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Abstract. Releasing and sharing mobility data, and specifically trajec-
tories, is necessary for many applications, from infrastructure planning
to epidemiology. Yet, trajectories are highly sensitive data, because the
points visited by an individual can be identifying and also confiden-
tial. Hence, trajectories must be anonymized before releasing or shar-
ing them. While most contributions to the trajectory anonymization lit-
erature take statistical approaches, deep learning is increasingly being
used. We observe that natural language sentences and trajectories share
a sequential nature that can be exploited in similar ways. In this paper,
we present preliminary work on generating synthetic trajectories using
machine learning models typically used for natural language processing.
Our empirical results attest to the quality of the generated synthetic
trajectories. Furthermore, our methods allow discovering natural neigh-
borhoods based on trajectories.
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1 Introduction

Personal mobility data in their simplest form are data about individuals that
include their locations at specific times. Sources of real-time raw individual loca-
tion data include, but are not limited to, cell towers, Wi-Fi access points, RFID
tag readers, location-based services, or credit card payments. Historical location
data, in the form of data sets in which each of the records corresponds to an
individual and includes her location data for some time periods, are referred to
as trajectory microdata sets. Such trajectory microdata sets are often interest-
ing to transport authorities, operators, and other stakeholders to evaluate and
improve their services, the state of the traffic, etc. Recently, due to the COVID-
19 pandemic, the health authorities have also become interested in mobility data
to predict the spread of infectious diseases.

The above landscapemotivates the need to share or even publicly releasemobil-
ity data. Sharing is occasionally done at an aggregate level (e.g., heat maps),
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rather than at an individual level. Whichever the specific type of mobility data,
sharing them entails a potential privacy risk. Mobility data are highly unique and
regular. Unicity refers to the data of different individuals being easily differen-
tiable, particularly at some specific locations. The starting and ending locations
of an individual’s trajectories are often their home and work locations which,
again, are highly unique and can lead to reidentification. In [4] it is shown that
individual full trajectories can be uniquely recovered with the knowledge of only
2 locations, and knowledge of 4 locations can lead to full reidentification of
95% of individuals in data set containing trajectories for 1.5 million individuals.
The regularity of trajectories implies that each individual’s data follows peri-
odic patterns. Namely, individuals tend to follow the same trajectories during
workdays–home to work and back to home.

These features may allow attackers with publicly available data or back-
ground knowledge about an individual (such as place of work) to infer sensi-
tive information about that individual, including health status, religious beliefs,
social relationships, sexual preferences, etc.

Our interest in this paper is trajectory microdata. A trajectory is a list of
spatio-temporal points visited by a mobile object. A trajectory microdata set
contains a set of trajectories, where each trajectory normally corresponds to a
different individual. The points in each trajectory are both quasi-identifiers and
confidential information: indeed, some locations can be very identifying (e.g.
the trajectory origin can be the individual’s home) and other locations can be
very confidential (e.g. if the individual visited a hospital, a church or a brothel).
Thus, anonymizing trajectories is not easy. Several anonymization mechanisms
have been proposed, but most of them do not provide solid privacy guarantees or
distort the data too much [9]. An alternative to releasing anonymized trajectories
is to generate synthetic trajectories that do not correspond to any specific real
trajectory [18].

Contribution and Plan of this Paper

We propose to leverage deep learning models used in natural language process-
ing, and in particular for next-word prediction, to generate synthetic trajectory
data. A key idea in the proposal is that road networks impose a context to peo-
ple’s movements, and so there is semantics connected to the transition from one
trajectory point to the next. Capturing this semantics is something that modern
language models based on deep learning have shown to excel at.

Section 2 reviews related work on trajectory data protection and synthetic
generation, including methods based on deep learning. Section 3 describes our
mechanism for synthetic trajectory data generation. Section 4 shows the results
of our experimental evaluation. Finally, Sect. 5 concludes the paper and high-
lights ideas for future work.
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2 Related Work

2.1 Sequential Models for Trajectory Prediction

Since trajectories have the same sequential nature as natural language sentences,
sequence models used for next-word prediction have also been extended to next
location prediction task. [2,21] use recurrent neural networks (RNNs) [19] and
their variations in the next location prediction task. RNNs have shown superior
performance due to their ability to capture trajectory data’s latent spatial and
temporal features. [25] utilise the bidirectional long-short-term memory (BiL-
STM) model and the similarity-based Markov model (SMM) to predict the indi-
viduals’ next locations while maintaining the semantic and spatial patterns of
the individuals’ trajectories.

