
On Privacy of Multidimensional Data
Against Aggregate Knowledge Attacks

Ala Eddine Laouir(B) and Abdessamad Imine

Lorraine University, Cnrs, Inria, 54506 Vandœuvre-lès-Nancy, France
{ala-eddine.laouir,abdessamad.imine}@loria.fr

Abstract. In this paper, we explore the privacy problem of individu-
als in publishing data cubes using SUM queries, where a malicious user
is expected to have an aggregate knowledge (e.g., average information)
over the data ranges. We propose an efficient solution that maximizes the
utility of SUM queries while mitigating inference attacks from aggregate
knowledge. Our solution combines cube compression (i.e., suppression
of data cells) and data perturbation. First, we give a formal statement
for the privacy of aggregate knowledge based on data suppression. Next,
we develop a Linear Programming (LP) model to determine the num-
ber of data cells to be removed and a heuristic method to effectively
suppress data cells. To overcome the limitation of data suppression, we
complement it with suitable data perturbation. Through empirical eval-
uation on benchmark data cubes, we show that our solution gives best
performance in terms of utility and privacy.

Keywords: Data cubes · Privacy preservation · Cell suppression · Cell
perturbation · Cube compression

1 Introduction

Multidimensional data (or data cubes) are widely used in many fields to store
all collected data, as these data structures are optimized for Online Analytical
Processing (or OLAP) [2,8,9]. For business or research purposes, the data col-
lected is made available to external parties (e.g., analysts, and organizations)
to enable them to query and analyze trends and patterns necessary for decision
making. Although most external parties have legitimate usage interests and data
is anonymized before publication or query, there are situations where a malicious
user can mine this data in order to endanger the privacy of individuals, such as
leaking medical records. Because of this privacy risk, many research works have
addressed this issue and different models have been proposed [5,12]. For exam-
ple, aggregation of a single cell value is not allowed, and query set size and access
controls are deployed to provide additional security (for more details see [15]).
However, most of the proposed techniques focus on the privacy of individual
data (or cells of data cubes) and neglect insights that can be gained by simply

This work is funded by DigiTrust (http://lue.univ-lorraine.fr/fr/article/digitrust/).

c© Springer Nature Switzerland AG 2022
J. Domingo-Ferrer and M. Laurent (Eds.): PSD 2022, LNCS 13463, pp. 92–104, 2022.
https://doi.org/10.1007/978-3-031-13945-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13945-1_7&domain=pdf
http://lue.univ-lorraine.fr/fr/article/digitrust/
https://doi.org/10.1007/978-3-031-13945-1_7

On Privacy of Multidimensional Data 93

analyzing aggregate patterns (such as average information) [3]. These aggregate
patterns may not be allowed for security reasons, but they can be easily inferred
in many cases. Even for multidimensional data where only SUM is allowed, knowl-
edge of the average could be a valuable indicator to know the trend of the data
(e.g., whether or not the average salary is above the minimum wage).

Illustrative Example. Consider that a large retail company allows access to sales
from all its stores during the year through range sum queries (here and in the rest
of the paper, we consider a data cube that contains only positive values). Due to
business and analytical needs, our retail company publishes a view (or part) of
the data cube and makes it accessible only through SUM range queries (see Fig. 1).
Even though the COUNT information is not explicitly available, a malicious user
can get it easily: either by knowing some metadata of the published cube and
queries [3], or by using sophisticated approaches such as the Volume Leakage
attack [6]. The result of the aggregate average AVG can then be inferred and
exploited to violate the privacy of individual cells.

Suppose our malicious user knows that two stores had similar sales on certain
days (weekend, holidays, events, etc.). Using the result of SUM query and the
knowledge of COUNT, he can deduce the result of AVG. For the region defined
by the range {(Shop2 : Shop3), (Day2 : Day3)} in Fig. 1, the AVG is equal to
129.5k. Based on this AVG, the attacker can now estimate the sum of the range
{(Shop2 : Shop4), (Day2 : Day2)} as (129.5 + 129.5 + X) and deduce that X is
172k, which gives the cell value with high precision. The attack can proceed in
the same way to disclose the rest of the values. Note that the attacker can also
assume that the negative or small scale results are the empty cells, allowing him
to reconstruct the entire region.

Fig. 1. Data cube for retail company.

