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Preface

Privacy in statistical databases is a discipline whose purpose is to provide solutions to
the tension between the social, political, economic, and corporate demands of accurate
information, and the legal and ethical obligation to protect the privacy of the various
parties involved. In particular, the need to enforce privacy regulations, epitomized by
the EU General Data Protection Regulation (GDPR), in our world of big data has made
this tension all the more pressing. Stakeholders include the subjects, sometimes called
respondents (the individuals and enterprises to which the data refer), the data controllers
(those organizations collecting, curating, and, to some extent, sharing or releasing the
data), and the users (the ones querying the database or the search engine, who would
like their queries to stay confidential). Beyond law and ethics, there are also practical
reasons for data controllers to invest in subject privacy: if individual subjects feel their
privacy is guaranteed, they are likely to providemore accurate responses. Data controller
privacy is primarily motivated by practical considerations: if an enterprise collects data
at its own expense and responsibility, it may wish to minimize leakage of those data to
other enterprises (even to those with whom joint data exploitation is planned). Finally,
user privacy results in increased user satisfaction, even if it may curtail the ability of the
data controller to profile users.

There are at least two traditions in statistical database privacy, both of which started
in the 1970s: the first one stems from official statistics, where the discipline is also
known as statistical disclosure control (SDC) or statistical disclosure limitation (SDL),
and the second one originates from computer science and database technology. In official
statistics, the basic concern is subject privacy. In computer science, the initial motivation
was also subject privacy but, from 2000 onwards, growing attention has been devoted to
controller privacy (privacy-preserving datamining) and user privacy (private information
retrieval). In the last few years, the interest and the achievements of computer scientists
in the topic have substantially increased, as reflected in the contents of this volume.
At the same time, the generalization of big data is challenging privacy technologies in
many ways: this volume also contains recent research aimed at tackling some of these
challenges.

Privacy in Statistical Databases 2022 (PSD 2022) was held in Paris, France, under
the sponsorship of the UNESCO Chair in Data Privacy, which has provided a stable
umbrella for the PSD biennial conference series since 2008. In fact, PSD started in 2004
and PSD 2022 is the tenth conference in the series. Previous PSDs were held in various
locations around the Mediterranean, and had their proceedings published by Springer
in the LNCS series: PSD 2020, Tarragona, LNCS 12276; PSD 2018, Valencia, LNCS
11126; PSD 2016, Dubrovnik, LNCS 9867; PSD 2014, Eivissa, LNCS 8744; PSD 2012,
Palermo, LNCS 7556; PSD 2010, Corfu, LNCS 6344; PSD 2008, Istanbul, LNCS 5262;
PSD 2006, Rome, LNCS 4302; and PSD 2004, Barcelona, LNCS 3050. The PSD series
took over from the high-quality technical conferences on SDC which started 24 years
ago with Statistical Data Protection-SDP (Lisbon, 1998, OPOCE proceedings) and the
AMRADS project SDC Workshop (Luxemburg, 2001, LNCS 2316).



vi Preface

The PSD 2022 Program Committee accepted for publication in this volume 25
papers out of 45 submissions. Furthermore, 10 of the above submissions were selected
for short oral presentation at the conference. Papers came from authors in 18 differ-
ent countries and four different continents. Each submitted paper received at least two
reviews. The revised versions of the 25 accepted papers in this volume are a fine blend
of contributions from official statistics and computer science. Covered topics include
privacymodels, statistical tables, disclosure risk assessment and record linkage, privacy-
preserving protocols, unstructured and mobility data, synthetic data, machine learning
and privacy, and case studies.

We are indebted to many people. First, to the Organization Committee for making
the conference possible and especially to Jesús Manjón, who helped prepare these
proceedings, and to Samia Bouzefrane, who led the local arrangements. In evaluat-
ing the papers we were assisted by the Program Committee and by Ziqi Zhang as an
external reviewer. We also wish to thank all the authors of submitted papers and we
apologize for possible omissions.

This volume is dedicated to the memory of William (Bill) E. Winkler, who was
always supportive and served as a PC member of many PSD conferences.

July 2022 Josep Domingo-Ferrer
Maryline Laurent
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An Optimization-Based Decomposition
Heuristic for the Microaggregation

Problem

Jordi Castro1(B), Claudio Gentile2, and Enric Spagnolo-Arrizabalaga1

1 Department of Statistics and Operations Research,
Universitat Politècnica de Catalunya, Jordi Girona 1–3,

08034 Barcelona, Catalonia
jordi.castro@upc.edu, gentile@iasi.cnr.it

2 Istituto di Analisi dei Sistemi ed Informatica “A. Ruberti”,

Consiglio Nazionale delle Ricerche, Rome, Italy

Abstract. Given a set of points, the microaggregation problem aims to
find a clustering with a minimum sum of squared errors (SSE), where
the cardinality of each cluster is greater than or equal to k. Points in the
cluster are replaced by the cluster centroid, thus satisfying k-anonymity.
Microaggregation is considered one of the most effective techniques for
numerical microdata protection. Traditionally, non-optimal solutions to
the microaggregation problem are obtained by heuristic approaches.
Recently, the authors of this paper presented a mixed integer linear opti-
mization (MILO) approach based on column generation for computing
tight solutions and lower bounds to the microaggregation problem. How-
ever, MILO can be computationally expensive for large datasets. In this
work we present a new heuristic that combines three blocks: (1) a decom-
position of the dataset into subsets, (2) the MILO column generation
algorithm applied to each dataset in order to obtain a valid microag-
gregation, and (3) a local search improvement algorithm to get the final
clustering. Preliminary computational results show that this approach
was able to provide (and even improve upon) some of the best solutions
(i.e., of smallest SSE) reported in the literature for the Tarragona and
Census datasets, and k ∈ {3, 5, 10}.

Keywords: Statistical disclosure control · Microdata ·
Microaggregation problem · Mixed integer linear optimization ·
Column generation · Local search · Heuristics

1 Introduction

A microdata file of p individuals (people, companies, etc.) and d variables (or
attributes) is, in practice, a matrix A ∈ R

p×d whose element aij provides the
value of attribute j for individual i, and whose row ai gives the d attributes for

Supported by grant MCIU/AEI/FEDER RTI2018-097580-B-I00.

c© Springer Nature Switzerland AG 2022
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4 J. Castro et al.

individual i. Formally, a microdata file is a mapping M : S ⊆ P → V1 × . . .×Vt,
where P is a population, S is a sample of the population and Vi is the domain
of the attribute i ∈ {1, . . . , d}.

Microdata files must be protected before being released; otherwise, confi-
dential individual information would be jeopardized. Microaggregation [5,6] is
a statistical disclosure control technique, mainly for numeric variables, which is
related with k-anonymity [20].

The goal of microaggregation is to modify the values of the variables such
that the released microdata satisfies k-anonymity. Therefore, it first partitions
the individuals (or points in R

d) into subsets of size at least k, called clusters,
and it then replaces each point in the cluster with the centroid of the cluster in
order to minimize the loss of information, called spread. In practical cases, the
value of k is relatively small (e.g., 3 ≤ k ≤ 10, see [6]). A widely used measure
for evaluating the spread is the sum of squared errors (SSE) [6]:

SSE =
q∑

i=1

ni∑

j=1

(aij − ai)T (aij − ai), (1)

where q denotes the number of clusters, ni the size of cluster Ci = {aij , j =
1, . . . , ni}, and ai = 1

ni

∑ni

j=1 aij its centroid, for i = 1, . . . , q. An equivalent
measure that is also widely used in the literature is the information loss (IL),
which is defined as

IL =
SSE

SST
· 100, (2)

where SST is the total sum of squared errors for all the points, that is:

SST =
p∑

i=1

(ai − ā)�(ai − ā) where ā =
∑p

i=1 ai
p

. (3)

IL always takes values within the range [0, 100]; the smaller the IL, the better
the clustering. From now on, we will denote as feasible clustering a partition into
clusters of size at least k.

Finding the partition that minimizes IL (or SSE) and satisfies the cardinal-
ity requirement ni ≥ k for i = 1, . . . , q is a difficult combinatorial optimization
problem when d > 1 (multivariate data), which is known to be NP-hard [15].
For univariate data (that is, d = 1)—which in practice are the exception—
microaggregation can be solved in polynomial time using the algorithm of [11],
which is based on the shortest path problem.

Microaggregation differs from other related clustering problems, such as k-
medians or k-means [10], specifically in that it imposes a lower bound k on the
cardinality of each cluster, but no fixed number of clusters. On the other hand,
k in k-medians and k-means fixes the number of clusters, while imposing no
constraint on the cardinality of each cluster.

There exist various papers on heuristic algorithms for feasible solutions
to multivariate microaggregation with reasonable IL. Heuristics like minimum
distance to average (MDAV) [6,8] and variable minimum distance to average
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(VMDAV) [19] sequentially build groups of fixed (MDAV) or variable (VMDAV)
size based on considering the distances of the points to their centroid. Other
approaches first order the multivariate points and apply the polynomial time
algorithm of [11] to the ordered set of points, such as in [7], which used several
fast ordering algorithms based on paths in the graph that is associated with the
set of points, whereas [14] used (slower) Hamiltonian paths (which involve the
solution of a traveling salesman problem). The heuristic of [16] also sequentially
builds a set of clusters attempting to locally minimize IL. Other approaches,
such as those of [2,13], are based on refining the solutions previously provided
by another heuristic.

To our knowledge, the only two papers in the literature to apply optimization
techniques to microaggregation and formulate it as a combinatorial optimiza-
tion problem are [1] and [4]. Both of them apply a column generation algorithm
inspired by the work in [9]. Those optimization approaches solve the linear relax-
ation of the integer microaggregation problem, thus computing a (usually tight)
lower bound for the problem. They also provide a (usually very good) upper
bound solution with an IL that is smaller than the ones reported by other
heuristics. Note that having a lower bound of the optimal solution is instru-
mental in order to know how good are the (upper bound) solutions computed
by heuristics, even to perform fair comparisons between them. For instance, the
heuristic introduced in [17] reported IL values below the certified lower bound—
thus, not possible—, which clearly indicates that the values of the datasets used
in that paper were different than those in the rest of the literature (likely due to
some sort of normalization of attributes).

The downside of those optimization based techniques is that, when the
dataset is large, the column generation may involve a large number of iterations,
thus making it computationally very expensive. The main difference between
the approaches in [1] and [4] is that the pricing problem of the former involves a
nonlinear integer problem while the latter requires a simpler linear integer prob-
lem. In practice this means that the pricing subproblem in [1] can be tackled
only by means of complete enumeration and only for small values of k, while [4]
theoretically offers more flexibility and can deal with larger values of k.

Since optimization-based methods can be inefficient for large datasets but
can provide high quality solutions in reasonable time for microdata with a small
number of points, this work suggests a new approach consisting of first partition-
ing the set of points, and then applying an optimization approach to each smaller
subset. The initial partitioning of the dataset is done according to a feasible clus-
tering previously computed with the MDAV/VMDAV heuristics. Additionally,
a local search improvement heuristic is also applied twice: first, to the solution
provided by the MDAV/VMDAV heuristics prior to the partitioning; and second,
to the final solution provided by the optimization approach.

This short paper is organized as follows. Section 2 outlines the optimization-
based decomposition heuristic. Sections 3 and 4 outline the two main building
blocks of the heuristic: the local search improvement algorithm and the mixed
integer linear optimization method based on column generation in [4]. Section 5
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shows the preliminary results from this approach with the standard Tarragona
and Census datasets used in the literature.

2 The Decomposition Heuristic

The decomposition heuristic comprises the following steps:

Input: Microdata matrix A0 ∈ R
p×d, minimum cluster cardinality k,

upper bound of the number of subsets s in which the microdata will be
decomposed.

1. Standardize attributes/columns of A0, obtaining matrix A ∈ R
p×d. Com-

pute the squared Euclidean distance matrix D ∈ R
p×p, where Dij =

(ai − aj)�(ai − aj), which is to be used in the remaining steps.
2. Apply MDAV and VMDAV microaggregation heuristics using D. Let C =

{C1, . . . , Cq} be the best of the two feasible clusterings provided by MDAV
and VMDAV (that is, the one with smallest IL). Here, q represents the
number of clusters, and Ci the set of points in cluster i.

3. Apply the local search improvement algorithm (described in Sect. 3) to
C, obtaining the updated clustering C′ = {C′

1, . . . , C′
q}. The updated

clustering C′ has the same number of clusters q as C, but the points in
subsets C′

i and Ci can be different.
4. Partition the microdata and distance matrices A and D in s′ ≤ s subsets

Si, i = 1, . . . , s′, according to the clustering C′. For this purpose we com-
pute p̄ = round(p/s), the minimum number of points in each subset of
the partition, and build each subset Si by sequentially adding points of
clusters C′

j , j = 1, . . . , q until the cardinality p̄ is reached.
5. Apply the mixed integer linear optimization method based on column

generation in [4] to each microaggregation subproblem defined by ASi

and DSi
, i = 1, . . . , s′. Obtain feasible clustering Oi for points in Si,

i = 1, . . . , s′.
6. Perform the union of clusterings O = O1 ∪ · · · ∪ Os′ . O is a feasible

clustering for the original microdata A.
7. Finally, once again apply the local search improvement algorithm from

Sect. 3 to O in order to obtain the final microaggregation O′.
Return: Clustering O′.

Step 3 of the algorithm can be skipped, thus obtaining the partition in Step 4
with the clustering C from Step 2. However, we have observed that better results
are generally obtained if the local search improvement heuristic is applied in both
Steps 3 and 7, not only in Step 7. Indeed, if efficiency is a concern, it is possible
to stop the whole procedure after Step 3, which thus returns cluster C′ as a
solution and, in general, significantly outperforms the solution obtained in Step
2. In this way, it is possible to avoid Step 5, which is usually computationally
expensive.

Note also that the clustering C′ obtained in Step 3 is used only in Step
4 to decompose the microdata into subsets, but not as a starting solution for
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Fig. 1. Two-swapping local search improvement heuristic

the optimization procedure in Step 5. Therefore, the clustering computed in
Steps 5–6 by the optimization procedure might have a larger SSE than C′. On
the other hand, by not starting the optimization procedure in Step 5 with the
solution C′ we have some chances to obtain a different and possibly better local
solution. In the current implementation, C′ is not used as a starting solution for
the optimization algorithm.

The larger the value of s, the faster the algorithm will be, since the minimum
number of points p̄ = round(p/s) in each subset Si, i = 1, . . . , s′ will be smaller,
and therefore the optimization algorithm of [4] will be more efficient. However,
the final IL (SSE) of the final clustering O′ also increases with s. Therefore
parameter s can be used as a trade-off between efficiency and solution quality.

In the next two sections, we outline the local search improvement heuristic
used in Steps 3 and 7, as well as the mixed integer linear optimization method
in Step 5.

3 The Local Search Improvement Heuristic

Given a feasible clustering for the microaggregation problem, a local search algo-
rithm tries to improve it by finding alternative solutions in a local neighborhood
of the current solution. The local search considered in this work is a two-swapping
procedure; in addition to its simplicity, it has proven to be very effective in prac-
tice. Briefly, the two-swapping heuristic performs a series of iterations, and at
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each iteration it finds the pair of points (i, j) located in different clusters that
would most reduce the overall SSE if they were swapped. This operation is
repeated until no improvement in SSE is detected. The cost per iteration of
the heuristic is O(p2/2). Similar approaches have been used in other clustering
techniques, such as in the partitioning around medoids algorithm for k-medoids
[12]. The two-swapping algorithm implemented is shown in Fig. 1.

4 The Mixed Integer Linear Optimization Algorithm
Based on Column Generation

In this section we quickly outline the optimization method presented in [4].
Additional details can be found in that reference.

The formulation of microaggregation as an optimization problem in [4] is
based on the following property of the SSEh of cluster Ch = {ahi

, i = 1, . . . , nh}
(see [4, Prop. 3] for a proof):

SSEh =
nh∑

i=1

(ahi
− ah)�(ahi

− ah)

=
1

2nh

nh∑

i=1

nh∑

j=1

(ahi
− ahj

)�(ahi
− ahj

) =
1

2nh

nh∑

i=1

nh∑

j=1

Dhihj
.

(4)

That is, for computing SSEh, we do not need the centroid of the cluster, but
only the distances between the points in the cluster.

From (4), defining binary variables xij , i, j = 1, . . . , p (which are 1 if points i
and j are in the same cluster, 0 otherwise), then the microaggregation problem
can be formulated as:

min SSE � 1
2

p∑

i=1

∑p
j=1,j �=i Dijxij∑p
j=1,j �=i xij + 1

(5a)

s. to xir + xjr − xij ≤ 1 i, j, r = 1, . . . , p, i �= j, r �= j, i �= r (5b)
p∑

j=1,j �=i

xij ≥ k − 1 i = 1, . . . , p (5c)

xij = xji, xij ∈ {0, 1}, i, j = 1, . . . , p. (5d)

Constraints (5b) are triangular inequalities, that is, if points i and r, and r
and j are in the same cluster, then points i and j are also in the same cluster.
Constraints (5c) guarantee that the cardinality of the cluster is at least k. The
denominator in the objective function (5a) is the cardinality of the cluster that
contains point i. Unfortunately, (5) is a difficult nonlinear and nonconvex integer
optimization problem (see [4] for details).

A more practical alternative is to consider a formulation inspired by the clique
partitioning problem with minimum clique size of [9]. Defining as C∗ = {C ⊆



Decomposition Heuristic for the Microaggregation Problem 9

{1, . . . , p} : k ≤ |C| ≤ 2k − 1} the set of feasible clusters, the microaggregation
problem can be formulated as:

min
∑

C∈C∗
wCxC

s. to
∑

C∈C∗:i∈C
xC = 1 i ∈ {1, . . . , p}

xC ∈ {0, 1} C ∈ C∗,

(6)

where xC = 1 means that feasible cluster C appears in the microaggregation
solution provided, and the constraints guarantee that all the points are covered
by some feasible cluster.

From (4), the cost wC of cluster C in the objective function of (6) is

wC =
1

2 |C|
∑

i∈C

∑

j∈C
Dij . (7)

The number of feasible clusters in C∗—that is, the number of variables in the
optimization problem (6)—is

∑2k−1
j=k

(
p
j

)
, which can be huge. For instance, for p =

1000 and k = 3 we have |C∗| = 8.29 · 1012. However, the linear relaxation of (6)
can be solved using a column generation technique, where the master problem is
defined as (6) but it considers only a subset C̄ ⊆ C∗ of the variables/clusters. The
set C̄ is updated at each iteration of the column generation algorithm with new
clusters, which are computed by a pricing subproblem. The pricing subproblem
either detects that the current set C̄ contains the optimal set of columns/clusters
or, otherwise, it generates new candidate clusters with negative reduced costs.
For small datasets and values of k, the pricing subproblem can be solved by
complete enumeration; otherwise, an integer optimization model must be solved.
The master problem requires the solution of a linear optimization problem. Both
the linear and integer optimization problems were solved with CPLEX in this
work. The solution of the linear relaxation of (6) provides a lower bound to the
microaggregation problem (usually a tight lower bound). In addition, solving the
master problem as an integer problem allows us to obtain a feasible solution to
the microaggregation problem (usually of high quality). A thorough description
of this procedure, and of the properties of the pricing subproblem, can be found
in [4] and [18].

5 Computational Results

The algorithm in Sect. 2 and the local search heuristic in Sect. 3 have been imple-
mented in C++. We used the code of [4] (also implemented in C++) for the
solution of the mixed integer linear optimization approach based on column gen-
eration, as described in Sect. 4. A time limit of 3600 s was set for the solution of
each subproblem with the column generation algorithm in Step 5 of the heuristic
in Sect. 2. We tested the decomposition algorithm with the datasets Tarragona
and Census, which are standard in the literature [3]. The results for Tarragona
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and Census are shown, respectively, in Tables 1–2 and 3–4. These tables show,
for each instance and value k ∈ {3, 5, 10}, the IL and CPU time for the main
steps of the decomposition heuristic in Sect. 2. We also tried the different values
s ∈ {40, 20, 10, 5, 2} for partitioning the dataset in Step 5. For Step 2, the tables
also show which of the MDAV or VMDAV algorithms reported the best solution.
The difference between Tables 1 and 2 (also between Tables 3 and 4) is that the
former show results with the Step 3, while in the latter this step was skipped.
We remind the reader that the decomposition algorithm could be stopped after
Step 3 with a feasible and generally good solution. However, the best IL values
for each k, which are marked in boldface in the tables, are obtained after Step
7, although this means going through the usually more expensive Step 5.

Table 1. Results for the Tarragona dataset considering Step 3 of the algorithm. The
best IL for each k is marked in boldface.

Instance k Step 2 Step 3 Step 5 Step 7

Alg IL CPU IL CPU s IL CPU IL CPU

Tarragona 3 VMDAV 15.85 0.6 15.00 1.9 40 14.96 0.2 14.85 0.1

20 14.83 0.4 14.81 0.1

10 14.68 0.9 14.65 0.3

5 14.57 2.8 14.53 0.4

2 14.51 4.2 14.50 0.2

Tarragona 5 MDAV 22.46 0.5 20.74 5.2 40 20.74 1.0 20.73 0.5

20 20.74 7.9 20.73 0.3

10 20.47 103.8 20.40 1.5

5 20.32 1119.6 20.25 1.6

2 21.06 7207.8 20.46 4.0

Tarragona 10 MDAV 33.19 0.3 30.77 25.6 40 30.77 12119.7 30.77 0.1

20 33.03 61600.3 30.87 9.0

10 31.80 88899.1 30.56 13.4

5 33.32 9.8 30.79 17.4

2 33.20 22.8 30.80 17.2

From Tables 1, 2, 3 and 4 we conclude that:

– In general, the smaller the k and larger the s, the faster the decomposition
heuristic. In a few cases, however, smaller values of s also meant smaller CPU
times; for instance, this is observed for Census, k = 10, and values s = 20 and
s = 10. The explanation is that the maximum time limit was reached in some
pricing subproblems in those runs, and therefore the CPU time increased
with s.

– In general, smaller ILs are obtained for smaller s values, as expected.
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Table 2. Results for the Tarragona dataset without Step 3 of the algorithm. The best
IL for each k is marked in boldface.

Instance k Step 2 Step 5 Step 7

Alg IL CPU s IL CPU IL CPU

Tarragona 3 VMDAV 15.85 0.6 40 15.15 0.2 14.95 1.7

20 14.86 0.3 14.73 1.3

10 14.75 1.0 14.66 1.2

5 14.58 1.9 14.54 0.7

2 14.51 4.6 14.50 0.4

Tarragona 5 MDAV 22.46 0.5 40 21.81 0.9 21.18 4.7

20 21.14 7.9 20.59 4.7

10 20.62 86.2 20.36 3.8

5 20.37 894.5 20.29 2.1

2 21.01 7208.1 20.77 6.0

Tarragona 10 MDAV 33.19 0.3 40 32.05 12597.2 30.82 19.9

20 33.18 60243.5 30.81 20.8

10 32.23 230644.6 30.55 20.9

5 33.20 13.0 30.84 20.9

2 33.21 21.2 30.83 20.6

Table 3. Results for the Census dataset considering Step 3 of the algorithm. The best
IL for each k is marked in boldface.

Instance k Step 2 Step 3 Step 5 Step 7

Alg IL CPU IL CPU s IL CPU IL CPU

Census 3 VMDAV 5.66 1.2 5.25 3.3 40 5.21 0.1 5.20 0.2

20 5.20 0.2 5.19 0.1

10 5.21 0.6 5.18 0.3

5 5.12 3.2 5.07 0.8

2 4.85 5.2 4.79 0.4

Census 5 VMDAV 8.98 1.1 8.12 8.7 40 8.12 2.4 8.12 0.2

20 8.12 22.5 8.11 0.2

10 8.14 247.0 8.09 0.8

5 7.96 5334.6 7.84 2.0

2 9.36 7209.3 8.19 8.5

Census 10 VMDAV 14.04 0.8 12.36 38.4 40 12.36 8452.7 12.36 0.4

20 12.96 77221.1 12.32 7.0

10 12.84 37037.7 12.40 14.5

5 13.49 7310.4 12.63 28.8

2 14.45 26.3 12.46 37.1
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Table 4. Results for the Census dataset without Step 3 of the algorithm. The best IL
for each k is marked in boldface.

Instance k Step 2 Step 5 Step 7

Alg IL CPU s IL CPU IL CPU

Census 3 VMDAV 5.66 1.2 40 5.56 0.1 5.19 3.2

20 5.51 0.3 5.19 2.8

10 5.44 0.9 5.19 2.1

5 5.26 2.3 5.10 1.4

2 4.87 4.9 4.81 0.7

Census 5 VMDAV 8.98 1.1 40 8.94 2.2 8.14 8.3

20 8.84 22.3 8.10 8.2

10 8.63 218.6 8.10 5.9

5 8.22 4050.7 7.90 3.9

2 9.13 7210.2 8.19 8.1

Census 10 VMDAV 14.04 0.8 40 13.88 7647.9 12.47 31.8

20 14.10 77388.6 12.45 35.1

10 14.05 50960.1 12.68 33.1

5 14.02 8802.5 12.55 36.8

2 14.59 24.6 12.42 41.9

– When k = 10, Step 5 is faster for s = 2 or s = 5, which was initially unex-
pected. The reason is that, when k is large and s is small, the column gen-
eration optimization algorithm generates new columns heuristically, reaching
the maximum allowed space of 3000 columns; thus the solution of the diffi-
cult mixed integer linear pricing subproblems is never performed. However,
in those cases, poorer values of IL were obtained.

– In general, the best IL values are obtained when using Step 3, with the excep-
tion of Tarragona and k = 10, whose best IL was given in Table 4 without
Step 3. This can be due to the randomness associated with partitioning the
dataset into s subsets.

– The solution times in Step 5 are generally longer when k is large and s is
small.

Finally, Table 5 summarizes the best IL results obtained with the new app-
roach, comparing them with—to our knowledge—the best values reported in the
literature by previous heuristics (citing the source), and the optimization method
of [1]. The approaches implemented by those other heuristics were commented
in Sect. 1 of this paper. It can be seen that the new approach provided a better
solution than previous heuristics in all the cases. In addition, for k ∈ {3, 5}, the
new approach also provided IL values close to the ones provided by the opti-
mization method of [1], usually while requiring fewer computational resources.
For instance, with our approach, the solutions for Tarragona and k = 3 and
k = 5 required, respectively, 7 and 1127 s; whereas the optimization method of
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Table 5. Comparison of best IL values obtained with the new approach vs. those
found in the literature (citing the source).

Instance k New heuristic Previous heuristics Optimization method of [1]

IL IL IL

Tarragona 3 14.50 14.77 [14] 14.46

5 20.25 20.93 [2] 20.16

10 30.55 31.95 [2] —

Census 3 4.79 5.06 [14] 4.67

5 7.84 8.37 [13] 7.36

10 12.32 12.65 [13] —

[1] (running on a different—likely older—computer) needed, respectively, 160
and 4779 s. For Census and k = 3 and k = 5, the solution times with our app-
roach were, respectively, 10 and 5346 s, whereas that of [1] required, respectively,
3868 and 6788 s. The optimization method of [1] is unable to solve problems with
k = 10, and in this case our new approach reported—as far as we know—the
best IL values ever computed for these instances.

