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and Melek Önen1
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3 Universitat Politècnica de Catalunya, Barcelona, Spain

Abstract. This paper studies the performance of membership inference
attacks against principal component analysis (PCA). In this attack, we
assume that the adversary has access to the principal components, and
her main goal is to infer whether a given data sample was used to com-
pute these principal components. We show that our attack is successful
and achieves high performance when the number of samples used to
compute the principal components is small. As a defense strategy, we
investigate the use of various differentially private mechanisms. Accord-
ingly, we present experimental results on the performance of Gaussian
and Laplace mechanisms under naive and advanced compositions against
MIA as well as the utility of these differentially-private PCA solutions.
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1 Introduction

Over the past decade, machine learning (ML) algorithms have found application
in a vast and rapidly growing number of systems for analyzing and classifying
usually privacy-sensitive data.

In order to analyze and interpret such data, PCA [18] is employed as one of
the most commonly used unsupervised ML algorithm. PCA is used for summa-
rizing the information content in databases by reducing the dimensionality of
the data while preserving as much variability as possible. The output of this sta-
tistical tool is a set of principal components whose size is usually much smaller
than the total number of attributes of the underlying data.

The increasing popularity of ML algorithms, including PCA, opened the door
for attackers especially when ML techniques are deployed in critical applications.
This work focuses on a particular type of attack named Membership Inference
Attack (MIA) against PCA, where an adversary is assumed to intercept the
principal components computed over some dataset and infer whether a data
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sample was part of this dataset or not. The membership prediction is yield by
comparing the reconstruction error; the distance between the original target
sample and its PCA projection against a threshold. In this paper, we study the
effectiveness of MIA against PCA and show that it achieves high performance
when the number of samples used by PCA is small.

Furthermore, to cope with such attacks that take advantage of the leakage
of principal components, we propose to study the use of differentially private
mechanisms and evaluate the privacy budget affects the success rate of the attack
as well as the utility of the PCA under differential privacy (DP).

Our main contributions are summarized as follows.

1. We study, for the first time, the impact of MIA against PCA whereby the
adversary has access to the principal components.

2. We propose the use of differentially-private PCA algorithms to cope with
MIA and analyze the impact of the privacy budget on both utility and the
success rate of MIA for both vector and scalar queries under the so-called
naive and advanced composition approaches.

3. The experimental results present a comparison between the aforementioned
different approaches under Gaussian and Laplace mechanisms for protecting
the PCA against MIA.

2 Background

2.1 Principal Component Analysis

Given a set D = {xn ∈ R
d : n = 1 : N} of N raw data samples corresponding

to N individuals of dimension d, we denote the data matrix where each column
is a data sample by X = [x1, . . . , xN ]. We assume that data X has zero mean,
which can be ensured by centering the data. The standard PCA algorithm is to
find a k–dimensional subspace that approximates each sample xn. This problem
can be formulated as follows:

min
Πk

L =
1
N

N∑

n=1

Ln =
1
N

N∑

n=1

‖xn − Πkxn‖22 (1)

where L denotes the average reconstruction error and Πk is an orthogonal projec-
tor which is used for approximating each sample xn by x̂n = Πkxn. The solution
to this problem can be achieved via singular value decomposition (SVD) of the
sample covariance matrix, which is defined by A = 1

N XXT = 1
N

∑N
n=1 xnxT

n . A
is a symmetric positive semi-definite matrix, hence its singular value decom-
position is equivalent to its spectral decomposition. SVD of A yields A =∑d

i=1 λiviv
T
i , where λ1 ≥ λ2 ≥ . . . , λd ≥ 0 and v1, v2, . . . , vd denote the eigen-

values and their corresponding eigenvectors of A, respectively. Let us denote
the matrix whose columns are the top k eigenvectors by Vk = [v1, . . . , vk]. The
orthogonal projector Πk = VkV T

k is a solution to the problem in (1). PCA uses
Vk to project the samples into the low k–dimensional subspace Y = V T

k X.
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2.2 Membership Inference Attacks

The goal of an MIA is to infer whether or not a target sample is included in
the training dataset. When an adversary learns whether or not a target sample
was used to release any statistics or to train a machine learning model, this
refers to an information leakage. This attack could cause serious problems in
terms of privacy if the training dataset contains privacy-sensitive information.
An example that highlights the implications of such an attack is [7], which was
able to identify individuals contributing their DNA to a health-related project.