Contributions. To disturb the AVG and prevent these attacks, cell suppression
techniques are better suited since they simultaneously modify the COUNT (by
−1) and the SUM (by minus the value of the cell), for each cell suppressed [3].
Cell suppression is very similar to a well-known technique for speeding up query
responses in OLAP, namely cube compression.

In this paper, we present an efficient method that maximizes the utility of
SUM queries while mitigating inference attacks from AVG aggregate knowledge.

94 A. E. Laouir and A. Imine

Our method combines cube compression via cell suppression and cell perturba-
tion to ensure better utility and privacy. Our contributions are as follows:

1. We develop a Linear Programming (LP) model for finding the optimal allo-
cation needed to provide the best utility/privacy results.

2. We design a cell suppression technique that maximizes privacy against attacks
based on AVG, and can be extended to other aggregate operators but this will
be the subject of future work.

3. To overcome the limitation of cell suppression, in the case where the values
are close to each other, we complement it with suitable cell perturbation to
ensure a higher level of privacy while maintaining utility.

4. All of our contributions are validated by extensive experiments, in which our
techniques have outperformed the state-of-the-art [3] approach by ensuring
both utility and privacy against attacks that use AVG aggregate inferred from
data cubes.

Paper Organization. In Sect. 2, we review related work. In Sect. 3, we introduce
the notation used and the problem statement of the aggregate knowledge privacy
based on data suppression. We present our privacy-preserving method in Sect. 4.
We provide an experimental evaluation of our method in Sect. 5 and discuss
the limitations of our solution in Sect. 6. Finally, we conclude in Section 7 by
presenting some future works.

2 Related Work

Most of the privacy techniques for OLAP data are derived from the literature on
the privacy of statistical database [11]. These techniques can be classified into
two categories: Access restriction/control methods and disruption methods.

Restriction and Access Control Methods. In [13], they presented two types
of inference attacks and then proposed an access control system that further
restricts the privileges of each user until they become inference free. In [16],
the attacker can use the knowledge about the cardinality of the empty cells,
combined with the SUM singleton queries, to infer the individual values. Then, [16]
proposed a privacy method by dividing the cube into blocks and only keeping
the blocks that are not compromised. [14] is an enhancement of [16] with an
audit control system allowing only range queries that are inference-free. [17] is
another query auditing method that uses information theory and only responds
to user queries if the user’s prior knowledge (represented by his previous queries)
and new knowledge do not compromise the cells targeted by the query.

Perturbation Methods. Another way to provide privacy is to add noise to the
cube cells, in such a way any inference of a cell’s value will yield a perturbed value
and reconstruction will not give the original data. [1] presented an approach to
add noise to cells, where each cell is kept as it is with probability p or noised
(using a noise sampled from the normal distribution) with probability 1 − p.

On Privacy of Multidimensional Data 95

In [11], they present another method where the cube is considered as a group of
blocks that will be perturbed individually. In each block, the sum of the noise
added to each cell in a row (as well as for the cells in a column) is equal to 0
so that it can provide accurate range sum queries. Their results show that they
were able to change the values significantly, while providing accurate answers
to queries. In [3], they present another perturbation approach that uses cell
deletion (also called sampling). Based on the average aggregate knowledge, their
algorithm applies data suppression to modify not only the response of the queries
but also the aggregate patterns inferred from the queries. They compared to [11],
and the results show that adding noise alone cannot prevent this type of inference
without the loss of utility and cell suppression is a better suited solution. Our
work targets the same aspects of inference and privacy as defined in [3], and we
have provided a better algorithm for cell suppression and perturbation.

Another perturbation method is the Differential Privacy (DP) [5], considered
the gold standard. However, DP cannot be applied to all the possible scenarios [4].
In our work, we considered SUM queries, and one of the main problems in applying
DP is to define the global sensitivity for the SUM functions [10]. Also it requires the
addition of a lot of noise to significantly disrupt the AVG, resulting in poor util-
ity. For these reasons, DP is out of the scope of this work and given other privacy
considerations, we will investigate the application of differential privacy to secure
high-dimensional data (multidimensional cubes) in future work. Another privacy
model is k-anonymity [12], which was used by [8] to avoid re-identification attacks
on the dimensions of a data cube. This is also outside the scope of this paper.

3 Problem Statement

In this section, we give the notation used throughout the paper and a formulation
of the problem under consideration.