2.2 Privacy-Preserving Tajectory Data Publishing

Existing methods for privacy-preserving trajectory publishing can be divided
into statistical methods and deep learning (DL)-based methods.

Statistical methods rely on one of the following principles [9,13]: (i) sup-
pression by removing points of trajectories that can identify individuals; (ii)
generalization by making the trajectories indistinguishable via grouping them
into larger ranges; (iii) distortion by using differential privacy (DP) to ensure
that the presence of a record in a data set leaks a controlled amount of informa-
tion; and (iv) perturbation by using techniques like location merging, clustering,
or generating virtual trajectories.

Most of the proposed works in the literature adopt one or more of the tech-
niques above to release privacy-preserving trajectory data. For instance, NWA [1]
anonymizes trajectories following a two-step procedure: 1) building clusters of
at least k similar trajectories, and 2) anonymizing trajectories in each cluster to
produce k-anonymous trajectory data. GLOVE [12] adopts a different procedure
with two steps as well: 1) computing trajectory-wise merge costs and 2) itera-
tively building clusters by merging two trajectories with the smallest cost until
satisfying k-anonymity. [6] use microaggregation clustering to group trajectories
according to their similarity and then replace them with group representatives.
[7] group similar trajectories and remove some of them to ensure k-anonymity.
KTL [22] adapts both l−diversity and t−closeness to trajectory data to counter
attacks facilitated by k-anonymity (e.g., attribute linkage). [3,14] adopt DP-
based methods to release distorted trajectories. [14] merge coexistent points
from different trajectories using a partitioning procedure based on the exponen-
tial DP mechanism, whereas [3] propose a mechanism for perturbing semantic
trajectories that satisfies ε-local DP.

However, statistical methods generally do not provide a proper trade-off
between the utility and privacy of their published trajectory data [24]. Non-
DP methods, to some extent, maintain the utility of the published data, but
they are vulnerable to several privacy attacks (e.g., attribute linkage and back-
ground knowledge attacks). Although l-diversity and t-closeness methods offer
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better protection against privacy attacks, they can have a negative impact on the
utility [16]. On the other hand, DP-based methods attempt to make the pres-
ence or absence of any single record unnoticeable from the protected output,
which makes such methods ill-suited to protect microdata (records correspond-
ing to individual subjects) without (i) severely reducing the data utility or (ii)
significantly degrading the privacy guarantee being offered [5].

DL-based methods aim to generate synthetic trajectories that can realis-
tically reproduce the patterns of individuals’ mobility [18]. The intuition is that
the generated synthetic data come from the same distribution of real trajectories
(thereby preserving utility). At the same time, they do not correspond to real
trajectories (thereby preserving privacy).

Existing DL methods leverage sequence natural language processing (NLP)
models, such as RNNs [19], or generative models, such as generative adversarial
networks (GANs) [11], to approximate the distribution of the real trajectory
data and then sample synthetic trajectories from that distribution.

[10,17] exploit the ability of RNNs to model problems over sequential data
having long-term temporal dependencies. Like training a next-word prediction
model, they train a next location prediction model using the real trajectory data
as training data. Then, they construct a synthetic trajectory by starting at some
arbitrary location and iteratively feeding the current output trajectory sequence
as input to the next step in the trained model.

