMSSA and HMSSA and we
find that the decompositions obtained from the functional extension to VMSSA and
MFSSAare equivalent due to isomorphic vector spaces. Next in Sect. 4we give a sim-
ulation study that shows the MFSSA algorithm outperforms all other approaches of
MFTS signal extraction. Also in Sect. 4, we offer two real data studies where the first
is of smoothed remote sensing images and intraday temperature curves that showcase
howMFSSA enriches the signal extraction process for correlated data observed over
different dimensional domains. The second real data study uses remotely sensed
near-infrared (NIR) and shortwave infrared (SWIR) images of surface reflectance
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(SR) from which kernel density estimates (KDE’s) are extracted and analyzed using
MFSSA. The second real data study shows that whenMFTS variables share the same
domain and have similar function values, the signal extraction is strengthened for
correlated data. Finally, in Sect. 5, we finish with a discussion on the method and the
results of the algorithm.

2 General Scheme of Multivariate Functional Singular
Spectrum Analysis

The mathematical foundations in the following are used throughout the chapter and
form the theoretical backbone of the MFSSA algorithm.

Preliminaries and Notations

For each j = 1, . . . , p, consider an m j -dimensional domain, Tj , to be a compact
subset ofRm j , and letF j = L2

(
Tj
)
be theHilbert space of square integrable function

vectors defined on Tj . From hereafter, we define the Hilbert space, H, to be the
Cartesian product vector space given byH = F1 × · · · × Fp, where eachmultivariate
function vector, #—x ∈ H, can be denoted by the p-tuple

(
x (1), . . . , x (p)

)
. Note that H

is equipped with inner product given by

〈 #—x , #—y 〉
H =

p∑

j=1

〈
x ( j), y( j)

〉
F j

=
p∑

j=1

∫

Tj

x ( j)
(
s j
)
y( j)

(
s j
)
ds j , s j ∈ Tj ,

for some multivariate function vectors, #—x , #—y ∈ H. From hereafter, we specify an
MFTS of length N as yN = ( #—y 1, . . . ,

#—y N ), where #—y i ∈ H.
Similarly, for a given L ∈ N, HL is a function vector space that is built from the

Cartesian product of L copies of H, and each length L multivariate function vector,
xxx ∈ H

L , can be denoted by the L-tuple ( #—x 1, ...,
#—x L). Clearly H

L is a Hilbert space
with respect to the inner product

〈xxx, yyy〉HL =
L∑

i=1

〈 #—x i ,
#—y i 〉H , for xxx, yyy ∈ H

L .

Next we defineHL×K to be the space spanned by linear operators,V : RK → H
L ,

specified by multivariate function vectors,
(
#—v i,k

)k=1,...,K
i=1,...,L ∈ H, as
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V(a) =
(

K∑

k=1

ak
#—v 1,k, . . . ,

K∑

k=1

ak
#—v L ,k

)

, a = [a1, a2, . . . , aK ]
� ∈ R

K .

For two operators V , Z ∈ H
L×K , the Frobenius inner product can be defined as

〈V,Z〉F =
L∑

i=1

K∑

k=1

〈
#—v i,k,

#—z i,k
〉
H

,

which induces the Frobenius normgiven by ‖V‖F = √〈V,V〉F .We denoteHL×K
H to

be the Hankel subspace of HL×K such that for any operator, Ṽ =
(
#—

ṽ i,k

)
∈ H

L×K
H ,

there exists a multivariate function vector, #—g u ∈ H, such that ‖ #—ṽ i,k − #—g u‖H = 0
where u = i + k.

Multivariate Functional Singular Spectrum Analysis
Algorithm

Similar to other SSA-based algorithms, MFSSA consists of four steps: Embedding,
Decomposition, Grouping, and Reconstruction. In the first step of embedding, we
establish a so-called multivariate trajectory operator whose range is built from ele-
ments that describe MFTS behavior over sub-intervals of time.

Step 1. Embedding

As one may note, the columns of a univariate trajectory matrix, as given in Eq. (13),
are the corresponding L-lagged vectors for the j th variable. Therefore, a trajectory
matrix can be seen as a linear operator fromR

K to the space of linear combinations of
the L-lagged vectors. We use this as a motivation to introduce the trajectory operator
for FSSA.

In a similar fashion, we define the L-lagged multivariate function vectors in H
L

of the form
xxxk = ( #—y k,

#—y k+1, . . . ,
#—y k+L−1) , k = 1, . . . , K (17)

which correspond with the MFTS, yN . We define a linear operator, specified with
xxxk’s, to obtain themultivariate trajectory operator,X : RK → H

L . As such, for some
vector a = [a1, a2, . . . , aK ]� ∈ R

K , we have

X (a) =
K∑

k=1

akxxxk . (18)
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We define R (X ) = span{xxxk}Kk=1 to be the range of the operator X , and clearly
the rank of the multivariate trajectory operator is, r ∈ N, where 1 ≤ r ≤ K . This
step of embedding can also be viewed as applying the invertible transformation,
T : HN → H

L×K
H , such that

X = T (yN ). (19)

In the following proposition, we establish some useful properties ofX and we define
it’s adjoint.

Proposition 3 The operator given in Eq. (18) is a bounded and linear operator
with adjoint X ∗ : HL → R

K where for some length L multivariate function vector,
zzz ∈ H

L , we obtain the following K -dimensional vector

X ∗zzz = [〈xxx1, zzz〉HL , 〈xxx2, zzz〉HL , . . . , 〈xxxK , zzz〉HL

]� ∈ R
K .

Proof Notice that X is a finite-rank operator, and thus X is bounded and linear as
a result. Now let zzz ∈ H

L , then

〈Xa, zzz〉HL =
K∑

k=1

ak 〈xxxk, zzz〉HL = a�X ∗zzz = 〈
a,X ∗zzz

〉
RK , a ∈ R

K

and we have that X ∗ is the adjoint of X . �

Now we discuss the second step of MFSSA where we extract out time-dependent
modes of variation from X .

Step 2. Decomposition

Since X is a finite-rank operator, one may employ Theorem 7.6 of Weidmann [30]
and obtain a multivariate FSVD (MFSVD) for X as

X (a) =
r∑

i=1

√
λi 〈vi , a〉RKψψψ i =

r∑

i=1

√
λivi ⊗ ψψψ i (a) , (20)

where ⊗ stands for the tensor (outer) product. From hereafter, {√λi }ri=1 are the
singular values, {ψψψ i }ri=1 are the orthonormal left singular functions spanning an r -
dimensional subspace of HL , and {vi }ri=1 are the orthonormal right singular vectors
spanning an r -dimensional subspace of RK . We call the set, {√λi ,ψψψ i , vi }, as the i th
eigentriple of X . Now we define the rank one elementary operators built from the
eigentriples,Xi : RK → H

L , given byXi = √
λivi ⊗ ψψψ i for i = 1, . . . , r . It is easy

to see thatX = ∑r
i=1 Xi . The following proposition establishes equalities between

X and eigentriple elements.

Proposition 4 Let {√λi ,ψψψ i , vi } be the i th eigentriple of X , i = 1, . . . , r . The fol-
lowing holds:
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ψψψ i =
(√

λi

)−1
Xvi , vi =

(√
λi

)−1
X ∗ψψψ i .

Proof Recall that an MFSVD ofX gives us a set of orthonormal left singular func-
tions, {ψψψ i }ri=1, and a set of orthonormal vectors, {vi }ri=1 . We find that

X (vi ) =
r∑

j=1

√
λ j

(
v�
i v j

)
ψψψ j = √

λiψψψ i .

From here, we have thatψψψ i = (√
λi
)−1 X (vi ). By Theorem 7.6 of Weidmann [30],

we have that the operator, X ∗, has an MFSVD with the same eigentriples as X and
we obtain the following:

X ∗ (ψψψ i ) =
r∑

j=1

√
λ j

〈
ψψψ i ,ψψψ j

〉
HL v j = √

λivi

which implies that vi = (√
λi
)−1 X ∗ (ψψψ i ). �

Now we present step three of the MFSSA algorithm where we group together eigen-
triples that describe similar MFTS behavior.

Step 3. Grouping

The grouping step of MFSSA follows the same manner as the grouping step
of MSSA. We partition the set of indices, {1, 2, . . . , r}, into m disjoint subsets,
{I1, I2, . . . , Im}, such that for q = 1, . . .m, the operator,XIq : RK → H

L , is defined
by XIq = ∑

i∈Iq Xi . As such, we have that

X = XI1 + XI2 + · · · + XIm .

Similar to other forms of SSA, exploratory plots, such as scree plots, paired plots,
w-correlation plots, and others can be developed to determine how to obtain the m
disjoint groups. In addition, we also have that each operator, XIq , corresponds with
some component of the original MFTS such as mean, periodic, trend, or other behav-
iors. In the next step, our goal is to extract an MFTS from each XIq that describes
one of these modes of variation.

Step 4. Reconstruction

Let Y ∈ H
L×K be an operator defined by Y = (

#—y i, j
)
. Since HL×K

H is a closed sub-
space of HL×K , we have by Theorem 3.2.3 of Shalit [25] that there exists a unique

Hankel operator, Ỹ =
(
#—

ỹ i, j

)
∈ H

L×K
H , such that
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‖Y − Ỹ‖2F ≤ ‖Y − Z̃‖2F ,

for any Hankel operator, Z̃ ∈ H
L×K
H . Define the orthogonal projection,���H : HL×K

→ H
L×K
H , such that we have Ỹ = ���HY . We achieve the projection, ���H , by using

Lemma1 and the resulting diagonal averaging technique given by

#—

ỹ i,k = 1

nu

∑

(n,m):n+m=u

#—y n,m, (21)

where nu is the number of (n,m) pairs such that n + m = u. With���H , we have that
X̃Iq = ���HXIq for q = 1, . . . ,m. We then employ the inverse of T : HN → H

L×K
H ,

from Eq. (19), to obtain the following formula for the reconstruction:

ỹqN = T −1X̃Iq .

Similar to other types of SSA, we have that each ỹqN is an MFTS that describes
a component of the original signal, yN , such as mean behavior, periodicity, trend,
etc. Even though MFSSA is a model-free procedure, it is ideal that yN have additive
componentswhich implies that theMFTS is separable. In the following,we introduce
the idea of separability for MFTS.

Separability

Let xN = yN + zN where yN and zN areMFTS of length N . We define the weighted-
covariance between the MFTS as

〈yN , zN 〉w =
p∑

j=1

N∑

i=1

wi

〈
y( j)
i , z( j)

i

〉

F j

,

where wi = min{i, L , N − i + 1}. The definition of the norm, ‖yN‖w, the discus-
sion on w-orthogonality of yN and zN , and the definition of the w-correlation matrix
is straightforward from the FSSA discussion on separability and we may use these
tools to help in the grouping stage of MFSSA. Now we discuss the computer imple-
mentation strategy.

Computer Implementation Strategy

In the following, we describe the basis that is used to represent amultivariate function
vector in H. We then use the basis for the multivariate function vectors to construct
the basis used to build the L-lagged multivariate function vectors in H

L , and the
implementation of the multivariate trajectory operator, X .
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Let {ν( j)
i }i∈N be the collection of linearly independent basis function vectors in the

function vector space, F j for j = 1, ..., p. Each observation in F j can be projected

onto the subspace Fj = span{ν( j)
i }d j

i=1 where d j is a positive integer that can be
determined by a variety of techniques like cross-validation. To this end, each function
vector, y( j)

i ∈ Fj , can be uniquely expressed as

y( j)
i =

d j∑

k=1

c( j)
i,k ν

( j)
k , i = 1, ..., N , c( j)

i,k ∈ R.

Now we set d0 = 0, d = ∑p
j=0 d j , and define the Hilbert space, Hd = F1 × . . . ×

Fp ⊂ H.

For eachq ∈ {1, . . . , d}, there exist a unique jq ∈ {1, . . . , p} such that∑ jq−1
i=0 di +

1 ≤ q ≤ ∑ jq
i=0 di . Now consider the multivariate function vector, #—ν q ∈ Hd , which

is the zero function in all components except the j thq element, which is ν
( jq )
�q

, where

�q = q − ∑ jq−1
i=0 di . We expand on some interesting properties of the multivariate

function vectors, #—ν q ’s, in the following Lemma.

Lemma 2 The following holds:

(i) Each multivariate function vector, #—y i ∈ Hd , can be uniquely represented as a
linear combination of #—ν q ’s such that

#—y i =
d∑

q=1

c
( jq )
i,�q

#—ν q , i = 1, ..., N .

(ii) The set { #—ν q}dq=1 is a basis system of Hd .

Proof We prove the two parts of this lemma in the following.

(i) Let Mjq = ∑ jq
i=0 di , then we obtain the following multivariate function vectors

of Hd .

#—y (1)
i =

(
y(1)
i , 0, . . . , 0

)
=

d1∑

q=1

c(1)
i,�q

#—ν q

#—y (2)
i =

(
0, y(2)

i , 0, . . . , 0
)

=
d1+d2∑

q=d1+1

c(2)
i,�q

#—ν q
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...

#—y ( jq)
i =

(
0, . . . , 0, y(

jq)
i , 0, . . . , 0

)
=

Mjq∑

q=Mjq−1+1

c(
jq)

i,�q
#—ν q

...

#—y (p)
i =

(
0, . . . , 0, y(p)

i

)
=

d∑

q=Mp−1+1

c(p)
i,�q

#—ν q .

From this, we find that any multivariate function vector, #—y i ∈ Hd , can be
expressed as

#—y i =
(
y(1)
i , y(2)

i , . . . , y(
jq)

i , . . . , y(p)
i

)

= #—y (1)
i + #—y (2)

i + · · · + #—y ( jq)
i + · · · + #—y (p)

i =
d∑

q=1

c(
jq)

i,�q
#—ν q .

(ii) This part of the proof is a direct consequence of the proof of part (i). �
Nowfor each k ∈ {1, . . . , Ld}, one can see that there exists uniqueqk ∈ {1, . . . , d}

and rk ∈ {1, . . . , L} such that k = (qk − 1)L + rk . Consider φφφk as a length L mul-
tivariate function vector that is zero in all components, except the rk-th component,
which is #—ν qk . The following lemma now defines a linearly independent basis for the
L-lagged multivariate function vectors, xxx j ’s, where the basis is defined using the
#—ν q ’s.

Lemma 3 The sequence, {φφφk}Ldk=1, is a basis system for HL
d , where H

L
d is the Carte-

sian product of L copies of Hd .

Proof The proof will be divided into two steps. In the first step, it will be shown
thatHL

d = span{φφφ1, . . . ,φφφLd}. In the second step, it will be proved that φφφ1, . . . ,φφφLd

are linearly independent. Let zzz = ( #—z 1, . . . ,
#—z L) be a length L multivariate function

vector inHL
d . By definition, each component of zzz admits the basis expansions #—z j =

∑d
q=1 c

( jq )
j,�q

#—ν q , j = 1, . . . , L . Therefore

zzz =

⎛

⎜⎜⎜
⎝

#—z 1
#—z 2
...
#—z L

⎞

⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜
⎝

∑d
q=1 c

( jq )
1,�q

#—ν q(s)
∑d

q=1 c
( jq )
2,�q

#—ν q(s)
...

∑d
q=1 c

( jq )
L ,�q

#—ν q(s)

⎞

⎟⎟⎟⎟⎟
⎠
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= c( j1)1,�1

⎛

⎜
⎜
⎜
⎝

#—ν 1
0
...

0

⎞

⎟
⎟
⎟
⎠

+ · · · + c( j1)L ,�1

⎛

⎜
⎜
⎜
⎝

0
...

0
#—ν 1

⎞

⎟
⎟
⎟
⎠

+ c( j2)1,�2

⎛

⎜
⎜
⎜
⎝

#—ν 2
0
...

0

⎞

⎟
⎟
⎟
⎠

+ · · · + c( j2)L ,�2

⎛

⎜
⎜⎜
⎝

0
...

0
#—ν 2

⎞

⎟
⎟⎟
⎠

+ · · · + c( jd )
1,�d

⎛

⎜
⎜⎜
⎝

#—ν d
0
...

0

⎞

⎟
⎟⎟
⎠

+ · · · + c( jd )
L ,�d

⎛

⎜
⎜⎜
⎝

0
...

0
#—ν d

⎞

⎟
⎟⎟
⎠

=
Ld∑

k=1

c
( jqk )

rk ,�qk
φφφk ,

which implies the first step. To prove linear independency, if
∑Ld

k=1 akφφφk = 0, then

⎛

⎜
⎜⎜
⎝

0
0
...

0

⎞

⎟
⎟⎟
⎠

= a1

⎛

⎜
⎜⎜
⎝

#—ν 1

0
...

0

⎞

⎟
⎟⎟
⎠

+ · · · + aL

⎛

⎜
⎜⎜
⎝

0
...

0
#—ν 1

⎞

⎟
⎟⎟
⎠

+ aL+1

⎛

⎜
⎜⎜
⎝

#—ν 2

0
...

0

⎞

⎟
⎟⎟
⎠

+ · · · + a2L

⎛

⎜
⎜⎜
⎝

0
...

0
#—ν 2

⎞

⎟
⎟⎟
⎠

+ · · · + a(d−1)L+1

⎛

⎜⎜
⎜
⎝

#—ν d

0
...

0

⎞

⎟⎟
⎟
⎠

+ · · · + adL

⎛

⎜⎜
⎜
⎝

0
...

0
#—ν d

⎞

⎟⎟
⎟
⎠

=

⎛

⎜⎜
⎜
⎝

a1
#—ν 1 + aL+1

#—ν 2 + · · · + a(d−1)L+1
#—ν d

a2
#—ν 1 + aL+2

#—ν 2 + · · · + a(d−1)L+2
#—ν d

...

aL
#—ν 1 + a2L

#—ν 2 + · · · + adL
#—ν d

⎞

⎟⎟
⎟
⎠

=

⎛

⎜⎜
⎜⎜
⎝

∑d
j=1 a( j−1)L+1

#—ν j∑d
j=1 a( j−1)L+2

#—ν j

...∑d
j=1 a jL

#—ν j

⎞

⎟⎟
⎟⎟
⎠

.

This means
∑d

j=1 a( j−1)L+i
#—ν j = 0 for all i = 1, . . . , L , and consequently each

scalar a( j−1)L+i = 0, for j = 1, . . . , d, since { #—ν j }dj=1 are linearly independent. �

Using Lemma3, we define a linear operator P : RLd → H
L
d , specified with φφφk’s,

such that any length L multivariate function vector, xxx ∈ H
L
d , can be written as

xxx =
Ld∑

i=1

biφφφi = P(b),

where b ∈ R
Ld . Similar to Eq. (17), we define the L-lagged multivariate func-

tion vectors for the MFTS, yN , as xxxk = ( #—y k,
#—y k+1, . . . ,

#—y k+L−1) ∈ H
L
d , where

k = 1, . . . , K . Therefore, the associated multivariate trajectory operator, given in
Eq. (18), is defined as X : RK → H

L
d . The next lemma gives the tools necessary to

implement the L-lagged multivariate function vectors and X using the φφφi ’s.



208 J. Trinka et al.

Lemma 4 The following holds:

(i) The corresponding coefficient vector of the kth L-lagged multivariate function
vector, xxxk, with respect to the operator, P , is

bk =
[
c( j1)
k,�1

, . . . , c( j1)
k+L−1,�1

, c( j2)
k,�2

, . . . , c( j2)
k+L−1,�2

, . . . , c( jd )
k+L−1,�d

]� ∈ R
Ld .

(ii) For any vector a ∈ R
K , we have that X (a) = P(Ba), where B

= [
bi,k

]k=1,...,K
i=1,...,Ld = [b1b2 · · ·bK ]Ld×K is a matrix, and bi,k is the i th component

of the Ld-dimensional vector, bk .

Proof We prove the two parts of this lemma in the following:

(i) Let Mjq = ∑ jq
i=0 di , then we obtain the following length L multivariate function

vectors of HL
d .

xxx (1)
k =

⎛

⎜⎜
⎜
⎝

#—y (1)
k

#—y (1)
k+1
...

#—y (1)
k+L−1

⎞

⎟⎟
⎟
⎠

=

⎛

⎜⎜
⎜
⎝

#—y (1)
k
0
...

0

⎞

⎟⎟
⎟
⎠

+

⎛

⎜⎜⎜
⎜⎜
⎝

0
#—y (1)

k+1
0
...

0

⎞

⎟⎟⎟
⎟⎟
⎠

+

⎛

⎜⎜⎜
⎜⎜
⎝

0
0
...

0
#—y (1)

k+L−1

⎞

⎟⎟⎟
⎟⎟
⎠

=
Ld1∑

i=1

bi,kφi

=
d1∑

qi=1

L∑

ri=1

c(1)
k+ri−1,�qi

φi

xxx (2)
k =

⎛

⎜
⎜⎜
⎝

#—y (2)
k

#—y (2)
k+1
...

#—y (2)
k+L−1

⎞

⎟
⎟⎟
⎠

=

⎛

⎜
⎜⎜
⎝

#—y (2)
k
0
...

0

⎞

⎟
⎟⎟
⎠

+

⎛

⎜⎜
⎜⎜⎜
⎝

0
#—y (2)

k+1
0
...

0

⎞

⎟⎟
⎟⎟⎟
⎠

+

⎛

⎜⎜
⎜⎜⎜
⎝

0
0
...

0
#—y (2)

k+L−1

⎞

⎟⎟
⎟⎟⎟
⎠

=
L(d1+d2)∑

i=Ld1+1

bi,kφi

=
d1+d2∑

qi=d1+1

L∑

ri=1

c(2)
k+ri−1,�qi

φi

...
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xxx (p)
k =

⎛

⎜⎜⎜
⎝

#—y (p)
k

#—y (p)
k+1
...

#—y (p)
k+L−1

⎞

⎟⎟⎟
⎠

=

⎛

⎜⎜⎜
⎝

#—y (p)
k
0
...

0

⎞

⎟⎟⎟
⎠

+

⎛

⎜⎜⎜⎜⎜
⎝

0
#—y (p)

k+1
0
...

0

⎞

⎟⎟⎟⎟⎟
⎠

+

⎛

⎜⎜⎜⎜⎜
⎝

0
0
...

0
#—y (p)

k+L−1

⎞

⎟⎟⎟⎟⎟
⎠

=
Ld∑

i=LMp−1+1

bi,kφi

=
d∑

qi=Mp−1+1

L∑

ri=1

c(p)
k+ri−1,�qi

φi .

As a result, we find that the k th L-lagged multivariate function vector, xxxk , is
given by xxxk = xxx (1)

k + xxx (2)
k + · · · + xxx (p)

k = ∑Ld
i=1 bi,kφi and the components of bk

are found in Lemma4.
(ii) Now notice that

X (a) =
K∑

k=1

akxxxk =
Ld∑

i=1

(
K∑

k=1

bi,kak

)

φφφi = P(Ba), a ∈ R
K , (22)

and the proof is completed. �

Now that we have a way to represent our L-lagged multivariate function vectors and
multivariate trajectory operator using the φφφi ’s, we leverage the following theorem to
obtain the eigentriples of X .

Theorem 2 Define the Ld × K matrix,X = G1/2B, whereG = [〈
φi ,φ j

〉
HL

]Ld
i, j=1

is

the Ld × Ld Gram matrix. Denote the collection {√λi ,ui , vi } as the i th eigentriple
of X. Now define wi = G−1/2ui andψψψ i = P(wi ). The following holds:

(i) X ∗ψψψ i = √
λivi .

(ii) Xvi = √
λiψψψ i .

(iii) The collection, {ψψψ i }ri=1, forms an orthonormal basis for R(X ).

Proof We prove each part of this theorem in succession.

(i) For any two length L multivariate function vectors, xxx = Pb and yyy = Pc, in
H

L
d , it is easy to see that

〈xxx, yyy〉HL = b�Gc, b, c ∈ R
Ld . (23)

Therefore,

X ∗ψψψ i = [〈xxx1,ψψψ i 〉HL , . . . , 〈xxxK ,ψψψ i 〉HL

]� = [
w�

i Gb1, . . . ,w�
i Gbk

]�

= B�Gwi = B�G1/2ui = X�ui = √
λivi .
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(ii) Using Eq. (22) gives

Xvi = PBvi = PG−1/2G1/2Bvi = PG−1/2Xvi

= √
λiPG−1/2ui = √

λiPwi = √
λiψψψ i .

(iii) First we prove that the left singular functions, ψψψ ′
i s, belong to R(X ). From (ii)

and Eq. (5), we have

ψψψ i = Xvi√
λi

=
K∑

j=1

vi j√
λi
xxx j ∈ R(X ), where vi = [vi1, . . . , vi K ]

� .

Next, to show orthonormality, for any i, j = 1, . . . , r we have

〈ψψψ i ,ψψψ j 〉HL = w�
i Gw j = u�

i u j = δi, j .

Wenote that
∑r

i=1 uiu
�
i = Ir ,where Ir is the r × r identitymatrix and therefore∑r

i=1 wiw�
i = G−1. We use this result to show that any length L multivariate

function vector, xxx ∈ R(X ), can be written as a linear combination of ψψψ i ’s. To
this end, note that for all xxx ∈ R(X ), there exists a vector a ∈ R

K , such that
xxx = Xa. Using Eqs. (22) and (23) we have

xxx = PBa = PG−1GBa = P
(

r∑

i=1

wiw�
i

)

GBa =
r∑

i=1

Pwiw�
i GBa

=
r∑

i=1

ψψψ iw
�
i GBa =

r∑

i=1

〈xxx,ψψψ i 〉HLψψψ i .

It remains to be proven that theψψψ ′
i s are linearly independent. Note that

r∑

i=1

ciψψψ i =
r∑

i=1

ciPwi = P
r∑

i=1

ciG−1/2ui = PG−1/2
r∑

i=1

ciui .

Therefore
∑r

i=1 ciψψψ i = 0 implies
∑r

i=1 ciui = 0, and the linear independency
of ui ’s implies ci = 0 for all i = 1, · · · , r , which completes the proof. �

The following corollary formalizes the eigentriples of X .

Corollary 1 The collection of eigentriples, {√λi , vi ,ψψψ i }ri=1, defines an MFSVD of
X .
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3 Generalizing Multivariate Singular Spectrum Analysis to
Multivariate Functional Singular Spectrum Analysis

We note that a key step in extending different SSA-based approaches is how to obtain
the trajectory matrix (operator) in the embedding step. Despite the fact that in SSA,
the trajectory matrix is a linear combination of the associated L-lagged vectors, this
is not the case for MSSA.

In Sect. 2, we obtain MFSSA by generalizing FSSA, where we introduce the mul-
tivariate trajectory operator as a linear combination of L-laggedmultivariate function
vectors that correspond to an MFTS. Alternatively, we may mimic the approach of
MSSA algorithms (HMSSA or VMSSA) and develop new trajectory operators that
are not necessarily based on L-lagged function vectors. The following subsections
extend HMSSA and VMSSA to obtain the functional versions, respectively.

From Horizontal Multivariate Singular Spectrum Analysis to
Horizontal Multivariate Functional Singular Spectrum
Analysis

We may view the column vectors of matrix X( j) in Eq. (13), x( j)
k ’s, as the univariate

L-lagged vectors for the j th variable.We see thatX( j) is an operator fromR
K → R

L ,
which can be seen as a linear combination of these L-lagged vectors:

X( j)a( j) =
K∑

k=1

a( j)
k x( j)

k , a( j) =
[
a( j)
1 , . . . , a( j)

K

]� ∈ R
K .

In the embedding step of HMSSA, the trajectory matrix, given in Eq. (14), can be
seen as a linear operator, X : RpK → R

L , where

Xa =
p∑

j=1

K∑

k=1

a( j)
k x( j)

k , a =
[(
a(1)

)� · · · (a(p)
)�]� ∈ R

pK . (24)

In order to make the extension to the function space, we need to assume that the
L-lagged function vectors (not multivariate) in HMFSSA, denoted with xxx ( j)

k , are in
the space FL

j , for j = 1, . . . , p where FL
j is the Cartesian product of L copies of F j .

But the linear combination of xxx ( j)
k ’s are well defined if and only if FL

1 = · · · = F
L
p , or

equivalently T1 = · · · = Tp. This special type of SSA is knownasHorizontalMFSSA
(HMFSSA) and given the fact that it is restrictive and not as useful in terms of signal
extraction of an MFTS signal (see Sect. 4), we do not present the full algorithm here.
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From Vertical Multivariate Singular Spectrum Analysis to
Vertical Multivariate Functional Singular Spectrum Analysis

In the embedding step of VMSSA, the trajectory matrix, given in Eq. (15), can be
seen as a linear operator, X : RK → R

pL , with

Xa =
K∑

k=1

a jxk, a = [a1, . . . , aK ]
� ∈ R

K and xk =
⎡

⎢
⎣

x(1)
k
...

x(p)
k

⎤

⎥
⎦ ∈ R

pL .

To develop VMFSSA, we extend this operator to the function space, i.e., xk
should belong to a new unfolded Hilbert space, Hp,L = F1 × · · · × F1︸ ︷︷ ︸

L times

× . . . ×

Fp × · · · × Fp︸ ︷︷ ︸
L times

. Here, each length pL function vector, xxx ∈ H
p,L , is denoted by

xxx =
(
x (1)
1 , . . . , x (1)

L , . . . , x (p)
1 , . . . , x (p)

L

)
. It is easy to see thatHp,L is a Hilbert space

equipped with inner product

〈
xxx, yyy

〉

Hp,L
=

L∑

i=1

p∑

j=1

〈
x ( j)
i , y( j)

i

〉

F j

=
L∑

i=1

〈 #—x i ,
#—y i 〉H = 〈xxx, yyy〉HL .

Therefore, there exists an isomorphic map, U : HL → H
p,L , defined by U(xxx) = xxx ,

where xxx ∈ H
L is a length L multivariate function vector. Now one may define the

linear operator X : RK → H
p,L , specified with xxxk’s, as

Xa =
K∑

k=1

a jxxxk, a ∈ R
K and xxxk ∈ H

p,L .

The following theorem illustrates the equivalency between the results of the decom-
position process applied in MFSSA and VMFSSA.

Theorem 3 Let {√λi , vi ,ψψψ i } be the i th eigentriple of X . The following holds:

(i) X = UX .
(ii) X is a rank r operator with the i th eigentriple denoted by {√λi , vi ,ψψψ i

}, where
ψψψ

i
= Uψψψ i .

Proof We prove both parts of this theorem in the following:

(i) Let a ∈ R
K , then we have that
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UX (a) =
K∑

k=1

akUxxxk =
K∑

k=1

akxxxk = X (a)

and as such, we have that X = UX .

(ii) We again, let a ∈ R
K , then we have

UX (a) =
r∑

i=1

√
λia�viUψψψ i =

r∑

i=1

√
λia�viψψψ i

= X (a) .

This implies that the i th eigentriple of X is
(√

λi , vi ,ψψψ i

)
and thatψψψ

i
= Uψψψ i .

�

Therefore, the decompositions obtained via MFSSA and VMFSSA are interchange-
able and subsequently the respective groupings and reconstructions are equivalent.

4 Numerical Studies

In order to explore the capabilities of MFSSA and HMFSSA, we implement a sim-
ulation study where we compare our two novel algorithms to other approaches of
signal extraction for MFTS data. We also present applications to remote sensing data
which is used to further illustrate the interesting qualities of MFTS data that are
discovered by MFSSA.

Simulation Study

For the simulation, we generate a bivariate FTS of lengths N = {100, 200} by pro-
jecting the following discrete observations, sampled over regular intervals in i and
t , onto a B-spline basis with 15 basis elements

Y (1)
t (si ) = y(1)

t (si ) + X (1)
t (si )

Y (2)
t (si ) = y(2)

t (si ) + X (2)
t (si ) , si ∈ [0, 1] , i = 1, . . . , 100, t = 1, . . . , N .

We have that y(1)
t = μt + δ

(1)
t and y(2)

t = δ
(2)
t are nonrandom, true signal terms. We

take μt = κt as an increasing trend component with κ = {0.00, 0.02}, δ( j)
t are taken

as seasonal components with expressions given as
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δ
(1)
t = es

2
i cos (2πω1t) + e1−s2i cos (2πω2t) − sin (2πω1t) cos (4πsi )

+ sin (2πω2t) sin (πsi )

δ
(2)
t = es

2
i sin (2πω1t) + cos (2πω1t) cos (4πsi ) ,

where ω1 = {0.1, 0.5}, ω2 = {0, 0.25}, and X ( j)
t are error terms for j = 1, 2. The

error terms follow four models drawn directly from Haghbin et al. [10], one being
a Gaussian white noise and the other three coming from a functional autoregressive
model of order 1 (FAR1) given by

Xt (s) = Xt−1 (s) + εt (s) ,

where the collection {εt (s)}Nt=1 are taken as independent functions of Brownian
motion over the unit interval and  is an integral operator with kernel

ψ (s, u) = γ0
(
2 − (2s − 1)2 − (2u − 1)2

)
.

We choose γ0 such that the norm of , given as

‖‖2S =
∫ 1

0

∫ 1

0
|ψ (s, u)|2dsdu,

takes on values of 0, 0.5, or 0.9 in order to obtain our autoregressive models. Due to
the presence of a trend component and two frequencies,we require five components in
all algorithms to reconstruct the true structures which is due to the fact that each of the
two frequencies is expressed in a sine and a cosine term. We compare reconstruction
results of MFSSA to the results of HMFSSA where each algorithm is ran on the
simulated bivariate FTS. We also compare the MFSSA and HMFSSA results to that
of FSSA, MSSA, and DFPCA ran on each simulated covariate independently of one
another. For MSSA we specify that the 200 × N data matrix, Q, follows the form

Q =
[
Q1

Q2

]
,

such that each 100 × N matrix, Q j , follows the form Q j =
[
Y ( j)
t (si )

]t=1,...,N

i=1,...,100
for

j = 1, 2.
For all of the SSA-based algorithms we set L = {20, 40} and for all algorithms,

we measure the error of each reconstruction with the following root mean square
error (RMSE):

RMSE =
√√√√ 1

N × n × p

p∑

j=1

N∑

t=1

n∑

i=1

(
y( j)
t (si ) − ŷ( j)

t (si )
)2

,
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Fig. 1 Simulation study where the vertical axes give outputs of average root mean square error for
100 replications of each simulation setup and each entry on the horizontal axis follows the form
[N , ω1, ω2, κ]. The top plot is when L = 20 and the bottom plot is when L = 40

where ŷ( j)
t (si ) is the reconstruction of covariate j , at time point t , evaluated at

point si . For every unique combination of parameters and error terms, we repeat the
simulation 100 times and report the mean of the RMSE’s in Fig. 1 whose vertical
axes are taken over a log scale.

We see in the top plot that L = 20 and in the bottomplot, L = 40,while the vertical
lines separate out the simulated data by noise models and in addition, each tick mark
on the horizontal should be read as [N , ω1, ω2, κ]. From these two subfigures, we
find that MFSSA almost always outperforms other techniques of signal extraction
of an MFTS while HMFSSA also outperforms other techniques occasionally.

Application to NDVI Images and Intraday Temperature Data

Most researchers believe that the amount of vegetation present within a region is
correlated to the region’s temperature. Researchers can use this correlation to get a
better understanding of how the vegetation and temperature in a region changes over
time. Data that tracks the intraday hourly mean temperature, in Celsius, for a variety
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of United States weather stations is available for download from Diamond et al. [3].
In addition, satellite images of varying resolutions, regions, time periods, spectral
bands, and their variants have been made available for download and analyzed using
various techniques [29]. The NDVI measure, recorded in the satellite images, is
bounded between zero and one and is used to track changes in vegetation over time
[18]. It was determined that using MSSA over SSA can lead to richer analysis of
correlated data [4]. If a variable with strong seasonality components and another
variable with strong mean components are included together in an MSSA analysis,
we expect to find strong seasonality andmean component reflected in the exploratory
plots. Similarly, we expect MFSSA applied to correlated functional variables will
strengthen signal extraction results and now we give a real data study illustrating the
improvement.

We introduce a bivariate example of intraday hourly mean temperature curves
and NDVI images of a parallelogram shaped region just east of Glacier National
Park in Montana, U.S.A. located between longitudes of 113.30◦W − 113.56◦W and
latitudes of 48.71◦N − 48.78◦N. The curves and images were recorded every 16 days
starting January 1, 2008 and ending September 30, 2013. We start by applying FSSA
with a lag of 45 (to capture yearly periodic behavior in temperature and vegetative
processes) to the function curves and smoothed images separately from one another
and we obtain the following plots of the singular vectors.

It is clear from Fig. 2b that there exists a strong seasonality component in the
intraday temperature curves of (a) accounting for 54.72% of the variation in the data
while a mean behavior component accounts for 15.38% of the variation in the data.
We also see from Fig. 2d that the mean component captures 65.07% of the variation
of the NDVI image data while the seasonality components only account for 28.56%
of the variation of the data.We normalize the intraday temperature curves by dividing
each sampling point by the standard deviation of all the sampling points (dividing
by 10.13) since the NDVI images have values that are significantly smaller. We now
apply MFSSA with a lag of 45 to the normalized intraday temperature curves and
NDVI images in a bivariate analysis to obtain the following plots.

Analyzing the plot of singular values and the w-correlation blocks in Fig. 3a and b
suggests that component one should be grouped by itself, components two and three
should be grouped together, and four and five should be grouped together. Figure3c
shows that in the bivariate analysis, the mean component becomes dominant with the
seasonal components taking on the second and third main sources of variation. This
shows that combining the temperature curves and NDVI images functional data into
a bivariate analysis reveals a stronger mean component as opposed to the weaker
mean component seen in Fig. 2b.

Application to Remote Sensing Density Curves

To further show that MFSSA enriches data analysis of correlated variables, we use
another bivariate example of near-infrared (NIR) and shortwave infrared (SWIR)
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images taken every 8 days of a region just outside of the city of Jambi, Indonesia
between 103.61◦E − 103.68◦E and 1.67◦S − 1.60◦S over the timeline of February
18, 2000 and November 25, 2019. The wavelength of the NIR images ranges from
841 to 876 nanometers (nm) and the wavelength of the SWIR images are within
the values of 2105–2155 nm. NIR light can be used for imaging vegetation and it is
used in the calculation of the NDVI measure [18] while shortwave infrared is often
used for imaging the moisture content in soil where a lower surface reflectance (SR)
corresponds to higher moisture content [26]. As mentioned in Prasetyo et al. [22], it
appears that this particular part of the Jambi province was a hot spot for controlled
fires between 2001 and 2015 and the loss of vegetation over the course of about a
decade will be reflected in lower NIR and higher SWIR SR values as time moves on.
In this data study, we consider a new type of MFTS where both variables share the
same domain and take on similar values in the output of each function. To this end,
we obtain the kernel density estimates (KDEs) corresponding to both of the NIR and
the SWIR SR values in the images, using Silverman’s rule of thumb [28]. In addition,
we replaced outliers in the SWIR densities with the average of densities from the
preceding and proceeding days. Similar results, as compared to the following, still

(a) Right singular vectors (NIR)
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Fig. 4 a The right singular vectors that are obtained when applying FSSA with a lag of L = 45
to the NIR densities data; b The left singular functions corresponding to the NIR densities data; c
The right singular vectors that are obtained when applying FSSA with a lag of L = 45 to the SWIR
densities data; d The left singular functions corresponding to the SWIR densities data



Multivariate Functional Singular Spectrum Analysis: A Nonparametric … 219

0

0.2

0.4

0.6

0.8

1

2005 2010 2015
0

0.2

0.4

0.6

0.8

1

(a) Kernel Density Estimates

0

5

10

15

−5
0
5
10
15
20

S
R
 (

N
IR

)
S
R
 (

S
W

IR
)

●

● ● ●

● ● ● ● ● ● ● ● ● ● ●

2 4 6 8 10 12 14

10
0

30
0

50
0

(b) Singular values

Components
N
or
m
s

(c) W−correlation matrix

F1
F2
F3
F4
F5
F6
F7
F8
F9

F10
F11
F12
F13
F14
F15

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15

(d) Right singular vectors

−2
−1
0
1
2

1(72.91%)
0 200 400 600 800

2(1.11%)

0 200 400 600 800

3(0.96%)

−2
−1
0
1
2

4(0.93%)

−0
.0
5

0.
05

1(72.91%) 2(1.11%)

0.0 0.4 0.8

−0
.0
5

0.
05

3(0.96%)

0.0 0.4 0.8

4(0.93%)

(e) Left singular functions (NIR)
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(f) Left singular functions (SWIR)

Fig. 5 a Heatplots of the NIR and SWIR densities bivariate FTS; b The plot of the leading singular
values that is generated from MFSSA applied with a lag of 45 to the bivariate FTS shown in (a); c
The plot of the w-correlation matrix; d The plot of the first four right singular vectors; e The plot of
the first four left singular functions that correspond with NIR densities; f The plot of the first four
left singular functions that correspond with SWIR densities

hold even if the outliers are not removed. Applying FSSA with a lag of 45 to the
NIR and SWIR densities separately, where this choice of lag approximately captures
yearly periodic behavior, gives the following exploratory plots.

Figure4a and b gives us the right singular vectors and left singular functions of
the NIR densities while Fig. 4c and d is the right singular vectors and left singular
functions of the SWIR densities. We find that applying FSSA to the NIR densities
captures seasonality in the second and third components while trend is present in the
fourth component similar to the FSSA, NDVI real data study of Haghbin et al. [10].
Applying FSSA to the SWIR densities shows that trend is a more dominant behavior
captured in the second component as compared to the seasonal behaviors captured
in components three and four. Applying MFSSA decomposition with a lag of 45 to
the bivariate NIR/SWIR example gives the following exploratory plots.

The bivariate FTS can be found in Fig. 5a while b and c are plots of singular
values and w-correlation, respectively. See that Fig. 5d gives us our MFSSA right
singular vectors which showcases the weights that are multiplied by the left singular
functions shown in Fig. 5e and f. Since we are performing MFSSA, we obtain 45
functions per left singular function that corresponds to the NIR densities as well as
another set of 45 functions per left singular function that corresponds to the SWIR
densities. Notice the trend behavior for the NIR densities is present in component two
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as according to Fig. 5e which indicates that adding SWIR densities into the analysis
with the NIR densities created a more pronounced trend result as compared with
Fig. 4b. To this end, we find that performing a bivariate analysis on the NIR/SWIR
densities enriched our data analysis as expected.

5 Discussion

Throughout this chapter, we presented MFSSA as a novel technique of decomposi-
tion of an MFTS. Although VMSSA and HMSSA can be extended to the respective
functional versions (HMFSSA and VMFSSA), we found that HMFSSA is a restric-
tive and weaker type of signal extraction of an MFTS signal and that VMFSSA
solves the same problem as MFSSA. That is why we proposed to use the isomorphic
property of two Hilbert spaces in order to extend FSSA and develop its multivariate
version. Using remote sensing data examples we showed that the proposed MFSSA
algorithm is able to handle functions taken over different dimensional domains and
is able to uncover more dominant modes of variation present in MFTS signals where
these same types of variability might not be extracted from univariate approaches.
We also developed an R package, called Rfssa (available on CRAN), that imple-
ments the MFSSA algorithm and it also includes the NDVI dataset [11]. Further-
more, a shiny web application is also included in the package, and it is available
at http://sctc.mscs.mu.edu/mfssa.htm for reproducing the results of this chapter or
analyzing any other MFTS.
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Compositional Data Analysis—Linear
Algebra, Visualization and Interpretation

Michael Greenacre

Abstract Compositional data analysis is concerned with multivariate data that have
a constant sum, usually 1 or 100%. These are data often found not only in biochem-
istry and geochemistry, but also in the social sciences, when relative values are of
interest rather than the raw values. Recent applications are in the area of very high-
dimensional “omics” data. Logratios are frequently used for this type of data, i.e.
the logarithms of ratios of the components of the data vectors. These ratios raise
interesting issues in matrix-vector representation, computation and interpretation,
which will be dealt with in this chapter.

1 Introduction

Consider the table in Fig. 1a: these are amounts spent in 2019 on four different budget
items in the European Union (EU), showing only six EU countries with the addition
of Iceland, Norway and Switzerland. The full data set consists of 30 countries. The
amounts are in millions of local currency and are clearly not comparable across
the countries. Converting all the amounts to the same currency, for example euros,
alleviates but does not solve the data coding problem, since some countries are small
and others are large. It is thus the relative amounts spent on the different items that
are of interest, and so it seems that comparability across countries is assured by
simply expressing the four amounts in each row as percentages, as in Fig. 1b. The
rows of data in Fig. 1b are called compositions: nonnegative multivariate data with
the constant sum constraint, 100% in this case. The act of transforming the original
monetary values to proportions, or percentages, is called in this context normalization
or closure.

But is the coding problem really solved? If additional budget items were added
to the table in Fig. 1a, such as public services, social protection and culture, the
relative amounts in Fig. 1b would change, necessarily decreasing, and they would

M. Greenacre (B)
Universitat Pompeu Fabra, Barcelona, Spain
e-mail: michael.greenacre@upf.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bekker et al. (eds.), Innovations in Multivariate Statistical Modeling,
Emerging Topics in Statistics and Biostatistics,
https://doi.org/10.1007/978-3-031-13971-0_10

223

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13971-0_10&domain=pdf
michael.greenacre@upf.edu
 854
56538 a 854 56538 a
 
mailto:michael.greenacre@upf.edu
https://doi.org/10.1007/978-3-031-13971-0_10
 -2047 61833 a -2047 61833 a
 
https://doi.org/10.1007/978-3-031-13971-0_10


224 M. Greenacre

Fig. 1 Expenditure in European Union countries plus Iceland, Norway and Switzerland on four
budget items, in 2019. In a, the amounts are in millions of local currency. In b, the amounts are
expressed as percentages relative to the totals

reduce by different proportions since the additional budget amounts would not be
in proportion to the totals of the four budget items shown in Fig. 1a. This is what
makes compositional data different fromanyothermultivariate data in Statistics—the
values of each component in the table depend on the values of the other components.
It would make no sense, for example, to compute correlations on such a data matrix,
since there are necessarily many negative correlations created by the constant sum
constraint, and the correlation between health and education would be different in
Fig. 1b from the correlation between health and education in an expanded table of
budget items also expressed as compositions.

Aitchison [1, 2] showed that using ratios of the components was a solution to the
data coding issue. Ratios remain constant between two components irrespective of
adding components to or removing components from a composition—they are said
to be subcompositionally coherent. Furthermore, Aitchison proposed that ratios be
logarithmically transformed: for example, if X j and Xk are two components then
the logratio transformation is log(X j/Xk) = log(X j ) − log(Xk), i.e. the difference
in their logarithms, which is a linear transformation on the log scale.

The objective of this chapter is to express the theory of logratio transformations in
linear algebra terms, and in the process give a flavor of the visualization possibilities
of logratios and their interpretation. In Sect. 2, basic definitions and results are given
in the matrix-vector form, as well as inverse logratio transformations, including the
important topic of log-contrasts. Section3 shows how logratios can be visualized
through cluster analysis and biplots, and Sect. 4 concludes with a discussion.

2 Basic Algebraic Definitions and Results

The practical aspects of compositional data analysis are given in two recent books,
by Greenacre [12] and Filzmoser et al. [8], and a comprehensive review is given by
Greenacre [15]. In this section, the algebra of compositional data analysis is given
in matrix-vector notation.
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Logratio Transformations and Associated Pattern Matrices

Supposex (J × 1) is a J -component compositional vector of positive valueswith sum
1: i.e. 1Tx = 1, where 1 is a vector of ones of appropriate order, in this case a vector
of J ones. If log(x) denotes the vector of log-transformed values, then almost all
logratio transformations are defined by a linear transformation of the form P log(x),
where P is called the logratio pattern matrix. If X (I × J ) denotes the data set, with
sampling units as rows and components as columns, then the compositions are in
the rows and the constant row sums are defined by post-multiplication by 1: X1 = 1,
where the 1 on the right is J × 1. Similarly, if L = log(X) denotes the I × J matrix
of logarithms of X, then the application of the pattern matrix to the rows of L implies
post-multiplication on the right by the transpose of the pattern matrix: LPT. In the
following, the matrix P will be subscripted by the type of logratio transformation.

The pairwise logratio pattern matrix Plr (
1
2 J (J − 1) × J ) is defined as

Plr =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 0 0 · · · 0 0 0
1 0 −1 0 0 · · · 0 0 0
1 0 0 −1 0 · · · 0 0 0
...

...
...

...
...
. . .

...
...

...

1 0 0 0 0 · · · 0 0 −1
0 1 −1 0 0 · · · 0 0 0
0 1 0 −1 0 · · · 0 0 0
0 1 0 0 −1 · · · 0 0 0
...

...
...

...
...
. . .

...
...

...

0 0 0 0 0 · · · 1 0 −1
0 0 0 0 0 · · · 0 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

so that the I × 1
2 J (J − 1) matrix of pairwise logratios is LPT

lr. Each row of Plr

defines a pairwise logratio (LR), when applied to the logarithm of a composition,
log(x). For example, the first row of Plr would engender the logratio log(x1) −
log(x2) corresponding to the pair (1, 2). Notice the lexicographic ordering in the
rows, corresponding to the ratio pairs (12), (13), (14), · · · , (1J ), (23), (24), (25), · · · ,
(J–2, J ), (J–1, J ).Wewill abbreviate the term “pairwise logratio” by LR throughout
the rest of this chapter.

The matrix of LRs is of rank J − 1, assuming I ≥ J , otherwise it is of rank
I − 1 (we shall assume for ease of description that there are at least as many rows
as columns in the compositional data matrix). This can be seen easily using a result
by Greenacre [12, 13] that a connected directed acyclic graph (DAG) consisting of
J − 1 LRs generates all the 1

2 J (J − 1) pairwise logratios through linear combina-
tions. For example, for the four-component example ofFig. 1awith sixLRs, a possible
connected DAG is shown by the three solid arrows in Fig. 2, representing the ratios
Health/Economy, Health/Education andDefence/Education (the arrow points toward
the numerator component). The other three logratios, indicated by dashed arrows,
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Fig. 2 Directed acyclic graph (DAG) that connects the four components of Fig. 1a, indicated by
the solid arrows. The dashed arrows indicate the other three pairwise logratios that can be obtained
from those of the DAG

can be obtained from those in the DAG as ratios combined either through multi-
plication or division depending on the direction of the arrows: Education/Economy
= (Health/Economy)/(Health/Education)), or in linearized logratio form using addi-
tion or subtraction: log(Education) – log(Economy = [log(Health)–log(Economy)]
– [log(Health)–log(Education)].