3.1 Preliminaries

Data Cube. A data cube C is a multidimensional data over a relational table for
a set of dimensions D = {d1, d2, . . . , dn}, where each dimension di corresponds to
an attribute and each cell contains the result of an aggregated measure. Figure 1
illustrates a 2-dimensional cube where attributes Shops and Days are dimen-
sions, and each cell contains the measure which is the result of the aggregate
operator SUM on the amount of sales. In this work, we consider only SUM, as this
aggregate operator is (i) extensively used in many multi-dimensional frameworks
[15], and (ii) used to compute other aggregate operators such as AVG.

We consider here a special class of queries called continuous range queries
in such a way that SUM is performed over a range query R = {r1, r2, . . . , rn},
noted by SUM(R), where ri is a continuous range on dimension di specified by
the start and end positions. For instance, in Fig. 1, SUM(R) results in 1004k with
R = {(Shop1 : Shop3), (Day3 : Day5)}. Let R = {R1, R2, . . . , Rm} be a query
workload used by the data publisher and the end user as a contract that defines

96 A. E. Laouir and A. Imine

the view to be published (via range queries) instead of the whole data cube. Let
|R| be the size (i.e., the number of non-empty cells) of range query R. In Fig. 1,
the size of R = {(Shop1 : Shop3), (Day3 : Day5)} is 5.

Metrics. Our goal is to suppress (and possibly perturb) some cell values from
each range R to get R′. Any privacy-preserving data publishing method for
data cubes is evaluated on two criterias: utility and privacy. As utility objective,
we consider boosting the accuracy of SUM queries in our solution. For that, we
compute the relative error of accuracy Ae which shows how different the SUM
answer on the exact range R and the altered one R′:

Ae(R,R′) =
|SUM(R) − SUM(R′)|

SUM(R)
(1)

It is clear that the smaller the relative error of accuracy, the better the utility.
As for privacy issues, our objective is to prevent inference attacks like those

presented in Sect. 1. Let us recall that in these attacks the information on the
average was deduced from the data cube. Therefore, we compute the inference
error Ie which shows how well the solution we propose is able to disrupt this
inferred average and thus mitigate successful attacks [3,7]:

Ie(R,R′) =
|AVG(R) − AVG(R′)|

AVG(R)
(2)

Note that the higher the inference error, the better the privacy of the data
cube. Given both metrics, a good privacy-preserving data publishing method
should provide the best utility-privacy tradeoff.

3.2 Problem Definition

Let C be a data cube with a query workload R = {R1, R2, . . . , Rm}. We consider
attackers whose knowledge is limited to the average information and/or the
distribution of some cells (as described in Sect. 1). The attackers can discover the
exact and/or approximate values of other cells, and accordingly infer sensitive
attribute information. To prevent these attacks, we propose to suppress some
values from data cube C (only the region defined by R) while preserving the
accuracy of SUM queries and mitigating the inference due to the use of the average
operator. More precisely, for each Ri in R, we create a non empty replica R′

i

that contains a minimal subset of the cells in Ri and the others are left null.
Our privacy-preserving solution can be defined as a multi-objective optimization
problem:

maximize
∑m

k=1 |Ri| − |R′
i|

minimize 1
m

∑m
k=1 Ae(Ri, R

′
i)

maximize 1
m

∑m
k=1 Ie(Ri, R

′
i)

subject to R′
i ⊂ Ri for each Ri ∈ R

(3)

On Privacy of Multidimensional Data 97

The first objective function of Eq. 3 maximizes the difference between Ri and R′
i

to meet the requirement of cube compression. In real world scenarios, the sizes of
data cube and its query workload are very huge. Finding an optimum solution to
multi-optimization problem 3 is hard and intractable task. This type of resolution
falls under the broad category of multi-criteria, or vector optimization problems.
Unlike single-objective problems, it is not always possible to find an optimal
solution that satisfies all the function objectives under consideration. Moreover,
even several solutions may not meet the expectations of the data publisher in
terms of utility and privacy requirements. Therefore, it would be more beneficial
if the data publisher had the ability to select and verify their own levels of utility
and privacy.

In the next section, we propose a heuristic to problem 3 combining cell sup-
pression and perturbation and allowing us to find plausible solutions.