GANs [11] set up a game between two neural networks: the generator G and
the discriminator D. G’s goal is to generate “synthetic” data classified as “real”
by D, whereas D’s goal is to correctly distinguish between real and synthetic
data and provide feedback to G to improve the realism of the generated data.
trajGAN [24] consists of a generator G which generates a dense representation
of synthetic trajectories from a random input vector z and a discriminator D,
which classifies input trajectory samples as “real” or “fake”. To capture contex-
tual and hidden mobility patterns and generate more realistic trajectories, traj-
GAN [24] uses RNNs to create dense representations of trajectories. SVAE [15]
builds its generator G based on an LSTM and a Variational Autoencoder (VAE)
to combine the ability of LSTMs to process sequential data with the ability of
VAEs to construct a latent space that captures key features of the training data.
MoveSim [8] uses a self-attention-based sequential model as a generator to cap-
ture the temporal transitions in human mobility. In addition, the discriminator
uses a mobility regularity-aware loss to distinguish real from synthetic trajec-
tories. [23] propose a two-stage GAN method (TSG) to generate fine-grained
and plausible trajectories. In the first stage, trajectories are transformed into a
discrete grid representation and passed as input for a generative model to learn
the general pattern. In the second stage, inside each grid, an encoder-decoder
generator is used to extract road information from the map image and then
embed it into two parallel LSTMs to generate trajectory sequences.

Although DL-based methods have shown promising performance in gener-
ating high-utility synthetic trajectories, privacy issues are likely to arise due to
overfitting the trained models on the original training data [18]. Consequently,
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a synthetic trajectory may resemble a real one and give an attacker the chance to
use this information for re-identification. In our proposed work, we adopt a DL-
based method to generate plausible synthetic trajectories and also mitigate the
above-mentioned privacy risk by integrating a randomization mechanism during
the synthetic trajectory generation phase.

3 Synthetic Trajectory Generation Method

This section presents our proposed mechanism for synthetic trajectory data gen-
eration. We first explain our approach to preprocess the original data, to con-
vert them from lists of spatio-temporal points into sequences of labels. Then,
we describe the BiLSTM neural network architecture, which we use to train a
next-point prediction model. Finally, we present the data generation process, in
which we use the randomization of next-point predictions to limit or prevent the
release of trajectories or subtrajectories present in the original data.

3.1 Data Preprocessing

The first step is to preprocess the trajectory data so that they are amenable
to be used as training data for a natural language processing model. Trajec-
tory microdata contain spatio-temporal points (id, x, y, t), where id is a trajec-
tory identifier, (x, y) is a latitude-longitude location and t is the time at which
the location was visited by the moving object. Analogously, NLP models take
sequences of tokens representing words (or parts of words) and punctuation. In
our preprocessing, we first define a bounding box around the area of interest
and discard outlying points. For example, when dealing with trajectory data in
a given city, trajectories that depart from the city to a far away area are not of
great interest.

Then, we build a grid of an arbitrary resolution within the bounding box.
The more resolution, the better accuracy we can obtain from further analysis of
the generated data, but also the more resources we will need in order to train the
generator model. The grid resolution also has an effect on the privacy properties
of the generated data. Continuing with the NLP example, the more resolution,
the bigger the dictionary of words that our model has to deal with. Next, we
assign each of the points in the data set to cells in the grid and label cells using an
invertible encoding function (such as alphabetic labeling or a number computed
as row × number of columns + column). Once each of the points is encoded as
a label, we discard all grid labels that do not appear in the data set, so as to
reduce the dictionary size, and recode the labels to the range [0 . . . #labels − 1].
At this point, each of the trajectories is a sequence of labels, similar to what
sentences are.

In addition, we compute and store the distribution of trajectory lengths and
discard trajectories with outlying lengths, again to save training resources. This
length distribution will later be used during the trajectory generation process.
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(a) Original trajectory data (b) Tessellation and cell labeling

Fig. 1. From trajectories to sequences of labels

Finally, we obtain the training (and validation) data by extracting n-grams
from the trajectories, using a growing window, and taking the last point in each
n-gram as the label for next-word prediction.

3.2 Next-Point Prediction Model

After preprocessing the training data, we use the bidirectional long short-term
memory (BiLSTM) model to solve the trajectory next-point prediction task.
BiLSTM’s main advantage over the other sequence models is that its input
flows from the past to the future and vice versa, making BiLSTMs a powerful
tool for modeling the sequential dependencies between trajectory points. Since
the presence of an individual at a specific location is usually influenced by the
previous and next locations the individual visits, BiLSTM is expected to capture
those local contextual patterns. Moreover, training BiLSTM on the trajectory
data of many individuals’ visited points within a limited geographic area is
expected to capture the global pattern of the individuals’ mobility in that area.
Therefore, BiLSTM is expected to predict the individuals’ next points more
accurately than other models.