6 Conclusions

We have presented here the preliminary results from a new heuristic approach for
the microaggregation problem. This method combines three ingredients: a par-
tition of the dataset; solving each subset of the partition with an optimization-
based approach; and a local search improvement heuristic. The results have
shown that our new approach provides solutions that are as good as (and in
some cases even better than) those reported in the literature by other heuristics
for the microaggregation problem, although it may generally require longer exe-
cutions times. Future research will investigate improving Step 5 of the heuristic
algorithm and will further consider more sophisticated large-neighborhood search
improvement heuristics.
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14. Maya-López, A., Casino, F., Solanas, A.: Improving multivariate microaggregation
through Hamiltonian paths and optimal univariate microaggregation. Symmetry.
13, 916 (2021). https://doi.org/10.3390/sym13060916

15. Oganian, A., Domingo-Ferrer, J.: On the complexity of optimal microaggregation
for statistical disclosure control. Statist. J. U. N. Econ. Com. Eur. 18, 345–354
(2001)

16. Panagiotakis, C., Tziritas, G.: Successive group selection for microaggregation.
IEEE Trans. Knowl. Data Eng. 25, 1191–1195 (2013)

17. Soria-Comas, J., Domingo-Ferrer, J., Mulero, R.: Efficient near-optimal variable-
size microaggregation. In: Torra, V., Narukawa, Y., Pasi, G., Viviani, M. (eds.)
MDAI 2019. LNCS (LNAI), vol. 11676, pp. 333–345. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26773-5 29

18. Spagnolo-Arrizabalaga, E.: On the use of Integer Programming to pursue Opti-
mal Microaggregation. B.Sc. thesis, University Politècnica de Catalunya, School of
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Abstract. We introduce a logical framework DLTTS (Distributed
Labeled Tagged Transition System), built using concepts from Proba-
bilistic Automata, Probabilistic Concurrent Systems, and Probabilistic
labelled transition systems. We show that DLTTS can be used to for-
mally model how a given piece of private information P (e.g. a tuple)
stored in a given database D protected by generalization and/or noise
addition mechanisms, can get captured progressively by an agent repeat-
edly querying D, by using additional non-private data, as well as knowl-
edge deducible with a more general notion of adjacency based on metrics
defined ‘value-wise’; such metrics also play a role in differentially private
protection mechanisms.

Keywords: Database · Privacy · Transition system · Probability ·
Distribution

1 Introduction

Data anonymization has been investigated for decades, and many privacy models
have been proposed (k-anonymity, differential privacy, . . . ) whose goals are to
protect sensitive information. In this paper, our goal is to propose a logical
framework to formally model how the information stored in a database can
get captured progressively by any agent repeatedly querying the database. This
model can also be used to quantify reidentification attacks on a database.

We assume given a data base D, with its attributes set A, divided in three
disjoint groups: identifiers A(i), quasi-identifiers A(qi), and sensitive attributes
A(s). The tuples of D will be denoted as t, and the subgroup attributes denoted as
ti, tqi, and ts. A privacy policy on D with respect to an agent (user or adversary)
A is a set of tuples PA(D) (noted P ) such that ∀t ∈ P , attributes ts on any t
‘not in the knowledge of A’ remain inaccessible (‘even after deduction’) to A.

The logical framework we propose in this work, to model the evolution of
the ‘knowledge’ that an adversary A can gain by repeatedly querying the given
database D – with a view to get access to sensitive information protected by a
c© Springer Nature Switzerland AG 2022
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privacy policy P –, will be called Distributed Labeled-Tagged Transition System
(DLTTS). The underlying logic for DLTTS is first-order, with countably many
variables and finitely many constants (including certain usual dummy symbols
like ‘�, $,#’). The basic signature Σ for the framework is assumed to have no
non-constant function symbols. By ‘knowledge’ of A we mean the data that A
retrieves as answers to his/her successive queries, as well as other data that
can be deduced/derived, under relational operations on these answers; and in
addition, some others derivable from these, using relational combinations with
data (possibly involving some of the users of D) from finitely many external DBs
given in advance, denoted as B1, . . . , Bm, to which the adversary A is assumed
to have free access. These relational and querying operations are all assumed
done with a well-delimited fragment of the language SQL; it is assumed that this
fragment of SQL is part of the basic signature Σ. For the sake of simplicity, we
shall see any data tuple (that is not part of the given privacy policy P ) directly
as a first-order variable-free formula over Σ, its arguments typed implicitly with
the appropriate headers of the base D; data tuples t in the policy PA(D) will
generally be written as ¬t.

The DLTTS framework will be shown to be particularly suitable for capturing
the ideas on acquiring knowledge and on policy violation, in an abstract setup.
Section 2 introduces the framework; to start with, only the data as well as the
answers to the queries do not involve any notion of randomness. In Sects. 3 and 4,
the framework will be extended so as to handle differentially private databases
as well.

In the second part of the work (Sect. 5 onwards), we propose a method for
comparing the evolution of knowledge of an adversary at two different moments of
the querying process; the same method also applies for comparing the knowledge
evolution of two different adversaries A1, A2, both querying repeatedly (and
independently) the given database.

Running Example. The central Hospital of a Faculty stores recent consulta-
tions by faculty staff. In this record, ‘Name’ is an identifier, ‘Ailment’ is sensitive,
the others are QI; ‘Ailment’ is categorical with 3 branches: Heart-Disease, Can-
cer, and Viral-Infection; this latter in turn is categorical too, with 2 branches:
Flu and CoVid. Such taxonomical relations are assumed public. We assume all
Faculty staff are on the consultation list (Table 1).

Table 1. Hospital’s ‘Secret’ record,
and Anonymized ‘Public’ record

Name Age Gender Dept. Ailment

Joan 24 F Chemistry Heart-Disease

Michel 46 M Chemistry Cancer

Aline 23 F Physics Flu

Harry 53 M Maths Flu

John 46 M Physics CoVid

Table 2. Hospital’s ‘Secret’ record,
and Anonymized ‘Public’ record

Nr Age Gender Dept. Ailment

�1 [20 − 30[ F Chemistry Heart-Disease

�2 [40 − 50[ M Chemistry Cancer

�3 [20 − 30[ F Physics Viral-Infection

�4 [50 − 60[ M Maths Viral-Infection

�5 [40 − 50[ M Physics Viral-Infection
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The Hospital intends to keep ‘secret’ CoVid information on faculty members;
its privacy policy is thus: P = {¬(John, 46,M,#, CoV id)} with # meaning “any
value”. A “public” table is published using generalization: ‘Age’ generalized as
intervals, and ‘Ailment’ by an upward push in the taxonomy. (This database is
neither k-anonymous nor ε-DP.)

An adversary A, who met John at a faculty banquet, suspects him to be
infected with CoVid; she thus decides to consult the published record of the
hospital. Knowing that the ‘John’ she met is a ‘man’ and that the table must
contain John’s health bulletin, A has as choice �2, �4 and �5. A looking for a
‘CoVid-infected’ man, this choice is reduced to the last two tuples of the table
– a priori indistinguishable because of generalization to ‘Viral-Infection’. A had
the impression that John ‘was not too old’, so feels that the last tuple is twice
more likely; she thus ‘decides that John must be from the Physics Dept.’, and
consults the CoVid-cases statement kept publicly visible at that Dept.; which
reads:

Recent CoVid-cases in the Dept: Female 0; Male 1.
This confirms A’s suspicion concerning John.

In this case, the DLTTS framework functions as follows: At starting state
s a transition with three branches would a priori be possible, corresponding to
the three ‘M’ lines (�2, �4, �5), which represent the knowledge acquirable respec-
tively along these branches. A looking for a possible CoVid case, rules out the �2
branch (gives this branch probability 0). For the remaining two branches (�4 and
�5), A chooses the �5 branch, considering it twice more likely to succeed than
the other (A thought ‘John was not too old’). That gives the probability distri-
bution 0, 1/3, 2/3 respectively on the three possible branches for the transition.
If s0, s1, s2 are the respective successor states for the transition considered, the
privacy policy of the Hospital (concerning John’s CoVid information) is violated
at state s2 (with probability 2/3); it is not violated at s1 (probability 1/3); no
information is deduced at state s0.

The probability distributions on the transitions along the runs would gen-
erally depend on some random mechanism, which could also reflect the choices
the adversary might make. �
Remark 1: This example shows that the violation of privacy policies needs,
in general, some additional ‘outside knowledge’, when applied to databases
anonymized using generalization. �

We may assume wlog that the given external bases B1, . . . , Bm – to which
A could resort, with relational operations for deducing additional information –
are also of the same signature Σ as D; so all the knowledge A can deduce/derive
from her repeated queries can be expressed as a first-order variable-free formula
over signature Σ.

2 Distributed Labeled-Tagged Transition Systems

The DLTTS framework presented in this section synthesizes ideas coming from
various domains, such as the Probabilistic Automata of Segala [13], Probabilistic
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Concurrent Systems, Probabilistic labelled transition systems [3,4]. Although the
underlying signature for the DLTTS can be rich in general, for the purposes of
our current work we shall work with a limited first-order signature denoted Σ
(see Introduction). Let E be the set of all variable-free formulas over Σ, and Ext
a given subset of E . We assume given a decidable procedure C whose role is to
‘saturate’ any finite set G of variable-free formulas into a finite set G, by adding
a finite (possibly empty) set of variable-free formulas, using relational operations
on G and Ext. This procedure C will be internal at every node on a DLTTS; in
addition, there will also be a ‘blackbox’ mechanism O, acting as an oracle, telling
if the given privacy policy on a given database is violated at the current node.
More details will be given in Sect. 5 on the additional role the oracle will play in
a privacy analysis procedure (for any querying sequence on a given DB), based
on a novel data-based metric defined in that section.

Definition 1. A Distributed Labeled-Tagged Transition System (DLTTS), over
a given signature Σ, is formed of:

– a finite (or denumerable) set S of states, an ‘initial’ state s0 ∈ S, and a
special state ⊗ ∈ S named ‘fail’:

– a finite set Act of action symbols (disjoint from Σ), with a special action
δ ∈ Act called ‘violation’;

– a (probabilistic) transition relation T ⊂ S × Act × Distr(S), where Distr(S)
is the set of all probability distributions over S, with finite support.

– a tag τ(s) attached to every state s ∈ S � {⊗}, formed of finitely many first-
order variable-free formulas over Σ; the tag τ(s0) at the initial state is the
singleton set {�} (representing the knowledge of the querying agent).

– at every state s a special action symbol ι = ιs ∈ Act, said to be internal
at s, completes/saturates τ(s) into a set τ(s) with the procedure C, by using
relational operations between the formulas in τ(s) and Ext.

A (probabilistic) transition t ∈ T will generally be written as a triple
(s, a, t(s)); and t will be said to be ‘from’ (or ‘at’) the state s, the states of
t(s) will be the ‘successors’ of s under t. The formulas in the tag τ(s) attached
to any state s will all be assigned the same probability as the state s in Distr(S).
If the set τ(s) of formulas turns out to be inconsistent, then the oracle mechanism
O will (intervene and) impose (s, δ,⊗) as the only transition from s, standing
for ‘violation’ and ‘fail’, by definition.

DLTTS and Repeated Queries on a Database: The states of the DLTTS
stand for the various ‘moments’ of the querying sequence, while the tags attached
to the states will stand for the knowledge A has acquired on the data of D ‘thus
far’. This knowledge consists partly in the answers to the queries she made so
far, then completed with additional knowledge using the internal ‘saturation’
procedure C of the framework. In our context, this procedure would consist in
relational algebraic operations between the answers retrieved by A for his/her
repeated queries on D, all seen as tuples (variable-free formulas), and suitable
tuples from the given external databases B1, . . . , Bm. If the saturated knowledge
of A at a current state s on the DLTTS (i.e., the tag τ(s) attached to the current
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state s) is not inconsistent, then the transition from s to its successor states
represents the probability distribution of the likely answers A would expect to
get for her next query.

No assumption is made on whether the repeated queries by A on D are
treated interactively, or non-interactively, by the DBMS. It appears that the
logical framework would function exactly alike, in both cases.

Remark 2: (a) If t is a transition from a state s on the DLTTS that models
a querying sequence on D by an adversary A, and s′ is a successor of s under
t, then, the ‘fresh’ knowledge τ(s′) of A at s′, is the addition to A’s saturated
knowledge τ(s) at s, the part of the response for A’s query, represented by the
branch from s to s′ on t.

(b) It is assumed that ‘no infinite set can be generated from a finite set’ under
the functionalities of SQL (included in Σ) needed in the relational operations for
gaining additional knowledge. This corresponds to the bounded inputs outputs
assumption as in, e.g., [1,2]. �

Proposition 1. Suppose given a database D, a finite sequence of repeated
queries on D by an adversary A, and a first-order relational formula P = PA(D)
over the signature Σ of D, expressing the privacy policy of D with respect to A.
Let W be the DLTTS modeling the querying sequence of A on D, and the evo-
lution of the knowledge of A on the data of D along the branches in W, as
described above.

(i) The given privacy policy PA(D) on D is violated if and only if the failure
state ⊗ on the DLTTS W is reachable from the initial state of W.

(ii) The satisfiability of the set of formulas τ(s)∪{¬P} is decidable, at any state
s on the DLTTS, under the assumptions of Remark 2(b).

3 ε-Indistinguishability, ε-Local-Differential Privacy

In order to manage more powerful anonymization schemes (such as local differ-
ential privacy), one of our objectives now is to extend the result of Proposition 1
to the case when the violation to be considered can be up to some given ε ≥ 0,
the meaning of which we explain next. We stick to the same notation as above.
The set E of all variable-free formulas over Σ is thus a disjoint union of subsets
of the form E = ∪{EK

i | 0 < i ≤ n,K ∈ Σ}, the index i in EK
i standing for

the common length of the formulas in the subset, and K for the common root
symbol of its formulas; each set EK

i will be seen as a database of i-tuples.
We first look at the situation where the queries intend to capture certain

(sensitive) values on a given tuple t in the database D. Two different tuples in
E might correspond to two likely answers to such a query, but with possibly
different probabilities in the distribution assigned for the transitions, by the
probabilistic mechanism M.

Given two such instances, and a real ε ≥ 0, one can define a notion of their
ε-local-indistinguishability, wrt the tuple t and the mechanism M answering the
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queries. This can be done in a slightly extended setup, where the answering
mechanism may, as an option, also add ‘noise’ to certain numerical data values,
for several reasons one among which is data safety. We shall then assume that
the internal knowledge saturation procedure C of the DLTTS at each of its states
incorporates the following noise adding mechanisms: the Laplace, geometric, and
exponential mechanisms. With the stipulation that this optional noise addition
to numerical values can be done in a bounded fashion, so as to be from a finite
prescribed domain around the values (e.g., as in [9]); it will then be assumed
that the tuples formed of such noisy data are also in E .

Definition 2. (i) Suppose that, while answering a given query on the base D,
at two instances v, v′, the probabilistic answering mechanism M outputs the
same tuple α ∈ E. Given ε ≥ 0, these two instances are said to be ε-local-
indistinguishable wrt α, if and only if:

Prob[M(v) = α] ≤ eεProb[M(v′) = α]and

Prob[M(v′) = α] ≤ eεProb[M(v) = α].

(ii) The probabilistic answering mechanism M is said to satisfy ε-local dif-
ferential privacy (ε-LDP) for ε ≥ 0, if and only if: For any two instances v, v′

of M leading to the same output, and any set S ⊂ Range(M), we have:
Prob[M(v) ∈ S] ≤ eεProb[M(v′) ∈ S].

We shall be using the following notion of ε-indistinguishability, and of ε-
distinguishability, of two different outputs of the mechanism M: These defini-
tions – as well as that of ε-DP given below – are essentially reformulations of
the same (or similar) notions defined in [7,8].

Definition 3. Given ε ≥ 0, two outputs α, α′ of the probabilistic mechanism
M answering the queries of A, are said to be ε-indistinguishable, if and only
if: For every pair v, v′ of inputs for M, such that Prob[M(v) = α] = p and
Prob[M(v′) = α′] = p′, we have: p ≤ eεp′ and p′ ≤ eεp.

Otherwise, the outputs α, α′ are said to be ε-distinguishable.

Remark 3: Given an ε ≥ 0, one may assume as an option, that at every state
on the DLTTS the retrieval of answers to the current query (from the mechanism
M) is done up to ε-indistinguishability; this will then be implicitly part of what
was called the saturation procedure C at that state. The procedure thus enhanced
for saturating the tags at the states, will then be denoted as εC, when necessary
(it will still be decidable, under the finiteness assumptions of Remark 2 (b)).
Inconsistency of the set of formulas, in the ‘εC-saturated’ tag at any state, will
be checked up to ε-indistinguishability, and referred to as ε-inconsistency, or ε-
failure. The notion of privacy policy will not need to be modified; that of its
violation will be referred to as ε-violation. Under these extensions of ε-failure
and ε-violation, it is clear that Proposition 1 will remain valid. �



Privacy Analysis with a Distributed Transition System 21

We conclude with two examples of ε-local-indistinguishability.

(i) The two sub-tuples ([50–60[, M, Maths) and ([40–50[, M, Physics), from the
last two tuples on the Hospital’s published record in Example 1 (Table 2),
both point to Viral–Infection as output; they can thus be seen as log(2)-
local-indististinguishable, for the adversary A.

(ii) The ‘Randomized Response’ mechanism RR [14] can be modelled as follows.
Input is (X,F1, F2) where X is a Boolean, and F1, F2 are flips of a coin (H or
T ). RR outputs X if F1 = H, True if F1 = T and F2 = H, and False if F1 =
T and F2 = T . This mechanism is log(3)-LDP: the instances (True,H,H),
(True,H, T ), (True, T,H) and (True, T, T ) are log(3)-indistinguishable for
output True; (False,H,H), (False,H, T ), (False, T,H)and (False, T, T )
are log(3)-indistinguishable for output False.

4 ε-Differential Privacy

The notion of ε-indistinguishability of two given databases D,D′, is more general
than that of ε-local-indistinguishability. ε-indistinguishability is usually defined
for pairs of databases D,D′ that are adjacent in a certain sense. There is no
uniquely defined notion of adjacency on pairs of databases; in fact, several are
known, and used in the literature. Actually, a notion of adjacency can be defined
in a generic parametrizable manner (as done, e.g., in [5]), as follows. Assume
given a map f from the set D of all databases of m-tuples (for m > 0), into some
given metric space (X, dX). The binary relation on pairs of databases in D,
defined by fadj(D,D′) = dX(f(D), f(D′)) can be seen as a measure of adjacency
between D,D′, and fadj is said to define an ‘adjacency relation’.

Definition 4. Let fadj be a given adjacency relation on a set D of databases,
and M a probabilistic mechanism answering queries on the bases in D.

– Two databases D,D′ ∈ D are said to be fadj-indistinguishable under M, if
and only if, for any possible output S ⊂ Range(M), we have:

Prob[M(D) ∈ S] ≤ efadj(D,D′)Prob[M(D′) ∈ S].

– The mechanism M is said to satisfy fadj-differential privacy (fadj-DP), if and
only if the above condition is satisfied for every pair of databases D,D′ in D,
and any possible output S ⊂ Range(M).

Comments: (i) Given ε ≥ 0, the ‘usual’ notions of ε-indistinguishability and ε-
DP correspond to the choice of adjacency fadj = εdh, where dh is the Hamming
metric on databases [5].

(ii) In Sect. 6, we propose a more general notion of adjacency, based on a
different metric defined ‘value-wise’, to serve other purposes as well.

(iii) On disjoint databases, one can work with different adjacency relations,
using different maps to the same (or different) metric space(s),
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(iv) The mechanism RR described above is actually log(3)-DP, not only
log(3)-LDP. To check DP , we have to check all possible pairs of numbers of the
form (Prob[M(x) = y], P rob[M(x′) = y]), (Prob[M(x) = y′], P rob[M(x′) =
y]), (Prob[M(x) = y], P rob[M(x′) = y′]), etc., where the x, x′.... are the input
instances for RR, and y, y′, ... the outputs. The mechanism RR has 23 possible
input instances for (X,F1, F2) and two outputs (True, False); thus 16 pairs of
numbers, the distinct ones being (1/4, 1/4), (1/4, 3/4), (3/4, 1/4), (3/4, 3/4); if
(a, b) is any such pair, obviously a ≤ elog(3)b. Thus RR is indeed log(3)-DP. �

5 Comparing Two Nodes on One or More Runs

In the sections above, we looked at the issue of ‘quantifying’ the indistinguisha-
bility of two data tuples or databases, under repeated queries of an adversary
A. In this section, our concern will be a bit ‘orthogonal’: the issue will be that
of quantifying how different the probabilistic mechanism’s answers can be, at
different moments of A’s querying sequence.

The quantification looked for will be based on a suitable notion of ‘distance’
between two sets of type-compatible tuples. The ‘distance’ d(t, t′), from any given
tuple t in this set to another type-compatible tuple t′, will be defined as the value
of the direct-sum metric of the distances between each attribute of the pair of
tuples (t, t′). If S, S′ are any two given finite sets of type-compatible tuples, of
data that get assigned to the various attributes (along the queries), we define
the distance from the set S to the set S′ as the number ρ(S, S′) = min{ d(t, t′) |
t ∈ S, t′ ∈ S′ }

Some preliminaries are needed before we can define the ‘distance’ function
between the data values under every given header of D. We begin by dividing
the headers of the base D into four classes.

• ‘Nominal’: identities, names, attributes receiving literal data not in any tax-
onomy (e.g., diseases), finite sets of such data;

• ‘Numerval’ : attributes receiving numerical values, or bounded intervals of
(finitely many) numerical values;

• ‘Numerical’: attributes receiving single numerical values (numbers).
• ‘Taxoral’: attributes receiving literal data in a taxonomy relation.

For defining the ‘distance’ between any two values v, v′ assigned to an
attribute under a given ‘Nominal’ header of D, for the sake of uniformity we
agree to consider every value as a finite set of atomic values. (In particu-
lar, a singleton value ‘x’ will be seen as the set {x}.) Given two such values
v, v′, note first that the so-called Jaccard Index between them is the number
jacc(v, v′) = |(v ∩ v′)/(v ∪ v′)|, which is a ‘measure of their similarity’; but this
index is not a metric: the triangle inequality is not satisfied; however, the Jaccard
metric dNom(v, v′) = 1 − jacc(v, v′) = |(vΔv′)/(v ∪ v′)| does satisfy that prop-
erty, and will suit our purposes. Thus, dNom(v, v′) is a ‘measure of dissimilarity’
between v and v′.
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Let τNom be the set of all data assigned to the attributes under the ‘Nominal’
headers of D, along the sequence of A’s queries. Then the above defined binary
function dNom extends to a metric on the set of all type-compatible data-tuples
from τNom, defined as the ‘direct-sum’ taken over the ‘Nominal’ headers of D.

If τNum is the set of all data assigned to the attributes under the ‘Numerval’
headers along the sequence of queries by A, we also define a ‘distance’ metric
dNum on the set of all type-compatible data-tuples from τNum, in a similar
manner. We first define dNum on any couple of values u, v assigned to attributes
under a given ‘Numerval’ header of D, then extend it to the set of all type-
compatible data-tuples from τNum (as the direct-sum taken over the ‘Numerval’
headers of D). This is done as under the ‘Nominal’ headers: suffices to visualize
any finite interval value as a particular way of presenting a set of numerical
values (integers, usually). (In particular, a single value ‘a’ under a ‘Numerval’
header will be seen as the interval value [a].) Thus defined the (Jaccard) metric
distance dNom([a, b], [c, d]) is a measure of ‘dissimilarity’ between [a, b] and [c, d].

Between numerical data x, x′ under the ‘Numerical’ headers, the distance we
shall work with is the euclidean metric |x − x′|, normalized as: deucl(x, x′) =
|x − x′|/D, where D > 0 is a fixed finite number, bigger than the maximal
euclidean distance between the numerical data on the databases and on the
answers to A’s queries.

On the data under the ‘Taxoral’ headers, we choose as distance function a
novel metric dwp, between the nodes of any Taxonomy tree, that we define in
Lemma 1, Appendix C.

The ‘datawise distance functions’ defined above are all with values in the
real interval [0, 1]. This is also one reason for our choice of the distance metric
on Taxonomy trees. This fact is of importance, for comparing the metric ρ we
defined above with the Hamming metric, cf. Sect. 6.

An Additional Role for Oracle O: In Appendix B below, we present a pro-
cedure for comparing the knowledge of an adversary A at different nodes of the
DLTTS that models the ‘distributed sequence’ of A’s queries on a given database
D. The comparison can be with respect to any given ‘target’ dataset T (e.g.,
a privacy policy P on D). In operational terms, the oracle mechanism O keeps
the target dataset ‘in store’; and as said earlier, a first role for the oracle O is
to keep a watch on the deduction of the target dataset by the adversary A at
some node. The additional second role that we assign now to the oracle O, is
to publish information on the distance of A’s saturated knowledge τ(s), at any
given node s, to the target dataset T . This distance is calculated wrt the metric
ρ, defined above as the minimal distance d(t, t′) between t ∈ τ(s), t′ ∈ T , where
d is the direct sum of the ‘column-wise distances’ between the data.

A procedure for comparing two nodes on a DLTTS is formally presented in
Appendix B. The following example illustrates the role played by the notions
developed above, in that procedure.

Example 1 bis. We go back to the Hospital-CoVid example seen earlier,
more particularly its Table 2. ‘Gender’ and ‘Dept.’. are the ‘Nominal’ head-
ers in this record, ‘Age’ is ‘Numerval’ and ‘Ailment’ is ‘Taxoral’. We are
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interested in the second, fourth and fifth tuples on the record, respectively
referred to as l2, l4, l5. The ‘target set’ of (type-compatible) tuple in this exam-
ple is taken as the (negation of the) privacy policy specified, namely the tuple
T = (John, 46,M,#, CoV id).

We compute now the distance d between the target T , and the tuples l2, l4, l5.
This involves only the subtuple L = (46,M,#, CoV id) of T :

• d(l2, L) = dNum(l2, L) + dNom(l2, L) + dwp(L2, L)
= (1 − 1/10) + 0 + (1 − 2/5) = 9/10 + 3/5 = 15/10

• d(l4, L) = dNum(l2, L) + dNom(l4, L) + dwp(L4, L)
= (1 − 0) + 0 + (1 − 4/5) = 1 + 1/5 = 6/5

• d(l5, L) = dNum(l5, L) + dNom(l5, L) + dwp(L5, L)
= (1 − 1/10) + 0 + (1 − 4/5) = 9/10 + 1/5 = 11/10

The tuple l2 is the farthest from the target, while l5 is the closest. This ‘explains’
that the adversary can choose the branch on the transition that leads to a state
where l5 is added to his/her knowledge. This is more formally detailed in the
procedure presented in Appendix B. �

6 New Metric for Indistinguishability and DP

Given a randomized/probabilistic mechanism M answering the queries on
databases, and an ε ≥ 0, recall that the ε-indistinguishability of any two given
databases under M, and the notion of ε-DP for M, were both defined in Def-
inition 4 (Sect. 4), based first on a hypothetical map f from the set of all the
databases concerned, into some given metric space (X, dX), and an ‘adjacency
relation’ on databases defined as fadj(D,D′) = dX(fD, fD′), which was subse-
quently instantiated to fadj = εdh, where dh is the Hamming metric between
databases. It must be observed here, that the Hamming metric is defined only
between databases with the same number of columns, usually with all data of the
same type.