4 Privacy-Preserving Method

We present a method to publish a view of a given data cube while ensuring good
utility of SUM queries and protecting cells privacy against average-based inference
attacks. The view is built using two operations on non-empty cells: suppression
and perturbation of data cells. Our method proceeds in three steps: (i) splitting
query ranges at finer grid granularity in order to increase the accuracy of poten-
tial SUM queries; (ii) defining and solving a Linear Programming (LP) problem to
determine how many cells are needed from Ri ∈ R and its sub-ranges to prepare
a range view given a storage space B; (iii) preparing range views by deleting
some data cells and perturbing others as necessary as possible.

4.1 Preprocessing Step

Each Ri in the query workload R represents a region of the data cube that
we want to publish while ensuring utility and privacy. If the range of R is
large, then dealing directly with this range would be a coarse granularity to
the problem, thereby penalizing small user queries after the data cube view is
published. Indeed these queries will not be efficient (i.e., null result) since they
target regions where cells have been deleted unnecessarily due to coarse gran-
ularity. Accordingly, to ensure that the retained/removed cells from region Ri

are evenly distributed across all parts, we consider a smaller unit on which to
apply cell suppression. We call this unit a sub-query (or sub-region), so each Ri

will be divided (logically by indices only) into smaller sub-regions. We build a
view for each sub-region of Ri, which together constitute the global view of Ri.
Splitting data into smaller units is a common preprocessing step, either on the
data cube directly [11] or on a query workload [3].

4.2 Space Allocation Step

Unlike multi-objective optimization problem 3 (where the decision variables are
the cells values of each Ri), we define a simple LP problem to compute the

98 A. E. Laouir and A. Imine

view size of ranges as well as their sub-ranges (resulting from the preprocessing
step). Given an allocated space B in which we want to build a view of the query
workload R = {R1, R2, . . . , Rm}. The objective is to distribute this space in such
a way to guarantee a minimum Ae for all Ri:

minimize
1
m

m∑

i=1

|SUM(Ri) − SUM(R′
i)|

SUM(Ri)
(4)

The view R′
i is a subset of Ri to be published. The size and the data cells of R′

i

are unknown at this stage. As the data cells of Ri are known, we can compute
the average value AVG(Ri) = SUM(Ri)/|Ri|. Instead of determining which data
cells of Ri to include in R′

i, we consider a single a decision variable bi, the size
of R′

i, and replace the data cells of R′
i by a single cell AVG(Ri). Thus, Eq. 4 is

redefined as follows:

minimize
1
m

m∑

i=1

|SUM(Ri) − bi × AVG(Ri)|
SUM(Ri)

= |1 −
m∑

i=1

1
m × |Ri| × bi| (5)

From Eq. 5, our allocation problem needs only the size of each Ri in R.
Therefore, our LP problem is stated as follows:

minimize |1 − ∑m
i=1

1
m×|Ri| × bi|

subject to
∑m

i=1 bi <= B
minimumspace <= bi < |Ri| for each i ∈ {1, . . . , m}

(6)

The first constraint of Eq. 6 ensures that the space allocated to all range
queries does not exceed the given space B. As for minimumspace, it is an input
parameter passed to the algorithm to ensure that each query gets a minimum
space allocation. The solution of Eq. 6 will give us the allocated space bi for each
Ri, and since each Ri consists of a group of subqueries, we need to divide the
bi and give each subquery its appropriate allocation. To do this, we reuse our
LP problem to calculate the space allocation for each subquery of Ri but with
B equal to the space found for Ri.

4.3 View Creation Step

After the allocation step, each query (and its subqueries) in R would be allocated
a space (in number of cells). To prepare the data cube view for publishing, the
next step is to find the cells to keep in each region R (working on each of its
subregions) relative to Ae and Ie. To this end, we have designed two algorithms,
the first based solely on cell suppression and the second being a perturbation-
based approach.

Cell Suppression Algorithm. To get the optimal Ae and Ie, we have to try
all possible combinations of cells (that fit in the allocated space b), which is
inconvenient and computationally expensive. So an approximate solution might

On Privacy of Multidimensional Data 99

be a better way to solve this problem. In [3], they used a heuristic that consid-
ers first the utility (by selecting outliers or the largest values), and privacy in
second order.

Ie=30%

Ie=23%

Algorithm 1

[3] Algorithm

Ie=50%

Algorithm 2

Space allocated b = 3

Global_noise = 20%, Individual_noise = 20%
δerror=50%

Fig. 2. Output comparison between Algorithm 1, Algorithm 2 and [3].