Figure 2 shows the architecture of the proposed BiLSTM-based model for
the next-point prediction.

The first layer of the model takes a processed trajectory as input, which is
represented as sequence of points (pt−1, pt, . . . , pt+k), where pt is the point an
individual visited as time t. The embedding layer then maps each point in the
processed trajectory to a multidimensional vector with a predefined length so
the BiLSTM units can process it. Then, the BiLSTM units run the obtained
embeddings in two ways, one from past to future and one from future to past,
to preserve information from both past and future. Finally, the softmax layer
uses the output vectors of the BiLSTM units to produce a vector of probabilities
∈ RL of the next point, where L is the total number of labels.
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Fig. 2. Proposed BiLSTM-based model for next-point prediction

3.3 Synthetic Data Generation

The generation process starts by choosing the trajectory lengths (number of
points per trajectory) from the original length distribution obtained during the
preprocessing of the training data. Then, we generate batches of synthetic tra-
jectories of the same length to leverage on the parallelization capabilities of DL
models.

To generate each of the synthetic trajectories, we start by drawing a random
location label from the dictionary and feeding it to the trained model to predict
the next point. Then, we append the predicted point to the trajectory and feed
it again to the model. We repeat this process until we obtain trajectories of the
desired length.

One potential issue with this approach is that the model learns a 1-to-1
representation or mapping of the training data. This is especially (but not only)
possible when ML models overfit the training data. In these cases, the synthesized
trajectories are likely to mimic trajectories or sections of trajectories from the
training data (which would be akin to sampling them from the training data),
and thus not be truly synthetic. The solution we propose in this case is to
collect the top-k predictions of the next point and choose one of them uniformly
at random. In this case, even if the model is a 1-to-1 mapping of the original
data, the probability of a trajectory or sub-trajectory being equal to one in
the training data falls to (1/k)length. Even so, if the data were big and diverse
enough to contain any single possible trajectory in a grided area, all synthetic
data generated from them would necessarily be a sample of the original data.
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The above described top-k fix can still have issues if the distribution of prob-
abilities for the top k next-point candidates is close to uniform, or if there is
a clear peak for the first candidate and very similar probabilities for the rest
(which is often a symptom of overfitting). In such cases, the quality of the gen-
erated data can decrease, introducing artifacts in the trajectories, such as very
long transitions from one point to the following one. The k parameter has to be
adequately tuned to avoid these issues. In our experiments, we took k = 3.

4 Experimental Analysis

We run experiments that generate synthetic trajectory data out of two public
mobility data sets, namely the Cabspotting data set and the GeoLife data set.

4.1 Data Sets and Preprocessing

The Cabspotting data set [20] contains trajectories of occupied taxi cabs in
San Francisco and the surrounding areas in California. The data set contains
trajectories of nearly 500 taxis collected over 30 days. The trajectories consist
of points containing each a GPS location, a timestamp and an identifier. In our
preprocessing, we just keep points with longitudes between −122.6◦ and −122.0◦

and latitudes between 37.0◦ and 37.4◦. These points define an area of 2, 938.38
km2 around the San Francisco Bay area. Next, we define two grids with different
resolutions to generate two different data sets:

San Francisco 128: This is a grid of 128 × 128 cells, which results in 16, 384
cells, of which 4, 944 are visited at least once. These will become the labels
in our location dictionary for the first data set. They are shown in Fig. 3a.

San Francisco 256: This is a grid of 256 × 256 cells, or a total 65, 536 cells,
of which 12, 393 are visited at least once. These are the labels for the second
data set. Figure 3b shows the unique locations in the dictionary.

In both cases, we keep only trajectories with a length between 3 and 45
locations, which result in 437, 335 distinct trajectories. Figure 4 shows the dis-
tribution of the lengths of trajectories in the San Francisco 128 and 256 data sets.