In this section, our objective is to propose a more general notion of adjacency,
based on the metric ρ, defined in Sect. 5 between type-compatible tuples on
databases with data of multiple types. In other words, our D here will be the set
of all databases with data of several possible types as said in the Introduction,
and not necessarily all with the same number of columns. We define then a new
binary relation fρ

adj(D,D′) between databases D,D′ in the set D by setting
fρ
adj(D,D′) = ρ(D,D′), visualizing D,D′ as sets of type-compatible data tuples.

Given ε, we can then define the notion of ερ-indistinguishability of two
databases D,D′ under a (probabilistic) answering mechanism M, as well as
the notion of ερ-DP for M, exactly as in Definition 4, by replacing fadj first with
the relation fρ

adj , and subsequently with ερ. The notions thus defined are more
general than those presented earlier in Sect. 4 with the choice fadj = εdh. An
example will illustrate this point.

Example 4. We go back to the ‘Hospital’s public record’, with the same nota-
tion. We assume in this example, that the mechanism M answering a query for
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‘ailment information involving men’ on that record, returns the tuples l2, l4, l5
with the probability distribution 0, 2/5, 3/5, respectively. Let us look for the
minimum value of ε ≥ 0, for which these three tuples will be ερ-indistinguishable
under the mechanism M.

The output l2, with probability 0, will be ερ-distinguishable for any ε ≥ 0.
Only the two other outputs l4, l5 need to be considered. We first compute the
ρ-distances between these two tuples: d(l4, l5) = (1 − 1

20 ) + 0 + 1 + 0 = 39/20.
The tuples l4 and l5 will be ερ-indistinguishable under M if and only if: (2/5) ≤
e(39/20)ε ∗ (3/5) and (3/5) ≤ e(39/20)ε ∗ (2/5); i.e., ε ≥ (20/39) ∗ ln(3/2). In
other words, for any ε ≥ (20/39) ∗ ln(3/2), the two tuples l4 and l5 will be ερ-
indistinguishable; and for values of ε with 0 ≤ ε < (20/39)∗ ln(3/2), these tuples
will be ερ-distinguishable.

For the ε-indistinguishability of these tuples wrt the Hamming metric dh, we
proceed similarly: the distance dh(l4, l5) is by definition the number of ‘records’
where these tuples differ, so dh(l4, l5) = 2. So the condition on ε ≥ 0 for their
ε-indistinguishability wrt dh is: (3/5) ≤ e2ε ∗ (2/5), i.e., ε ≥ (1/2) ∗ ln(3/2) .

In other words, if these two tuples are ερ-indistinguishable wrt ρ under M for
some ε, they will be ε-indistinguishable wrt dh for the same ε. But the converse
is not true, since (1/2) ∗ ln(3/2) < (20/39) ∗ ln(3/2). Said otherwise: M ε-
distinguishes more finely with ρ, than with dh. �

Remark 4: The statement “M ε-distinguishes more finely with ρ, than with
dh”, is always true, in all situations, here is why. Two records that differ ‘at some
given position’ on two bases D,D′ are always at distance 1 for the Hamming
metric dh, by definition. And, as we pointed out earlier, all the ‘record-wise’
metrics we have defined above also have their values in [0, 1]. So, whatever the
type of data at corresponding positions on any two bases D,D′, the ρ-distance
between the records will never exceed their Hamming distance. That suffices to
prove the above statement. The following Proposition formulates this in more
precise terms:

Proposition 2. Let Dm be the set of all databases with the same number m of
columns, and M a probabilistic mechanism answering queries on the bases in
D. Let ρ be the metric (defined above) and dh the Hamming metric, between the
bases in D, and suppose given an ε ≥ 0.

– If two databases D,D′ ∈ Dm are ερ-indistinguishable under M wrt ρ, then
they are also ε-indistinguishable under M wrt dh.

– If the mechanism M is ερ-DP on the bases in Dm (wrt ρ), then it is also
ε-DP (wrt dh) on these bases.

The idea of ‘normalizing’ the Hamming metric between numerical databases
(with same number of columns) was already suggested in [5]. If only numerical
databases are considered, the metric ρ that we have defined above is the same
as the ‘normalized Hamming metric’ of [5]. Our metric ρ is to be seen as a
generalization of that notion, to directly handle bases with more general types
of data: anonymized, taxonomies, . . . .
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7 Related Work and Conclusion

A starting point for the work presented is the observation that databases could
be distributed over several ‘worlds’ in general, so querying such bases leads to
answers which would also be distributed; to such distributed answers one could
conceivably assign probability distributions of relevance to the query. The proba-
bilistic automata of Segala [12,13] are among the first logical structures proposed
to model such a vision, in particular with outputs. Distributed Transition Sys-
tems (DTS) appeared a little later, with as objective the behavioral analysis of
the distributed transitions, based on traces or on simulation/bisimulation, using
quasi- or pseudo- or hemi- metrics as in [3,4,6]. Our lookout in this work was for
a syntax-based metric in the mathematical sense, that can directly handle data
of ‘mixed’ types – which can be numbers or literals, but can also be ‘anonymized’
as intervals or sets; they can also be taxonomically related to each other in a
tree structure. (The metric dwp we have defined in Appendix C on the nodes of
a taxonomy tree is novel.) Data-wise metrics as defined in our work can express
more precisely, in a mathemaical sense, the ‘estimation errors’ of an adversary
wrt the given privacy policies on the database, at any point of his/her querying
process. (In [10], such estimations are expressed in terms of suitable ‘probability
measures’.) Implementation and experimentation are part of future work, where
we also hope to define a ‘divergence measure’ between any two given nodes on
a DLTTS in terms of the knowledge distributions at the nodes.

Acknowledgement. Sabine Frittella received financial support for this work, from
ANR JCJC 2019 and project PRELAP (ANR-19-CE48-0006).

Appendix A: Proof of Proposition 1

Assertion (i) is restatement. Observe now, that at any state s on W, the tags
τ(s), τ(s) are both finite sets of first-order variable-free formulas over Σ, without
non-constant function symbols. For, to start with, the knowledge of A consists
of the responses received for his/her queries, in the form of a finite set of data
tuples from the given databases, and some subtuples. By our assumptions of
Remark 2 (b), no infinite set can be generated by saturating this initial knowledge
with procedure C. Assertion (ii) follows then from the known result that the
inconsistency of any finite set of variable-free Datalog formulas is decidable, e.g.,
by the analytic tableaux procedure. (Only the absence of variables is essential.)

�

Appendix B: A Non-deterministic Comparison Procedure

• Given: DLTTS associated with a querying sequence, by adversary A on given
database D; and a Target set of tuples T .

• Given: Two states s, s′ on the DLTTS, with respective saturated tags l, l′, and
probabilties p, p′. Target T assumed not in l or l′: neither ρ(l, T ) nor ρ(l′, T )
is 0. Also given:



Privacy Analysis with a Distributed Transition System 27

– config1: successor states s1, . . . , sn for a transition t from s, with proba-
bility distribution p1, . . . , pn; and respective tags l1, . . . , ln, with the con-
tribution from t (cf. Remark 2(a)).

– config2: successor states s′
1, . . . , s

′
m for a transition t′ from s′, with prob-

ability distribution p′
1, . . . , p

′
m; and respective tags l′1, . . . , l

′
m, with the

contribution from t′ (cf. Remark 2(a)).
• Objective: Choose states to compare under s, s′ (with probability measures not

lower than p, p′) in config1, or in config2, or from either.

(i) Compute di = ρ(li, T ), i ∈ 1 · · · n, and d′
j = ρ(l′j , T ), j ∈ 1 · · · m.

dmin(t, T ) = min{di | i ∈ 1 · · · n}, d′
min(t′, T ) = min{d′

j | j ∈ 1 · · · m}

(ii) Check IF the following conditions are satified by config1:

dmin(t, T ) ≤ d′
min(t′, T )

∃ an i, 1 ≤ i ≤ n, such that di = dmin(t, T ), pi ≤ p,
and pi ≥ p′

j for any j, 1 ≤ j ≤ m, where d′
j = d′

min(t′, T )

(iii) IF YES, continue under s with config1, else RETURN.

Appendix C: Taxonomies

Taxonomies are frequent in machine learning. Data mining and clustering tech-
niques employ reasonings based on measures of symmetry, or on metrics, depend-
ing on the objective. The Wu-Palmer symmetry measure on tree-structured tax-
onomies is one among those in use; it is defined as follows [15]: Let T be a given
taxonomy tree. For any node x on T , define its depth cx as the number of nodes
from the root to x (both included), along the path from the root to x. For any
pair x, y of nodes on T , let cxy be the depth of the common ancestor of x, y
that is farthest from the root. The Wu-Palmer symmetry measure between the
nodes x, y on T is then defined as WP(x, y) = 2 cxy

cx+cy
. This measure, although

considered satisfactory for many purposes, is known to have some disadvantages
such as not being conform to semantics in several situations.

What we are interested in, for the purposes of our current paper, is a metric
between the nodes of a taxonomy tree, which in addition will suit our semantic
considerations. This is the objective of the Lemma below, a result that seems to
be unknown.

Lemma 1. On any taxonomy tree T , the binary function between its nodes
defined by dwp(x, y) = 1 − 2 cxy

cx+cy
(notation as above) is a metric.

Proof. We drop the suffix wp for this proof, and just write d. Clearly d(x, y) =
d(y, x); and d(x, y) = 0 if and only if x = y. We only have to prove the Triangle
Inequality; i.e. show that d(x, z) ≤ d(x, y) + d(y, z) holds for any three nodes
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x, y, z on T . A ‘configuration’ can be typically represented in its ‘most general
form’ by the diagram below. The boldface characters X,Y,Z, a, h in the diagram
all stand for the number of arcs on the corresponding paths. So that, for the
depths of x, y, z, and of their farthest common ancestors on the tree, we get:

cx = X + h + 1, cy = Y + h + a + 1, cz = Z + h + a + 1,
cxy = h + 1, cyz = h + a + 1, cxz = h + 1

The ‘+1’ in these equalities is because the X,Y,Z, a, h are the number of arcs
on the paths, while the depths are the number of nodes. The X,Y,Z, a, h must
all be integers ≥ 0. For the Triangle Inequality on the three nodes x, y, z on T ,
it suffices to prove the following two relations:

d(x, z) ≤ d(x, y) + d(y, z) and d(y, z) ≤ d(y, x) + d(x, z).

by showing that the following two algebraic inequalities hold:

(1) 1 − 2 ∗ (h + 1)

(X + Y + 2 ∗ h + a + 2)
+ 1 − 2 ∗ (h + a + 1)

(Y + Z + 2 ∗ h + 2 ∗ a + 2)
≥ 1 − 2 ∗ (h + 1)

(X + Z + 2 ∗ h + a + 2)

(2) 1 − 2 ∗ (h + 1)

(X + Y + 2 ∗ h + a + 2)
+ 1 − 2 ∗ (h + 1)

(X + Z + 2 ∗ h + 2 ∗ a + 2)
≥ 1 − 2 ∗ (h + a + 1)

(Y + Z + 2 ∗ h + 2 ∗ a + 2)

The third relation d(x, y) ≤ d(x, z) + d(z, y) is proved by just exchanging the
roles of Y and Z in the proof of inequality (1).

Inequality (1): We eliminate the denominators (all strictly positive), and write
it out as an inequality between two polynomials eq1, eq2 on X,Y,Z, h, a, which
must be satisfied for all their non-negative integer values:

eq1 : (X + Y + 2 ∗ h+ a+ 2) ∗ (Y + Z + 2 ∗ h+ 2 ∗ a+ 2) ∗ (X + Z + 2 ∗ h+ a+ 2)

eq2 : (h+ 1) ∗ (Y + Z + 2 ∗ h+ 2 ∗ a+ 2) ∗ (X + Z + 2 ∗ h+ a+ 2)

+ (h+ a+ 1) ∗ (X + Y + 2 ∗ h+ a+ 2) ∗ (X + Z + 2 ∗ h+ a+ 2)

− (h+ 1) ∗ (X + Y + 2 ∗ h+ a+ 2) ∗ (Y + Z + 2 ∗ h+ 2 ∗ a+ 2)

eq : eq1 − 2 ∗ eq2. We need to check: eq ≥ 0 ?
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The equation eq once expanded (e.g., under Maxima) appears as:

eq : Y Z2 + XZ2 + aZ2 + Y 2Z + 2XY Z + 4hY Z + 2aY Z + 4Y Z + X2Z+

4hXZ + 2aXZ + 4XZ + a2Z + XY 2 + 4hY 2 + aY 2 + 4Y 2 + X2Y +

4hXY + 2aXY + 4XY + 8h2Y + 8ahY + 16hY + a2Y + 8aY + 8Y

The coefficients are all positive, and inequality (1) is proved.
Inequality (2): We again proceed as above: we first define the following polyno-
mial expressions:

eq3 : (X + Y + 2 ∗ h+ a+ 2) ∗ (X + Z + 2 ∗ h+ a+ 2) ∗ (Y + Z + 2 ∗ h+ 2 ∗ a+ 2);

eq4 : (h+ 1) ∗ (Y + Z + 2 ∗ h+ 2 ∗ a+ 2) ∗ (2 ∗ X + Y + Z + 4 ∗ h+ 2 ∗ a+ 4);

eq5 : (h+ a+ 1) ∗ (X + Y + 2 ∗ h+ a+ 2) ∗ (X + Z + 2 ∗ h+ a+ 2);

If we set eqn : eq3 + 2 ∗ eq5 − 2 ∗ eq4, we get

eqn : −2(h + 1) ∗ (Z + Y + 2h + 2a + 2) ∗ (Z + Y + 2X + 4h + 2a + 4)+
(Y + X + 2h + a + 2) ∗ (Z + X + 2h + a + 2)(Z + Y + 2h + 2a + 2)+
2(h + a + 1) ∗ (Y + X + 2h + a + 2) ∗ (Z + X + 2h + a + 2)

To prove inequality (2), we need to show that eqn remains non-negative for all
non-negative values of X,Y,Z, h, a. For that, we expand eqn (with Maxima), to
get:

eqn : Y Z2 +XZ2 + aZ2 + Y 2Z + 2XY Z + 4hY Z + 6aY Z + 4Y Z +X2Z+

4hXZ + 6aXZ + 4XZ + 8ahZ + 5a2Z + 8aZ +XY 2 + aY 2 +X2Y + 4hXY+

6aXY + 4XY + 8ahY + 5a2Y + 8aY + 4hX2 + 4aX2 + 4X2 + 8h2X+

16ahX + 16hX + 8a2X + 16aX + 8X + 8ah2 + 12a2h+ 16ah+ 4a3 + 12a2 + 8a

The coefficients are all positive, so we are done. �.
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Abstract. The comparison of multivariate population means is a central
task of statistical inference . While statistical theory provides a variety
of analysis tools, they usually do not protect individuals’ privacy. This
knowledge can create incentives for participants in a study to conceal
their true data (especially for outliers), which might result in a distorted
analysis. In this paper, we address this problem by developing a hypoth-
esis test for multivariate mean comparisons that guarantees differential
privacy to users. The test statistic is based on the popular Hotelling’s t2-
statistic, which has a natural interpretation in terms of the Mahalanobis
distance. In order to control the type-1-error, we present a bootstrap
algorithm under differential privacy that provably yields a reliable test
decision. In an empirical study, we demonstrate the applicability of this
approach.

Keywords: Differential privacy · Private testing · Private bootstrap

1 Introduction

Over the last decades, the availability of large databases has transformed statis-
tical practice. While data mining flourishes, users are concerned about increasing
transparency vis-à-vis third parties. To address this problem, new analysis tools
have been devised that balance precise inference with solid privacy guarantees.

In this context, statistical tests that operate under differential privacy (DP)
are of interest: Statistical tests are the standard tool to validate hypotheses
regarding data samples and to this day form the spine of most empirical sciences.
Performing tests under DP means determining general trends in the data, while
masking individual contribution. This makes it hard for adversaries to retrieve
unpublished, personal information from the published analysis.

Related Works: In recent years, hypothesis testing under DP has gained
increasing attention. In a seminal work [20] introduces a privatization method,
for a broad class of test statistics, that guarantees DP without impairing asymp-
totic performance. Other theoretical aspects such as optimal tests under DP are
considered in [3]. Besides such theoretical investigations, a number of privatized
tests have been devised to replace classical inference, where sensitive data is at
c© Springer Nature Switzerland AG 2022
J. Domingo-Ferrer and M. Laurent (Eds.): PSD 2022, LNCS 13463, pp. 31–45, 2022.
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stake. For example [11] and [17] consider privatizations of classical goodness of
fit tests for categorical data, tailored to applications in genetic research, where
privacy of study participants is paramount. In a closely related work, [22] use
privatized likelihood-ratio statistics to validate various assumptions for tabular
data. Besides, [19] propose a method for privatizations in small sample regimes.

A cornerstone of statistical analysis is the study of population means and
accordingly this subject has attracted particular attention. For example, [6]
develop a private t-test to compare population means under local differential
privacy, while [16] consider the multivariate case in the global setting. [12] and
[7] construct private confidence intervals for the mean (which is equivalent to
the one-sample t-test) under global DP and [21] suggests a differentially private
ANOVA. Moreover, [4] present privatizations for a number of non-parametric
tests (such as Wilcoxon signed-rank tests) and [10] devise general confidence
intervals for exponential families.

A key problem of statistical inference under DP consists in the fact that
privatization inflates the variance of the test statistics. If this is not taken into
account properly, it can destabilize subsequent analysis and lead to the “dis-
covery” of spurious effects. To address these problems, recent works (such as
[11] and [10]) have employed resampling procedures that explicitly incorporate
the effects of privatization and are therefore more reliable than tests based on
standard, asymptotic theory.

Our Contributions: In this work, we present a test for multivariate mean com-
parisons under pure-DP, based on the popular Hotelling’s t2-statistic. We retrieve
the effect that asymptotic test decisions work under DP, as long as privatizations
are weak, whereas for strong privatizations, they yield distorted results (see Sect.
4 for details). As a remedy, we consider a parametric bootstrap that cuts false
rejections and is provably consistent for increasing sample size. This method can
be extended to other testing problems, is easy to implement (even for non-expert
users) and can be efficiently automatized as part of larger data disseminating struc-
tures. We demonstrate the efficacy of our approach, even for higher dimensions and
strong privatizations, in a simulation study. The proofs of all mathematical results
are deferred to the Appendix. The work most closely related to our paper is [16],
who consider Hotelling’s t2−statistic for approximate DP and propose a test based
on a (heuristic) resampling strategy. In contrast to this paper, we focus on pure-
DP, employ a different privatization mechanism and a parametric bootstrap test,
for which we provide a rigorous proof of its validity (see Sect. 3.2).

2 Mathematical Background

In this section, we provide the mathematical context for private mean compar-
isons, beginning with a general introduction into two sample tests. Subsequently,
we discuss Hotelling’s t2-test, which is a standard tool to assess mean deviations.
Finally, we define the notion of differential privacy and consider key properties,
such as stability under post-processing. Readers familiar with any of these topics
can skip the respective section.
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2.1 Statistical Tests for Two Samples

In this work, we are interested in testing statistical hypotheses regarding the
distribution of two data samples (of random vectors) X1, ...,Xn1 and Y1, ..., Yn2 .

Statistical tests are decision rules that select one out of two rivaling hypothe-
ses H0 and H1, where H0 is referred to as the “null hypothesis” (default belief)
and H1 as the “alternative”. To make this decision, a statistical test creates a
summary statistic S := S(X1, ...,Xn1 , Y1, ..., Yn2) from the data and based on
S determines whether to keep H0, or to switch to H1. Typically, the decision
to reject H0 in favor of H1 is made, if S surpasses a certain threshold q, above
which, the value of S seems at odds with H0. In this situation, the threshold q
may or may not depend on the data samples.

Given the randomness in statistical data, there is always a risk of making
the wrong decision. Hypothesis-alternative-pairs (H0,H1) are usually formulated
such that mistakenly keeping H0 inflicts only minor costs on the user, while
wrongly switching to H1 produces major ones. In this spirit, tests are constructed
to keep the risk of false rejection below a predetermined level α, i.e. PH0(S >
q) ≤ α, which is referred to as the nominal level (or type-1-error). Commonly, the
nominal level is chosen as α ∈ {0.1, 0.05, 0.01}. Notice that α can be regarded as
an input parameter of the threshold q = q(α). Even though sometimes an exact
nominal level can be guaranteed, in practice most tests only satisfy an asymptotic
nominal level, i.e. lim supn1,n2→∞ PH0(S > q(α)) ≤ α. Besides controlling the
type-1-error, a reasonable test has to be consistent, i.e. it has to reject H0 if
H1 holds and sufficient data is available. In terms of the summary statistic S,
this means that S increases for larger data samples and transgresses q(α) with
growing probability limn1,n2→∞ PH1(S > q(α)) = 1.

2.2 Hotelling’s t2-Test

We now consider a specific test for the comparison of multivariate means: Sup-
pose that two independent samples of random vectors X1, ...,Xn1 and Y1, ..., Yn2

are given, both stemming from the d-dimensional cube [−m,m]d, where m > 0
and d ∈ N. Furthermore, we assume that both samples consist of independent
identically distributed (i.i.d) observations. Conceptually, each vector corresponds
to the data of one individual and we want to use these to test the ”hypothesis-
alternative”-pair

H0 : μX = μY , H1 : μX �= μY , (2.1)

where μX := E[X1] ∈ R
d, μY := E[Y1] ∈ R

d denote the respective expectations.
A standard way to test (2.1) is provided by Hotelling’s t2-test, which is based
on the test statistic

t2 =
n1n2

n1 + n2
(X̄ − Ȳ )T Σ̂−1(X̄ − Ȳ ) , (2.2)
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where X̄ = 1
n1

∑n1
i=1 Xi and Ȳ = 1

n2

∑n2
i=1 Yi denote the respective sample means

and the pooled sample covariance is given by

Σ̂ =
(n1 − 1)Σ̂X + (n2 − 1)Σ̂Y

n1 + n2 − 2
.

Here, Σ̂X = 1
n1−1

∑n1
i=1(Xi−μX)(Xi−μX)� and Σ̂Y = 1

n2−1

∑n2
i=1(Yi−μY )(Yi−

μY )� denote the sample covariance matrices of X1 and Y1, respectively. Assum-
ing that ΣX = ΣY (a standard condition for Hotelling’s t2-test) Σ̂ is a consistent
estimator for the common covariance.

We briefly formulate a few observations regarding the t2-statistic:

i) In the simple case of d = 1, the t2-statistic collapses to the (squared) statistic
of the better-known two sample t-test.

ii) We can rewrite

t2 =
n1n2

n1 + n2

∥
∥
∥Σ̂−1/2(X̄ − Ȳ )

∥
∥
∥
2

2
.

As a consequence, the t2-statistic is non-negative and assumes high values if
X̄ − Ȳ ≈ μX − μY is large in the norm.

iii) The t2-statistic is closely related to the Mahalanobis distance, which is a
standard measure for multivariate mean comparisons (see [5]).

In order to formulate a statistical test based on the t2-statistic, we consider
its large sample behavior. Under the hypothesis

√
n1n2/(n1 + n2)Σ̂−1/2(X̄ − Ȳ )

follows (approximately) a d-dimensional, standard normal distribution, such that
its squared norm (that is the t2-statistic) is approximately χ2

d distributed (chi-
squared with d degrees of freedom). Now if q1−α denotes the upper α-quantile of
the χ2

d distribution, the test decision ”reject H0 if t2 > q1−α”, yields a consistent,
asymptotic level α-test for any α ∈ (0, 1). For details on Hotelling’s t2-test we
refer to [15].

2.3 Differential Privacy

Differential privacy (DP) has over the last decade become the de facto gold
standard in privacy assessment of data disseminating procedures (see e.g. [9,14]
or [18]). Intuitively, DP describes the difficulty of inferring individual inputs from
the releases of a randomized algorithm. This notion is well suited to a statistical
framework, where a trusted institution, like a hospital, publishes results of a
study (algorithmic releases), but candidates would prefer to conceal participation
(individual inputs). To make this notion mathematically rigorous, we consider
databases x,x′ ∈ Dn, where D is some set, and call them adjacent or neighboring,
if they differ in only one entry.

Definition 2.3.1. A randomized algorithm A : Dn → R is called ε-differentially
private for some ε > 0, if for any measurable event E ⊂ R and any adjacent
x,x′

P(A(x) ∈ E) ≤ eε
P(A(x′) ∈ E) (2.3)

holds.
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Condition (2.3) requires that the distribution of A(x) does not change too
much, if one entry of x is exchanged (where small ε correspond to less change
and thus stronger privacy guarantees). In statistical applications, private algo-
rithms are usually assembled modularly: They take as building blocks some
well-known private algorithms (e.g., the Laplace or Exponential Mechanism),
use them to privatize key variables (empirical mean, variance etc.) and aggre-
gate the privatized statistic. This approach is justified by two stability properties
of DP: Firstly, privacy preservation under post-processing, which ensures that
if A satisfies ε-DP, so does any measurable transformation h(A). Secondly, the
composition theorem that maintains at least

∑k
i=1 εi-DP of a vector (A1, ..., Ak)

of algorithms, where Ai are independent εi-differentially private algorithms. In
the next section, we employ such a modular privatization of the Hotelling’s t2-
statistic for private mean comparison. We conclude our discussion on privacy
with a small remark on the role of the “trusted curator”.

Remark 2.3.1. Discussions of (global) DP usually rely on the existence of some
“trusted curator” who aggregates and privatizes data before publication. In real-
ity this role could be filled by an automatized, cryptographic protocol (secure
multi-party computation), which calculates and privatizes the statistic before
publication without any party having access to the full data set (for details
see [2,13]). This process has the positive side effect that it prevents a curator
from re-privatizing if an output seems too outlandish (overturning privacy in the
process).

3 Privatized Mean Comparison

In this section, we introduce a privatized version tDP of Hotelling’s t2-statistic.
Analogous to the traditional t2-statistic, the rejection rule “tDP > q1−α” yields
in principle a consistent, asymptotic level-α test for H0 (see Theorem 3.1.2).
However, empirical rejection rates often exceed the prescribed nominal level α
for a combination of low sample sizes and high privatization (see Example B).
As a consequence, we devise a parametric bootstrap for a data-driven rejection
rule. We validate this approach theoretically (Theorem 3.2.1) and demonstrate
empirically a good approximation of the nominal level in Sect. 4.

3.1 Privatization of the t2-Statistic

We begin this section by formulating the Assumptions of the following, theoret-
ical results:

Assumption 3.1.1. (1) The samples X1, . . . , Xn1 and Y1, . . . , Yn2 are inde-
pendent, each consisting of i.i.d. observations and are both supported on the
cube [−m,m]d, for some known m > 0.

(2) The covariance matrices

ΣX := E[(X1 − μX)(X1 − μX)T ]; ΣY := E[(Y1 − μY )(Y1 − μY )T ] .

are identical and invertible.
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(3) The sample sizes n1, n2 are of the same order. That is with n := n1 + n2 we
have

lim
n→∞

ni

n
= ξi ∈ (0, 1) i = 1, 2.