Algorithm 1. Cells suppression
Inputs: r - subquery region

b - allocated space
Output: r′ - view of r

r′ ← []
T ← sort in asc. order r by values
(index, best index, best Ie) ← (0, 0, 0)
while index + b < |r| do

r′ ← get b values of T
from position index

if Ie(r, r′) >= best Ie then

best Ie ← Ie(r, r′)
best index ← index

end if
index ← index + 1
r′ ← []

end while
r′ ← get b values of T

from position best index

return r′

Algorithm 2. Cell perturbation
Inputs: r - subquery region

b - allocated space
noiseglobal - maximum distortion
noiseindividual - distortion rate
δerror - reachable level of Ie

Output: perturbed r′ - noised view of r

r′ ← get b largest values from r

noise budget ← SUM(r) × (1 + noiseglobal) − SUM(r′)
noise step ← 1
perturbed r′ ← r′
noise ← 0
while (Ie(r, perturbed r′) < δerror) and

(noise < noise budget) and
(noise step < noiseindividual) do

perturbed r′, noise ← add noise(r′, noise step)
if noise > noise budget then

perturbed r′, noise ← add noise(r′, noise step − 1)
return perturbed r′

end if
noise step ← noise step + 1

end while
perturbed r′, noise ← add noise(r′, noise step)
return perturbed r′

Relegating Ie to the second order of priority does not guarantee the best
results in all cases, so we propose Algorithm 1 that optimizes Ie in priority.

Given a sub-region r of a region R and space allocation b, the algorithm first
sorts the cells by values (each cell contains a value and a location in the cube) in
ascending order. It computes iteratively the maximal value of Ie by considering
successive and overlapping b values. At the end, Algorithm 1 constructs r′ with
the subset of cells that gave the best results (R′ is composed of all r′). Figure 2
shows by an example the difference between the results provided by our heuristic
and [3]. In our solution, we give priority to Ie, but without neglecting Ae. If the
first and last b values yield the best (and similar) Ie, our solution will choose
the last b values. Since the values are ordered, this set of cells offers the least
(best) Ae.

Cell Perturbation Algorithm. When the values are close to each other, cell
suppression alone will not be able to provide good Ie. For these cases, we have

100 A. E. Laouir and A. Imine

designed Algorithm 2, which is based on cell suppression and perturbation and
can be triggered when Algorithm1 does not perform well. In addition to r and
b, it takes three other parameters: δerror represents the level of Ie we want
to reach, noiseindividual limits the noise (distortion rate) added to each cell
individually, and noiseglobal defines the maximum distortion rate between r and
r′ (i.e., Ae) allowed by adding noise. These additional thresholds ensure that
the added noise does not affect the utility (i.e., Ae) more than necessary, and
also control the distortion applied to each cell. The algorithm first chooses the
cells with the largest values to build r′, then calculates the noisebudget based
on noiseglobal and the noise generated by suppressing the cells (discarding the
most small values). A noise is added to the cells of r′ (the function add noise
returns a perturbed version of r′ and the amount of noise added) incrementally
using noise step which represents the distortion rate (e.g. in Algorithm2 it is
equal to 1%). This process is repeated each time with bigger noise step as long
as: (i) noiseglobal is not exceeded (ii) δerror is not satisfied, and (iii) noise step
is smaller than noiseindividual. Figure 2 shows that the perturbation method
provides better utility and privacy than other suppression-based algorithms.

Using these different thresholds allows us to better control the balance
between utility and privacy. For example, by allowing more noise (accuracy limit
defined by noiseglobal), we can ensure a higher δerror.

5 Experimental Evaluation

For experimental evaluation, we implemented1 our method and [3] approach (as
this one is closest to our work) in C# to facilitate compatibility with SSAS2 used
to create data cubes from TPCDS3 and AdventureWork20124 (see Table 1 for
the details on the cubes). For solving our LP problem in allocation step, we used
Google OrTools with SCIP solver5. To measure the performance of our method,
we conducted several experiments to observe how Ae and Ie vary depending on
two parameters. The first parameter is the allocated space B which we varied
relatively (e.g., 50%) from the original size of R in the data cubes in order
to check the performance of Ae and Ie during the allocation step. The second
parameter is the selectivity of each range query R = {r1, r2, . . . , rn} defined as
‖R‖ = (|r1| ∗ |r2| ∗ ... ∗ |rn|) where |ri| represents the length of the range on the
ith dimension. In the experiments, we create a random query workload R, with
initial selectivity for all queries. Next, we modify (multiply by 2, 3, ...) the initial
selectivity to observe how the performance changes if the size of the input data
increases (with B between 50% and 60%). Our experiments are divided into two
parts: the first part compares our method to [3] in terms of cell suppression and