Assuming the four components above are in the order {Defence, Economy,Health,
Education} as in the table in Fig. 1, the pattern matrix associated with the three
logratios (solid arrows) in the DAG above has this form:

P =
⎡
⎣

0 −1 1 0
0 0 1 −1
1 0 0 −1

⎤
⎦ (2)

A special case of the LRs is the additive logratio (ALR) transformation, the set
of J − 1 LRs where the denominator component is the same, called the reference
component. For example, if the last component is the reference, then the ALR pattern
matrix Palr ((J − 1) × J ) is

Palr =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0 −1
0 1 0 · · · 0 −1
0 0 1 · · · 0 −1
...

...
...
. . .

...
...

0 0 0 · · · 1 −1

⎤
⎥⎥⎥⎥⎥⎦

(3)

The matrix of ALRs, LPT
alr (I × (J − 1)), is of rank J − 1. For example, if for the

four components in Fig. 1 the third component Health was chosen as the reference
part, then (3) would be a 3 × 4 matrix with the−1s down the third column and a 1 in
each row in columns 1, 2 and 4. Figure3 shows the DAG associated with this ALR
transformation, where Health is placed in the center and arrows emanate outwards
to the other three components.
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Fig. 3 DAG corresponding
to the ALR transformation of
the four components in
Fig. 1, where Health is the
reference part

The next most important logratio transformation is the centered logratio (CLR)
transformation, the ratio of each component divided by the geometric mean of
all the components. The usual unweighted definition is the following, for a row
[ x1, x2, . . . , xJ ] of X:

CLR( j) = log

(
x j( ∏

k xk
)1/J

)
= log(x j ) − 1

J

∑
k

log(xk) j = 1, . . . , J (4)

but it is preferred here to give a more general weighted definition assuming positive
weights c j ( j = 1, . . . , J ) for the components,where

∑
j c j = 1, and thus aweighted

geometric mean in the denominator:

CLR( j) = log
( x j∏

k xck
k

)
= log(x j ) −

∑
k

ck log(xk) j = 1, . . . , J (5)

Hence, (4) is the special case of (5) with equal weights 1/J for all the J components.
The CLR pattern matrix Pclr (J × J ) for the general case is

Pclr =

⎡
⎢⎢⎢⎢⎢⎣

1 − c1 −c2 −c3 · · · −cJ

−c1 1 − c2 −c3 · · · −cJ

−c1 −c2 1 − c3 · · · −cJ
...

...
...

. . .
...

−c1 −c2 −c3 · · · 1 − cJ

⎤
⎥⎥⎥⎥⎥⎦

(6)

Notice that Pclr is just the idempotent centering matrix I − 1cT, where cT =
[ c1 c2 · · · cJ ]. The rows of Pclr sum to 0, and the matrix of CLRs, LPT

clr, has
rank J − 1, just like the matrix of LRs, LPlr, and the matrix of ALRs, LPalr.

More complex logratio transformations are the isometric logratios (ILRs) [7]
and their slightly simpler special case, the pivot logratios (PLRs) [8]—these are
often called “balances” although the term can be misleading [14, 17]. ILRs are log-
transformed ratios of geometric means of groups of components. In PLRs, one of
these groups is a single component and a linear independent set of J − 1 PLRs takes
the components in a fixed order and the numerator of each ratio is a single compo-
nent and the denominator is the geometric mean of the others “to the right of” the
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Fig. 4 Dendrogram graph associatedwith three PLRs corresponding to the order of the components
Defence, Economy, Health, and Education

numerator component. For both ILRs and PLRs, there is a scalar constant involved,
which is omitted here for simplicity—see Greenacre [12] for the exact (unweighted)
definition. Again, it is preferred to give the more general weighted definition here,
which will be useful in practice when parts are considered differentially weighted.
The pattern matrix Pplr ((J − 1) × J ) for the weighted case is

Pplr =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − c2
c2+···+cJ

− c3
c2+···+cJ

· · · − cJ−2

c2+···+cJ
− cJ−1

c2+···+cJ
− cJ

c2+···+cJ

0 1 − c3
c3+···+cJ

· · · − cJ−2

c3+···+cJ
− cJ−1

c3+···+cJ
− cJ

c3+···+cJ

0 0 1 · · · − cJ−2

c4+···+cJ
− cJ−1

c4+···+cJ
− cJ

c4+···+cJ

...
...

...
. . .

...
...

...

0 0 0 · · · 1 − cJ−1

cJ−1+cJ
− cJ

cJ−1+cJ

0 0 0 · · · 0 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

Like the pattern matrices before, (1), (3) and (6), the row sums of Pplr are zero
and the matrix LPT

plr of PLRs has rank J − 1. There are J ! permutations of the J
components, hence J ! sets of PLRs possible, depending on the ordering of the J
components. For the four components of Fig. 1, in the order given, a graph of the
associated PLRs is in the form of the binary dendrogram of Fig. 4. Since there are
4! = 24 ordered permutations possible for this example, there are 24 different sets
of PLRs possible. Notice that the last member of a set of PLRs is a simple LR.

The ILRs involving more general ratios of geometric means are usually defined
according to a dendrogram graph, and the number of possible dendrograms increases
even more rapidly with the number of components. The ILR pattern matrix becomes
more difficult to express in general, so we will just give the special case associated
with the dendrogram in Fig. 5, assuming the order shown of the components.
The specific pattern 3 × 4 matrix for this four-component example corresponding to
Fig. 5, again with rows summing to 1, would thus be

PILR =
⎡
⎢⎣

c1
c1+c2

c2
c1+c2

− c3
c3+c4

− c4
c3+c4

1 −1 0 0

0 0 1 −1

⎤
⎥⎦ (8)
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Fig. 5 Dendrogram graph associated with three ILRs corresponding to the three ratios (moving
down the tree): (1) geometric mean of Defence and Economy/geometric mean of Health and Edu-
cation, (2) Defence/Economy and (3) Health/Education

Finally, there is a class of nonlinear transformations called amalgamation (or
summated) logratios, abbreviated as SLRs. Like the LRs, these are true balances
between the components as they use sums rather than geometric means when com-
bining components in the ratios [14]. For example, the dendrogram in Fig. 5 would
translate to the following three SLRs, the last two of which are regular LRs:

(1) log

(
Defence+Economy

Health+Education

)
(2) log

(
Defence

Economy

)
(3) log

(
Health

Education

)
(9)

The first SLR above cannot be written as a linear function of the logarithms, but has
the advantage of being more easily interpreted in a practical application. It is still
isomorphic, however, as shown in the next subsection.

Inverting Logratio Transformations

All the logratio transformations defined in the previous subsection are isomorphic;
that is, there is a one-to-one mapping of the J -part compositions to the correspond-
ing J − 1 logratios. And in each case, the logratios can be inverted back to the
original compositions (i.e. back-transformed), including the nonlinear SLRs. Each
transformation in turn relies on a square inversion pattern matrix, denoted by Q,
closely related to the respective logratio pattern matrix P. The back-transformation
in each case involves solving a system of J linear equations of the form Qx = e, i.e.
x = Q−1e, where Q involves elements that are functions of the logratios, and e is the
vector [ 0 0 · · · 0 1 ]T.

Starting with the ALRs, suppose that y = Palrx is the vector of J − 1 ALRs,
where x is a J × 1 composition and Palr is given by (3). Then the inverse operation
of finding x from y is the solution of the following equation:



230 M. Greenacre

Qalrx =

⎡
⎢⎢⎢⎢⎣

1 0 · · · 0 −ey1

0 1 · · · 0 −ey2

...
...

. . .
...

...

0 0 · · · 1 −eyJ−1

1 1 · · · 1 1

⎤
⎥⎥⎥⎥⎦

x =

⎡
⎢⎢⎢⎢⎣

0
0
...

0
1

⎤
⎥⎥⎥⎥⎦

(10)

Notice that the −1s in the pattern matrix, i.e. in the denominator positions, are
substituted by−ey1 ,−ey2 , . . . ,−eyJ−1 in rows 1, 2, . . . , J − 1 respectively, and then
a row of 1s is added, which with the last 1 in the right-hand vector imposes the
constraint that the x j s in the solution sum to 1 [14]. This is equivalent to the simpler
calculation of exponentiating the J − 1 logratios and expanding them with a 1, i.e.
[ ey1 ey2 · · · eyJ−1 1 ] and then normalizing the result to sum to 1. So, although using
the linear equations approach by solving (10) is actually an inefficient way of back-
transforming the compositions, it is enlightening because it provides a way to deal
with any set of J − 1 independent LRs, e.g. the three LRs defined in the DAG of
Fig. 2.

The way of inverting a set of J − 1 independent pairwise logratios (LRs) is a
simple generalization of the system of equations (10) above. The (J − 1) × J pat-
tern matrix Plr for the transformation to the LRs now has each of the J − 1 rows
corresponding to a specific LR, log(x j/x j ′), with a 1 in column j of the numerator
part and −1 in column j ′ of the denominator part. To obtain the inversion pattern
matrix, the−1 is again replaced in row k by−eyk and then a row of 1s is added as the
last row, as before. For example, for the DAG in Fig. 2, the logratio patternmatrix and
corresponding inversion pattern matrix, with their matrix equations are, in the order
Defence, Economy, Health, Education, and LRs Health/Economy, Health/Education
and Defence/Education, for x (4 × 1) a compositional vector, y (3 × 1) the logratio
transformation, and e = [ 0 0 0 1 ]T:

Plr =
⎡
⎣
0 −1 1 0
0 0 1 −1
1 0 0 −1

⎤
⎦ , i.e. y = Plr log(x) Qlr =

⎡
⎢⎢⎣
0 −ey1 1 0
0 0 1 −ey2

1 0 0 −ey3

1 1 1 1

⎤
⎥⎥⎦ , i.e. x = Q−1

lr
e (11)

The same approach can be used to invert a set of J − 1 independent amalgamation
logratio balances (SLRs), which must involve each part at least once. The SLRs have
a patternmatrixPslr indicatingwhich parts are in the numerator and the denominator,
but this is not the matrix of the transformation, which is not linear in log(x), hence
not a contrast matrix. For example, the pattern matrix for the SLRs in (9) as well as
the corresponding inversion pattern matrix are as follows:

Pslr =
⎡
⎣
1 1 −1 −1
1 −1 0 0
0 0 1 −1

⎤
⎦ Qslr =

⎡
⎢⎢⎣
1 1 −ey1 −ey1

1 −ey2 0 0
0 0 1 −ey3

1 1 1 1

⎤
⎥⎥⎦ (12)
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Each row of Pslr corresponding to an SLR has 1s in the columns of the numerator
parts, and −1s in the columns of the denominator parts. Then, as before, replace all
the−1s in the k-th rowofQslr by−eyk and add a rowof 1s as the last row,which again
automatically closes the parts in the solution. The compositional vector can then be
recovered by x = Q−1

lsre. Notice that both the LR and ALR inverse transformations
are special cases of the SLR one, where LRs and ALRs have only one numerator and
one denominator part. For specific examples of inverse transforms of sets of LRs and
sets of SLRs, see Greenacre [14].

Log-Contrasts

A log-contrast is a linear combination of logarithms of all the components of com-
position, with the condition that the coefficients sum to 0:

∑
j

a j log(x j ), where
∑

j

a j = 0 (13)

The logratio pattern matrices Palr in (3), Pclr in (6) and Pplr in (7), as well as a
particular pattern matrix associated with a DAG such as (2), transform the vector
log(x) to the corresponding set of J − 1 logratios, or J logratios in the case of the
CLR transformation. For any one of these sets of logratios, denoted in general by
�1, �2, . . ., the coefficients c of a linear combination of them c1�1 + c2�2 + · · · can
be converted to the coefficients of the log-contrast simply by pre-multiplying c by
the transpose of the pattern matrix. For example, for a linear combination of ALRs,
the J coefficients of the log-contrast are a = PT

alrc. This result is useful when a
linear combination of logratios, used as explanatory variables in a generalized linear
model, is estimated in explaining/predicting a response variable [5].

This result is illustrated for four different transformations, for the linear model-
ing of a response variable in the form of the proportion of total budget in the same
30 countries devoted to Housing and Community Amenities, logarithmically trans-
formed, denoted by log(y). For example, if one defines the ALR with Health as the
reference component, then the estimated regression model is, along with p-values in
parentheses and proportion of explained variance, R2:

log(y) = −0.482 + 0.029 log
(Defence

Health

)
+ 1.032 log

(Economy

Health

)
− 0.904 log

(Education

Health

)

(p = 0.004) (p = 0.030) (p = 0.83) R2 = 0.295

The coefficients of the log-contrast, using the corresponding ALR pattern matrix,
are then (always remembering the order of the components):

a = PT
alrc =

⎡
⎢⎢⎣

1 0 0
0 1 0

−1 −1 −1
0 0 1

⎤
⎥⎥⎦

⎡
⎣

0.029
1.032

−0.904

⎤
⎦ =

⎡
⎢⎢⎣

0.029
1.032

−0.157
−0.904

⎤
⎥⎥⎦
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It can be verified that 1Ta = 1. Thus, the regression model can be written as the
constant plus the log-contrast:

log(y) = −0.482 + 0.029 log(Defence) + 1.032 log(Economy) − 0.157 log(Health) − 0.904 log(Education)

The coefficients of the components in the log-contrast are interpreted as the additive
effect on the mean of the dependent variable log(y) of increasing each component in
turn while decreasing all others by a common factor. Exponentiating the coefficients
would give the multiplicative effects on y itself.

From the form ofPT
alr and the fact that any ALR transformation will give the same

log-contrast, it is clear that the coefficient of the reference part is the one that will
change. For example, if Education is the reference, the regression coefficients turn
out to be [ 0.029 1.032 − 0.157 ]T and the log-contrast is shown to be identical:

a = PT
alrc =

⎡
⎢⎢⎣

1 0 0
0 1 0
0 0 1

−1 −1 −1

⎤
⎥⎥⎦

⎡
⎣

0.029
1.032

−0.157

⎤
⎦ =

⎡
⎢⎢⎣

0.029
1.032

−0.157
−0.904

⎤
⎥⎥⎦

For any set of pairwise logratios, once again the same log-contrast is obtained. For
example, here is the regression model using the logratios in the DAG of Fig. 2:

log(y) = −0.482 − 1.032 log

(
Health

Economy

)
+ 0.875 log

( Health

Education

)
+ 0.029 log

( Defence

Education

)

(p = 0.004) (p = 0.036) (p = 0.83) R2 = 0.295

Then, using the pattern matrix P in (2):

a = PTc =

⎡
⎢⎢⎣

0 0 1
−1 0 0
1 1 0
0 −1 −1

⎤
⎥⎥⎦

⎡
⎣

−1.032
0.875
0.029

⎤
⎦ =

⎡
⎢⎢⎣

0.029
1.032

−0.157
−0.904

⎤
⎥⎥⎦

The same result is obtained for the CLRs, as well as any set of ILRs or PLRs. One
difference with the CLRs is that the patternmatrix is 4 × 4 and only three coefficients
are obtained in a regression, so the fourth one has to be set to zero. In all cases, the
constant as well as the R2 and the p-value for the whole model (which is p = 0.026)
are identical across the variations, as they all reduce to the same log-contrast.

Often, some type of variable selection is made to arrive at a more parsimonious
model. Selecting fewer explanatory variables implies forming a subcomposition of
the parts. A statistical criterion is needed to make the selection and there are many
possible ways to achieve this. For example, one could do a permutation test on the
coefficients of the log-contrast. Using the CLR transformation, and randomizing the
order of the response variable 999 times, the p-values for each log-contrast coefficient
were estimated as

Defence: p = 0.86, Economy: p = 0.003, Health: p = 0.66, Education: p = 0.037.
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It seems that only one logratio, that of Economy/Education, can be used as a
predictor, and gives the following result:

log(y) = −0.562 + 1.010 log
( Economy

Eduction

)

(p = 0.002) R2 = 0.286

This leads to the trivial log-contrast of the two components in the model:

log(y) = −0.562 + 1.010 log(Economy) − 1.010 log(Education)

For more details about logratios used as predictors in linear modeling, see [5, 6].

3 Logratio Visualization

In this section, we look at various ways of visualizing a compositional data set.
Basically, once a logratio transformation is made, any of the various well-known
multivariate visualization methods can be implemented, such as cluster analysis and
dimension-reduced component methods. Care has to be taken in the interpretation
because of the unit sum constraint on the original data. Since these methods rely on
interpoint distances, the first thing to do is to define the distance measures between
rows and between columns of the data matrix.

If thematrixZ = [zi, j j ′ ] (I × 1
2 J (J − 1)) denotes thematrix of LRs log(xi j/xi j ′),

and Y = [yi j ] (I × J ) the CLR-transformed data set, then the logratio distance dii ′

between samples i and i ′ can be defined in two equivalent forms, shown for the
weighted and unweighted versions in (14) and (15), respectively [12]:

dii ′ =
√∑ ∑

j< j ′c j c j ′(zi, j j ′ − zi ′, j j ′)2 =
√∑

j

c j (yi j − yi j ′)2 (14)

dii ′ =
√

1

J 2

∑ ∑
j< j ′(zi, j j ′ − zi ′, j j ′)2 =

√
1

J

∑
j
(yi j − yi j ′)2 (15)

The advantage of the versions using CLRs is the use of a much narrower matrix,
but—as will be emphasized repeatedly—the results should always be interpreted in
terms of pairwise logratios. The CLRs as such have no inherent interpretation as
representing the components and simply act as a shortcut to analyzing all the LRs.
The above holds when the structure of a composition is being investigated internally,
that is, in an unsupervised learning mode. However, when logratios are used in a
supervised mode as predictors in a generalized linear model, there is less interest
in their relationship to one another, and attention is focused on their effect on the
response variable, where an increase in one component is at the expense of decreasing
others.

There are results similar to (14) and (15) for the columns, by transposing the
data set, renormalizing and performing the same operations. The samples are usu-
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Fig. 6 Expenditure in European Union countries plus Iceland, Norway and Switzerland on ten
budget items, in 2019. The data are expressed as percentages of the expenditure on these items (i.e.
row sums are 100%). Some column names have been slightly abbreviated—see the original longer
names in Fig. 7

ally unweighted (i.e. with weights 1/I ) but can also be differentially weighted if
required—see Greenacre [12]. Later for the definition of the biplot, the theory is
presented in complete generality with weights on the rows and the columns, where
equal weighting on the columns is referred to as the unweighted analysis.

Figure7 shows the clustering of the rows and columns respectively of an extended
data set of country budget items (Fig. 6), using the easyCODA package [12] in R
[19], andWard clustering in each case [21]. InWard clustering, the successive clusters
are built up by averaging the CLRs of objects contributing to a particular node. For
example, at the top of Fig. 7a the group of countries Malta, Belgium, Luxembourg
and Ireland are joined together by averaging their respective CLRs across the items.
Similarly, at the top of Fig. 7b the group of items Social protection, General Public
services and Health are joined together by averaging their respective CLRs across
the countries, in this case by weighted averaging. The weights are introduced due to
the higher ratios created by low-percentage items and lower ratios created by high-
percentage items [12, 16]. In both cases, the between-group logratio variance of the
individual leaves at the start of the clustering is equal to the total logratio variance,
and it reduces to zero when all objects are clustered. The sum of the node values is
thus equal to the total logratio variance, in this case including item weighting in both
clusterings.

A completely different way of performing the clustering of the components is
by successively amalgamating the components [14], shown in Fig. 8. Amalgamation
clustering aggregates the components by simple summation, which is a more natural
wayof combining them.For example, the initial two items inFig. 8a, Social protection
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Fig. 7 Clustering of a countries and b budget items, usingWard clustering of the logratio distances.
The budget items are weighted, as in (14), using weights proportional to their average marginal
proportions

and Education, are combined by summing their percentages, and in the next step of
the clustering the percentages of Economic affairs are similarly added to the two
before. The cluster heights are defined by the amount (or percentage) of explained
logratio variance—at the start, the full set of budget items explains 100% of the
variance. When Social protection and Education are combined by summing, there
is a part of explained variance that is lost, but these two combined are minimizing
that loss. The procedure ends when all the items are combined into a constant vector,
which explains no variance at all. Thus, the values at the nodes similarly decompose
the total logratio variance.

Both unweighted and weighted versions are shown in Fig. 8, giving different
results, and different from the Ward clustering in Fig. 7b. The unweighted version
turns out to be identical to the graph structure of a set of PLRs. The weighted version,
which decomposes weighted logratio variance, de-emphasizes the role of Defence,
and shows that there are three pairs of items that could easily bemerged: Housing and
community amenities with Economic affairs, Environmental protection with Public
order and safety, and Education with Recreation, culture and religion.

Next, a logratio biplot is shown in Fig. 9, using logratio analysis (LRA). This biplot
is obtained using the singular value decomposition (SVD) of the double-centered
matrix of the log-transformed compositional data set, log(X). An unweighted or
weighted version of LRA is possible, and here weighted LRA is used, where weights
are imposed on the budget items equal to the average proportions of the items across
the countries, as before. This weighting will reduce the influence of some budget
items with low average proportions but high logratio variance. The configuration of
the countries is approximating the weighted logratio distances in (14). This biplot
and the clusterings of Fig. 7 are using the sameweighted logratio distances, hence the
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Fig. 8 Clustering of budget items using amalgamation clustering: a unweighted and b weighted

outlying position of Defence, but notice that only 55.8% of the interpoint distance
variance is explained by the two-dimensional biplot, whereas the cluster analysis is
performed in the full space of the objects (countries and budget items, respectively).

Using matrix-vector notation, the sequence of steps to perform LRA and arrive
at the biplot in Fig. 9 is as follows, starting from the matrix of log-transformed
compositional data, log(X). Note that the most general row- and column-weighted
version is given here, with row and column weights r and c, respectively. Usually,
but not necessarily, the rows are equally weighted: r = (1/I )1, and the description
weighted or unweighted LRA refers to the nature of the column weights c, which
can be different (e.g. by default equal to the marginal average proportions of the
components [16]) or equal: c = (1/J )1 [4].

Double-center the matrix log(X) : Z = (I − 1rT) log(X)(I − 1cT)T (16)

Apply weights to rows and columns: S = D
1
2
r ZD

1
2
c (17)

Perform the SVD: S = UDαVT (18)

Principal coordinates of rows: F = D
− 1

2
r UDα (19)

Standard coordinates of columns: � = D
− 1

2
c V (20)

Contribution coordinates of columns: �∗= D
1
2
c � = V (21)

Two-dimensional biplots of the results are given by plotting the row principal
coordinates in the first two columns of F with either the corresponding column
standard coordinates in the first two columns of � (asymmetric biplot) or those of
the contribution coordinates in �∗ (contribution biplot) [11].

The two-dimensional symmetric map of the LRA is the plotting of the first two
columns of the row principal coordinates F in (19) jointly with those of the column
principal coordinates G:



Compositional Data Analysis—Linear Algebra, Visualization and Interpretation 237

LRA dimension 1 (31.1%)

LR
A

 d
im

en
si

on
 2

 (2
4.

7%
)

−0.4 −0.2 0.0 0.2 0.4

−0
.4

−0
.2

0.
0

0.
2

0.
4

−0.8 −0.4 0 0.4 0.8

−0
.8

−0
.4

0
0.
4

0.
8

Belgium

Bulgaria

CzechiaDenmark

Germany

Estonia

Ireland

Greece

Spain

France

Croatia

Italy
Cyprus

Latvia

Lithuania

Luxembourg

Hungary

Malta

Netherlands

Austria

Poland

Portugal

Romania

SloveniaSlovakia
Finland Sweden

Iceland

Norway
Switzerland

General_public_services

Defence

Public_order_and_safety

Economic_affairsEnvironmental_protection
Housing_and_community_amenities

Health

Recreation,_culture_and_religionEducation

Social_protection

Fig. 9 Weighted logratio biplot of the data in Fig. 6, with asymmetric biplot scaling: rows in
principal coordinates, columns in standard coordinates

Principal coordinates of columns: G = D
− 1

2
c VDα (22)

This is not a biplot, strictly speaking, but has the practical advantage that the row and
column points are equally scaled along the principal axes, their weighted variances
both being equal to the amount of variance explained on the axes, i.e. the eigenvalues
or squared singular values α2

k on axis k, k = 1, 2.
The sum of the squared singular values,

∑
kα2

k (i.e. sum of eigenvalues), equals
the total logratio variance and α2

k is the part of variance explained by axis k, usually
expressed as a percentage of this total, as shown on the axes in Fig. 9.

The steps (16)–(21) are equivalent to performing a principal component analysis
(PCA) on the matrix of (weighted) CLRs, because the CLRs are the row-centered
log(X) (i.e. log(X)(I − 1cT)T in (16)) and PCA automatically performs column-
centering (i.e. the centering (I − 1rT) in (16), with equal weights in r), hence the
double-centering. The steps from (17) onwards define the PCA with its variations
of display coordinates. Because of the double-centering of log(X), the definition of
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each principal component as a linear combination of the CLRs turns out to be a
log-contrast.

The interpretation of Fig. 9 is not the same as a regular PCA, however. TheCLRs as
variables are not interpretable per se, but rather the differences between pairs of CLR
points, which depict the pairwise logratios themselves. Aitchison and Greenacre [4]
show that the LRA biplot optimizes the display of these pairwise logratios, which is
not the case in a regular PCA (i.e. in a regular PCA, the optimization of the variables
is not equivalent to the optimization of the differences between pairs of variables).
Thus, the horizontal dispersion in Fig. 9 is due to logratios such as Public Order and
Safety divided by Social Protection, while the vertical dispersion is dominated by the
logratio of Defence relative to Health, for example, where it is clear that Iceland’s
ratios of Defence relative to the other budget items are low.

The equivalence between the PCA of the CLRs and the PCA of the LRs (i.e. LRA
in both cases) can be neatly shown using the respective logratio pattern matrices
defined earlier. The proof follows the one given for unweighted logratios inAppendix
of [4], but is more elegantly defined for the general weighted case. The double-
centered matrix Z in (16) is the matrix L = log(X) post-multiplied by the transposed
column-centering matrix, which is identical to the transposed CLR pattern matrix in
(6), and pre-multiplied by the row-centering matrix, i.e. Z = (I − 1rT)LPT

clr. The

corresponding result for the matrix of pairwise LRs LPT
lr is the row-centered matrix

Y = (I − 1rT)LPT
lr. The weights in the two respective cases are c1, c2, . . . , cJ for

the J CLRs and c1c2, c1c3, . . . , cJ−1cJ for the 1
2 J (J − 1) LRs, gathered in the

diagonals of the diagonal matrices Dc and Dcc, respectively. The matrix of weighted
scalar products for the rows of Z and Y are then identical. These I × I matrices are
called the form matrices:

ZDcZT = YDccYT (23)

thanks to the result PT
clrDcPclr = PT

lrDccPlr. This proves that the configuration of
the samples is identical. The distances in (14) correspond exactly to the formmatrices
in (23).

Notice that the equivalence of the PCA of the CLRs and the PCA of the LRs is
a particular result, thanks to the definition of the CLRs. In regular PCA, the low-
dimensional result is not optimal for differences between variables. For example,
Gabriel [9] gives examples of difference vectors in biplots but makes no statements
about their optimality, whereas [10] shows specifically how difference vectors can
be optimally displayed.

4 Summary and Discussion

To capture the relative values in a compositional data set, the essential step is to
perform one of the available logratio transformations. The complete set of pairwise
logratios contains all the logratio variance, but only a subset of them, one less than
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the number of components, is required to explain the totality of this variance in a
regression sense. For multivariate analysis that requires the complete information in
a compositional data set, for example cluster analysis or the reduction to principal
dimensions, the centered logratios (CLRs) are sufficient. The CLRs are equivalent
to analyzing all pairwise logratios, but they are not linearly independent, so if the
inverse of their singular covariance matrix is required, for example for discriminant
analysis or regression, then the generalized inverse needs to be used. Additive logra-
tios (ALRs) have been shown to be a satisfactory substitute for a compositional data
set of high dimensionality, where the challenge is to find the reference component
that leads to the transformation that best captures the logratio geometry [18].

If pairwise logratios are used as predictors in a generalized linear model or any
other supervised learning procedure, for example generalized additive modeling or
classification and regression trees, then only those that are related to the response
variable would be chosen using some variable selection method. In this case, it
is more relevant to ascertain how well the logratios explain the response variable
(i.e. supervised learning objective), not how well they explain structure in the com-
positional data set itself (i.e. unsupervised learning objective). The interpretation of
logratios as predictors in a linear model is best made via the log-contrast form, which
is equivalent to the linear combination of logratios. But notice that when logratios are
used as explanatory variables (see Sect. 2.6), there are important issues of effect-size
interpretation, discussed by [5].

As John Aitchison said, “Compositional data analysis is simple” [3]. The basic
concept is the logratio transformation, after which statistical analysis proceeds very
much as before. But care needs to be taken in the interpretation: the analyst has to
think in terms of pairwise logratios and realize the implications of the results of the
initial normalization of the data to have constant sums.

The one real snag of compositional data analysis, what I have called its “Achilles
heel”, is how to handle zero values, which often abound in a compositional data set.
Several proposals have been made to substitute data zeros with small positive values
so that logratio transformations can be performed—see [8, 15] for an overview of
these. This is a continuing issue which so far has not been fully resolved.

Another issue is that of using amalgamated components in logratios; that is, if
A, B and C are components, is it valid to define a logratio as log (A/(B + C))?
Although this might seem like the most natural thing to do if the combining of
components B and C makes substantive sense, this practice is surprisingly opposed
on mathematical grounds by several authors who favor isometric logratios (ILRs),
for example [7]. In the alternative clustering algorithm using amalgamations (see
Fig. 8), the groupings of components by simple summations are easy to understand,
compared to the groupings by geometricmeans in ILRs andPLRs. The use of amalga-
mation logratios (or summated logratios, abbreviated as SLRs) is defended in several
publications, notably by Greenacre et al. [17], Greenacre [14], Wood and Greenacre
[22] and Smithson and Broomell [20], where it is maintained that any summing of
components that fits the research question is permitted.
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Multivariate Count Data Regression
Models and Their Applications

Ayman Alzaatreh, Felix Famoye, and Carl Lee

Abstract Multivariate regression models based on multivariate discrete distribu-
tions will be defined and studied. Multivariate discrete distributions including some
distributions generated from the T-R{W} method will be defined. Models that allow
both positive and negative correlation between any pair of response variables will
be considered. The model parameters will be estimated by using the method of
maximum likelihood estimation. The application of these regression models will be
illustrated by using two numerical datasets.

Keywords T-X family · Sarmanov family · Nested models · Non-nested models

1 Introduction

Manyunivariate count data regressionmodels have been defined and studied. Someof
these models have been extended to bivariate, and a few of them have been extended
to multivariate count data regression models. Examples can be found in the books
by [6, 25] and the references therein.

The major limitation of the standard Poisson regression model is that it can be
used to model response count data in which the mean and the variance are about
equal, the case of equi-dispersion. Quite often, a count data may be over-dispersed
(variance > mean) or under-dispersed (variance < mean). Few univariate count data
regression models in the literature allow for over- and under-dispersion. Winkel-
mann [25] (pp. 45–56) discussed three such models. Sellers and Shmueli [22] gave
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COM-Poisson regressionmodel. Sun and Ong [23] discussed the generalized inverse
trinomial distribution. These regression models have some drawbacks that include
probability mass functions in complicated forms and/or some of the means and
variances of the response variables are not available in closed forms.

There are some methods to extend the univariate count data regression models to
bivariate or multivariate count data regression models. One method is the trivariate
reduction that leads to a bivariate regression model (see [14], Chap. 1). The draw-
back of this technique is that the correlation between the two variates is always posi-
tive. Modeling multivariate count data using copulas is another common technique.
Copula-based models allow for flexible dependence structure and marginal distribu-
tions. However, the choice of copulas and the marginal distributions is not an easy
task. Nikoloulopoulos andKarlis [19] consideredmultivariate Archimedean copulas,
partially symmetric copulas, and mixtures of max-id bivariate copulas. Some other
types of copula-based multivariate models for count data were reviewed by [18]
and the references therein. Other techniques to obtain bivariate models and their
drawbacks were discussed by [9].

In this paper, we define a family of multivariate distributions using the T-R{W}
framework. The multivariate count data regression models based on the T-R{W}
family of discrete distributions are defined. Some important characteristics of the
multivariate count data regression models include the following: (i) they allow any
type of correlation between any two or more variates, (ii) they allow for both under-
and over-dispersion for each variate, (iii) they allow correlations and dispersions to
be determined independently, and (iv) the cumulative distribution function (CDF) of
eachmarginal distribution is in closed form. Themeans and variances of themarginal
distributions may not be in closed form, but they are easy to compute.

Another motivation for this work is from the paper by [11] on the bivariate
exponentiated-exponential-geometric regression (BEEGR) model. A simulation
study was carried out to compare the BEEGR model with the bivariate generalized
Poisson regression (BGPR) model studied by [13]. Data were generated from each
of the two regression models, both models were fitted to the data, and the proportion
of times onemodel is significantly better than the other was recorded. Pee denotes the
proportion of times BEEGR is better than the BGPR while Pgp denotes the propor-
tion of times BGPR is better than the BEEGR. When the data were simulated from
BEEGR model, one would expect Pee > Pgp. One would expect the opposite if the
data were simulated from the BGPR model. The results presented by [11] showed
that Pee exceeded Pgp in all cases when the data were generated from the BEEGR
model. On the other hand, Pgp did not exceed Pee in all cases when the data were
simulated from the BGPR model. Based on the conclusion in the paper, the BEEGR
model seems to have advantages over the BGPR model.

In Sect. 2, we briefly review the T-R{W} family of distributions. In the section,
we focus on the T-R{W} family of discrete distributions. Some sub-families of the T-
R{W} discrete distributions are presented with some specific examples. Some exam-
ples of generalized geometric distributions are provided. Bivariate and multivariate
generalized geometric distributions are defined in Sect. 3. Multivariate generalized
geometric regressionmodel is defined in Sect. 3. In Sect. 4, we propose themaximum
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likelihood method for estimating the model parameters and some tests that include
goodness-of-fit statistics. In Sect. 5, application of some multivariate generalized
geometric regression models is illustrated with two numerical data sets. In Sect. 6,
we provide some summary and concluding remarks.

2 Review of T-R{W} Family of Distributions

There are many methods proposed in the literature for generating statistical distribu-
tions. See, for example, a review by [16] and the references therein. [4] proposed the
T-X(U) family of distributions by connecting the random variable T with support (a,
b) and X using the transformationU. The CDF of the T-X(U) family of distributions
is given by

G(x) =
∫ U (F(x))

a
r(t)dt = R{U (F(x))}, (1)

where U (.) : (0, 1) → (a, b) satisfies the following two conditions: (i) U(.) is
monotonically non-decreasing and absolutely continuous and (ii) U (0) → a and
U (1) → b. The CDFs of T and X are R(t) and F(x), respectively. The corresponding
probability density function (PDF) for the continuous random variable X in (1) is
given by

g(x) = f (x)u(F(x))r{U (F(x))}, where u(x) = d
dx U (x). (2)

Giving a function U and a random variable T, the resulting T-X(U) distribution
is a generalized distribution of X.

Aljarrah et al. [2] considered the functionU(F(x)) in (1) to be the quantile function
QW (F(x)) of a random variable W and defined the T-R{W} framework. By using
the unified notation in [3], we denote the CDFs of the random variables T, R, and
W by FT (y) = P(T ≤ y), FR(y) = P(R ≤ y) and FW (y) = P(W ≤ y),
respectively. The corresponding quantile functions are QT (p), QR(p) and QW (p),
where QZ (p) = inf{z : FZ (z) ≥ p}. If the densities exist, they can be denoted by
fT (y), fR(y), and fW (y). The CDF of the random variable Y in the T-R{W} family
of distributions is defined as

FY (y) =
∫ QW (FR(y))

a
fT (t)dt = FT {QW (FR(y))}. (3)

It is assumed the supports of the random variables T and W are (a, b) and (c, d),
respectively, where (a, b) ⊂ (c, d) for−∞ ≤ a < b ≤ ∞ and −∞ ≤ c < d ≤ ∞.

The PDF corresponding to the CDF in (3) when R is continuous can be written as
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Table 1 Examples of T-R{W} distributions based on different choices of random variableW*

W QW (p) G(y)

(a) Uniform p FT [FR(y)]

(b) Exponential − log(1 − p) FT
[− log(1 − FR(y))

]
(c) Log-logistic p/(1 − p) FT [FR(y)/(1 − FR(y))]

(d) Logistic log(p/(1 − p)) FT
[
log{FR(y)/(1 − FR(y))}]

*Standard random variable W

fY (y) = fR(y) × fT (QW (FR(y)))

fW (QW (FR(y)))
. (4)

When the support (a, b) of the random variable T is a subset of the support (c, d)
of the random variableW, [2] gave the support for the random variable Y in (3) when
R is continuous. In this paper, we assume that the support of the random variable T
is the same as that of the random variableW. Given the quantile function of random
variableW and random variable T, the resulting T-R{W} is a generalized distribution
of the randomvariableR. For example, Table 1 shows variousT-R{W} families based
on different choices of QW . To simplify the notation, we will use G(y) to replace
FY (y). Different T-R{W} families can be defined using (3), interested readers are
referred to [1–3] and the references therein.

If R is a discrete random variable with support N∗ = N ∪ {0}, then (3) is the
CDF of a discrete T-R{W} family with the corresponding probability mass function
(PMF)

g(y) = FT (QW (FR(y))) − FT (QW (FR(y − 1))), y ∈ N∗, (5)

where F(−1) = 0. An interesting special case of (5) was studied by [5]. They studied
the case T-geometric{standard exponential} which defines a discrete analogue to the
non-negative continuous random variable T.

Note that the family of discrete distributions in (3) is well defined only if the
random variables T and W have the same support. Next, several sub-families of
discrete T-R{W} are defined.

Sub-Families of Discrete T-R{W} Distributions

In this sub-section, several sub-families of the discrete T-R{W} will be defined. We
study the cases when T follows exponential, exponentiated-exponential, Weibull,
and logistic distributions andW follows standard forms of exponential, log-logistic,
and logistic distributions.

(a) Discrete exponential-R{W} distributions: If a random variable T follows the
exponential distribution with parameter λ, then fT (y) = λe−λt , y > 0, λ >



Multivariate Count Data Regression … 245

0. From (5), the CDF and the PMF of the discrete exponential-R{W} are,
respectively, given by

G(y) = 1 − exp{−λQW (FR(
y�))}, y ≥ 0, (6)

g(y) = exp{−λQW (FR(
y − 1�))} − exp{−λQW (FR(
y�))}, y ∈ N∗, (7)

where 
y� = max{m ∈ Z|m ≤ y} is the floor function.
Example 1 (Discrete exponential-R{standard exponential} distributions, denoted
as E-R{Es}): If QW is the quantile function of the exponential distribution given in
Table 1, then the CDF of the discrete E-R{Es} is given by

G(y) = 1 − (1 − FR(
y�))λ, y ≥ 0. (8)

If λ = 1, G(y) in (8) reduces to FR(y).

Example 2 (Discrete exponential-R{standard log-logistic} distributions, denoted as
E-R{LLs}): If QW is the quantile function of the standard log-logistic distribution
given in Table 1, then the CDF of the discrete E-R{LLs} is given by

G(y) = 1 − exp

( −λFR(
y�)
1 − FR(
y�)

)
, y ≥ 0. (9)

b. Discrete exponentiated-exponential-R{W} distributions: If a random variable T
follows the exponentiated-exponential distribution defined by [12] with PDF,
fT (y) = αλ(1 − e−λy)α−1e−λy, y > 0, α, λ > 0, then the CDF and the PMF
of the discrete exponentiated-exponential-R{W} are, respectively, given by

G(y) = (1 − exp{−λQW (FR(
y�))})α, y ≥ 0, and (10)

g(y) = (1 − exp{−λQW (FR(
y − 1�))})α
− (1 − exp{−λQW (FR(
y�))})α, y ∈ N∗. (11)

Example 3 (Discrete exponentiated-exponential-R{standard exponential} distribu-
tions, denoted as EE-R{Es}): If QW is the quantile function of the standard expo-
nential distribution given in Table 1, then the CDF of the discrete EE-R{Es} is given
by

G(y) = {
1 − (1 − FR(
y�))λ}α

, y ≥ 0. (12)

If α = 1, G(y) in (12) reduces to the CDF of the discrete exponential-R{standard
exponential} in (8).
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Example 4 (Discrete exponentiated-exponential-R{standard log-logistic} distribu-
tions, denoted as EE-R{LLs}): If QW is the quantile function of the standard log-
logistic distribution given in Table 1, then the CDF of the discrete EE-R{LLs} is
given by

G(y) =
{
1 − exp

( −λFR(
y�)
1 − FR(
y�)

)}α

, y ≥ 0. (13)

If α = 1, G(y) in (13) reduces to the CDF of the discrete exponential-R{log-
logistic} in (9).

c. DiscreteWeibull-R{W} distributions: If a random variable T follows theWeibull
distribution with parameters c and λ, then fT (y) = cλc yc−1e−(λy)c , y ≥ 0. The
CDF and the PMF of the discrete Weibull-R{W} are, respectively, given by

G(y) = 1 − exp
{−(λQW (FR(
y�)))c}, y ≥ 0 (14)

g(y) = exp
{−(λQW (FR(
y − 1�)))c} − exp

{−(λQW (FR(
y�)))c}, y ∈ N∗.
(15)

Example 5 (DiscreteWeibull-R{standard exponential} distributions, denoted asW-
R{Es}): If QW is the quantile function of the standard exponential distribution given
in Table 1, then the CDF of the discrete W-R{Es} is given by

G(y) = 1 − exp
{−(−λ log(1 − FR(
y�)))c}, y ≥ 0. (16)

If c = 1, G(y) in (16) reduces to the CDF of E-R{Es} in (8).

Example 6 (Discrete Weibull-R{standard log-logistic} distributions, denoted as W-
R{LLs}): If QW is the quantile function of the standard log-logistic distribution given
in Table 1, then the CDF of the discrete W-R{LLs} is given by

G(y) = 1 − exp

{
−

(
λFR(
y�)

1 − FR(
y�)
)c}

, y ≥ 0. (17)

If c = 1, G(y) in (17) reduces to the CDF of the discrete E-R{LLs} in (9).

d. Discrete logistic-R{W} distributions: If a random variable T follows the logistic
distribution with parameter λ, then fT (y) = λe−λy(1 + e−λy)−2, −∞ < y <

∞. The CDF and the PMF of the discrete L-R{W} are, respectively, given by

G(y) = 1

1 + exp{−λQW (FR(
y�))} , y ≥ 0 and (18)
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g(y) = 1

1 + exp{−λQW (FR(
y�))} − 1

1 + exp{−λQW (FR(
y − 1�))} , y ∈ N∗.

(19)

Example 7 (Discrete logistic-R{standard logistic} distributions, denoted as L-
R{Ls}): If QW is the quantile function of the logistic distribution given in Table
1, then the CDF of the discrete L-R{Ls} family is given by

G(y) = Fλ
R(
y�)

Fλ
R(
y�) + (1 − FR(
y�))λ , y ≥ 0. (20)

If λ = 1, G(y) in (20) reduces to the baseline CDF FR(y).

The Family of Generalized Geometric Distributions

In this sub-section, we propose a family of generalized geometric distributions by
taking the random variable R in the discrete T-R{W} framework to follow the
geometric distribution with the CDF FR(y) = 1 − ϕ y+1, 0 < ϕ < 1, y =
0, 1, 2, . . .. The random variable Y denotes the number of failures to obtain the
first success and ϕ is the probability of a failure. Table 2 provides the CDF of some
examples of T-geometric{W} families. The corresponding PMFs can be found using
Eqs. (7), (11), (15), or (19).

Remark 1

(a) Note that the random variable Y takes values y = 0, 1, 2, . . . for all distributions
in Table 2.

(b) Exponential-geometric{standard exponential} in Table 2(i) is just the geometric
distribution and exponentiated-exponential-geometric{standard exponential} in
Table 3(iii) is the exponentiated-exponential-geometric distribution defined by
[5]. By using (8), we obtain G(y) = 1− (1 − FR(
y�))λ = 1− ϕλ(y+1) = 1−

Table 2 T-geometric{W} families based on different choices for the random variables W and T

T-geometric{W} CDF G(y)

(i) E-geometric{Es} G(y) = 1 − θ y+1; θ ∈ (0, 1)

(ii) E-geometric{LLs} G(y) = 1 − exp
{−λ

(
θ−(y+1) − 1

)}; λ > 0, θ ∈ (0, 1)

(iii) EE-geometric{Es} G(y) = (1 − θ y+1))α; α > 0, θ ∈ (0, 1)

(iv) EE-geometric{LLs} G(y) = (
1 − exp

{−λ
(
θ−(y+1) − 1

)})α; λ, α > 0, θ ∈ (0, 1)

(v) W-geometric{Es} G(y) = 1 − θ(y+1)c ; c > 0, θ ∈ (0, 1)

(vi) W-geometric{LLs} G(y) = 1 − exp
{
−(

λ(θ−(y+1) − 1)
)c}; λ, c > 0, θ ∈ (0, 1)

(vii) L-geometric{Ls} G(y) = (1 − θ y+1)λ/[(1 − θ y+1)λ + θλ(y+1)]; λ > 0, θ ∈ (0, 1)
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Table 3 Bivariate T-geometric{W} families based on different choices for variables W and T

Bivariate
T-geometric{W}

Joint probability mass function h(y1, y2)

(i) BE-geometric{Es}
2∏

t=1

[
θ
yt
t (1 − θt )

] × {1 + δ(y1, y2)}

(ii)
BE-geometric{LLs}

2∏
t=1

[
e
−λt

(
θ

−yt
t −1

)
− e−λt

(
θ−(yt+1)−1

)]
× {1 + δ(y1, y2)}

(iii)
BEE-geometric{Es}

2∏
t=1

[(
1 − θ

yt+1
t

)αt − (
1 − θ

yt
t

)αt
]

× {1 + δ(y1, y2)}

(iv)
BEE-geometric{LLs}

2∏
t=1

[(
1 − e

−λt

(
θ

−(yt+1)
t −1

))αt

−
(
1 − e

−λt

(
θ

−yt
t −1

))αt ]
× {1 + δ(y1, y2)}

(v)
BW-geometric{Es}

2∏
t=1

[
θ

(yt+1)ct
t − θ

yt ct
t

]
× {1 + δ(y1, y2)}

(vi)
BW-geometric{LLs}

2∏
t=1

[
e
−

(
λt (θ

−yt
t −1)

)ct
− e

−
(
λt (θ

−(yt+1)
t −1)

)ct ]
× {1 + δ(y1, y2)}

(vii)
BL-geometric{Ls}

2∏
t=1

[ (
1−θ

yt+1
t

)λt

(
1−θ

yt+1
t

)λt +θ
λt (yt+1)
t

−
(
1−θ

yt
t

)λt
(
1−θ

yt
t

)λt +θ
λt yt
t

]
× {1 + δ(y1, y2)}

θ y+1,where θ = ϕλ. See Proposition 1 in [15], where it was shown that the CDF
of T-geometric family is characterized by θξ(y) for θ ∈ (0, 1),where ξ is a func-
tionof y. For theWeibull-geometric{standard exponential},weuse (16) to obtain
G(y) = 1 − exp

{−(−λ logϕ y+1
)c} = 1 − exp{−(−λ logϕ)c × (y + 1)c} =

1 − [e−(−λ logϕ)c ](y+1)c = 1 − θ(y+1)c , where θ = e−(−λ logϕ)c . Some of the
probability mass functions in Table 2 are derived in Chapter Appendix.

(c) All the families of discrete distributions generated in this section can also be
generated by using any other discrete random variable R with CDF FR(y).
For example, the random variable R can be replaced by the Poisson, binomial,
and negative binomial distributions. The only difference is that the geometric
distribution has a closed-form CDF. An option is to use approximate functions
(e.g., incomplete gamma function for Poisson) to calculate the CDF.

(d) By using the exponentiatedWeibull distribution in place of theWeibull distribu-
tion, one will obtain the exponentiated Weibull-geometric distribution studied
by [11].

(e) These new discrete distributions are characterized by at least one or more new
parameters. For example, in Table 2, all the distributions in 2(ii) through 2(vii)
are generalization of the geometric distribution characterized by one parameter.
Among the new parameters is a shape parameter or a scale parameter. Only
the distribution in 2(ii) has new scale parameter. All others from 2(iii) through
2(vii) have either one new shape parameter or have one new shape parameter
and one new scale parameter. Of course, one can have more parameters if the
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standard quantile functions are not used. These generalized new distributions
are derived to have one or two more parameters than the commonly used classic
distributions. Thus, the additional parameters are practically useful for capturing
the shape and/or scale of the empirical data which could not be properly fitted
by the classic distributions. This is one way to reduce the number of parameters
and provide enough flexibility for fitting empirical data in the derived new
distributions. Furthermore, one can apply test statistics given in Sect. 4 to test
if the new parameters are statistically significant to select the most appropriate
distribution for fitting a given data.

Bivariate and multivariate extensions of T-geometric{W} family are considered
in the next section.

3 Bivariate and Multivariate T-geometric{W} Families

In this section, we use the technique discussed in [21] to propose bivariate and
multivariate extensions of univariateT-geometric{W} family. [17] extended bivariate
Sarmanov distribution to multivariate case with several parameters measuring
covariances of order 2, 3, …, for m-variate distribution.

Sarmanov Family of Bivariate and Multivariate Distributions

In this sub-section, we define the bivariate and multivariate Sarmanov family of
distributions.

Definition 1 (Bivariate Sarmanov family of distributions) Let Y1 and Y2 be two
randomvariableswith their probability density (ormass) functions f1(y1) and f2(y2).
Letφt (u), t = 1, 2 be bounded nonconstant functions such that E[φt (Yt )] = 0.Then
the bivariate Sarmanov family is defined as

h(y1, y2) = f1(y1) f2(y2){1 + ωφ1(y1)φ2(y2)}, (y1, y2) ∈ R × R, (21)

where ω ∈ R satisfies the condition 1 + ωφ1(y1)φ2(y2) ≥ 0 for all y1 and y2.

Theorem 1 Assume (Y1,Y2) follows the Sarmanov family in (21) with μt and σ 2
t

the mean and variance for Yt , t = 1, 2. Then

(i) The marginal probability mass functions in (21) are f1(y1) and f2(y2).
(ii) If ω = 0, then Y1 and Y2 are independent.
(iii) E(Y1Y2) = μ1μ2 + ωv1v2, where vt = E[Ytφt (Yt )], t = 1, 2.
(iv) E(Y2|Y1 = y1) = μ2 + ωv2φ1(y1).
(v) ρ = corr(Y1, Y2) = ωv1v2

σ1σ2
.
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Proof Straightforward from (21). For more details refer to [17].