We briefly comment on the Assumptions made.

Remark 3.1.1. (1): The assumption of independent observations is common in
the literature on machine learning and justified in many instances. Boundedness
of the data -with some known bound- is an important precondition for standard
methods of privatization (such as the below discussed Laplace Mechanism or the
ED algorithm). Generalization are usually possible (see e.g., [20]) but lie beyond
the scope of this paper.

(2): Invertibility of the covariance matrices is necessary to define the Maha-
lanobis distance. If this assumption is violated, either using another distance mea-
sure (defining a different test) or a prior reduction of dimensions is advisable.

Equality of the matrices ΣX = ΣY is assumed for ease of presentation, but
can be dropped, if the pooled estimate Σ̂ is replaced by the re-weighted version

Σ̂�= :=
n2Σ̂X + n1Σ̂Y

n1 + n2
.

(3): We assume that asymptotically the size of each group is non-negligible. This
assumption is standard in the analysis of two sample tests and implies that the
noise in the estimates of both groups is of equal magnitude. If this was not the
case and e.g. ξ1 = 0 (in practice n1 << n2) it is more appropriate to model the
situation as a one-sample test (as μY is basically known).

Recall the definition of Hotelling’s t2-statistic in (2.2). By construction, we
can express the t2-statistic as a deterministic function of four data dependent
entities: The sample means X̄, Ȳ and the sample covariance matrices Σ̂X , Σ̂Y .
According to the composition- and post-processing theorem of DP (see Sect. 2.3)
we can privatize the t2-statistic by privatizing each of these inputs.

For the privatization of the sample means, we use the popular Laplace Mech-
anism (see [8], p.32): It is well-known that X̄DP := X̄ + Z and Ȳ DP := Ȳ + Z ′

fulfill ε/4-DP, if Z = (Z1, . . . , Zd)T and Z ′ = (Z ′
1, . . . , Z

′
d)

T consist of inde-
pendent random variables Zk ∼ Lap(0, 2md

n1(ε/4) ) and Z ′
k ∼ Lap(0, 2md

n2(ε/4) ) for
k = 1, ..., d.

For the privatization of the covariance matrices Σ̂X , Σ̂Y we employ the
ED Mechanism, specified in the Appendix (which is a simple adaption of the
Algorithm proposed in [1]). We can thus define differentially private estimates
Σ̂DP

X := ED(Σ̂X , ε/4) and Σ̂DP
Y := ED(Σ̂Y , ε/4), both satisfying ε/4-DP. We

point out that the outputs of ED are always covariance matrices (positive semi-
definite and symmetric). Therewith, we can define a privatized pooled sample
covariance matrix as

Σ̂DP :=
(n1 − 1)Σ̂DP

X + (n2 − 1)Σ̂DP
Y

n1 + n2 − 2
+ diag(c1 + c2) ,
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Algorithm 1. Privatized statistics (PS)

Input: means: X̄, Ȳ , covariance matrices: Σ̂X , Σ̂Y ,
privacy level: ε

Output: X̄DP , Ȳ DP , Σ̂DP
X , Σ̂DP

Y

1: function PS(X̄, Ȳ , Σ̂X , Σ̂Y , ε)
2: for i = 1, . . . , d do
3: Generate Zi ∼ Lap(0, 2md

n1ε/4
)

4: Generate Z′
i ∼ Lap(0, 2md

n2ε/4
)

5: end for
6: Set X̄DP := X̄ + (Z1, ..., Zd), Ȳ DP := Ȳ + (Z′

1, ..., Z
′
d)

7: Set Σ̂DP
X = ED(Σ̂X , ε/4), Σ̂DP

Y = ED(Σ̂Y , ε/4)
8: return X̄DP , Ȳ DP , Σ̂DP

X , Σ̂DP
Y

9: end function

where c1 := 2( 2md
n1(ε/4) )

2, c2 := 2( 2md
n2(ε/4) )

2 are corrections accounting for variance
increase, due to the mean privatizations. Finally, we can formulate a privatized
version of the Hotelling’s t2-statistic as follows:

tDP =
n1n2

n1 + n2
(X̄DP − Ȳ DP )T [Σ̂DP ]−1(X̄DP − Ȳ DP ) (3.1)

=
n1n2

n1 + n2

∥
∥
∥[Σ̂DP ]−1/2(X̄DP − Ȳ DP )

∥
∥
∥
2

2

Theorem 3.1.1. The privatized t2-statistic tDP is ε-differentially private.

In the one dimensional case, the covariance privatization by ED boils down
to an application of the Laplace Mechanism and tDP has a simple closed form.

Example 3.1.1. (Privatization in d = 1) Assume that d = 1. Then the data
X1, . . . , Xn1 and Y1, . . . , Yn2 originates from the interval [−m,m] and we can
write the privatized test statistic as

tDP =
n1n2

n1 + n2

(X̄DP − Ȳ DP )2

(σDP )2
,

where

(σDP )2 :=
(n1 − 1)(|σ̂X + L1|) + (n2 − 1)(|σ̂Y + L2|)

n1 + n2 − 2

+ 2
( 2m

n1(ε/4)

)2

+ 2
( 2m

n2(ε/4)

)2

.

Here, L1 and L2 follow a centered Laplace distribution, with variance specified
in the Appendix. Note that the privatization of σ̂2

X and σ̂2
Y is conforming with

the privatization of Algorithm ED (see Appendix), since the first (and only)
eigenvalue is the sample variance itself, while privatization of eigenvectors is a
non-issue for d = 1.
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As for the non-privatized t2-statistic, we can prove under H0 that tDP approxi-
mates a χ2

d-distribution as n1, n2 → ∞. This means that (at least for large sample
sizes) the perturbations introduced by the Laplace noise and the ED-algorithm
are negligible.

Algorithm 2. Privatized Hotelling’s t2-test (PHT)

Input: means: X̄DP , Ȳ DP , covariance matrices: Σ̂DP
X , Σ̂DP

Y , quantile: q

Output: choice ∈ {0, 1} coding for acceptation (0) or rejection (1) of H0

1: function PHT(X̄DP , Ȳ DP , Σ̂DP
X , Σ̂DP

Y , q)
2: Compute tDP (defined in 3.1)
3: Define choice = 0
4: if tDP > q then
5: Set choice = 1
6: end if
7: return choice
8: end function

Theorem 3.1.2. The decision rule “reject if

tDP > q1−α (3.2)

(Algorithm 2)” where q = q1−α is the (1 − α)-quantile of χ2
d distribution, yields

a consistent, asymptotic level-α test for the hypotheses (2.1).

Theorem 3.1.2 underpins the assertion that “asymptotically, privatizations
do not matter”. Yet in practice, privatizations can have a dramatic impact on
the (finite sample) performance of tests.

3.2 Bootstrap

In this section, we consider a modified rejection rule for H0, based on tDP , that
circumvents the problem of inflated type-1-error (see Example B). Privatizations
increase variance and therefore tDP is less strongly concentrated than t2, leading
to excessive transgressions of the threshold q1−α. Consequently, to guarantee an
accurate approximation of the nominal level, a different threshold is necessary.

Hypothetically, if we knew the true distribution of tDP under H0, we could
analytically calculate the exact α-quantile qexact

1−α and use the rejection rule
“tDP > qexact

1−α ”. Of course, in practice, these quantiles are not available, but
we can use a parametric bootstrap to approximate qexact

1−α by an empirical ver-
sion q∗

1−α calculated from the data. In Algorithm 3 we describe the systematic
derivation of q∗

1−α.



Multivariate Mean Comparison Under Differential Privacy 39

Algorithm 3. Quantile Bootstrap (QB)

Input: Covariance matrices: Σ̂DP
X , Σ̂DP

Y , sample sizes: n1,n2, bootstrap iterations: B

Output: Empirical 1 − α quantile of tDP : q∗
1−α.

1: function QB(Σ̂DP
X , Σ̂DP

Y , n1,n2, B)
2: for i = 1, . . . , B do

3: Sample X̄∗ ∼ N (0,
Σ̂DP

X
n1

) and Ȳ ∗ ∼ N (0,
Σ̂DP

Y
n2

)
4: for k = 1, . . . , d do
5: Generate Zk ∼ Lap(0, 2md

n1(ε/4)
)

6: Generate Z′
k ∼ Lap(0, 2md

n2(ε/4)
)

7: end for
8: Define X̄DP∗ := X̄∗ + (Z1, ..., Zd)
9: Define Ȳ DP∗ := Ȳ ∗ + (Z′

1, ..., Z
′
d)

10: Define tDP
i

∗
:= n1n2

n1+n2

∥
∥
∥[Σ̂DP ]−1/2(X̄DP∗ − Ȳ DP∗)

∥
∥
∥

2

2
11: end for
12: Sort statistics in ascending order: (tDP

(1)

∗
, ..., tDP

(B)

∗
) = sort((tDP

1
∗
, ..., tDP

B
∗
))

13: Define q∗
1−α := tDP ∗

(�(1−α)B�)
14: return q∗

1−α

15: end function

Algorithm 3 creates B bootstrap versions tDP
1

∗
, ..., tDP

B
∗, that mimic the

behavior of tDP . So, e.g., X̄DP∗ (in tDP
i

∗) has a distribution close to that of
X̄DP (in tDP ), which, if centered, is approximately normal with covariance
matrix ΣX/n1. As a consequence of this parallel construction, the empirical
1 − α-quantile q∗

1−α is close to the true (1 − α)-quantile of the distribution of
tDP , at least if the number B of bootstrap replications is sufficiently large. In
practice, the choice of B depends on α (where small α require larger B), but
our simulations suggest that for a few hundred iterations the results are already
reasonable even for nominal levels as small as 1%.

Theorem 3.2.1. The decision rule “reject if

tDP > q∗
1−α (3.3)

(Algorithm 2)”, where q∗
1−α is chosen by Algorithm 3, yields a consistent, asymp-

totic level-α test in the sense that

lim
B→∞

lim
n1,n2→∞PH0(t

DP > q∗
1−α) = α,

(level α) and
lim

n1,n2→∞PH1(t
DP > q∗

1−α) = 1

(consistency).

4 Simulation

In this section we investigate the empirical properties of our methodology by
means of a small simulation study.
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Data Generation: In the following, the first sample X1, ...,Xn1 is drawn from the
uniform distribution on the d-dimensional cube [−√

3,
√

3]d, whereas the second
sample Y1, ..., Yn2 is uniformly drawn from the shifted cube [−√

3 + a/
√

d,
√

3 +
a/

√
d]d. Here, a ≥ 0 determines the mean difference of the two samples. In

particular a = 0 corresponds to the hypothesis μX = μY = (0, ..., 0)T , whereas
for a > 0, ‖μX − μY ‖2 = a. We also point out that both samples have the same
covariance matrix ΣX = ΣY = Idd×d. As a consequence, deviations in each
component of μX − μY have equal influence on the rejection probability.

Parameter Settings: In the following we discuss various settings: We consider
different group sizes n, between 102 and 105, privacy levels ε = 1/10, 1/2, 1, 5
and dimensions d = 1, 10, 30. The nominal level α is fixed at 5% and the number
of bootstrap samples is consistently B = 200. All below results are based on
1000 simulation runs.

Empirical Type-1-Error: We begin by studying the behavior of our test deci-
sions under the null hypothesis (a = 0). In Table 1 we report the empirical
rejection probabilities for the bootstrap test (3.3) (top) and the asymptotic test
(3.2) (bottom). The empirical findings confirm our theoretical results from the
previous Section.

On the one hand, we observe that the bootstrap test approximates the
nominal-level reasonably well (compare Theorem 3.2.1), even in scenarios with
small sample size and high dimensions. In contrast, the validity of the asymptotic
test (3.2) depends on the negligibility of privatization effects (see discussion of
Theorem 3.1.2). Consequently, it works best for large ε and large sample sizes.
However, for higher dimensions d, the asymptotic approach breaks down quickly,
in the face of more noise by privatizations and thus stronger digressions from
the limiting distribution.

Table 1. Empirical type-1-error

d =1 d =10 d =30

ε n1 = n2

102 103 104 105 102 103 104 105 102 103 104 105

test (3.3) 0.1 0.052 0.046 0.051 0.048 0.058 0.05 0.068 0.063 0.04 0.057 0.056 0.062

0.5 0.054 0.05 0.059 0.05 0.039 0.06 0.057 0.052 0.054 0.054 0.06 0.056

1 0.053 0.05 0.054 0.053 0.048 0.061 0.038 0.069 0.048 0.063 0.056 0.054

5 0.041 0.053 0.043 0.053 0.055 0.053 0.056 0.051 0.044 0.05 0.062 0.052

test (3.2) 0.1 0.738 0.676 0.328 0.093 1 1 1 1 1 1 1 1

0.5 0.4 0.154 0.055 0.058 1 1 1 0.891 1 1 1 1

1 0.24 0.063 0.057 0.044 1 1 0.993 0.428 1 1 1 1

5 0.054 0.047 0.045 0.039 0.990 0.933 0.181 0.062 1 1 0.999 0.301

Empirical Power: Next we consider the power of our test. Given the poor per-
formance of the asymptotic test (3.2) in higher dimensions (the key interest
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of this paper) we restrict our analysis to the bootstrap test (3.3) for the sake
of brevity. In the following, we consider the alternative for a = 1. Recall that
‖μX − μY ‖2 = a is independent of the dimension. However, we expect more
power in low dimensions due to weaker privatization. In Fig. 1, we display a
panel of empirical power curves, each graphic reflecting a different choice of the
privacy parameter (ε = 1/10, 1/2, 1, 5) and each curve corresponding to a dif-
ferent dimension (d = 1, 10, 30). The group size is reported in logarithmic scale
on the x-axis and the rejection probability on the y-axis. As might be expected,
low dimensions and weak privatizations (i.e., large ε) are directly associated
with a sharper increase of the power curves and smaller sample sizes to attain
high power. For instance, moving from ε = 1/2 (high privatization) to the less
demanding ε = 5 (low privatization) means that a power of 90% is attained with
group sizes that are about an order of magnitude smaller. Similarly, increasing
dimension translates into lower power: To attain for ε = 0.1 and d = 30, high
power requires samples of a few ten thousand observations (see Fig. 1(a)). Even
though such numbers are not in excess of those used in related studies (see e.g.
[6]) nor of those raised by large tech cooperations, this trend indicates that com-
paring means of even higher dimensional populations might require (private)
pre-processing to reduce dimensions.

Fig. 1. Simulated power of the bootstrap test (3.3) under a uniform alternative for
ε = 0.1, 0.5, 1, 5 and different group sizes.
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5 Conclusion

In this paper, we have considered a new way to test multidimensional mean
differences under the constraint of differential privacy. Our test employs a priva-
tized version of the popular Hotelling’s t2-statistic, together with a bootstraped
rejection rule. While strong privacy requirements always go hand in hand with
a loss in power, the test presented in this paper respects the nominal level α
with high precision, even for moderate sample sizes, high dimensions and strong
privatizations. The empirical advantages are underpinned by theoretical guaran-
tees for large samples. Given the easy implementation and reliable performance,
the test can be used as an automatized part of larger analytical structures.

Acknowledgement. This work was partially funded by the DFG under Germany’s
Excellence Strategy - EXC 2092 CASA - 390781972.

A Proofs

For the proofs, we refer to the arxiv version (see https://arxiv.org/abs/2110.
07996).

B Effects of Privatization - Example

In most instances, privatizing a test statistic has no influence on its asymptotic
behavior, s.t. rejection rules based on asymptotic quantiles remain theoretically
valid. However, empirical studies demonstrate, that in practice even moderate
privacy levels can lead to inflated type-1-errors – in our case because the quantiles
of the χ2

d-distribution do not provide good approximations for those of tDP .
To illustrate this effect we consider the case d = 1, discussed in Example

3.1.1 for samples of sizes n1 = n2 = 500, both of which drawn according to
the same density, f(t) ∝ exp(−2t2) on the interval [−1, 1]. We simulate the
quantile functions (inverse of the distribution function) of χ2

1 and tDP respec-
tively for privacy levels ε = 1, 4. Figure 2 indicates that for moderate privacy
guarantees (ε = 4) the distribution of tDP is close to that of the χ2

1, s.t. for
instance PH0(t

DP > q0.95) ≈ 6.8% (where again q1−α is the α quantile of the χ2
1-

distribution). This approximation seems reasonable, but it deteriorates quickly
for smaller ε. Indeed, for ε = 1 we observe that PH0(t

DP > q0.95) ≈ 18.9%, which
is a dramatic error. This effect is still more pronounced in higher dimensions and
much larger sample sizes are needed to mitigate it (for details see Table 1).

https://arxiv.org/abs/2110.07996
https://arxiv.org/abs/2110.07996
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Fig. 2. Simulated quantile functions for χ2
1 (red) and tDP (blue) for privacy levels ε = 4

(left) and ε = 1 (right)

Summarizing this discussion, we recommend to use Hotelling’s t2-test (3.2)
based on the privatized statistic tDP with the standard (asymptotic) quantiles
only in situations where sample sizes are large, the dimension is small and privati-
zations are weak. In all other cases, specifically for larger dimension and stronger
privatization, the quantiles have to be adapted to avoid inflated rejection errors
under the null hypothesis.

C Algorithms

In the following, we will state two algorithms which describe the covariance pri-
vatization. Here, Algorithm 5 ED is used for the privatization, while Algorithm
4 describes the eigenvector sampling process. In Algorithm 5 ED the privatiza-
tion budget is not supposed to be separated (for eigenvalues and eigenvectors)
in the case d = 1 (as eigenvector privatization is unnecessary for d = 1). For
more details, see [1].

Algorithm 4. Eigenvector sampling
Input: C̃ ∈ R

q×q, privacy parameter ε

Output: Eigenvector u.

1: function Sample(C̃,ε)
2: Define A := − ε

4
C̃ + ε

4
λ̂1Iq, where λ̂1 denotes the largest eigenvalue of C.

3: Define Ω = Iq + 2A/b, where b satisfies
∑q

i=1
1

b+2λi(A)
= 1.

4: Define M := exp(−(q − b)/2)(q/b)q/2 .
5: Set ANS = 0
6: while ANS = 0 do
7: Sample X ∼ Nq

(

0, Ω−1
)

and set u := z/ ‖z‖2.

8: With probability exp(−uT Au)

M(uT Ωu)q/2
ANS = 1

9: return u.
10: end while
11: end function
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Algorithm 5. Covariance estimation with algorithm ED
Input: Ĉ ∈ R

d×d, privacy parameter ε, sample size n

Output: Privatized covariance matrix Σ̂DP

1: Separate the privacy budget uniformly in d + 1 parts, i.e. each step ε
d+1

2: function ED(Ĉ,ε,n)

3: Initialize C1 := nĈ
dm2 , P1 := Id.

4: Privatize the eigenvalue vector by (λ̄1, . . . , λ̄d)T =
∣
∣
∣
∣
(λ̂1, . . . , λ̂d)T +

(

Lap
(

2
(ε/(d+1))

)

, . . . , Lap
(

2
(ε/(d+1))

))T
∣
∣
∣
∣
.

5: for i = 1, . . . , d − 1 do
6: Sample ūi ∈ Sd−i with ūi := Sample(Ĉ, ε

d+1
) and let v̄i := P T

i ūi.

7: Find an orthonormal basis Pi+1 ∈ R
(d−i)×d orthogonal to v̄1, . . . , v̄i.

8: Let Ci+1 := Pi+1ĈP T
i+1 ∈ R

(d−i)×(d−i).
9: end for

10: Sample ūd ∈ S0 proportional to fCd(u) = exp
(

( εi
4

)uT Cdu
)

and let v̄d := P T
d ūd.

11: CED :=
∑d

i=1 λ̄iv̄iv̄
T
i .

12: return Σ̂DP = 1
n
CED

13: end function
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“If I had an hour to solve a problem and
my life depended on the solution, I would
spend the first 55 minutes determining the
proper question to ask”.

Albert Einstein

Abstract. We consider a dataset S held by an agency, and a vector
query of interest, f(S) ∈ R

k, to be posed by an analyst, which con-
tains the information required for some planned statistical inference. The
agency will release an answer to the queries with noise that guarantees
a given level of Differential Privacy using the well-known Gaussian noise
addition mechanism. The analyst can choose to pose the original vector
query f(S) or to transform the query and adjust it to improve the qual-
ity of inference of the planned statistical procedure, such as the volume
of a confidence interval or the power of a given test of hypothesis. Previ-
ous transformation mechanisms that were studied focused on minimizing
certain distance metrics between the original query and the one released
without a specific statistical procedure in mind. Our analysis takes the
Gaussian noise distribution into account, and it is non-asymptotic. In
most of the literature that takes the noise distribution into account, a
given query and a given statistic based on the query are considered and
the statistic’s asymptotic distribution is studied. In this paper we con-
sider both non-random and random datasets, that is, samples, and our
inference is on f(S) itself, or on parameters of the data generating pro-
cess when S is a random sample. Our main contribution is in proving
that different statistical procedures can be strictly improved by apply-
ing different specific transformations to queries, and in providing explicit
transformations for different procedures in some natural situations.
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Keywords: Gaussian mechanism · Differential privacy · Confidence
region · Testing hypotheses · Statistical inference on noisy data

1 Introduction

1.1 Setting

Throughout the paper we consider a dataset S consisting of a whole population
or a sample given as an n × d matrix, where each row pertains to an individual,
with d variables that are measured for each of the n participant in the dataset.
The dataset S is held by some agency and an analyst is interested in a vector
function f(S) = (f1(S), . . . , fk(S)) ∈ R

k of the data, to be called a query. Thus, a
query consists of k functions of the data to be posed to the agency by the analyst.
We consider throughout the case k > 1. We assume that in order to protect the
privacy of individual data in S, the agency releases the response to the query
f(S) with noise, using a standard Gaussian mechanism that adds independent
N(0, σ2) noise to each coordinate of f(S). The distribution of the added noise
is always assumed to be known to the analyst, a standard assumption in the
differential privacy literature. Two datasets S and S′ are said to be neighbors,
denoted by S ∼ S′, if they differ by a single individual, i.e., a single row. See,
e.g., [12] for all needed details on Differential Privacy (henceforth DP). When
we consider S and S′ together we always assume that they are neighbors.

More generally, consider a noise mechanisms applied to S via a query h(S) ∈
R

k of the form Mh(S) = h(S) + U ∈ R
k, where U is a random vector. A

mechanism Mh is said to be (ε, δ)–DP if for all (measurable) sets E we have

P (Mh(S) ∈ E) ≤ eεP (Mh(S′) ∈ E) + δ (1)

for all S ∼ S′ ∈ D, where the probability refers to the randomness of U , and
D is the universe of potential datasets. For example, if S is a sample of a given
size n from some population, then D is the universe of all samples that could
have been drawn and considered for dissemination. The standard definition of
DP takes D to be a product Cn where C consists of all possible rows. Our results
hold for any given ε > 0 and δ ∈ (0, 1), which we fix for the rest of this paper.

1.2 Our Contribution

We describe some simple examples where posing a linear transformation of the
query f(S), getting the agency’s response via a mechanism that guarantees DP,
and inverting the response to obtain the required information on f(S) yields
more information and better inference on f(S) in the case where S is a given
fixed dataset, or on the model that generates f(S), when S is a random sample.
More specifically, given a planned statistical procedure, we show that trans-
forming the query can yield better results in terms of power of tests and size
of confidence sets. We believe that the idea of transforming queries to improve
efficiency of specific statistical procedure rather than to reduce some arbitrary
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distance between the posed query and the response is new, and we show that
for different statistical procedures one should consider different suitable trans-
formations. In this paper we provide simple formal mathematical evidence for
the idea of adjusting queries towards statistical goals, and its practical value will
be explored elsewhere.

The idea of transforming queries in order to minimize the effect of the noise
while preserving privacy in terms of some metrics appears in [22] as the Matrix
Mechanism. The difference between this line of work and ours is discussed next.
In particular, our statistical goal is different, and our results are analytic and
allow for continuous data rather than numerical and discrete.

1.3 Related Work

The principle of modifying queries is not new. The Matrix Mechanism (MM)
was put forward in a line of work that started with [22]. Further literature
includes [13,23,24,26] and references therein. For given queries, MM linearly
modifies the original data by applying a matrix that depends on the queries to
be answered. The modified data is released with noise, and the answer to the
original queries is estimated. The above literature studies numerical algorithms
for finding optimal modifying matrices that minimizes the distance between the
original queries and the mechanism’s output relative to different metrics without
regard to specific statistical purposes. Our work differs from the MM in that
our goal is to improve the data for given statistical purposes, and in specific
cases we propose analytic arguments. Criticism of the approach of minimizing
some distance metrics between original and noisy statistics appears in [20]. Such
criticism appears also in [3] in the context of optimizing the noise relative to a
specific statistical goal.

In Sect. 3 we consider the problem of estimating and constructing a con-
fidence region for the mean of a query having a multivariate Gaussian distri-
bution, or testing hypothesis on it. This problem was studied with known and
unknown covariance in the univariate case (that we do not discuss in this paper)
in [9,21,33], and in the multivariate case, in [2,6]; see also references therein.
Some of the above results are involved because the query may be Gaussian, but
with Laplace noise, or because the variance is unknown (although some bounds
are sometimes assumed) and should be estimated, thus complicating the differ-
entially private mechanism. Since our goal in this paper is to draw attention to
the benefit of modifying queries for the statistical procedure, we do not compare
those results to ours, and we confine ourselves to simple models.

When a dataset is randomly generated by some assumed distribution, it
is well known that the analyst has to adjust the statistical procedure to the
distribution of the observed data, taking the distribution of the added noise into
account; see, e.g., [7,15,29,33,34] and references therein. Most of these results
are asymptotic, and they do not consider transforming queries.

The idea of adjusting the noise mechanism to certain specific utility met-
rics and queries appears, e.g., in [16,17], though most researchers consider sim-
ple mechanisms with a well-known distribution (e.g., addition of Laplace or
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Gaussian i.i.d noise). Note again that we focus on adjusting queries using a
given (Gaussian) noise mechanism, rather than adjusting the noise.

2 Fixed (Non-random) Datasets

Consider a dataset S held by an agency and an analyst who poses a query f(S)
in terms of measurement units of his choosing. For example, the components
of f(S) could be average age, average years of schooling, and median income
in the dataset S. The observed response is given with noise through a privacy
mechanism applied by the data-holding agency. The analyst’s goals are to
construct a confidence region for f(S) and to test simple hypotheses about it.
For any given level ε, δ of DP, we show that instead of posing the query f(S), the
analyst can obtain a smaller confidence region for f(S) by computing it from a
query of the form fξ(S) = Diag(ξ)1/2f(S) for a suitable ξ ∈ R

k
≥0 (a vector having

nonnegative coordinates), where Diag(ξ) is a diagonal matrix whose diagonal
elements form the vector ξ. For the goal of testing hypotheses, it turns out that
a different choice of ξ maximizes the power of the standard likelihood-ratio test.
Thus, the analyst can achieve better inference by adjusting his queries to the
planned statistical procedure.