1 https://github.com/AlaEddineLaouir/PUV-CUBE.
2 https://docs.microsoft.com/fr-fr/analysis-services/?view=asallproducts-allversions.
3 https://www.tpc.org/tpcds/.
4 https://github.com/Microsoft/sql-server-samples/releases/download/adventurewor

ks/AdventureWorks2012.bak.
5 https://developers.google.com/optimization.

https://github.com/AlaEddineLaouir/PUV-CUBE
https://docs.microsoft.com/fr-fr/analysis-services/?view=asallproducts-allversions
https://www.tpc.org/tpcds/
https://github.com/Microsoft/sql-server-samples/releases/download/adventureworks/AdventureWorks2012.bak
https://github.com/Microsoft/sql-server-samples/releases/download/adventureworks/AdventureWorks2012.bak
https://developers.google.com/optimization

On Privacy of Multidimensional Data 101

Table 1. Data cubes used in our experiments.

Databases Dimensions Measures Total

TPCDS Product
18000

Household
7200

Store
6

Date
1824

Promo
300

Net paid
Type reel

∼4.25 E14 cells

Adventure
works

Product
158

Date
1124

Customer
18484

InternetSales
Type reel

∼36 M cells

space allocation. The second part is devoted to our method in order to compare
the techniques of suppression and perturbation of cells.

In the first part, we used the TPCDS data cube to compare both methods
in terms of space allocation using the cell suppression technique of [3] (Exper-
iment (A)) and our cell suppression technique (Experiment (B)). In Fig. 3,
we find the expected behavior of our method in both experiments (A) and (B).
Indeed, both Ae and Ie converge to 0 when the given allocation is too large. This
is something that [3] cannot replicate, because their allocation scheme is based
on the data distribution (i.e., it relies heavily on variance analysis). If the data
in the query workload is not balanced according, their allocation scheme fails to
distribute the allocated space. Unlike our method, [3] gives more space than nec-
essary to some regions and neglects others (for example, this is visible when the
allocation is given at 90%), [3] still fails to get a Ae minimal. As for selectivity in
both experiments (A) and (B), Fig. 3 shows that our method is able to provide
better results in Ae and Ie when the query size increases. Despite an evolution
of the results in the right way for the experiment (A), [3] nevertheless presents
worse results in the experiment (B) when the size of the queries increases. From
Fig. 3, we can also see that our view creation step provides better results than
the suppression heuristic of [3] as shown in experiments (A) and (B). From this
first part of the experiments, we conclude that our method (allocation and view
creation steps) outperforms [3].

For the second part of our experiments, we seek to compare the effectiveness
of the perturbation algorithm Algorithm2 and the cell suppression algorithm
Algorithm 1. In addition to TPCDS, we used the Adventure Work data cube
because it contains cell values that are close to each other, which allows us to
better highlight the performance of both algorithms. To perform these experi-
ments, we used Algorithm 2 with the following parameters: noiseglobal = 20%,
noiseindividual = 27%, δerror = 50%. Applying both algorithms to the TPCDS
data cube, the results for Ae and Ie are similar in all cases as illustrated in
Fig. 4. Whether by allocation or selectivity, our perturbation technique did not
add significant noise. On the other hand, in the case of the adventure work data
cube, we find that cell suppression (see Algorithm 1) alone does not provide any
level of privacy. This is due to the closeness of the cell values giving poor results
for Ie as explained in Sect. 4.3. However, we find that the perturbation technique
(see Algorithm 2) is far superior in terms of performance for Ae and Ie. From
the allocation, the perturbation provides less Ae with much more Ie. We notice
that Algorithm 1 is only able to provide 3% of Ie, while Algorithm 2 is able to

102 A. E. Laouir and A. Imine

10 20 30 40 50 60 70 80 90
0

20

40

60

80

100

B (% Original size)

R
at
e
(%

)

Ae by Allocation B

Our approach Ae(A)
Our approach Ae(B)

[3] Ae(A)
[3] Ae(B)