Remark 2 Let Y1 and Y2 be two random variables defined on [0,∞) with moment
generating functions Mt (u) = E

(
euYt

)
, t = 1, 2. Define φt (yt ) = e−yt − Mt (−1).

Then h(y1, y2) in (21) is a valid joint probability density (or mass) function.

Definition 2 (Multivariate Sarmanov family of distributions) Let Y1,Y2, . . . ,Yd be
random variables with their probability density or mass functions f1, f2, . . . , fd . Let
φt (y), t = 1, 2, . . . , d be bounded nonconstant functions such that E[φt (Yt )] = 0.
Then the multivariate Sarmanov family is defined as

h(y1, y2, . . . , yd) =
{

d∏
t=1

ft (yt )

}

(
1 + Rφ1,φ2,...,φd,�d

(y1, y2, . . . , yd)
)
, (y1, y2, . . . , yd) ∈ R

d ,

(22)

where Rφ1,φ2,...,φd ,�d (y1, y2, . . . , yd) =
d∑

j1< j2

ω j1, j2φ j1φ j2+
d∑

j1< j2< j3

ω j1, j2, j3φ j1φ j2φ j3

+ . . . + ω1,2,...,d

d∏
t=1

φt and Put space after and �d = {
ω j1, j2 , ω j1, j2, j3 . . . , ω1,2,...,d

}
is chosen so that Rφ1,φ2,...,φd ,�d (y1, y2, . . . , yd) ≥ −1.

Theorem 1 can be extended to the multivariate case. For more details, see
[17]. Next, bivariate and multivariate extensions of the T-geometric{W} family are
proposed.

Bivariate and Multivariate T-geometric{W} Families

Let Y1 and Y2 follow the discrete T-R{W} family in (5) with PDF f1(y1) and f2(y2),
respectively. Define ct = Mt (−1) where Mt (u) is the moment generating function
of Yt , t = 1, 2. Then by Remark 2, the bivariate discrete T-R{W} family can be
written as

h(y1, y2) = f1(y1) f2(y2){1 + ω(e−y1 − c1)(e
−y2 − c2)}, (y1, y2) ∈ N∗ × N∗.

(23)

Table 3 presents several examples of bivariate discrete T-R{W} family. In Table
3 δ(y1, y2) = ω(e−y1 − c1)(e−y2 − c2).

Amultivariate extension of the discrete T-R{W} family can be defined using (21).

For simplicity, let Rφ1,φ2,...,φd,�d
(y1, y2, . . . , yd) =

d∑
j1< j2

ω j1, j2φ j1φ j2 , where φt (yt ) =
e−yt −ct and ct = Mt (−1), t = 1, 2, . . . , d. Then, from (22) and (5), themultivariate



Multivariate Count Data Regression … 251

discrete T-R{W} family is given by (24)

h(y1, y2, . . . , yd) =
d∏

t=1

[ ft (yt )]

×
{
1 +

d∑
t<v

ωtv(e
−yt − ct )(e

−yv − cv)

}
, (y1, y2, . . . , yd) ∈ N

d
∗ .

(24)

Table 4 presents several examples of multivariate T-geometric{W} family. In

Table 4 δ(x1, x2, . . . , xd) =
d∑

t<v

ωtv(e−xt − ct )(e−xv − cv). Note that a multivariate

version with more than pairwise associations between the response variables can be
defined.

Multivariate T-geometric{W} Regression Model

Let the count response variable Yit , i = 1, 2, . . . , n; t = 1, 2 . . . , d where n is
the sample size and let xi = (xi0 = 1, xi1, xi2, . . . , xi(k−1))

T
i be a vector of k −

1 covariates. We assume that the same covariates affect each count response Yt ,
thus xi1 = xi2 = . . . = xid = xi . Assume that the conditional distribution of
Yi = (Yi1,Yi2, . . . ,Yid)T for any given xi = (xi0, xi1, xi2, . . . , xi(k−1))

T follows the
multivariate T-geometric{W} family with E(Yit |xi j ) = θt (xi j ) = γ (xi j , βt j ), t =
1, 2, . . . , d, and j = 0, 1, . . . , (k−1), where 0 < γ (xi , βt ) < 1 is a known function
of xi j , and a vector βt = (βt0, βt1, . . . , βt (k−1)) of regression parameters. Now, let
the function γ (xi , βt ) be the logit function. Therefore,

θt (xi ) = θt = γ (xi , βt ) = exp(xTi βt )

1 + exp(xTi βt )
. (25)

This implies that the bivariate and multivariate T-geometric{W} regression
models can be written, respectively, as

h(yi1, yi2|xi ) = f1(yi1; θ1) f2(yi2; θ2){1 + ω(e−yi1 − c1)(e
−yi2 − c2)}, (26)

h(yi1, yi2, . . . , yid) =
d∏

t=1

[ ft (yit ; θt )] ×
{
1 +

d∑
t<v

ωtv(e
−yit − ct )(e

−yiv − cv)

}
,

(27)

where θt is given in (25) and ft (yit ; θt ) follows T-geometric{W} family for t =
1, 2, . . . , d. In the next sections, we will discuss the statistical inference for the
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bivariate T-geometric{W} regression model and application to real-life data sets.
All results in these sections can be extended to the multivariate case in (27).

4 Inference on Bivariate and Multivariate T-geometric{W}
Regression Models

The maximum likelihood estimation method can be used to estimate the unknown
parameters in the bivariate T-geometric{W} regression model in (26). If a random
sample of size n is taken from the bivariate T-geometric{W} regression model in
(26), then the log-likelihood function is given by

log L(β,α) =
n∑

i=1

log h(yi1, yi2|xi )

=
n∑

i=1

2∑
t=1

log ft (yit ; θt ) +
n∑

i=1

log{1 + ω(e−yi1 − c1)(e
−yi2 − c2)}, (28)

where β is the vector of all unknown regression parameters and α is the vector of
parameters from themarginal PMFs in h(yi1, yi2|xi ). In next sub-sections, we discuss
some statistical tests and goodness-of-fit measures.

By using the discrete exponentiated-exponential-geometric distribution in (11)
with ϕλ set to parameter θ , we obtain the multivariate exponentiated-exponential-
geometric regression (MEEGR) model as (29)

P(y1, y2, . . . , yd) =
d∏

t=1

[
(1 − θ

yt+1
t )bt − (1 − θ

yt
t )bt

]

[
1 +

d∑
t<ν

ωtν(e
−yt − ct )(e

−yν − cν)

]
(29)

where θt = θt (xi ) = exp(βt0+βt1xi1)/[1+exp(βt0+βt1xi1)] = 1/{1+exp[−(βt0+
βt1xi1)]}. Themarginal PMF for each yt is P(yt ) = (1−θ

yt+1
t )bt −(1−θ

yt
t )bt . Suppose

d = 3, the conditional PMF of y2 given y1 is

P(y2|y1) = [(1 − θ
y2+1
2 )b2 − (1 − θ

y2
2 )b2 ][1 + ω12(e

−y1 − c1)(e
−y2 − c2)]/y2!

(30)

The conditional PMF of y3 given y1 and y2 is given by (31)

P(y3|y1, y2) = [(1 − θ
y3+1
3 )b3 − (1 − θ

y3
3 )b3 ]
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[1 + A/{1 + ω12(e
−y1 − c1)(e

−y2 − c2)}], (31)

where A = ω13(e−y1−c1)(e−y3−c3)+ω23(e−y2−c2)(e−y3−c3). These resultsmaybe
used when simulating from the multivariate MEEG distribution. Other multivariate
generalized geometric distributions can be derived by using the different methods
suggested in Table 4.When the dispersion parameters bt , t = 1, 2,…, d are all set to 1,
the MEEGR in (29) reduces to the multivariate geometric regression (MGR) model.
The initial estimates for the MEEGR model can be taken as the final estimates from
theunivariateEEGRmodels for the responses. The initial estimates of the correlations
can be the sample correlations.

Test for Independence

A pair of random variables Yt and Yν are independent when the parameter ωtν (or
ρtν) is equal to zero. For a multivariate regression model h(yi1, yi2, . . . , yid), we test
the null hypothesis

H0 : ωtν = 0 against Ha : ωtν �= 0, where t < ν, t = 1, 2, 3, . . . , d, and
ν = 2, 3, . . . , d.

Suppose Lind is the likelihood function under H0 and La is the likelihood function
under Ha . The test statistic is given by χ2

ind = −2 log(Lind/La), which has a chi-
square distribution with d(d − 1)/2 degrees of freedom.

Test for Dispersion

The MEEGR model in (29) reduces to the MGR model when the dispersion param-
eters bt = 1, for t = 1, 2, …, d. To carry out this test, we test if the bt = 1. This
gives a situation where all the response variables are equi-dispersed. Thus, we test
the hypotheses.

H0 : bt = 1 for t = 1, 2, …, d against Ha : H0 is not true.
If Ldis is the likelihood function when H0 is true and La is the likelihood function

when H0 is false, the test statistic is given by χ2
dis = −2 log(Ldis/La), which has an

approximate chi-square distribution with d degrees of freedom.

Test to Compare Nested and Non-nested Models

In this sub-section, we use the notation y
i
= yi1, yi2, . . . , yid and compare the model

f (y
i
) (e.g., MEEGR) and model g(y

i
) (e.g., MGPR) defined by [10]. Given the two

regression models, we consider the following hypotheses: (33) and (34).
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H0 :,Model f (y
i
) andModel g(y

i
) are equivalent

against

Hf : f (y
i
) is better than f (y

i
) or Hg : g(y

i
) is better than f (y

i
). (32)

The likelihood ratio statistic for testingmodel f (y
i
) againstmodel g(y

i
) is defined

as

L∗ =
n∑

i=1

log

(
f (y

i
)

g(y
i
)

)
. (33)

If the two models f (y
i
) and g(y

i
) are nested, the statistic in (33) has a chi-square

distribution. If the two models are not nested, the statistic in (33) is not chi-square
distributed.

Vuong [24] used the Kullback-Leibler information criterion to discriminate
between two non-nested models. To test the null hypothesis H0 in (32), Vuong
proposed the test statistic

Z∗ = L∗
ŵ

√
n
, where w2 = 1

n

n∑
i=1

[
log

(
f (y

i
)

g(y
i
)

)]2

−
[
1

n

n∑
i=1

log

(
f (y

i
)

g(y
i
)

)]2

(34)

is an estimate of the variance of L∗/
√
n. For a non-nested model, Vuong showed

that Z∗ is approximately standard normal distributed under H0 in (32). At significant
level α, H0 is rejected in favor of Hg if Z∗ < −zα/2, and H0 is rejected in favor of Hf

if Z∗ > zα/2. If |Z∗| ≤ zα/2, we fail to reject H0. Thus, both models are equivalent.

Goodness-Of-Fit Statistics

The log-likelihood defined in (26) for the bivariate regression model can be used as
a goodness-of-fit statistics for the model. Other alternative measures of goodness of
fit are the AIC and the BIC. These statistics are based on the log-likelihood statistic
and they are defined as follows: AIC = −2LL + 2p, BIC = −2LL + p log(n),
where n is the sample size, p is the number of estimated parameters, and LL is the
log-likelihood statistic. Both the AIC and BIC are better than the log-likelihood
because they consider the number of parameters in the regression model to control
over-parametrization. These measures are usually provided by the SAS NLMIXED
procedure. The smaller the measures, the better the model.
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5 Application

In this section, we illustrate the applications of MEEGR model to two real-life data
sets. The results fromMEEGR are compared with the results from theMGPRmodel.
Thefirst data set is on the number of sex partners and the second data set is on profiling
inmates. For each application, we assume themarginal mean of each Yit in theMGPR
model has a log-linear relationship with the covariates xit j (j = 1, 2, …, k) through.

log[E(Yit )] = βt0 + βt1xit1 + · · · + βtk xitk, where i = 1, 2, …, n and we have k
covariates.

The probability θt = θt (xit j ) in the MEEGR is defined by the logit function.
θt (xit ) = 1/{1+ exp[−(βt0 + βt1xit1 + · · · + βtk xitk)]}, where i = 1, 2, …, n for

k covariates.

Sex Partners Data

The number of sex partners data was used by [10] to illustrate the multivariate
generalized Poisson regression model. See the reference for more information about
the data. [10] considered the following three response variables: y1 = number of
male sex partners in the past year, y2 = number of male oral sex partners in the
past year, and y3 = number of sex partners in the past year who are 5 years older
than the respondent. The descriptive statistics and the pairwise correlations between
the response variables are presented in Table 5. Both variables y1 and y2 are under-
dispersed since the sample variances are smaller than their corresponding sample
means. The predictor variables used by [10] were race (1 = white, 0 = others),
educational level (range from 1 = below 9th grade to 5 = college graduate), marital
status (1 = married, 0 = others), and age.

The data is fitted to the MEEGR model and the model fit is compared with that
of MGPR model. The results are presented in Table 6. The log-likelihood values
from the MEEGR and MGPR models are, respectively, –2926.21 and –3532.24.
We compared the MEEGR model with the MGPR by using the Vuong statistics
in (34) and obtained the test statistic Z∗ in Sub-Sect. 4.2 to be 23.24 (p-value <
0.0001), which is highly significant. This indicates that MEEGR model provides

Table 5 Pairwise correlations, mean, and variance for response variables in sex partners’ data

Correlation Mean Variance

Y2 Y3

Y1 0.1345* 0.3581* 1.3133 1.0847

Y2 – 0.1078* 0.3719 0.3495

Y3 – – 0.3672 0.4108

*Significant at 5% level (n = 1280)
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a better fit than the MGPR model. The effects of the explanatory variables on the
response variables for MGPR model are the same for the MEEGR model. Thus, the
response variables y1 and y3 are negatively affected by marital status and age. The
response variable y2 is negatively affected by race, education, and age. The older
respondents tend to have smaller number of male sex partners, smaller number of
oral sex partners, and smaller number of sex partners 5 years older during the past
year. On the relationship between the response variables, ordinary correlation shows
that they are all positively correlated and significant. The MGPR and the MEEGR
models show that variables y1 and y3 have significant positive correlation.

Table 6 Parameter estimates (standard errors in parentheses) for sex partners’ data

y1 Y2

Variable MEEGR model MGPR model MEEGR model MGPR model

Constant (x0) −1.515 (0.174)* 0.735 (0.108)* – 1.271 (0.263)* 0.232 (0.206)

Race (x1) 0.006 (0.088) 0.005 (0.049) – 0.478 (0.105)* – 0.433 (0.104)*

Education (x2) 0.031 (0.033) 0.022 (0.021) – 0.141 (0.040)* – 0.121 (0.039)*

Marital (x3) −0.577 (0.097) – 0.383 (0.050)* – 0.041 (0.103) – 0.070 (0.103)

Age (x4) −0.013 (0.003)* – 0.009 (0.002)* – 0.020 (0.005)* – 0.018 (0.005)*

b̂t 32.411 (3.962)* – 0.028 (0.007)* 6.454 (1.143)* – 0.044 (0.027)

Y3

Variable MEEGR model MGPR model

Constant (x0) – 0.931 (0.267)* – 0.160 (0.267)

Race (x1) 0.018 (0.111) 0.021 (0.120)

Education (x2) – 0.051 (0.045) – 0.047 (0.051)

Marital (x3) – 0.646 (0.115)* – 0.774 (0.132)*

Age (x4) – 0.014 (0.005)* – 0.017 (0.006)*

b̂t 2.831 (0.402)* 0.142 (0.062)*

ρ̂tv for MEEGR ρ̂12 = 0.0272 (0.0360)

ρ̂13 = 0.2552 (0.0378)*

ρ̂23 = 0.0241 (0.0282)

ρ̂tv for MGPR ρ̂12 = 0.1009 (0.0735)

ρ̂13 = 0.5574 (0.0843)*

ρ̂23 = 0.0352 (0.0330)

Log-likelihood For MEEGR: –2926.21

For MGPR: –3520.63

*Significant at 5% level
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Inmates Profiling Data

By 1996, the Los Angeles (LA) County jails faced a serious overcrowding problem.
Two suggested solutions to the problem were to build more jail capacity or to divert
a greater number of incoming inmates to community-based, intermediate sanctions.
A research team was formed to review a profile of inmates in the jail system and to
determine how many of them were suitable candidates for intermediate sanctions.
A random sample of 1000 un-convicted inmates were selected. Demographic vari-
ables include age, race, current offense severity, and gender. The sample size for the
collected data set is 931. Among the other variables collected are prior arrests (y1),
number of subsequent arrests (y2), number of LA custodies (y3), and number of CDC
custodies (y4). See the reference [20] for information about the data.

In the collected data, the race variable consists of Black, Hispanic, White, and
others with a frequency of 30. We define two dummy variables x4 and x5 to represent
the groups Black and Hispanic, respectively. Thus, the White group is the refer-
ence category. The other explanatory variables are x1, x2, and x3 representing age,
rank (current offense severity), and gender (where male is represented by 1), respec-
tively. After eliminating any missing case for the four response variables and the five
explanatory variables, we are left with a total of n = 781. In this sample, the percent-
ages of male, black, Hispanic, and white are, respectively, 94, 40, 45, and 15%,
respectively. Table 7 contains the descriptive statistics for the response variables and
their bivariate correlations.

Both the MEEGR and MGPR models are fitted to the data set and the results are
presented inTable 8. From the log-likelihood statistics, theMEEGRmodel performed
better than the MGPR model. We carried out the test in Eq. (33) and we obtained
the test statistic Z∗ = 10.46 with p-value <0.0001. Thus, the MEEGR outperforms
the MGPR in fitting the data. All the results about the dispersion parameters are
the same for both regression models. They showed that all response variables are
over-dispersed. Both models show that the number of arrests is positively affected
by age and there is a significant difference between Black andWhite. The number of
subsequent arrests is positively associated with the current offence severity in both
models. Only the MEEGR model showed that female inmates have more subse-
quent arrests than male inmates. While age and Black positively influence number

Table 7 Pairwise correlation, mean, and variance of response variables in inmates profiling data

Correlation Mean Variance

Y2 Y3 Y4

Y1 0.0608 0.4993* 0.41421* 10.9373 85.4614

Y2 – 0.1200* −0.0903* 0.7414 1.2458

Y3 – – 0.2319* 4.6095 23.0024

Y4 – – – 2.2228 6.3477

*Significant at 5% level (n = 781)
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of LA custodies, the current offence severity negatively influences the number of
LA custodies in both models. On the other hand, while there is a difference between
Hispanic and White in the number of LA custodies under MEEGR model, there is
no such difference under the MGPR model. The results from both models are about
the same for the explanatory variables for the number of CDC custodies.

From Table 7, all bivariate correlations are significant at 5% level with the excep-
tion between y1 and y2. All significant correlations are positive with the exception
of correlation between variables y2 and y4. Table 7 shows that all pairwise corre-
lations are significant under the MEEGR model with the exception of correlation
between variables y2 and y3. Both models give only one significant negative corre-
lation between y2 and y4. Also, both models give the correlation between y2 and y3
to be insignificant.

Table 8 Parameter estimates (standard errors in parentheses) for inmate profiling data

Variable y1 y2

MEEGR model MGPR model MEEGR model MGPR model

Constant (x0)
Age (x1)
Rank (x2)
Gender (x3)
Black (x4)
Hispanic (x5)

0.428 (0.254)*
0.039 (0.004)*
0.0002 (0.003)
0.159 (0.140)
0.315 (0.096)*
0.095 (0.098)

0.910 (0.221)*
0.029 (0.004)*
0.001 (0.003)
0.175 (0.134)
0.428 (0.099)*
0.150 (0.098)

0.401 (0.364)
– 0.010 (0.006)
0.015 (0.004)*
– 0.537 (0.213)*
– 0.132 (0.173)
– 0.056 (0.172)

0.130 (0.343)
– 0.003 (0.006)
0.013 (0.004)*
– 0.392 (0.206)
– 0.059 (0.165)
– 0.109 (0.163)

b̂t 1.508 (0.103)* 0.178 (0.009)* 0.889 (0.091)* 0.373 (0.058)*

– y3 y4

– MEEGR model MGPR model MEEGR model MGPR model

Constant (x0)
Age (x1)
Rank (x2)
Gender (x3)
Black (x4)
Hispanic (x5)

0.640 (0.168)*
0.008 (0.003)*
– 0.007 (0.003)*
0.115 (0.085)
0.394 (0.081)*
0.297 (0.085)*

0.555 (0.227)*
0.014 (0.004)*
– 0.008 (0.003)*
0.262 (0.143)
0.551 (0.110)*
0.165 (0.109)

– 0.769 (0.258)*
0.011 (0.004)*
0.001 (0.003)
0.676 (0.175)*
0.310 (0.115)*
– 0.013 (0.117)

– 0.528 (0.270) +
0.014 (0.005)*
0.002 (0.003)
0.740 (0.174)*
0.280 (0.123)*
– 0.112 (0.120)

b̂t 1.214 (0.053)* 0.235 (0.014)* 1.439 (0.094)* 0.240 (0.021)*

ρ̂tν for MEEGR ρ̂12 = 0.1829 (0.0218)*; ρ̂13 = 0.7146 (0.0406)*; ρ̂14 = 0.2684 (0.0269)*

ρ̂23 = 0.0227 (0.0436); ρ̂24 = –0.1049 (0.0215)*; ρ̂34 = 0.2605 (0.0265)*

ρ̂tν for MGPR ρ̂12 = 0.0314 (0.0066)*; ρ̂13 = 0.0177 (0.0105); ρ̂14 = 0.0380 (0.0130)*

ρ̂23 = –0.0452 (0.0304); ρ̂24 = –0.1909 (0.0236)*; ρ̂34 = 0.1402 (0.0294)*

Log-likelihood For MEEGR: –6779.20 For MGPR: –6978.17

*Significant at 5% level
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6 Summary and Conclusions

Famoye [10] stated some advantages of the MGPR model when compared to
the multivariate negative binomial regression model and the multivariate Poisson-
lognormal regression model. Only the MGPR model is capable of modeling both
over-dispersion and under-dispersion. The other two models are applicable to over-
dispersed response count data. The MGPR model allows for correlations of any sign
among count response variables and the correlations are independent of the disper-
sion parameters. Several multivariate models that can be used to fit several dependent
response variables are proposed in this paper. Many of these multivariate models can
be used for over-dispersed or under-dispersed count response variables. The models
allow correlations of any sign.

In this paper, we define families of bivariate and multivariate generalized
geometric regression models. These are based on the T-R{W} framework. Many
examples are given in the paper. The population means and variances of the response
variables are not in closed form, but they are easy to compute because the CDF of
the distributions is in closed form. It is easy to compute both the CDF and PMF for
the distributions.

Twonumerical data sets are used to illustrate theMEEGRmodel and it is compared
with theMGPRmodel (see [10]). In both data sets, theMEEGRmodel outperformed
the MGPR model by using the goodness-of-fit test. The MEEGR model has closed-
form PMF and CDF while the MGPR model has closed-form PMF and its mean
and variance are in closed form. Both models can be used to fit data that exhibit
over- or under-dispersion. The MGPR has a negative dispersion parameter for the
under-dispersed situation while the dispersion parameter for the MEEGR model is
always positive. Care must be taken when estimating the MGPR model for under-
dispersed situation because the model gets truncated above, (see [8], p. 4 or [7],
p. 165) about the truncation error in the generalized Poisson distribution. This error
is negligible when the number of nonzero probability classes is at least 5. In both
numerical examples in Sect. 5, the response variable with the smallest range has
seven nonzero probability classes.

In Sect. 4, we provide materials that can be used to compare multivariate count
data regression models. This is illustrated in the application section (Sect. 5), where
two generalized multivariate distributions and models are compared, and variables
are selected using some of the test statistics described in Sect. 4. In this chapter,
a family of multivariate count data regression models is defined. Future work can
include further inferences and a comparison between some of the models that were
defined in the chapter. New models can be defined and compared to the models in
the chapter.
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7 Appendix

In this Appendix, we will use the following notation: 
y� = ẏ.
Table 2(i): Exponential-geometric{standard exponential}.
By using Eqs. (6) and (8), we have

G(y) = FY (y) = FT {λQW (FR(ẏ)} = 1 − exp{λ log(1 − FR(ẏ))}
= 1 − (1 − FR(ẏ))λ = 1 − ϕλ(ẏ+1) = 1 − θ ẏ+1 where 0 < θ = ϕλ < 1.

Table 2(iii): Exponentiated-exponential-geometric{standard exponential}.
By using Eqs. (10) and (12), we have

G(y) = FY (y) = FT [QW (FR(ẏ)] = [
1 − exp{λ log(1 − FR(ẏ))}]α

= [
1 − exp{logϕλ(ẏ+1)}]α = [

1 − (exp[λ logϕ])ẏ+1
]α

= [
1 − θ ẏ+1

]α
where 0 < θ = exp[λ logϕ] < 1, α > 0.

Table 2(iv): Exponentiated-exponential-geometric{standard log-logistic}.
By using Eq. (13), we have

G(y) = FY (y) = FT [QW (FR(ẏ)] = [
1 − exp{−λFR(ẏ)/[1 − FR(ẏ)]}]α

= [
1 − exp

{−λ(1 − ϕ ẏ+1)/ϕ ẏ+1
}]α = [

1 − exp
{−λ(θ−ẏ−1 − 1)

}]α
,

where 0 < θ = ϕ < 1, λ > 0, α > 0.
Table 2(v): Weibull-geometric{standard exponential}.
By using Eq. (16), we have

G(y) = FY (y) = FT [λQW (FR(ẏ)] = 1 − exp{−λFR(ẏ)/[1 − FR(ẏ)]}
= 1 − exp

{−(λQW (FR(ẏ)))c
} = 1 − exp

{−(−λ log[1 − FR(ẏ)])c}
= 1 − exp

{
−(−λ logϕ ẏ+1

)c} = 1 − exp
{−([−λ logϕ](ẏ + 1))c

}
= 1 − exp

{−(−λ logϕ)(ẏ + 1)c
} = 1 − θ(ẏ+1)c ,

where 0 < θ = e−(−λ logϕ) < 1, c > 0.

Table 2(vii): Logistic-geometric{standard logistic}.
By using Eq. (18), we have

G(y) = FY (y) = FT [λQW (FR(ẏ)] = [
1 + exp{−λQW (FR(ẏ))]}]−1

= [
1 + exp

{
log(FR(ẏ)/(1 − FR(ẏ))−λ

}]−1

= [
1 + (FR(ẏ)/(1 − FR(ẏ))−λ

]−1

= Fλ
R(ẏ)

/[
Fλ
R(ẏ) + (

1 − Fλ
R(ẏ)

)λ
]
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= (
1 − ϕ ẏ+1

)λ
/[(

1 − ϕ ẏ+1
)λ + ϕλ(ẏ+1)

]
, where 0 < θ = ϕ < 1, λ > 0.
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A Generalized Multivariate Gamma
Distribution

Anis Iranmanesh, Maryam Rafiei, and Daya Krishna Nagar

Abstract In this chapter, we introduce a multivariate gamma distribution whose
marginals are finitemixtures of gammadistributions and correlation between any pair
of variables is negative. Several of its properties such as joint moments, correlation
coefficients, moment generating function, Rényi and Shannon entropies have been
derived. Simulation study have been conducted to evaluate the performance of the
maximum likelihood method.

1 Introduction

Gamma distribution is an important continuous distribution in probability and statis-
tics. Several distributions such as exponential, Erlang, and chi-square are special
cases of this distribution. Several univariate generalizations of gamma distribution
have also been studied. Gamma distribution and its variants have been applied in
different disciplines to model continuous variables that are positive and have skewed
distributions. Gamma distribution has been used to model amounts of daily rainfall
(Aksoy [1]) and in neuroscience this model is often used to describe the distribution
of inter-spike intervals (Robson and Troy [26]). The gamma distribution is widely
used as a conjugate prior in Bayesian statistics. It also plays an important role in
actuarial sciences (Furman [9]).

Several multivariate generalizations of univariate gamma distributions are also
available in the literature. Mathai and Moschopoulos [20, 21] introduced two multi-
variate gamma models as the joint distribution of certain linear combinations/partial
sums of independent three parameter gamma variables. All the components of
their multivariate gamma vectors are positively correlated and have three parameter
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gamma distributions. They have also indicated that their models have potential appli-
cations in stochastic processes and reliability. Furman [9] used themultivariate reduc-
tion technique to derive a multivariate probability model possessing a dependence
structure and gammamarginals. Kowalczyk and Tyrcha [17] used a re-parameterized
form of the gamma distribution to define a multivariate gamma vector and studied
a number of properties of their distribution. Recently, Semenikhine, Furman and
Su [28] introduced a multiplicative multivariate gamma distribution with gamma
marginals and applied their results in actuarial science. They proved that the corre-
lation coefficient between any pair of variables is positive and belongs to (0, 1/2).
Multivariate gamma distributions have been used in diverse fields like hydrology,
space (wind modeling), reliability, traffic modeling, and finance. For further results
on multivariate gamma distribution, the reader may consult articles by Balakrishnan
and Ristić [4], Carpenter and Diawara [5], Dussauchoy and Berland [6], Gaver [10],
Krishnaiah and Rao [18], Marcus [19], Pepas et al.[23], Royen [27], Vaidyanathan
and Lakshmi [33], and an excellent text by Kotz, Balakrishnan and Johnson [16].
For a good review on bivariate gamma distributions, see Balakrishnan and Lai [3],
Arnold, Castillo and Sarabia [2], Hutchinson and Lai [14], and Kotz, Balakrishnan
and Johnson [16]. For a review on some recent work and applications the reader is
referred to Rafiei, Iranmanesh, and Nagar [24] and references therein.

In this chapter, we introduce a multivariate gamma distribution whose marginals
are finite mixtures of gamma distributions and correlation between any pair of vari-
ables is negative. We organize our work as follows: In Sect. 2, we introduce the new
multivariate gamma distribution. In Sects. 3 and 4, results on marginal distributions
and factorizations of the multivariate gamma distribution are derived. Sections5–8
deal with properties such as joint moments, correlation, moment generating func-
tion, entropies and estimations. In Sect. 9, simulations of the new distribution are
performed in different ways, and the results are provided to evaluate the performance
of the maximum likelihood method. Section 10 contains the conclusion. Finally, the
Appendix lists a number of results used in this chapter.

2 The Multivariate Gamma Distribution

Recently, Rafiei, Iranmanesh, and Nagar [24] have defined a bivariate gamma distri-
bution with parameters α, β and k and the pdf

f (x1, x2; α, β, k) = � (2α)

β2α+k�2 (α) � (2α + k)
(x1x2)

α−1(x1 + x2)
k exp

[
− 1

β
(x1 + x2)

]
,

where x1 > 0, x2 > 0, α > 0, β > 0, and k ∈ N0. A natural multivariate generaliza-
tion of this distribution can be given as follows.
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Definition 1 The random variables X1, . . . , Xn are said to have a generalized mul-
tivariate gamma distribution, denoted as (X1, . . . , Xn) ∼ GMG(α1, . . . , αn;β, k), if
their joint pdf is given by

f (x1, . . . , xn; α1, . . . , αn; β, k) = C(α1, . . . , αn; β, k)
n∏

i=1

xαi−1
i

(
n∑

i=1

xi

)k

× exp

(
− 1

β

n∑
i=1

xi

)
, xi > 0, i = 1, . . . , n, (1)

where α1 > 0, . . . , αn > 0, β > 0, k ∈ N0 and C(α1, . . . , αn;β, k) is the normaliz-
ing constant.

By integrating the joint density of X1, . . . , Xn over its support set, the normalizing
constant is derived as

[C(α1, . . . , αn; β, k)]−1 =
∫ ∞

0
· · ·
∫ ∞

0

n∏
i=1

xαi−1
i

(
n∑

i=1

xi

)k

exp

(
− 1

β

n∑
i=1

xi

)
dx1 · · · dxn

= β
∑n

i=1 αi+k

[
n∏

i=1

�(αi )

]
(α1 + · · · + αn)k ,

where the last line has been obtained by using Lemma 2. Finally, from the above
expression

C(α1, . . . , αn;β, k) = � (α1 + · · · + αn)

β
∑n

i=1 αi+k
[∏n

i=1 �(αi )
]
� (α1 + · · · + αn + k)

. (2)

For k = 0, the multivariate gamma density simplifies to the product of n indepen-
dent univariate gamma densities with common scale parameter β. For k = 1, the
multivariate gamma density can be written as

n∑
j=1

(
α j∑n
i=1 αi

)
x

α j

j exp(−x j/β)

βα j+1�(α j + 1)

n∏
i=1
i �= j

xαi−1
i exp(−xi/β)

βαi �(αi )
, x1 > 0, . . . , xn > 0.

(3)
For n = 2 in (1), the bivariate gamma density is obtained as

C(α1, α2;β, k)xα1−1
1 xα2−1

2 (x1 + x2)
k exp

[
− 1

β
(x1 + x2)

]
, x1 > 0, x2 > 0, (4)

where

C(α1, α2;β, k) = �(α1 + α2)

�(α1)�(α2)

β−(α1+α2+k)

�(α1 + α2 + k)
.
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In a recent article, Rafiei, Iranmanesh, and Nagar [24] have studied the above distri-
bution for α1 = α2. Substituting n = 2 in (3) or k = 1 in (4), the generalized bivariate
gamma density takes the form

α1

α1 + α2

xα1
1 xα2−1

2 exp[−(x1 + x2)/β]
βα1+α2+1�(α1 + 1)�(α2)

+ α2

α1 + α2

xα1−1
1 xα2

2 exp[−(x1 + x2)/β]
βα1+α2+1�(α1)�(α2 + 1)

, x1 > 0, x2 > 0,

which yields the marginal density of X1 as

α1

α1 + α2

xα1
1 exp(−x1/β)

βα1+1�(α1 + 1)
+ α2

α1 + α2

xα1−1
1 exp(−x1/β)

βα1�(α2 + 1)
, x1 > 0.

Clearly, the marginal density of X1 is a mixture of two gamma densities indicating
that, in general, marginal density of any subset of X1, . . . , Xn is not a generalized
multivariate gamma.

It may be noted here that the multivariate gamma distribution defined above
belongs to the Liouville family of distributions (Sivazlian [30], Gupta and Song [12],
Gupta, and Richards [13], Song and Gupta [31]). Because of mathematical tractabil-
ity, this distribution further enriches the class of multivariate Liouville distributions
and may serve as an alternative to many existing distributions belonging to this class.

3 Marginal Distributions

In this section, we derive results on marginal distributions of the generalized multi-
variate gamma distribution defined in this chapter. By using multinomial expansion
of
(∑n

i=1 xi
)k
, namely,

(
n∑

i=1

xi

)k

=
∑

k1+k2+···+kn=k

(
k

k1, k2, . . . , kn

)
xk11 xk22 · · · xknn

in (1), the joint density of X1, . . . , Xn can be restated as

C(α1, . . . , αn;β, k)
∑

k1+k2+···+kn=k

(
k

k1, k2, . . . , kn

) n∏
i=1

xαi+ki−1
i exp

(
− 1

β

n∑
i=1

xi

)
,

where xi > 0, i = 1, 2, . . . , n. Thus, the generalizedmultivariate gammadistribution
is a finite mixture of product of independent gamma densities.
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In the remaining part of this section and the next section, we derive marginal
distributions, distribution of partial sums and several factorizations of the generalized
multivariate gamma distribution.

Theorem 1 Let (X1, . . . , Xn) ∼ GMG(α1, . . . , αn;β, k). Then, for 1 ≤ s ≤ n − 1,
the marginal density of X1, . . . , Xs is given by

C

(
α1, . . . , αs,

n∑
i=s+1

αi ;β, k

)
s∏

i=1

xαi−1
i exp

(
− 1

β

s∑
i=1

xi

)(
s∑

i=1

xi

)k

×β
∑n

i=s+1 αi

k∑
j=0

(
k

j

)
�

(
n∑

i=s+1

αi + j

)(∑s
i=1 xi
β

)− j

, xi > 0, i = 1, . . . , s.

Proof Integrating out xs+1, . . . , xn in (1), the marginal density of X1, . . . , Xs is
derived as

C(α1, . . . , αn;β, k)
s∏

i=1

xαi−1
i exp

(
− 1

β

s∑
i=1

xi

)

×
∫ ∞

0
· · ·
∫ ∞

0

n∏
i=s+1

xαi−1
i

(
s∑

i=1

xi +
n∑

i=s+1

xi

)k

exp

(
− 1

β

n∑
i=s+1

xi

)
n∏

i=s+1

dxi

= C(α1, . . . , αn;β, k)
s∏

i=1

xαi−1
i exp

(
− 1

β

s∑
i=1

xi

)

×
∏n

i=s+1 �(αi )

�(
∑n

i=s+1 αi )

∫ ∞

0
x
∑n

i=s+1 αi−1

(
s∑

i=1

xi + x

)k

exp

(
− 1

β
x

)
dx (5)

where the last line has been obtained by using (16). Substituting x/
∑s

i=1 xi = z in
(5), the marginal density of X1, . . . , Xs is rewritten as

C

(
α1, . . . , αs,

n∑
i=s+1

αi ;β, k

)
s∏

i=1

xαi−1
i exp

(
− 1

β

s∑
i=1

xi

)(
s∑

i=1

xi

)∑n
i=s+1 αi+k

×
∫ ∞

0
z
∑n

i=s+1 αi−1 (1 + z)k exp

[
− 1

β

(
s∑

i=1

xi

)
z

]
dz. (6)

Now, writing (1 + z)k using binomial theorem and integrating z in (6), the marginal
density of X1, . . . , Xs is derived. �
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Alternately, the density of X1, . . . , Xs given in (7) can be written as

C

(
α1, . . . , αs,

n∑
i=s+1

αi ;β, k

)
β
∑n

i=s+1 αi+k
s∏

i=1

xαi−1
i exp

(
− 1

β

s∑
i=1

xi

)

×
k∑
j=0

(
k

j

)
�

(
n∑

i=s+1

αi + k − j

)(∑s
i=1 xi
β

) j

, xi > 0, i = 1, . . . , s.

Corollary 1 The marginal density of X1 is given by

C

(
α1,

n∑
i=2

αi ;β, k

)
β
∑n

i=2 αi+k xα1−1
1 exp

(
− 1

β
x1

)

×
k∑
j=0

(
k

j

)
�

(
n∑

i=2

αi + k − j

)(
x1
β

) j

, x1 > 0.

Corollary 2 The marginal density of X1 and X2 is given by

C

(
α1, α2,

n∑
i=3

αi ;β, k

)
β
∑n

i=3 αi+k xα1−1
1 xα2−1

2 exp

[
− 1

β
(x1 + x2)

]

×
k∑
j=0

(
k

j

)
�

(
n∑

i=3

αi + k − j

)(
x1 + x2

β

) j

, x1 > 0, x2 > 0.

Substituting u = z/(1 + z) with dz = (1 − u)−2du in (6), one gets

C

(
α1, . . . , αs,

n∑
i=s+1

αi ;β, k

)
s∏

i=1

xαi−1
i exp

(
− 1

β

s∑
i=1

xi

)(
s∑

i=1

xi

)∑n
i=s+1 αi+k

×
∫ 1

0
u
∑n

i=s+1 αi−1(1 − u)−(
∑n

i=s+1 αi+k+1) exp

[
−
(∑s

i=1 xi
)
u

β(1 − u)

]
du. (7)

Now, writing

(1 − u)−(
∑n

i=s+1 αi+k+1) exp

[
−
(∑s

i=1 xi
)
u

β(1 − u)

]
=

∞∑
j=0

u j L
(
∑n

i=s+1 αi+k)
j

(∑s
i=1 xi
β

)

in (7) and integrating u, the marginal density of X1, . . . , Xs , in series involving
generalized Laguerre polynomials, is derived as
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C

(
α1, . . . , αs,

n∑
i=s+1

αi ;β, k

)
s∏

i=1

xαi−1
i exp

(
− 1

β

s∑
i=1

xi

)(
s∑

i=1

xi

)∑n
i=s+1 αi+k

×
∞∑
j=0

1∑n
i=s+1 αi + j

L
(
∑n

i=s+1 αi+k)
j

(∑s
i=1 xi
β

)
.

Theorem 2 Let (X1, . . . , Xn) ∼ GMG(α1, . . . , αn;β, k). Then, for 2 ≤ r ≤ n, the
marginal density of Xr , . . . , Xn is given by

C

(
r−1∑
i=1

αi , αr , . . . , αn;β, k

)
β
∑r−1

i=1 αi+k
n∏

i=r

xαi−1
i exp

(
− 1

β

n∑
i=r

xi

)

×
k∑

�=0

(
k

�

)
�

(
r−1∑
i=1

αi + k − �

)(∑n
i=r xi
β

)�

, xi > 0, i = r, . . . , n.

Proof Similar to the proof of Theorem 1. �
Corollary 3 The marginal density of Xn is given by

C

(
n−1∑
i=1

αi , αn;β, k

)
β
∑n−1

i=1 αi+k xαn−1
n exp

(
− 1

β
xn

)

×
k∑

�=0

(
k

�

)
�

(
n−1∑
i=1

αi + k − �

)(
xn
β

)�

, xn > 0.

Theorem 3 Let (X1, . . . , Xn) ∼ GMG(α1, . . . , αn;β, k). Then, for r = 1, . . . , n,
the marginal density of Xr is given by

C

⎛
⎝ n∑

i(�=r)=1

αi , αr ;β, k

⎞
⎠β

∑n
i(�=r)=1 αi+k xαr+k−1

r exp

(
− xr

β

)

×
k∑
j=0

(
k

j

)
�

⎛
⎝ n∑

i(�=r)=1

αi + k − j

⎞
⎠( xr

β

) j

, xr > 0.

4 Factorizations

This section deals with several factorizations of the multivariate gamma distribution
defined in Sect. 2.

In the next theorem, we give the joint distribution of partial sums of random
variables distributed jointly as generalized multivariate gamma.
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Let n1, . . . , n� be non-negative integers such that
∑�

i=1 ni = n and define

α(i) =
n∗
i∑

j=n∗
i−1+1

α j , n∗
0 = 0, n∗

i =
i∑

j=1

n j , i = 1, . . . , �.

Theorem 4 Let (X1, . . . , Xn) ∼ GMG(α1, . . . , αn;β, k). Define Z j = X j/X(i),

j = n∗
i−1 + 1, . . . , n∗

i − 1 and X(i) = ∑n∗
i
j=n∗

i−1+1 X j , i = 1, . . . , �. Then,
(i) (X(1), . . . , X(�))and (Zn∗

i−1+1, . . . , Zn∗
i −1), i = 1, . . . , �, are independently dis-

tributed,
(ii) (Zn∗

i−1+1, . . . , Zn∗
i −1) ∼ D1(αn∗

i−1+1, . . . , αn∗
i −1; αn∗

i
), i = 1, . . . , �, and

(iii) (X(1), . . . , X(�)) ∼ GMG(α(1), . . . , α(�);β, k).

Proof Substituting x(i) = ∑n∗
i
j=n∗

i−1+1 x j and z j = x j/x(i), j = n∗
i−1 + 1, . . . , n∗

i −
1, i = 1, . . . , � with the Jacobian

J (x1, . . . , xn → z1, . . . , zn1−1, x(1), . . . , zn∗
�−1+1, . . . , zn−1, x(�))

=
�∏

i=1

J (xn∗
i−1+1, . . . , xn∗

i
→ zn∗

i−1+1, . . . , zn∗
i −1, x(i))

=
�∏

i=1

xni−1
(i) .

in the density of (X1, . . . , Xn) given by (1), we get the joint density of Zn∗
i−1+1, . . . ,

Zn∗
i −1, X(i), i = 1, . . . , � as

C(α1, . . . , αn;α, β)

�∏
i=1

x
α(i)−1
(i)

(
�∑

i=1

x(i)

)k

exp

(
− 1

β

�∑
i=1

x(i)

)

×
�∏

i=1

⎡
⎣
⎛
⎝ n∗

i −1∏
j=n∗

i−1+1

z
α j−1
j

⎞
⎠(1 −

n∗
i −1∑

j=n∗
i−1+1

z j

)αn∗
i
−1
⎤
⎦ , (8)

where x(i) > 0, i = 1, . . . , �, z j > 0, j = n∗
i−1 + 1, . . . , n∗

i − 1,
∑n∗

i −1
j=n∗

i−1+1 z j < 1,
i = 1, . . . , �. From the factorization in (8), it is easy to see that (X(1), . . . , X(�)) and
(Zn∗

i−1+1, . . . , Zn∗
i −1), i = 1, . . . , �, are independently distributed. Further (X(1), . . . ,

X(�))∼GMG(α(1), . . . , α(�);β, k) and (Zn∗
i−1+1, . . . , Zn∗

i −1)∼D1(αn∗
i−1+1, . . . ,

αn∗
i −1; αn∗

i
), i = 1, . . . , �. �

Corollary 4 Let (X1, . . . , Xn) ∼ GMG(α1, . . . , αn;β, k). Define Zi = Xi/Z, i =
1, . . . , n − 1, and Z = ∑n

j=1 X j . Then, (Z1, . . . , Zn−1) and Z are independent,

(Z1, . . . , Zn−1) ∼ D1(α1, . . . , αn−1;αn) and Z ∼ G
(∑n

i=1 αi + k, β
)
.
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Corollary 5 If (X1, . . . , Xn) ∼ GMG(α1, . . . , αn;β, k), then
∑n

j=1 X j and
∑s

i=1 Xi∑n
i=1 Xi

are independent. Further

∑s
i=1 Xi∑n
i=1 Xi

∼ B1

(
s∑

i=1

αi ,

n∑
i=s+1

αi

)
, s < n.

Theorem 5 Let (X1, . . . , Xn) ∼ GMG(α1, . . . , αn;β, k). Define Wj = X j/Xn∗
i
,

j = n∗
i−1 + 1, . . . , n∗

i − 1 and X(i) = ∑n∗
i
j=n∗

i−1+1 X j , i = 1, . . . , �. Then,
(i) (X(1), . . . , X(�)) and (Wn∗

i−1+1, . . . ,Wn∗
i −1), i = 1, . . . , �, are independently

distributed,
(ii) (Wn∗

i−1+1, . . . ,Wn∗
i −1) ∼ D2(αn∗

i−1+1, . . . , αn∗
i −1; αn∗

i
), i = 1, . . . , �, and

(iii) (X(1), . . . , X(�)) ∼ GMG(α(1), . . . , α(�);β, k).

Corollary 6 Let (X1, . . . , Xn) ∼ GMG(α1, . . . , αn;β, k).DefineWi = Xi/Xn, i =
1, . . . , n − 1 and Z = ∑n

j=1 X j . Then, (W1, . . . ,Wn−1) and Z are independent,
(W1, . . . ,Wn−1) ∼ D2(α1, . . . , αn−1;αn) and Z ∼ G(

∑n
i=1 αi , β, k).

Corollary 7 If (X1, . . . , Xn) ∼ GMG(α1, . . . , αn;β, k), then
∑n

j=1 X j and∑s
i=1 Xi∑n

i=s+1 Xi
are independent. Further

∑s
i=1 Xi∑n

i=s+1 Xi
∼ B2

(
s∑

i=1

αi ,

n∑
i=s+1

αi

)
, s < n.

In next six theorems, we give several factorizations of the generalizedmultivariate
gamma density.

Theorem 6 Let (X1, . . . , Xn) ∼ GMG(α1, . . . , αn;β, k). Define Yn = ∑n
j=1 X j

and Yi = ∑i
j=1 X j/

∑i+1
j=1 X j , i = 1, . . . , n − 1. Then, Y1, . . . ,Yn are independent,

Yi ∼ B1(
∑i

j=1 α j , αi+1), i = 1, . . . , n − 1, and Yn ∼ G(
∑n

i=1 αi + k, β).

Proof Substituting x1 = yn
∏n−1

i=1 yi , x2 = yn(1 − y1)
∏n−1

i=2 yi , . . . , xn−1 = yn (1 −
yn−2)yn−1 and xn = yn(1 − yn−1) with the Jacobian J (x1, . . . , xn → y1, . . . , yn) =∏n

i=2 y
i−1
i in (1) we get the desired result. �

Theorem 7 Let (X1, . . . , Xn) ∼ GMG(α1, . . . , αn;β, k). Define Zn = ∑n
j=1 X j

and Zi = Xi+1/
∑i

j=1 X j , i = 1, . . . , n − 1. Then, Z1, . . . , Zn are independent,

Zi ∼ B2(αi+1,
∑i

j=1 α j ), i = 1, . . . , n − 1, and Zn ∼ G(
∑n

j=1 α j + k, β).

Proof The desired result follows from Theorem 6 by noting that (1 − Yi )/Yi ∼
B2(αi+1,

∑i
j=1 α j ). �

Theorem 8 Let (X1, . . . , Xn) ∼ GMG(α1, . . . , αn;β, k). Define Wn = ∑n
j=1 X j

and Wi = ∑i
j=1 X j/Xi+1, i = 1, . . . , n − 1. Then, W1, . . . ,Wn are independent,

Wi ∼ B2(
∑i

j=1 α j , αi+1), i = 1, . . . , n − 1, and Wn ∼ G(
∑n

i=1 αi + k, β, k).
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Proof The result follows from Theorem 7 by noting that 1/Zi ∼ B2(
∑i

j=1 α j ,

αi+1). �

Theorem 9 Let (X1, . . . , Xn) ∼ GMG(α1, . . . , αn;β, k).DefineYn=∑n
j=1 X j and

Yi = Xi/
∑n

j=i X j , i = 1, . . . , n − 1. Then, Y1, . . . ,Yn are independent, Yi ∼ B1
(αi ,

∑n
j=i+1 α j ), i = 1, . . . , n − 1, and Yn ∼ G(

∑n
i=1 αi + k, β).

Proof Substituting x1 = yn y1, x2 = yn y2(1 − y1), . . . , xn−1 = yn yn−1(1 − y1) · · ·
(1 − yn−2), and xn = yn(1 − y1) · · · (1 − yn−1) with the Jacobian J (x1, . . . , xn →
y1, . . . , yn) = yn−1

n

∏n−2
i=1 (1 − yi )n−i−1 in (1), we get the desired result. �

Theorem 10 Let (X1, . . . , Xn) ∼ GMG(α1, . . . , αn;β, k). Define Zn = ∑n
j=1 X j

and Zi = Xi/
∑n

j=i+1 X j , i = 1, . . . , n − 1. Then, Z1, . . . , Zn are independent,
Zi ∼ B2(αi ,

∑n
j=i+1 α j ), i = 1, . . . , n − 1, and Zn ∼ G(

∑n
i=1 αi + k, β).