The GeoLife data set [26–28] is a trajectory microdata set collected by
Microsoft Research Asia during the Geolife project. The data collection pro-
cess was carried out by 182 users during a period of over 3 years (2007–2012).
Each of the trajectories consists of a sequence of timestamped locations, col-
lected with varying sampling rates of one point every 1–5 s or every 5–10 m.
The data set collects different mobility modes and activities. Again, we keep
only points within longitudes 115.9904◦ and 116.8558◦ and latitudes 39.67329◦

and 40.22726◦, which yields an area of 4, 548.78 km2 around the city of Beijing.
We generate two data sets by defining two different grids of spatial resolutions
128 × 128 and 256 × 256:
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(a) San Francisco 128 (b) San Francisco 256

Fig. 3. Unique locations in the San Francisco data set for resolutions 128 and 256

(a) San Francisco 128 (b) San Francisco 256

Fig. 4. Distribution of the lengths of trajectories in the San Francisco 128 and San
Francisco 256 data sets

Beijing 128: The first data set is generates by tessellating the given area using
a grid of 128 × 128 cells, which results in 16, 384 cells, of which 7, 079 are
visited at least once. Thus, the location dictionary of the Beijing 128 data
set consists of those 7, 079 unique locations. Figure 5a shows these unique
locations in the dictionary. We keep trajectories with a number of points
between 3 and 70, which results in a total 36, 827 distinct trajectories.

Beijing 256: The second grid consists of 256 × 256 cells, or a total 65, 536
cells, of which 15, 831 are visited at least once. These are the labels for the
Beijing 256 data set. In this case, we keep 43, 741 trajectories, which have
lengths between 3 and 100 points. Figure 5b shows the unique locations in
the dictionary.

Figure 6 shows the distribution of the lengths of trajectories in the Beijing
128 and 256 data sets.
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(a) Beijing 128 (b) Beijing 256

Fig. 5. Unique locations in the Beijing data set for resolutions 128 and 256

(a) Beijing 128 (b) Beijing 256

Fig. 6. Distribution of the lengths of trajectories in the Beijing 128 and Beijing 256
data sets

In all four data sets, we completed the preprocessing phase by generating the
n-grams from the trajectories and keeping the last point in each of the n-grams
as the classification label for the next-point prediction models.

4.2 Model Training

For the San Francisco 128 data set, we trained a BiLSTM consisting of an
embedding layer of input dimension 4, 944 and output dimension 64, followed
by two BiLSTM layers of 256 and 128 units, respectively, and a dense layer of
128 units. The output layer consisted of 4, 944 units with the softmax activation
function. Dropout layers were included before and after the second BiLSTM
layer, with a dropout rate of 20%. The model was trained for 250 epochs with a
batch size of 250 and a validation split of 20%, using the Adam optimizer on the
sparse categorical crossentropy loss function. The model obtained an accuracy
of 48.53% and a validation accuracy of 48.7%.
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In the case of the San Francisco 256 data, we used a similar architecture
and training process, except for the embedding layer’s input dimension and the
number of units of the output layer, which were set to 12, 393, according to
the dictionary size. The accuracy of the model was 33.86%, while its validation
accuracy was 34.3%.

For the Beijing 128 and Beijing 256 data sets, we increased the BiLSTM
layer sizes to 512 and 256, respectively. The embedding layer’s dimensions and
output layer sizes were set to 7, 079 for Beijing 128 and 15, 831 for Beijing 256,
according to the sizes of their label dictionaries. The model trained on Beijing
128 obtained an accuracy of 79.3% and a validation accuracy of 62.29%. The
one trained on Beijing 256 obtained a 75.40% accuracy and a 47.81% validation
accuracy. These two models show overfitting to the training data, partly because
there are many fewer trajectories in these two data sets than in the San Fran-
cisco data sets with respect to the number of location labels (7, 079 labels for
36, 827 trajectories in Beijing 128, and 15, 831 labels for 43, 741 trajectories in
Beijing 256).