10 20 30 40 50 60 70 80 90
0

50

100

150

200

250

300

B (% Original size)

R
at
e
(%

)

Ie by Allocation B

Our approach Ie(A)
Our approach Ie(B)

[3] Ie(A)
[3] Ie(B)

2 3 4 5 6 7 8 9
10

20

30

40

50

60

R

R
at
e
(%

)

Ae by Selectivity R

Our approach Ae(A)
Our approach Ae(B)

[3] Ae(A)
[3] Ae(B)

2 3 4 5 6 7 8 9

20

40

60

80

100

120

R

R
at
e
(%

)

Ie by Selectivity R

Our approach Ie(A)
Our approach Ie(B)

[3] Ie(A)
[3] Ie(B)

Fig. 3. Comparaison with [3] in terms of selectivity and allocation.

10 20 30 40 50 60 70 80 90
0

20

40

60

80

100

B (% Original size)

R
at
e
(%

)

Ae by Allocation B

Perturbation Ae(AW)
Perturbation Ae(TPCDS)

Suppression Ae(AW)
Suppression Ae(TPCDS)

10 20 30 40 50 60 70 80 90
0

50

100

150

200

B (% Original size)

R
at
e
(%

)

Ie by Allocation B

Perturbation Ie(AW)
Perturbation Ie(TPCDS)

Suppression Ie(AW)
Suppression Ie(TPCDS)

2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

R

R
a
te
(%

)

Ae by Selectivity R

Perturbation Ae(AW)
Perturbation Ae(TPCDS)

Suppression Ae(AW)
Suppression Ae(TPCDS)

2 3 4 5 6 7 8 9
0

20

40

60

80

100

120

140

R

R
at
e
(%

)

Ie by Selectivity R

Perturbation Ie(AW)
Perturbation Ie(TPCDS)

Suppression Ie(AW)
Suppression Ie(TPCDS)

Fig. 4. Comparaison between suppression and perturbation

achieve the desired 50% of Ie. Indeed, Algorithm 2 guarantees a better value of
Ae because it adds noise to cells kept in view, which reduces the effect of deleted
cells on Ae. Since cell perturbation is limited by the noiseglobal parameter, it
cannot increase the value of Ae beyond what is allowed. The results also show
that Algorithm 2 is able to provide the required δerror passed to the parameters

On Privacy of Multidimensional Data 103

and respects the utility constraint. To sum up, Algorithm1 may be enough to
provide a good balance between Utility/Privacy when the data distribution is
uniform. Otherwise, in the case of close values, Algorithm2 is suitable and gives
better results.

6 Discussion

Our method incurs some computational costs and presents some limitations.
Despite a cost due to the resolution of our LP problem (see Eq. 6), it should be
noted that all computations are performed in offline mode and without impact
on the end user. However, comparing our method and [3] in term of computation
time, we can see that our allocation algorithm is faster in all experiments because
it only requires the count (|R|) of each region compared to multiple scans of cells
needed for [3]. For view creation, the cell deletion algorithm proposed by [3] takes
the least computation time compared to Algorithm 1 and Algorithm 2, due to
the fact that their algorithm does not test many subsets to choose the best one
for privacy.

We have proposed a LP problem to divide a given space B over the query
workload R to have minimal utility loss, but we can transform it into a multi-
objective optimization problem by including the objective function minimizing
B. As said in Sect. 3.2, finding an optimum solution to this kind of optimization
problem is hard and intractable task. In addition, to minimize the number of
decision variables, we replaced the data cells of the view R′

i by the average value
AVG(Ri) where Ri is the original range (see Eq. 6). Using this simplification, it
will eliminate the maximization of the inference error Ie (see Eq. 2) as AVG(R′

i)
will be replaced by AVG(Ri). For this reason, we considered privacy only in the
third step (see Sect. 4.3) of our method.

7 Conclusion

In this paper, we have proposed a privacy-preserving method for creating sani-
tized view of a data cubes. Our approach is based on data cube compression (by
cell suppression), using a LP model that allows for the best cell deletion while
maintaining maximum utility. Given a set of parameters, we also proposed a per-
turbation algorithm that is able to balance utility and privacy. We conducted
extensive experimental tests to evaluate our approach, which was found to give
better performances in terms utility and privacy.

In future work, we plan to explore other aspects of privacy to further develop
our approach and compare it to well-known standards such as Differential
Privacy.