Proof The result follows from Theorem 9 by observing that Yi/(1 − Yi ) ∼ B2(αi ,∑n
j=i+1 α j ). �

Theorem 11 Let (X1, . . . , Xn)∼GMG(α1, . . . , αn;β, k). Define Wn = ∑n
j=1 X j

and Wi = ∑n
j=i+1 X j/Xi , i = 1, . . . , n − 1. Then, W1, . . . ,Wn are independent,

Wi ∼ B2(
∑n

j=i+1 α j , αi ), i = 1, . . . , n − 1, and Wn ∼ G(
∑n

i=1 αi + k, β).

Proof The result follows from Theorem 10 by noting that 1/Wi ∼B2(
∑n

j=i+1
α j , αi ). �

5 Joint Moments

By definition

E(Xr1
1 · · · Xrn

n ) = C(α1, . . . , αn;β, k)
∫ ∞

0
· · ·
∫ ∞

0

n∏
i=1

xαi+ri−1
i

(
n∑

i=1

xi

)k

× exp

(
− 1

β

n∑
i=1

xi

)
dx1 · · · dxn

= C(α1, . . . , αn;β, k)

C(α1 + r1, . . . , αn + rn;β, k)
.

Now, simplifying the above expression by using (2), one gets

E(Xr1
1 · · · Xrn

n ) = βr �(α)�(α + r + k)

�(α + k)�(α + r)

n∏
i=1

�(αi + ri )

�(αi )
,

where α = ∑n
i=1 αi and r = ∑n

i=1 ri .
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Further, substituting appropriately in the above expression, one gets

E(Xr�
� Xrm

m ) = βr�+rm
�(α)�(α + r� + rm + k)

�(α + k)�(α + r� + rm)

�(α� + r�)�(αm + rm)

�(α�)�(αm)
,

E(X�Xm) = β2 α�αm(α + k)(α + k + 1)

α(α + 1)
,

E(X j ) = β
α j (α + k)

α
,

and

E(X2
j ) = β2 α j (α j + 1)(α + k)(α + k + 1)

α(α + 1)
.

Finally, by using appropriate definitions, we get

var(X j ) = β2 α j (α + k)[α(α + 1) + (α − α j )k]
α2(α + 1)

,

cov(X�, Xm) = −kβ2 α�αm(α + k)

α2(α + 1)
,

corr(X�, Xm) = −k

√
α�αm

[α(α + 1) + (α − α�)k][α(α + 1) + (α − αm)k] .

6 Moment Generating Function

By definition, the joint mgf of X1, . . . , Xn is given by

MX1,...,Xn (t1, . . . , tn) = C(α1, . . . , αn;β, k)
∫ ∞

0
· · ·
∫ ∞

0

n∏
i=1

xαi−1
i

(
n∑

i=1

xi

)k

× exp

(
n∑

i=1

ti xi − 1

β

n∑
i=1

xi

)
dx1 · · · dxn . (9)

Substituting x1 = r1s, . . . xn−1 = rn−1s and xn = s(1 −∑n−1
i=1 ri ) in (9) with the

Jacobian J (x1, . . . , xn−1, xn → r1, . . . , rn−1, s) = sn−1 and integrating s, we get
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MX1,...,Xn (t1, . . . , tn)

= C(α1, . . . , αn; β, k)β
∑n

i=1 αi+k�

(
n∑

i=1

αi + k

) ∫
· · ·
∫

r1+···+rn−1<1
0<ri , i=1,...,n−1

n−1∏
i=1

rαi−1
i

(
1 −

n−1∑
i=1

ri

)αn−1

×
[
n−1∑
i=1

(1 − βti )ri + (1 − βtn)

(
1 −

n−1∑
i=1

ri

)]−(
∑n

i=1 αi+k)

dr1 · · · drn−1, (10)

where 1 − tiβ > 0, i = 1, . . . , n. Now, writing

[
n−1∑
i=1

(1 − βti )ri + (1 − βtn)

(
1 −

n−1∑
i=1

ri

)]−(
∑n

i=1 αi+k)

= (1 − tnβ)−(
∑n

i=1 αi+k)

[
1 −

n−1∑
i=1

ri

(
1 − 1 − tiβ

1 − βtn

)]−(
∑n

i=1 αi+k)

,

1 − tiβ

1 − tnβ
< 1, i = 1, . . . , n − 1

in (10) and integrating r , we get

MX1,...,Xn (t1, . . . , tn)

= C(α1, . . . , αn; β, k)β
∑n

i=1 αi+k�

(
n∑

i=1

αi + k

)
(1 − tnβ)−(

∑n
i=1 αi+k)

×
∫

· · ·
∫

r1+···+rn−1<1
0<ri ,i=1,...,n−1

n−1∏
i=1

rαi−1
i

(
1 −

n−1∑
i=1

ri

)αn−1[
1 −

n−1∑
i=1

ri
β(ti − tn)

1 − βtn

]−(
∑n

i=1 αi+k)

dr1 · · · drn−1

= C(α1, . . . , αn; β, k)β
∑n

i=1 αi+k�

(
n∑

i=1

αi + k

)
(1 − tnβ)−(

∑n
i=1 αi+k)

∏n
i=1 �(αi )

�(
∑n

i=1 αi )

×F (n−1)
D

(
n∑

i=1

αi + k, α1, . . . , αn−1;
n∑

i=1

αi ; β(t1 − tn)

1 − βtn
, . . . ,

β(tn−1 − tn)

1 − βtn

)
,

where the last line has been obtained by using the integral representation of the
fourth hypergeometric function of Lauricella given in (15). Finally, substituting for
C(α1, . . . , αn;β, k) and simplifying, we get
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MX1,...,Xn (t1, . . . , tn) = (1 − tnβ)−(
∑n

i=1 αi+k)

×F (n−1)
D

(
n∑

i=1

αi + k, α1, . . . , αn−1;
n∑

i=1

αi ; β(t1 − tn)

1 − βtn
, . . . ,

β(tn−1 − tn)

1 − βtn

)
.

For t1 = · · · = tn = t , we have

MX1,...,Xn (t, . . . , t) = MX1+···+Xn (t) = (1 − tβ)−(
∑n

i=1 αi+k)

which is the mgf of a gamma random variable with shape parameter
∑n

i=1 αi + k
and scale parameter β.

7 Entropies

In this section, exact forms of Rényi and Shannon entropies are derived for the
multivariate gamma distribution defined in this article.

Let (X,B,P) be a probability space. Consider a pdf f associated with P, dom-
inated by σ−finite measure μ on X. Denote by HSH ( f ) the well-known Shannon
entropy introduced in Shannon [29]. It is define by

HSH ( f ) = −
∫
X

f (x) log f (x) dμ. (11)

One of the main extensions of the Shannon entropy was defined by Rényi [25]. This
generalized entropy measure is given by

HR(η, f ) = logG(η)

1 − η
(for η > 0 and η �= 1), (12)

where

G(η) =
∫
X

f ηdμ.

The additional parameter η is used to describe complex behavior in probability mod-
els and the associated process under study. Rényi entropy is monotonically decreas-
ing in η, while Shannon entropy (11) is obtained from (12) for η ↑ 1. For details see
Nadarajah and Zografos [22], Zografos and Nadarajah [36] and Zografos [35].
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Theorem 12 For the generalized multivariate gamma distribution defined by the
pdf (1), the Rényi and the Shannon entropies are given by

HR(η, f ) = 1

1 − η

[
η lnC(α1, . . . , αn;β, k) +

[
η

n∑
i=1

(αi − 1) + n + ηk
]
ln

(
β

η

)

+
n∑

i=1

ln�[η(αi − 1) + 1] + ln�

[
η

n∑
i=1

(αi − 1) + n + ηk

]

− ln�

[
η

n∑
i=1

(αi − 1) + n

]

and

HSH ( f ) = − lnC(α1, . . . , αn;β, k) −
[( n∑

i=1

αi + k − n

)
ln β −

( n∑
i=1

αi + k

)

+
n∑

i=1

(αi − 1)ψ(αi ) +
( n∑

i=1

αi + k − n

)
ψ

( n∑
i=1

αi + k

)

−
( n∑

i=1

αi − n

)
ψ

( n∑
i=1

αi

)]
,

respectively, where ψ(z) = d
dz ln�(z) = 1

�(z)
d
dz�(z) is the digamma function.

Proof For η > 0 and η �= 1, using the joint density of X1, . . . , Xn given by (1), we
have

G(η) =
∫ ∞

0
· · ·
∫ ∞

0
f η(x1, . . . , xn;α1, . . . , αn;β, k)

n∏
i=1

dxi

= [C(α1, . . . , αn;β, k)]η
∫ ∞

0
· · ·
∫ ∞

0

n∏
i=1

xη(αi−1)
i

(
n∑

i=1

xi

)ηk

× exp

(
− η

β

n∑
i=1

xi

)
n∏

i=1

dxi

= [C(α1, . . . , αn;β, k)]η
∏n

i=1 �[η(αi − 1) + 1]
�[η∑n

i=1(αi − 1) + n]
×
∫ ∞

0
xη
∑n

i=1(αi−1)+n+ηk−1 exp

(
−ηx

β

)
dx,

where the last line has been obtained by using (16). Finally, evaluating the above
integral by using gamma integral and simplifying the resulting expression, we get
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G(η) = [C(α1, . . . , αn; β, k)]η
∏n

i=1 �[η(αi − 1) + 1]
�[η∑n

i=1(αi − 1) + n]�
⎡
⎣η

n∑
i=1

(αi − 1) + n + ηk

⎤
⎦

×
(

β

η

)η
∑n

i=1(αi−1)+n+ηk
.

Now, taking logarithm of G(η) and using (12) we get HR(η, f ). The Shannon
entropy is obtained from HR(η, f ) by taking η ↑ 1 and using L’Hopital’s rule. �

8 Estimation

Let (X11, . . . , X1n), . . . , (XN1, . . . , XNn) be a random sample from GMG(α1, . . . ,

αn; β, k). The log-likelihood function, denoted by l(α1, . . . , αn;β), is given by

l(α1, . . . , αn; β) = N

⎡
⎣ln�(α) − (α + k) ln β −

n∑
i=1

ln� (αi ) − ln�(α + k)

⎤
⎦

+
N∑

h=1

n∑
i=1

(αi − 1) ln xhi + k
N∑

h=1

ln

⎛
⎝ n∑
i=1

xhi

⎞
⎠− 1

β

N∑
h=1

n∑
i=1

xhi ,

where α = ∑n
i=1 αi . Now, differentiating l(α1, . . . , αn;β) w.r.t. αi , we get

∂l(α1, . . . , αn;β)

∂αi
= N [ψ(α) − ln β − ψ (αi ) − ψ(α + k)] +

N∑
h=1

ln xhi .

Further,
∂l(α1, . . . , αn;β)

∂β
= −N (α + k)

β
+ 1

β2

N∑
h=1

n∑
i=1

xhi ,

∂2l(α1, . . . , αn;β)

∂αi∂α�

= N [ψ1(α) − ψ1(α + k)] , 1 ≤ i �= � ≤ n,

∂2l(α1, . . . , αn;β)

∂α2
i

= N [ψ1(α) − ψ1(αi ) − ψ1(α + k)],

where ψ1(z) is the trigamma function defined as the derivative of the digamma
function, ψ1(z) = d

dzψ(z),

∂2l(α1, . . . , αn;β)

∂αi∂β
= −N

β
,
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∂2l(α1, . . . , αn;β)

∂β2
= N (α + k)

β2
− 2

β3

N∑
h=1

n∑
i=1

xhi .

Now, noting that
∑n

i=1 Xi ∼ G(α + k, β) and the expected value of a constant is the
constant itself, we obtain

θi� = θ�i = E

[
∂2l(α1, . . . , αn;β)

∂αi∂α�

]
= Nψ1(α) − Nψ1(α + k), 1 ≤ i �= � ≤ n,

θi n+1 = θn+1 i = E

[
∂l(α1, . . . , αn;β)

∂αi∂β

]
= −N

β
, 1 ≤ i ≤ n,

θi i = E

[
∂2l(α1, . . . , αn;β)

∂α2
i

]
= Nψ1(α) − Nψ1(αi ) − Nψ1(α + k), 1 ≤ i ≤ n,

θn+1 n+1 = E

[
∂2l(α1, . . . , αn;β)

∂β2

]
= −N (α + k)

β2
.

The Fisher information matrix for the multivariate gamma distribution given by
the density (1) is defined as

−

⎛
⎜⎜⎜⎜⎜⎝

θ11 θ12 · · · θ1n θ1 n+1

θ21 θ22 · · · θ1n θ2 n+1
...

...

θn1 θn2 · · · θnn θn n+1

θn+1 1 θn+1 2 · · · θn+1 n θn+1 n+1

⎞
⎟⎟⎟⎟⎟⎠

.

Further

∂l(α1, . . . , αn;β)

∂β
= −N (α + k)

β
+ 1

β2

N∑
h=1

n∑
i=1

xhi = 0

gives

(α + k)β =
n∑

i=1

x̄ i (13)

and

∂l(α1, . . . , αn;β)

∂αi
= N [ψ(α) − ln β − ψ (αi ) − ψ(α + k)] +

N∑
h=1

ln xhi = 0

gives
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ψ(α + k) − ψ(α) + ln β + ψ (αi ) = ln x̃i , i = 1, . . . , n,

where x̃i = ∏N
h=1 x

1/N
hi , i = 1, 2, . . . , n. Further, using

[ψ(z + m) − ψ(z) =
m−1∑
j=0

1

z + j

we have
k−1∑
j=0

1

α + j
+ ln β + ψ (αi ) = ln x̃i , i = 1, . . . , n. (14)

Thus, by solving numerically (13) and (14), the MLEs of αi and β can be obtained.

9 Simulation

In this section, a simulation study for p = 3 is conducted to evaluate the performance
of maximum likelihood method. For p = 2, see Rafiei, Iranmanesh, and Nagar [24].
Samples of size n = 50, 200, 500 from Equation (1) for selected values of param-
eters are generated by MCMC methods (Gibbs Metropolise, Markov Chain Monte
Carlo Metropolise, Metropolise, Metropolise gaussian, random walk Metropolise
and Metropolise-Hastings). We have performed the simulation for particular val-
ues of parameters, namely, α1 = 1, α2 = 2, α3 = 3, β = 2, k = 4, 8, and α1 = 2,
α2 = 2, α3 = 1, β = 2, k = 4, 8. The results were similar for other choices. MLEs
for parameters based on the numerical procedures were computed. This procedures
was repeated five hundred times and (α̂1, α̂2, α̂3, β̂), the average of biases (Ab) and
the mean squared errors (MSE) were obtained by using Monte Carlo methods (the
parameter k is an integer and the derivative method is not used to calculate its MLE).

Different packages such as MCMC, MCMCpack, gibbs.met, LearnBayes,
MHadaptive, MetroHastings and walkMetropolis in R were used for simulation.
After performing simulation using the above methods and comparing results, it was
observed that the Gibbs sampling method provides better results. Therefore, the out-
put of Gibbs method is presented in Tables 1, 2, 3, 4 and Figs. 1, 2, 3, 4 and 5. The
MLEs of parameters and correlation cofficients are reported in Tables1 and 2. The
DEoptim package in R was used to calculate theMLEs. The average of biases and the
mean squared errors of all the estimators are reported in Tables3 and 4. In particular,
biases for the maximum likelihood estimators of α1, α2, α3 and β are close to 0 and
the mean squared errors of all estimators always decrease with increasing n.

Figure1 shows 3D scatter plot of the simulation data for α1 = 1, α2 = 2, α3 = 3,
β = 2, k = 4, n = 50, 500. Figure2 shows 3D plot of the simulation data for α1 = 1,
α2 = 2,α3 = 3,β = 2, k = 4.Figs. 3 and 4 showpairs style of the simulation data for
α1 = 2, α2 = 2, α3 = 2, β = 2, k = 8, n = 50 and α1 = 2, α2 = 2, α3 = 1, β = 2,
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Fig. 1 3D scatter plot of simulation data with α1 = 1, α2 = 2, α3 = 3, β = 2, k = 4, n = 50,500

Fig. 2 3D plot for
simulation data, α1 = 1,
α2 = 2, α3 = 3, β = 2,
k = 4

k = 8, n = 500, respectively. Figure 5 shows Trace plot for α1 = 1, α2 = 2, α3 = 3,
β = 2, k = 8, n = 500. Finally, simulation points and 3D contour plot for different
selected values of parameters are shown in Figs. 6, 7, 8 and 9.
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Fig. 3 Pairs plot for α1 = 2, α2 = 2, α3 = 1, β = 2, k = 8, n = 50

10 Conclusion

In this chapter, a new multivariate gamma distribution whose marginals are finite
mixtures of gamma distributions is defined. It is shown that the correlation between
any pair of variables is negative. Therefore, the newly introduced distribution could
be suitable for fitting multivariate data with negative correlations. Several of its prop-
erties such as joint moments, correlation coefficients, moment generating function,
Rényi and Shannon entropies have been derived. In Sect. 8, the method of MLE
has been applied to estimate the parameters. Because the resulting likelihood equa-
tions are nonlinear, numerical methods have been used to solve them. Simulation
studies have been conducted to evaluate the performance of the maximum likelihood
method. Moreover, various tables and figures have been provided to confirm a proper
simulation and results of the MLE method for estimating the parameters.
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Fig. 4 Pairs plot for α1 = 2, α2 = 2, α3 = 1, β = 2, k = 8, n = 500

Fig. 5 Trace plots for α1 = 1, α2 = 2, α3 = 3, β = 2, k = 8, n = 500
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Fig. 6 Simulation points and 3D contour plot for α1 = 1, α2 = 2, α3 = 3, β = 2, k = 4, n = 50

Fig. 7 Simulation points
and contour plot for α1 = 1,
α2 = 2, α3 = 3, β = 2,
k = 4, n = 50
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Fig. 8 Simulation points and contour plot for α1 = 2, α2 = 2, α3 = 1, β = 2, k = 4, n = 50

Fig. 9 Simulation points
and 3D contour plot for
α1 = 2, α2 = 2, α3 = 1,
β = 2, k = 4, n = 50
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Appendix

In this section, we give definitions and results that will be used in subsequent sections.
Throughout this work we will use the Pochhammer symbol (a)n defined by (a)n =
a(a + 1) · · · (a + n − 1) = (a)n−1(a + n − 1) for n = 1, 2, . . . , and (a)0 = 1.

The fourth hypergeometric function of Lauricella, denoted by F (n)
D , in n variables

z1, . . . , zn is defined by

F (n)
D (a, b1, . . . , bn; c; z1, . . . , zn) =

∞∑
j1,..., jn=0

(a) j1+···+ jn (b1) j1 · · · (bn) jn z j11 · · · z jnn
(c) j1+···+ jn j1! · · · jn!

,

where |zi | < 1, i = 1, . . . , n. An integral representation of F (n)
D in Exton [7, p. 49,

Eq. (2.3.5)] is given as

F (m)
D (a, b1, . . . , bm; c; z1, . . . , zm)

= �(c)∏n
i=1 �(bi )�(c −∑n

i=1 bi )

×
∫

· · ·
∫

∑n
i=1 xi<1

0<xi , i=1,...,n

∏n
i=1 x

bi−1
i

(
1 −∑n

i=1 xi
)c−∑n

i=1 bi−1

(
1 −∑n

i=1 zi ti
)a dx1 · · · dxn . (15)

For further results and properties of this function the reader is referred to Exton [7]
and Srivastava and Karlsson [32].

Let f (·) be a continuous function and αi > 0, i = 1, . . . , n. The integral

Dn(α1, . . . , αn; f ) =
∫ ∞

0
· · ·
∫ ∞

0

n∏
i=1

xαi−1
i f

(
n∑

i=1

xi

)
n∏

i=1

dxi

is known as the Liouville-Dirichlet integral. Substituting yi = xi/x, i = 1, . . . , n −
1 and x = ∑n

i=1 xi with the Jacobian J (x1, . . . , xn−1, xn → y1, . . . , yn−1, x) = xn−1

it is easy to see that

Dn(α1, . . . , αn; f ) =
∏n

i=1 �(αi )

�(
∑n

i=1 αi )

∫ ∞

0
x
∑n

i=1 αi−1 f (x) dx . (16)

Finally, we define the beta type 1, beta type 2 and Dirichlet type 1 distributions.
These definitions can be found in Wilks [34], Fang, Kotz and Ng [8], Johnson, Kotz
and Balakrishnan [15], and Kotz, Balakrishnan and Johnson [16].

Definition 2 A random variable X is said to have the beta type I distribution with
parameters (a, b), a > 0, b > 0, denoted as X ∼ B1(a, b), if its pdf is given by
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�(a + b)

�(a)�(b)
xa−1(1 − x)b−1, 0 < x < 1.

Definition 3 A random variable X is said to have the beta type II distribution with
parameters (a, b), denoted as X ∼ B2(a, b), a > 0, b > 0, if its pdf is given by

�(a + b)

�(a)�(b)
xa−1(1 + x)−(a+b), x > 0.

Definition 4 The random variables U1, . . . ,Un are said to have a Dirichlet type 1
distribution with parameters α1, . . . , αn and αn+1, denoted by (U1, . . . ,Un) ∼
D1(α1, . . . , αn;αn+1), if their joint pdf is given by

�(
∑n+1

i=1 αi )∏n+1
i=1 �(αi )

n∏
i=1

uαi−1
i

(
1 −

n∑
i=1

ui

)αn+1−1

,

0 < ui , i = 1, . . . , n,

n∑
i=1

ui < 1, (17)

where αi > 0, i = 1, . . . , n + 1.

The Dirichlet type 1 distribution, which is a multivariate generalization of the
beta type 1 distribution, has been considered by several authors and is well known in
the scientific literature. By making the transformation Vj = Uj/(1 −∑n

i=1Ui ), j =
1, . . . , n, in (17), the Dirichelt type 2 density, which is a multivariate generalization
of beta type 2 density, is obtained as

�(
∑n+1

i=1 αi )∏n+1
i=1 �(αi )

n∏
i=1

uαi−1
i

(
1 +

n∑
i=1

ui

)−∑n+1
i=1 αi

, vi > 0, i = 1, . . . , n. (18)

Wewill write (V1, . . . , Vn) ∼ D2(α1, . . . , αn;αn+1) if the joint density of V1, . . . , Vn

is given by (18).
The matrix variate generalizations of beta type 1, beta type 2 and Dirichlet type 1

distributions have been defined and studied extensively. For example, see Gupta and
Nagar [11].

Definition 5 Multinomial Theorem: For a positive integer k and a non-negative
integer m,

(z1 + · · · + zm)k =
∑

k1+···+km=k

(
k

k1, . . . , km

)
zk11 · · · zkmm ,

where (
k

k1, . . . , km

)
= k!

k1! · · · km ! .
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The numbers appearing in the theorem are the multinomial coefficients. They can
be expressed in numerous ways, including as a product of binomial coefficients of
factorials:
(

k

k1, k2, . . . , km

)
= k!

k1! k2! · · · km ! =
(
k1
k1

)(
k1 + k2

k2

)
· · ·
(
k1 + k2 + · · · + km

km

)

Lemma 1 For a1 > 0, . . . , am > 0 and k ∈ N, we have

k!
∑

k1+···+km=k

(a1)k1 . . . (am)km

k1! · · · km ! = (a1 + · · · + am)k

= �(a1 + · · · + am + k)

�(a1 + · · · + am)
.

Proof Writing (1 − θ)−(a1+···+am ) as (1 − θ)−a1 · · · (1 − θ)−am and using power
series expansion, for 0 < θ < 1, we get

(1 − θ)−a1 · · · (1 − θ)−am =
∞∑

k1=0

· · ·
∞∑

km=0

(a1)k1 . . . (am)km

k1! · · · km ! θ k1+···+kn

=
∞∑
k=0

θ k
∑

k1+···+km=k

(a1)k1 . . . (am)km

k1! · · · km !

and

(1 − θ)−(a1+···+am ) =
∞∑
k=0

(a1 + · · · + am)k

k! θ k .

Now, comparing coefficients of θ k , we get the desired result. �

Lemma 2 Let

g(a1, . . . , am;β, k) =
∫ ∞
0

· · ·
∫ ∞
0

m∏
i=1

zai−1
i

⎛
⎝ m∑
i=1

zi

⎞
⎠
k

exp

⎛
⎝− 1

β

m∑
i=1

zi

⎞
⎠ dz1 · · · dzm ,

(19)
where a1 > 0, . . . , am > 0 and k ∈ N. Then

g(a1, . . . , am;β, k) = β
∑m

i=1 ai+k

[
m∏
i=1

�(ai )

]
(a1 + · · · + am)k

Proof Expanding
(∑m

i=1 zi
)k

in (19) by using multinomial theorem and integrating
z1, . . . , zm , we obtain
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g(a1, . . . , am;β, k) =
∑

k1+···+km=k

(
k

k1, . . . , km

) m∏
i=1

∫ ∞

0
zzi+ki−1
i exp

(
− 1

β
zi

)
dzi

= β
∑m

i=1 αi+k
∑

k1+···+km=k

(
k

k1, . . . , km

) m∏
i=1

�(ai + ki ).

Now, using Lemma 1, we get the desired result. �
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Aspects of High-Dimensional Methodology
and Bayesian Learning



A Comparison of Different Clustering
Approaches for High-Dimensional
Presence-Absence Data

Gabriele d’Angella and Christian Hennig

Abstract Presence-absence data is definedbyvectors ormatrices of zeroes andones,
where the ones usually indicate a “presence” in a certain place. Presence-absence data
occur, for example, when investigating geographical species distributions, genetic
information, or the occurrence of certain terms in texts. There are many applications
for clustering such data; one example is to find so-called biotic elements, i.e., groups
of species that tend to occur together geographically. Presence-absence data can
be clustered in various ways, namely, using a latent class mixture approach with
local independence, distance-based hierarchical clustering with the Jaccard distance,
K -modes, a density-based approach, or also using clustering methods for continuous
data on amultidimensional scaling representation of the distances. Thesemethods are
conceptually very different from each other, and can therefore not easily be compared
theoretically. We compare their performance with a comprehensive simulation study
based on models for species distributions.

Keywords Multidimensional scaling · Biogeography · Cluster analysis ·
Simulation study · Benchmarking · Jaccard’s distance

1 Introduction

Presence-absence data comprises observations that are vectors or matrices of zeroes
and ones, where the ones usually indicate a “presence” in a certain place. Presence-
absence data are often high-dimensional (the number of “places” may be large com-
pared to the number of observations), and occur in a large range of applications, for
example when investigating geographical species distributions, genetic information,
or the occurrence of certain terms in texts.
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Often there is an interest in clustering presence-absence data. An example for this
is the search for “biotic elements”, which are groups of species showing very similar
distribution areas that can constitute evidence for the existence of areas of endemism
generated by the formation of barriers over geologic time periods [15, 16].

Here we present a simulation study for comparing different approaches to cluster-
ing such data. This is based on amodel for generating artificial but realistic presence-
absence data with known clusters, the recovery of which can be compared. Not only
are we interested in ranking methods, we also investigate characteristics of the data
(such as degree of cluster overlap) that drive themethods’ performances; the compar-
ison of methods may strongly depend on such characteristics. We will also explain
in detail why some methods do not perform that well. See [33] for guidelines on
benchmark studies to compare clustering methods.

There are various approaches to clustering presence-absence data. Two major
approaches are (1) the use of distance-based clustering methods such as average
linkage or partitioning around medoids [13] using distance measures between the
observations [8, 30], and (2) latent class mixture models [25]. Compared distance-
based and latent class clustering omn categorical data in a simulation study [1]. Some
of the most popular clustering methods such as K-means [22] and model-based clus-
tering based on Gaussian mixtures [29] require Euclidean data and cannot directly
be applied to presence-absence data. As approach (3), Hausdorf and Hennig [16, 17]
have proposed to use methods for Euclidean data on the output of a Multidimen-
sional Scaling (MDS) [5] specifically with presence-absence data for biotic element
analysis. Furthermore, [3] generalized their density-based clustering in this way to
categorical data.

MDS is a set of techniques that generate a Euclidean representation so that the
resulting Euclidean distances approximate a given usually non-Euclidean distance
structure. Low dimensionality of the representation is often desirable. Such a repre-
sentation is often used for visualization (for which low dimensionality is needed),
but can also be used for making distance data accessible to more elaborate statistical
methodology that requires Euclidean input, as is done here for cluster analysis.

A disadvantage of this approach is that the MDS generally will lose some infor-
mation in the original data (the lower the dimension, the larger the loss). A key
interest in the present study is whether this approach can compete with the more
direct approaches (1), and (2).

The relationship between clustering and scaling techniques has also been dis-
cussed in de Leeuw and Heiser [10] and in Kruskal [24]. Simultaneous use of MDS
and clustering is treated by Desarbo [12] and Oh and Raftery [27]. Some biogeo-
graphical work related to our study has been done by Vavrik [34] (comparison of
clustering methods for fossil data) and Ulrich and Gotelli [32] (null models for sim-
ulating presence-absence data).

Section2 has a basic description of the data, distance, and MDS. Section3 intro-
duces the involved clustering methods. Section4 describes in detail how the data
for the simulations were generated. Section5 discusses the results of the study, and
Sect. 6 concludes the paper.
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2 Data and Preprocessing

Data here are m-dimensional binary: xi = (xi1, . . . , xim), i = 1, . . ., n, for all j :
xi j ∈ {0, 1}. The data are modelled with a specific application area in mind, which is
analyzing presence (1) and absence (0) of species in geographical regions, where i
indexes the species and j indexes the region. Clusters are called “biotic elements” and
are of interest because they provide insight into natural history [15, 17]. Our results
may however also be informative for presence-absence data in other applications.

Methods are compared regarding their capability to retrieve true clusters in the data
as set in the simulation. The cluster membership of the observations is denoted as c =
(c1, . . . , cn), where ci = k denotes that observation i is in cluster k ∈ {1, . . . , K }.

Some of the compared clustering methods operate on distances. As distance we
use the popular Jaccard distance [8, 11, 21], for discussion and alternatives see [8,
13, 18, 30]:

dJ (x1, x2) = 1 −
∑m

j=1 1(x1 j = 1 ∧ x2 j = 1)
∑m

j=1 1(x1 j = 1 ∨ x2 j = 1)
(1)

where 1 denotes the indicator function.
A topic of key interest here is the performance of clustering techniques for

Euclidean data that use an MDS representation of the distances as input. In this
study, two MDS methods were applied: classical scaling [31] as implemented in
the R-function cmdscale, and ratio MDS [5, 6] as implemented in the R-package
smacof, function mds. Two and three-dimensional MDS solutions were used in the
simulation study. Although this seems low, the results (as provided in Sect. 5) were
good enough that there is not much room for improvement by higher dimensional
solutions (in [27], lower dimensional proxies yielded clustering solutions almost as
good as those exploiting higher dimensional configurations). An advantage of using
a low-dimensional MDS is the ease of visualization of the data. However, in more
general applications, using a higher dimensional MDS solution may be helpful in
case that too much information is lost by a low-dimensional solution.

However, there are no indications against the setting of p > 3, p being the dimen-
sionof theMDSsolution,when it comes to the applicationof techniques likeK-means
or Gaussian mixture models and this should be considered in case the comparison
with other clustering recovery methods shows that too small a pmight lose too much
information. In this project we deal withmultivariate binary data: not only doesMDS
constitute a powerful visualization tool, but it also enables us to resort to methods
requiring continuous data input for our clusters recovery purposes. These methods
are introduced in the next subsection.
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3 Clustering Methods

We used the following clustering methods.

Latent Class Analysis

Latent class analysis operates directly on the presence-absence data. The method
used here is the simplest of those that are referred to in the literature as “latent
class analysis” [25, Chap. 3]. It models the data as a mixture of locally independent
Bernoulli distributions, i.e., the different variables/regions are assumed independent
within clusters, although they can depend on the whole dataset. Data are modelled
as i.i.d. according to the density [4, Chap. 6]:

fη(xi ) =
K∑

k=1

πk

m∏

j=1

θ
xi j
jk (1 − θ jk)

1−xi j , (2)

where θ jk is the probability of positive response for variable j in cluster k, namely the
probability that a species in the kth group inhabits the j th cell , andπk is the proportion
of cluster k. The parameter vector η = ((π1, θ11, . . . , θ1m), . . . , (πK , θ1K , . . . , θmK ))

storesmixture proportions and probabilities for presence per variable and cluster. The
parameters can be fitted by Maximum Likelihood, using the EM-algorithm [35].
Observations can then be assigned to clusters by maximizing the estimated poste-
rior probability of the observations belonging to the clusters [4, 25]. The Bayesian
Information Criterion (BIC, [28]) can be used to estimate the number of clusters,
but in our study the number of clusters was taken as fixed and known. In our study
we used the R-function poLCA in the R-package with the same name for computing
this kind of latent class analysis.

Methods Operating on Distances

Some methods were used that take the Jaccard distance matrix as input, namely,
standard Single, Average, and Complete Linkage clustering [13, Chap. 4] with the
dendrogram cut in such a way that the required number of clusters is produced.
These were computed using the R-function hclust. Furthermore we used Parti-
tioning Around Medoids (PAM; [23]) as computed by the R-function pam, and the
K-modes algorithm [19], which tries to optimize the PAM objective function using
the simple matching distance as computed by R-function kmodes in package klaR
with parameter fast set to FALSE to avoid error messages.
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Methods Operating on Euclidean Data

For clustering the EuclideanMDS-output, we used two of themost popular clustering
methods, namely K-means [22] and the Gaussian mixture model [13, Chap. 6]. K-
means was computed by the R-function kmeans (using parameters nstart =
100, iter.max = 100 in order to allow for a more stable performance than
granted by the default values), the Gaussian mixture model was fitted by the function
Mclust in package mclust [29]. More precisely, data is assumed to be generated
by a model with density

fη(xmdsi ) =
K∑

k=1

πkφak ,�k (x
mds
i ), (3)

where K is the number of mixture components, φa,� is the density of the multivariate
Gaussian distribution with mean vector a and covariance matrix �, π1, . . . , πK are
themixture proportions, and η is a vector collecting all parameters. These parameters
can be estimated by Maximum Likelihood as implemented in the EM-algorithm.
mclust provides several constrained covariance matrix models (e.g., all covariance
matrices equal) besides a fully flexible model, and the mclust—software uses the
Bayesian Information Criterion (BIC) to select the best one [29]. Observations are
assigned to clusters by estimating the probability that an observation was generated
by cluster k:

P̂(ci = k|xmdsi ) = π̂kφâk �̂k
(xmdsi )

fη̂(xmdsi )
, (4)

where the hat denotes estimated parameters, and estimating the cluster membership
labels as follows:

ĉi = arg max
k∈{1,...,K }

P̂(ci = k|xmdsi ). (5)

The BIC is also often used to estimate the number of clusters, but this is treated as
fixed and known here, which also means that there is no need to use one of the many
available methods (that often lead to contradictory results) to decide the number of
clusters for the other methods [14].

Furthermore, [3] have proposed to run the density-based clustering method
pdfCluster (R-function and package name) [2] on MDS-output in order to han-
dle categorical or binary data. The method estimates the density by kernel methods.
Clustering is then performed by finding density level sets using neighborhood graphs.
As opposed to the other methods in the study, pdfCluster will implicitly determine
the number of clusters rather than allowing for it to be fixed. In order to avoid errors,
we used the parameter settings graphtype="pairs" and n.grid equal to the
number of observations.
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K-means, the Gaussian mixture model, and pdfCluster are combined with the
different MDS techniques and two dimensionalities of the MDS output. The com-
binations are called kc2, ks2, kc3, ks3, gc2, gs2, gc3, gs3, pdfc2, pdfs2, pdfc3,
pdfs3 in the results section. “k”, “g”, “pdf” refer to K-means, the Gaussian mixture,
and pdfCluster, respectively. “c” and “s” denote cmsscale, and smacof’s mds,
respectively. The number in the end is the number of MDS dimensions used.

4 The Simulation

In order to compare the methods, we simulate datasets of n species, each of which
is represented by a presence-absence vector of length m, and cluster them.

Simulations enable us to investigate the features of the data that drive the per-
formance of the clustering methods. Real biogeographical data sets can make this
assessment difficult, as it is hard to separate results due to singularities in data from
those due to methods properties [7]. Among the plethora of aspects that can be con-
sidered, in this project we examined the level of clusters’ overlap, the cluster size,
the width of the cluster specific areas and the number of clusters: in particular, we
compared a situation with three clusters endowed with their specific geographic area
with a situation where on top of these three groups a cluster of universal spread-
ers is added, as often exist in reality [9]. Such a cluster consists of species that are
widespread across the whole map. These species are not informative regarding biotic
elements, however they qualify as clusters in a data analytic sense, namely as a set of
observations that behaves in a certain way. In the following, we will call the clusters
made up of species that are not universal spreaders “proper”, because these species
inhabit a specific group of cells and can signal the existence of a biotic element.

The 24 parameter combinations for the simulated data are described below, after
the presentation of the algorithm that was used to generate this kind of data.

Data Generation

The algorithm implemented to simulate each species resorts repeatedly to a random
draw from a distribution that chooses one category of the m possible ones, each of
which has its own probability of being picked. At each step, one category has to be
picked, and therefore these probabilities sum to one. This distribution is called here
“categorical distribution”. Let j = 1, . . .,m be the categories. Each category has a
probability p j of being picked and

∑m
j=1 p j = 1. The probability mass function of

our categorical distribution is:

fp(y) =
m∏

j=1

p j
[y= j] (6)
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where [y = j] is equal to 1 if y = j and 0 otherwise.
The species in our data set inhabit the geographic units (cells) of a map. To each

of the m categories corresponds a cell: at every drawing step, a category is picked
and its associated binary indicator is set to 1, meaning that the species is present in
this geographic unit of the map. A value of 0 means that the cell has not been drawn
and the species is absent.

Each cluster will have its specific area on the map, consisting of a set of cells
whose probability to be inhabited by the species of the cluster will be larger than
elsewhere. To simplify, there will be a unique probability inside these areas (pin)
and a unique probability outside of them (pout ), with pin > pout . Once the cluster
specific areas have been determined, the probability vectors specific to each cluster
can be produced. Species belonging to a given cluster will mainly inhabit the cluster
specific area, while their occurrence outside of it will be rarer. The rareness of species
outside of their specific cluster area will depend on the level of overlap ω, see below.

We define the following notation:

(a) observations xi = (xi1, . . . , xim) taking values in the product set {0, 1}m ;
(b) cluster labels k = 1, . . ., K ;
(c) species range ri = ∑m

j=1 xi j , for i = 1, . . . , n;
(d) vector of species cluster labels c = (c1, . . . , cn);
(e) vector of cell cluster labels d = (d1, . . . , dm). A cell is given the label k when

it belongs to the specific area of a cluster, i.e., the set of cells with elevated
probability for cluster k. The probability to be inhabited by a species belonging
to that cluster is pin . Each cell can belong to at most one (exactly one in this
study) cluster specific area.

The following parameters of the simulation are fixed in advance:

• the number of species n and the number of cells m. n was either 300 or 400, see
below. m was 60;

• the level of overlapω = pout
pin

. Three levels of overlap are used, i.e., low (ω = 0.05),
medium (ω = 0.2) and high (ω = 0.4);

• the number of clusters K . This was either 3 (with n = 300), or 4 (with n = 400).
Therewere always 3 proper clusters, and a cluster of universal spreaders was added
or not;

• the number of species belonging to each cluster k, i.e., |{i : ci = k}| for k =
1, . . . , K . Twopossibilities are investigated: onewith all clusters having 100 obser-
vations and one with clusters of various sizes (a small clusters with 50 species, one
with 100 and one with 150 species). If a group of universal spreaders is present, it
consists of 100 observations;

• the number of cells constituting each cluster specific area on the map, i.e., |{ j :
d j = k}| for k = 1, . . . , K . Two possibilities are investigated, onewith equal-sized
specific areas (all areas 20 cells) and one with heterogeneous specific areas (10,
20, and 30 cells). With unequal area sizes and unequal cluster sizes, cluster sizes
were chosen in line with the area sizes, i.e., the larger the cluster specific area, the
larger the cluster.
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The range ri of the i th species is instead randomly drawn. If the species belongs to
a proper cluster, it is uniformly drawn between 1 and the size of the cluster specific
area. If it is a universal spreader (u.s.), its range is at least as large as the widest
cluster specific area on the map, namely

ru.s. = max
k

|{ j : d j = k}|,

and the maximum is m. As a consequence, a universal spreader will always cover
a region of the map that involves more cells than the habitat of any proper species.
These choices have been made inspired by real datasets of this kind that we have
seen; particularly, species ranges are highly variable.

Here is the algorithm for the i th species draw, provided that it is not a universal
spreader:

1. pick ri according to a discrete uniform distributionwith domain {1, . . . , |{ j : ci =
d j }|};

2. set x0i = 0m , namely the observation is initialized as a vector of zeros of length
m;

3. for t = 0, . . . , ri − 1:

a. compute ptin,ci
and ptout,ci such that:

{
ptout,ci
ptin,ci

= ω

|{ j : d j = ci ∧ xti j = 0}| · ptin,ci
+ |{ j : d j �= ci ∧ xti j = 0}| · ptout,ci = 1

b. specify the vector pti according to the following rule:

pti j =
⎧
⎨

⎩

ptin,ci
, if ci = d j ∧ xti j = 0

ptout,ci , if ci �= d j ∧ xti j = 0
0 otherwise

c. draw j from a categorical distribution (Eq. 6) with probability vector pti ;
d. set xt+1

i j = 1.

4. set the i th observation in the data set equal to xrii .

Note that the probability vector pti is updated after each draw in such a way that
every category can only be drawn once. Step 3 makes sure that ω (i.e., the chosen
ratio between the probability to draw a cell without and within the cluster specific
area) is respected by the probability vector pti . Species generated in this way may
well have presences outside the cluster specific area, and absences within it, although
the probability to be present within it is larger. This reflects realistically observed
patterns.

The algorithm for the draw of the i th observation being a universal spreader is
slightly different:

1. set x0i = 0m , namely the observation is initialized as a vector of zeros of length
m;

2. pick ri according to a discrete uniform distribution with domain {ru.s., . . . ,m};
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Table 1 The 24 simulation scenarios resulting from the combination of the investigated data param-
eters

Scenario ω K Sizes Areas Case ω K Sizes Areas

1 0.05 3 = = 13 0.05 3 = �=
2 0.20 3 = = 14 0.20 3 = �=
3 0.40 3 = = 15 0.40 3 = �=
4 0.05 3+u.s. = = 16 0.05 3+u.s. = �=
5 0.20 3+u.s. = = 17 0.20 3+u.s. = �=
6 0.40 3+u.s. = = 18 0.40 3+u.s. = �=
7 0.05 3 �= = 19 0.05 3 �= �=
8 0.20 3 �= = 20 0.20 3 �= �=
9 0.40 3 �= = 21 0.40 3 �= �=
10 0.05 3+u.s. �= = 22 0.05 3+u.s. �= �=
11 0.20 3+u.s. �= = 23 0.20 3+u.s. �= �=
12 0.40 3+u.s. �= = 24 0.40 3+u.s. �= �=

3. for t = 0, . . . , ri − 1:

a. pick j according to a discrete uniform distribution with domain {1, . . . ,m} \
{ j : xti j = 1};

b. set xt+1
i j = 1.

4. set the i th observation in the data set equal to xrii .

Scenarios

24 simulation scenarios have been used, which are listed in Table1.
Equal (=) group sizes imply that there are 100 observations per cluster (be it a

proper one or a group of universal spreaders).When the group sizes are different ( �=),
there is a cluster with 50 species, one with 100, and one with 150 (there are always
100 u.s. species).When the areas are equal (=), the 60 cells are evenly divided across
the clusters; when the areas differ ( �=), the smallest cluster specific area is made up
of 10 cells/variables and the biggest one consists of 30 cells/variables.

We visualize the spread of the species in four exemplary cases using heatmaps.
They represent the species in the rows and the cells in the columns: in each row, grey
units represent cells where the species is present. In Fig. 1a the overlap is low and all
groups have the same number of members and cluster specific cells. In Fig. 1b the
high level of overlap makes it rather tough to distinguish the cluster specific areas.
Case 4 (Fig. 1c) differs from Case 1 in that it includes a group of universal spreaders.
In Case 13 (Fig. 1d), clusters have specific areas of differing sizes, therefore species
belonging to the green cluster will be able to inhabit up to thirty cells.
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(a) (b)

(c) (d)

Fig. 1 Presence-absence heatmaps for cases 1, 3, 4 and 13. Rows correspond to species, columns
correspond to cells. Colored bars represent species clusters (rows) and cluster specific areas
(columns)

5 Results

General Results

The simulations were evaluated using the Adjusted Rand Index [20] in order to
compare clusterings generated by the methods to the true clusterings, a measure
of similarity between data clusterings that ranges from −1 to 1: two independent
random partitions are expected to return an ARI of zero, whereas an ARI equal to
1 implies identical clusterings. Not only did we try to investigate what methods led
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(a) (b)

(c) (d)

Fig. 2 Interaction plots of the average ARI values in the 24 cases (each simulated ten times). The
lines referring to each of the twelve clustering recovery methods are indicated in the legends

to a satisfactory clustering recovery, but we also checked what data features had a
significant impact on the methods’ performance.

Each of the 24 scenarios reported in Table1was simulated ten times. This configu-
ration generated a data set with 3120 rows: thirteen methods applied on 24 scenarios,
each simulated ten times.

Figure2 shows interaction plots of the results. They show the ARI means on the
vertical axis and the levels of the various data features on the horizontal axis. The
different lines in the plots refer to the clustering methods. Figure3 shows boxplots
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of the ARI values achieved by the methods by overlap and presence of universal
spreaders.

Unsurprisingly, methods are generally better with lower overlap, while some
methods are helped whereas others are harmed by universal spreaders. Overall pat-
terns regarding cluster sizes and cluster specific area widths are not that striking.

The performance of hierarchical clustering is generally rather bad, and clearly
dominated by the other methods. Average linkage performs somewhat better than
the other two methods for low overlap and without universal spreaders, but it is still
worse than all the non-hierarchical methods; in fact the interaction plots could be
interpreted as showing two clusters of methods, namely the hierarchical methods
achieving low ARIs, and most other methods achieving better ARIs with K-modes
and pdfs2 in between. We explore the reasons for this in Sect. 5.

K-modes performs a bit better than the hierarchical methods, but worse than the
other methods. It becomes mostly better with universal spreaders. In particular, the
use of the simple matching distance seems to be a worse choice for this kind of data
than Jaccard for PAM.

The latent class analysis belongs to the cluster of better methods, but it cannot
compete with K-means and the Gaussian mixture after MDS, as can be seen in
particular in Fig. 2d. It does absolutely and relatively better with low overlap. PAM
is among the best methods with low overlap, but deteriorates even stronger than the
latent class analysis with more overlap.

Out of the different variants of K-means and the Gaussian mixture model, regard-
ing the overall average ARI those based on a 3-dimensional classicalMDS (kc3, gc3)
perform best, as can be seen in Fig. 2c, d. There is considerable variation over the
different experimental factor levels though. Figure3 shows that gc2 is excellent with
low overlap and without universal spreaders. kc3 performs much better with univer-
sal spreaders and does not stand out without them. Using the ratio (smacof) MDS
is mostly worse than using classical MDS. Particularly it does not work well with
the Gaussian mixture model and 3-dimensional MDS output with low and medium
overlap and no universal spreaders, although universal spreaders help that method,
particularly with medium overlap. Unequal sizes of cluster specific areas generally
favor the classical MDS. The combination of medium overlap and universal spread-
ers generally favours the 3-dimensional MDS strongly, which otherwise has a small
but not so substantial advantage. The K-means methods are overall competitive, but
relatively weaker compared to the Gaussian mixture model for unequal cluster sizes.
High overlap favours the K-means methods. pdfCluster is overall not quite as good
as K-means and the Gaussian mixture. Overall it has a somewhat similar perfor-
mance to the latent class analysis, with pdfc3 doing mostly better and the other three
versions doing mostly worse. The impossibility to fix the number of clusters for pdf-
Cluster puts it at a slight disadvantage, as the correct number of clusters was fixed
for the other methods. pdfCluster mostly found the correct number of clusters, but
occasionally (particularly with the smacof-MDS) it would put everything together
in a single cluster.

Figure3 gives some information about the variability of the results. pam and
gc3 have most stable results for low overlap (without universal spreaders also gc2),
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Fig. 4 Heatmap from a
simulation of scenario 24:
high overlap, with u.s.
group, various sizes and
areas. ARI = 0.3538. Rows
sorted by LCA clustering.
True cluster membership on
the left (blue = 1, red = 2,
green = 3, gold = u.s.),
cluster specific areas on top
(light-blue = 1, orange = 2,
dark red = 3), LCA cluster
membership on the right
(numbers)

whereas other methods, gs3 in particular, have substantial variation. Otherwise sta-
bility can mostly be found among bad results (e.g., the linkage methods).

More Detailed Insight

In order to explore behavior of some methods in more detail and to understand their
weaknesses, we use some exemplary visualizations.

For examining the performance of latent class analysis, we consider a simulation
from scenario 24 of Table1with high overlap and different cluster sizes. The heatmap
in Fig. 4 shows the four cluster latent class solution indirectly by the order of rows;
colors on the side denote the true clusters, colors on top denote the cluster specific
areas. A typical behavior of latent class analysis with large overlap was to build a
clusterwith sparse species, i.e., with small ranges, regardless towhich original cluster
they belonged. The smaller true clusters were hard to identify. Latent class analysis
treats presences and absences symmetrically, which leads to a tendency to group
sparse species together; also species with large range are easily grouped together,
which is a good thing with a universal spreader cluster. Therefore its existence helps
the latent class analysis to often achieve a larger ARI. It can also happen, however,
that the universal spreaders cluster is split up into two clusters (relatively larger and
smaller ranges), as happened in Fig. 4. The symmetric treatment of presences and
absences is not good for identifying the proper clusters, at least not with large overlap.
These rely on presences much more than on absences, and therefore the focus of the
Jaccard distance on joint presences rather than joint absences will help.
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(a) (b)

(c) (d)

Fig. 5 Ratio smacofMDS and classical scaling, based on the Jaccard’s distance matrix computed
on the data set simulated under scenario 24 (heatmap in Fig. 4), colored by true clustering (left) and
LCA clustering (right)

Figure5 shows two-dimensional MDS maps of these data, highlighting the true
cluster memberships ((a) and (c)) and the latent class clusters ((b) and (d)), for
classical and ratio (smacof) MDS. Although not based on theMDS input, the latent
class solution looks geometrically sensible in terms of both MDS visualizations,
actually more so than the true clusters. However, latent class clusters 1 and 2 are very
heterogeneous and involve large distances, merging observations from two or more
true clusters together. This is in line with the fact that for large overlap with universal



314 G. d’Angella and C. Hennig

spreaders, starting from the MDS output, K-means, which prioritizes within-cluster
homogeneity over separation and geometrically visible cluster shapes, does better
than the Gaussian mixture model (Fig. 3). The true clusters 1 and 2 are apparently
hard to separate for any method, but they are still more homogeneous than latent
class cluster 2, which holds the majority of both of them.