3 Related Work

Since the introduction of MIA against deep neural network (DNN) models in
[22], this attack has been extensively studied on DNNs and other ML models.
The cited work formalized the attack as a binary classification problem and
trained neural network (NN) classifiers to distinguish between training mem-
bers and non-members. The authors demonstrates that the main factor con-
tributing to the success of MIA on DNN models is overfitting. Subsequent works
[13,15,21,23,27] further developed MIAs with different approaches against DNN
of different architectures. The work in [23] revealed that by using suitable met-
rics, metric-based attacks result in similar attack performance when compared
with NN-based attacks. Besides DNN, MIAs have also been investigated against
logistic regression models [20,25], k-nearest neighbors [24,25], and decision tree
models [25,27]. Our work extends the investigations of MIAs against machine
learning models to PCA. As we shall elaborate later in Sect. 4.1, we propose, to
this end, a new metric-based MIA against PCA. To the best of our knowledge,
there is no previous work trying to perform MIA on PCA.

To mitigate MIAs, DP has been widely applied to various ML models
[12,13,26,28]. In [1], the authors show how to train DNNs with DP by adding
noise to the gradients or parameters during model training. In [19], the authors
empirically evaluate MIAs using the proposal of [1]. They find that DP can
partially mitigate the attack with an acceptable level of privacy budget. In our
study, we investigate the effectiveness of DP PCA algorithms on mitigating our
proposed attack.

4 Membership Inference Attacks Against PCA

The first part of this work focuses on the study of the impact of MIA targeting
PCA. We aim to investigate how the sample size and the number of the inter-
cepted principle components affect the performance of such attacks. In Sect. 4.1,
we define the threat model and the actual MIA targeting PCA. This is fol-
lowed by the experimental setup and the corresponding experimental results of
Sects. 4.2 and 4.3, respectively.
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4.1 Threat Model and Attack Methodology

In our setting, the curator computes the principal components Vk using the train-
ing dataset D, and sends these to a trusted party. We assume the adversary A
intercepts some or all of those components by eavesdropping the communication
channel. With them, the adversary aims to identify whether or not a certain
sample z is included in D. In other words, the adversary’s goal is to discover
members of the training dataset.

Such an attack can of course occur in a distributed setting [2] where sev-
eral parties may compute the principal components of their individual (and
usually smaller [10]) training datasets and send those to an aggregator, which
ultimately may compute the global principal components. Analogously to the
non-distributed case, here A would compromise individual privacy by intercept-
ing the principal components conveyed by each party.

To identify whether or not sample z was actually used for the computation
of the principal components, A computes the reconstruction error L(z, Vk) of
the target sample z based on the intercepted Vk, and then compares this error
with some tunable decision threshold R. If the reconstruction error of the tar-
get sample is lower than the threshold, A predicts that z is a member of the
training dataset D. Otherwise, A predicts that z is not a member of D. Our
intuition is that samples from the training dataset are more likely to incur lower
reconstruction error compared to other non-member samples.

4.2 Experimental Setup

We proceed with a detailed description of the datasets used in our experiments.

Datasets:1 We assess the performance of the attack using two groups of datasets:
(i) datasets including personal information, namely, UCI Adult [16] (for short,
Adult), Census [4], and LFW [8]; and the image dataset MNIST [14], which is
typically used in the literature of MIAs. As preprocessing, we standardize the
datasets to unit variance before constructing our attack.

– The UCI Adult dataset includes 48,842 records with 14 attributes. It con-
tains both numerical (e.g. age, hours per week, etc.) and categorical (e.g.
working class, education, etc.) attributes. We employ the standard one-hot
encoding approach to construct the numerical representation of the categor-
ical attributes [9].

– Census: it contains 1080 records with 13 attributes of business statistics.
– Labeled Faces in the Wild (LFW): It includes 13,233 images of 5749 human

faces collected from the Web. 1680 of the 5749 people pictured have at least
two distinct images in this dataset. The resolution of the images is 25 × 18. In
our evaluation, in order to balance the number of samples for each individual,
we only take one picture of each individual in the dataset.

1 Due to page limit constraint, we report only the results for Adult and LFW datasets.
We refer the reader to the full version of this paper [29].
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– MNIST: it includes 10 classes of handwritten digits formatted as grayscale
28 × 28 pixel images. The dataset is used to predict the class of the digit
represented in the image. The total number of samples is 70,000.

Performance Metric: As an evaluation metric of the attack’s success, we use
the area under the receiver operating characteristic(ROC) curve (AUC) metric,
which indicates the relationship between true positive and false-negative rates
over several decision thresholds R that the adversary can use to construct the
attack. In all experiments, we choose equal-sized samples for both members and
non-members at random and report the mean of the results over 10 trials.