References

1. Agrawal, R., Srikant, R., Thomas, D.: Privacy preserving OLAP. In: Proceedings
of the 2005 ACM SIGMOD International Conference on Management of Data, pp.
251–262 (2005)

104 A. E. Laouir and A. Imine

2. Chatenoux, B., et al.: The Swiss data cube, analysis ready data archive using earth
observations of Switzerland. Sci. Data 8(1), 1–11 (2021)

3. Cuzzocrea, A., Saccà, D.: A theoretically-sound accuracy/privacy-constrained
framework for computing privacy preserving data cubes in OLAP environments.
In: Meersman, R., et al. (eds.) OTM 2012. LNCS, vol. 7566, pp. 527–548. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-33615-7 6

4. Domingo-Ferrer, J., Sánchez, D., Blanco-Justicia, A.: The limits of differential
privacy (and its misuse in data release and machine learning). Commun. ACM
64(7), 33–35 (2021)

5. Dwork, C., Roth, A., et al.: The algorithmic foundations of differential privacy.
Found. Trends Theor. Comput. Sci. 9(3–4), 211–407 (2014)

6. Grubbs, P., Lacharité, M.-S., Minaud, B., Paterson, K.G.: Pump up the volume:
practical database reconstruction from volume leakage on range queries. In: Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, pp. 315–331 (2018)

7. Hylkema, M.: A survey of database inference attack prevention methods. Educa-
tional Technology Research (2009)

8. Kim, S., Lee, H., Chung, Y.D.: Privacy-preserving data cube for electronic medical
records: an experimental evaluation. Int. J. Med. Inform. 97, 33–42 (2017)

9. Nativi, S., Mazzetti, P., Craglia, M.: A view-based model of data-cube to support
big earth data systems interoperability. Big Earth Data 1(1–2), 75–99 (2017)

10. Sarathy, R., Muralidhar, K.: Evaluating Laplace noise addition to satisfy differen-
tial privacy for numeric data. Trans. Data Priv. 4(1), 1–17 (2011)

11. Sung, S.Y., Liu, Y., Xiong, H., Ng, P.A.: Privacy preservation for data cubes.
Knowl. Inf. Syst. 9(1), 38–61 (2006). https://doi.org/10.1007/s10115-004-0193-2

12. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. uncertainty Fuzzi-
ness Knowl.-Based Syst. 10(05), 557–570 (2002)

13. Wang, L., Jajodia, S., Wijesekera, D.: Securing OLAP data cubes against privacy
breaches. In: IEEE Symposium on Security and Privacy, Proceedings 2004, pp.
161–175. IEEE (2004)

14. Wang, L., Jajodia, S., Wijesekera, D.: Parity-based inference control for range
queries. In: Wang, L., Jajodia, S., Wijesekera, D. (eds.) Preserving Privacy in On-
Line Analytical Processing (OLAP). ADIS, vol. 29, pp. 91–117. Springer, Boston
(2007). https://doi.org/10.1007/978-0-387-46274-5 6

15. Wang, L., Jajodia, S., Wijesekera, D.: Preserving Privacy in On-Line Analytical
Processing (OLAP), vol. 29. Springer, New York (2007). https://doi.org/10.1007/
978-0-387-46274-5

16. Wang, L., Wijesekera, D., Jajodia, S.: Cardinality-based inference control in data
cubes. J. Comput. Secur. 12(5), 655–692 (2004)

17. Zhang, N., Zhao, W.: Privacy-preserving OLAP: an information-theoretic app-
roach. IEEE Trans. Knowl. Data Eng. 23(1), 122–138 (2010)

https://doi.org/10.1007/978-3-642-33615-7_6
https://doi.org/10.1007/s10115-004-0193-2
https://doi.org/10.1007/978-0-387-46274-5_6
https://doi.org/10.1007/978-0-387-46274-5
https://doi.org/10.1007/978-0-387-46274-5

	On Privacy of Multidimensional Data Against Aggregate Knowledge Attacks
	1 Introduction
	2 Related Work
	3 Problem Statement
	3.1 Preliminaries
	3.2 Problem Definition

	4 Privacy-Preserving Method
	4.1 Preprocessing Step
	4.2 Space Allocation Step
	4.3 View Creation Step

	5 Experimental Evaluation
	6 Discussion
	7 Conclusion
	References