Figure5 also serves for understanding why classical scaling performs better in
our experiments. Geometrically, the ratio MDS is not worse at arranging the true
clusters into a sensible shape, but both K-means and the Gaussian mixture model are
connected to multivariate Gaussian distributions, which are characterized by linear
relations between the variables, whereas the ratio MDS produces nonlinear cluster
shapes and boundaries between true clusters. The ratio MDS in itself does not fail,
but it does not serve as well as input for the Euclidean cluster methods. The classical
MDS also separates the universal spreaders on one side of the plot, whereas in the
ratioMDS they are, although also nicely separated, surrounded by observations from
the proper clusters. Presence of universal spreaders helped some methods to achieve
better results simply because they are often more easily “visible” as clusters to the
methods.

Regarding the weak performance of the hierarchical methods, Fig. 6 shows three
heatmaps from data from scenario 22, with low overlap, and universal spreaders, and
clusters have different sizes and different widths of their specific areas. These are
shown together with the dendrograms form the three hierarchical clusterings.

Single linkage (Fig. 6a) clearly suffers from its well known chaining issue [13,
Chap. 4]. Fixing the number of clusters at 4, all observations are merged, and only
a few very sparse species with a large Jaccard distance to all the other species are
isolated as one-point clusters. Looking at the colors indicating the true clusters,
the dendrogram as a whole is not perfect, but to some extent in line with the true
clusters. A single clustering obtained by cutting the dendrogram at a certain height
would however require a very large number of clusters to have at least the bigger ones
of them in some agreement with the true clusters. The same phenomenon occurred
with most other datasets, causing ARIs generally close to zero.

Complete linkage is not affected by chaining, but Fig. 6b shows a different prob-
lem. The Jaccard distance assigns its maximum value 1 to any two species that do
not have joint presences. As occurs often in real data, the simulated data have sev-
eral species with a small range that easily have no overlap. Complete linkage can’t
therefore join them in the same cluster, and they are still separated at the top level of
the dendrogram. The dendrogram as a whole can be seen as even better in line with
the true clustering, but in order to reflect this in a clustering with a fixed number of
clusters, the method would need to integrate some sparse species with some clusters
that include species to which they have the maximum Jaccard distance, and complete
linkage cannot do that.

Unfortunately, average linkage (Fig. 6c) cannot solve both of these problems at
the same time, but is rather also affected by chaining, isolating some sparse species
when cutting for lower numbers of clusters. Once more, some useful agreement with
the true clustering can be found in the dendrogram as a whole, but with a fixed
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(a) (b)

(c)

Fig. 6 Heatmaps of a simulation of scenario 22 (ω = 0.05, with u.s. cluster, various cluster sizes
and areas), sorted according to the three hierarchical clustering solutions. Colors on the left side
indicate true cluster membership of the species, while those on top refer to the cluster specific area
of the cells

number of clusters 4, the ARI is about zero, and a too large number of clusters would
be needed to achieve a substantially better value.

The best ARIs that could have been achieved by optimal cutting are 0.427 for
single linkage (181 clusters), 0.469 for complete linkage (35 clusters), and 0.522 for
average linkage (81 clusters). These are still lower than those for the MDS-based
methods, latent class analysis, and PAM, largely due to the many small clusters
involved. Still it shows that the results of the hierarchical methods are ultimately
also connected to the true clusterings, though this requires looking deeper into the
dendrogram.

Amajor lesson to learn from these insights regards the role of the Jaccard distance.
On one hand, it is advantageous by treating presences and absences in an asymmetric
manner. The latent class analysis suffers from treating them symmetrically, compared
to the MDS-based methods. On the other hand, it also creates problems, particularly
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for the hierarchical methods, by assigning a maximum distance to pairs of sparse
species that have no cell in common. Hausdorf and Hennig [16, 17] have preferred
the Kulczynski dissimilarity, which is not a metric, but this also assigns maximum
dissimilarity if there is no presence in common, although it may help by assessing
sparse species as closer to species with a larger range of which they are a subset.
Hennig andHausdorf [18] propose to involve geographical distances into the distance
computation, and this may indeed improve matters, if only in a way that depends
strongly on the geography of the specific real data, whichwillmake setting up general
models for simulation a more difficult task.

6 Conclusions

We have run a simulation study in order to evaluate the clustering performance, on
multivariate presence-absence data, of a combination of multidimensional scaling
and clustering methods for quantitative data (K-means, Gaussian mixture models,
and pdfCluster), comparedwithmethods that either operate directly on the data (such
as the latent class analysis), or on a Jaccard or simple matching distance matrix
computed from the data (hierarchical methods, PAM, and K-modes). Two different
MDS methods and MDS outputs of dimensionality 2 and 3 were involved.

The results suggest that the MDS-based techniques can be a valuable tool to
cluster such data, returning by and large better ARI values than the competitors.
The hierarchical methods did particularly badly, mainly due to the fact that cutting
the dendrogram at the correct number of clusters proved inadequate; however it
would be hard to repair this problem by any automatic method for deciding the
number of clusters, because the required number of clusters for achieving a better
ARI would be very large, and therefore potentially undesirable by researchers who
want a simple and interpretable clustering solution. K-modes worked slightly better
than the hierarchical methods.

Latent class analysis proved to be competitive when the data features were not
demanding, but its performance deteriorated faster than that of MDS-based methods
in more complicated setups. Similarly, PAM performed very well for low overlap
but markedly worse, also in relative terms, with higher overlap.

For the MDS-based methods, classical MDS did a better job than smacof’s ratio
MDS, due to the fact that classical MDS arranged the data in such a way that clusters
could be separated more linearly, which makes the job of K-means and the Gaussian
mixturemodel easier. However, without any linearity requirement, pdfCluster shared
this behavior. Cluster methods such as spectral clustering [26] that do not involve
linearity could also be tried with ratio MD. 3 dimensions worked overall slightly
better than 2, but there is no reason to believe that increasing the dimensionality
above 3 will improve results substantially. Comparing Gaussian mixture models and
K-means, there is no clear winner. Both of these approaches worked well in some
situations, and both worked mostly better than pdfCluster; the fact that the latter
estimates the number of clusters automatically may have affected its results though.
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Regarding characteristics of the data, unsurprisingly, increasing levels of overlap
among clusters turned out to be the most important factor, making separation of the
true clusters more difficult for all methods.

Interesting extensions for future research could be involving other distance mea-
sures and clustering methods, with possible alternatives suggested above, and in
particular involving methods to estimate the number of clusters, although this is
a hard task due to the large number of possible combinations between clustering
methods for fixed K and methods to choose K .
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High-Dimensional Feature Selection
for Logistic Regression Using Blended
Penalty Functions

Salomi Millard, Mohammad Arashi, and Gaonyalelwe Maribe

Abstract The datasets analysed, in a Biostatistics environment, are frequently high-
dimensional and multicollinearity is expected due to the nature of the features. How-
ever, many traditional approaches to statistical analysis and feature selection cease
to be useful in the presence of high-dimensionality and multicollinearity. Penalised
regression methods have proved to be practical and attractive for dealing with these
problems. In this chapter, we propose a new penalised approach, themodified elastic-
net (MEnet), for statistical analysis and feature selection using a combination of the
ridge and bridge penalties. This method is designed to deal with high-dimensional
problems with highly correlated predictor variables. Furthermore, it has a closed-
form solution, unlike the most frequently used penalised techniques, which makes it
simple to implement on high-dimensional data. We show how this approach can be
used to analyse high-dimensional data with binary responses, e.g. microarray data,
and simultaneously select significant features. A simulation study demonstrates the
properties and practical aspects of the proposed method.

1 Introduction

While the origins of statistical learning preceded some of the first scientific journals,
the largest development in statistics occurred during the twentieth century. Practical
problems that motivated the development of new statistical theory during this period
were low dimensional. These problems consisted of a small number of features,
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measured on a much larger number of experimental units. If n denotes the number
of experimental units and p the number of features, then for the most part traditional
theory considered “small p, large n” scenarios [9].

However, the rapid advancement in data acquisition technologies and data pro-
cessing capabilities have changed the data analytics environment drastically over the
last decades. These developments resulted in applications for which the number of
features far exceeds the number of experimental units; some examples include image
analysis, microarray analysis, and text analysis. Although the problems that arise in
these respective frontiers of science differ, they share a mutual objective: knowledge
acquisition from massive and high-frequency data [3].

According to [4], there are three important pillars of any statistical procedure,
namely statistical accuracy, model interpretability, and computational complexity. In
traditional methods, where the number of experimental units far exceeds the number
of features, the efficiency of one aspect does not come at the cost of others. However,
traditional methods experience considerable difficulties when the number of features
is comparable to or larger than the number of experimental units. Amongst these
difficulties are designing statistical procedures that are efficient in inference, deriving
asymptotic or non-asymptotic theory, interpreting the estimatedmodels, and creating
computationally efficient and robust statistical procedures.

Traditionally, good statistical practice requires the number of experimental units
to exceed the number of estimable parameters by some solid margin. Reference [6]
suggests that a plausible rule of thumb is n

p ≥ 5. To be more specific, let ρ = p
n .

Then, ρ < 1 is considered as a low-dimensional case, while ρ ∈ (1,∞) accounts
for a high-dimensional problem. The case ρ = 1, i.e. p = n can be either high or
low-dimensional depending on the value of p. Also note, p can be smaller than n, but
still very large. The above explanation does not provide a clear understanding about
the relation of p and n. Thus, to better understand low/high-dimensional regimes, let
p = pn denote the growth of the number of features as n grows. Existing low/high-
dimensional problems then chase the following relations between n and pn . For a low-

dimensional case, i.e. pn < n we have pn = [
n
2

]
, pn =

[
4.5n

1
4

]
, or pn =

[
n

b log(n)

]

where b > 1, while for a high-dimensional case, i.e. pn > n wemay have log (pn) =
Op

(
nb

)
, where 0 < b < 1. Table1 gives an illustration of low- and high-dimensional

regime for these cases.
As stated by [9], “the ‘large p, small n’ world would therefore seem to depend

on a certain statistical alchemy—the computational transformation of ignorance into
parameter estimates by fearless specification and fitting of high-dimensional mod-
els”. Nevertheless, “large p, small n” models and methods have been applied suc-
cessfully in a wide variety of disciplines. In a Biostatistics environment, measure-
ments are typically obtained for a large number of candidate predictor variables in an
attempt to avoid overseeing a significant relationship between a predictive factor and
the response variable. Furthermore, the datasets to be analysed, frequently exhibits
multicollinearity due to the nature of the features.
Most traditional approaches to statistical analysis and feature selection cease to be
useful in the presence of high-dimensionality and multicollinearity, due to compu-
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Table 1 Examples of low/high-dimensional regime (n, pn)

Low-dimensional High-dimensional

n pn
n
2 4.5n

1
4 n

1.5 log(n)
n

2 log(n)
en

0.4
en

0.5

25 13 10 5 4 27 148

50 25 12 9 6 70 1177

100 50 14 14 11 244 22026

250 125 18 30 23 2238 7358659

500 250 21 54 40 21338 5141855148

tational restrictions as well as its inability to identify a feasible model. As a result,
feature selection techniques for high-dimensional data that exhibits multicollinearity
have become a fundamental challenge in statistics. Penalised regression has become a
popular method for analysing these types of data. Penalised regression is a promising
class of regression models for continuous shrinkage and feature selection in the pres-
ence of multicollinearity and/or high-dimensionality. It trades off a small increase
in the bias of the regression parameters in exchange for a significant decrease in
the variance of the regression parameters, improving the model accuracy and inter-
pretability. Furthermore, some penalised regression models yield a sparse solution,
thereby addressing the curse of dimensionality.

Let
{(
xi�, yi

)}n
i=1 be a set of observations following a generalised linear model

(GLM), with predictors, xi = (
xi1, . . . , xip

)� ∈ R
p, and regression coefficients, β =

(
β0, β1, . . . , βp

)� ∈ R
p+1. The penalised GLM has the following log-likelihood

function:

lλ(β|y,X) = l (β|y,X) − Pλ (β)

where l (β|y,X) is the log-likelihood of the GLM of interest, X = (x1, . . . , xn)�,
y = (y1, . . . , yn) ∈ R

n , Pλ is some penalty function and λ is the tuning parameter.
The frequent occurrence of high-dimensional datasets that exhibits multicollinearity
emphasises the need for penalty functions that perform well in high-dimensional
regression problems with highly correlated predictor variables. It is known that the
ridge penalty [7] outperforms many other penalties in the presence of multicollinear-
ity. However, one of the major shortcomings of the ridge penalty, is that it does not
yield a sparse solution. Some penalties, namely the elastic-net (Enet) [11], Mnet [8],
and combined penalty (CP) [10] has been proposed to deal with high-dimensional
regression problems in the presence of multicollinearity. These penalties are a linear
combination of the ridge penalty and some penalty that has desirable properties, such
as the ability to yield a sparse solution or the oracle properties as defined by [2]. In this
chapter, we propose the novel modified elastic-net (MEnet) as a linear combination
of the ridge and bridge [5] penalties. This penalty is designed to deal with high-
dimensionality and multicollinearity. The chapter is structured as follows: Sect. 2
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introduces the novel modified elastic-net (MEnet) as a blended penalty function for
the GLM and derives a computationally efficient estimation algorithm. Section3
illustrates the use of the MEnet penalty by means of a simulation study. Section4
applies the MEnet penalty to a well-known colon cancer classification problem, and
finally Sect. 5 concludes the chapter and provides some suggestions for future work.

2 Penalised GLM with the MEnet Penalty

In this section, we propose the novel modified elastic-net (MEnet) for the GLM. A
computationally efficient estimation routine is given in Sect. 2. We consider the case
of the one parameter natural exponential family with

f (y|η) = h (y, φ) exp
(ηy − A (η))

φ
. (1)

Modified Elastic-Net Penalty

The proposed MEnet penalty, as a linear combination of the ridge and bridge [5]
penalties, with regression coefficients, β = (

β0, . . . , βp
)�
, is given by

P (β)MEnet
λ,α = λ

⎡

⎣
(
1 − α

2

) p∑

j=1

β2
j + α

p∑

j=1

|β j |γ
⎤

⎦ , (2)

where γ > 0 and γ �= 2. Note that this is equivalent to

P (β)MEnet
λ1,λ2

= λ1

p∑

j=1

β2
j + λ2

p∑

j=1

|β j |γ , (3)

with λ1 = λ(1−α)

2 and λ2 = λα. The penalty is inspired by the elastic-net penalty and
include as special cases; the ridge (α = 0), LASSO (α = 1, γ = 1), bridge (α = 1),
and elastic-net (α �= 0, γ = 1) penalties. TheMEnet penalty is designed to deal with
both high-dimensionality and multicollinearity.



High-Dimensional Feature Selection for Logistic Regression … 323

Penalised Likelihood Function

Based on the random sample,
{(
xi�, yi

)}n
i=1 , the log-likelihood of the GLM is given

by

l(β|y,X) =
n∑

i=1

yix�
i β

φ
−

n∑

i=1

A
(
x�
i β

)

φ
+

n∑

i=1

log h (yi , φ) . (4)

In order to obtain the penalised log-likelihood, the MEnet penalty as given by (3) is
subtracted from (4), resulting in

l(β|y,X)MEnet
λ1,λ2

= l(β|y,X) − λ1

p∑

j=1

|β j |2 − λ2

p∑

j=1

|β j |γ . (5)

The bridge penalty is nonconvex ifγ < 1,whichmakes the optimisation of theMEnet
penalty challenging for such values of γ . An approximation to the MEnet penalty is
utilised to address this challenge. This approximation results in closed-form solutions
that greatly simplifies the computation of the MEnet regression estimates.

Reforming of the MEnet Penalty Term

The local quadratic approximation of [2] is used to derive an approximation to the
MEnet penalty. Let P(|β j |)λ denote the penalty function on β j , indexed by the tuning
parameter λ > 0 for controlling the extent of penalisation. Each penalty term has the
form

∑p
j=1 P(|β j |)λ. For simplicity we assume P(|β j |)λ = λP(|β j |). Given that

d

dβ j
P

(|β j |
)
λ

= P
(|β j |

)′
λ

= P
(|β j |

)′
λ

β j

|β j | , (6)

we can approximate (6), around the local point βo = (βo
1 , · · · , βo

p)
�, by

d

dβ j
P(|β j |)λ ≈ P(|βo

j |)′λ
β j

|βo
j |

. (7)

Integrating (7) from βo
j to β j yields

P(|β j |)λ ≈ P(|βo
j |)λ + 1

2

P(|βo
j |)′λ

|βo
j |

(
β2
j − βo

j
2
)

. (8)

Hence, using (8), we approximate the penalty term by
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p∑

j=1

P(|β j |)λ ≈
p∑

j=1

[

P(|βo
j |)λ + 1

2

P(|βo
j |)′λ

|βo
j |

(
β2
j − βo

j
2
)]

=
⎡

⎣
p∑

j=1

P(|βo
j |)λ − 1

2

p∑

j=1

P(|βo
j |)′λ

|βo
j |

βo
j
2

⎤

⎦ + 1

2

p∑

j=1

P(|βo
j |)′λ

|βo
j |

β2
j

= c + 1

2
β�Qλβ, (9)

where c is a function of known values βo
j and

Qλ = Diag

(
P ′

λ(|βo
1 |)

|βo
1 |

, · · · ,
P ′

λ(|βo
p|)

|βo
p|

)

. (10)

After some algebraic manipulation, the MEnet penalty term can be approximated,
using (9) and (10), by

P (β)MEnet
λ1,λ2

=
p∑

j=1

Pλ1(|β j |) +
p∑

j=1

Pλ2(|β j |)

= λ1

p∑

j=1

|β j |2 + λ2

p∑

j=1

|β j |γ

≈ c1 + 1

2
β�Qλ1β + c2 + 1

2
β�Qλ2β, (11)

where

Qλ1 = Diag

(
P ′

λ1
(|βo

1 |)
|βo

1 |
, · · · ,

P ′
λ1

(|βo
p|)

|βo
p|

)

= 2Ip, (12)

with Ip the p-dimensional identity matrix, and

Qλ2 = Diag

(
P ′

λ2
(|βo

1 |)
|βo

1 |
, . . . ,

P ′
λ2

(|βo
p|)

|βo
p|

)

= Diag
(
γ |βo

1 |γ−2, . . . , γ |βo
p|γ−2) . (13)

Parameter Estimation

From (5) and (11), the maximum likelihood estimate for βMEnet is obtained by
maximising
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l(β|y,X)MEnet
λ1,λ2

≈
n∑

i=1

yix�
i β

φ
−

n∑

i=1

A
(
x�
i β

)

φ
+

n∑

i=1

log h (yi , φ) −

1

2
β�Qλ1β − 1

2
β�Qλ2β. (14)

TheNewtonRaphson algorithm (NRA) is used tomaximise (14). The gradient vector
of the NRA is given by

∇φ

(
βMEnet) = ∂l(β| y, X)

∂β
− ∂P (β)MEnet

λ1,λ2

∂β

= 1

φ
X� (y − μ) − λ1Qλ1β − λ2Qλ2β, (15)

with (y − μ)� = ((y1 − μ1) (y2 − μ2) . . . (yn − μn))
� and X = (x1, . . . , xn)�.

Furthermore, the Hessian is given by

Hφ

(
βMEnet) = ∂l(β| y, X)

∂β∂β� − ∂P (β)MEnet
λ1,λ2

∂β∂β�

= −X�WX − λ1Qλ1
− λ2Qλ2

, (16)

where W = 1
φ2 Diag

(
σ 2
1 , . . . , σ 2

n

)
and σ 2

i = Var(Yi |xi ). For convenience we will

use β instead of βMEnet . From (15) and (16) the Newton Raphson update rule is

βnew = βOld + (
X�WX + λ1Qλ1

+ λ2Qλ2

)−1 ×
(
1

φ
X� (y − μ) − λ1Qλ1

βold − λ2Qλ2
βold

)
. (17)

The NRA for the GLM with the MEnet penalty is given in Algorithm 1.

Algorithm 1TheNewton Raphson algorithm for the penalised GLMwith theMEnet
penalty.
Step 1. Calculate appropriate fixed values to be used in Qλ1 and Qλ2 .
Step 2. Choose initial values for βOld .
Step 3. Update βNew as given in (17) for the current values of βOld .
Step 4. Set βOld = βNew .
Step 5. Repeat Steps 3 and 4 until convergence.
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3 Simulation Study

The performance of the penalised logistic regressionmodel with the proposedMEnet
penalty is assessed in this section. The binary logistic regression model is used to
model the probability of a certain event. It assumes a linear relationship between a set
of predictor variables, X , and the log odds of a response variable, Y . Consider a set of
observations,

{(
xi�, yi

)}n
i=1, following a logistic regression model, with predictors,

xi = (
xi1, . . . , xip

)� ∈ R
p, and regression coefficients, β = (

β0, β1, . . . , βp
)� ∈

R
p+1. The logistic regression model, with π (xi ;β) = P (Yi = 1|xi ), is given by

log

(
π (xi ;β)

1 − π (xi ;β)

)
= β0 +

p∑

j=1

xi jβ j + εi .

The log-likelihood of the penalised logistic regression model with the MEnet is

l(β| y, X)MEnet
α,λ =

n∑

i=1

[yi logπ(xi;β) + (1 − yi ) log(1 − π(xi;β))] −

1

2
β� Qλ1

β − 1

2
β� Qλ2

β.

A high-dimensional scenario with varying sample sizes is considered. The pre-
dictor variables consist of four independent blocks and are generated from a
N (0, ) distribution with unit variance. As illustrated in Table2, two of the blocks
exhibit high multicollinearity and two of the blocks have nonzero regression coef-
ficients. The correlation structure in the four blocks are Block1 ∼ u(0.75, 0.85),
Block3 ∼ u(0.75, 0.85), Block2 ∼ u(0.3, 0.4) and Block4 ∼ u(0.3, 0.4) . Further-
more βBlock1,2 ∼ u(0.08, 0.12) and βBlock3,4 = 0. Blocks 1 and 2 each consists of
15 significant features such that a total of 30 significant features is considered in the
simulation study.

The number of features under consideration is p = 500. Furthermore, three sam-
ple size, n ∈ {100, 200, 300}, are considered. The simulation is repeated 500 times
and consists of a training dataset and an independent testing dataset for assess-
ing the prediction capability of the resulting model. Each training dataset contains
n ∈ {100, 200, 300} independent observations while the testing dataset contains 100

Table 2 Properties of the design matrix

Nonzero regression
coefficients

Multicollinearity

Yes No

Yes Block 1 Block 2

No Block 3 Block 4
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independent observations. Algorithm 2 is used to obtain the optimal model. Many
other criteria of the model performance such as the area under the ROC curve
or mean prediction error may be utilised in steps 4 and 5 of Algorithm 2. For
the purpose of comparison, the values of α and γ are α ∈ {0.25, 0.5, 0.75} and
γ ∈ {0.25, 0.5, 0.75, 1, 1.5}. The averages of the following performance measures
are used to evaluate each penalty: number of selected features, average prediction
error on the testing dataset, accuracy on the testing dataset when using a predic-
tion threshold of 0.5 and sensitivity (that is, the proportion of nonzero regression
coefficients that were correctly estimated as nonzero).

Algorithm 2 Optimal model selection for the GLM with the MEnet penalty.
Step 1. Determine the optimal tuning parameter, λ, using k-fold cross-validation on the training

dataset.
Step 2. Using the optimal tuning parameter, λ, estimate the regression

coefficients on the whole training dataset.
Step 3. Apply a range of appropriate feature selection thresholds of which some regression

coefficient are set to zero.
Step 4. For each feature selection threshold, determine the accuracy on the testing dataset.
Step 5. The optimal model is selected such that the accuracy obtained with the corresponding

feature selection threshold is maximised.

The goal is to determine whether the MEnet penalty has the ability to correctly
identify the significant features as well as to determine the prediction performance
when compared to the elastic-net penalty, as the main competitor. Table3 gives the
results for n = 300. It should be noted that for a fixed value of γ , the effect of α

on the average number of nonzero regression coefficients estimated by the MEnet
penalty is marginal. In Table3 it is clear that, for the Enet, Mnet and CP the true
effect of α is in the average number of nonzero regression coefficients and not in the
performance measures such as the average prediction error or accuracy. As stated in
Algorithm 2, a feature selection threshold based on the prediction accuracy is used
to obtain the nonzero regression coefficients. For this reason, the effect of α, for a
fixed value of γ , is not the same as the effect on the Enet, Mnet, and CP.

The CP andMnet penalties select much fewer features than what is simulated and
as a result, the average sensitivity of these penalties is low. However, it is interesting
to note that with so few nonzero regression coefficients, the average prediction errors
and accuracies are quite competitive to both the Enet and MEnet penalties, but at
the cost of an incorrect model specification. The remainder of the discussion will
focus on the comparison of the MEnet and Enet penalty since the Enet penalty is
considered as themain competitor of theMEnet penalty. The average prediction error
and the average prediction accuracy obtained by the MEnet penalty, irrespective of
γ , is better than that obtained by the Enet penalty. Furthermore the performance of
these two measures improves as γ increases in the range (0,1]. Although the average
prediction accuracy is lower for γ > 1 than for γ ≤ 1, it is still higher than that
obtained by the Enet penalty. Considering the behaviour of the average number of
selected features, the average prediction error and the average prediction accuracy,
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Table 3 Performance of the MEnet, Enet, Mnet, and CP. Performance measures included are:
average number of selected features, average prediction error, the average prediction accuracy, and
the proportion of nonzero regression coefficients that were correctly estimated as nonzero

Penalty Hyperparam-
eters

Number of
selected
features

Prediction
error

Prediction
accuracy

Sensitivity

MEnet α = 0.25 34 0.406 0.739 0.703

with α = 0.5 33 0.405 0.739 0.701

γ = 0.25 α = 0.75 33 0.405 0.739 0.702

MEnet α = 0.25 35 0.404 0.742 0.706

with α = 0.5 34 0.407 0.742 0.677

γ = 0.5 α = 0.75 35 0.402 0.742 0.705

MEnet α = 0.25 38 0.395 0.746 0.688

with α = 0.5 37 0.395 0.746 0.678

γ = 0.75 α = 0.75 36 0.395 0.746 0.675

MEnet α = 0.25 40 0.389 0.748 0.627

with α = 0.5 41 0.387 0.748 0.626

γ = 1 α = 0.75 40 0.387 0.748 0.619

MEnet α = 0.25 51 0.374 0.739 0.535

with α = 0.5 51 0.370 0.739 0.518

γ = 1.5 α = 0.75 50 0.370 0.738 0.507

Enet α = 0.25 49 0.411 0.714 0.674

α = 0.5 32 0.412 0.710 0.561

α = 0.75 26 0.413 0.706 0.496

Mnet α = 0.25 12 0.394 0.702 0.317

α = 0.5 9 0.394 0.691 0.230

α = 0.75 8 0.393 0.690 0.218

CP α = 0.25 21 0.392 0.715 0.488

α = 0.5 16 0.395 0.707 0.417

α = 0.75 15 0.395 0.704 0.385

a model with γ < 1 is preferable. The average sensitivity of the MEnet penalty is
the highest for smaller γ . The MEnet penalty with γ < 1 is able to obtain a higher
sensitivity than the Enet penalty. Furthermore, when the Enet penalty with α = 0.25
is considered, this is achieved whilst also selecting fewer features.

Asmentionedbefore, sample sizesn ∈ {100, 200, 300}were considered. Figure1a
shows that the median number of selected features are quite similar for n ∈
{200, 300}, but slightly less than the median number of selected features in the
n = 100 case. Furthermore, the median proportion of nonzero regression coeffi-
cients that are estimated as nonzero (sensitivity) tends to increase with the sample
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Fig. 1 Effect of varying sample sizes on the evaluation criteria when using the MEnet penalty
with γ = 0.5, α = 0.5 on the simulated data: a Number of selected features, b The proportion of
nonzero regression coefficients that were correctly estimated as nonzero (sensitivity), c Average
prediction error on the testing dataset, d Prediction accuracy when using a threshold of 0.5 on the
testing dataset

size as illustrated in Fig. 1b. As expected, Fig. 1c and d confirms that the average pre-
diction error and accuracy obtained on the testing datasets improves as the sample
size increases.

4 Colon Cancer Classification

In this section, the colon cancer dataset of [1] is used to illustrate the performance
of the MEnet penalty. This dataset contains 2000 gene expression levels on 62 colon
tissues such that 40 of the tissues are malicious. This example is classified as an
ultra high-dimensional case. A training dataset with 70% of the original sample
is randomly selected from the colon cancer dataset. In all cases, fourfold cross-
validation on the training data is used to determine the optimal value of λ. For
consistency, Algorithm 2 is used to obtain the optimalmodel when theMEnet penalty
is used. This is repeated on 50 testing and training datasets. The averages of the
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Table 4 Performance of the MEnet, bridge, Enet, Mnet, and CP on the colon cancer dataset. The
performance measures are: the average number of selected features, the average prediction error on
the testing dataset, and the average prediction accuracy on the testing dataset

Penalty Hyperparameters Number of
selected features

Prediction error Prediction
accuracy

MEnet γ = 0.5 26 0.268 0.810

γ = 0.75 32 0.307 0.757

Bridge γ = 0.5 23 0.396 0.761

γ = 1 (LASSO) 9 0.338 0.760

γ = 2 (ridge) 2000 0.358 0.753

Enet α = 0.25 44 0.359 0.756

α = 0.5 27 0.330 0.767

α = 0.75 15 0.336 0.778

Mnet α = 0.25 9 0.301 0.793

α = 0.5 5 0.313 0.780

α = 0.75 4 0.309 0.800

α = 1 (MCP) 4 0.314 0.787

CP α = 0.25 19 0.290 0.805

α = 0.5 15 0.299 0.812

α = 0.75 12 0.295 0.805

α = 1 (SCAD) 11 0.312 0.792

following performance measures are used to evaluate each penalty: the number of
selected features, the average prediction error on the testing dataset, the prediction
accuracy on the testing dataset when using a threshold of 0.5. The results obtained on
the colon cancer dataset are given in Table4. In this application, the MEnet penalty
with γ ∈ {0.5, 0.75} andα = 0.5 is considered.As illustrated in the simulation study,
when γ is fixed, the effect of α on the results is marginal. Hence, for illustrative
purposes, only a single value of α is considered. The results obtained by the MEnet
penalty are compared to that obtained by the bridge, Enet, CP, and Mnet penalties.
Figure2 displays the evaluation criteria boxplots when using the penalties under
consideration.

The average number of features selected by the LASSO and Mnet penalties is
lowest, with all variations yielding at most 9 significant features. The Enet with
α = 0.75 and variations of the CP results in 11 to 19 significant features. TheMEnet,
Enet with α ∈ {0.25, 0.5}, and bridge with γ = 0.5, results in an average number
of significant features varying from 23 to 44. As before, the CP and Mnet penalties
are able to obtain highly competitive average prediction errors and accuracies with
only a few selected features. The distribution of the number of features selected by
the various penalties is given in Fig. 2a. The average prediction error obtained by
the bridge and Enet penalties are higher than those obtained by the Mnet, Cp, and
MEnet penalties. TheMEnet penalty with γ = 0.5 has the lowest average prediction
error of all penalties under consideration. However, some variations on the CP and
Mnet penalties yield a smaller average prediction error than the MEnet penalty with



High-Dimensional Feature Selection for Logistic Regression … 331

Fig. 2 Evaluation criteria
boxplots when using the
MEnet, Enet, Mnet, Cp, and
bridge penalties on the colon
cancer dataset: a Number of
selected features, b Average
prediction error on the
testing dataset, c Accuracy
when using a threshold of
0.5 on the testing dataset
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Fig. 3 Classification of the
colon cancer dataset when
using the MEnet penalty
with γ = 0.5

γ = 0.75. The average accuracy obtained by the bridge, Enet, and MEnet with γ =
0.75, is slightly lower than that obtained by the CP, Mnet, and MEnet with γ = 0.5.
The MEnet with γ = 0.5 yields an average accuracy, that is outperformed by only
the CP with α = 0.5. The distribution of the average prediction error and accuracy
on the testing datasets is given in Fig. 2b and c.

Figure3 illustrates the adequacy of the MEnet penalty with γ = 0.5 for classifi-
cation of the colon cancer dataset. It is clear that the majority of the observation is
classified correctly as also indicated in Table4.

5 Conclusion and Future Work

In this chapter, the modified elastic-net (MEnet) penalty, as a linear combination of
the ridge and bridge penalties, was proposed to address the curse of dimensionality
and multicollinearity in the GLM. This penalty includes the ridge, LASSO, bridge,
and elastic-net as special cases. A computationally efficient estimation routine was
derived and the proposed MEnet penalty has been evaluated with its adequacy con-
firmed through a simulation study and a cancer data classification application. The
results obtained find the performance of the newly proposed MEnet penalty to be
highly competitive with the performance of the elastic-net penalty. This chapter gave
the first steps towards the extension of theMEnet penalty for the GLM. According to
this study, the following extensions are envisaged: further simulation studies should
be conducted in order to evaluate the performance of the MEnet penalty under dif-
ferent multicollinearity and dimensionality regimes; the asymptotic properties of the
estimator in (17) are desirable in order to conduct inference on the results obtained;
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instead of using the MEnet penalty, intuitively, we can conduct two-step analysis by
first estimating the regression coefficients using the ridge estimator and then imple-
ment bridge penalised estimation using the residuals in the refitted model, extending
the proposed penalty for longitudinal data analysis and mixtures of GLMs.
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A Generalized Quadratic Garrote
Approach Towards Ridge Regression
Analysis

Inesh Munaweera, Saman Muthukumarana, and Mohammad Jafari Jozani

Abstract Ridge regression is widely used in multiple linear regression analysis to
address the prevalentmulticollinearity issue in high-dimensional settings. In the stan-
dard form of ridge regression analysis, all model coefficients are shrunken towards
zero at a similar rate regardless of the importance of each variable. In this paper,
we provide an extension of the non-negative garrote method to give more flexibility
to the ridge regression approach for unequal shrinkage of regression coefficients.
We show that this approach is capable of shrinking smaller coefficients even faster
than the adaptive lasso while keeping the larger coefficients almost untouched. Our
generalized quadratic garrote approach enables practitioners to have more control
over the amount of shrinkage on each regression coefficient estimate. We study the
theoretical properties of our generalized quadratic Garrote regression estimators.
Finally, we provide extensive numerical studies involving sparse, nearly sparse, and
high dimensional settings and illustrate the practical use of the suggested shrinkage
approach with the Boston Housing Dataset.

1 Introduction

The standard multiple linear regression model can be written as

yi = β0 +
p∑

j=1

xi jβ j + εi , i = 1, 2, ..., n, (1)
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where, β = (β0, β1, ..., βp)
� is the vector of unknown coefficients, yi is the response

value for the i th observation and xi1, ..., xip are corresponding values at p explanatory
(predictor) variables. We assume εi ’s to be independent and identically distributed
(iid) with mean E(εi ) = 0 and variance V ar(εi ) = σ 2. In matrix form one can write
the multiple linear regression model as follows.

y = Xβ + ε, (2)

where, y is the response vector and X is the n × (p + 1) design matrix where the
first column consists of 1’s associated with β0 in (1). Furthermore, ε is the vector of
random errors with E(ε) = 0 and V ar(ε) = σ 2 In , where In is the n × n identity
matrix. Themost widely usedmethod for estimating β j ’s is the ordinary least squares
(OLS) technique which minimizes the sum of squared errors (SSE) given by

SSE = ( y − Xβ)�( y − Xβ), (3)

where, A� denotes the transpose of A. Given that (X�X)−1 exists, the solution to
the above minimization problem can be obtained as

β̂ = (X�X)
−1

X� y,

where β̂ is the vector of least squares estimates. As pointed out by [1], OLS estimates
might not be the best choice when multicollinearity is present in data. As a conse-
quence of the multicollinearity problem, OLS estimates tend to have large standard
errors which lead to highly unstable coefficients. Hence, a small change in the dataset
will result in a large change in coefficient estimates. Large standard errors will lead
to statistically non-significant coefficient estimates, and the corresponding confi-
dence intervals for the true regression coefficients will be wide. Furthermore, OLS
estimates can have unexpected signs and magnitudes which can lead to misleading
conclusions [2].

One approach to deal with the multicollinearity issue is to allow for bias and
develop bias estimators that are more stable than OLS estimators. Regularized least-
squares estimation (Shrinkage method) provides a class of such methods that do the
coefficient estimation in a regularized manner as a remedy for the inflation and the
instability associated with coefficient estimates. As a result of the regularization,
parameter estimates are shrunken towards zero.

Ridge regression is one of the most popular shrinkage methods, which was first
suggested by [1] and further illustrated in [3]. The idea is to obtain more precise
estimates of model parameters by simply adding a small positive quantity to each
diagonal element of X�X . This will add some bias to coefficient estimates. The ridge

estimator β̂
R
, for β is given by

β̂
R = (X�X + λI p)

−1X� y. (4)
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Here, λ > 0 is called the tuning parameter which defines the amount of shrinkage
on the estimated coefficients. Ridge estimator can be obtained as the solution to the
following minimization problem:

β̂
R = argmin

β0,β1,...,βp

⎧
⎨

⎩

n∑

i=1

(yi − β0 −
p∑

j=1

xi jβ j )
2

⎫
⎬

⎭ subject to
p∑

j=1

β j
2 ≤ s. (5)

That is, simply adding a penalty on the size of regression coefficients measured
by the L2 norm.

∑p
j=1 β j

2 = ||β||22 as the squared distance of the coefficient vector
β from the origin.

The concept of non-negative garrote (NNG)which was originally suggested in [4]
as a better subset selection, is interesting. The lasso [5], which is one of the most
widely used shrinkage methods, was motivated by the non-negative garrote. Most of
the shrinkagemethods such as ridge regression [1], the lasso [5] and the elastic net [6],
do not involve OLS estimates in the model estimation process. There are indeed cer-
tain situations that we cannot rely on OLS estimates or we cannot obtain them at all.
However, OLS estimates possess many statistically desirable characteristics. Hence,
it makes sense if someone does not want to ignore OLS estimates when estimating
the model parameters. Instead of completely avoiding OLS estimates, we can use
the NNG estimation method to adjust OLS estimates to achieve a higher prediction
accuracy. This is done by adjusting each OLS estimates β̂ j . To this end, [4] proposed
to find optimum positive constants c′

j s such that ŷi = β̂0 + ∑p
j=1 c j xi j β̂ j is a better

model than OLS. In order to avoid drastic changes to the OLS model he imposed
an intuitively sound constrained

∑p
j=1 c j ≤ p. In other words, he formulated his

problem as

minimizing
n∑

i=1

(yi − β̂0 −
p∑

j=1

c j β̂ j xi j )
2, subject to

p∑

j=1

c j ≤ s. (6)

The NNG problem can be re-written with Lagrangian multiplier as the problem
of finding

(ĉ0, ĉ1, ..., ĉp) = argmin
c0,c1,...,cp

n∑

i=1

(yi − β̂0 −
p∑

j=1

c j β̂ j xi j )
2 + λ

p∑

j=1

c j .

Here as well, λ > 0 is the tuning parameter that can be obtained using cross-
validation or as a value that results in the least prediction error within a sequence of
values. Further details on selecting the tuning parameter can be found in [7]. Once
we have estimated c j ’s, the NNG estimates are obtained as β̂N N G

j = ĉ j β̂ j . One of
the desirable properties of the NNG method is that the coefficient estimates do not
depend on the scale. Hence, there is no need to scale the variables before the analysis.
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The most commonly used regularized regression methods, including ridge regres-
sion and the famous lasso have a commonweakness. That is, they do not consider the
importance of each variable when applying the shrinkage, and all the model coeffi-
cients will be shrunken towards zero at a similar rate. As an example, applying ridge
regression to estimate a model to predict the severity of heart disease, will result in
a similar shrinkage on least important coefficients and most important coefficients.
The user has no control over the amount of shrinkage on any coefficient. What if the
researcher wants less shrinkage on the larger coefficients, and instead he wants to
apply more shrinkage on the least important ones. Suppose due to theoretical and/or
practical justifications, we do not want to shrink a set of variables at all. For instance,
assume the researcher who deals with heart disease data knows that the exercise
level and stress level of the individual have direct impacts on the severity of the heart
disease, and he does not want to shrink the effect of those variables. This cannot be
achieved with any of the aforementioned regularized regression methods.

There are several other shrinkage methods that were developed to address some
of the above mentioned concerns. As an example, the generalized ridge regression
approach suggested in [3] can be used to apply unequal shrinkage on different coef-
ficients. However, the way that the generalized ridge approach defines the weights
on coefficients does not provide any flexibility for the user to decide which variables
should be shrunk more or less. The adaptive lasso suggested by [8], as well as the
group lasso [9] are more user-friendly methods in which the user can define the
amount of shrinkage on each or a group of coefficients. The adaptive lasso usually
penalizes the coefficients inversely proportional to their size. That is, it applies less
shrinkage on larger coefficients while applying more shrinkage on smaller coeffi-
cients. Because of the subset selection property of the adaptive lasso, smaller coef-
ficients will be set to exactly zero than the regular lasso approach. However, the
adaptive lasso is not appropriate if someone wants to retain all the variables in the
model. One can useGroup lasso to apply shrinkage on groups of variables [9]. Hence,
all the parameters in the same group will be either non-zero or zero together. Group
lasso is especially useful for factor selection where the factors can be represented by
a group of input variables.

Following the non-negative garrote idea, [4] suggests an approach (quadratic gar-
rote) that can shrink coefficients unequally, and at the same time retains all the
variables in the model. By observing the nature of the quadratic garrote penalty, we
see that the quadratic garrote is capable of shrinking smaller coefficients even faster
than the adaptive lasso while keeping the larger coefficients almost untouched. How-
ever, we do not find any publication in the literature which has further implemented
the idea. Hence, in this paper, we implement the quadratic garrote idea and generalize
the quadratic garrote so that it gives the flexibility for the user to decide the level of
shrinkage on each variable directly, based on his experience or prior knowledge.

The outline of the paper is as follows. In Sect. 2, we study the quadratic garrote
method suggested by [4] and further generalize it to obtain a more practically sound
shrinkage approach where the user has some control over the amount of shrinkage
on each regression coefficient estimate. There, we study the theoretical properties of
the suggested estimators. In Sect. 3, we compare the performance of the quadratic
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garrote with the other shrinkage methods using a simulation study under different
settings which resemble real-life problems. In Sect. 4, we further illustrate the use
of the generalized garrote and the quadratic garrote with the Boston housing dataset.
Finally, in Sect. 5, we provide concluding remarks followed by conclusions and a
discussion.

2 Quadratic Garrote

Consider the optimization problem of estimating {c j }p
j=1 to minimize

n∑

i=1

(yi − β̂0 −
p∑

j=1

c j β̂ j xi j )
2 subject to

p∑

j=1

c2j ≤ s, (7)

where, s > 0 and β̂ j ’s are the OLS estimates. For future reference, we name this
approach to be the quadratic garrote (QG). Then the j th QG estimator is obtained as

β̂ j
Q = c j β̂ j . Equivalently,we can re-write the problemusing theLagrangemultiplier

as the following minimization problem in terms of c j ’s.

n∑

i=1

(yi − β̂0 −
p∑

j=1

c j β̂ j xi j )
2 + λ

p∑

j=1

c2j , (8)

where, λ is the tuning parameter. Even though [4] suggested the approach, they did
not implement the idea. Nevertheless, the author expects quadratic garrote to be
uniformly more accurate than ridge regression and to be almost as stable as the ridge
regression.

For the two predictor case, the nature of the QG penalty can be seen in Fig. 1
considering β̂ = (1, 2)�. The QG penalty is elliptical in shape. Hence, unlike the
ridge penalty, it shrinks the two OLS coefficient estimate differently. In this case,
QGmethod shrinks β2 two times than β1. As other shrinkage methods, QG approach
also restricts the parameter space of the coefficients by imposing the QG penalty and
then selecting the best estimates in the restricted space.

To understand the idea, let’s consider an example with two predictors x1 and x2,
which has been plotted in Fig. 2. In Fig. 2, the observations are generated from a

multivariate normal distribution with mean vector

(
5
10

)
and the covariance matrix

(
2 1.8
1.8 3

)
. The response y was generated from the model Y = 10Z1 + 20Z2 + ε,

with ε ∼ N (0, 15) where Z1, Z2 are the standardized predictors.
The contour plots of SSE(β) for the ridge and QG methods are given in Figs. 3

and 4 along with the OLS estimates and the ridge and QG solution for a fixed s. The
ridge and QG estimates on the plots were evaluated with the best s using 10-fold
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Fig. 1 Ridge constraints for different s values (Left). Each circle represents those (β1, β2) ∈ R

such that β2
1 + β2

2 = s. QG constraints for different s values (Right). Each circle represents those
(β1, β2) ∈ R such that β2

1/β̂2
1 + β2

2/β̂2
2 = s

Fig. 2 Scatter plot of a
example of size n = 50 on
two predictors x1 and x2

cross-validation errors. As we observe, the ridge and QG estimates are much smaller
than the least squares estimates and they lie on the boundary of the penalty functions
shown by the circle for ridge and ellipse for QG. That is, for a given s (or λ), the
ridge or QG estimates can be found at the point where the first contours of SSE(β)

(ellipse) touches the boundary of the penalty region. Figure 4 shows the solution for
the QG garrote estimate for the example dataset along with the QG penalty at s = 0.5
and the contours of SSE. When we compare the QG solution with the ridge solution
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Fig. 3 Contour plot of SSE with the ridge penalty and the solution. Here, β̂ denotes the OLS
estimate of β while β̂R is the corresponding ridge estimate for specific value of λ

Fig. 4 Contour plot of SSE with the QG penalty and the QG solution at s = 0.5

in Fig. 3 where the penalty is a circle, we see that using the quadratic garrote, the
larger coefficient (β̂1) has been shrunk less than the smaller one.

We can further generalize the quadratic garrote to obtain amore flexible shrinkage
approach which has a wide range of practical applications. The following theorem
defines the generalized quadratic garrote estimation problem.
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Theorem 1 Consider the multiple linear regression model yi = β0 + ∑p
j=1 β j xi j +

εi ; i = 1, . . . , n, where εi are iid with E(εi ) = 0 and V (εi ) = σ 2. Let β̃ be the
generalized quadratic garrote estimate given by

β̃ = argmin
β0,β1,...,βp

n∑

i=1

(
yi − β0 −

p∑

j=1

β j xi j
)2

subject to
p∑

j=1

d2
j β

2
j ≤ s, (9)

where, d2
j ’s are some positive quantities (shrinking factors) which can depend on β̂ j

or they can be fixed constants. Then, in usual matrix notation, the solution for (9) is
obtained as

β̃(λ) = (X�X + λB)−1X�y,

where B is a p × p diagonal matrix with diagonal elements d2
j , and λ is determined

such that
∑p

j=1 d2
j β

2
j = s.

We notice that the minimization problem in (9) has some similarity with the
generalized ridge regression approach suggested in [3]. However, there are some
major differences between the two approaches.We can rewriteminimization problem
in (9) with the Lagrange multiplier as

Q(β, λ) =
n∑

i=1

(
yi − β0 −

p∑

j=1

β j xi j
)2 + λ

p∑

j=1

d2
j β

2
j . (10)

Here, λ
∑p

j=1 d2
j β

2
j is the penalty term. For the comparison purpose, assume d2

j s
to be unknown and let λd2

j = λ j . Then we have

Q(β, λ) =
n∑

i=1

(
yi − β0 −

p∑

j=1

β j xi j
)2 +

p∑

j=1

λ jβ
2
j , (11)

which is the generalized ridge regression problem.
Since we assume d2

j to be known in the generalized garrote approach, the size of
the penalty is defined with the single tuning parameter λ. Contrary, in the generalized
QG there are p number of tuning parameters. Reference [3] defined the generalized
ridge regression in the eigenvector space. Hence, prior to applying the generalized
ridgemethod,we have to project the designmatrix into the eigenspace.As a result, the
tuning parameter λ j does not correspond to the level of shrinkage on j th coefficient
estimate. However, in the generalized garrote approach, λd2

j directly defines the
amount of shrinkage on the corresponding coefficient estimate.

We can easily derive the ridge estimator and the quadratic garrote estimator with
Theorem 1.
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Example 1: Ridge regression
Setting all d2

j ’s to be 1 in (10), we have the classical ridge regression problem.

Then, B is the p × p identity matrix and we have the solution, β̂
R = (X�X +

λI p)
−1X� y.

Example 2: Quadratic garrote
The quadratic garrote minimization problem in (9) can be rewritten with the

Lagrange multiplier as

Q(c1, c2, . . . , cp, λ) =
n∑

i=1

(
yi − β̂0 −

p∑

j=1

c j β̂ j xi j
)2 + λ

k∑

j=1

c2j . (12)

Let β̂ j
Q = c j β̂ j be the new quadratic garrote coefficients with c j = β̂

Q
j /β̂ j . Substi-

tuting c j in (12) we obtain the quadratic garrote estimates as

β̂
Q = argmin

β0,β1,...,βp

n∑

i=1

(
yi − β0 −

p∑

j=1

β j xi j
)2 + λ

p∑

j=1

(
1

β̂2
j

)
β2

j . (13)

ApplyingTheorem1with d2
j = 1/β̂ j

2
we derive the vector of the quadratic garrote

estimator as
β̂

(Q)
(λ) = (X�X + λB)−1X� y.

where B = diag(1/β̂ j
2
) and β̂ j ’s are the OLS estimators.