Consider a row (x1, . . . , xd) in the dataset S. For simplicity we assume that
xi ∈ Ci for i = 1, . . . , d for suitable sets Ci. In this case each row is in the
Cartesian product C := C1 × . . . × Cd and we set D := Cn. We assume that
the agency releases data under (ε, δ)–DP relative to this universe D, which is
known to both the agency and the analyst.

In Sect. 2 we assume that the components fi of the vector query f =
(f1, . . . , fk) are functions of disjoint sets of columns of S. This assumption is
not needed in Sect. 3. The quantity Δ(f) := maxS∼S′∈D ||f(S)−f(S′)||, where
|| · || denotes the L2 norm, is known as the sensitivity of f ; higher sensitivity
requires more noise for DP. Under simple assumptions on the functions fi such
as monotonicity, the agency can readily compute Δ(f), as well as

(˜S, ˜S′) := argmax
S∼S′∈D

||f(S) − f(S′)||; (2)

see Lemma 1, where it is shown that the maximization can be done separately
for each coordinate of f . In general, the maximum in (2) is not unique, in which
case arg max is a set of pairs.

The agency plans to release a response to the query f(S) via a standard
Gaussian mechanism; that is, the response is given by

M(S) = f(S) + U where U ∼ N(0, σ2I)

and I is the k × k identity matrix. The variance σ2 is the minimal variance such
that the mechanism satisfies DP for given ε, δ; it can be determined by Lemma 2
below, which appears in [4]. This variance depends on Δ(f); however, here f is
fixed and hence suppressed.
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Consider a family of queries adjusted by Diag(ξ):

fξ(S) := Diag(ξ)1/2f(S) =
(

ξ1
1/2f1(S), . . . , ξk

1/2fk(S)
)

.

In particular, for the vector ξ whose components are all equal to one we have
fξ=1 = f . Given a query from this family, the agency returns a perturbed
response using a Gaussian mechanism Mξ by adding to fξ a Gaussian vector
U ∈ R

k where U ∼ N(0, σ2I), that is,

Mξ(S) = fξ(S) + U.

It is easy to see directly or from Lemma 2 that we can fix σ2 and guarantee a given
level of (ε, δ)–DP by normalizing ξ appropriately. Hence fixing σ2 does not result
in loss of generality. Below all mechanism Mξ are assumed to have a common σ.

2.1 Confidence Regions

The following discussion concerns the choice of ξ ∈ R
k
>0 such that the standard

confidence region CRt
ξ for μ∗ := f(S) given in formula (3) below, which is based

on the observed Mξ(S), has the smallest volume.
The idea is simple: intuitively it appears efficient to add more noise to the

more variable components of f(S) rather than “waste noise” on components with
low variability. Note that “more variable” depends on both the population being
measured and the chosen units of measurement. Instead of asking the agency
to adjust the noise to different components, we adjust the query, and thus the
agency can use a standard Gaussian mechanism. This intuition, as the whole
paper, is clearly relevant only for k > 1.

The analyst observes Mξ(S) = fξ(S) + U , where

Mξ(S) =
(

Diag(ξ)1/2f(S) + U
) ∼ N(Diag(ξ)1/2f(S), σ2I).

Thus, Diag(ξ)−1/2Mξ(S) ∼ N(μ∗,Diag(ξ)−1σ2).
The standard confidence region for μx based on X ∼ N(μx, Σ) is {μ : (X −

μ)T Σ−1(X − μ) ≤ t}; see, e.g., [1], p. 79. Thus, the confidence region for μ∗ =
f(S) based on Diag(ξ)−1/2Mξ(S) becomes

CRt
ξ = {μ ∈ R

k :
(

Diag(ξ)−1/2Mξ(S) − μ
)T

(Diag(ξ)σ−2)
(

Diag(ξ)−1/2Mξ(S) − μ
) ≤ t}. (3)

For any ξ ∈ R
k
>0 and any μ∗ ∈ R

k, the coverage probability P (μ∗ ∈ CRt
ξ) =

P (Y ≤ t) where Y ∼ X 2
k (the chi-square distribution with k degrees of freedom),

and thus all the regions CRt
ξ have the same confidence (coverage) level. We

denote the volume by V ol(CRt
ξ). For a discussion of the volume as a measure of

utility of confidence regions see, e.g., [14]. We now need the notation

ψ := f(˜S) − f(˜S′) =
(

f1(˜S) − f1(˜S′), . . . , fk(˜S) − fk(˜S′)
)

,

where (˜S, ˜S′) is any pair in the set defined in (2), and we assume that ψ2
i =

(fi(˜S) − fi(˜S′))2 > 0 for all i.
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Theorem 1. (1) For any fixed t, the confidence level of the regions CRt
ξ defined

in Eq. (3) is the same for all ξ, that is, the probability P (μ∗ ∈ CRt
ξ) depends

only on t (and not on ξ).
(2) Assume all mechanism Mξ below have a common σ. Set

Λ(ξ) =

√

ψT Diag(ξ)ψ
σ

.

If for two vectors ξa and ξb the mechanisms Mξa
and Mξb

have the same level
of DP (that is, the same ε and δ) then Λ(ξa) = Λ(ξb). In particular, for any Mξ

to have the same DP level as Mξ=1 we must have
√

ψT Diag(ξ)ψ =
√

ψT ψ.
(3) The choice ξ = ξ∗ := c (1/ψ2

1 , . . . , 1/ψ2
k) with c = ||ψ||2/k minimizes

V ol(CRt
ξ) for any t > 0 over all vectors ξ ∈ R

k
>0 and associated mechanisms

Mξ having the same DP level. In particular,

V ol(CRt
ξ∗) ≤ V ol(CRt

ξ=1),

with strict inequality when maxi(ψi) �= mini(ψi). The right-hand side of the
inequality pertains to the query f .

To prove Theorem 1 and others we use two lemmas given here.

Lemma 1. For any ξ ∈ R
k
>0.

Δ(fξ) ≡ max
S∼S′∈D

||fξ(S) − fξ(S′)|| = ||fξ(˜S) − fξ(˜S′))||,

where the pair (˜S, ˜S′) is defined in Eq. (2).

The proof of the Lemma is omitted due to space limitation, and can be found
in the full version of this paper [32].

For an agency willing to release the query f , releasing fξ under the mechanism
Mξ with the same DP level does not add any complications. The agency needs
to compute the sensitivity defined by Δ(fξ) ≡ maxS∼S′∈D ||(fξ(S) − fξ(S′)

)||.
By Lemma 1, this amounts to computing ||fξ(˜S)−fξ(˜S′))|| using the pair (˜S, ˜S′)
from Eq. (2), which is needed to compute the sensitivity of f .

The next lemma can be obtained readily from the results of [4], which hold
for any query f .

Lemma 2. Let M(S) = f(S) + U be a Gaussian mechanism with U ∼
N(0, σ2I), and for given datasets S and S′ set D := DS,S′ = ||f(S) − f(S′)||.
(1) If

Φ

(

D

2σ
− εσ

D

)

− eεΦ

(

− D

2σ
− εσ

D

)

≤ δ, (4)

then for all E ⊆ R
k,

P(M(S) ∈ E) ≤ eε
P(M(S′) ∈ E) + δ. (5)

(2) Setting ˜D := Δ(f) = ||f(˜S) − f(˜S′)||, with (˜S, ˜S′) given in Eq. (2), Eq. (4)
holds with D replaced by ˜D if and only if the inequality (5) holds for all S ∼ S′

and E ⊆ R
k, that is, if and only if (ε, δ)–DP holds.
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Part (2) of Lemma 2 coincides with Theorem 8 of [4], and the first part follows
from their method of proof.

Proof of Theorem 1. Part (1) follows from the fact mentioned above that all
these regions have confidence level P (Y ≤ t) where Y ∼ X 2

k . Part (2) is obtained

by replacing f of Part (2) of Lemma 2 by fξ; then ( ˜D/σ) becomes
√

ψT Diag(ξ)ψ

σ
and the result follows.

To prove Part (3), note that the confidence region for the adjusted query
given in Eq. (3) is an ellipsoid whose volume is given by:

V ol(CRt
ξ) = Vk · (σ2t)k/2

(

det[Diag(ξ)]
)−1/2

, (6)

where Vk is the volume of the unit ball in k dimensions. By Part (2), we have to
minimize the volume as a function of ξ subject to the constraint ψT Diag(ξ)ψ =
ψT ψ, which we do by using Lagrange multipliers. See the Appendix for
details. 	


Theorem 1 states that given a DP level, the volume is minimized by choosing
ξi proportionally to 1/ψ2

i . Multiplying ξ by a suitable constant guarantees the
desired DP level. It is easy to compute the ratio of the volumes of the optimal
region and the one based on the original query f :

V ol(CRt
ξ∗)

V ol(CRt
ξ=1)

=

(

(
∏k

i=1 ψ2
i

)1/k

1
k

∑k
i=1 ψ2

i

)k/2

.

Clearly the ratio is bounded by one, which can be seen again by the arithmetic-
geometric mean inequality. Also, if one of the coordinates ψi tends to zero, so
does the ratio, implying the possibility of a substantial reduction in the volume
obtained by using the optimally adjusted query fξ∗ . We remark that the ratio is
decreasing in the partial order of majorization applied to (ψ2

1 , . . . , ψ
2
k); see [25].

2.2 Testing Hypotheses: Likelihood-Ratio Test

As in Sect. 2.1, consider a query f(S) ∈ R
k, which is observed with noise via

a Gaussian mechanism. Now the analyst’s goal is to test the simple hypotheses
H0 : f(S) = 0, H1 : f(S) = η. The null hypothesis is set at zero without
loss of generality by a straightforward translation. For any ξ ∈ R≥0 (a vector
with nonnegative components), let fξ(S) = Diag(ξ)1/2f(S) and let Mξ(S) =
fξ(S) + U , where U ∼ N(0, σ2I) and σ2 is the smallest variance such that the
Gaussian mechanism Mξ=1(S) guarantees (ε, δ)–DP for the query f .

Let hξi denote the density of Mξ(S) under the hypothesis Hi, i = 0, 1.
The log-likelihood ratio based on the observed Mξ(S), log

{hξ1(Mξ(S))
hξ0(Mξ(S))

}

, is pro-

portional to Mξ(S)T Diag(ξ)1/2η
σ2 , which under H0 has the N(0, ηT Diag(ξ)η

σ2 ) distri-
bution. The likelihood-ratio test (which by the Neyman–Pearson lemma has a
well-known optimality property) rejects H0 when the likelihood ratio is large.
For a given significance level α, the rejection region has the form

Rξ =
{

Mξ(S) :
Mξ(S)T Diag(ξ)1/2η

σ2
> t

}

, (7)
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where t = Φ−1(1 − α)
√

ηT Diag(ξ)η

σ .
Let π(Rξ) := PH1(Mξ(S) ∈ Rξ) denote the power associated with Rξ.

Theorem 2.
(1) For any fixed α and for all ξ ∈ R≥0, the rejection regions Rξ defined in

(7) have significance level α, that is, PH0(Rξ) = α.
(2) Assume that for two vectors ξa and ξb the mechanisms Mξa

and Mξb

have the same level of DP (same ε and δ); then Λ(ξa) = Λ(ξb), where Λ(ξ) =√
ψT Diag(ξ)ψ

σ .
(3) Let j∗ = arg maxi(η2

i /ψ2
i ), and define ξ∗ by ξ∗

j∗ = ||ψ||2/ψ2
j∗ and ξ∗

i =
0 ∀ i �= j∗; then the choice ξ = ξ∗ maximizes the power π(Rξ) over all vectors
ξ ∈ R

k
≥0 and the associated mechanisms Mξ having the same DP level, and

in particular π(Rξ∗) ≥ π(Rξ=1), with strict inequality unless maxi(η2
i /ψ2

i ) =
mini(η2

i /ψ2
i ).

Note that π(Rξ=1) is the power when the original query is posed. Theorem2
states that the query of just one coordinate of f , the one having the largest
ratio of (loosely speaking) signal (η2

i ) to noise (ψ2
i ), is the most informative for

testing the hypothesis in question. Note the difference between the optimal query
of Theorem 2 and that of Theorem 1, which uses all coordinates of f .

Proof of Theorem 2. Part (1) follows from (7) and the discussion preceding
it with standard calculations; Part (2) is similar to that of Theorem 1. The proof
of Part (3) is given in the Appendix.

3 Random, Normally Distributed Data

So far the dataset S was considered fixed, that is, nonrandom. Statisticians often
view the data as random, construct a model for the data-generating process, and
study the model’s parameters. Accordingly, we now assume that the dataset,
denoted by T , is randomly generated as follows: the rows of T , T1, . . . , , Tn are
i.i.d, where each row T� ∈ R

d represents d measurements of an individual in the
random sample T . We also assume that f is a linear query, that is,

f(T ) = (f1(T ), ..., fk(T )) =
( 1

n

n
∑

�=1

q1(T�), ...,
1
n

n
∑

�=1

qk(T�)
)

for some functions q1, . . . , qk. Set q(T�) :=
(

q1(T�), . . . , qk(T�)
)

. We assume that
q(T�) ∼ N(μ∗, Σ) for some unknown μ∗ and a known covariance matrix Σ. The
normality assumption holds when the entries of T are themselves normal, and
qi are linear functions. Assuming normality, possibly after transformation of the
data, and i.i.d observations is quite common in statistical analysis. It follows
that f(T ) ∼ N(μ∗, Σn), where Σn = Σ/n. This may hold approximately by the
central limit theorem even if normality of the dataset is not assumed. Here we
assume that Σ is known. The case where it is obtained via a privatized query is
beyond the scope of this paper.
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Since the observed data will depend only on q(T�), we now redefine the
dataset to be S, consisting of the n i.i.d rows S� := q(T�), � = 1, . . . , n. The
assumption q(T�) ∼ N(μ∗, Σ) implies that these rows can take any value in
C := R

k. The universe of all such matrices S is D := Cn = R
n×k.

The analyst’s goal is to construct a confidence region for the model
parameter μ∗ and test hypotheses about it. This can be done via the query
f(S) = 1

n

∑n
�=1 S� having the distribution N(μ∗, Σn); however, we show that

posing the query g(S) := Σ
−1/2
n f(S) under the same Random Differential Pri-

vacy parameters (RDP, to be defined below) results in smaller confidence regions.
We also compare the powers of certain tests of hypotheses.

We say that a query f is invariant if f(S) is invariant under permutations of
the rows of S. This happens trivially when f is a linear query as defined above.
If f is invariant then the distribution of the output of any mechanism that
operates on f is obviously unchanged by permutations of rows. In this case it
suffices to consider neighbors S ∼ S′ of the form S = (S1, . . . , Sn−1, Sn), S′ =
(S1, . . . , Sn−1, Sn+1). We assume that S1, . . . , Sn+1 are i.i.d rows having some
distribution Q. The following definition is given in [18].

Definition 1. A random perturbation mechanism M whose distribution is
invariant under permutations of rows is said to be (ε, δ, γ)-Randomly Differ-
entially Private, denoted by (ε, δ, γ)–RDP , if

PS1,...,Sn+1

(

∀ E ⊆ R
k, P (M(S) ∈ E|S) ≤ eε

P(M(S′) ∈ E|S′)+δ
)

≥ 1−γ,

where S and S′ are neighbors as above, the probability PS1,...,Sn+1 is with respect

to S1, . . . , Sn+1
i.i.d∼ Q, and the probability P (M(S) ∈ E|S) refers to the noise

U after conditioning on S.

In words, instead of requiring the condition of differential privacy to hold
for all S ∼ S′ ∈ D, we require that there be a “privacy set” in which any two
random neighboring datasets satisfy the DP condition, and its probability is
bounded below by 1 − γ.

On the Privacy Limitation of RDP. An objection to this notion may arise
from the fact that under RDP “extreme” participants, who are indeed rare, are
not protected, even though they may be the ones who need privacy protection the
most. Since RDP is not in the worst-case analysis spirit of DP, we remark that
DP can be obtained if, instead of ignoring worst cases having small probability
as in RDP, the agency trims them by either removing them from the dataset or
by projecting them to a given ball (that is independent of the dataset) which
determines the sensitivity. Such trimming, if its probability is indeed small, cor-
responding to a small γ, will not overly harm the data analysis.

We define a “privacy set” H, which is a subset of D×D consisting of neighbor-
ing pairs (S, S′), and a mechanism MH

h (S) = h(S) + U (see (1)) that satisfies
(ε, δ, γ)–RDP . Under the following two conditions
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(A) P ((S, S′) ∈ H) = 1 − γ, where P is PS1,...,Sn+1 of Definition 1,
(B) Equation (1) holds ∀E and any pair of neighboring datasets (S, S′) ∈ H,

it is easy to see that MH
h (S) is (ε, δ, γ)–RDP and we say that it is RDP with

respect to the privacy set H and the query h.
To construct a suitable H satisfying condition (A) note that

f(S) − f(S′) =
1
n

[q(Sn) − q(Sn+1)] ∼ N(0, 2Σ/n2), and (8)

||g(S) − g(S′) ||2 = ||Σ−1/2
n [f(S) − f(S′)]||2

= ||Σ−1/2[q(Sn) − q(Sn+1)] ||2 ∼ 2
n

X 2
k .

Thus, if Y ∼ X 2
k satisfies P (Y ≤ r2) = 1 − γ then P

(||g(S) − g(S′) ||2 ≤
2r2/n

)

= 1 − γ, and we can choose the set H to be

Hg :=
{

(S, S′) ∈ D × D : ||g(S) − g(S′) ||2 ≤ 2r2/n
}

.

Another privacy set we consider is given by

Hf :=
{

(S, S′) ∈ D × D : ||f(S) − f(S′) ||2 ≤ C2
}

,

where C is such that P ((S, S′) ∈ Hf ) = 1−γ, and by (8) the constant C depends
on Σ and n.

We consider three Gaussian mechanisms:

MHg
g (S) = g(S) + U, where U ∼ N(0, σ2

gI),

MHg

f (S) = f(S) + U with U ∼ N(0, σ2
fgI),

MHf

f (S) = f(S) + U with U ∼ N(0, σ2
fI),

where the first two are with respect to the privacy set Hg, and the third is with
respect to Hf . For each of the three, an appropriate noise variance σ2

g , σ2
fg, and

σ2
f has to be computed, given the privacy set and the RDP parameters, so that

condition (B) above holds. To determine the noise variance we have to compute
the sensitivity of the query g on the set Hg and the sensitivity of f on both Hg

and Hf .
Define the sensitivity of f and g on Hg, denoted by D(fg) and D(g), respec-

tively, and the sensitivity of f on Hf , denoted by D(f), as follows:

D(fg) := max
(S,S′)∈Hg

||f(S) − f(S′)||,

D(g) := max
(S,S′)∈Hg

||g(S) − g(S′)|| =
√

2 r/
√

n , (9)

D(f) := max
(S,S′)∈Hf

||f(S) − f(S′)|| = C.

We compare the above three mechanisms with the same RDP level in terms
of the volume of confidence regions and the power of tests of hypotheses for the
model parameter μ∗, computed from data given by these mechanisms.
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By the definition of RDP, the mechanism MHg

f (S) satisfies (ε, δ, γ)–RDP

when (4) holds with D = D(fg) and σ = σfg, as does the mechanisms MHg
g (S)

with D = D(g) and σ = σg, and likewise the mechanism MHf

f (S) with D = D(f)
and σ = σf .

Lemma 3. If MHg
g , MHg

f , and MHf

f have the same RDP, then D(g)/σg =
D(fg)/σfg = D(f)/σf . The first equality is equivalent to σ2

fg = λmax(Σn)σ2
g ,

where λmax(Σn) denotes the largest eigenvalue of Σn.

The proof is omitted due to lack of space and can be found in [32].

3.1 Confidence Regions

We have

Σ1/2
n MHg

g (S) ∼ N
(

μ∗, Σn(1 + σ2
g)

)

,

MHg

f (S) ∼ N(μ∗, Σn + σ2
fgI),

MHf

f (S) ∼ N(μ∗, Σn + σ2
fI).

The standard confidence regions for μ∗ := E[f(S)] based on MHg
g (S), MHg

f (S),

and MHf

f (S) are

CRt
g =

{
μ ∈ R

k :
(
Σ

1/2
n MHg

g (S) − μ
)T

(Σn(1 + σ2
g))

−1
(
Σ

1/2
n MHg

g (S) − μ
) ≤ t

}
,

CRt
fg =

{
μ ∈ R

k :
(MHg

f (S) − μ
)T

(Σn + σ2
fgI)−1

(MHg

f (S) − μ
) ≤ t

}
,

CRt
f =

{
μ ∈ R

k :
(MHf

f (S) − μ
)T

(Σn + σ2
f I)−1

(MHf

f (S) − μ
) ≤ t

}
.

The next theorem shows that confidence regions based on MHg
g have a smaller

volume than those based on MHg

f , and, for γ sufficiently small, also than those

based on MHf

f . Thus, of the three natural candidates we consider, MHg
g is the

best mechanism for small γ.

Theorem 3.
(1) For any fixed t, the confidence regions CRt

g, CRt
fg, and CRt

f have the
same confidence level; that is, for any μ∗ we have P (μ∗ ∈ CRt

g) = P (μ∗ ∈
CRt

fg) = P (μ∗ ∈ CRt
f ).

(2) If the mechanisms MHg
g , MHg

f , and MHf

f have the same level of (ε, δ, γ)–
RDP then D(g)/σg = D(fg)/σfg = D(f)/σf .

(3) V ol(CRt
g) ≤ V ol(CRt

fg), with strict inequality unless all the eigenvalues
of Σn are equal.

(4) For sufficiently small γ, V ol(CRt
g) ≤ V ol(CRt

f ), with strict inequality,
unless all the eigenvalues of Σn are equal.
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Proof. Part (1) holds as in Theorem 1, and Part (2) holds by Lemma 3. The
proof of Part (3), given in the Appendix, uses the relation σ2

fg = λmax(Σn)σ2
g

of Lemma 3, and a straightforward eigenvalue comparison. The proof of Part
(4) is somewhat more involved. It uses a comparison of distribution functions
of weighted sums of independent gamma random variables and a majorization
argument. Details and references are given in the Appendix.

3.2 Testing Hypotheses: Likelihood-Ratio Test

With E[f(S)] = μ∗ we consider the hypotheses H0 : μ∗ = 0 and H1 : μ∗ = η and
the mechanisms MHg

f (S) and MHg
g (S) defined above. If MHg

f (S) is observed
then the rejection region Rfg of the likelihood-ratio test with significance level
α has the form

Rfg =
{MHg

f (S) : MHg

f (S)T (Σn + σ2
fgI)−1η > t

}

,

where t = Φ−1(1 − α)
√

ηT (Σn + σ2
fgI)−1η.

If MHg
g (S) is observed then the testing problem becomes H0 : μ∗ = 0 vs.

H1 : μ∗ = Σ
−1/2
n η, and the rejection region Rg of the likelihood-ratio test with

significance level α has the form

Rg =
{MHg

g (S) : MHg
g (S)T [(1 + σ2

g)I]−1Σ−1/2
n η > t

}

,

where t = Φ−1(1 − α)
√

ηT Σ−1
n η

σ2
g+1 .

Theorem 4.
(1) The rejection regions Rfg and Rg have the same significance level α.
(2) If both mechanisms MHg

g and MHg

f have the same level of (ε, δ, γ)–RDP
then D(g)/σg = D(fg)/σfg.

(3) Let π(Rg) and π(Rfg) denote the power associated with the rejection
regions Rg and Rfg, respectively; then π(Rg) ≥ π(Rfg) with strict inequality,
unless all the eigenvalues of Σn are equal.

Proof. Part (1) is similar to Part (1) of Theorem 2. Part (2) is already given
in Theorem 3. The proof of Part (3), given in the Appendix, involves a
simultaneous diagonalization argument and a comparison of eigenvalues using
σ2

fg = λmax(Σn)σ2
g .

4 Numerical Example

A numerical example can be found in the longer version of this paper, [32]. Space
limitation prevent its presentation here.

Acknowledgements. We are grateful to Katrina Ligett and Moshe Shenfeld for very
useful discussions and suggestions.
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5 Appendix

Proof of Theorem 1 Part (3). The confidence region for the adjusted query
given in (3) is an ellipsoid whose volume is given by

V ol(CRt
ξ) = Vk · (σ2t)k/2

(

det[Diag(ξ)]
)−1/2

,

where Vk is the volume of the unit ball in k dimensions. In view of Part (2)
we minimize the log of the volume as a function of ξ subject to the constraint
ψT Diag(ξ)ψ = ψT ψ. We consider the Lagrangian

L(ξ1, . . . ξk, λ) = −
k

∑

i=1

log (ξi) − λ
[

k
∑

i=1

ψ2
i ξi −

k
∑

i=1

ψ2
i

]

.

We are minimizing a strictly convex function subject to a linear constraint. Dif-
ferentiating and setting the Lagrangian to zero we readily obtain the unique mini-
mum when ξi is proportional to 1/ψ2

i . The constraint ψT Diag(ξ)ψ = ψT ψ, which
by Part (2) guarantees the same DP level, implies that ξ∗ = c (1/ψ2

1 , . . . , 1/ψ2
k)

with c = ||ψ||2/k. 	

Proof of Theorem 2 Part (3). Note first that for Mξ and Mξ=1 to have

the same DP(ε, δ) level we must have

Λ(ξ) =

√

ψT Diag(ξ)ψ
σ

= Λ(1) =

√

ψT ψ

σ
.

The power of the rejection region Rξ is

π(Rξ) = PH1

(

Mξ(S)T ξ1/2η

σ2
> Φ−1(1 − α)

√

ηT Diag(ξ)η
σ

)

= 1 − Φ

(

Φ−1(1 − α) −
√

ηT Diag(ξ)η
σ

)

,

which is increasing in ηT Diag(ξ)η. Thus in order to maximize the power we
have to maximize ηT Diag(ξ)η over ξ subject to ψT Diag(ξ)ψ = ψT ψ. Defining
vi = ξiψ

2
i the problem now is to maximize

∑

i vi
η2

i

ψ2
i

over vi ≥ 0, subject to
∑

i vi = ||ψ||2. Clearly the maximum is attained when vj∗ = ||ψ||2, where j∗ =
arg maxi(η2

i /ψ2
i ), and vi = 0 for i �= j∗, completing the proof. 	


Proof of Theorem 3. The proof of Part (3) uses the fact that

V ol(CRt
fg) = bk

√

det[Σn + σ2
fgI] and V ol(CRt

g) = bk

√

det[Σn(1 + σ2
g)],

where bk = tk/2Vk and Vk is the volume of the k-dimensional unit ball, and the
relation σ2

fg = λmax(Σn)σ2
g . The required inequality follows from the relations

det
(
Σn(σ

2
g + 1)

)
=

k∏
i=1

[
λi

λmax(Σn)
σ2
fg + λi

]
≤

k∏
i=1

[
σ2
fg + λi

]
= det

(
Σn + σ2

fgI
)

,
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where λi denote the eigenvalues of Σn.

To prove Part (4), we need the following fact, which is a special case of a
result stated in [10], Proposition 2.7 and Equation (10). The last part is given
by [30], p. 999, and [31], Theorem 2.2.