4.3 Results of Data Generation

Finally, we generated 20 synthetic data sets for each of the 4 training data sets
(San Francisco 128 and 256, and Beijing 128 and 256) both using the top-1 pre-
diction and our randomized strategy, that is, choosing the next point randomly
among the top-k predictions, for k = 3. Each of the synthetic data sets consisted
of 400 synthetic trajectories. For comparison, we also sampled the 4 training data
sets, again drawing 20 samples of 400 trajectories for each of them. Figures 7
and 8 show examples of the sampled and generated data sets.

As mentioned before, both Beijing synthetic data sets show some artifacts in
the shape of long jumps across points. This is partly the effect of being smaller
data sets and also the effect of overfitting.

In order to assess the quality of the generated data, we compared the original
samples with the synthetic data sets, according to the following metrics:

– dSL, computed as the mean of the sum of the distances (in km) between all
consecutive locations over all trajectories.

– Δr, defined as the average distance (in km) between any two consecutive
points over all trajectories.

– dmax, computed as the mean maximum distance (in km) between any two
consecutive locations over all trajectories.

– #locs, obtained as the mean number of distinct locations visited in each
trajectory.

– The mean number of visits per unique location #V/loc for all trajectories.

Table 1 shows the results for each of the data sets, averaged over the 20
different samples drawn or generated for each of them.

In the case of the San Francisco synthetic data sets, the results show smaller
values for dSL, Δr, and dmax under the top-1 and top-3 predictions than in
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Fig. 7. Examples of San Francisco trajectories. Top figures use a 128× 128 grid and
bottom figures use a 256× 256 grid. Figures in the left are samples from the original
data set, figures in the middle show the results of using top-1 predictions, while figures
in the right use random top-3 predictions.

Fig. 8. Examples of Beijing trajectories. Top figures use a 128× 128 grid and bottom
figures use a 256× 256 grid. Figures in the left are samples from the original data set,
figures in the middle show the results of using top-1 predictions, while figures in the
right use random top-3 predictions.
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Table 1. Quality metrics for the generated data

City Resolution Method dSL Δr dmax #locs #V/loc

San Francisco 128 sample 5.94 0.78 1.16 8.40 6.87

top-1 4.50 0.60 0.84 8.30 8.84

top-3 4.96 0.67 1.09 8.13 7.20

256 sample 5.73 0.64 1.11 9.83 3.78

top-1 3.94 0.45 0.81 9.57 4.81

top-3 4.70 0.54 1.16 9.52 4.11

Beijing 128 sample 5.91 0.56 0.71 10.37 3.43

top-1 6.26 0.62 1.31 7.83 4.01

top-3 14.5 1.45 4.90 8.38 3.41

256 sample 4.79 0.35 0.48 13.4 2.47

top-1 5.81 0.45 1.82 9.47 3.00

top-3 21.47 1.69 6.71 10.93 2.47

the sampled trajectories. This indicates that the synthetic trajectories tend to
be slightly shorter than the original ones, especially under the top-1 prediction.
The #locs metric shows similar results among the sampled and synthetic data
sets, while the #V/loc metric show slightly higher values for the synthetic data.
This, together with the shorter trajectories, seem to indicate that the trajectories
are more concentrated in the synthetic data than in the training data sets. This
might be caused by the sometimes limited capability of RNNs and BiLSTMs
to capture long-range relationships. ML models based on transformers seem to
capture these relationships better, and we plan to conduct experiments in this
regard in the future.

Regarding the Beijing data, the results reveal the effects of the artifacts
described above, reflected by values for dSL, Δr, and dmax under top-1 and top-
3 that are much higher than those in the sampled data (especially in the top-3
case). The number of locations, and the number of visits per location, however,
do not show such big deviations.

4.4 Additional Remarks on the Experimental Work

One point of independent interest appears when analyzing the vector embed-
dings learnt by the models, especially in the case of the San Francisco data set.
Figure 9 shows a clustering of the vector embeddings projected on the San Fran-
cisco map together with a neighborhood division of the same city1. While not
exactly aligned, the clustering shows three big areas in the west and three in
the east, surrounding a central area with several divisions, similar to that in the
neighborhood map.
1 A SF local’s guide to the neighborhoods of San Francisco. https://sfgal.com/sf-

locals-guide-to-neighborhoods-of-san-francisco/.

https://sfgal.com/sf-locals-guide-to-neighborhoods-of-san-francisco/
https://sfgal.com/sf-locals-guide-to-neighborhoods-of-san-francisco/
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Fig. 9. Clustering of embeddings compared to a map of neighborhoods

Such results suggest that analyzing the vector embeddings resulting from
trajectory data sets might be of use to other applications based on city areas,
possibly together with additional information. One possible example of applica-
tion would be the prediction of house prices in different areas of a city.