The generalized quadratic garrote estimator possesses a practical advantage over
other shrinkage methods. Imagine one wants to keep a specific set of variables
unshrunk or with minimum shrinkage while applying more shrinkage on some other
variables. With the quadratic garrote, we can arbitrarily decide the level of shrinkage
on each variable while maintaining a reduction inMSE. For two variables case, Fig. 5
illustrates the idea visually. Contours represent the SSE of OLS estimation and the
minimum SSE is achieved at β̂. Shaded regions represent the generalized quadratic
garrote constraints for different d j vectors. We see that the nature of the constraint
changes with d j . As we see in Fig. 5a, when each d j = 1, the constraint is the same
as the ridge constraint, and we get with ridge regression solution. Observe, Fig. 5b,
where d2

1 < d2
2 . In this case, β2 is twice constrained than β1. Hence, estimated coef-

ficient for β2 is shrunken more towards zero than β1. This setting is good if we want
less shrinkage on β1. This story is the opposite for Fig. 5c. Figure 5d shows the case
when there is no penalty on β1. In this case, only β2 will be constrained and β1 can
take any value. In this specific example, the estimate of β1 is less than the OLS esti-
mate. However, this is not always true. β̂Q

1 can be even larger than the corresponding
OLS estimate since it is not constrained.
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Fig. 5 Nature of the penalty on parameters with different d2
j s for two predictor case

Variance and Bias

When B is independent of y, we can easily obtain the expectation and variance of
β̃ = Zβ̂. Since β̂ is unbiased for β,

E(β̃) = Zβ, (14)

and

V ar(β̃) = ZV ar(β)Z� = σ 2Z(X�X)−1Z�, (15)

where Z = (I p + λB(X�X)−1)−1.
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It is obvious that the quadratic garrote estimator is biased (E(β̃) �= β). Consider
the mean squared error of β̃ given by

MSE(β̃) = E
[
(β̃ − β)�(β̃ − β)

]
. (16)

This can be decomposed as

MSE(β̃) = σ 2Trace
[
X�X(X�X + λB)−2

]
+ λ2β�(X�X + λB)−1B�B(X�X + λB)−1β,

= γ1(λ) + γ2(λ), (17)

where, γ1(λ) is the sum of the total variation of β̃ vector or simply the sum of the
diagonal elements of V ar(β̃) in (15). γ2(λ) is the squared bias of β̃. It is easy to see
that γ1(λ) is monotonically decreasing in λ. We can show that

lim
λ→0+

γ1(λ) = σ 2Trace
[
(X�X)−1] , and lim

λ→∞γ1(λ) = 0.

Furthermore, we show that γ2(λ) is a monotonically increasing function in λ and

lim
λ→0+

γ2(λ) = 0, and lim
λ→∞γ2(λ) = β�β.

That is, γ2(λ) is bounded above by the squared length of β. When the design matrix
X is orthonormal,

γ ∗
1 (λ) = σ 2

p∑

j=1

1

(1 + λd2
j )

2
and γ ∗

2 (λ) =
p∑

j=1

d4
j β

2
j

( 1
λ

+ d2
j )

2
. (18)

We see that γ ∗
1 (λ) is a monotonically decreasing function in λ with

lim
λ→0+

γ ∗
1 (λ) = σ 2 p, and lim

λ→∞γ ∗
1 (λ) = 0,

and γ ∗
2 (λ) is a monotonically increasing function in λ with the limits as below:

lim
λ→0+

γ ∗
2 (λ) = 0, and lim

λ→∞γ ∗
2 (λ) =

p∑

i=1

β2
j = β�β.

That is, γ ∗
2 (λ) is bounded above by the length of β. Hence, the limits of MSE(β̃)∗

are obtained as

lim
λ→0+

MSE(β̃)∗ = σ 2 p, (19)
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which is the MSE(β̂), where β̂ is the vector of OLS estimators, and

lim
λ→∞MSE(β̃)∗ = β�β. (20)

It is easy to show that, MSE(β̃)∗ is not a monotone function in λ. However, we can
show that MSE(β̃)∗ first goes through a minimum before it increases. We can obtain
an upper bound for λ as

0 < λ < σ 2/max(β2
j d4

j ). (21)

Hence, MSE(β̃)∗ will be decreasing for some λ < σ 2/max(β2
j d4

j ). So, there exist

some β̃, such that MSE(β̃)∗ is lower than σ 2 p = MSE(β̂).
Figure 6a–d show the behavior of these error components for different {d j } vectors

and different β vectors. In all the examples, we see the expected theoretical behavior
for the three curves. Also we notice that, when large coefficients get larger weights,
the minimum of MSE(β̃)∗ achieves quickly and we see a drastic drop in MSE(β̃)∗.
In contrast, when larger coefficients get smaller weights, minimum of MSE(β̃)∗
achieves slowly and also we do not observe a significant drop in MSE(β̃)∗. This

Fig. 6 MSE of generalized quadratic garrote estimator
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is an indicator that the idea of the quadratic garrote might be a better substitute
for the ridge regression since it defines d2

j ’s inversely proportional to the squared
OLS estimates. A detailed study of the behavior of the generalized quadratic garrote
coefficients under orthonormal design assumption can be found in [7].

When B depends on y, we cannot obtain a closed form solution for the expectation
and variance of β̃. However, by applying the Taylor series expansion for B, we can
obtain approximate solutions. Let d2

j = f j (β̂ j ), then it is easy to show that

β̃ ≈ (I p + λD(X�X)−1)−1β̂, (22)

where, D = diag( f j (β j )). Even if (I p + λD(X�X)−1)−1β̂ is an approximation for
β̃, we have the advantage of D being independent of y. Hence, we can use all the
results that we derived above, where B was independent of y.

3 Simulation Study

In this section, we perform a simulation study considering different settings which
resemble real-life problems such as multicollinearity issue, high dimensional setting,
etc. The performance of quadratic garrote will be compared with ridge and lasso
estimation methods in each setting. OLS estimation will be used as the benchmark.
Consider the following three settings:

1. Sparse setting,
2. Nearly-sparse setting,
3. High dimensional setting.

In each setting, data were generated using themodel yi = ∑p
j=1 xi jβ j + εi , where

εi ∼ N (0, σ 2), i = 1, 2, ..., n. Note that we can write the linear regression model as
yi = xT

i β + εi . xi ’s were generated from a MV N (0, �), where i j th entry of � is
ρ|i− j | and ρ = 0.5. The sample size was 100 in each setting. 10-fold cross-validation
methodwas used to select the best tuning parameter for each of the shrinkagemethod.
Finally, mean-squared prediction error was used to compare the prediction accuracy
between models with 5-fold cross-validation.

Sparse Setting

This setting has been used in [5] to compare the performance of the lasso with other
shrinkagemethods.We intend to see how the quadratic garrote model performswhen
there are a considerable fraction of zeros in β. We set the true population coefficient
vector to be β = (3, 1.5, 0, 0, 2, 0, 0, 0)�. The random error was set to have σ = 3.
The signal to noise ratio of the sample datawas approximately 2. Consider an additive
model Y = f (X) + ε. Then, according to [10] the signal to noise ratio is defined as,
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Fig. 7 Trace plot of quadratic garrote estimators (a) and ridge estimators (b) for the sparse setting

Fig. 8 Mean squared error
for quadratic garrote under
the sparse setting

Signal to noise ratio = V ar( f (X))

V ar(ε)
. (23)

The signal to noise ratio for the multiple linear model is given by
V ar(X�β)/V ar(ε). The given value of the signal to noise ratio of 2, is the esti-
mated signal to noise ratio of the sample data, calculated as the ratio of the sample
variance of Xβ vector to the variance of the residual error vector.

Figure 7 shows the trace plots of quadratic garrote estimates and ridge estimates.
We can see an interesting behavior of quadratic garrote estimators (Fig. 7a) compared
to ridge estimators (Fig. 7b). In the quadratic garrote trace plot, we notice that the
larger coefficients do not shrink until the tuning parameter (λ) is very large. However,
the smaller coefficients approach zero very fast even for a very small λ with almost
no effect on large coefficients. This property cannot be seen with ridge regression.
The ridge regression method shrinks all coefficients from the beginning.

Figure 8 shows the mean squared error for quadratic garrote against λ. The best
coefficients were selected to have minimum MSE (Vertical line on Fig. 8 represents
the location of minimum MSE). The estimates are given in the Table 1. Quadratic
garrote estimates for the true parameters 3 and 2 are very close to their OLS estimates
than the ridge estimates. On the other hand, the estimated coefficients for zero-valued
parameters are very small in the quadratic garrote than the ridge estimates.
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Table 1 Estimated coefficients under the sparse setting

β j OLS QG Ridge Lasso

X1 3.00 2.7865 2.7456 2.5871 2.6667

X2 1.50 1.4571 1.3995 1.4421 1.4136

X3 0.00 0.5471 0.2717 0.5042 0.3809

X4 0.00 −0.1553 0.0038 −0.0231 0

X5 2.00 2.3489 2.2097 2.1141 2.1432

X6 0.00 −0.0522 0.0008 −0.0075 0

X7 0.00 0.3161 0.1126 0.3000 0.2130

X8 0.00 0.0707 0.0030 0.0449 0

Table 2 Mean squared errors of the models under sparse setting

MSE

OLS 12.2485

Quadratic garrote 11.7609

Ridge 12.1020

Lasso 11.7974

Table 2 summarizes the MSEs of each of our models. For the sparse setting,
quadratic garrote gives the least prediction errors than all the other methods. It even
has better prediction accuracy than the lasso, which has the second best MSE.

Nearly-Sparse Setting

In this setting, we set the population coefficients vector to have a few large values
and others are set to have values closer to zero. Let β = (3, 1.5, z, z, 2, z, z, z, z, z)�,
where z ∼ Uni f (0, b), 0 < b ≤ 1. We can set z coefficients to have smaller values
by selecting a very small b. The setting was repeated for b ∈ {0.1, 0.5, 1}, and the
random error σ was selected to be

√
2 such that the signal to noise ratio is around

10 for each case. A similar setting has been suggested in [11].
The trace plots for the quadratic garrote coefficient estimates and the ridge esti-

mates for different b values are shown in Fig. 9. The behavior of trace plots for both
quadratic garrote and ridge is similar to their behavior under the sparse setting. In all
values of b, we see that the quadratic garrote does not shrink the larger coefficients
unless λ is very large. On the other hand, smaller coefficients shrink towards zero
very fast even for a small λ.

Estimated quadratic garrote coefficients at the best λ which was determined by
cross-validation for each scenario, are presented in Table 3. When b = 1, we do
not observe much shrinkage on each coefficient in any shrinkage method except
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Fig. 9 Trace plot of quadratic garrote estimates (Left) and ridge estimates (Right) of the nearly
sparse setting

for smaller coefficients. However, when b = 0.5 and b = 0.1, the coefficients are
shrunk in all the models. In these scenarios, unlike ridge regression, the quadratic
garrote shrinks the smaller coefficient almost to zero with no shrinkage on the larger
coefficients.

Mean squared cross-validation errors for each approach are summarized in
Table 4. We see that, for all values of b that we used, the quadratic garrote per-
forms better than the ridge regression approach. As b becomes smaller, quadratic
garrote does better prediction than all the other methods. In all the cases, we see
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Table 3 Estimated QG coefficients and prediction errors under the nearly-sparse setting

Beta OLS QNNG Ridge Lasso

(a) b = 1

X1 3.0000 2.9778 2.9776 2.8094 2.9419

X2 1.5000 1.7939 1.7751 1.7103 1.7455

X3 0.1966 −0.0158 −0.0001 0.0879 0

X4 0.7164 0.8819 0.8559 0.8474 0.8375

X5 2.0000 2.1116 2.1510 1.9420 2.1165

X6 0.3621 0.3048 0.2457 0.4195 0.2757

X7 0.3911 0.6722 0.6691 0.6455 0.6427

X8 0.8133 0.6658 0.6467 0.6483 0.6372

X9 0.4280 0.5192 0.5016 0.5416 0.5003

X10 0.9592 0.8133 0.8130 0.7347 0.7780

(b) b = 0.5

X1 3.0000 2.8638 2.8721 2.6576 2.8328

X2 1.5000 1.6368 1.6167 1.5636 1.6081

X3 0.1539 0.1109 0.0162 0.1905 0.0537

X4 0.1288 −0.1171 −0.0019 0.0785 0

X5 2.0000 2.0214 2.0270 1.7472 1.9712

X6 0.2762 0.4946 0.4278 0.5760 0.4568

X7 0.0282 −0.0369 0.0024 0.0062 0

X8 0.2343 0.1597 0.0629 0.1342 0.1467

X9 0.2419 0.0654 0.0081 0.0188 0.0044

X10 0.4062 0.5987 0.5916 0.5993 0.5940

(c) b = 0.1

X1 3.0000 2.9236 2.9779 2.6933 2.8817

X2 1.5000 1.3315 1.2467 1.3001 1.2416

X3 0.0336 0.2110 0.0464 0.2706 0.0631

X4 0.0464 −0.2883 −0.0655 −0.1734 0

X5 2.0000 2.3813 2.2207 2.0770 2.0929

X6 0.0061 −0.0905 0.0000 0.0034 0

X7 0.0197 0.0183 0.0001 0.0442 0

X8 0.0474 0.1739 0.0228 0.1394 0

X9 0.0301 −0.2275 −0.0123 −0.1473 0

X10 0.0607 0.1711 0.0346 0.1691 0.0521

that the ridge regression approach gives the highest prediction errors. As b becomes
smaller, prediction errors of the ridge regression approach are even higher than the
OLS approach.
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Table 4 Mean squared errors of the models under nearly sparse setting

MSE

b = 1 b = 0.5 b = 0.1

OLS 3.0830 2.3372 2.1892

Quadratic garrote 3.0643 2.2154 2.1114

Ridge 3.0753 2.3774 2.2375

Lasso 3.0330 2.2203 2.1419

High Dimensional Setting

As we discussed in Sect. 1, the problems associated with the OLS estimator in the
high dimensional setting are more serious than they are in the lower dimensions.
Hence, it is important to examine how the suggested model performs in the high
dimensional setting. To this end, we consider three scenarios.

In the first scenario, the coefficient vector consists of the majority of very small
coefficients and some relatively large coefficients which represent the important
predictors. Let’s take

β = (z, z, ..., z, 1, 1, 1, 1, 1, z, z, ..., z, 4, 4, 4, 4, 4)�,

where z’s are small positive coefficients independently generated from a
Gamma(1, 10) distribution. There are 30 parameters in four blocks, where the first
and third blocks contain 10 z values in each block. σ was set to be 5, which gave
approximately a signal to noise ratio of 8 in the sample.

In the second scenario, we add some more moderately large coefficients which
have the same number of smaller coefficients. Here we consider

β = (3, 3, 3, 3, 3, z, z, ..., z, 1, 1, ..., 1, z, z, ..., z, 2, 2, 2, 2, 2)�,

where z’s are iid from a Gamma(1, 10) distribution. There are 40 parameters in five
blocks, where the second to fourth blocks contain 10 values in each block. σ was set
to be 5, and the signal to noise ratio was approximately 11.

In the third scenario, coefficient vector contains many smaller coefficients, and
some moderately large coefficients with few very large coefficients. We set

β = (z, z, ..., z, 5, 5, 5, z, z, ..., z, 1, 1, 1, 1, 1, z, z, ..., z, 10, 10)�,

where z’s are iid from a Gamma(1, 10) distribution. It contain 40 parameters in six
blocks, where each of the z block contain 10 values. σ = 7 and the signal noise ratio
was approximately 10.

The trace plot of each scenario is shown in Fig. 10. The dotted vertical line
represents the λ with respect to the model with minimum MSE obtained using 10-



A Generalized Quadratic Garrote Approach Towards Ridge Regression Analysis 353

Fig. 10 Trace plot of quadratic garrote estimates (Left) and ridge estimates (Right) of the high
dimensional setting where a, b—Scenario 1, c, d—Scenario 2, e, f—Scenario 3 (Dotted line indi-
cates the best lambda w.r.t. minimum MSE)

fold cross-validation. Even though the quadratic garrote does not do subset selection,
but when we observe the trace plots of quadratic garrote estimates (Fig. 10a, c, e),
it can be seen that at the best λ, a large number of coefficients has been shrunken
towards zero with a very little or almost no effect on the large coefficients. This is
an important property in the high dimensional setting because we can have a better
prediction while keeping the most important variables unchanged. But in the ridge
trace plots (Fig. 10b, d, f), we can see that there all the coefficients shrink towards
zero similarly.

The prediction error of each model is presented in Table 5. In the first scenario,
where there are many small coefficients with few moderately large coefficients, the
ridge regression does slightly better than all the other approaches. But in Scenario
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Table 5 Mean squared errors of the models under high dimensional setting

MSE

Scenario 1 Scenario 2 Scenario 3

OLS 33.8628 35.5502 101.8177

Quadratic garrote 32.5943 25.5129 70.9068

Ridge 29.6387 25.8657 84.4298

Lasso 30.6148 21.5234 68.9327

2, where there is the same number of small coefficients and moderately large coeffi-
cients, quadratic garrote performs slightly better than the ridge. However, in Scenario
3, where there are a large number of small coefficients with a few large coefficients
and a few very large coefficients, the quadratic garrote performs well with a signif-
icantly low prediction error compared to the ridge regression model. In this case,
the quadratic garrote model is even competitive with the lasso. However, the lasso
outperforms both the quadratic garrote and the ridge regression especially in the high
dimensional setting in terms of the prediction error.

4 Example: The Boston Housing Dataset

In this section,we further illustrate the use of the generalized garrote and the quadratic
garrote with the Boston housing dataset. This is a famous dataset that is readily
available in the MASS library in R. The dataset consists of housing information in
suburbs of Boston in 1970, which has been first cited in [12]. The dataset contains
506 observations with 14 attributes namely,

• crim: per capita crime rate by town.
• zn: proportion of residential land zoned for lots over 25,000 sq.ft.
• indus: proportion of non-retail business acres per town.
• chas: Charles River dummy variable (= 1 if tract bounds river; 0 otherwise).
• nox: nitrogen oxides concentration (parts per 10 million).
• rm: average number of rooms per dwelling.
• age: proportion of owner-occupied units built prior to 1940.
• dis: weighted mean of distances to five Boston employment centers.
• rad: index of accessibility to radial highways.
• tax: full-value property-tax rate per $10,000.
• ptratio: pupil-teacher ratio by town.
• black: 1000(Bk − 0.63)2 where Bk is the proportion of blacks by town.
• lstat: percentage of lower status of the population.
• medv: median value of owner-occupied homes in $1000s.
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Fig. 11 a Solution path of ridge regression approach for the Boston housing dataset. b Cross
validation error of ridge regression for the Boston housing dataset

Fig. 12 a Solution path of quadratic garrote for Boston dataset.bCross validation error of quadratic
garrote for Boston dataset

Here as well suppose that we want to build a model to predict medv with all
the other variables as predictors. The solution path for the quadratic garrote can be
found in Fig. 12a. In the ridge regression solution path in Fig. 11a, we noticed that,
as we increase λ, all the coefficients shrink towards zero at a similar rate from the
beginning. On the other hand, quadratic garrote shrinks the smaller coefficient faster
than larger coefficients. The largest coefficients shrink only for large values of λ

and resist shrinking otherwise. The 10-fold cross-validation error plot of quadratic
garrote for the Boston dataset can be found in Fig. 12b. Two vertical dotted lines
represent the λ values with respect to the minimum prediction error and prediction
error with the one standard error rule. The error bars represent the standard deviation
of the mean squared error values at each λ.

Suppose the researcher who conducts the study is told that according to a pre-
vious study the crime rate, distance to work, and the number of rooms in the
dwelling are the key factors that determine the house price and he should not
shrink the effect of those variables in the model. Also, he wants only a moderate
shrinkage on the variables which represent air pollution, the age of the dwelling,
and accessibility to highways. For this situation, the researcher can use the gen-
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Fig. 13 a Solution path of generalized quadratic garrote for Boston dataset. b Cross validation
error of generalized quadratic garrote for Boston dataset

eralized quadratic garrote with a user-defined vector of shrinking factors, such as
{d j } = (0, 1, 1, 1, 0.5, 0, 0.5, 0, 0.5, 1, 1, 1, 1)�. The shrinking factor d j = 0 avoids
imposing any penalty on the corresponding coefficient estimate. Higher the value of
d j , the higher the shrinkage on the corresponding coefficient. The solution path of
the generalized quadratic garrote with the above defined shrinking factors can be
found in Fig. 13a and the prediction error is presented in Fig. 13b. We observe that
as we increase λ, some model coefficients actually increase instead of shrinking
towards zero. Those are the parameters that we omit from shrinking by setting the
corresponding d j ’s to be exactly zero. One can confirm those variables which do not
shrink by observing the estimated model coefficients in Table 6.

Table 6 summarizes the results of two quadratic garrote models along with OLS,
the ridge, and the lasso results. All models have been evaluated at the λ which
gives the minimum prediction error. Compared to the ridge regression and the lasso,
the quadratic garrote does minimum shrinkage on the larger coefficients, and on
the other hand, it shrinks smaller coefficients by a larger factor than the ridge or
the lasso. Generalized quadratic garrote, in which we arbitrarily defined shrinking
factors, does what we intended. It does not shrink the coefficients of the variables
crim, rm, and dis. Those are the variables corresponding to the d j ’s that we set to be
zero. It applies minimum shrinkage on the coefficients of nox, age, and rad since we
set a smaller shrinking factor d j = 0.5 for them. However, other coefficients where
we set a larger d j values have been shrunk towards zero by a larger factor compared
to other shrinkage methods. One of the most important things that we notice is, that
the prediction errors of both of the suggested approaches are slightly smaller than
the ridge regression.

In Sect. 3, we saw that the quadratic garrote uniformly performs well under dif-
ferent simulation settings. In this section, we further confirmed that the QG method
and the generalized QG approach also performed well with real data. The prediction
accuracy of suggested methods was better than the ridge regression for most of the
cases and, they were competitive to lasso as well.
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Table 6 Coefficient estimates and cross validation errors for each shrinkage method

OLS QG GQG (d2
j ) Ridge Lasso

crim −0.9291 −0.8927 −0.9373 (0.00) −0.7441 −0.8600

zn 1.0826 1.0272 1.0205 (1.00) 0.7450 0.9834

indus 0.1410 0.0221 0.0008 (1.00) −0.2765 0.0000

chas 0.6824 0.6688 0.6960 (1.00) 0.7381 0.6836

nox −2.0588 −1.9845 −2.0121 (0.25) −1.3396 −1.9101

rm 2.6769 2.6836 2.7907 (0.00) 2.8215 2.7096

age 0.0195 0.0001 −0.0718 (0.25) −0.1113 0.0000

dis −3.1071 −3.0787 −3.0971 (0.00) −2.3029 −2.9734

rad 2.6649 2.5045 2.3369 (0.25) 1.2771 2.2667

tax −2.0788 −1.9181 −1.7312 (1.00) −0.9274 −1.7098

ptratio −2.0626 −2.0454 −2.0110 (1.00) −1.8367 −2.0193

black 0.8501 0.8277 0.8506 (1.00) 0.8258 0.8281

lstat −3.7473 −3.7486 −3.5660 (1.00) −3.3445 −3.7313

MSE 23.1516 23.0843 23.1137 23.5036 23.1050

5 Discussion

In this paper, we developed the quadratic garrote method suggested by [4], and we
further extended the idea to obtain the generalized quadratic garrote which is more
flexible in the sense that the user can control the amount of shrinkage on each coeffi-
cient estimate. We derived a closed-form solution for the quadratic garrote problem
and studied the theoretical properties of the suggested estimator such as variance,
expectation, and bias. In addition, through simulation studies under different settings
and with an example, we showed that the quadratic garrote is a worthy substitute for
ridge regression. Furthermore, with the Boston housing dataset, we illustrated how
to use the generalized ridge regression with a predefined amount of shrinkage on
each coefficient based on one’s experience or prior knowledge.

In high dimensional setting where the majority of population regression coeffi-
cients are small in size and few of the coefficients are considerably larger than the
rest, we saw that the quadratic garrote is capable of shrinking the smaller coefficients
while keeping the larger coefficients almost unchanged. Another most important
observation is, in the aforementioned setting, the presented methods showed much
lower prediction errors compared to the ridge regression or OLS models.

To find the tuning parameter, one can use different methods such as k-fold cross-
validation and the little bootstrap procedure. Non-negative garrote with the little
bootstrap method is recommended when explanatory variables are fixed [13], and
k-fold cross-validation is used when explanatory variables are random [4]. However,
for high dimensional data, the k-fold cross-validation method is less computationally
intensive than the bootstrap method and also cross-validation is commonly used for
calculating the prediction error to select the best tuning parameter in many shrinkage
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methods such as the ridge regression and lasso [14]. Hence, in this work, we used
the k-fold cross-validation procedure to evaluate the tuning parameters for all the
models.

Even though the suggested shrinkage method meets our objectives, we can point
out some limitations. First, since we developed quadratic garrote following the idea
behind the non-negative garrote, the regression coefficient estimates of each method
depend on OLS estimates. Hence, the quadratic garrote fails when OLS estimates
are infeasible. Also, quadratic garrote does not perform subset selection. Another
concern with the generalized quadratic garrote is its subjectiveness. As we saw, in
generalized quadratic garrote, the user can control the amount of shrinkage on each
coefficient by defining the appropriate shrinking factors. Thismight incorporate some
additional subjectiveness to the coefficient estimates.
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High-Dimensional Nonlinear
Optimization Problem in
Semiparametric Regression Model

Mahdi Roozbeh

Abstract By evolving science, knowledge, and technology, new and precise meth-
ods for measuring, collecting, and recording information have been innovated, which
have been resulted in the appearance and developing of high-dimensional data, in
which the number of explanatory variables ismuch larger than the number of observa-
tions.Analysis andmodeling the high-dimensional data is oneof themost challenging
problems faced by the world today. Interpreting such data is not easy and needs to
use the modern methods. Penalized methods are one of the most popular ways to
analyze the high-dimensional data. Semiparametric models, which a combination of
both parametric and nonparametric models, are very flexible models. They are useful
when the model contains both parametric and nonparametric elements in the data
set. As known, the LASSO approach is a popular technique for variable selection in
high-dimensional sparse regressionmodels. Here,we show that the prediction perfor-
mance of the LASSO method can be improved by eliminating the structured noises.
The main purpose of this research is to introduce a modified variable selection or
estimation method for a high-dimensional semiparametric regression model through
a nonlinear mixed-integer programming technique. Finally, the performance of the
proposed method is examined through a real-data analysis about the production of
vitamin B2 and some Monte-Carlo simulation studies.

1 Introduction

Let (y1, x1, t1), . . . , (yn, xn, tn) be observations that follow the semiparametric
regression model (SRM)

yi = x�
i β + f (ti ) + εi , i = 1, ..., n, (1.1)
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where x�
i = (xi1, xi2, . . . , xip) is p-dimensional vector of observed predictors or

explanatory variables, β = (β1, β2, . . . , βp)
� is a p-dimensional vector of unknown

parameters, the ti ’s are known and non-random in some bounded domain D ⊂ R,
f (ti ) is an unknown smooth function and εi ’s are independent and identically dis-
tributed random errors with zero mean and variance σ 2, which are independent of
(xi , ti ). It is remarked that semiparametric regression models are more flexible than
standard linear models since they combine both linear and nonlinear components
because it is believed that the response variable y linearly depends on x , but nonlin-
early related to t via unknown function f (·).

Most of the approaches for the semiparametric regression model are based on
the different types of nonparametric estimation procedures. There have been several
approaches to estimatingβ and f (·). An extensive study regarding the estimation and
application of the model (1.1) can be found in the monograph of [13]. An alternative
approach to the nonparametric procedure is differencingmethodology.This incoming
uses differences to remove the trend in the data that arises from the function f (·)
and does not require an estimator of the function f (·) and is often called difference-
based procedure. Provided that f (·) is differentiable and the t ordinates are closely
spaced, it is possible to remove the effect of the function f (·) by differencing the
data appropriately. In model (1.1), [25] concentrated on the estimation of the linear
component and used differencing to eliminate bias induced by the presence of the
nonparametric component. The difference-based estimation procedure is optimal in
the sense that the estimator of the linear component is asymptotically efficient and the
estimator of the nonparametric component is asymptoticallyminimax rate optimal for
the semiparametric model ([24]). Thus, differencing allows one to perform inference
on β as if there were no nonparametric component f (·) in the model (1.1). Once β is
estimated, a variety of nonparametric techniques could be applied to estimate f (·) as
if β were known. Reference [24] used higher order differences for optimal efficiency
in estimating the linear part by using a special class of difference sequences.

Nowadays, many real-world data problems carry structures in which the num-
ber of predictors p may considerably exceed the sample size n, i.e., p � n. Called
high-dimensional problems, for such situations several studies have been pursued
addressing the prediction of a new response variable, estimation of an underlying
vector parameter, and variables selection approach. Note that classic statistical meth-
ods cannot be used for estimating of themodel (1.1) when p > n, because theywould
overfit the data, besides severe the identifiability issues. As a rudimentary studymade
by [23], the least absolute shrinkage and selection operator (LASSO) is a penaliza-
tion technique for variable selection and estimation in high-dimensional sparse linear
models. Another reasonable way out of the ill-posedness of estimation inmodel (1.1)
can be given by assuming a sparse structure in the sense of typically saying that only
a few of the components of β are nonzero. Based on this fact, estimation of full
parametric regression model in the case of p > n and statistical inference afterward
has been initiated about a decade ago. Sample attempts include the studies made by
[4, 9, 18, 19, 27–29].
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In this research, it can be shown that high-dimensional semiparametric regression
models can be estimated under some levels of sparsity based on a nonlinear mixed-
integer programming approach.

This chapter is organized as follows: Sect. 2 contains a nutshell of the difference-
based methodology. The sparse restricted semiparametric regression model and its
estimation are considered in Sect. 3. In Sect. 4, we introduce a penalized LASSO
method. We deal with the estimation of SRM based on the mixed-integer nonlinear
programming approach in Sect. 5. Section 6 is devoted to some Monte-Carlo simu-
lation studies along with an application in riboflavin vitamin B2 production. Finally,
we conclude our approach by giving some remarks in Sect. 7.

2 Differencing Approach to Approximate the Model

In this section we use a difference-based technique to estimate the linear regression
coefficient vectorβ. This technique has been used to remove the nonlinear component
in semiparametric regression model by various authors (e.g., [1, 2, 25, 26] and [3]).
Consider the following semiparametric regression model

y = Xβ + f (t) + ε, (2.1)

where y = (y1, ..., yn)�, X = (x1, ..., xn)� is an n × p matrix, f (t) =
( f (t1), ..., f (tn))� and ε = (ε1, ..., εn)

�.
We assume that in general, ε is a vector of disturbances, with amultivariate normal

distribution, Nn(0, σ 2V ), where V is a symmetric, positive definite known matrix
and σ 2 is an unknown parameter.

Reference [25] suggested estimating β on the basis of the mth order differencing
equation when V = In as

m∑

j=0

d j yi− j =
( m∑

j=0

d j xi− j

)
β +

m∑

j=0

d j f (ti− j ) +
m∑

j=0

d jεi− j , (2.2)

where d0, d1, ..., dm are differencing weights.

How Does the Approximation Work?

Suppose ti are equally spaced on the unit interval and f ′(·) ≤ L . By the mean value
theorem, for some t∗i ∈ [ti−1, ti ] we have

f (ti ) − f (ti−1) = f ′(t∗i )(ti − ti−1) ≤ L

n
.
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Note that with m = p = 1 from (2.2) we have

yi − yi−1 = (xi − xi−1)β + f (ti ) − f (ti−1) + εi − εi−1

= (xi − xi−1)β + O
(1
n

) + εi − εi−1

∼= (xi − xi−1)β + εi − εi−1.

We then estimate the linear regression coefficient β by the ordinary least-squares
estimator based on the differences. Thenwe obtain the least-squares estimate β̂di f f =∑n

i=2(xi−xi−1)(yi−yi−1)∑n
i=2(xi−xi−1)2

.

Now let d = (d0, ..., dm) be a (m + 1)-vector, where m is the order of differ-
encing and d0, d1, ..., dm are differencing weights minimizing the variance of linear
estimators i.e.,

mind0,...,dm

m∑

l=1

( m∑

j=0

d jdl+ j

)2
,

satisfying the conditions
m∑

j=0

d j = 0,
m∑

j=0

d2
j = 1. (2.3)

The role of constraints (2.3) is now evident. The first condition ensures that, as the
t’s become close, the nonparametric effect is removed and the second one ensures
that the variance of the sum of weighted residuals remains equals to σ 2 in (2.2).

Now, we define the (n − m) × n differencing matrix D whose elements satisfy
(2.3) as

D =

⎛

⎜⎜⎜⎝

d0 d1 ... dm 0 0 ... 0
0 d0 d1 ... dm 0 ... 0
...

. . .
...

0 0 ... 0 d0 d1 ... dm

⎞

⎟⎟⎟⎠ .

This and related matrices are given, for example, in [26].
Applying the differencing matrix to model (2.1) permits direct estimation of the

parametric effect. As a result of developments in [22] it is known that the parameter
vector β in (2.1) can be estimated with parametric efficiency. We now show the
difference-based estimators that can be used for this purpose. Since the data have been
ordered so that the values of the nonparametric variable(s) are close, the application
of the differencing matrix D in model (2.1) removes the nonparametric effect in
large samples. If f (·) is an unknown function that is the inferential object and has a
bounded first derivative, then D f (t) is close to 0, so that by applying the differencing
matrix, we may rewrite (2.1) as

Dy
.= DXβ + Dε,
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or
yD

.= XDβ + εD, (2.4)

where yD = Dy, XD = DX , εD = Dε.
So, εD is a (n − m)-vector of disturbances distributed with E(εD) = 0 and

E(εDε�
D) = σ 2VD where VD = DV D� 
= In−m .

For arbitrary differencing coefficients satisfying (2.3), [25] defines a simple dif-
ferencing estimator of the parameter β in a semiparametric regression model when
V = In as

β̂D = (X�
DX D)−1X�

D yD. (2.5)

Thus, differencing allows one to perform inferences on β as if there were no
nonparametric component f (·) in themodel (2.1) [26]. Once β is estimated, a variety
of nonparametric techniques could be applied to estimate f (·) as if β were known.

We can estimate the linear parameter β in (2.4) under the assumption cov(εD) =
σ 2V D, by minimizing the generalized sum of squared errors

SS(D,β) = ( yD − XDβ)�V−1
D ( yD − XDβ). (2.6)

The unique minimizer of (2.6) is the generalized difference-based estimator (GDE)
given by

β̂GD = argminβ SS(D,β) = C(D)−1XD
�V−1

D yD, C(D) = XD
�V−1

D XD.

(2.7)
Motivated by [5], we partition the regression parameter β as β = (β�

1 ,β�
2 )�,

where the subvector β i has dimension pi , i = 1, 2 and p1 + p2 = p. Thus the under-
lying model has form

yD = XD1β1 + XD2β2 + εD, (2.8)

where XD is partitioned according to (XD1, XD2) in such a way that XD i is a n × pi
submatrix, i = 1, 2. With respect to this partitioning, the GDEs of β1 and β2 are
respectively given by

β̂GD1 = S1(D)−1XD
�
1 �2(D)−1 yD, S1(D) = XD

�
1 �2(D)−1XD1

β̂GD2 = S2(D)−1XD
�
2 �1(D)−1 yD, S2(D) = XD

�
2 �1(D)−1XD2 (2.9)

where

�i (D)−1 = V−1
D − V−1

D XD i (XD
�
i V

−1XD i )
−1XD

�
i V

−1
D , i = 1, 2. (2.10)

The sparse model is defined when Ho : β2 = 0 is true. In this paper, we refer the
restricted semiparametric regression model (RSRM) to the sparse model.
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For the RSRM, the generalized difference-based restricted estimator (GDRE)
takes the form of

β̂GDR1(D) = C1(D)−1XD
�
1 V

−1
D yD, C1(D) = XD

�
1 V

−1
D XD1. (2.11)

According to [21], the GDRE performs better than GDE when model is sparse.
However, the former estimator performs poorly as β2 deviates from the origin. The
following result provides the relation between the submodel and fullmodel estimators
of β1.

Proposition 2.1 Under the assumptions in Eqs. (2.9) and (2.11), we have

β̂GD1 = β̂GDR1 − C1(D)−1XD
�
1 V

−1
D XD2β̂GD2.

3 Ridge Estimation of Sparse Semiparametric Regression
Model

Under situations in which the matrix C(D) is ill-conditioned due to linear rela-
tionship among the covariates of XD matrix (as in multicollinearity) or the number
of independent variables (p) is larger than the sample size (n), the proposed esti-
mators in the previous section are not applicable, because, we always find a linear
combination of the columns in XD which is exactly equal to one other column.
Mathematically, the design matrix is not full rank, rank(XD) ≤ min(n, p) < p for
p > n, and one may write XDβ = XD(β + ζ ) for every ζ in the null space of XD.
Therefore, without further assumptions, it is impossible to infer or estimate β from
data. We note that this issue is closely related to the classical setting with p < n but
with rank(XD) < p (due to linear dependence among covariables) or ill-conditioned
design leading to difficulties with respect to identifiability.We note, however, that for
prediction or estimation of XDβ (that is the underlying semiparametric regression
surface), identifiability of the parameters is not necessarily needed. From a practical
point of view, high empirical correlations among two or a few other covariables lead
to unstable results for estimating β or for pursuing variable selection. To overcome
this problem, we follow [14] and [16] and obtain the restricted ridge estimator by
minimizing the sum of squared partial residuals with a spherical restriction and a
linear restriction β2 = 0, i.e., the RSRM is transformed into an optimal problemwith
two restrictions:

min
β

( yD − XDβ)�V−1
D ( yD − XDβ) subject to β�β ≤ φ2 and β2 = 0.

The resulting estimator is a generalized difference-based restricted ridge estimator
(GDRRE), given by
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β̂GDR1(kn) = C−1
1 (D, kn)XD

�
1 V

−1
D yD

=
T 1(D,kn)︷ ︸︸ ︷(

I p1 + kn(XD
�
1 V

−1XD1)
−1

)−1
β̂GDR1

= T 1(D, kn)β̂GDR1, (3.1)

where kn ≥ 0 is the ridge parameter as a function of sample size n and C1(D, kn) =
XD

�
1 V

−1
D XD1 + kn I p1 .

In a similar manner shown previously, the generalized difference-based unre-
stricted ridge estimators (GDUREs) of β1 and β2 respectively have forms

β̂GD1(kn) = S−1
1 (D, kn)XD

�
1 �−1

2 (D, kn) yD

=
R1(D,kn)︷ ︸︸ ︷(

I p1 + kn(XD
�
1 �−1

2 (D, kn)XD1)
−1)−1

β̂GD1

= R1(D, kn)β̂GD1, (3.2)

β̂GD2(kn) = S−1
2 (D, kn)XD

�
2 �−1

1 (D, kn) yD

=
R2(D,kn)︷ ︸︸ ︷(

I p2 + kn(XD
�
2 �−1

1 (D, kn)XD2)
−1

)−1
β̂GD2

= R2(D, kn)β̂GD2, (3.3)

where S1(D, kn) = XD
�
1 �−1

2 (D, kn)XD1 + kn I p1 , S2(D, kn) =
XD

�
2 �−1

1 (D, kn)XD2 + kn I p2 and

�−1
i (D, kn) = V−1

D − V−1
D XD i (XD

�
i V

−1
D XD i + kn I pi )

−1XD
�
i V

−1
D , i = 1, 2.

(3.4)
Similar to Proposition2.1, we have the following result without proof.

Proposition 3.1 The generalized difference-based restricted and unrestricted ridge
estimators of β1 have the following relation

β̂GD1(kn) = β̂GDR1(kn) − C−1
1 (D, kn)XD

�
1 V

−1
D XD2β̂GD2(kn).

Following [5–7, 21], we use the following test statistic for testing the sparsity hypoth-
esisHo : β2 = 0

£n(D, kn) = β̂
�
GD2(kn)S2(D, kn)β̂GD2(kn)

(n − p1)s2(D, kn)
, (3.5)
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where,

s2(D, kn) = 1

n − p1

(
yD − XD1β̂GD1(kn)

)�
V−1

D

(
yD − XD1β̂GD1(kn)

)
. (3.6)

The test statistic £n(D, kn) has an asymptotic non-central chi-square distributionwith
p2 degrees of freedom and non-centrality parameter 1

2�
∗ (see [5] for more details).

As known, for any particular estimator β̂ of β the risk function under square error
loss is measured by

R(β̂,β) = E
[
(β̂ − β)�(β̂ − β)

]
.

So, the following lemma is now immediate.

Lemma 3.1 ([16]) The bias, covariance matrix, and risk functions of GDRRE can
be evaluated as follows:

bias
(
β̂GDR1(kn)

) = E
(
β̂GDR1(kn) − β

)

= −knC1(D, kn)
−1β,

Cov
(
β̂R1(kn)

) = σ 2C1(D, kn)
−1C1(D)C1(D, kn)

−1,

R
(
β̂R1(kn),β

) = σ 2tr
(
C1(D, kn)

−1C1(D)C1(D, kn)
−1) + k2nβ

�C1(D, kn)
−2β,

where S1 = X�
1 X1.

The spectral decomposition of the (symmetric) positive definite matrix C1(D)

can be given by

C1(D) = �1�1�
�
1 , �1 = diag(λ1, . . . , λp1),

where the columns of �1 are eigenvectors of the matrix C1(D) and the scalers λ1,…,
λp1 are its eigenvalues, satisfying

λ1 ≥ . . . ≥ λp1 > 0,

without loss of generality. Now, we can establish the following result about the risk
of GDRRE.

Theorem 3.1 The risk function of GDRRE can be given by

R
(
β̂GDR1(kn),β

) = σ 2
p1∑

i=1

λi

(λi + kn)2
+ k2n

p1∑

i=1

α2
i

(λi + kn)2
,

where αi is the i th entry of α1 = ��
1 β1 = (α1, . . . , αp1)

�.
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Proof. Since C1(D, kn)−1 = �1(� + kn I p1)
−1��

1 , we have

tr
(
Cov

(
β̂GDR1(kn)

)) = σ 2tr
(
C1(D, kn)

−1C1(D)C1(D, kn)
−1

)

= σ 2tr
(
�1(�1 + kn I p1)

−1��
1 �1�1�

�
1 �1(�1 + kn I p1)

−1��
1

)

= σ 2tr
(
�1(�1 + kn I p1)

−2
)

= σ 2
p1∑

i=1

λi

(λi + kn)2
. (3.7)

Also,

QB
(
β̂GDR1(kn)

) = k2nβ
�
1 C1(D, kn)

−2β

= k2nα
�
1 ��

1 �1(�1 + kn I p1)
−1��

1 �1(� + kn I p1)
−1��

1 �1α1

= k2nα
�
1 (�1 + kn I p1)

−1(�1 + kn I p1)
−1α1

= α�
1 diag

(
(λ1 + kn)

−2, . . . , (λp1 + kn)
−2

)
α1

= k2n

p1∑

i=1

α2
i

(λi + kn)2
, (3.8)

where QB(.) is the quadratic bias of an estimator. By adding (3.7) and (3.8), the proof
is complete. �

4 Least Absolute Shrinkage and Selection Operator
Approach

The amount of data we are faced with keeps growing. From around the late 1990s,
wide data sets emerged, in which the number of variables far exceeds the number
of observations. This was mainly due to our increasing ability to measure a large
amount of information automatically (see [10] for more details).

Penalized regression can perform variable selection and prediction in a ‘Big Data’
environmentmore effectively and efficiently in contrast to the othermethods. Initially
proposed by [23], the LASSO (least absolute shrinkage and selection operator) is
based on minimizing mean squared error, which is based on balancing the opposing
factors of bias and variance to build the most predictive model. In fact, LASSO
shrinks the regression coefficients toward zero by penalizing the regression model
with a 	1-norm penalty term, i.e., sum of the absolute value of the coefficients.
LASSO regression is a simple technique to reduce model complexity and usually
prevent over-fitting which may result from simple linear regression.

In the case of LASSO regression, the penalty term is embedded to force the
coefficient estimates with minor contributions to the model to be exactly set to zero.
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This means that LASSO can be also seen as an alternative to the subset selection
methods for performing variable selection in order to reduce the complexity of the
model.

LASSO is an extension of the ordinary least squares (OLS) regression which
adds a penalty to the residual sum of squares (RSS), being equal to the sum of the
absolute values of the non-intercept beta coefficients multiplied by the parameter
λ that slows (when λ < 1) or accelerates (when λ > 1) the penalty. Therefore, the
following optimization problem should be solved based on LASSO problem:

β̂(D, λn) = argmin
β

{
( yD − XDβ)�( yD − XDβ) + λn

p∑

j=1

|β j |
}
,

Figure 1 shows the constraint area of the LASSO method for p = 2, in which
elliptical contours of the function are shown by the full. They are centered at the
OLSE. The constraint region is the rotated square. LASSO solution is the first place
that the contours touch the square, and this will sometimes occur at a corner, cor-
responding to a zero coefficient. LASSO is frequently used in practice since the
	1 penalty allows us to shrink some coefficients to zero, that is, to produce sparse
estimation models that are highly interpretable.

It is notable that increasing λn will increase bias and decrease variance. Likewise,
decreasing λn reduces bias and increases variance. A big part of the building, the best
models in LASSO deal with the bias-variance trade-off. Bias refers to how correct
(or incorrect) the model is. A very simple model that makes a lot of mistakes is said
to have a high bias. A very complicated model that does well on its training data is
said to have a low bias. There are several ways to choose the optimal λn , such as AIC,

Fig. 1 Constraint region of
LASSO

β̂OLS

β̂LASSO

RSS

β1

β2
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BIC, Cp. For this purpose, one of the most popular methods is the cross-validation
(CV) method.

5 A Mathematical Heuristic Algorithm for Estimation of
High-Dimensional SRM

Here, we suggest a mixed-integer programming model based on the research work
of [8] and [20] for finding the effective explanatory variables to be used in a high-
dimensional SRM.

To proceed, at first it is notable that we need to discover the p1 fittest explanatory
variables among all of the p explanatory variables of the data set (p1 < n). Assume
that x̃ j , j = 1, 2, ..., p, is the j th column of the design matrix XD. For each column
x̃ j of XD we define a binary (indicator) variable z j which is equal to one when x̃ j

is used in the regression and is equal to zero, otherwise. Now, we need to define the
following essential constraint in our model:

p∑

j=1

z j = p1, z j ∈ {0, 1}, j = 1, 2, ..., p.

On the other hand, if z j = 0, then x̃ j is not considered in the regression and so, we
should set β j = 0. This fact can be guaranteed by the following set of inequalities:

−Mz j ≤ β j ≤ Mz j , j = 1, 2, ..., p,

where M is an enough large positive constant, being an upper bound for the set
{|β j |}pj=1. Based on these preliminaries, now we are in a position to propose the
initial form of our optimization model as follows:

min
β

( yD − XDβ)�( yD − XDβ),

s.t.
p∑

j=1

z j = p1,

−Mz j ≤ β j ≤ Mz j , j = 1, 2, ..., p,
z j ∈ {0, 1}, j = 1, 2, ..., p.

(5.1)

It is worth noting that although the problem (5.1) is an NP-hard problem, it can
be effectively solved by the metaheuristic algorithms to achieve an approximate
solution (see [8]. Moreover, nowadays there exist powerful solvers such as CPLEX
which are able to handle such problems even in large-scale cases. Making reasonable
simplifications in the models may considerably enhance the efficiency of the solvers
in the solution process. Based on this fact, we simplify the objective function of the
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model (5.1) by transferring some complicated terms to the constraints. That is, we
suggest the following modified version of (5.1):

min
	

( yD − 	)�( yD − 	),

s.t.
p∑

j=1

z j = p1,

−Mz j ≤ β j ≤ Mz j , j = 1, 2, ..., p,

	 = XDβ,

z j ∈ {0, 1}, j = 1, 2, ..., p,

(5.2)

with a simpler structure of the objective function Hessian in contrast to the model
(5.1). Solution of the optimization problem (5.2) is called the generalized difference-
based nonlinear mixed-integer programming estimator (GDNMPE).

6 Numerical studies

In order to test the performance of our suggested approach, here we analyze a real
world and some simulated data sets in the SRM for the high-dimensional cases. We
examine the efficiency of the given method in the real-world examples concerning
the riboflavin (vitamin B2) production data set as well as some simulated data sets.

Application to Riboflavin Production Data Set

In this section, we test the proposed estimation method on the riboflavin (vitamin
B2) production data set in Bacillus subtilis ([9]), being a classical real example in
high-dimensional SRM which can be found in R package “hdi.” The single real-
valued response variable is the logarithm of the riboflavin production rate. The effect
of p = 4088 predictor variables which are the logarithm of the expression levels of
4088 genes on the response variable would be modeled using the linear regression.
There is one rather homogeneous data set from n = 71 samples that were hybridized
repeatedly during a fed-batch fermentation processwhere different engineered strains
and strains growth were analyzed under different fermentation conditions. Based on
10-fold cross-validation, the LASSO shrinks 4022 parameters to zero and remains
p1 = 66 significant explanatory variables.

The ridge trace plot, a plot of estimated coefficients against a shrinkage parameter
which is a common graphical adjunct to help determine a favorable trade-off of the
bias against the precision (inverse variance) of the estimates, is shown in Fig. 2. We
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Fig. 2 The diagram of ridge
trace for the riboflavin data
set
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Fig. 3 The diagram of
cross-validation curve (the
red dotted line), and upper
and lower standard deviation
curves along the sequence
{λn} for the riboflavin data
set
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plotted Fig. 3 to find the best value of the LASSO parameter (λn) which minimizes
the cross-validation criterion. As seen in Fig. 3, the minimal mean squared error is
achieved at λn = 0.0078.

The parametric part of the considered Model with 65 effective explanatory vari-
ables, i.e., β1, is estimated by a first-order differencing coefficients, d0 = 0.7071
and d1 = −0.7071 in which m = 1, and then, the nonparametric part is estimated
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by kernel methodology and cross-validation criteria. Optimal differencing weights
do not have analytic expressions but may be calculated easily using an optimiza-
tion routine. Reference [12] presented weights to orderm = 10. These contain some
minor errors.

To detect the nonparametric part of the model, we calculate

s2i (D) = 1

n − p1

(
yD − XD1[,−i]β̂GD1

)�V−1
D

(
yD − XD1[,−i]β̂GD1

)
, i = 1, ..., 66,

where XD1[,−i] is obtained by deleting the i th column of matrix X1. Among
all 66 effective genes, “YY BG_at” had minimum s2i (D) value and so this can be
considered as a nonparametric part. We also use the added-variable plots to identify
the parametric and nonparametric components of the model. Added-variable plots
enable us to visually assess the effect of each predictor, having adjusted for the
effects of the other predictors. By looking at added-variable plot (Fig. 4), we consider
“YY BG_at” as a nonparametric part. As it can be seen from this figure, the nonlinear
relation between “YY BG_at” and the response variable seems to have a better fit than
linear relation after removing the effects of other predictors, and so, the specification
of the sparse semiparametric regression model can be written as

y = X1β1 + X2β2 + f (t) + ε, t = YY BG_at (6.1)

where p1 = 65 and p2 = 4022.
For estimating the nonparametric part of the model, f (t), we use the Gaussian

kernel method (see [17] for more details).
To use the approach (5.2), we set M = 1. Also, the method has been applied

by CPLEX version 12.6.1. In Table 1, we present the estimates of the coefficients
of the effective parametric genes in SRM based on the proposed estimators. We
numerically calculated RSS = ( yD − XDβ̂)�( yD − XDβ̂) for GDURE, GDRRE
and GDNMPE. It is a measure of the error or goodness of the prediction. As seen,
the mixed-integer programming model fits the data better than the others. Finally, we
estimated the nonparametric effect ( f (YY BG_at)) after estimating the linear part
by GDURE, GDRRE, and GDNMPE using kernel regression method in Figure 5,
i.e., we used kernel fit to regress Z = y − Xβ̂ on YY BG_at .