Fact. Let Xi ∼ X 2
1 be i.i.d. Without loss of generality assume that λ1, . . . , λk

with λi > 0 satisfy λ :=
∑k

i=1 λi/k = 1. Define Fλ(x) = P (
∑k

i=1 λiXi ≤ x) and
let F (x) denote the distribution function of X 2

k . Then for sufficiently large x we
have Fλ(x) ≤ F (x).

More specifically, the latter inequality holds for x > 2k.The latter lower
bound, given by [30,31], is far from being tight, as suggested by numerical com-
putations.

Recall that C = D(f) satisfies P
(

(2/n)
∑k

i=1 λiXi ≤ C2
)

= 1 − γ. For the
rest of the proof set D = D(g); then D is defined by P

(

(2/n)Y ≤ D2
)

= 1 − γ,
where Y ∼ X 2

k ; see Eq. (9). For λ = 1, which can be assumed without loss of
generality, the above Fact immediately implies that C2 ≥ D2 for sufficiently
small γ. By the last part of the above fact, for k = 6, 10, 20, and 30, sufficiently
small means γ ≤ 1 − P (Y < 12) = 0.062 and γ ≤ 0.03, 0.005, and 0.001,
respectively.

Proof of Part (4). As in the proof of Part (3), by Lemma 3 and then for suf-
ficiently small γ such that C2 ≥ D2λ (where λ = 1), we have det

(

Σn(σ2
g + 1)

)

=
∏k

i=1

[

λi + λiD
2

C2 σ2
f

]

≤ ∏k
i=1

[

λi + λiσ
2
f/λ

]

and now it remains to show that the

latter product is bounded above by
∏k

i=1[λi + σ2
f ] = det

(

Σn + σ2
fI

)

. Divid-

ing by
∏k

i=1 λi and taking log, we see that the required bound is equivalent

to
∑k

i=1 log
[

1 + σ2
f/λ

]

≤ ∑k
i=1 log[1 + σ2

f/λi]. This follows from the fact that

log[1 + σ2
f/λ] is convex in λ and therefore

∑k
i=1 log[1 + σ2

f/λi] is a Schur convex
function; see [25]. 	


Proof of Theorem 4 Part (3). The power of the rejection region Rfg is
given by

π(Rfg) = PH1

(

MHg

f (S)T (Σn + Iσ2
fg)

−1η > Φ−1(1 − α)
√

ηT (Σn + Iσ2
fg)−1η

)

= 1 − Φ
(

Φ−1(1 − α) −
√

ηT (Σn + Iσ2
fg)−1η

)

(10)

= 1 − Φ
(

Φ−1(1 − α) −
√

ηT (Σn + Iλmax(Σn)σ2
g)−1η

)

.

Likewise π(Rg) = 1−Φ

(

Φ−1(1 − α) −
√

ηT Σ−1
n η

σ2
g+1

)

. Therefore, π(Rg) ≥ π(Rfg)

if and only if
ηT Σ−1

n η

σ2
g + 1

≥ ηT (Σn + Iλmax(Σn)σ2
g)−1η.

Diagonalizing the two matrices (1 + σ2
g)Σn and Σn + Iλmax(Σn)σ2

g by the com-
mon orthogonal matrix of their eigenvectors, we see that the diagonal terms, that
is, the eigenvalues (σ2

g + 1)λi of the first matrix are less than or equal to those
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of the second one, λi + λmaxσ2
g . It follows that Σ−1

n

σ2
g+1  (Σn + Iλmax(Σn)σ2

g)−1,
where A  B means that A−B is nonnegative definite; see [19], Chapter 4. The
result follows.
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Abstract. Privacy for re-identification, k-anonymity, and differential
privacy are the main privacy models considered in the literature on data
privacy. We introduced an alternative privacy model called integral pri-
vacy, that can be seen as a model for computations avoiding membership
inference attacks, as well as other inferences, on aggregates and computa-
tions from data (e.g., machine learning models and statistics). In previous
papers we have shown how we can compute integrally private statistics
(e.g., means and variance), decision trees, and regression.

In this paper we introduce clustering with overlapping clusters. The
goal is to produce integrally private clusters. We formulate the prob-
lem in terms of an optimization problem, and provide a (sub-optimal)
solution based on genetic algorithms.

Keywords: Data privacy · Statistical disclosure control · Clustering ·
Integral privacy · Overlapping clustering

1 Introduction

Differential privacy [4] has been established as a convenient privacy model when
privacy is related to computations from databases. That is, we have a database
X and we need to compute f(X) for a given function f . Then, we usually
provide a function Kf instead of f that is differentially private. Functions Kf

satisfying differential privacy roughly correspond to functions where adding or
removing a record from a database do not change much the output. A large
number of differential privacy mechanisms have been defined for different families
of functions f . The definition of differential privacy includes a parameter ε that
controls the privacy level. The larger the ε, the lower the privacy level.

Another well known privacy mechanism is k-anonymity [8]. It provides
anonymity for databases. The scenario is as follow. We have a database X that
needs to be shared with a third party. In this case, we provide this third party
with a sanitized or anonymized database X ′. A database X ′ is k-anonymous
when for each row (record) in X ′, there are other k − 1 indistinguishable rows
(records). Properly speaking, indistinguishability is only for quasi-identifiers.

c© Springer Nature Switzerland AG 2022
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That is, the set of attributes that can make at least a record unique and can be
at the hands of intruders. In k-anonymity, k is a parameter of the model. The
larger the k, the larger the privacy level.

Different privacy models have their pros and cons. For example, k-anonymity
requires assumptions on the attributes that intruders can access to, and the side
information they can use to attack X ′. Differential privacy does not have this
latter drawback, but this is usually at the cost of less quality on the output. Both
privacy models need to take into account whether records in the database are
independent or there are dependencies. k-Anonymity is for database sharing and,
thus, any computation f can be computed or estimated from X ′. In contrast,
differential privacy requires knowledge on the function f to be computed. To
improve the quality of computations using differential privacy, some relaxations
have been defined that provide less privacy guarantees. E.g., (ε, δ)-differential
privacy [3]. In addition, some companies implement differential privacy with
large values of the parameter ε, so that computations have large utility, which
can lead to some high levels of disclosure.

Integral privacy [10,11] was introduced as a new privacy model with a goal
similar to the one of differential privacy. That is, privacy for computations f(X).
This privacy model ressembles k-anonymity in the sense that a function f(X)
is integrally private (k-anonymous integral privacy) if there is a set of at least
k different databases that can generate f(X). In other words, if y = f(X), we
consider the set of generators of y. I.e., possible databases Xi that can produce
y. That is, y = f(Xi). The value y is private enough if there are at least k such
databases. The definition is more strict than that, because it is also required
that the databases do not share records to avoid e.g. membership attacks. To
achieve integral privacy we can proceed as follows [9]. First, we sample a database
multiple times, and produce multiple subsets of this database to generate a set
of models. From these models, then we select the ones that are recurrent and
satisfy the privacy constraints.

In this paper, we provide a completely different approach. Our goal is to
achieve integral privacy by design. We focus on clustering (i.e., we consider f
to be a clustering algorithm). Then, we formalize an optimization problem for
clustering which, when solved, provides independent sets of records to define
the same clusters. This is to implement privacy by design. Nevertheless, as we
discuss later, the approach does not always guarantees this for an arbitrary data
set. In this paper, we describe a way to solve our clustering algorithm using a
combination of a clustering algorithm and genetic algorithms.

The structure of the paper is as follows. In Sect. 2 we present some concepts
we need later. Then, in Sect. 3 we formalize the clustering problem. We call it
κ-centroid c-means. Then we describe in Sect. 4 the experiments and results. The
paper finishes with some conclusions.
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2 Preliminaries

In this section we review the main topics we need in this paper.

2.1 Integral Privacy

Integral privacy is defined for a function or algorithm f to be computed from
a database. The application of f to X returns a computation or model G. This
result G is integrally private if there are enough databases Xi that generate
the same computation or model G. Given a population P , and some background
knowledge S∗ an intruder has on P , we define Gen∗(G,S∗) = {S′ \S∗|S∗ ⊆ S′ ⊆
P, f(S′) = G} as the set of generators of G. That is, Gen∗(G,S∗) is the set of
possible databases that can produce G when f is applied to them. k-Anonymous
integral privacy holds when there are at least k databases and they do not share
any common record. Note that a common record would imply that a membership
inference attack can be successful.

Definition 1. Let P represent the data of a population, let f be a function to
compute from databases S ⊆ P into G. Let G ∈ G, let S∗ ⊆ P be some back-
ground knowledge on the data set used to compute G, let Gen(G,S∗) represent
the possible databases that can generate G and are consistent with the back-
ground knowledge S∗. Then, k-anonymous integral privacy is satisfied when the
set Gen(G,S∗) contains at least k-elements and

∩S∈Gen∗(G,S∗)S = ∅.

2.2 k-Anonymity, Microaggregation, and MDAV

It is well known that for a database X, k-anonymity holds when for each com-
bination of quasi-identifiers there are at least k-indistinguishable records. Recall
that a quasi-identifier is a set of attributes that makes at least a record unique.
There are two main families of methods to produce a k-anonymous database from
an original unmasked database. They are the methods based on generalization
and the methods based on clustering (microaggregation).

Microaggregation [1,2] methods build a set of clusters, each one with at
least k records (and at most 2k records), and then replace the values of these
records by the centroids or cluster centers. These cluster centers are a kind of
aggregation of the original data (e.g., the mean of the records associated to a
cluster). In contrast, generalization methods change the level of detail of these
records, replacing their original value by a value that represents the information
of the records in the cluster. E.g., an interval for a set of numerical data, a
disjunction of terms for a set of categorical data or a more general term if exists
(e.g. replacing town by county or region).

Several heuristic algorithms have been constructed for microaggregation.
Heuristic methods usually build heuristically the clusters so that the condition
of having at least k records hold, and, then, they produce the protected database
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X ′ from X replacing the records by the arithmetic mean of the records associ-
ated to the cluster. In this paper we will use MDAV [2], a well known algorithm
extensively used in the literature. We will use its definition for numerical data,
as in our experiments we will use only databases with numerical data.

2.3 Genetic Algorithms

Genetic algorithms [6,7] is a meta-heuristic search method. It is suitable method
for large search spaces. They are inspired in evolution, and terminology is based
on the one in biology. Genetic algorithms are defined as an iterative process tak-
ing a number of epochs (i.e., iterations). In each epoch, we consider a population
(i.e., a set of possible solutions) of chromosomes (i.e., a codification of a partic-
ular solution). In each epoch we evaluate each chromosome in terms of a fitness
function (i.e., a proxy of the objective function and of the constraints, if any)
and we select the chromosomes that better fit and then create a new population
by means of genetic operators on these chromosomes that better fit. Here genetic
operators are functions that given a codification of one or two possible solutions
builds a new one. Mutation and cross-over are the two most common operators.
Mutation is about changing the value in one of the gens (e.g., the value of one of
the variables of a possible solution) and cross-over is about mixing two possible
solutions (e.g., taking the values of some of the variables in one possible solution
and the values of the other variables in the other possible solution).

3 κ-Centroid c-Means

Our goal is to cluster data into a set of c × κ clusters. We will use the terms
macro-cluster and micro-cluster to distinguish two types of clusters. We have c
macro-clusters each with κ micro-clusters. Each micro-cluster is represented by
κ centroids. We want these micro-clusters to overlap as much as possible and
macro-clusters be as indistinguishable as possible.

For a given macro-cluster, all κ centroids should be similar enough, and
they are computed by means of a set of elements that fall into their area of
influence. That is, they are computed by the objects associated to the micro-
cluster. Because of that, objects in X will be assigned to a micro-cluster (in the
same way as for the c-means). We call the area of influence or the set of objects
attached to a particular micro-cluster, a region. All centroids associated to a
macro-cluster are similar one another (i.e., their distance is bounded) and the
number of elements in the area of influence of all centroids of the same cluster
should be similar. In this way, we can observe each cluster as a set of strongly
overlapping clusters, whose centroids are strongly similar. In other words, we
want that the regions associated to all micro-clusters of the same macro-cluster
are basically the same region.
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3.1 Formalization

Let us consider objects x in the reference set X. We build c macro-clusters, each
with micro-clusters with their corresponding κ centroids. Let vjk for j = 1, . . . , c
and k = 1, . . . , κ be the kth centroid of the jth cluster. Let μjk(x) represent the
membership of x to the kth centroid of the jth cluster. We assume μjk ∈ {0, 1}.

To formalize the requirement that centroids of the same cluster are similar,
we use δ as the maximum distance between centroids of the same cluster. That is,
vjk1 and vjk2 are at most at a distance δ. In addition, we expect that all centroids
of the same cluster have a similar number of objects. This is to force the area of
influence to be of similar size (where size is the cardinality of elements). We use
A as the maximum difference allowed between the number of objects associated
to a centroid.

Taking into account this notation, we formalize the κ-centroid c-means as
follows:

min J(μ, v) =
∑c

j=1

∑κ
k=1

∑
x∈X μjk(x)||x − vjk||2

subject to
∑c

j=1

∑κ
k=1 μjk(x) = 1 for all x ∈ X

|∑x∈X μjk1(x) − ∑
x∈X μjk2(x)| ≤ A

for all j ∈ {1, . . . , c}, k1 �= k2 ∈ {1, . . . , κ}
||vjk1 − vjk2 ||2 ≤ δ

for all j ∈ {1, . . . , c}, k1 �= k2 ∈ {1, . . . , κ}
μjk(x) ∈ {0, 1}

for all j ∈ {1, . . . , c}, k ∈ {1, . . . , κ}, and x ∈ X

In this definition, the function to minimize is naturally the distance of objects
to cluster centroids. The summations are over all cluster centroids (j and k) and
over all objects (x). The constraints included in the problem are (i) that each
element belongs to exactly one cluster region (so, membership for all clusters
and regions adds to one), (ii) the number of elements in each region of a macro-
cluster is similar and at most with a difference of A (this is, of course, for all
macro-clusters j and for all micro-clusters k), (iii) cluster centroids belonging to
the same cluster are at a distance of at most δ (this is also, of course, for all
clusters j and for all regions k), (iv) membership of objects to clusters is binary.

3.2 Properties

The goal of the problem above is to construct c clusters, and to provide integral
privacy by means of having at least κ alternative sets of records that return these
same clusters. These sets of records need to be disjoint to satisfy κ-anonymous
integral privacy.
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As we have κ records for each of the c clusters, we can easily build c × κ
different partitions that, in principle, produce the same clustering results. That
is, we can take one of the clusters for c1, another cluster for c2, . . . , and another
for cc. The union of the corresponding records produce a dataset Xi. As there
are k different and disjoint sets for each macro-cluster, appropriate selection of
sets produce disjoint Xi.

Let k′ for k′ = 1, . . . , κ denote one of the κ selections and Xk′ the resulting
set. This selection needs to choose one of the micro-clusters for each of the
macro-clusters.

Let k′
k′,j′ for j′ = 1, . . . , c denotes the micro-cluster for macro-cluster j′ for

the k′th selection. Naturally, k′
k′,j′ ∈ {1, . . . , κ}.

In order that two selections do not take the same micro-cluster, we need that
for any cluster j′ we have that the micro-clusters differ. I.e., for any cluster j′

we have k′
k′,j′ �= k′

k′′,j′ for k′ �= k′′. This is easy to implement, we can just define
k′

k′′,j′ for j′ = 1, . . . , c as a permutation of 1, . . . , c. Then, we define a partition
of X into κ parts in which the Xk′ part is the union of the records associated to
the c clusters denoted by k′

k′,j′ for j′ = 1, . . . , c.
This construction satisfies the constraints of integral privacy, in the sense

that there are κ parts and the intersection of these parts is empty.
Unfortunately, while the construction satisfies the constraints of integral pri-

vacy in the sense that we have κ disjoint sets, we cannot mathematically prove
that the (optimal) solution of the optimization problem will satisfy integral pri-
vacy. This is so because of the following.

• The optimization problem formulated above with κ �= 1 and the full dataset
X does not necessarily lead to the same solution as the reduced problem with
any of the sets Xk′ for k′ = 1, . . . , κ setting their own κ = 1. For example, if
we solve the problem with κ = 5, and then define X1 as the union of 5 different
micro-clusters and solve the optimization problem without overlapping, we
may not get the same clusters and centroids.

Some considerations apply here. First, separated enough clusters can provide
these privacy guarantees, as optimal solutions for both Xk′ and X will be the
same. It is easy to see that we can construct artificial data sets with these prop-
erties. Second, computational solutions for clustering algorithms do not usually
provide global optima but local optima. Similarly, our solution for the optimiza-
tion problem formalized in Sect. 3.1 is not optimal. Therefore, it may be enough
to find that the solution of the κ-centroid c-means can produce Xk′ that are local
optima of the corresponding clustering algorithm. These considerations need to
be further studied and discussed.

4 Experiments

We have used a combination of standard clustering and genetic algorithms to
solve the optimization problem described above. In this section we describe our
implementation, and the experiments we have performed.
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4.1 Solving the Optimization Problem

Our main tool to solve the optimization problem has been genetic algo-
rithms [6,7]. This requires the representation of the solution using a population
of chromosomes, the definition of operations on the chromosomes, and a fitness
function. We also need a strategy for the initialization. We detail these elements
below.

• Chromosomes. Each chromosome represents the membership of each x ∈
X into its assigned cluster. Then, a population represents a set of possible
assignments. Our representation is based on a list of integers (i.e., we have
an integer for each x ∈ X), where an integer represents a micro-cluster.

• Operations. In relation to the operations on chromosomes to create a new
population, we have considered three operations: structural mutation, cluster
swapping, and structural crossover. Structural mutation moves an element
from one cluster to another one. Cluster swapping takes the chromosome and
two clusters, and then swaps elements xi from cluster ci to cluster cj with a
given probability. Structural crossover takes two chromosomes c1 and c2, and
incorporates a given cluster c present in c2 in c1. This requires disassembling
the original cluster in c1 and relocating the elements (at random to other
clusters). In addition, some chromosomes from the previous population are
transferred to the new population without change.

• Fitness function. Three main metrics computed from a chromosome have
been used to evaluate its quality. They are: (1) the error of the objective
function, (2) the difference on the cardinalities in the same macro-cluster,
(3) the difference on the norms of the centroids in the same macro-cluster.
We have tested several fitness functions. In the experiments reported below
we have used the following has permitted to solve some of the problems
considered. It is based on a scoring system, where the score increases when
some conditions are fulfilled. We have scores for the cardinalities ((2) above)
and for the norms ((3) above). For the cardinalities we use the following:

– scoreCard = 100 - min(mean(Δc),100)
– if (mean(ΔC) ≤ 2A), then scoreCard = scoreCard+100
– if (mean(ΔC) ≤ A), then scoreCard = scoreCard+100
– if (max(ΔC) ≤ A), then scoreCard = scoreCard+100

Similarly, for the norm we have:
– scoreNorm = 100 - min(mean(Δ Norms), 100)
– if (mean(ΔDNorms) <= 2 ∗ Δ), then scoreNorm = scoreNorm + 100
– if (mean(ΔDNorms) <= Δ), then scoreNorm = scoreNorm + 100
– if (max(ΔDNorms) <= Δ), then scoreNorm = scoreNorm + 100
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Table 1. Values of the objective function at initialization for different values of κ and
c using (i) random initialization of records to clusters and (ii) initialization based on
MDAV. Parameters of the optimization problem δ = 0.0005, A = 5.

κ c OF δ′

Random MDAV Random MDAV

2 3 5.76 5.56 0.000495 0.000294

3 5 15.08 14.02 0.001851 0.000962

4 10 13.52 13.64 0.020078 0.003188

We combine the three values as follows. First, as the error of the objective
function is to minimize and the other scores are to maximize, we compute
(m1 − error), where m1 = 100 and then we add the three terms. The exact
way to combine these three elements was done by trial and error.

• Initialization. We have considered two different strategies for assigning an
initial population. A random initialization of the population lead to extremely
bad results, which were not converging to a solution satisfying the constraints
(except for unacceptable values A and Δ). Because of that we developed a
different initialization strategy. It is based on k-anonymous clustering. In
particular, we first run MDAV on the data which produces an assignment
of elements to clusters (say macro-clusters). Then, we assign each record in
a given macro-cluster to any of its corresponding micro-clusters following a
uniform distribution. Different assignments to micro-clusters are used in each
chromosome of the population. This initialization leads to better results in
the sense that the objective function is better and the constraints are sooner
satisfied. Using MDAV in the initialization instead of using another clustering
algorithm we have that at least in the initialization, all clusters have a similar
number of records.

4.2 Datasets

We have considered the dataset Concrete [12,13] from the UCI repository, and
the CASC dataset [5].

The datasets have been normalized (i.e., column mean has been substracted
to each value and then divided by standard deviation). Our clustering approach
has been applied using different parameters κ and c.

4.3 Parameters

We apply our algorithm considering the following parameters: δ = 0.0005, A =
5. We consider different number of macro-clusters and micro-clusters. That is,
different values for c and κ. In particular, we consider the pairs listed in Table 1.
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Fig. 1. Case of c = 2 and κ = 3 for Concrete dataset. Best (top) and mean (bottom)
fitness functions for random initialization and for MDAV initialization (5 independent
executions, 100 epochs).

We apply genetic algorithms with the following parameters. Probability of
structural mutation prSM = 0.4, probability of structural crossover prSC = 0.2,
probability of cluster swapping prCS = 0.2, probability of creating a copy of the
best chromosome prBC = 0.1, number of epochs 100. For cluster swapping we
need an additional probability of actually doing a swapping of the elements in
the selected chromosome. This is prCSe = 0.5. Selection of the clusters to swap
is done by uniform distribution on all possible clusters.

4.4 Results

Table 1 show the effects of the two initialization approaches on both the objective
function (columns OF ) and difference on cluster centers (columns δ′). We can
see that for both indices the MDAV initialization leads to better results. The
improvement on the objective function is not so relevant (e.g., from 5.76 to 5.56,
or even slightly worsening in the case of the pair (4, 10) from 13.52 to 13.64.
Nevertheless, the change on the difference between cluster centers is significant
as initialization using MDAV reduces it to about a half.

Figure 1 display the results of the fitness function for the case of two macro-
clusters (c = 2) each with three micro-clusters (κ = 3). We have 5 executions of
the genetic algorithms for each initialization strategy. After 100 epochs, in the
case of using MDAV, we have that all 5 executions lead to a feasible solution
for c = 2 and κ = 5 with A = 5 and δ = 0.0005. In contrast, only two of the
five executions using random initialization lead to a feasible solution. Table 2
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Table 2. Best values of A and δ achieved when looking for the best solution of c = 2,
κ = 5, A = 5, δ = 0.0005.

Best A Best A δ δ

random MDAV random MDAV

3.0 1.0 0.000595 0.000272

12.0 3.0 0.000412 0.000324

4.0 3.0 0.001112 0.000285

4.0 5.0 0.000374 0.000158

8.0 5.0 0.000094 0.000329

displays the solutions obtained. We can observe that we can achieve (with ran-
dom) solutions that violate the constraint related to δ and the one related to A
independently.

Figure 1 shows the results for random initialization (left) and MDAV initial-
ization (right). We can observe the difference on the objective functions, better
for MDAV. We also display the value of the fitness function of the best chromo-
some found so far, and the mean value of the fitness function. The value of the
best fitness function is naturally, always non-decreasing, and it does not change
much after the first initial epochs.

We have tried to solve the same problem with c = 3 and A = 5, but the best
solution obtained was with A′ = 8 and δ′ = 0.000933 after 4000 epochs. For c = 3
and A = 4 we also obtain (with 4000 epochs) a solution with A′ = 8 and in this
case δ satisfies the constraint and is, in addition, very small δ′ = 3.9568 · 10−08.
A still larger problem is c = 4 and κ = 10. The best solution is with A′ = 11
and δ′ = 0.00542, but no optimal solution is found in 100 epochs (Fig. 2 show
the fitness functions of 5 executions).

Fig. 2. Case of c = 4 and κ = 10 for Concrete dataset. Best (left) and mean (right)
fitness functions for MDAV initialization (5 independent executions, 100 epochs).
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5 Conclusions

In this paper we have introduced κ-centroid c-means as a way to provide inte-
gral privacy. We have formalized the problem as an optimization problem with
constraints related to the distance among cluster centroids (of micro-cluster) in
a macro-cluster, and related to the number of records associated to a cluster.
We have discussed that the solution of this optimization problem for clearly
separated clusters will provide a way to define integrally private clusters. For
non-clearly separated data, this is not necessarily the case. As both our imple-
mentation of the approach and usual methods for standard clustering produce
sub-optimal solutions, we consider that further work is needed to evaluate these
solutions. Our algorithm produces solutions that are feasible for small number
of clusters. We have applied the algorithm to larger number of clusters, but then
we need much more number of epochs and the solutions have major difference
on the number of records. i.e., parameters A in the optimization problem. We
plan to study this problem better to solve the optimization problem for larger
datasets and larger number of micro-clusters and macro-clusters.
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Abstract. The advance of small-scale analysis and user demand driven tabula-
tions bring cell suppression based SDC to its limits. Perturbative SDC strategies
could be flexible alternatives. The present paper compares results obtained by first
experiments with synthetic data generated by the Synthpop package [13] on one
hand to those of amore traditional input perturbation approach, i.e. targeted record
swapping [19], and on the other hand to those of the Cell Key Method [6, 8, 12]
which adds noise directly to tabular outputs.

1 Introduction

Developing SDC strategies allowing to release detailed geographic grid level aggre-
gates for an administrative data set involving a large variety of highly sensitive, partially
skewed continuous variables is a challenge. The challenge becomes especially demand-
ing when the same aggregates shall be released also at various administrative and non-
administrative geographies, like at municipality and at grid level. This holds in particular
in cases where releases involve a huge variety of mostly user demand driven tabulations.
When those tables may present aggregates of sensitive variables they must be protected
properly. But when tables can be defined by crossings of some of perhaps numerous
discrete variables of a dataset, maybe even along with crossings defined by discretized
versions of the continuous variables, the “space” of potential output to protected in a
consistent way can become extremely complex.

In such a situation, SDC strategies relying solely on primary and secondary cell sup-
pression are especially prone to differencing and linking risks, because a fully controlled
coordination of secondary cell suppression would be enormously complex and in fact
practically impossible.

In this paper we therefore look at perturbative methods as alternative to, or maybe
even to be used along with cell suppressions within a hybrid SDC concept.Wewonder, if
synthetic data methods as introduced by [14, 18], or [16] can be a realistic alternative as
disclosure control concept. This means, a disclosure concept not for public or scientific
use microdata sets, but when those data shall be used as basis for producing the official
outputs of NSIs. To that aim and with inspiration from [2] (and a related workshop), we
used the Synthpop package [13] for some first experiments. We also tried a hybrid app-
roach mixing original with partially synthetic (c.f. [10, 15]) records generated with the
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https://doi.org/10.1007/978-3-031-13945-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13945-1_6&domain=pdf
https://doi.org/10.1007/978-3-031-13945-1_6


78 F. Geyer et al.

CART approach [1, 17] of the Synthpop package [13]. We compare the results to those
obtained by a targeted record swapping method [9, 19] on one hand, and to the output
perturbation approach of the Cell Key Method [6, 8, 12] on the other hand. Notably, it is
clear from the beginning that output perturbation cannot generally be outperformed by
input perturbation, because with output perturbation it is much easier to select param-
eters yielding acceptable risk/utility balance. On the other hand, output perturbation
has certain conceptual disadvantages (like non-additivity) which is why for example
under organisation aspects and in particular from IT-perspective input perturbation is
sometimes considered as tempting SDC alternative.