4.3 Experimental Results

We evaluate the success rate of the attack in terms of the number of principal
components intercepted by the adversary, denoted by k. For this, we measure the
attacker’s performance through the AUC. Figure 1 shows the maximum AUC
that the adversary can achieve by observing the top-k principal components.
Recall that k may take values from 1 to d, where d is the number of attributes of
the dataset. We report results for various number of samples N . The closer the
AUC is to 0.5, the less successful the attack is as the adversary cannot distinguish
between a member and a non-member.

We observe that the AUC increases with increasing k. This is justified by the
fact that the attacker has access to more information and therefore is more likely
to succeed in identifying the membership. We also observe that the AUC decreases
with increasing N , perhaps, indicating that the sample covariance matrix A con-
verges to the true covariance matrix of the dataset, which renders the reconstruc-
tion error of member and non-member samples of D indistinguishable. The same
behaviour is observed with NNs when the training dataset is large [22].

The results for the MNIST and LFW datasets indicate that the AUC is
always greater than 0.5 and reaches 0.9 when N = 1, 000. As for the Census
and Adult datasets, the corresponding AUC values are much lower (compared
to the other datasets). This is mainly justified by the small dimension d of these
datasets. We note that MIA against machine learning models trained using the
Adult dataset is usually unsuccessful [21,22].

5 Differentially-Private PCA and MIA

In this section, we present PCA(DP-PCA) algorithms introduced in [6,17], and
study their protection against MIAs with various privacy budget values and their
utility. Accordingly, we first remind several preliminaries DP in Sect. 5.1. This
is followed by the experimental results in Sect. 5.3.

5.1 Preliminaries on Differential Privacy

Definition 1 (Neighboring datasets). Any two datasets that differ in one
record are called neighbors. For two neighbor datasets x and x′, the following
equality holds:
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Fig. 1. Impact of the sample size N and the observed top-k components on the attack’s
performance. Shaded areas show 95% confidence intervals for the mean.

d(x,x′) = 1,

where d denotes the Hamming distance.

Definition 2 ((ε, δ)-Differential privacy [5]). A randomized mechanism M
on a query function f satisfies ε-DP with ε, δ � 0 if, for all pairs of neighbor
databases x,x′ and for all O ⊆ range(M),

P{M(f(x)) ∈ O} � eε P{M(f(x′)) ∈ O} + δ.

We say that M satisfies pure DP if δ = 0, and approximate DP otherwise.

Definition 3 (Lp-global sensitivity [5]). Let D be the class of possible data
sets. The Lp-global sensitivity of a query function f : D → R

d is defined as

Δp(f) = max
∀x,x′∈D

‖f(x) − f(x′)‖p,

where x,x′ are any two neighbor datasets.

Definition 4 (Laplace mechanism [5]). Given any function f : D → R
d, the

Laplace mechanism mechanism is defined as follows:

ML(x, f(·), ε) = f(x) + (Y1, . . . , Yd),

where Yi are i.i.d. random variables drawn from a Laplace distribution with zero
mean and scale Δ1(f)/ε.

Definition 5 (Gaussian mechanism [5]). Given any function f : D → R
d,

the Gaussian mechanism mechanism is defined as follows:

MG(x, f(·), ε) = f(x) + (Y1, . . . , Yd),

where Yi are i.i.d. random variables drawn from a Gaussian distribution with
zero mean and standard deviation Δ2(f)

√
2 log(1.25/δ)/ε.
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Theorem 1 ([5]). The Laplace mechanism satisfies (ε, 0)-DP.

Theorem 2 ([5]). For any ε, δ ∈ (0, 1), the Gaussian mechanism satisfies (ε, δ)-
DP.

Theorem 3 ([5]). If each mechanism Mi in a k-fold adaptive composition
M1, . . . ,Mk satisfies (ε′, δ′)-DP for ε′, δ′ � 0, then the entire k-fold adaptive
composition satisfies (ε, kδ′ + δ)-DP for δ � 0 and

ε =
√

2k ln(1/δ)ε′ + kε′(eε′ − 1). (2)

5.2 Differentially Private PCA Approaches

As in the previous scenario where no privacy protection was implemented, the
first step for the data curator is to compute the principal components of the
covariance matrix A, which are to be shared with a trusted entity. However,
to protect individual privacy against an adversary who may intercept some or
all components of A, the curator now decides adding Laplace noise directly on
the coefficients qij of A. In the context of DP, this approach is called output
perturbation.

To protect the α
.= d(d + 1)/2 distinct2 coefficients of A, we consider two

strategies: (i) using a joint query function that simultaneously queries all such
coefficients, and (ii) querying each coefficient separately. We shall refer to these
procedures as vector and scalar queries, respectively.