Some Simulation Studies

In this subsection, based on some simulation studies, we examine the performance of
the three different proposed methods.We also evaluate the efficiency of the proposed
estimator in the high-dimensional cases.

To achieve different degrees of collinearity, following [15] and [11] the predictor
variables were generated for n = 50 and p = {150, 180} (high-dimensional) from
the following model:
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Table 1 Estimation of the coefficients of the effective genes based on the proposed methods for
the riboflavin data set
Method GDURE GDRRE GDNMPE

Label of the gene Coefficient
estimation

Coefficient
estimation

Label of the gene Coefficient
estimation

ALST_at -1.217731e-04 -0.544607 ACCA_at 0.727057

AMY X_at 9.259859e-05 0.919408 BI RA_s_at 2.738694

ARAA_at −2.423074e-05 −2.251603 ARGH_at −6.137601

ARAM_at 1.038319e-05 0.154134 FL I F_at −0.147270

ARGF_at 9.567998e-06 −0.231887 Y QAG_at −0.009113

BI OB_at 2.006911e-05 0.275029 GGAA_at 1.310371

COT JC_at -8.900675e-05 0.097685 GU AB_at 1.261439

DEGA_at -7.891485e-05 0.284943 LCT E_at −1.044405

LCT P_at -2.722333e-05 −0.461230 L IC A_at −1.629179

LEV F_at −9.970859e-05 −0.192662 NT H_at -2.594287

LY SC_at −2.017575e-04 −0.175473 OPPC_at −1.381273

MET K_at 5.225437e-05 −0.112374 PHRK_at 0.997843

PU RR_at 9.816026e-06 1.145270 PU RF_at 2.101418

SACB_at −1.660888e-05 −0.198362 RAPK_at −1.624683

sigM_at 2.683243e-05 0.680754 RPL J_at 0.459227

SI PU_at 4.434275e-05 1.133496 RPLR_at −1.015745

SPO I I AA_at 1.663782e-04 2.417561 SPOV AC_at 6.547311

SPO I I I AB_at 6.611147e-05 -0.469733 Y AAQ_at 0.236426

SPOV AA_at 7.485906e-05 0.052439 YCGO_at 0.341390

SSPF_at −7.522401e-05 0.942005 GAP136 − F_at 2.266223

XLY A_at −7.588471e-06 −0.317887 Y DDD_at −0.183998

YCGO_at -7.146751e-05 −0.066030 Y FK S_at −2.356648

YCLC_at −4.752549e-05 −1.841358 Y J BV_at −3.275892

Y DAO_at 7.311426e-05 2.493456 Y FHE_r_at 5.763074

Y DDH_at 1.498316e-04 0.329809 Y K AA_at 0.997701

Y DDK_at −8.059497e-05 −1.389042 Y LMC_at −1.977877

Y EBC_at 1.710338e-04 -0.949894 YMFB_at −0.959574

Y ESV_at 1.118750e-04 0.204742 Y OCH_at 3.111592

Y ET H_at 1.128877e-04 −0.377397 Y OMM_at 1.795015

Y FN A_at 7.938866e-05 -0.065452 Y PUF_at −0.265969

Y HDS_r_at −1.199883e-05 −0.452141 Y QBT_at −1.365757

Y K BA_at 2.273325e-06 1.872915 Y QI D_at 2.578543

Y K NV_at -2.156316e-04 −0.932007 Y RK L_at −4.557744

Y LXH_at 3.120245e-05 2.204903 Y SMA_at 4.428141

YMAH_i_at 6.830865e-05 0.840069 YT I A_at 2.820209

(continued)
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Table 1 (continued)
Method GDURE GDRRE GDNMPE

Label of the gene Coefficient
estimation

Coefficient
estimation

Label of the gene Coefficient
estimation

Y N EF_at 3.127307e-05 −1.468254 YU RM_at −3.312196

Y OAB_at 2.563135e-05 −2.816168 YU RX_at −5.979373

Y OAC_at 7.150370e-05 −1.254557 YUSF_at 0.745406

Y OBR_at 1.002874e-04 0.741075 YU XO_at −3.287791

Y OMT_at 4.739930e-05 −0.858392 YV AV_at 1.191750

Y PGA_at 3.997361e-06 0.573591 YV SG_at 1.353822

Y QAE_at −9.920698e-05 −0.135255 YWGB_at −3.995705

Y QJ S_at 1.296992e-04 0.486399 Y X I E_at 2.759543

Y QJT_at −5.189563e-05 −0.206190 Y XLC_at −0.336443

Y QJU_at −2.620583e-05 −1.199482 Y XLE_at −4.824330

Y RV J_at −1.465138e-04 0.260066 YCNF_at 2.096664

YTGB_at 7.351869e-06 0.723246 YCZF_at 0.884965

YT I P_at −2.278199e-05 −2.044283 Y DGK_at −0.828611

YU I D_at 5.021464e-05 0.070762 Y EEC_at −0.119783

YULC_at −2.068166e-04 1.784028 ACOA_at −2.877613

YU RQ_at −9.043668e-05 −0.964982 Y K BA_at −2.137831

YUSJ_at 3.517705e-05 −0.125736 Y K NW_at 1.305234

YUSL_at 4.404325e-05 −0.432172 Y K OU_at −0.103588

YV FM_at 4.438915e-05 0.385502 Y KUL_at 2.830268

YV FO_at −5.643278e-05 −0.552383 Y LOH_at −4.062187

YV OA_at −2.689035e-05 −1.884981 Y O J L_at −1.293150

YV RG_at −1.404958e-06 −0.162089 Y OMT_at 1.942282

YW RO_at −2.906734e-05 2.064755 Y ONV_at 2.903451

Y XEH_at 4.383370e-05 1.285049 Y PUG_at 0.879176

Y X I B_at 1.732469e-06 −0.691739 Y QK E_at 0.291981

Y XK I_at −8.541844e-05 -0.403996 Y RBA_at −2.288893

Y XLD_at −-9.640283e-06 −0.413108 YW PF_at −0.208449

Y XLE_at 4.286699e-05 −0.103899 Y X I T_at 0.118111

YY BI_at −1.379380e-05 0.584797 Y XLG_at 0.884451

YYCP_at −1.072422e-04 0.571022 YY ZE_at 3.072341

RSS 69.41865 2.019622 RSS 0.367467

xi j = (1 − γ 2)
1
2 zi j + γ zip, i = 1, 2, ..., n, j = 1, 2, . . . , p, (6.2)

where zi j ’s are independent standard normal pseudo-random numbers and γ is spec-
ified so that the correlation between any two explanatory variables is given by
γ 2 = 0.75. These variables are then standardized so that X�X and X� y are in
correlation forms. The observations for the dependent variable are determined by

y = Xβ + f (t) + ε, (6.3)
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where

β =
⎛

⎝0, . . . , 0︸ ︷︷ ︸
20

, 2, . . . , 2︸ ︷︷ ︸
20

, 0, . . . , 0︸ ︷︷ ︸
20

,−2, . . . , 2︸ ︷︷ ︸
20

, 0, . . . , 0︸ ︷︷ ︸
p−80

⎞

⎠
�

and
f (t) = exp

(
sin(t) ∗ cos(3 ∗ t)

) ∗ exp(sqrtt), t ∈ [0, 3].

Let again β = (β1,β2)
�, where β1 denotes the coefficients of effective variables of

β while β2 denotes the coefficients of non-effective variables. Also, we considered
ε ∼ Nn(0, σ 2 In), σ 2 = 0.64.

We use a first-order differencing coefficients to estimate the linear parameters of
model (6.3). We also use the following criteria and ([29]) to assess the numerical
performance:

• MMEpresents the median of themodel error (ME)measure of an estimator, where
ME = (β − β̂)�(β − β̂);

• C shows the average number of zero coefficients correctly estimated to be zero;

Table 2 Properties of the proposed estimators for the simulated data sets

p 150 180

GDURE MME 161.79214 167.50962

C 1.00000 0.66667

IC 0.00000 0.00000

U–fit 0.00000 0.00000

C–fit 0.30978 0.29609

O–fit 0.69022 0.70391

GDRRE MME 113.41205 123.10328

C 16.00000 29.33333

IC 0.03031 0.02857

U–fit 0.06383 0.07826

C–fit 0.26894 0.28406

O–fit 0.66723 0.63768

GDNMPE MME 157.99010 154.36350

C 105.33333 138.00000

IC 38.00000 37.33333

U–fit 0.55556 0.53617

C–fit 0.41975 0.44893

O–fit 0.02469 0.01490
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• IC shows the average number of nonzero coefficients incorrectly estimated to be
zero;

• U–fit (Under fit) shows the proportion of excluding any significant variables;
• C–fit (Correct fit) presents the proportion of selecting the exact subset model;
• O–fit (Over fit) shows the proportion of including all three significant variables
and some noise variables.

Table 2 displays a summary of the results obtained from the simulation studies.
According to this table, the number of explanatory variables anddegree of collinearity
affect the performances of GDURE and GDRRE in the sense of MME criterion, i.e.,
as they increase theMMEofGDUREandGDRREoften increases, whereas this issue
is not observed for GDNMPE. GDRRE may only reduce ME criterion and does not
reduce model complexity (MC) criteria since it does not shrink the coefficients of
non-effective explanatory variables to zero. GDNMPE has an advantage compared
to the GDRRE since it shrinks the coefficients of non-effective explanatory variables
to zero even if it has a largerME compared to the GDRRE. In other words, GDNMPE
performs better than the other estimators in the sense of MC criteria.

7 Summary and Conclusions

In this chapter, under sparsity assumption on some elements of β, we proposed a
penalized estimator based on nonlinear mixed-integer programming in a semipara-
metric regression model. Finally, a real-data example and some simulated data sets

Fig. 4 Added-variable plot
of explanatory variables
YY BG_at vs. dependent
variable, linear fit (red solid
line) and kernel fit (blue
dashed line)
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Fig. 5 Fitted curves of nonparametric part of model (6.1) by proposed methods for the riboflavin
data set

were analyzed to evaluate the performance of the proposed estimator numerically. In
the real example study, as it can be seen fromFig. 4, the nonlinear relation between the
dependent variable and YYBG_at can be detected and so, the pure parametric model
does not fit to the data and semiparametric regression model fits more significantly.
Further, from Table 1 and Fig. 5, it can be deduced that GDNMPE is efficient in the
sense of RSS criterion. In the simulated data sets, from Table 2, it can be deduced
that GDNMPE is quite efficient in the sense of MC criteria. Moreover, because of
the sparsity of the data, GDURE was the worst estimator for the parametric part in
this examples.
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Parsimonious Finite Mixtures of
Matrix-Variate Regressions

Antonio Punzo and Salvatore D. Tomarchio

Abstract Over the years, there has been an increased interest in the analysis of
matrix-variate data. In themodel-based clustering literature, finitemixtures ofmatrix-
variate regressions have been recently introduced. However, a serious concern about
this model is the excessive number of parameters associated with the two covariance
matrices, related to the responses, for each mixture component. To attain parsimony,
the well-known eigen-decomposition is applied to the covariance matrices, yielding
a family of 98 different parsimonious mixture models. Parameter estimation, under
the maximum likelihood paradigm, is carried out via an expectation-conditional
maximization (ECM) algorithm. Our family of models is applied to real data with
the aim to assess their clustering performance and for analyzing their behavior with
respect to other parsimonious mixture models.

1 Introduction

The importance of finite mixture models in statistical data analyses is underlined
by the high volume of articles about mixture applications present in the statistical
and general scientific literature. Because of their flexibility, mixture models are a
convenient statistical tool for modeling a wide range of phenomena characterized by
unobservedheterogeneity, and constitute a powerful device for clustering and classifi-
cation (for more details, see, e.g., [1]). In many analyses, mixture models are used for
modeling one or more variables, and they are referred to as unconditional finite mix-
ture models. However, when covariates are available, useful clustering insights can
be gained by accounting for functional dependencies of the responses on the covari-
ates [2]. To this purpose, finite mixtures of regressions (FMR) have been proposed
in the literature (see, e.g., [3, 4]). Finite mixtures of regressions with concomitant
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variables ([5]) are an extension of the FMR obtained by allowing the mixing weights
to depend on some concomitant variables (which often coincide with the covariates)
via a multinomial logistic regression. This model is also known as the mixture of
experts (MoE). Both types of models have been extensively investigated in the uni-
variate and multivariate model-based clustering literature (for recent contributions
see, e.g., [2, 6–9]). However, in the last decade there has been an increased interest
in the application of finite mixture models to matrix-variate (or three-way) data. This
data structure can occur in several and different application domains, such as mul-
tivariate longitudinal data, multivariate spatio-temporal data, multivariate repeated
measures, multivariate spatial data, and multivariate time-series [10]. In all these
cases we observe p variables measured in r different situations on N observations,
so that the data can be arranged in a three-way array characterized by the following
three dimensions: variables (rows), situations (columns) and observations (layers).
In other terms, we have a p × r matrix for each statistical observation.

The main contributions in this field have focused on unconditional finite mixture
models (see, e.g., [10–17]). The first attempt of extending the FMR to the matrix-
variate framework is due to [18], who consider mixtures of matrix regression time
series for modeling crime data. Another matrix-variate regression-based proposal
has been recently introduced by [19]. These models, in addition to make possible
an assessment of the functional relationship among a set of p × r responses and a
set of q × r covariates, can implicitly introduce parsimony in the mean matrices if
q is smaller than r . Nevertheless, the potential overparameterization issue caused
by the matrix-variate data structure remains a crucial problem, especially when the
sample size is small, the dimension of the matrices is high or both aspects occur.
Thus, in this work we extend this branch of literature by proposing parsimonious
finite mixtures of matrix-variate regressions (FMMVR). Specifically, we introduce
parsimony via the eigen-decomposition of the component covariance matrices, in
the fashion of [14, 20, 21], producing a family of 98 parsimonious FMMVR (for
another approach used in the matrix-variate framework to attain parsimony in the
component covariance matrices, see [22]). We present our family of parsimonious
models in Sect. 2, along with an expectation-conditional maximization (ECM) algo-
rithm for parameter estimation. In Sect. 3, we first assess model selection using the
Bayesian information criterion (BIC; [23]) and the integrated completed likelihood
(ICL; [24]) on simulated data. The classification performance of the best fitting mod-
els according to BIC and ICL is also evaluated. Then, we apply our parsimonious
models to a real dataset concerning students careers’ indicatorsmeasured for families
of degree courses among the non-telematics Italian universities. The computational
times required to fit our parsimonious FMMVR are reported. Our parsimonious
FMMVRs are also compared to other existing parsimonious competitors. Firstly,
we consider an unconditional baseline clustering method for the responses, based
on parsimonious matrix-variate normal mixtures (MVNM) [14]. Furthermore, on the
pr -dimensional vectorized data, we fit the four families of parsimoniousmultivariate
models discussed in [25], which include
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• multivariate normal mixtures on the responses (MNM);
• multivariate FMR (MFMR);
• multivariate gating network MoE (MgMoE);
• multivariate full MoE (MfMoE).

Thus, we are considering both multivariate unconditional and regression-based fam-
ilies of parsimonious models. Finally, we give conclusions and avenues for further
research in Sect. 4.

2 Methodology

Parsimonious Matrix-Variate FMR

Let Y ∈ R
p×r be a random matrix containing p responses measured in r occasions.

Moreover, suppose we observe a set of q covariates for each occasion, in the form
of a matrix X ∈ R

q×r . A generic matrix-variate regression model [26] for Y has the
form

Y = BX∗ + U, (1)

where B is the p × (1 + q) matrix of regression coefficients, X∗ is the (1 + q) × r
matrix containing X and information about the intercept, and U is the error term
matrix of dimension p × r . In this paper we assume, as usual for FMMVR models,
that Y |X has a MVN distribution with p × r mean matrix BX∗, p × p row covari-
ancematrix�, and r × r column covariancematrix�; for notational conveniencewe
write Y |X ∼ Np×r (BX∗,�,�). Therefore, the probability density function (pdf)
of Y |X is

fMVN(Y ; BX∗,�,�) = (2π)−
pr
2 |�|− r

2 |�|− p
2 exp

{− 1
2 tr

[
�−1(Y − BX∗)�−1(Y − BX∗)′

]}
.

(2)
Suppose that there exist K disjoint clusters in the data. Thus, the conditional

distribution of Y |X , according to a FMMVR with K components, can be written as

p(Y |X;�) =
K∑

k=1

πk fMVN

(
Y ; BkX∗,�k,�k

)
, (3)

where πk > 0 is the mixing weight, with
∑K

k=1 πk = 1, and� = {πk , Bk , �k , �k}Kk=1.
One concern related to model (3) is the possible high number of parameters to be

estimated. To address this issue, we consider the eigen-decomposition of the compo-
nent covariance matrices. In detail, a t × t covariance matrix�k can be decomposed
as

�k = λk�k�k�
�
k , (4)
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Table 1 Nomenclature, covariancematrix structure, and number of free parameters in�1, . . . ,�K
for the parsimonious models obtained via the eigen-decomposition of the component covariance
matrices

Family Model Type Volume Shape Orientation # of free
parameters
in
�1, . . . ,�K

Spherical EII λI Equal Spherical – 1

Spherical VII λk I Variable Spherical – K

Diagonal EEI λ� Equal Equal Axis-
Aligned

t

Diagonal VEI λk� Variable Equal Axis-
Aligned

K + t − 1

Diagonal EVI λ�k Equal Variable Axis-
Aligned

K (t − 1) +
1

Diagonal VVI λk�k Variable Variable Axis-
Aligned

Kt

General EEE λ���� Equal Equal Equal t (t + 1)/2

General VEE λk���� Variable Equal Equal t (t +
1)/2 + K −
1

General EVE λ��k�
� Equal Variable Equal t (t −

1)/2 +
K (t − 1) +
1

General VVE λk��k�
� Variable Variable Equal t (t −

1)/2 + Kt

General EEV λ�k���
k Equal Equal Variable Kt (t −

1)/2 + t

General VEV λk�k���
k Variable Equal Variable Kt (t −

1)/2 + K +
t − 1

General EVV λ�k�k�
�
k Equal Variable Variable Kt (t +

1)/2 − K +
1

General VVV λk�k�k�
�
k Variable Variable Variable Kt (t +

1)/2

where λk = |�k |1/t , �k is a t × t orthogonal matrix whose columns are the nor-
malized eigenvectors of �k , and �k is the scaled (|�k | = 1) diagonal matrix of the
eigenvalues of �k . Geometrically, λk determines the volume, �k indicates the orien-
tation, and�k determines the shape of the kth cluster. By imposing constraints on the
three components of (4), the fourteen parsimonious models of Table 1 are obtained.

Considering that in (3) we have two covariance matrices for each mixture compo-
nent, this would yield to 14 × 14 = 196 parsimonious FMMVR. However, there is a
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non-identifiability issue, since � ⊗ � = �∗ ⊗ �∗ if�∗ = a� and�∗ = a−1�. As
a result, � and � are identifiable up to a multiplicative constant a [14]. To avoid this
issue, the column covariance matrix � is restricted to have |�| = 1, implying that
in (4) the parameter λk is unnecessary. This reduces the number of models related
to� from 14 to 7, i.e., I,�,�k,����,��k�

�,�k���
k ,�k�k�

�
k . Therefore, we

introduce 14 × 7 = 98 parsimonious FMMVR.

Maximum Likelihood Estimation

Maximum likelihood (ML) is the traditional approach to estimate the parameters of
model (3). ML estimates can be computationally obtained by using the expectation-
conditional maximization (ECM) algorithm [27]. The ECM algorithm differs from
the well-known expectation-maximization (EM) algorithm [28] because the M-step
is replaced by a sequence of simpler and computationally convenient CM-steps.

Let S = {(Y i , X i )}Ni=1 be a random sample of N independent observations from
model (3). In the FMR framework, S is viewed as being incomplete because, for
each observation, we do not know its component membership. To govern this source
of incompleteness, we use an indicator vector zi = (zi1, . . . , ziK ), where zik = 1
if observation i is in group k, and zik = 0 otherwise. Now, the complete-data are
Sc = {(Y i , X i , zi )}Ni=1 and the complete-data log-likelihood is

lc (�|Sc) =
N∑

i=1

K∑

k=1

zik ln (πk) +
N∑

i=1

K∑

k=1

zik
[
− pr

2
ln (2π) − r

2
ln |�k |

− p

2
ln |�k | − 1

2
tr

[
�−1

k (Y i − BkX∗
i )�

−1
k (Y i − BkX∗

i )
′]
]

. (5)

In the following, the quantities marked with one dot correspond to the updates at
the previous iteration and those marked with two dots represent the updates at the
current iteration. After initialization, done by implementing the approach discussed
in [16], the ECM algorithm proceeds as follows.

E-Step

The E-step requires calculation of the conditional expectation of (5), given the
observed data and the current estimate of the parameters �̇. To do this, we need
to calculate

z̈ik = E�̇ [Zik |X i ,Y i ] = π̇k fMVN

(
Y i ; ḂkX∗

i , �̇k, �̇k
)

K∑

j=1
π̇ j fMVN

(
Y i ; Ḃ jX∗

i , �̇ j , �̇ j
)
, (6)
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which corresponds to the posterior probability that the unlabeledobservation (Y i , X i )

belongs to the kth component of the mixture.

CM-Step 1

Consider � = {�1,�2}, where �1 = {πk, Bk,�k}Kk=1 and �2 = {�k}Kk=1. At the
first CM-step, we maximize the expectation of the complete-data log-likelihood with
respect to �1, fixing �2 at �̇2. In particular, we obtain

π̈k =
∑N

i=1 z̈ik
N

and B̈k =
[

N∑

i=1

z̈ikY i �̇
−1
k X∗�

i

] [
N∑

i=1

z̈ikX∗
i �̇

−1
k X∗�

i

]−1

. (7)

The update for �k depends on the parsimonious structure considered. For notational
simplicity, let V̈ = ∑K

k=1 V̈ k be the update of the within component row scatter

matrix, where V̈ k = ∑N
i=1 z̈ik

(
Y i − B̈kX∗

i

)
�̇

−1
k

(
Y i − B̈kX∗

i

)′
is the update of the

row scatter matrix related to the kth component. The updates for the 14 parsimonious
structures of �k are:

• Model EII [�k = λI]

λ̈ = tr
{
V̈

}

pr N
;

• Model VII [�k = λk I]

λ̈k = tr
{
V̈ k

}

pr
∑N

i=1 z̈ik
;

• Model EEI [�k = λ�]

�̈ = diag
(
V̈

)

∣∣diag
(
V̈

)∣∣
1
p

and λ̈ =
∣∣diag

(
V̈

)∣∣
1
p

r N
;

• Model VEI [�k = λk�]

�̈ =
diag

(
K∑

k=1
λ̇−1
k V̈ k

)

∣∣∣∣diag
(

K∑

k=1
λ̇−1
k V̈ k

)∣∣∣∣

1
p

and λ̈k =
tr
{
�̈

−1
V̈ k

}

pr
∑N

i=1 z̈ik
;

• Model EVI [�k = λ�k]
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�̈k = diag
(
V̈ k

)

∣∣diag
(
V̈ k

)∣∣
1
p

and λ̈ =

K∑

k=1

∣∣diag
(
V̈ k

)∣∣
1
p

r N
;

• Model VVI [�k = λk�k]

�̈k = diag
(
V̈ k

)

∣∣diag
(
V̈ k

)∣∣
1
p

and λ̈k =
∣∣diag

(
V̈ k

)∣∣
1
p

r
∑N

i=1 z̈ik
;

• Model EEE [�k = λ����]

�̈ = V̈
r N

;

• Model VEE [�k = λk����]

�̈�̈�̈
� =

K∑

k=1
λ̇−1
k V̈ k

∣∣∣∣
K∑

k=1
λ̇−1
k V̈ k

∣∣∣∣

1
p

and λ̈k =
tr
{
(�̈�̈�̈

�
)−1V̈ k

}

pr
∑N

i=1 z̈ik
;

• Model EVE [�k = λ��k�
�] There is no analytical solution for �. Therefore, we

implement an iterative minorization-maximization (MM) algorithm [29]. Specif-
ically, a surrogate function can be constructed as

f (�) =
K∑

k=1

tr
{
V k��−1

k ��} ≤ S + tr
{
Ḟ�

}
,

where S is a constant and Ḟ = ∑K
k=1

(
�−1

k �̇
�
V k − ek�

−1
k �̇

�)
, with ek being the

largest eigenvalue of V k . The update of � is given by �̈ = Ġ Ḣ
�
, where Ġ and Ḣ

are obtained from the singular value decomposition of Ḟ. This process is repeated
until a specified convergence criterion is met and the estimate �̈ is obtained from
the last iteration. Then, we obtain

�̈k =
diag

(
�̈

�
V̈ k�̈

)

∣∣∣diag
(
�̈

�
V̈ k�̈

)∣∣∣
1
p

and λ̈ =

K∑

k=1
tr
(
�̈�̈

−1
k �̈

�
V̈ k

)

pr N
;

• Model VVE [�k = λk��k�
�] Similarly to the EVE case, there is no analytical

solution for�, and its update is obtainedby employing theMMalgorithmdescribed
above. Then, we have
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�̈k =
diag

(
�̈

�
V̈ k�̈

)

∣∣∣diag
(
�̈

�
V̈ k�̈

)∣∣∣
1
p

and λ̈k =
∣∣∣diag

(
�̈

�
V̈ k�̈

)∣∣∣
1
p

r
∑N

i=1 z̈ik
;

• Model EEV [�k = λ�k���
k ] An algorithm similar to the one proposed by [20]

is employed. First of all, consider the eigen-decomposition V k = Lk�kL�
k , with

eigenvalues in the diagonal matrix �k following descending order and orthogonal
matrix Lk composed of the corresponding eigenvectors. Then, we obtain

�̈k = L̈k, �̈ =

K∑

k=1
�̈k

∣∣∣∣
K∑

k=1
�̈k

∣∣∣∣

1
p

and λ̈ =

∣∣∣∣
K∑

k=1
�̈k

∣∣∣∣

1
p

r N
;

• Model VEV [�k = λk�k���
k ] By using the same algorithm applied for the EEV

model, we have

�̈k = L̈k, �̈ =

K∑

k=1
λ−1
k �̈k

∣∣∣∣
K∑

k=1
λ−1
k �̈k

∣∣∣∣

1
p

and λ̈k =
tr
{
�̈k�̈

−1
}

pr
∑N

i=1 z̈ik
;

• Model EVV [�k = λ�k�k�
�
k ]

�̈k�k�
�
k = V̈ k

∣∣V̈ k

∣∣
1
p

and λ̈ =

K∑

k=1

∣∣V̈ k

∣∣
1
p

r N
;

• Model VVV [�k = λk�k�k�
�
k ]

�̈k = V̈ k

r
∑N

i=1 z̈ik
.

CM-Step 2

At the second CM-step, we maximize the expectation of the complete-data log-
likelihood with respect to �2, keeping �1 fixed at �̈1. The update for �k depends
on which of the 7 parsimonious structures is considered. For notational purposes,
let Ẅ = ∑K

k=1 Ẅ k be the update of the within component column scatter matrix,

where Ẅ k = ∑N
i=1 z̈ik

(
Y i − B̈kX∗

i

)′
�̈

−1
k

(
Y i − B̈kX∗

i

)
is the update of the column
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scatter matrix related to the kth component. With the exclusion of the II model, for
which no parameters need to be estimated, we have:

• Model EI [�k = �]

�̈ = diag
(
Ẅ

)

∣∣diag
(
Ẅ

)∣∣
1
r

;

• Model VI [�k = �k]

�̈k = diag
(
Ẅ k

)

∣∣diag
(
Ẅ k

)∣∣
1
r

;

• Model EE [�k = ����]

�̈ = Ẅ
∣∣Ẅ

∣∣
1
r

;

• Model VE [�k = ��k�
�] Similarly to the EVE and VVE models in CM-Step

1, there is no analytical solution for �. Thus, we implement an MM algorithm by
following the same procedure explained for the EVE model in CM-Step 1, but
replacing V with W . Then, we have

�̈k =
diag

(
�̈

�
Ẅ k�̈

)

∣∣∣diag
(
�̈

�
Ẅ k�̈

)∣∣∣
1
r

;

• Model EV [�k = �k���
k ] By using the same approach of the EEV and VEV

models in CM-Step 1, but changing V̈ with Ẅ , we have

�̈k = L̈k and �̈ =

K∑

k=1
�̈k

∣∣∣∣
K∑

k=1
�̈k

∣∣∣∣

1
r

;

• Model VV [�k = �k�k�
�
k ]

�̈k = Ẅ k
∣∣Ẅ k

∣∣
1
r

.



394 A. Punzo and S. D. Tomarchio

Computational and Operative Details

Computation is performed on a Windows 10 PC, with AMD Ryzen 7 3700x CPU,
16.0 GB RAM, using the R 64-bit statistical software. Given the high number of
parsimonious models, we consider parallel computing using 14 cores.

As commonly done in the model-based clustering literature, to select the number
of groups K we use the BIC and the ICL. Furthermore, to assess the clustering
performance of the parsimonious models, we use the well-known adjusted Rand
index (ARI; [30]), that calculates the agreement between the true classification and
the one predicted by the considered model. An ARI of 1 indicates perfect agreement
between the two partitions, whereas the expected value of the ARI under a random
classification is 0.

3 Data Analyses

In this section, we investigate several aspects related to our models by using both
simulated and real data.

Simulated Data

Here, we investigate the capability of BIC and ICL in detecting the data generating
model, and the classifications produced by the best fitting models according to both
the information criteria. Considering the high number of models, we only generate
data from the EEE–EE FMMVR for the sake of simplicity. We set p = 2, r = 10,
q = 3, N = 250, and K = 2. We generate 50 datasets. On each dataset, all the 98
parsimonious FMMVRmodels are fitted for K ∈ {1, 2, 3}, and the best fitting model
according to BIC and ICL is considered.

Overall, we obtained the same results by using both information criteria. The
first aspect we noticed is that the correct K is selected 49 times out of 50. The
only exception is a case where K = 3 is chosen. As concerns the recovering of the
parsimonious covariance structure, 49 times out of 50 the best fitting model has an
EEE–EE structure, with only one case where the VEE–VE structure is preferred.
Lastly, in terms of classification, we obtained an average ARI of 0.99 indicating a
practically perfect clustering of the data.

Real Data

Data Description

The National Agency for the Evaluation of Universities and Research Institutes
(ANVUR) plays a fundamental role in the Italian higher education system. Among
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its tasks, this agency maintains data on Italian universities’ quantitative indicators
concerning the academic careers of the students as well as the results of their teaching
activities. Such data are considered in the following. Specifically, N = 75 degree
families in the non-telematics Italian universities are analyzed. According to Italian
law, each family represents a set of degrees sharing a similar topic andhaving identical
legal value. There are K = 2 groups in the data: the first is composed of 33 families
of bachelor’s degrees while the second is constituted by 42 families of master’s
degrees. Considering the relatively small sample size, it might be useful to consider
parsimonious models.

For this application, we consider the following p = 2 responses that measure the
level of completion of studies by students:

1. the percentage of students that graduate within T years,
2. the percentage of students that drop after T + 1 years,

where T is the normal duration of the study program. Then, the following q = 3
covariates are taken into account:

1. the percentage of course credits earned in thefirst year over the total to be achieved,
2. the percentage of first year students that have earned at least 1/3 of the first year

course credits,
3. the percentage of students that have earned at least 40 course credits during the

solar year.

All these indicators are measured over r = 3 years. Every family of degrees is mea-
sured at the national level, i.e., the value of each indicator corresponds to the average
of all the degrees belonging to the same family, across the country, for the reference
year.

Results

We fit the competing parsimonious models to the data for K ∈ {1, 2, 3}. Relatedly,
to fit the multivariate models mentioned in Sect. 1, we use the MoEClust package
[31]. Before showing the clustering results, we report in Table 2 information on
the computational times taken by fitting the 98 parsimonious FMMVR sequentially
(default in R) and by parallelizing them on 14 cores. Aswe can see, the computational
burden is greatly reduced, and all the models can be fitted in a reasonable fast way.
More in detail, by analyzing the sequential times, the fastest fitted model (0.09 s.)
is the EVI–VI FMMVR with K = 1, whereas the slowest (4.88 s.) is the EII–EE
FMMVR with K = 3.

Table 3 presents the parsimonious structure, number of groups K , ARI and number
of estimated parameters of the best models selected by BIC and ICL (which provide
the same results), for each family of models.

By starting with the analysis of the parsimonious matrix-variate models, we can
see that for both MVNM and FMMVR the best model has an EVI–EE parsimonious
structure and K = 2 groups. However, differently from the EVI–EE MVNM, the
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Table 2 Computational time (in seconds) for fitting our 98 parsimonious FMMVR sequentially or
via parallel computing, for each value of K

K Sequential Parallel

1 32.40 5.83

2 154.72 16.17

3 176.71 16.64

Table 3 Parsimonious configuration, number of clusters (K ), ARI and number of estimated param-
eters of the best models selected by BIC and ICL, for each family of models

Model Parsimonious
configuration

K ARI # of parameters

MVNM EVI–EE 2 0.84 21

FMMVR EVI–EE 2 1.00 25

MNM EEV 2 0.94 49

MFMR VVV 1 0.00 45

MgMoE VEE 3 0.64 49

MfMoE VVV 1 0.00 45

EVI-EE FMMVRproduces a perfect data classification (ARI= 1). Thus, in this case,
taking into account a regression structure aided in better clustering performance, at
the cost of only four additional parameters.

When the multivariate models are considered, we notice that the best clustering
result is provided by the EEV MNM with K = 2. It is interesting to note that this
is the only multivariate model for which the true number of groups is selected;
moreover, its classification is better than the one from its matrix-variate counterpart.
Nevertheless, it produces a worse classification compared to the EVI–EE FMMVR.
Furthermore, it should be also noticed the increased number of parameters obtained
by working with multivariate models on the vectorized data. This is because, with the
exclusion of the spherical cases that do not depend on the data dimensionality (see
Table 1), matrix-variate models have the desirable feature of reducing the number
of free covariance parameters [15, 16], adding further parsimony with respect to the
multivariate models.

4 Conclusions

A family of 98 parsimonious FMMVR has been introduced. Parsimony has been
attained by using the eigen-decomposition of the two matrix-variate covariance
matrices (of the responses) for each mixture component. An expectation-conditional
maximization algorithm has been illustrated and used for parameter estimation. Our
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family of models has been fitted to simulated data and to a real dataset concerning
Italian universities’ quantitative indicators alongwithmatrix-variate andmultivariate
parsimonious competitors. We first illustrated that BIC and ICL correctly recover the
data generating model on simulated data. Then, on the real dataset, we reported the
computational times for fitting our family of models, that by exploiting parallel com-
puting are quite low. Furthermore, we have investigated the clustering performance
of all the competingmodels, obtaining a perfect data classification onlywhen the best
among our models is considered. The disadvantages of considering the multivariate
models (on the vectorized data) with respect to matrix-variate models, in terms of
number of estimated parameters, have been also illustrated.

Possible directions for future work in this area include the use of other matrix-
variate distributions for the error term of each mixture component. For example, to
accommodate skewness, families of transformations leading to near-normality [13,
18, 32] or skewed matrix-variate distributions [33, 34] could be considered. Another
possible avenue could be to extend our models in a tensor-variate framework, in line
with the work of [35] who introduce tensor-variate mixtures.

References

1. McNicholas, P. D. (2016). Mixture model-based classification. Boca Raton: Chapman and
Hall/CRC Press.

2. Murphy, K., &Murphy, T. B. (2020). Gaussian parsimonious clustering models with covariates
and a noise component. Advances in Data Analysis and Classification, 14, 293–325.

3. DeSarbo, W. S., & Cron, W. L. (1988). A maximum likelihood methodology for clusterwise
linear regression. Journal of classification, 5(2), 249–282.

4. Frühwirth-Schnatter, S. (2006). Finite mixture and Markov switching models. New York:
Springer Science & Business Media.

5. Dayton, C. M., & Macready, G. B. (1988). Concomitant-variable latent-class models. Journal
of the American Statistical Association, 83(401), 173–178.

6. Chamroukhi, F. (2017). Skew t mixture of experts. Neurocomputing, 266, 390–408.
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Robust Multivariate Modelling for
Heterogeneous Data Sets with Mixtures
of Multivariate Skew Laplace Normal
Distributions

Fatma Zehra Doğru and Olcay Arslan

Abstract Modellingmultivariate heterogeneous datawith taking into account skew-
ness and thick-tailedness is a challenging problem. Finitemixturemodel ofmultivari-
ate normal distributions is often considered for modelling heterogeneous data sets
in multivariate settings. However, in real-life problems, besides heterogeneity of the
data sets, they may have skewed and/or heavy-tailed empirical distributions so that
modelling with finite mixture of normal distributions may not provide an adequate
model to represent all the features of data. Finite mixtures of more flexible multivari-
ate distributions have been introduced in the literature to simultaneously overcome
heterogeneity, skewness and heavy-tailedness in multivariate data sets. In this study,
using the favourable properties of the multivariate skew Laplace normal (MSLN)
distribution proposed by [13, 14], we introduce finite mixtures of MSLN distribu-
tions that can be considered as an alternative mixture model to deal with skewness
and heavy-tailedness simultaneously inmultivariate heterogeneous data sets.Wewill
propose the maximum likelihood (ML) estimation method to estimate the param-
eters of finite mixtures of MSLN distributions via the expectation-maximization
(EM) algorithm proposed by [10]. We will provide a simulation study and a real data
example to demonstrate the performance and the applicability of proposed mixture
model.

1 Introduction

Finite mixture models provide a wide range of applicability in many fields such
as classification, cluster and latent class analysis, density estimation, data mining,
image analysis, genetics, medicine, pattern recognition, etc. Further, these models
are very useful because of their huge flexibility and approximation ability of com-
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400 F. Z. Doğru and O. Arslan

plex densities in modelling heterogeneous data set with multimodality, skewness
and heavy-tailedness simultaneously. One can find broad studies on finite mixture
models and applications, for instance, the monographs by [9, 17, 20, 30, 31, 33,
44], the edited volume of [34] and also the papers by [7, 19].

Some flexible distributions have been proposed tomodel multivariate skew and/or
heavy-tailed data sets. For instance, the multivariate skew-normal (MSN) distri-
bution was proposed by [4, 23] for modelling skewness in multivariate settings
deviating from normality. However, the MSN distribution fails in modelling heavy-
tailedness. Further, the multivariate skew and heavy-tailed data sets are modelled
using multivariate skew-t (MST) distribution proposed by [28, 40] and multivariate
skew-t-normal (MSTN) distribution recently proposed by [29]. However, these two
multivariate skew and heavy-tailed distributions have been generated using multi-
variate t-distribution and it is known that the t-distribution has an extra parameter
called degrees of freedom which usually causes computational intensity. Addition-
ally, multivariate skew generalized Laplace normal (MSGLN) distribution is pro-
posed by [45] for modelling skew and heavy-tailed multivariate data settings. Both
MSTN and MSGLN distributions can be used for modelling skew and heavy-tailed
multivariate heterogeneous data settings.Alternatively, themultivariate skewLaplace
normal (MSLN) distribution was proposed by [13, 14] for modelling both skewness
and heavy-tailedness in multivariate data sets which is a special case of the MSGLN
distribution. We note that if the parameter α in the MSGLN distribution equals
(p + 1)/2 the distribution will be the MSLN distribution. The MSLN distribution
is also more practicable than the MSN distribution owing to its extensive range of
skewness and heavy-tailedness for modelling multivariate data sets. In spite of their
usefulness for modelling skew and heavy-tailed multivariate data sets, the MST and
MSTN distributions have an extra degrees of freedom parameter and the MSGLN
distribution includes an extra shape parameter, which represents a very broad form
of these families with several parameters. These extra parameters cause more com-
putational time in the estimation procedure. On the other hand, for the MSLN case,
there are only three parameters to deal with and this enables computational easiness.
Because of this important advantage, the MSLN distribution will be an alternative
to recently proposed MSTN and MSGLN distributions to model both skewness and
heavy-tailedness in the multivariate data settings.

Furthermore, concerning heterogeneous multivariate skew and/or heavy-tailed
data sets, [37] proposed finite mixtures of multivariate t distributions to model het-
erogeneous multivariate heavy-tailed data sets as an extension of finite mixtures of
multivariate normal distributions. Also, finite mixtures of MSN distributions were
proposed by Lin (2009) to model heterogeneous multivariate skew data sets as an
alternative to the finite mixtures of multivariate normal distributions. However, both
multivariate t andMSN distributions lack the flexibility and robustness for modelling
skewness and heavy-tailedness simultaneously. For this purpose, in heterogeneous
multivariate data sets, finite mixtures of MST distributions by [28, 40] and finite
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mixtures of MSTN distributions by [29] have been introduced for modelling both
skewness and heavy-tailedness. Recently, finite mixtures of multivariate scale-shape
mixtures of skew-normal distributions have been proposed by [45]. To gain both
modelling skewness and heavy-tailedness simultaneously in multivariate heteroge-
neous data sets and more superiority in computation tractability than given models
in literature, we generalize the MSLN distribution to finite mixtures of MSLN dis-
tributions as a competitive alternative to finite mixtures of MSTN distributions and
finite mixtures of MSGLN distributions.

The remainder of the paper is designed as follows. Section2 describes some nota-
tions and properties of the MSLN distribution. Section3 introduces finite mixtures
of MSLN distributions and offers an EM algorithm for the ML estimators of the pro-
posed model. Also, in the same section, the initial values for the EM algorithm and
empirical information matrix of finite mixtures of MSLN distributions to calculate
the standard errors of the proposed model are given. Section4 tests the applicability
of the proposed model with a simulation study and a real data example. Section5
gives some conclusions.

2 The MSLN Distribution

A random vector Y ∈ Rp is said to have the MSLN distribution proposed by [13,
14] (Y ∼ MSLN (μ, �,λ)) if its stochastic representation is given as follows:

Y = μ + �1/2

⎡
⎣ λ|U1|√

V
(
V + λTλ

) + (
V Ip + λλT

)−1/2
U2

⎤
⎦ , (1)

where μ ∈ Rp, � is a positive definite matrix,U1 ∼ N (0, 1) ,U2 ∼ Np
(
0, Ip

)
and

V has the inverse gamma distribution with the following probability density function
(pdf):

g (v) = 1

�
(

p+1
2

)
2

p+1
2

v
−
(

p+1
2 +1

)
e− 1

2v , v > 0. (2)

Here, the random variables U1,U2 and V are mutually independent. Note that the
stochastic representation given in (1) will be useful for generating random numbers
and implementing the steps of the EM algorithm in the ML estimation. Further, let

γ =
√
V−1

(
V + λTλ

)|U1|. Then, the hierarchical representation of MSLN distribu-
tion is given below:
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Y | (γ, v) ∼ Np

(
μ + �

1
2 λγ

v + λTλ
, �

1
2
(
vIp + λλT

)−1
�

1
2

)
,

γ |v ∼ T N

(
0,

v + λTλ

v
; (0,∞)

)
,

v ∼ g (v) , (3)

where T N (·) denotes the truncated normal distribution. Using this hierarchical rep-
resentation we can give the following joint pdf of Y , γ, and V :

f ( y, γ, v) = 1

2pπ
p+1
2 |�| 1

2

v− 3
2 e− 1

2v

�
(

p+1
2

) exp

{
−1

2

(
vuT u + (

γ − λT u
)2)}

, (4)

where u = �− 1
2 (y − μ). Taking the integral of (4) over γ gives the following joint

density of (Y , V ):

f ( y, v) = 1

2p− 1
2 π

p
2 |�| 1

2

v− 3
2 e− 1

2v

�
(

p+1
2

) exp

{
−vuT u

2

}
�
(
λT u

)
. (5)

Then, the marginal pdf of Y will be obtained by integrating (5) over v:

fMSLN ( y;μ, �,λ) = 2 fMLap ( y;μ, �) �
(
λT�− 1

2 ( y − μ)
)

, (6)

where μ ∈ Rp is a location parameter, λ ∈ Rp is a skewness parameter, � is the
scatter matrix and fMLap (·;μ, �) denotes the pdf of multivariate Laplace (MLap)
distribution with the location vector μ and the scatter matrix �. Here, the MLap
distribution is a special case of the multivariate Kotz-type distribution studied by [36,
38] that its pdf is given by

fMLap ( y;μ, �) = |�|− 1
2

2pπ
p−1
2 �

(
p+1
2

)e−
√

( y−μ)T �−1( y−μ) , y ∈ Rp, p ≥ 1, (7)

(one can see the papers [16, 18, 22, 26, 35] for further information). We note that
there are other extensions of the univariate Laplace distribution called MLap distri-
bution such as studied by [2, 25]. Additionally, the pdf given in (7) can be obtained as
a scale mixture of the multivariate normal (MN) distribution (e.g. see [21, 26]). As it
was stated by [3], using the scale mixture approach provides MLap distribution has a
longer tail than the MN distribution which enables a wider study field in robust mod-
elling. However, theMLap distribution is not well enough for modelling skewness in
the data despite being a heavy-tailed alternative to the MN distribution. For this rea-
son, a skew extension of the MLap distribution that is the MSLN distribution can be
used neediness of modelling skewness and heavy-tailedness simultaneously. To have
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Fig. 1 Two examples of MSLN densities for μ = (0, 0)T , � = I,λ = (1, 1)T (left side) and μ =
(0, 0)T , � = I,λ = (1,−0.5)T (right side)

some ideas about the shape of the MSLN distribution, we plot its pdf along with the
contour plots for two-dimensional case. Figure1 shows the plots for λ = (1, 1)T and
λ = (1,−0.5)T . These plots depict the peakedness, heavy-tailedness and skewness
of the MSLN distribution.

Further, dividing (4) by (5) yields the following conditional density function of
γ given Y and V :

f (γ | y, v) = 1√
2π�

(
λT u

) exp
{
−1

2

(
γ − λT u

)2}
. (8)

According to this density function, it is obvious that γ and V are conditionally
independent; therefore, the distribution of γ |Y is given by

γ | y ∼ T N
(
λT u, 1; (0,∞)

)
. (9)

Also, dividing (5) by (6) we have the following conditional density function:

f (v| y) = 1√
2π

v− 3
2 exp

{
1

2
uT u − 1

2

(
vuT u + v−1

)}
. (10)

Thus, the following is another scalemixture representation of theMSLNdistribution
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Y |v ∼ MSNp

(
μ, v−1�, v− 1

2 λ
)

,

v ∼ g (v) . (11)

Let Y ∼ MSLNp (μ, �,λ). Then, the expectation and variance of Y are

E (Y) = μ +
√

2

π
�

1
2 λζ,

Cov (Y) = (p + 1)� − 2

π
�

1
2 λλT�

1
2 ζ 2,

where ζ = E

(
v− 1

2√
v+λT λ

)
can be calculated using numerical methods.

Proposition 1 By the help of the hierarchical representation given in (3), we obtain
the following conditional expectations:

E (V | y) = (
( y − μ)T �−1 ( y − μ)

)− 1
2 ,

E (γ | y) = λT u + φ
(
λT u

)

�
(
λT u

) , (12)

where u = �− 1
2 ( y − μ).

Note that these conditional expectations will be used in the EM algorithm given
in the next section.

3 Finite Mixtures of the MSLN Distributions

Let y1, . . . , yn be a p-dimensional random sample observed from a g-component
mixture of MSLN distributions. The pdf of a g-component finite mixtures of MSLN
distributions is given below:

f ( y|�) =
g∑

i=1

wi fi
(
y;μi , �i ,λi

)
, (13)

wherewi is themixing probabilitywith
∑g

i=1 wi = 1 , 0 ≤ πi ≤ 1 , fi
(
y;μi , �i ,λi

)
shows the pdf of the i th component (pdf of the MSLN distribution) given in (6) and
� = (

w1, . . . ,wg,μ1, . . . ,μg, �1, . . . , �g,λ1, . . . ,λg
)T

is the unknownparameter
vector.
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ML Estimation

We can find the ML estimator of � by maximizing the following log-likelihood
function:

� (�) =
n∑
j=1

log

(
g∑

i=1

wi f
(
y;μi , �i ,λi

))
. (14)

However, since there is not an explicit maximizer of (14), we need a numerical
algorithm to solve the equation given above.Thus, theEMalgorithmproposedby [10]
can be used to obtain the ML estimator of �. Here, we will carry out the following
EM algorithm:

Let Z j = (
Z1 j , . . . , Zgj

)T
be the latent variables with

Zi j =
{
1, if j th observation is coming from the i th component

0, otherwise
(15)

where j = 1, . . . , n and i = 1, . . . , g. To perform the steps of the EM algorithm, we
will take advantage of the stochastic representation of the MSLN distribution given
in (1). Then, the hierarchical representation for finitemixtures ofMSLNdistributions
will be

Y j |γ j , v j , zi j = 1 ∼ Np

⎛
⎝μi + �

1
2
i λiγ j

v j + λT
i λi

, �
1
2
i

(
v j Ip + λiλ

T
i

)−1
�

1
2
i

⎞
⎠ ,

γ j |v j , zi j = 1 ∼ T N

(
0,

v j + λT
i λi

v j
; (0,∞)

)
,

v j |zi j = 1 ∼ g
(
v j
)
. (16)

Let ( y, γ , v, z) be the complete data, where y= (
yT1 , . . . , yTn

)T
, γ= (γ1, . . . , γn),

v = (v1, . . . , vn) and z = (z1, . . . , zn)
T . Using the hierarchical representation given

above and ignoring the constants, the complete data log-likelihood function can be
obtained as

�c (�; y, γ , v, z) =
n∑
j=1

g∑
i=1

zi j

{
logwi − 1

2
log |�i | − 1

2

(
3 log v j + v j

−1
)

−1

2
v j
(
y j − μi

)T
�i

−1
(
y j − μi

)

−1

2

[
γ 2
j − 2γ jβ

T
i

(
y j − μi

) + βT
i

(
y j − μi

) (
y j − μi

)T
β i

]}
. (17)
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Now we can find the ML estimators by maximizing the complete data log-likelihood
function given in (16); however, this function includes latent variables. To get rid
of this latency problem, we should take the conditional expectation of the complete
data log-likelihood function given the observed data y j

E
(
�c (�; y, γ , v, z) | y j

) =
n∑
j=1

g∑
i=1

E
(
Zi j | y j

) {
logwi − 1

2
log |�i | − 3

2
E
(
log Vj | y j

)

−1

2
E
(
Vj

−1| y j
) − 1

2
E
(
Vj | y j

) (
y j − μi

)T
�i

−1 ( y j − μi
) − 1

2
E
(
γ 2
j | y j

)

+ E
(
γ j | y j

)
βT
i

(
y j − μi

) − 1

2
βT
i

(
y j − μi

) (
y j − μi

)T
β i

}
.