In Sect. 2 we introduce the methods under consideration. Section 3 describes our test
data and test scenarios, also proposing ideas for partial or hybrid implementations. Infor-
mation loss anddisclosure riskmeasures for evaluationwill be introduced inSect. 4.After
presentation and discussion of test results (Sect. 5) the paper finishes with a conclusive
summary.

2 Recalling the Methods under Consideration

This paper compares results obtained by synthetic data generation, c.f. Sect. 2.1, and
by Targeted Record Swapping (Sect. 2.2) to random noise implemented by a Cell Key
Method (CKM) (Sect. 2.3). Technical details of the setup of those methods used in the
present study are described in Sects. 3.2, 3.3 and 3.4.

2.1 Synthetic Data

The idea of synthetic data was first introduced in [18], followed up and further devel-
oped by [14–16]. Using an approach building on concepts of [21] leads to a flexible
method that does not rely on the assumption of multivariate normality. It specifies for
each variable to be synthesized a conditional distribution, conditional on the other vari-
ables. The outcome will then of course depend on the order of those variables. The
Classification and Regression Tree (CART) machine learning method developed by [1]
offers a non-parametric approach (see also [17] and [3]). The synthpop package [13]
integrates algorithms implementing those concepts.

2.2 Targeted Record Swapping (TRS)

Data Swapping is a common pre-tabular method of SDC, especially for cases when the
released outputs are typically frequency tables, as in the case of a population Census.
Pairs of records are determined within strata defined by control variables. With a TRS
Implementation such as that of [9] the swapping is targeted to ensure that certain units
(“records”) that are considered to be most of risk for disclosure will be selected for the
swapping with higher probabilities [19].

After identifying the units with the highest disclosure risks the algorithm determines
which pairs of units to swap. In the TRS implementation we use in the present context,
swapping means to swap the geography variables of the records relating to such a pair
of units.
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In order to use the TRS tool, a user must select those variables of the dataset that
will be considered the “geography related” ones, referred to as “hierarchy variable(s)”,
which will be swapped. The user must also decide which variables will be used to
determine disclosure risk of a record, those are called “risk variable(s)”. In order to
control information loss, the most important user choice is that of so called “similar
variables”, i.e. the control variables used to determine the strata. Notably, any tabulations
of the swapped data that are defined solely by cross-combinations of “similar variables”
will exactly match the respective results obtained with the original data, because those
variables will be identical for all the record pairs with swapped entries.

Another parameter with strong effect on the impact of the method is the swap rate.
The swap rate defined by the user specifies howmany records should ideally be swapped
in the process. Note, that this swap rate will usually not be reached exactly depending on
the data structure and choice of the parameters mentioned above. The swap rate will be
exceeded, if there are more critical units in the data set than the swap rate would imply
and all of those units have suitable swapping partners under the restrictions given by the
“similar variable(s)”. Just as well, the real swap rate can turn out to be below the rate
defined by the parameter, if there are no more suitable swapping partners left in the data
set before reaching that limit.

2.3 CKM Noise Design for Tabulations of Continuous Variables

The Cell Key Method (CKM) for statistical disclosure limitation by random noise is
implemented for example in the package τ-Argus and as separate R package cellKey,
c.f. [12], relying on the R-package ptable [4] to compute noise random distributions by
maximizing entropy [7, 11].

When generated to protect tables of counts, perturbation tables typically define
noise distributions with constant variance σ 2 and fixed maximum perturbation, spec-
ified by a parameter D. For tabulations of continuous (magnitude) variables, τ-Argus
and cellKey offer to compute the noise by adding the sum of topK random vari-
ables X

∧

j(j = 1, .., topK). In the present paper we generally assume the simplest case,
topK = 1.

A perturbed value for original value x = ∑n
i=1yi will then be computed according

to (1) in [5] as

(1) x
∧ := x + xδ · V , with xδ = x1m(x1) for x1 > zf .

The function m(z) decreases monotonously, such that for user defined parameters
zf , σ0, σ1, where σ0 < σ1, we have xδ

∼= σ0x1 for “large” x1, and xδ = σ1x1, for
“small” x ≤ zf , and some extra provisions to ensure a minimum noise variance also
for x1 tending to zero. V refers to a random variable defining standardized noise with a
noise variance of 1.

3 Study Design

In this study we examine the usability of synthetic microdata as basis for tables released
by national statistics offices as “official” figures. To this end we use one large, regionally
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detailed dataset as test data and apply the input perturbationmethods of Sects. 2.1 and 2.2
to the dataset. In the next step, we tabulate the original and perturbed data at different
levels of geographic detail. We also apply the Cell Key Method of Sect. 2.3 to the
tabulated (original) data, thus generating a noisy version of the tabulated data, protected
by output perturbation. We then compare the publication tables derived on basis of the
original data to those derived from the synthetic data and their version after application
of CKM, in terms of utility and disclosure risk.

3.1 Test Data

The test data set involves geographic information at several levels of a hierarchical
administrative geography plus information relating to a grid geography. Each record
contains a set of continuous variables we denote by Xi(i = 0, 1, . . . , 12). All Xi provide
sensitive income by source information. The records relate to natural persons. Notably,
those variables are not statistically independent, someof themare related by simple linear

models that might be denoted by, say, Xi(m) =
(∑

j∈Jm Xj

)
+ εm, i(m) /∈ Jm, where εm

denote a small error term for model m, and Jm the set of indices of its explanatory
variables. But not all variables which would appear in those models are actually present
in the data. In particular, there are three cases corresponding to a model such as Xk =
Xk1 + Xk2 + ε, with many zero entries in the Xk2 component but Xk1 not included in the
data. Such variable index pairs (k, k2) are (1,2), (3,4) and (5,6).

Notably, one of the models could be regarded as “master model” with, say, m = 0
and i(0) = 0. X0 as well as all Xj where all j ∈ J0 are present in the test data. Typical
tabulations of the dataset present aggregates of theXj variables (j = 0, 1, . . . , 12) by size
of X0. In the following, we refer to this classification variable as SCL(X0). The master
model can also be used to create another classification of the records. We define for
each record an index variable XMAX . XMAX characterizes a record by the explanatory
variable in the master model with the largest value such that for each record XXMAX =
max

(
Xj

)
j∈J0 .

We should mention that those test data are only a small excerpt (the most popular
variables) of a highly important, huge administrative dataset with manymore continuous
and discrete variables tabulated for publication in various ways. Pre-planned tables make
up for only a minor part of dissemination. Most of the released outputs are user demand
driven or could be regarded as research outputs.

For the risk utility analysis in our small study, we only rely on a large tabulation with
results for each of the thirteen Xj variables of our test data set. The tabulation is defined
by crossing the geographic information (at all levels) with classification SCL(X0).

3.2 Application Settings for Synthetic Data Generation

For data synthesis in our study we used the synthpop package [13], synthesizing the
data sequentially, one variable at a time. The algorithm predicts each variable using
CART with the previous variables used as predictors. So, the order of variables has an
impact. The order we chose for the continuous variables X0 to X12 of our dataset was
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X1,X2, . . . ,X12,X0.This means in particular, the other variables were used as predictors
for X0, but not the other way round.

Following ideas of [10] and [15] on partially synthetic data, and assuming the sen-
sitive information of our data set relating to its continuous variables in the first place,
we decided only to synthesize those. This means, the resulting dataset is only partially
synthetic. All discrete variables of the dataset keep their original values and are used
as predictors, in particular the “similar variables” of the TRS setting (3.2), and a vari-
able relating to the grid geography. Regarding the “risk variable” of the TRS setting,
SCL(X0), we tested two scenarios: with and without including it (as predictor) into the
synthesis. In summary, this means, synthpop has synthesized theXi variables conditional
on the joint distribution of the original data of all the discrete variables of the data set
(excluding SCL(X0) in one scenario). Apart from those settings, the package was used
with default parameters.

Now, considering that our test scenario assumes that the synthetic data are not meant
for direct publication, but only as basis to release aggregate statistics, and recalling
moreover, that in the record swapping approach not all the records are swapped, but
only those considered as the ones with the highest disclosure risks, it might suffice, if
we do not replaces all the records of the dataset by partially synthetic ones, but only a
sample of them:

Mixing Partially Synthetic Records with Original Records – Targeted Sample
Assuming it would be enough to mix just as many synthesized records with original
records as swapped in theTRSapproach,we identify those records of the dataset swapped
by TRS. We select those records, that is, their original versions, and apply synthpop to
only this subset of records, ending up with a (again partially) synthetic version of the
subset. We then generate a “full” dataset by adding the remaining (original) records of
the original dataset to the synthesized subset. To improve this approach with respect to
utility, we also tested a variant where we randomly selected only 50% of the records
swapped by TRS and synthesised only those.

Mixing Partially Synthetic Records with Original Records – Random Sample
However, concentrating synthesis on the swapped, risky records leads to relatively strong
effects. Froman information loss perspective, itmight be better to just randomly select the
records subjected to synthesis: This is the approach we follow in the final synthetization
experiment. Using again the Swap Rate of the TRS experiment, we this time randomly
select 10% of the original records to generate partially synthetic data from this subset
and add the synthesized subset to the remaining set of original records.

3.3 Application Settings for Targeted Record Swapping

In the first phase of the study, Targeted Record Swapping as outlined in Sect. 2.2 was
applied to the dataset. For this application we have used the following parameters and
settings:

SCL(X0), as introduced in Sect. 3.1, was chosen as only risk variable. At low geo-
graphic levels it carries highly sensitive information and is also used as a classification
variable in typical tabulations of our data set. The choice of the “similar variables” was
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not that straightforward. In our test application, finally three “similar variables” were
selected from the set of discrete variables, with personal information on the individuals
relating to the records of the data set. The index variable XMAX (c.f. Sect. 3.1) is one
of them.

The hierarchy is defined by the underlying administrative geography in conjunction
with information from the grid geography.

To define risky records, the concept of k-anonymity is applied, with k = 3 as a
parameter. The swap rate was set to a rather large value of s = 0.1, i.e. if necessary (and
possible) 10% of the records will be swapped with suitable partners.

In the resulting swapped data set we actually observe a slightly higher swap rate of
13.2%. As mentioned in Sect. 2.2, it is possible for the swap rate to be higher when there
are more critical units in the data set than the swap rate would imply, of course, always
assuming the availability of a sufficient number of suitable swapping partners. In our
study, the high swap rate is caused by the very small-scale evaluation of the data on grid
level, which implies a high number of risky records.

3.4 Application Settings for the Cell Key Method

For application to the continuous variables, we used three different settings regarding
the noise coefficient parameters σ0 and σ1, e.g. σ0 = 0.05, 0.1 and 0.15, and σ1 =2 σ0.
However, the plots in Sect. 4. present only the “middle” variant with σ0 = 0.1 because
the three variants always score closer to each other than to any of the other methods in
the comparison.

For application to counts data, we only choose one p-table with noise variance
σ 2 = 2. For the continuous variable, we also produced mean-before-sum adjusted
variants, i.e. variants where the noisy result X

∧

is multiplied by (n+ j)/n,where n denote
the original frequency and n+ j the frequency after perturbation. This way, users of the
adjusted data estimating a mean by dividing by the published frequency n + j they get
the estimate X

∧

/n which is usually closer to the original mean, c.f. [20].
For input perturbationmethods, such an adjustment should not be necessary, because

they do not perturb counts and magnitudes independent of each other. Therefore, even
though the tabulations of our test scenario do not present means (they present only
sums), including the adjusted version in the comparison makes some sense: Though of
course indirectly only, the information loss of the adjusted sums in a way “represents”
the increased information loss of means computed from not adjusted noisy magnitudes
caused by “no adjustment”.

4 Measuring Utility and Disclosure Risk

For the risk utility analysis in our study we rely on tabulation of the Xj variable data,
defined by crossing the geographic information (at all levels) with the size-classes
SCL(X0), c.f. Sect. 3.1., re-generated on basis of the perturbed version of X0 in case
of the synthetic data.

For comparison of disclosure risk avoidance capacities of the different methods, we
decided to concentrate on the singletons in our publication tables: we focus on table
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cells which relate to only a single record in the microdata. Singleton cells are typically
considered as “risky”, because they may disclose a confidential attribute of a single
unit with a non-zero Xk2 (c.f. Sect. 3.1) which might be identifiable (especially at grid
geography or municipality level). And even though the corresponding attribute (i.e.
cell value) may differ from the “true” attribute as reported for this unit, due to use of
noisy, swapped or synthetic data, there still remains a risk of perceived disclosure: a unit
appearing as single unit in a tabulation of the perturbed data assumes itself identifiable
and associated with a value and may feel exposed, no matter (or maybe even more so),
if that associated value is false. In our study, we use Rpert , the share of disseminated
singletons (units appearing to be single units after perturbation) that correspond to real
singletons, representing the probability that a published one leads to exposure of a real
singleton1.

For utility loss, regarding count tables, we use the Hellinger distance. Regarding the
magnitude tables, we use a simple absolute distance measure. To this end, for each table
assumed in the study as “to be published”, we compare the original (true) cell values
and the altered values and sum up the absolute differences. Subsequently, for reasons of
scaling and comparability, we divide this value by the sum of all absolute cell values of
the original table. This is actually the norm of the differences divided by the norm
of the original cell values and can be expressed as

(2) U :=
∥
∥x̂ − x

∥
∥
1

‖x‖1 =
∑

i∈{cells to be published}
∣
∣x̂i − xi

∣
∣

∑
j∈{cells to be published}

∣
∣xj

∣
∣

,

where xi denote the original value of cell i, whereas x
∧

i is the value of that same cell in the
altered table. The measure can be interpreted as mean deviation of the perturbed cells in
terms of the mean absolute (original) cell value.

We also compute this measure for the subgroup of singleton table cells, i.e. cells that
are singletons in both, the table before, and after disclosure control is applied: Usingle.
Then 1-min (1; Usingle) could be regarded as indicator for the risk of proximity of a
published “one” to the original value of this singleton.

5 Results

To give a first impression, Figs. 1a and 1b present risk-utility maps comparing the
performance of the various methods and their variants at the lowest geographic levels,
using the risk and utility measures of Sect. 4, i.e. for utility loss we use indicator U , and
for risk we use the combined indicator

R := (
1 − min(1;Usingle)

)
Rpert

The R-U maps plot medians of utility loss indicator U and risk indicator R, observed
for the 13 variables of our test instance. Clearly, at low level geography, TRS (Swap)

1 This indicator is different from Rtrue, the share of original singletons remaining singletons after
disclosure control is applied, reflecting the probability for an identifiable unit to stay identifiable.
Rtrue is a parameter of CKM– for the other methods we did not observe any relevant differences
between Rtrue and Rpert .
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performs worst regarding utility with much higher utility loss compared to the other
methods, but best regarding risk. According to the indicators, targeting “risky” records
for synthesizing (Synth (Swap)) performs similar to the Cell Key Method with mean-
before-sum adjustment (CKM(MBS)) regarding both, risk and utility. Whereas without
adjustment CKMscores lowest compared to all othermethods regarding utility loss, with
still the same risk score. Synthesizing only half of the “risky” records (Synth (Half))
clearly reduces utility loss, but also increases risk. Compared to that, synthesizing ran-
domly selected records (Synth (Rand)) leads to much less utility loss, but also to the
highest risk score.

Fig. 1a. Risk vs. utility loss at grid level Fig. 1b. Risk vs. utility loss at municipality
level

5.1 Comparing Utility Loss

To enhance comparison and presentation of the results, we first introduce an ordering
sequence into the 13 continuous variables of our test data set, ranking the variables by
size of the utility indicator (c.f. (2) in Sect. 4) when applied to the (not mean-before-sum
adjusted) CKM results. So, we haveUCKM

(
X(1)

) ≤ UCKM
(
X(2)

) ≤ · · · ≤ UCKM
(
X(13)

)
.

Notably, X(1) is a fairly even distributed variable, X(3) = X0, i.e. it is the dependent
variable in the master model mentioned in Sect. 3.1, and X(2) is the dependent variable
of a similar model, also involving several of the other variables as explanatory variables.
Typical for the variables at the end of the sequence are very large proportions of zero
entries.

Indeed, for CKM without adjustment, we observe for the most detailed versions
of our test tabulation at grid level utility losses close to or even slightly above the σ0
parameter of the respectiveCKMvariant.We observe this for the five “difficult” variables
at the end of the utility loss ranking, X(9) to X(13). This is not unexpected, see Appendix
A.1 for some theoretical reasoning.

For the variables at the other end of the ranked list, utility loss indicator values are
much lower. Utility loss for X(1) is then less than 10% compared to that obtained for
X(13).

Figures 2a and 2b compare for the methods we tested utility loss results for X(1) to
X(13), skipping X(10) to X(12), because for those variables the synthetic data utility loss
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indicator results are way too far outlying for the scale of the plot2. For similar reasons
plots present only synthetic data results for our second scenario, i.e. including the size
class variable SCL(X0) as predictor in the synthesis. For most variables, including this
predictor improves utility losses tremendously. For example, for the “targeted” ‘Synth
(Swap)’ variant without the predictor in the synthesis, for X(1) to X(4) utility loss U
scores between 6 to 15 times higher compared to the variant computed including the
predictor.

Comparing Figs. 2a to 2b shows that moving from grid to municipality level slightly
improves the scores for all variants and variables, but not very much. Which is probably
due to still many small and zero cells in our test tabulation on municipality level as well.

At both geography levels, the best scoring methods are CKM without mean-before-
sum adjustment (CKM (SBM)), closely followed by synthetic data variant (Synth
(Rand)) which only synthesizes randomly selected 10% of the records. At grid level, for
X(1) to X(8), the next best scoring methods are the synthetic data variants which either
synthesize all records (variant “Synth”, not included in the plot), or only the records
selected by targeted record swapping (Synth (Swap)), or at least half of them (Synth
(Half)). For these variables they all outperform the adjusted mean-before-sum CKM
variant (for the base variant “Synth”, the latter is true only for X(1) to X(4)).

With exception of X(8), for all variables in the plots utility loss scores are highest
for the targeted record swapping (Swap). However, for the three variables skipped in the
plot, the extremely poor results of Synth, Synth (Swap) and Synth (Half) are worse. For
X(9) and X(13) synthesizing all records (Synth) performs similar to record swapping and
much worse compared to synthesis of selected records only.

Fig. 2a. Utility loss U at grid level Fig. 2b. Utility loss U at municipality level

Moving to higher levels of aggregation in the test tabulation generally reduces utility
losses. Moving from grid to municipality level, they decrease by about approx. 20% to
50% for most variables and methods. From municipality to district level, utility losses
shrink further, and even more so when moving to the state level. On that top level of our
test geography, utility loss is of course zero for the record swapping because records are
only swapped on the levels below (Figs. 2c and 2d).

2 Notably, X(10) to X(12) relate to the k2 variables of the special (k, k2) index pairs mentioned in
Sect. 3.1: X2, X4 and X6.
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Fig. 2c. Utility loss U at district level Fig. 2d. Utility loss U at state level

To summarizefindings regardingutility of the perturbedmagnitudedata: for variables
X(1) to X(8), except for X(7), it can be imagined that the synthetic data might actually be
sufficiently close to the real data, i.e. close enough for publishing aggregates derived on
basis of such data at the levels considered here. Especially when we consider that at grid
and municipality level not all these variables should be published in combination with a
fine size-classification such as the one considered in the tests, i.e. there would be some
further aggregation anyway.

With exception of the state level, for most variables targeted record swapping leads
to the highest utility losses, though for some of the variables, especially those where
the “similar variables” of the setting are relatively efficient, utility losses are some-
what less extreme. However, a mean deviation of about 11% of the mean cell value for
the most important variable can probably not be accepted in an official publication of
administrative data, even at municipality level.

Not surprisingly, information loss is lowest for the not adjusted CKMvariant: Due to
its nature as output perturbation method, it is relatively easy with CKM to select param-
eters yielding a level of utility loss that might be acceptable for a disseminator. Not
surprising also that the mean-before-sum adjustment increases information loss, espe-
cially for results at low level of detail, involving many small counts, where adjustment
affects can be strong.

For presentation and analysis of utility loss due to perturbation in counts tabulations
(corresponding to those of the magnitudes) see Appendix A.2.

6 Summary, Open Issues, Conclusions

The questionwe have started to address in this paper is, if synthetic datamethods can be a
realistic alternative as disclosure control concept not for public or scientific usemicrodata
sets, but when partially synthesized data sets shall be used as basis for producing the
official outputs of NSIs. To that aim we have compared several variants of synthetic
data generation implemented using the CART approach of the synthpop package to
results obtained by an “established” input perturbation method (though typically used
with datasets mainly consisting of discrete variables) on one hand, and to the output
perturbation approach of the Cell Key Method on the other hand.
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Results of the paper have been obtained in a rather small study, looking at just
one tabulation of several continuous variables computed for different geographies, and
considering only two different modelling approaches for data synthesis. For analysing
utility, we mainly rely on a simple, easy to interpret indicator which, however, does
for example not provide information on the tails of tabulation cell level distributions
of the perturbation. Another important open issue not yet addressed in this study is
inspecting tabulation cell level distributions of the perturbation resulting for ratios of
pairs of variables.

Regarding risk, we focus on the share of singleton cells in the test tabulation, also
considering how much their cell values change.

As expected, we observe that the performance of data synthesis strongly depends on
the predictor information included in the model. It is quite encouraging that for some
of the variables even the simple predictors in our model seem to work quite well. On
the other hand, for the other variables, suitable predictors would probably have to be
generated variable by variable which may become a challenge for data sets involving
a large variety of variables. If such efforts could be worthwhile should be clarified by
more detailed follow up studies.

Appendix

A.1 Approximate Behavior of Utility Loss Indicator U for CKM
in Extremely Detailed Tabulations

As explained in Sect. 3.4, a lower bound for the noise added by CKM to cell value
x is approximately σ0x1V , where V is a realization of a discrete, symmetric random
variable V . It is statistically independent of the cell values x, with VAR (V ) =1, and
E(|V |) := ϑ . In our setting, ϑ ≈ 0.8.

Typically, realizations of V will be v ∈ {−D, 1
l − D, 2

l − D, . . . ,D − 1
l ,D

}
,

obtained by a “lookup” in a suitable perturbation table (with user defined “step-width” 1
l )

using the cell key ofx. This perturbation table defines probabilities (pD,k)k=0, 1,...,2·l·D
for an original value x ≥ D to be perturbed by k

l − D.
Consider now the extreme case of a very detailed tabulation where all cells to be

published are either empty, or consist of only a single contribution, i.e. xi = xi1 . Then

we have UCKM ≈
∑

i∈{cells to be published} σ0

∣
∣
∣xi1 || kil −D

∣
∣
∣

∑
j∈{cells to be published}

∣
∣xj1

∣
∣ . Because of the definition of V , and

because of its independence of the xi data, we can further approximate

UCKM ≈
σ0

∑
k = 0,1,...,2·l·DpD,k

∣
∣
∣ kl − D

∣
∣
∣
(∑

i∈{cells to be published}
∣
∣xi1

∣
∣
)

∑
j∈{cells to be published}

∣
∣xj1

∣
∣

= σ0E(|V |) = σ0v.
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Appendix A.2

In terms of which variables are affected most by the perturbation, and which least, the
distances for the counts data do not really change the picture observed for the continuous
variables. Looking at grid level results (Table 1) we find that except for the variant
synthesizing all records, all other methods tend to perform better than record swapping
(Swap), and for X(1) to X(8) they also do better as CKM. This impression is especially
striking for the “best” three variables, X(1) to X(3).

Appendix A.3

Table 2 presents results for risk indicator Rpert , i.e. the probability for a published count
of 1 to relate to a real singleton. As we see, TRS (Swap) is the only method for which
this probability is below 2/3 for all variables. In contrast to that, for CKM, Rpert is larger
than 2/3 for each of the 13 variables. The same holds for the synthetic data variants
where only a random 10% sample of all records is synthesized, or only one half of
the swapped records, respectively. For these variants, a large proportion (for X(1) to
X(3) almost all, actually) of the published singletons coincide with real singletons and
so might be identifiable. It is therefore important to check how close the associated
magnitudes are to the original ones, c.f. Table 3, further below.

Table 1. Hellinger distances at grid Level

Variable Swap CKM Synthetic data variants

SwapHalf Synth Swap Rand

X(1) 0,15 0,10 0,08 0,03 0,02 0,02

X(2) 0,15 0,10 0,02 0,02 0,01 0,01

X(3) 0,15 0,09 0,02 0,00 0,00 0,00

X(4) 0,20 0,15 0,07 0,13 0,10 0,07

X(5) 0,27 0,20 0,14 0,29 0,20 0,13

X(6) 0,31 0,24 0,15 0,34 0,21 0,11

X(7) 0,29 0,21 0,14 0,25 0,17 0,08

X(8) 0,31 0,27 0,19 0,47 0,28 0,15

X(9) 0,58 0,38 0,34 0,67 0,48 0,22

X(10) 0,57 0,46 0,38 0,93 0,57 0,28

X(11) 0,51 0,46 0,37 0,89 0,47 0,28

X(12) 0,63 0,51 0,49 0,99 0,69 0,24

X(13) 0,75 0,51 0,46 0,92 0,65 0,21
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Table 2. Risk indicator Rpert at grid level

Variable Swap CKM Synthetic data variants

SwapHalf Synth Swap Rand

X(1) 0,30 0,70 0,71 0,96 0,98 0,98

X(2) 0,28 0,70 0,97 0,98 0,99 1,00

X(3) 0,27 0,69 0,98 1,00 1,00 1,00

X(4) 0,37 0,74 0,88 0,69 0,80 0,90

X(5) 0,37 0,73 0,75 0,40 0,58 0,80

X(6) 0,44 0,76 0,82 0,41 0,69 0,89

X(7) 0,37 0,73 0,77 0,55 0,71 0,93

X(8) 0,54 0,78 0,78 0,28 0,62 0,86

X(9) 0,38 0,82 0,67 0,37 0,49 0,85

X(10) 0,64 0,97 0,83 0,11 0,62 0,90

X(11) 0,64 0,92 0,80 0,11 0,70 0,88

X(12) 0,59 1,00 0,69 0,01 0,44 0,95

X(13) 0,39 0,96 0,74 0,12 0,53 0,98

Table 3 shows the utility loss indicator results considering only the single units (after
perturbation),Usingle, for the grid level. Although an indicator for data utility, applied to
only those cells with counts of 1 before and after perturbation, it can also be interpreted
as riskmeasure. Singletons are especially prone to risk of identification. So, protection of
such cells benefits from a larger deviation. With CKM, the amount of perturbation of the
largest contributor is a parameter. It is therefore not surprising thatwe observe a relatively
homogenous mean perturbation of about 15% for those cases where largest contribution
and cell value always coincide. Again, synthesis of only a random subsample of 10% of
the records results in the smallest deviations - not a desirable feature in this context, as
explained before.