For i = 1, . . . , d, let attribute i take values in the interval [li, ui] after stan-
dardization, and denote by Λi the absolute difference |li − ui|. Recall [17] that
Δ1(qij) = ΛiΛj/N , from which we can easily derive an upper bound on Δ1(A)
just by adding up the sensitivities of all distinct coefficients. Accordingly, the
scale of the Laplace noise injected to each coefficient yields Δ1(A)/ε in the vec-
tor case, and Δ1(qij)/εij in the scalar case, where ε is the total privacy budget
and εij the fraction thereof assigned to the coefficient qij .

Using the standard sequential composition property, we can compute the
total privacy cost of the scalar strategy by adding up all εij for i � j. In our
experiments, in order to compare the two approaches for a same total privacy
budget, we shall assume εij = ε/α. Note that, in this case, the noise scales will
coincide only if

∑
i�j ΛiΛj = αΛiΛj .

We shall also consider a variation of the scalar case that relies on the advanced
(sequential) composition property. Notice that even though this property is
defined in the context of approximate DP, Theorem 3 also applies if the mecha-
nisms being composed satisfy pure ε-DP. With advanced composition, however,
the total privacy cost can be estimated more tightly (compared to the standard
property) when the number of coefficients is significantly large. Said otherwise,
for the same privacy budget ε (and small δ) and for large α, the scale of the noise
introduced with advanced composition can be reduced notably with respect to

2 Recall that A is a symmetric matrix.
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that injected with standard sequential composition. The noise scale yields in this
case ΛiΛj/Nε′, where ε′ satisfies Eq. (2) for k = α and a given total privacy
budget ε, δ.

Finally, the fourth protection approach we shall use in our experimental
evaluation guarantees approximate DP through the Gaussian mechanism. More
specifically, the algorithm in [6] queries all coefficients of A simultaneously and
estimates Δ2(A) to be 1/N ; the sensitivity bound follows after normalizing D
so that each row has at most unit l2 norm. Accordingly, the scale of the noise
added to each coefficient yields

√
2 log(1.25/δ)/Nε. Table 1 summarizes the four

protection mechanisms we shall evaluate in the next subsection.

Table 1. Overview of the DP mechanisms aimed to protect PCA against MIA. Here, ε
denotes the total privacy budget and ε′ the fraction thereof assigned to each coefficient
of A.

Approach Privacy notion noise scale

Laplace scalar query with naive composition DP αΛiΛj/Nε

Laplace vector query DP
∑

i�j ΛiΛj/Nε

Laplace scalar query with advanced composition approx. DP ΛiΛj/Nε′

Analyze Gauss (AG) Algorithm [6] approx. DP
√

2 log(1.25/δ)/Nε

5.3 Experimental Results

We first study the protection of DP mechanisms against our attack. Therefore,
we implement the four aforementioned approaches and evaluate the AUC of the
attack with various privacy budgets ε, ranging from 10−2 to 108. We would like
to notice that this is not the usual range of values used in the literature. For
example, in privacy-preserving data publishing, values of ε above 3 progressively
seem to lose any meaningful guarantees [3]. However, for us, the fact that we will
be using such large values is irrelevant, since we will empirically measure privacy
leakage not through the ε itself, but through the effectiveness of an MIA. Finally,
at the end of this section, we study the utility of the protected data provided by
such approaches.

DP Mechanisms and AUC. Figure 2 shows the performance of the attack
with respect to the k observed principal components when AG and Laplace
vector query algorithms are used with various values of ε. In the case of the AG
algorithm, ε varies from 0.01 to 1 and δ is set to δ = 1

N whereas for the Laplace
vector query algorithm, we select larger values of ε from 10−1 to 107. We also
present the AUC of the attack in the non-private setting where DP-mechanisms
are not adopted. Under AG, we observe that for all values of ε, the AUC of
the attack is only marginally above 0.5 (random guess baseline). Hence, the AG
algorithm mitigates the effectiveness of MIA. With larger ε values under the
Laplace vector query approach, AUC starts to increase and gets closer to the
non-private case. We also observe that for the Adult and Census datasets, for
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ε = 102 the Laplacian vector query approach provides roughly the same level of
protection than AG for ε = 1. For the LFW dataset, for ε = 104 the Laplace
vector query approach provides the same protection as AG with ε = 1. Hence,
even with a higher privacy budget ε, the Laplace vector query approach limits
the success of the attack.

(a) The AUC of the attack when the AG algorithm is applied with respect to k

(b) The AUC of the attack when the Laplace vector query algorithm is applied w.r.t.
k.