(18)

Since some conditional expectations are not related to the parameters, we only
compute the conditional expectations E

(
Vi | yi

)
and E

(
γi | yi

)
with the help of

Proposition 1. On the other hand, the conditional expectation E
(
Zi j | y j

)
can be

calculated using the classical theory of mixture modelling.
Now, we can perform the EM algorithm using the following steps:

EM algorithm:
1. Take initial parameter estimate �(0) and a stopping rule �.
2. E-Step: Calculate the following conditional expectations for k = 0, 1, 2, . . . iter-
ation

ẑ(k)
i j = E

(
Zi j |y j , �̂(k)

)
=

π̂
(k)
i f

(
y j ; μ̂

(k)
i , �̂

(k)
i , λ̂

(k)
i

)

f
(
y j |�̂(k)

) , (19)

v̂(k)
i j = E

(
Vj |y j

) =
((

y j − μ̂
(k)
i

)
T �̂

(k)
i

−1
(
y j − μ̂

(k)
i

))− 1
2
, (20)

γ̂
(k)
i j = E

(
γ j | y j

) = λ̂
(k)
i

T ui j +
φ
(
λ̂

(k)
i

T ui j

)

�
(
λ̂

(k)
i

T ui j

) , (21)

where ui j = �̂
(k)
i

− 1
2

(
y j − μ̂

(k)
i

)
. Using these conditional expectations, the objective

function can be formed as follows:

Q
(
�; �̂

(k)
)

=
n∑
j=1

g∑
i=1

ẑ(k)i j

{
logwi − 1

2
log |�i | − 1

2
v̂(k)
i j

(
y j − μi

)T
�i

−1 ( y j − μi
)

+ γ̂
(k)
i j βT

i

(
y j − μi

) − 1

2
β i

T ( y j − μi
) (

y j − μi
) Tβ i

}
. (22)
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3.M-step:Maximize the Q
(
�; �̂

(k)
)
concerning� to get the (k + 1) th parameter

estimates for the parameters of interest. This maximization produces the following
updating equations:

ŵ(k+1)
i =

∑n
j=1 ẑ

(k)
i j

n
, (23)

μ̂
(k+1)
i =

⎛
⎝

n∑
j=1

ẑ(k)i j

(
v̂(k)i j �̂

(k)
i

−1 + β̂
(k)
i β̂

(k)
i

T
)⎞⎠

−1

×
⎛
⎝

n∑
j=1

ẑ(k)i j

(
v̂(k)i j �̂

(k)
i

−1 y j − γ̂
(k)
i j β̂

(k)
i + β̂

(k)
i β̂

(k)
i

T y j
)⎞⎠ , (24)

�̂
(k+1)
i = 1

∑n
j=1 ẑ

(k)
i j

⎛
⎝

n∑
j=1

ẑ(k)i j v̂(k)i j

(
y j − μ̂

(k)
i

) (
y j − μ̂

(k)
i

)T
⎞
⎠ , (25)

β̂
(k+1)
i =

⎛
⎝

n∑
j=1

ẑ(k)i j ( y j − μ̂
(k)
i )( y j − μ̂

(k)
i )T

⎞
⎠

−1⎛
⎝

n∑
j=1

ẑ(k)i j γ̂
(k)
i j ( y j − μ̂

(k)
i )

⎞
⎠ , (26)

λ̂
(k+1)
i =

(
�̂

(k+1)
i

) 1
2

β̂
(k+1)
i . (27)

4. Repeat E and M steps until the convergence rule ‖�̂(k+1) − �̂
(k)‖ < � is sat-

isfied. Otherwise, the absolute difference of the actual log-likelihood ‖�(�̂(k+1)
) −

�(�̂
(k)

)‖ < � or ‖�(�̂(k+1)
)/�(�̂

(k)
) − 1‖ < � can be used as a stopping crite-

rion (see [12]). Otherwise, the Aitken acceleration-based criterion given in [32]
‖�(k+1) − �

(k+1)∞ ‖ < � can also be used as a stopping criterion, where �(k+1) is the

observed log-likelihood for �̂
(k+1)

and �
(k+1)∞ is the asymptotic estimate of the log-

likelihood at k + 1 iteration

�(k+1)
∞ = �(k) + 1

1 − ε(k)

(
�(k+1) − �(k)

)
.

Here, ε(k) shows the Aitken’s acceleration at k iteration, where ε(k) = �(k+1)−�(k)

�(k)−�(k−1) .

Note that estimators obtained in the EM algorithm will be robust against the out-
liers in the data. For instance, weight v̂i j depends on Mahalanobis distance between
yi and μ for each component and this weight function will be a decreasing function

of
(
y j − μi

)T
�i

−1
(
y j − μi

)
. Therefore, outliers are down-weighted by the related

weights and this makes estimators robust in terms of outliers.
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Initial Values

It is a challenging problem to provide convergence in the EM algorithm. There is a
way based on the k-means clustering algorithm given by [24] summarized as follows.
This method is used by [27–29] and [15].

Steps of initialization:
(i) Perform the K-means clustering algorithm and partition into g groups.
(ii) Set the component labels ẑ(0)

j = {
zi j
}g
i=1 according to the K-means clustering

results.
(iii) The initial values of mixing probabilities, component locations and component
scale variances can be initialized as

ŵ(0)
i =

∑n
j=1 ẑ

(0)
i j

n
, μ̂

(0)
i =

∑n
j=1 ẑ

(0)
i j y j∑n

j=1 ẑ
(0)
i j

,

�̂
(0)
i =

∑n
j=1 ẑ

(0)
i j

(
y j − μ̂

(0)
i

) (
y j − μ̂

(0)
i

)T
∑n

j=1 ẑ
(0)
i j

.

(iv)For the skewness parameters, use the skewness coefficient vector of each clusters.

The Empirical Information Matrix

The standard error of an estimator has a huge importance to explore statistical infer-
ences. The standard errors of ML estimators of mixture model parameters can be
obtained based on the information-based method given by [8]. Hence, we will obtain
the inverse of the empirical informationmatrix to approximate the asymptotic covari-
ance matrix of estimators. This information matrix can be given as

Îe =
n∑
j=1

ŝ j ŝ
T
j . (28)

Here, the individual scores are computed by ŝ j = E�̂

(
∂�cj(�; y j ,γ j ,v j ,z j)

∂�
| y j

)
, j =

1, . . . , n and the complete data log-likelihood function for the j th observation is
represented as �cj

(
�; y j , γ j , v j , z j

)
. Let define S = �

1
2 and � = (

wi ,μi , Si ,λi
)

be the parameter vector. After ignoring constants, we obtain as
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�cj
(
�; y j , γ j , v j , z j

) =
g∑

i=1

zi j

{
logwi − log |Si | − 1

2

(
v juTi jui j +

(
γ j − λT

i ui j
)2)}

,

(29)

where ui j = S−1
i

((
y j − μi

))
. The individual score vector for j th observation ŝ j =(

ŝ j,w1 , . . . , ŝ j,wg−1 , ŝ j,μ1
, . . . , ŝ j,μg

, ŝ j,s1 , . . . , ŝ j,sg , ŝ j,λ1 , . . . , ŝ j,λg

)T
, where si =

vech (Si ). To obtain the closed forms for ŝ j , we take the derivation of �cj according
to the parameters and the derivation yields as

ŝ j,wr = ẑr j
ŵr

− ẑg j
ŵg

, r = 1, . . . , g − 1, (30)

ŝ j,μi
= ẑi j

(
v̂i j Ŝ

−1
i ûi j −

(
γ̂i j − λ̂

T
i ûi j

)
Ŝ−1
i λ̂i

)
, (31)

ŝ j,si = vech
{
−ẑi j

(
2Ŝ−1

i − Diag
(
Ŝ−1
i

))
+ ẑi j v̂i j

(
B̂i j + B̂T

i j − Diag
(
B̂i j

))

− ẑi j
(
γ̂i j − λ̂T

i ûi j
) (

Ĉi j + ĈT
i j − Diag

(
Ĉi j

))}
, (32)

ŝ j,λi = ẑi j
(
γ̂i j − λ̂

T
i ûi j

)
ûi j , (33)

where Ŝi=�̂
1
2
i , ûi j = Ŝ−1

i

((
y j − μ̂i

))
, B̂i j = Ŝ−1

i ûi j ûT
i j , Ĉi j = ûi j λ̂T

i Ŝ
−1
i and ẑi j , v̂i j

and γ̂i j can be calculated by using the equations given in (19)–(21) evaluated at �̂.
At this point, the standard errors of the estimates can be found by using the square
roots of the diagonal elements of Î−1

e .

4 Applications

This part comprises a simulation study and a real data example to demonstrate the per-
formance of estimators for parameters of the proposed multivariate mixture model.
The EM algorithm given in Sect. 3 is used to compute parameter estimates. The
computational details can be summarized as follows:

Notes on computation:
(i) The simulation study and real data example are conducted by MATLAB R2017b
software.
(ii) The stopping rule is set as 10−6 for all numerical computations.
(iii) For the simulation study, the replication number is taken as N = 500 and the
sample sizes (n) are, respectively, taken as 250, 500, 1000, and 2000 for all simula-
tion scenarios.
(iii)A random sample fromMSLN distribution can be generated using the following
steps:
–Sample U1 ∼ N (0, 1) , U2 ∼ Np

(
0, Ip

)
and V from the inverse gamma distribu-
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tion given in (2) independently. Note that a random sample from the inverse gamma

distribution can be generated by applying the relation 1
V ∼ Gamma

(
(p+1)

2 , 2
)
.

Then, Y=μ + �1/2

[
λ|U1|√

V(V+λT λ)
+ (

V Ip + λλT
)− 1

2 U2

]
generates the sample from

the MSLNp (μ, �,λ) distribution.
(iv) We note that in the EM algorithm numerical uncertainty could occur when the
weights (ẑ(k)

i j ) go to zero. One can put a hard threshold on ẑ(k)
i j for kth iteration,

which was offered by [47], to prevent overflow in the computation of ẑ(k)
i j . Let ε be a

predetermined small value. Hence, if ẑ(k)
i j > ε , ẑ(k)

i j will be used for the next iteration;

else, ε will be used instead of ẑ(k)
i j . In the computation, we will take 10−6 for ε.

Simulation Study

This simulation study is performed to illustrate the performance of finite mixtures of
MSLN distributions. The performance of estimators will be measured by the bias,
standard errors (SEs) and the mean Euclidean distance values. The formula of bias
can be given with the following formula:

̂bias
(
θ̂
)

= θ − θ,

where θ is the true parameter value, θ = 1
N

∑N
j=1 θ̂ j and θ̂ j is the estimate of θ for the

j th simulated data. The mean Euclidean distances of the estimators are calculated
using the average of the Euclidean norm between the estimates and the true parameter
values. Such as, for the mean Euclidean distance of μ̂i will be given as

‖μ̂i − μi‖ = 1

N

⎛
⎝

N∑
j=1

(
μ̂i j − μi j

)2
⎞
⎠

1
2

.

Furthermore, the other mean Euclidean distances for the other estimators are also
computed similarly. Otherwise, for the mixing probability estimator (ŵ) the distance
will be the mean squared error (MSE) which is given with the following formula:

̂MSE
(
ŵ
) = 1

N

N∑
j=1

(
ŵ j − w

)2
,

where w is the true parameter value and ŵ j is the estimate of w for the j th simulated
data. Note that the SEs of estimates are computed by using the empirical information
matrix of the proposed mixture model given in Sect. 3.
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This section pays attention to model heterogeneity in multivariate settings
diversely using two simulation scenarios.

Scenario 1. We generate the data from the following two-component mixtures of
MSLN distributions:

f ( y j |�) = w1 f1( y j ;μ1, �1,λ1) + (1 − w1) f2( y j ;μ2, �2,λ2), (34)

where μi = (μi1, μi2)
T , �i =

[
σi,11 σi,12

σi,21 σi,22

]
, λi = (λi1, λi2)

T , i = 1, 2 with the

parameter values

μ1 = (2, 3)T , μ2 = (0, 2)T , �1 = �2 =
[
1 0
0 1

]
,

λ1 = (1, 1)T , λ2 = (1,−1)T , π1 = 0.6.

The scatter-contour plot of the simulated data set example with 1000 random
samples generated from the model given in (34) is displayed in Fig. 2. Different
colours indicate the separate groups of clusters in this figure. This scenario scheme
is an example of two moderately separated clusters for the two-component mixture
model case.

Table 1 summarizes the simulation results of Scenario 1 for the sample sizes
250, 500, 1000 and 2000. This table includes the true parameter values, bias, stan-
dard errors and the mean Euclidean distance values of estimates. We can observe
from this table that the proposed EM algorithm is working accurately to estimate
all parameters. Moreover, the mean Euclidean distances for all parameter estimates
are getting smaller when the sample size n increases. In addition to that, the centre,

Fig. 2 Scatter-contour plot
of the simulated data set with
n = 1000 generated from
model (34) for Scenario 1
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Table 1 Bias, SEs and mean Euclidean distance values of estimates for n = 250, 500, 1000 and
2000

n Parameter Component 1 Component 2

True Bias SE Distance True Bias SE Distance

250 wi 0.6 0.0318 0.0550 0.0246 0.4 – – –

μi1 2 0.2003 0.2307 0.4619 0 0.0513 0.3403 0.6232

μi2 3 −0.0834 0.2073 2 −0.2208 0.2253

σi,11 1 −0.0211 0.1527 1 0.3555 0.2081

σi,12 0 0.1602 0.0822 0.3691 0 −0.1948 0.1231 0.6012

σi,22 1 0.1350 0.1313 1 −0.1138 0.1409

λi1 1 −0.3733 0.4961 1.0662 1 0.2649 1.2829 1.1148

λi2 1 0.2053 0.5359 −1 −0.3465 0.7758

500 wi 0.6 0.0464 0.0389 0.0167 0.4 – – –

μi1 2 0.2015 0.1597 0.3765 0 0.0285 0.2324 0.5023

μi2 3 −0.1136 0.1382 2 −0.2197 0.1470

σi,11 1 −0.0573 0.1060 1 0.2672 0.2081

σi,12 0 0.1219 0.0554 0.2646 0 −0.2113 0.0813 0.4577

σi,22 1 0.1163 0.0876 1 −0.1215 0.0955

λi1 1 −0.4901 0.2532 0.8795 1 0.1396 0.6691 0.8499

λi2 1 0.0812 0.2917 −1 −0.3259 0.4227

1000 wi 0.6 0.0463 0.0264 0.0080 0.4 – – –

μi1 2 0.1714 0.1032 0.3102 0 0.0122 0.1558 0.3448

μi2 3 −0.1489 0.0893 2 −0.2077 0.0918

σi,11 1 −0.0856 0.0624 1 0.2203 0.0828

σi,12 0 0.1105 0.0345 0.2090 0 −0.2163 0.0512 0.3586

σi,22 1 0.1170 0.0580 1 −0.1436 0.0616

λi1 1 −0.5157 0.1303 0.7116 1 −0.0064 0.3272 0.5468

λi2 1 0.1095 0.1443 −1 −0.2551 0.1977

2000 wi 0.6 0.0420 0.0181 0.0037 0.4 – – –

μi1 2 0.1549 0.0689 0.2731 0 0.0397 0.1054 0.2725

μi2 3 −0.1854 0.0603 2 −0.1975 0.0593

σi,11 1 −0.1002 0.0428 1 0.2116 0.0545

σi,12 0 0.1081 0.0237 0.1885 0 −0.1980 0.0333 0.3168

σi,22 1 0.1224 0.0402 1 −0.1615 0.0402

λi1 1 −0.5093 0.0771 0.6129 1 −0.1137 0.1757 0.3843

λi2 1 0.1368 0.0864 −1 −0.1898 0.0924

scale and skewness of all components are adequately captured by the finite mixture
of MSLN distributions.

Scenario 2. We generate the data from the following three-component mixtures of
MSLN distributions:
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Fig. 3 Scatter-contour plot
of the simulated data set with
n = 1000 generated from
model (35) for Scenario 2

-5 0 5 10 15
-8

-6

-4

-2

0

2

4

6

8

10

12

f ( y j |�) = w1 f1( y j ;μ1, �1,λ1) + w2 f2( y j ;μ2, �2,λ2) (35)

+ (1 − (w1 + w2)) f3( y j ;μ3, �3,λ3),

whereμi = (μi1, μi2)
T , �i =

[
σi,11 σi,12

σi,21 σi,22

]
, λi = (λi1, λi2)

T , i = 1, 2, 3with the

parameter values

μ1 = (5, 5)T , μ2 = (−2, 2)T , μ3 = (−2,−2)T , �1 = �2 = �3 =
[
1 0
0 1

]
,

λ1 = (1, 1)T , λ2 = (1,−1)T , λ3 = (−1,−1)T , π1 = 0.4, π2 = 0.3.

The scatter-contour plot of the simulated data set example with 1000 random samples
generated from themodel given in (35) is demonstrated in Fig. 3. This figure displays
the separated groups of clusters in different colours. For the three-componentmixture
model case, this scenario is an example of two moderately separated clusters and a
well-separated cluster.

The simulation results of Scenario 2 are given in Table 2 for the sample sizes 250,
500, 1000 and 2000. This table consists of the true parameter values, bias, standard
errors and the mean Euclidean distance values of estimates. According to this table,
the proposed EM algorithm can be used for estimating all parameters. Furthermore,
the mean Euclidean distances for all parameter estimates are decreasing while the
sample size n are increasing. Similar to Scenario 1, the centre, scale and skewness
of all three components are successfully catch.
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An Illustrative Real Data Example: Old Faithful Geyser Data
Set

The geyser eruptions data sets in different USA parks have been collected by park
geologists. The first national park in Wyoming, USA was the Yellowstone National
Park formed in 1872. The Old Faithful and a collection of the world’s most splendid
geysers and hot water resources are located in the Yellowstone National Park. The
Old Faithful geyser data set includes 272 pairs of measurements, referring to the time
interval between the starts of successive eruptions and the duration of the subsequent
eruption. This data set was analysed by [5, 11, 43] andmany others. One can see [41]
for the details of the Old Faithful data set. Additionally, this data set was used by [39]
to present the applicability of themixsmsnpackage inR for themultivariate case. This
data set can be accessed by using data (“faithful”) in R. We consider the Old Faithful
geyser data set as a real data example to show the applicability of finite mixtures
of MSLN distributions (FM-MSLN) and compare results with finite mixtures of
MSTN distributions (FM-MSTN) and finite mixtures of MSGLN distributions (FM-
MSGLN). This comparison will be done with the following information criteria:

−2�(�̂) + mcn,

where � (·) represents the maximized log-likelihood, m is the number of free param-
eters to be estimated in the model and cn is the penalty term. Here, it is taken as
cn = 2 for the Akaike information criteria (AIC) [1], cn = log (n) for the Bayesian
information criteria (BIC) [42] and cn = 0.2

√
n for the efficient determination cri-

teria (EDC) [6].
The real data example fitting results for FM-MSGLN, FM-MSTN and FM-MSLN

are summarized in Table 3. This table involves estimates, standard errors (SEs), log-
likelihood, values of AIC, BIC and EDC. Here, the SEs of estimators are computed
with the help of the Fisher information-basedmethod given by [8], one can see Sect. 3
for more information about the computation steps of the SE for FM-MSLN. It can be
seen fromTable 3 that FM-MSLN enables the best fit as a consequence of owning the
highest log-likelihood value and the lowest AIC, BIC and EDC values. Furthermore,
CPU times (CT) in seconds are outlined in Table 4 to compare the computation times
for FM-MSGLN, FM-MSTN and FM-MSLN.We notice that the computational time
of FM-MSLN is less than the computational times of FM-MSTN and FM-MSGLN.
Figure 4 displays scatter-contour plots of the data of the fitted two-component FM-
MSGLN, FM-MSTN and FM-MSLNmodels. It can be observed from Fig. 4 that the
proposed mixture model, FM-MSLN, captures bimodality and asymmetry perfectly
and provides the best adequate fit to the Old Faithful geyser data set.
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Table 3 ML estimation results of the Old Faithful geyser data set for FM-MSTN, FM-MSGLN
and FM-MSLN

Component FM-MSGLN FM-MSTN FM-MSLN

Estimate SE Estimate SE Estimate SE

1 w1 0.6559 0.3210 0.6198 0.0425 0.6415 0.0804

μ11 4.5330 0.0410 4.5801 0.1541 4.7950 0.0637

μ12 82.0000 0.4571 79.3601 3.2761 83.9052 0.9567

σ1,11 0.1554 0.3074 0.1814 0.1829 0.2711 0.1739

σ1,12 0.9985 0.1674 0.2700 0.1391 2.1047 0.1158

σ1,22 28.1861 2.6003 27.7556 0.7121 34.4311 1.0911

λ11 −0.6171 0.3745 −1.1448 0.8787 −1.8785 0.8926

λ12 −0.4691 0.3742 0.3490 1.1930 −1.8564 0.9841

ν1 – – 15.7829 26.4154 – –

α1 0.9949 0.0630 – – – –

2 μ21 1.8330 0.0224 1.7300 0.0337 1.7189 0.0393

μ22 54.0000 0.5820 51.2491 1.0709 50.7770 1.3785

σ2,11 0.0565 0.1158 0.1666 0.0954 0.1707 0.1461

σ2,12 0.2227 0.1251 1.5611 0.0724 1.9321 0.1154

σ2,22 26.5696 0.3989 38.3925 0.9161 45.7395 1.6290

λ21 1.3627 0.9609 4.3879 1.9344 4.1350 2.4470

λ22 0.0954 0.8491 3.7501 2.2122 4.3050 3.5075

ν2 – – 4.4866 3.1462 – –

α2 0.8614 0.0031 – – – –

Information
Criteria

−�(�̂) −1305.0165 −1302.4555 −1299.53845

BIC 2705.3317 2700.2097 2683.1639

AIC 2644.0330 2638.9111 2629.0769

EDC 2666.1073 2660.9853 2648.5542

Table 4 CPU time (CT) in seconds of the Old Faithful geyser data set for FM-MSGLN, FM-MSTN
and FM-MSLN

FM-MSGLN FM-MSTN FM-MSLN

CPU times in
seconds

CT 290.2023 192.2511 178.5986
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Fig. 4 Scatter-contour plots of the Old Faithful geyser data set of the fitted two-component FM-
MSGLN, FM-MSTN and FM-MSLN models

5 Conclusions

This paper has proposed FM-MSLN, which can be used for modelling skewness
and heavy-tailedness in multivariate heterogeneous data sets. We have proposed
an EM algorithm to estimate the ML estimates for parameters of FM-MSLN. A
simulation study has been conducted to assess the performance of the proposed
mixture model and the results have proved that the proposed EM algorithm works
accurately to estimate all parameters. In addition to that, to model both skewness
and heavy-tailedness in the data, a real data example has been provided to indicate
the applicability of the proposed mixture model and compare it with FM-MSTN and
FM-MSGLN. It is seen that FM-MSLN has better performance than FM-MSTN and
FM-MSGLNaccording to the information criteria. Also, the proposedmixturemodel
has less computational time comparing with the other mixture models. Therefore,
we can say that the FM-MSLN can be used as an alternative multivariate mixture
model for heterogeneous skew and heavy-tailed data sets with the advantage of less
computational time.
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There is a significant number of topics that earn attention in future studies. As
per one of the Reviewer’s recommendations, accommodating missing values ([46])
in the FM-MSLN can be considered an interesting modelling approach for robust
clustering of high-dimensional data settings. Further, selecting the optimal number
of components can be one of the interesting future works. Another approach to our
current study is to find the optimal number of components g adopting a model choice
criteria instead of assuming the number of components is known.
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Robust Estimation Through Preliminary
Testing Based on the LAD-LASSO

M. Norouzirad, M. Arashi, F. J. Marques, and F. Esmaeili

Abstract The least absolute deviation (LAD) estimator is an alternative to the ordi-
nary least squares estimator when some outliers exist, or the error term in the regres-
sion model has a heavy-tailed distribution. The gist of this chapter is to present a
new estimator for sparse and robust linear regression that improves the preliminary
test LAD estimator, an estimator which depends on a test decision. Our strategy is
to apply auxiliary information in the estimation obtained from employing the LAD-
LASSO operator to find the null hypothesis, building the preliminary test estimator
and its improvement. AMonte-Carlo simulation study shows that this new estimator
is better than others. Moreover, an objective data analysis confirms that our proposed
estimator performs better in the prediction error sense than the LAD, LAD-LASSO,
and preliminary test estimators.
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1 Introduction

A regression model can be accommodated with a suitable prediction property if the
input variables are correctly selected. The ordinary least squares (OLS) estimator,
the minimizer of the sum of squared errors, provides the best prediction if all the
input variables are significant and the underlying regression assumptions are met.
In case of violation of the assumptions, such as multicollinearity, outliers, or/and
heavy-tailed responses, the OLS fails to provide a high level of prediction accuracy.
Furthermore, when there are many variables, the interpretation of the estimates is
challenging.

To achieve a sparse model, the least absolute shrinkage and selection operator
(LASSO), a frequently used method for simultaneously selecting and estimating
variables, is proposed by [23]. The LASSO estimator retains the good features of
the classical methods, both subset selection for selecting important parameters and
the ridge regression proposed by [9], which stabilizes the estimates by restricting the
coefficients and then shrinks the coefficients. On the other hand, the OLS estimates
can be distorted when the error/response has a heavy-tailed distribution or outliers
among the data. It is well known that the OLS estimate is not robust to even a single
outlier, and the breakdown point is 1/n for a sample of size n. One of the most
commonly used techniques to overcome this problem is the least absolute deviation
(LAD) estimation strategy that has

√
n-consistency and asymptotic normality [17].

The LASSO estimator is obtained by minimizing the sum of squared residuals.
Then, it will be significantly degraded in having noise.While sparse and robust linear
regression is still a developing field of research, and several approaches have been
published, which are sparse Least trimmed squares (LTS), a sparse version of the LTS
estimator [1], a robust and sparse elastic net least trimmed squares (enetLTS) [14], a
robust version of sparse partial least squares (SPRM) [10], etc., and a good review of
these methods can be found in [8]; here we used the strategy proposed by [24] which
is the least absolute deviation, shrinkage, and selection method (LAD-LASSO).

Suppose we have a set of covariates to fit a regression model for predicting the
response variable. If a priori is known or suspected that a subset of the covariates
does not significantly contribute to the overall prediction of the average response,
they may be left aside, and a model without these covariates may be considered. In
such situations, a subset of the covariates may be viewed as a nuisance, such that they
are not of primary interest to the researcher, but they cannot be completely ignored
either. Their effect must be considered when estimating the remaining regression
parameters in such cases. Now, the challenge is to decide whether the full or subset
model is the best. A plausible solution is the preliminary test estimator.

A preliminary test estimator is an estimator whose value depends on a test for
statistical significance. In other words, firstly, we conduct a test, and on the other
hand, based on the test result, we decide about the final estimator. Thus, the estimate is
an observed value of an estimator whose expression is based on a test decision. In the
statistical literature, the preliminary test estimation of parameters was introduced by
[2–4] to estimate the parameters of a model when it is suspected that some “uncertain
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prior information” (UPI) on the parameter(s) of interest are available. The method
involves a statistical test of UPI based on the appropriate statistics and a decision on
whether the model parameters should be accepted.

In some studies, the authors use “testimator” instead of the preliminary test estima-
tor. The term “testimator” was firstly introduced by [18]. They described estimators
based on the inferences derived from a preliminary test(s) and applied the method
to estimate the mean of the multi-normal distribution. For more bibliography and
detailed discussion about preliminary test estimation in regression models, refer to
[22].

However, the preliminary test estimator suffers from being discontinuous and
highly depends on the level of significance of the test. This motivated researchers to
improve the preliminary test estimator by incorporating the shrinkage strategy. We
only refer to [20] for a detailed and extensive study and overview of the methods.
However, our goal here is slightly different fromwhat has been done in the literature,
e.g., [15] and [16]. If the LAD-LASSO is well motivated to be used, we also define
the improved preliminary test estimator by incorporating the idea of shrinkage. Thus,
this paper aims to strengthen the preliminary test estimator defined by combining
a model obtained from the LAD-LASSO technique (the sub-model) with the full
model using the shrinkage approach.

A review of the LAD-LASSO technique can be found in Sect. 2. Our strategy will
give a shrinkage-type estimator with a lower prediction error than the LAD and LAD-
LASSO estimators. The improved estimator is defined in Sect. 3. The performance
of the proposed estimator is analyzed using a simulation study and a real dataset in
Sect. 4. The information about R code can be find in Sect. 5, while we summarize
our findings in Sect. 6.

2 LAD-LASSO Estimator

Consider the conventional regression model

y = Xβ + ε, (1)

where y = (y1, . . . , yn)� is the response vector, X = (X�
1 , . . . , X�

n ) is an n × p
fixed design matrix, ε = (ε1, . . . , εn)

� is the vector of unobservant random errors
that has a cumulative distribution function F(ε) with median zero.

Reference [23] proposed the LASSO given by

β̂
LASSO = argmin

β

⎧
⎨

⎩

n∑

i=1

(yi − X�
i β)2 + nλ

p∑

j=1

|β j |
⎫
⎬

⎭
, (2)

where λ > 0 is the tuning parameter. It shrinks the coefficient to zero and sets some
coefficients to exactly zero, based on the value of λ. Therefore, the procedure com-
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bines variable selection and shrinking of the coefficients of a penalized regression.
The finite-dimensional performance of the LASSO estimator under standard errors
was shown by [23]. The statistical properties of the LASSO estimator were studied
by [7, 11, 19, 25].

When errors in (1) are distributed in a heavy-tailed manner, the performance
of the LASSO becomes weaker due to the OLS estimator; it is sensitive to the
heavy-tailed error distributions and outliers. Due to this sensitivity, [24] proposed a
robust regression shrinkage and selection method that can do regression shrinkage
and selection (like LASSO), and it is also resistant to the presence of outliers in the
response variable or heavy-tailed errors (like LAD). Indeed, they combined the usual
LAD criterion and the LASSO-type penalty to produce the LAD-LASSO estimator
that belongs to the consistent class of model selection criteria. On the other hand, if
the truemodel is of finite dimension and is included in a set of candidate models, then
the LAD-LASSO estimator can identify the true model consistently. The obtained
LAD-LASSO estimator is successful in simultaneously estimating robust regression
and selecting variables.

Comparing the LAD-LASSO with the LAD, the LAD-LASSO performs param-
eter estimation while selecting the model. Furthermore, the LAD-LASSO is more
resistant to heavy-tailed distributions and outliers than the LASSO.

Since the LASSO estimator uses the same tuning parameter for all regression
coefficients, the resulting estimators may suffer an appropriate bias [7]. Knowing
this, [24] modified the objective function of LASSO estimation to allow for different
tuning parameters for each coefficient. Thus, the LAD-LASSO estimator is defined
as follows:

β̂
LAD−LASSO = argmin

β

⎧
⎨

⎩

p∑

i=1

∣
∣yi − X�

i β
∣
∣ + n

p∑

j=1

λ j |β j |
⎫
⎬

⎭
, (3)

where λ j > 0 are the different tuning parameters for j = 1, . . . , p. [24] proposed a
method for calculating the LAD-LASSO estimator.

3 Improvement Strategy on LAD

Bydecomposing the unknown regression parameters asβ = (β�
1 ,β�

2 )�, whereβ1 =
(β1, . . . , βp1)

� is the main covariates and β2 = (βp1+1, . . . , βp)
� = (β1, . . . , βp2)

�
is the p2 nuisance covariates that we are primarily interested in the assumption that
it will be “close to zero”. So that Eq. (1) may also be written as

y = X1β1 + X2β2 + ε, (4)

where X1 and X2 are assumed to have dimensions n × p1 and n × p2, respectively.
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Our ultimate goal is the estimation of β1 when it is suspected that other variables
are eliminated (i.e., β2 = 0). To test the nested linear models, the null hypothesis
may be written as

Ho : β2 = 0, (5)

and it is common to consider the linear alternative hypothesis,HA : β2 �= 0.

The LAD estimator of β is defined as β̃
LAD = argmin

β

{‖ y − Xβ‖1
}
, where

‖v‖1 =
p∑

i=1
|vi | is the L1 norm, for v = (v1, . . . , vt )

�. Denote the LAD estimator of

β by β̃
LAD =

(
β̃
LAD
1 , β̃

LAD
2

)�
. Thus, β̃

LAD
1 is a LAD estimator of β1.

Under the null hypothesis β2 = 0 (ignore nuisance covariates and identify sub-
model), the model in Eq. (4) reduces to y = X1β1 + ε. So that the LAD estimator
of sub-model β1 is defined as

β̂
LAD

1 = argmin
β1

{∥
∥ y − X1β1

∥
∥
1

}
. (6)

Notice that β̃
LAD

refers to the full model, β̃
LAD
1 is the significant component

of the full-model estimator. Accordingly, the notation β̂
LAD

1 is used for sub-model
estimation.

Similar to [17], we consider the following assumptions to ensure
√
n-consistency

and also the asymptotic properties of LAD estimators.

Assumption A. F(ε) is continuous and has continuous positive density f (ε) at the
median,

Assumption B. For some positive definite (p.d.) matrix C, lim
n→∞ n−1X�X = C,

meaning n−1 max
1≤i≤n

X�
i X i → 0.

To test the null hypothesis, we use the following result.

Theorem 3.1 ([6]) The test statistic for testing Ho against HA is given by

Ln = ‖ y − X1β̂
LAD

1 ‖1 − ‖ y − Xβ̂
LAD‖1. (7)

Under assumptions A & B and the null hypothesis (5), as n → ∞

Ln
D→ 1

4 f (0)
χ2
p1 , (8)

where
D→ denotes convergence in distribution and χ2

ν is the chi-squared distribution
with ν degrees of freedom.
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According to Theorem 3.1, the asymptotic distribution of Ln depends on the distri-
bution function of errors. To avoid density estimation, following [6], we propose a
new method for distributional approximation. We summarize this method as below.

Algorithm [6]
The algorithm is carried out in three steps:

Step 1. Given the dataset {(xi , yi ) : i = 1, . . . , n}, generate a random sample of
size n, independent of the dataset, from a distribution with mean and variance
both equal to 1. e.g., the standard exponential distribution. The random sample
is denoted by (ω1, . . . , ωn). Combining the dataset and random sample gives the
data-embedded sample (DES),

{
(xi , yi , ω j ), i, j ∈ {1, . . . , n}} .

Step 2. Under the sub (null hypothesis) and full models, respectively let

β̂
ωLAD

1 = argmin
β

‖ω( y − X1β1)‖1

β̃
ωLAD = argmin

β
‖ω( y − Xβ)‖1

Step 3. Define

L∗
n =

(
n∑

i=1

ωi

∣
∣
∣yi − X1i β̂

ωLAD

1

∣
∣
∣ −

n∑

i=1

ωi

∣
∣
∣yi − X i β̃

ωLAD
∣
∣
∣

)

−
(

n∑

i=1

ωi

∣
∣
∣yi − X1i β̂

LAD

1

∣
∣
∣ −

n∑

i=1

ωi

∣
∣
∣yi − X i β̃

LAD
∣
∣
∣

)

. (9)

�

The statistic L∗
n is used to approximate the distribution of Ln . Reference [6] estab-

lished the validity of using this method to approximate the distributionLn , if assump-
tion (C) given below holds.

Assumption C. The random weights ω1, ω2, . . . are i.i.d. non-negative random
variables such that E(ω1) = Var(ω1) = 1, and the sequences {ωi } and {X i , ei }
are independent.

Remark 3.1 It should be noted in the DES scheme, a random component {ω1, . . . ,

ωn} is embedded in the dataset each time. This method is not a resampling nor
bootstrap.

When β2 = 0 is true, the sub-model LAD has smaller asymptotic dispersion than the
full-model LAD estimator. However, for β2 �= 0, the sub-model LAD estimator may
be biased and inconsistent in many cases. For this reason, it is plausible to consider
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a preliminary test LAD estimator by taking β̃
LAD
1 or β̂

LAD

1 depending on whether the

null hypothesis is rejected or not. We denote it by β̂
ptLAD

1 . It is given by

β̂
ptLAD

1 = β̃
LAD
1 I (Ln ≥ Lα) + β̂

LAD

1 I (Ln < Lα)

= β̃
LAD
1 − (β̃

LAD
1 − β̂

LAD

1 )I (Ln < Lα), (10)

where I (A) is an indicator function which is 1, if A is true and zero, otherwise;
and Lα is the upper 100α% percentile of the null distribution of Ln , which can be
approximated by (1 − α)-percent of 10000 values of L∗

n defined in Eq. (9).
The proposed PTE is not a practical estimator for two reasons:

(1) It has a discrete nature, i.e., it results in either β̃
LAD
1 or β̂

LAD

1 , and therefore, not
both contribute to the information gain of the final estimate.
(2) It heavily depends on the level of significance of the test. It causes different levels,
and we get different results.

Hence, we combine the best of preliminary test estimator and Stein-type shrinkage
strategies to propose the improved preliminary test LAD estimator as

β̂
iptLAD

1 = β̂
LAD

1 − (1 − cL−1
n )+

(
β̃
LAD
1 − β̂

LAD

1

)
, c = p2 − 2, p2 ≥ 3, (11)

where (1 − cL−1
n )+ = max{0, 1 − cL−1

n }.
The amount of factor (1 − cL−1

n ) depends on the value of the test statistic Ln

and the constant c. If cL−1
n ≥ 1, this factor will be negative. Thus, some coefficient

signs can be reversed. This over-shrinkage phenomenon does not affect the risk per-
formance of the estimator when using the (1 − cL−1

n ) as a factor but causes the
interpretation of coefficients to be more difficult. From a practical point of view, the
sign change may confuse the analyst, especially when compared with the prelimi-
nary test estimator. Thus, we use (1 − cL−1

n )+ as a factor to not change the sign of
covariates.

4 Numerical Study

In this section, we compare the proposed improved preliminary test LAD estimator

(β̂
iptLAD

1 ) with the preliminary test LAD estimator (β̂
ptLAD

1 ), and the LAD-LASSO

estimator (β̂
LAD−LASSO

) numerically.
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Synthetic Data Analysis

Here, we carry out a study to numerically compare the performance of the proposed
estimators mentioned above. The response variable is generated according to

yi = X�
i β + εi , i = 1, . . . , n, (12)

where εi is generated from the heavy-tailed standard double exponential (Laplace)
distribution.

The variable X i is generated from the standard p-variate normal distribution. As
in this paper, the hypothesis is considered as

Ho : βi = 0, ∀i = p1 + 1, . . . , p. (13)

Therefore, the parameters are partitioned as β = (β�
1 ,β�

2 )� = (β�
1 , 0)� and con-

sider β1 = (1, . . . , 1)�, a p1 vector of 1s, and 0 a p2 vector of 0s.
To evaluate the stable results, repeat the process 1000 times. The relative Mean

Square Error (rel.MSE) criterion is used to compare the performance of the estima-
tors.

Since the purpose of this paper is to improve the preliminary test estimator, we
define the relative MSE (rel.MSE) as

rel.MSE(β̂
∗
1; β̂

ptLAD

1 ) = MSE(β̂
ptLAD

1 )

MSE(β̂
∗
1)

,

where β̂
∗
1 is any of the two estimators under our study: the improved prelimi-

nary test and LAD-LASSO estimator. The value by which the RMSE is larger

than the unity indicates the degree of superiority of the estimator β̂
∗
1 over β̂

ptLAD

1 .
The RMSEs for estimators under study are computed for n ∈ {30, 50, 100} and
(p1, p2) = (3, 5), (3, 7), (6, 4), (8, 12), (14, 6). Table 1 gives the results of simu-
lations. To obtain a better realization of the MSE behavior, Fig. 1 shows their distri-
bution for some values of (p1, p2).

Based on Table 1, the following results were obtained:

(1) The LAD-LASSO estimator is better only in one situation: n = 30, p = 20,
(p1 = 8, and p2 = 12). It means that the number of observations is less than
others (n = 50, 100), and the model is sparse here (more parameters are zero).
Thus, it can be stated that for the sparse model, when the number of observations
is relatively low, the LAD-LASSO behaves better than the preliminary test esti-
mator. If we see the improvement’s value, it is ignorable. Thus, it is nearly true
if we conclude that the preliminary test estimator always behaves better than the
LAD-LASSO estimator from the perspective of low MSE.
With an increase of n, there is no evidence for the stable behavior of this esti-
mator.
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Table 1 The relative MSE values for the candidate estimators in the synthetic data

n p1 p2 ptLAD iptLAD LAD-LASSO

30 3 5 1.0000 1.0270 0.9450

3 7 1.0000 1.9922 0.4791

6 4 1.0000 1.2327 0.6462

8 12 1.0000 3.0833 1.0050

14 6 1.0000 0.9370 0.6737

50 3 5 1.0000 1.0375 0.8784

3 7 1.0000 1.4972 0.4143

6 4 1.0000 1.1621 0.6518

8 12 1.0000 1.6684 0.5785

14 6 1.0000 1.1720 0.6521

100 3 5 1.0000 1.0206 0.8393

3 7 1.0000 1.3959 0.3808

6 4 1.0000 1.1524 0.5952

8 12 1.0000 1.3281 0.4704

14 6 1.0000 1.1707 0.7153

(2) If we fix p1, the number of components of β1, and increase p2, the size of β2, we
conclude that for all values of n, the performance of the improved preliminary
test estimator will be better.

(3) Let fix p. Two cases will happen: (i) p2 is large e.g., for p = 10, (p1 = 3, and
p2 = 7) and for p = 20, (p1 = 8, and q = 12), (ii) p2 is small e.g., for p = 10
(p1 = 6, and p2 = 4) and for p = 20 (p1 = 14, and p2 = 6). The rel. MSE of
the improved preliminary test estimator, in case (i) is larger than its value in case
(ii) for small andmedium n. For large n, it is vice versa. Thus, it can be stated that
the improved estimator performs better for the sparse model, especially when
the sample size is small.

Figure 1 shows the distribution of the MSEs for the preliminary test, its improve-
ment, andLAD-LASSOestimators for some values of (p1, p2) in Table 3. The results
obtained from this figure are:

(1) Based on the distribution of MSEs, the values of LAD-LASSO estimator are
greater than the other competitors. Table 1 shows that the performance of this
estimator is better than the preliminary test estimator for small n, p = 20 (p1 = 8
and p2 = 12). Ifwe check the related figure, here, n = 30, (p1 = 8 and p2 = 12),
the figure confirms this result since some values of MSE of the preliminary test
estimator are larger than that one of the LAD-LASSO estimator.

(2) More values ofMSEs are around themean, since thewidth of violin plots is large.
There are more values of MSE around its mean for the improved preliminary
test compared to the preliminary test estimator.

(3) The values in the x-axis show that the MSE values decrease with an increase of
n.
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Fig. 1 Distributions and box-plots of the MSEs for the three estimators in the synthetic data
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Gross Domestic Product Data Analysis

This section uses a real data example to illustrate the application of the improved
LAD-preliminary test estimation.

TheBarrodataset of [5] is used and consists of 161observations onnational growth
rates for periods 1960–1985, i.e., 1960, 1965, 1970, 1975, and 1985, or for an average
of five years subperiod over 1960–1985 in the world. Reference [13] also studies this
dataset to describe a brief empirical foray into models of international economic
growth designed via a quantile regression application. This dataset is available in
quantreg package [12] in R software.

This data set is obtained to find a model between
y.net: Annual Change Per Capita gross domestic product (GDP),
and the covariates:
mse2:Male SecondaryEducation, fse2: Female SecondaryEducation, fhe2: Female
Higher Education, mhe2: Male Higher Education, lexp2: Life Expectancy, Intr2:
Human Capital, gedy2: Education/GDP, Iy2: Investment/GDP, gcony2: Public
Consumption/GDP, lblak2: Black Market Premium, pol2: Political Instability,
ttrad2: Growth rate Terms Trade. The primary goal is to determine those vari-
ables that significantly contribute to the annual change in GDP and consequently,
identify the sub-model that results in better prediction.

The summary statistics of all variables are given in Table2.
It can be realized from Fig. 2 that the observations of Australia, Bangladesh,

Botswana, Ghana, and Venezuela in 1985 may be outliers. The result of applying an
outlier test function by using the car package in R confirms that the observation of
Bangladesh in 1980 is also an outlier.

Thus, this dataset suffers from the problem of outliers, and it is convenient to use
the LAD estimation. The LAD-LASSO model returns mse2, fhe2, Intr2, gedy2, and
pol2 as the best covariates to be included. We considered the dropped variables to
be a nuisance and hypothesized that their coefficients were zero. Thus, we have two
models: the full model with all covariates and the sub-model, excluding the nuisance
variables.

In the following,we use K -fold cross-validation to estimate themodel’s prediction
errors. In K -fold cross-validation, the dataset is randomly divided into K subsets of
roughly equal size. One subset is left aside and termed the test set, while the reaming
K − 1 subsets, called the training set, are used to fit the model. The fitted model is
then used to predict the responses of the test data set. Finally, the prediction errors are
obtained using the squared deviation of the observed and predicted values in the test
set. The process is repeated for all K subsets, and the prediction errors are combined.

Since cross-validation is a randomprocedure, the estimated prediction error varies
across runs and for different values of K . To account for the random variation, we
repeat the process 2000 times and estimate the average prediction errors along with
this number, as no noticeable variations in the standard deviations were observed for
the higher number of repetitions.
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Table 2 Summary statistics for the gross domestic product dataset

Parameter Variables Mean sd Min Max Boxplot

y.net 0.019 0.025 −0.056 0.081

β1 lgdp2 7.790 0.954 5.820 9.508

β2 mse2 0.967 0.857 0.024 4.227

β3 fse2 0.712 0.833 0.000 0.712

β4 fhe2 0.079 0.122 0.000 0.712

β5 mhe2 0.158 0.175 0.000 1.011

β6 lexp2 4.044 0.203 3.555 4.315

β7 Intr2 1.462 2.549 −1.122 15.042

β8 gedy2 0.036 0.014 0.008 0.072

β9 Iy2 0.201 0.088 0.017 0.404

β10 gcony2 0.091 0.062 0.005 0.280

β11 lblak2 0.191 0.307 0.000 2.117

β12 pol2 0.168 0.241 0.000 0.802

β13 ttrad2 −0.006 0.037 −0.118 0.141
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Fig. 2 Diagnostic plots for identifying outliers in the gross domestic product dataset

We measured the prediction error performance using the relative mean prediction
error (rel.MPE) criterion. rel. MPE of an estimator β̂

∗
1 is defined as

rel.MPE(β̃
LAD
1 ; β̂

∗
1) = MPE(β̃

LAD
1 )

MPE(β̂
∗
1)

, (14)

where β̂
∗
1 is one of the improved LAD preliminary test and LAD-LASSO estimators.

We obtain five significant covariates based on running LAD-LASSO as fse2,
fhe2, mhe2, and gedy2. Thus, the hypothesis may be considered as

β2 = (β3, β4, β5, β8)
� = (0, 0, 0, 0)�.

The shrinkage estimates were obtained in two steps: first, a sub-model was selected
based on the LAD-LASSO procedure. In the second step, the sub-model obtained in
the first step was considered the restricted model, and then shrinkage estimates were
obtained.

Table 3 shows RMPE, and their standard deviations for the improved LAD-
preliminary test estimator and LAD-LASSO estimators based on K -fold cross-
validation repeated 2000 times.

We find that the improved preliminary test LAD estimator has a smaller average
prediction error than the LAD-LASSO estimator; Fig. 3 confirms this result.
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Table 3 Relative prediction errors based on the K -fold CV repeated 2000 times for the gross
domestic product data

Estimator K = 5 K = 10

Preliminary test LAD
estimator

1.0000 1.0000

Improved preliminary test
estimator

1.2293 1.2363

LAD-LASSO 0.4898 0.4943

Fig. 3 Prediction error values of the estimators

Following, we propose an algorithm to find the best estimator for the response
prediction. (1) determine the significant variables with the LAD-LASSO estimator,
then (2) compute the preliminary test LAD estimator, and (3) calculate the improved
preliminary test LAD estimator. The values of these estimators are given in Table4.
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Table 4 Estimate values for the gross domestic product data

Parameter Variable LAD-LASSO ptLAD iptLAD

β1 lgdp2 −0.0218 −0.0267 −0.0247

β2 mse2 0.0102 0.0108 0.0048

β3 fse2 0.0000 0.0000 0.0000

β4 fhe2 0.0000 0.0000 0.0000

β5 mhe2 0.0000 0.0000 0.0000

β6 lexp2 0.0408 0.0550 0.0513

β7 lintr2 −0.0018 0.0000 0.0000

β8 gedy2 0.0000 0.0000 0.0000

β9 Iy2 0.0794 0.0851 0.0942

β10 gcony2 −0.1072 −0.1063 −0.1070

β11 lblakp2 −0.0255 −0.0256 −0.0299

β12 pol2 −0.0254 −0.0306 −0.0251

β13 ttrad2 0.1315 0.1696 0.1826

5 Codes

The codes are available at https://github.com/mnrzrad/iptLAD.

6 Conclusion

If uncertain prior information about the parameters is available, the estimators can
be obtained by incorporating them via the preliminary test estimator. It first tests that
information as a null hypothesis, then estimates based on the test result. However,
variable selection techniques may be used to find the candidate model when there
is no information. In this paper, we combined the information obtained from this
method with the full-model LAD regression to achieve a preliminary test estimator
and proposed the improved preliminary test LAD estimator. Based on the simulation
study and real data analysis, the MSE and prediction error of the proposed estimator
are less than those of the LAD-LASSO estimator and the LAD-preliminary test
estimator, respectively. It appears that the performance of the preliminary test LAD
estimator is better than the LAD-LASSO estimator.
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