5 Conclusions and Future Work

In this paper, we have shown preliminary work on the generation of synthetic
trajectory microdata using machine learning models typically used for natu-
ral language processing and time series. We have shown the potential of such
approaches and proposed a strategy to limit the possible data leakages from
the data generation. An independent result arising from the study of the vec-
tor embeddings learnt during the training process might be of interest in other
related areas.

As future work, we plan to replicate the experiments using modern architec-
tures for NLP based on transformers, which have shown a higher performance in
NLP tasks than BiLSTMs, especially regarding long-term relationships between
concepts. Additionally, we plan to study the effects of differential privacy in the
synthetic data, using different approaches such as DP-SGD and PATE. Other
potential research directions involve including the time dimension in the generated
data and replicating the process in distributed or federated learning scenarios.
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neural network based language model. In Interspeech 2(3), 1045–1048 (2010)

20. Piorkowski, M, Sarafijanovic-Djukic, N., Grossglauser, M.: CRAWDAD data set
EPFL/mobility (v. 2009–02-24). Traceset: cab, downloaded from February 2009

21. Rossi, A., Barlacchi, G., Bianchini, M., Lepri, B.: Modelling taxi drivers’ behaviour
for the next destination prediction. IEEE Trans. Intell. Transp. Syst. 21(7), 2980–
2989 (2019)

http://arxiv.org/abs/2108.02084


Generation of Synthetic Trajectory Microdata from Language Models 187

22. Tu, Z., Zhao, K., Xu, F., Li, Y., Su, L., Jin, D.: Protecting trajectory from seman-
tic attack considering k-anonymity, l-diversity, and t-loseness. IEEE Trans. Netw.
Serv. Manag. 16(1), 264–78 (2018)

23. Wang, X., Liu, X., Lu, Z., Yang, H.: Large scale GPS trajectory generation using
map based on two stage GAN. J. Data Sci. 19(1), 126–41 (2021)

24. Xi, L., Hanzhou, C., Clio, A.: trajGANs: using generative adversarial networks for
geo-privacy protection of trajectory data. Vision paper (2018)

25. Xu, M., Han, J.: Next location recommendation based on semantic-behavior pre-
diction. In: Proceedings of the 2020 5th International Conference on Big Data and
Computing, pp. 65–73, 28 May 2020

26. Zheng, Y., Li, Q., Chen, Y., Xie, X., Ma, W.-Y.: Understanding mobility based on
GPS data. In: Proceedings of ACM Conference on Ubiquitous Computing (Ubi-
Comp 2008), Seoul, Korea, pp. 312–321. ACM Press (2008)

27. Zheng, Y., Xie, X., Ma, W.-Y.: GeoLife: a collaborative social networking service
among User, location and trajectory. IEEE Data Eng. Bull. 33(2), 32–40 (2010)

28. Zheng, Y., Zhang, L., Xie, X., Ma, W-.Y.: Mining interesting locations and travel
sequences from GPS trajectories. In: Proceedings of International conference on
World Wild Web (WWW 2009), Madrid, Spain, pp. 791–800. ACM Press (2009)


	Generation of Synthetic Trajectory Microdata from Language Models
	1 Introduction
	2 Related Work
	2.1 Sequential Models for Trajectory Prediction
	2.2 Privacy-Preserving Tajectory Data Publishing

	3 Synthetic Trajectory Generation Method
	3.1 Data Preprocessing
	3.2 Next-Point Prediction Model
	3.3 Synthetic Data Generation

	4 Experimental Analysis
	4.1 Data Sets and Preprocessing
	4.2 Model Training
	4.3 Results of Data Generation
	4.4 Additional Remarks on the Experimental Work

	5 Conclusions and Future Work
	References