Fig. 2. The AUC of the attack when the AG algorithm (a) and the Laplace vector
query approach (b) are applied with various values of ε. Shaded areas are the 95%
confidence intervals for the mean.

Laplacian Approaches. Figure 3 compares the protection of the aforemen-
tioned Laplacian approaches for various levels of the total privacy budget based
on the maximum AUC of the attack. We observe that the advanced composi-
tion approach achieves better protection than the näıve one in the low privacy
regime (when ε is large). This observation can be explained through the noise
scales injected by the two approaches. From Sect. 5.2, it is easy to verify that
the algorithm based on the advanced composition will introduce less noise than
that relying on the naive composition when ε′ < ε/α. In Fig. 4, we plot in the
hashed area the set of points (ε, α) where this inequality holds. From the figure,
we can see that, for a fixed α, increasing ε will ultimately result in less noise for
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naive composition. And the other way round, for a fixed ε, increasing the num-
ber of coefficients will, at some point, make the advanced mechanism introduce
less noise. We thus justify the observation above by assuming that adding more
noise leads to stronger protection against the MIA.

Specifically, for the Adult (d = 14, α = 105) and Census (d = 13, α = 91)
datasets, where the dimension is relatively small, the AUCs corresponding to the
two different approaches intersect at ε ≈ 102. As for LFW (d = 450, α ≈ 105)
and MNIST (d = 784, α ≈ 3 × 105), where d is large, the intersection occurs at
the very low privacy regime at ε ≈ 105. Furthermore, as depicted in the figure,
the vector query and the scalar query with naive composition approaches achieve
the same protection, because they consume the same total privacy budget ε.

Fig. 3. Attack performance with Laplacian approaches when the adversary intercepts
all components (k = d). The infinity point represents the non-private case

Trade-off Between Privacy and Utility. We use the total privacy budget ε
as well as the AUC of an MIA to quantify privacy. As for utility, which refers to
the accuracy of the principal components produced by the DP-PCA algorithms
of Sect. 5.2, we adopt the metric introduced in [11]. In particular, we compute
the percentage of captured energy of the principal components produced by

Fig. 4. The hashed area shows where naive composition introduces less noise than
advanced composition.



Membership Inference Attack Against Principal Component Analysis 279

those algorithms, V̂k, with respect to the principal components of non-private
PCA (SVD), Vk. Accordingly, we measure utility as q = tr(V̂ T

k AV̂k)

tr(V T
k AVk)

, where A is
the sample covariance matrix. We note that, for all the datasets, we select the
reduced dimension k such that Vk have the captured energy of 90%.

Figure 5 and 6 show the utility of the DP-PCA algorithms as a function of
the privacy budget ε, and of the AUC, respectively. We observe that the AG
algorithm offers good utility for the Adult and Census datasets. However, AG
has a low utility for the other datasets. The Laplacian PCA solutions show lower
utility in comparison with AG for ε ≤ 1. The vector and scalar query with naive
composition approaches show almost the same utility, except for the MNIST and
Census datasets, where the scalar query with naive composition achieves better
utility than the vector query approach. Advanced composition provides better
utility than the naive composition where ε and α are in the blank area of Fig. 4.
In summary, the utility of the DP-PCA algorithms is influenced by the amount
of noise added, as one would expect.

Fig. 5. Trade-off posed by the four DP-PCA algorithms described in Sect. 5.2, between
the total privacy budget ε and data utility. Utility is measured as the percentage of
captured energy w.r.t. SVD.

Fig. 6. Trade-off posed by the four DP-PCA algorithms described Sect. 5.2, between
attack performance and data utility. We measure attack performance through AUC,
and utility through the percentage of captured energy w.r.t. SVD.
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On the other hand, the vector query approach outperforms the scalar query
approach if the sensitivity of the coefficients is skewed. In order to enjoy better
utility, the scalar query approach with advanced composition should be used
rather than with naive composition when the privacy budget ε and the number
of queries α are in the blank area of Fig. 4.

6 Conclusion

In this paper, we have implemented and evaluated the first membership inference
attack against PCA, whereby an adversary has access to some or all principal
components. Our attack sheds light on privacy leakage in PCA. Specifically, we
have demonstrated that an MIA can be deployed successfully, with high perfor-
mance, when the number of samples used by PCA is small. We have evaluated the
protection of DP-PCA under different protection algorithms, privacy budgets,
number of principal components intercepted, and number of covariance coef-
ficients. Our work may be useful to assess the practical value of privacy when
DP-PCA algorithms are employed along with the desired utility. For future work,
to investigate whether there is a correlation between the vulnerable samples in
PCA and the ones in the downstream tasks such as neural network classifiers.
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