Table 3. Utility loss indicator for single units (after perturbation), Usingle at Grid Level

Variable Swap CKM Synthetic data variants

SwapHalf Synth Swap Rand

X(1) 0,32 0,15 0,19 0,18 0,17 0,03

X(2) 0,29 0,13 0,22 0,34 0,34 0,02

(continued)
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Table 3. (continued)

Variable Swap CKM Synthetic data variants

SwapHalf Synth Swap Rand

X(3) 0,28 0,13 0,32 0,34 0,35 0,02

X(4) 0,12 0,16 0,06 0,16 0,11 0,03

X(5) 0,18 0,16 0,08 0,33 0,20 0,01

X(6) 0,18 0,15 0,08 0,22 0,16 0,02

X(7) 0,44 0,14 0,46 0,38 0,49 0,03

X(8) 0,04 0,16 0,04 0,23 0,06 0,02

X(9) 0,12 0,15 0,10 0,35 0,24 0,02

X(10) 0,01 0,15 0,01 0,43 0,03 0,00

X(11) 0,08 0,13 0,01 0,47 0,78 0,00

X(12) 0,00 0,14 0,00 0,35 0,00 0,00

X(13) 0,04 0,17 0,07 0,82 0,37 0,00
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Abstract. In this paper, we explore the privacy problem of individu-
als in publishing data cubes using SUM queries, where a malicious user
is expected to have an aggregate knowledge (e.g., average information)
over the data ranges. We propose an efficient solution that maximizes the
utility of SUM queries while mitigating inference attacks from aggregate
knowledge. Our solution combines cube compression (i.e., suppression
of data cells) and data perturbation. First, we give a formal statement
for the privacy of aggregate knowledge based on data suppression. Next,
we develop a Linear Programming (LP) model to determine the num-
ber of data cells to be removed and a heuristic method to effectively
suppress data cells. To overcome the limitation of data suppression, we
complement it with suitable data perturbation. Through empirical eval-
uation on benchmark data cubes, we show that our solution gives best
performance in terms of utility and privacy.

Keywords: Data cubes · Privacy preservation · Cell suppression · Cell
perturbation · Cube compression

1 Introduction

Multidimensional data (or data cubes) are widely used in many fields to store
all collected data, as these data structures are optimized for Online Analytical
Processing (or OLAP) [2,8,9]. For business or research purposes, the data col-
lected is made available to external parties (e.g., analysts, and organizations)
to enable them to query and analyze trends and patterns necessary for decision
making. Although most external parties have legitimate usage interests and data
is anonymized before publication or query, there are situations where a malicious
user can mine this data in order to endanger the privacy of individuals, such as
leaking medical records. Because of this privacy risk, many research works have
addressed this issue and different models have been proposed [5,12]. For exam-
ple, aggregation of a single cell value is not allowed, and query set size and access
controls are deployed to provide additional security (for more details see [15]).
However, most of the proposed techniques focus on the privacy of individual
data (or cells of data cubes) and neglect insights that can be gained by simply
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analyzing aggregate patterns (such as average information) [3]. These aggregate
patterns may not be allowed for security reasons, but they can be easily inferred
in many cases. Even for multidimensional data where only SUM is allowed, knowl-
edge of the average could be a valuable indicator to know the trend of the data
(e.g., whether or not the average salary is above the minimum wage).

Illustrative Example. Consider that a large retail company allows access to sales
from all its stores during the year through range sum queries (here and in the rest
of the paper, we consider a data cube that contains only positive values). Due to
business and analytical needs, our retail company publishes a view (or part) of
the data cube and makes it accessible only through SUM range queries (see Fig. 1).
Even though the COUNT information is not explicitly available, a malicious user
can get it easily: either by knowing some metadata of the published cube and
queries [3], or by using sophisticated approaches such as the Volume Leakage
attack [6]. The result of the aggregate average AVG can then be inferred and
exploited to violate the privacy of individual cells.

Suppose our malicious user knows that two stores had similar sales on certain
days (weekend, holidays, events, etc.). Using the result of SUM query and the
knowledge of COUNT, he can deduce the result of AVG. For the region defined
by the range {(Shop2 : Shop3), (Day2 : Day3)} in Fig. 1, the AVG is equal to
129.5k. Based on this AVG, the attacker can now estimate the sum of the range
{(Shop2 : Shop4), (Day2 : Day2)} as (129.5 + 129.5 + X) and deduce that X is
172k, which gives the cell value with high precision. The attack can proceed in
the same way to disclose the rest of the values. Note that the attacker can also
assume that the negative or small scale results are the empty cells, allowing him
to reconstruct the entire region.

Fig. 1. Data cube for retail company.

Contributions. To disturb the AVG and prevent these attacks, cell suppression
techniques are better suited since they simultaneously modify the COUNT (by
−1) and the SUM (by minus the value of the cell), for each cell suppressed [3].
Cell suppression is very similar to a well-known technique for speeding up query
responses in OLAP, namely cube compression.

In this paper, we present an efficient method that maximizes the utility of
SUM queries while mitigating inference attacks from AVG aggregate knowledge.
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Our method combines cube compression via cell suppression and cell perturba-
tion to ensure better utility and privacy. Our contributions are as follows:

1. We develop a Linear Programming (LP) model for finding the optimal allo-
cation needed to provide the best utility/privacy results.

2. We design a cell suppression technique that maximizes privacy against attacks
based on AVG, and can be extended to other aggregate operators but this will
be the subject of future work.

3. To overcome the limitation of cell suppression, in the case where the values
are close to each other, we complement it with suitable cell perturbation to
ensure a higher level of privacy while maintaining utility.

4. All of our contributions are validated by extensive experiments, in which our
techniques have outperformed the state-of-the-art [3] approach by ensuring
both utility and privacy against attacks that use AVG aggregate inferred from
data cubes.

Paper Organization. In Sect. 2, we review related work. In Sect. 3, we introduce
the notation used and the problem statement of the aggregate knowledge privacy
based on data suppression. We present our privacy-preserving method in Sect. 4.
We provide an experimental evaluation of our method in Sect. 5 and discuss
the limitations of our solution in Sect. 6. Finally, we conclude in Section 7 by
presenting some future works.

2 Related Work

Most of the privacy techniques for OLAP data are derived from the literature on
the privacy of statistical database [11]. These techniques can be classified into
two categories: Access restriction/control methods and disruption methods.

Restriction and Access Control Methods. In [13], they presented two types
of inference attacks and then proposed an access control system that further
restricts the privileges of each user until they become inference free. In [16],
the attacker can use the knowledge about the cardinality of the empty cells,
combined with the SUM singleton queries, to infer the individual values. Then, [16]
proposed a privacy method by dividing the cube into blocks and only keeping
the blocks that are not compromised. [14] is an enhancement of [16] with an
audit control system allowing only range queries that are inference-free. [17] is
another query auditing method that uses information theory and only responds
to user queries if the user’s prior knowledge (represented by his previous queries)
and new knowledge do not compromise the cells targeted by the query.

Perturbation Methods. Another way to provide privacy is to add noise to the
cube cells, in such a way any inference of a cell’s value will yield a perturbed value
and reconstruction will not give the original data. [1] presented an approach to
add noise to cells, where each cell is kept as it is with probability p or noised
(using a noise sampled from the normal distribution) with probability 1 − p.
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In [11], they present another method where the cube is considered as a group of
blocks that will be perturbed individually. In each block, the sum of the noise
added to each cell in a row (as well as for the cells in a column) is equal to 0
so that it can provide accurate range sum queries. Their results show that they
were able to change the values significantly, while providing accurate answers
to queries. In [3], they present another perturbation approach that uses cell
deletion (also called sampling). Based on the average aggregate knowledge, their
algorithm applies data suppression to modify not only the response of the queries
but also the aggregate patterns inferred from the queries. They compared to [11],
and the results show that adding noise alone cannot prevent this type of inference
without the loss of utility and cell suppression is a better suited solution. Our
work targets the same aspects of inference and privacy as defined in [3], and we
have provided a better algorithm for cell suppression and perturbation.

Another perturbation method is the Differential Privacy (DP) [5], considered
the gold standard. However, DP cannot be applied to all the possible scenarios [4].
In our work, we considered SUM queries, and one of the main problems in applying
DP is to define the global sensitivity for the SUM functions [10]. Also it requires the
addition of a lot of noise to significantly disrupt the AVG, resulting in poor util-
ity. For these reasons, DP is out of the scope of this work and given other privacy
considerations, we will investigate the application of differential privacy to secure
high-dimensional data (multidimensional cubes) in future work. Another privacy
model is k-anonymity [12], which was used by [8] to avoid re-identification attacks
on the dimensions of a data cube. This is also outside the scope of this paper.

3 Problem Statement

In this section, we give the notation used throughout the paper and a formulation
of the problem under consideration.

3.1 Preliminaries

Data Cube. A data cube C is a multidimensional data over a relational table for
a set of dimensions D = {d1, d2, . . . , dn}, where each dimension di corresponds to
an attribute and each cell contains the result of an aggregated measure. Figure 1
illustrates a 2-dimensional cube where attributes Shops and Days are dimen-
sions, and each cell contains the measure which is the result of the aggregate
operator SUM on the amount of sales. In this work, we consider only SUM, as this
aggregate operator is (i) extensively used in many multi-dimensional frameworks
[15], and (ii) used to compute other aggregate operators such as AVG.

We consider here a special class of queries called continuous range queries
in such a way that SUM is performed over a range query R = {r1, r2, . . . , rn},
noted by SUM(R), where ri is a continuous range on dimension di specified by
the start and end positions. For instance, in Fig. 1, SUM(R) results in 1004k with
R = {(Shop1 : Shop3), (Day3 : Day5)}. Let R = {R1, R2, . . . , Rm} be a query
workload used by the data publisher and the end user as a contract that defines
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the view to be published (via range queries) instead of the whole data cube. Let
|R| be the size (i.e., the number of non-empty cells) of range query R. In Fig. 1,
the size of R = {(Shop1 : Shop3), (Day3 : Day5)} is 5.

Metrics. Our goal is to suppress (and possibly perturb) some cell values from
each range R to get R′. Any privacy-preserving data publishing method for
data cubes is evaluated on two criterias: utility and privacy. As utility objective,
we consider boosting the accuracy of SUM queries in our solution. For that, we
compute the relative error of accuracy Ae which shows how different the SUM
answer on the exact range R and the altered one R′:

Ae(R,R′) =
|SUM(R) − SUM(R′)|

SUM(R)
(1)

It is clear that the smaller the relative error of accuracy, the better the utility.
As for privacy issues, our objective is to prevent inference attacks like those

presented in Sect. 1. Let us recall that in these attacks the information on the
average was deduced from the data cube. Therefore, we compute the inference
error Ie which shows how well the solution we propose is able to disrupt this
inferred average and thus mitigate successful attacks [3,7]:

Ie(R,R′) =
|AVG(R) − AVG(R′)|

AVG(R)
(2)

Note that the higher the inference error, the better the privacy of the data
cube. Given both metrics, a good privacy-preserving data publishing method
should provide the best utility-privacy tradeoff.

3.2 Problem Definition

Let C be a data cube with a query workload R = {R1, R2, . . . , Rm}. We consider
attackers whose knowledge is limited to the average information and/or the
distribution of some cells (as described in Sect. 1). The attackers can discover the
exact and/or approximate values of other cells, and accordingly infer sensitive
attribute information. To prevent these attacks, we propose to suppress some
values from data cube C (only the region defined by R) while preserving the
accuracy of SUM queries and mitigating the inference due to the use of the average
operator. More precisely, for each Ri in R, we create a non empty replica R′

i

that contains a minimal subset of the cells in Ri and the others are left null.
Our privacy-preserving solution can be defined as a multi-objective optimization
problem:

maximize
∑m

k=1 |Ri| − |R′
i|

minimize 1
m

∑m
k=1 Ae(Ri, R

′
i)

maximize 1
m

∑m
k=1 Ie(Ri, R

′
i)

subject to R′
i ⊂ Ri for each Ri ∈ R

(3)
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The first objective function of Eq. 3 maximizes the difference between Ri and R′
i

to meet the requirement of cube compression. In real world scenarios, the sizes of
data cube and its query workload are very huge. Finding an optimum solution to
multi-optimization problem 3 is hard and intractable task. This type of resolution
falls under the broad category of multi-criteria, or vector optimization problems.
Unlike single-objective problems, it is not always possible to find an optimal
solution that satisfies all the function objectives under consideration. Moreover,
even several solutions may not meet the expectations of the data publisher in
terms of utility and privacy requirements. Therefore, it would be more beneficial
if the data publisher had the ability to select and verify their own levels of utility
and privacy.

In the next section, we propose a heuristic to problem 3 combining cell sup-
pression and perturbation and allowing us to find plausible solutions.

4 Privacy-Preserving Method

We present a method to publish a view of a given data cube while ensuring good
utility of SUM queries and protecting cells privacy against average-based inference
attacks. The view is built using two operations on non-empty cells: suppression
and perturbation of data cells. Our method proceeds in three steps: (i) splitting
query ranges at finer grid granularity in order to increase the accuracy of poten-
tial SUM queries; (ii) defining and solving a Linear Programming (LP) problem to
determine how many cells are needed from Ri ∈ R and its sub-ranges to prepare
a range view given a storage space B; (iii) preparing range views by deleting
some data cells and perturbing others as necessary as possible.

4.1 Preprocessing Step

Each Ri in the query workload R represents a region of the data cube that
we want to publish while ensuring utility and privacy. If the range of R is
large, then dealing directly with this range would be a coarse granularity to
the problem, thereby penalizing small user queries after the data cube view is
published. Indeed these queries will not be efficient (i.e., null result) since they
target regions where cells have been deleted unnecessarily due to coarse gran-
ularity. Accordingly, to ensure that the retained/removed cells from region Ri

are evenly distributed across all parts, we consider a smaller unit on which to
apply cell suppression. We call this unit a sub-query (or sub-region), so each Ri

will be divided (logically by indices only) into smaller sub-regions. We build a
view for each sub-region of Ri, which together constitute the global view of Ri.
Splitting data into smaller units is a common preprocessing step, either on the
data cube directly [11] or on a query workload [3].

4.2 Space Allocation Step

Unlike multi-objective optimization problem 3 (where the decision variables are
the cells values of each Ri), we define a simple LP problem to compute the
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view size of ranges as well as their sub-ranges (resulting from the preprocessing
step). Given an allocated space B in which we want to build a view of the query
workload R = {R1, R2, . . . , Rm}. The objective is to distribute this space in such
a way to guarantee a minimum Ae for all Ri:

minimize
1
m

m∑

i=1

|SUM(Ri) − SUM(R′
i)|

SUM(Ri)
(4)

The view R′
i is a subset of Ri to be published. The size and the data cells of R′

i

are unknown at this stage. As the data cells of Ri are known, we can compute
the average value AVG(Ri) = SUM(Ri)/|Ri|. Instead of determining which data
cells of Ri to include in R′

i, we consider a single a decision variable bi, the size
of R′

i, and replace the data cells of R′
i by a single cell AVG(Ri). Thus, Eq. 4 is

redefined as follows:

minimize
1
m

m∑

i=1

|SUM(Ri) − bi × AVG(Ri)|
SUM(Ri)

= |1 −
m∑

i=1

1
m × |Ri| × bi| (5)

From Eq. 5, our allocation problem needs only the size of each Ri in R.
Therefore, our LP problem is stated as follows:

minimize |1 − ∑m
i=1

1
m×|Ri| × bi|

subject to
∑m

i=1 bi <= B
minimumspace <= bi < |Ri| for each i ∈ {1, . . . , m}

(6)

The first constraint of Eq. 6 ensures that the space allocated to all range
queries does not exceed the given space B. As for minimumspace, it is an input
parameter passed to the algorithm to ensure that each query gets a minimum
space allocation. The solution of Eq. 6 will give us the allocated space bi for each
Ri, and since each Ri consists of a group of subqueries, we need to divide the
bi and give each subquery its appropriate allocation. To do this, we reuse our
LP problem to calculate the space allocation for each subquery of Ri but with
B equal to the space found for Ri.

4.3 View Creation Step

After the allocation step, each query (and its subqueries) in R would be allocated
a space (in number of cells). To prepare the data cube view for publishing, the
next step is to find the cells to keep in each region R (working on each of its
subregions) relative to Ae and Ie. To this end, we have designed two algorithms,
the first based solely on cell suppression and the second being a perturbation-
based approach.

Cell Suppression Algorithm. To get the optimal Ae and Ie, we have to try
all possible combinations of cells (that fit in the allocated space b), which is
inconvenient and computationally expensive. So an approximate solution might
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be a better way to solve this problem. In [3], they used a heuristic that consid-
ers first the utility (by selecting outliers or the largest values), and privacy in
second order.

Ie=30%

Ie=23%

Algorithm 1

[3] Algorithm

Ie=50%

Algorithm 2

Space allocated b = 3

Global_noise = 20%, Individual_noise = 20%
δerror=50%

Fig. 2. Output comparison between Algorithm 1, Algorithm 2 and [3].

Algorithm 1. Cells suppression
Inputs: r - subquery region

b - allocated space
Output: r′ - view of r

r′ ← []
T ← sort in asc. order r by values
(index, best index, best Ie) ← (0, 0, 0)
while index + b < |r| do

r′ ← get b values of T
from position index

if Ie(r, r′) >= best Ie then

best Ie ← Ie(r, r′)
best index ← index

end if
index ← index + 1
r′ ← []

end while
r′ ← get b values of T

from position best index

return r′

Algorithm 2. Cell perturbation
Inputs: r - subquery region

b - allocated space
noiseglobal - maximum distortion
noiseindividual - distortion rate
δerror - reachable level of Ie

Output: perturbed r′ - noised view of r

r′ ← get b largest values from r

noise budget ← SUM(r) × (1 + noiseglobal) − SUM(r′)
noise step ← 1
perturbed r′ ← r′
noise ← 0
while (Ie(r, perturbed r′) < δerror) and

(noise < noise budget) and
(noise step < noiseindividual) do

perturbed r′, noise ← add noise(r′, noise step)
if noise > noise budget then

perturbed r′, noise ← add noise(r′, noise step − 1)
return perturbed r′

end if
noise step ← noise step + 1

end while
perturbed r′, noise ← add noise(r′, noise step)
return perturbed r′

Relegating Ie to the second order of priority does not guarantee the best
results in all cases, so we propose Algorithm 1 that optimizes Ie in priority.

Given a sub-region r of a region R and space allocation b, the algorithm first
sorts the cells by values (each cell contains a value and a location in the cube) in
ascending order. It computes iteratively the maximal value of Ie by considering
successive and overlapping b values. At the end, Algorithm 1 constructs r′ with
the subset of cells that gave the best results (R′ is composed of all r′). Figure 2
shows by an example the difference between the results provided by our heuristic
and [3]. In our solution, we give priority to Ie, but without neglecting Ae. If the
first and last b values yield the best (and similar) Ie, our solution will choose
the last b values. Since the values are ordered, this set of cells offers the least
(best) Ae.

Cell Perturbation Algorithm. When the values are close to each other, cell
suppression alone will not be able to provide good Ie. For these cases, we have
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designed Algorithm 2, which is based on cell suppression and perturbation and
can be triggered when Algorithm1 does not perform well. In addition to r and
b, it takes three other parameters: δerror represents the level of Ie we want
to reach, noiseindividual limits the noise (distortion rate) added to each cell
individually, and noiseglobal defines the maximum distortion rate between r and
r′ (i.e., Ae) allowed by adding noise. These additional thresholds ensure that
the added noise does not affect the utility (i.e., Ae) more than necessary, and
also control the distortion applied to each cell. The algorithm first chooses the
cells with the largest values to build r′, then calculates the noisebudget based
on noiseglobal and the noise generated by suppressing the cells (discarding the
most small values). A noise is added to the cells of r′ (the function add noise
returns a perturbed version of r′ and the amount of noise added) incrementally
using noise step which represents the distortion rate (e.g. in Algorithm2 it is
equal to 1%). This process is repeated each time with bigger noise step as long
as: (i) noiseglobal is not exceeded (ii) δerror is not satisfied, and (iii) noise step
is smaller than noiseindividual. Figure 2 shows that the perturbation method
provides better utility and privacy than other suppression-based algorithms.

Using these different thresholds allows us to better control the balance
between utility and privacy. For example, by allowing more noise (accuracy limit
defined by noiseglobal), we can ensure a higher δerror.

5 Experimental Evaluation

For experimental evaluation, we implemented1 our method and [3] approach (as
this one is closest to our work) in C# to facilitate compatibility with SSAS2 used
to create data cubes from TPCDS3 and AdventureWork20124 (see Table 1 for
the details on the cubes). For solving our LP problem in allocation step, we used
Google OrTools with SCIP solver5. To measure the performance of our method,
we conducted several experiments to observe how Ae and Ie vary depending on
two parameters. The first parameter is the allocated space B which we varied
relatively (e.g., 50%) from the original size of R in the data cubes in order
to check the performance of Ae and Ie during the allocation step. The second
parameter is the selectivity of each range query R = {r1, r2, . . . , rn} defined as
‖R‖ = (|r1| ∗ |r2| ∗ ... ∗ |rn|) where |ri| represents the length of the range on the
ith dimension. In the experiments, we create a random query workload R, with
initial selectivity for all queries. Next, we modify (multiply by 2, 3, ...) the initial
selectivity to observe how the performance changes if the size of the input data
increases (with B between 50% and 60%). Our experiments are divided into two
parts: the first part compares our method to [3] in terms of cell suppression and

1 https://github.com/AlaEddineLaouir/PUV-CUBE.
2 https://docs.microsoft.com/fr-fr/analysis-services/?view=asallproducts-allversions.
3 https://www.tpc.org/tpcds/.
4 https://github.com/Microsoft/sql-server-samples/releases/download/adventurewor

ks/AdventureWorks2012.bak.
5 https://developers.google.com/optimization.

https://github.com/AlaEddineLaouir/PUV-CUBE
https://docs.microsoft.com/fr-fr/analysis-services/?view=asallproducts-allversions
https://www.tpc.org/tpcds/
https://github.com/Microsoft/sql-server-samples/releases/download/adventureworks/AdventureWorks2012.bak
https://github.com/Microsoft/sql-server-samples/releases/download/adventureworks/AdventureWorks2012.bak
https://developers.google.com/optimization
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Table 1. Data cubes used in our experiments.

Databases Dimensions Measures Total

TPCDS Product
18000

Household
7200

Store
6

Date
1824

Promo
300

Net paid
Type reel

∼4.25 E14 cells

Adventure
works

Product
158

Date
1124

Customer
18484

InternetSales
Type reel

∼36 M cells

space allocation. The second part is devoted to our method in order to compare
the techniques of suppression and perturbation of cells.

In the first part, we used the TPCDS data cube to compare both methods
in terms of space allocation using the cell suppression technique of [3] (Exper-
iment (A)) and our cell suppression technique (Experiment (B)). In Fig. 3,
we find the expected behavior of our method in both experiments (A) and (B).
Indeed, both Ae and Ie converge to 0 when the given allocation is too large. This
is something that [3] cannot replicate, because their allocation scheme is based
on the data distribution (i.e., it relies heavily on variance analysis). If the data
in the query workload is not balanced according, their allocation scheme fails to
distribute the allocated space. Unlike our method, [3] gives more space than nec-
essary to some regions and neglects others (for example, this is visible when the
allocation is given at 90%), [3] still fails to get a Ae minimal. As for selectivity in
both experiments (A) and (B), Fig. 3 shows that our method is able to provide
better results in Ae and Ie when the query size increases. Despite an evolution
of the results in the right way for the experiment (A), [3] nevertheless presents
worse results in the experiment (B) when the size of the queries increases. From
Fig. 3, we can also see that our view creation step provides better results than
the suppression heuristic of [3] as shown in experiments (A) and (B). From this
first part of the experiments, we conclude that our method (allocation and view
creation steps) outperforms [3].

For the second part of our experiments, we seek to compare the effectiveness
of the perturbation algorithm Algorithm2 and the cell suppression algorithm
Algorithm 1. In addition to TPCDS, we used the Adventure Work data cube
because it contains cell values that are close to each other, which allows us to
better highlight the performance of both algorithms. To perform these experi-
ments, we used Algorithm 2 with the following parameters: noiseglobal = 20%,
noiseindividual = 27%, δerror = 50%. Applying both algorithms to the TPCDS
data cube, the results for Ae and Ie are similar in all cases as illustrated in
Fig. 4. Whether by allocation or selectivity, our perturbation technique did not
add significant noise. On the other hand, in the case of the adventure work data
cube, we find that cell suppression (see Algorithm 1) alone does not provide any
level of privacy. This is due to the closeness of the cell values giving poor results
for Ie as explained in Sect. 4.3. However, we find that the perturbation technique
(see Algorithm 2) is far superior in terms of performance for Ae and Ie. From
the allocation, the perturbation provides less Ae with much more Ie. We notice
that Algorithm 1 is only able to provide 3% of Ie, while Algorithm 2 is able to
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Fig. 3. Comparaison with [3] in terms of selectivity and allocation.
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Fig. 4. Comparaison between suppression and perturbation

achieve the desired 50% of Ie. Indeed, Algorithm 2 guarantees a better value of
Ae because it adds noise to cells kept in view, which reduces the effect of deleted
cells on Ae. Since cell perturbation is limited by the noiseglobal parameter, it
cannot increase the value of Ae beyond what is allowed. The results also show
that Algorithm 2 is able to provide the required δerror passed to the parameters
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and respects the utility constraint. To sum up, Algorithm1 may be enough to
provide a good balance between Utility/Privacy when the data distribution is
uniform. Otherwise, in the case of close values, Algorithm2 is suitable and gives
better results.

6 Discussion

Our method incurs some computational costs and presents some limitations.
Despite a cost due to the resolution of our LP problem (see Eq. 6), it should be
noted that all computations are performed in offline mode and without impact
on the end user. However, comparing our method and [3] in term of computation
time, we can see that our allocation algorithm is faster in all experiments because
it only requires the count (|R|) of each region compared to multiple scans of cells
needed for [3]. For view creation, the cell deletion algorithm proposed by [3] takes
the least computation time compared to Algorithm 1 and Algorithm 2, due to
the fact that their algorithm does not test many subsets to choose the best one
for privacy.

We have proposed a LP problem to divide a given space B over the query
workload R to have minimal utility loss, but we can transform it into a multi-
objective optimization problem by including the objective function minimizing
B. As said in Sect. 3.2, finding an optimum solution to this kind of optimization
problem is hard and intractable task. In addition, to minimize the number of
decision variables, we replaced the data cells of the view R′

i by the average value
AVG(Ri) where Ri is the original range (see Eq. 6). Using this simplification, it
will eliminate the maximization of the inference error Ie (see Eq. 2) as AVG(R′

i)
will be replaced by AVG(Ri). For this reason, we considered privacy only in the
third step (see Sect. 4.3) of our method.

7 Conclusion

In this paper, we have proposed a privacy-preserving method for creating sani-
tized view of a data cubes. Our approach is based on data cube compression (by
cell suppression), using a LP model that allows for the best cell deletion while
maintaining maximum utility. Given a set of parameters, we also proposed a per-
turbation algorithm that is able to balance utility and privacy. We conducted
extensive experimental tests to evaluate our approach, which was found to give
better performances in terms utility and privacy.

In future work, we plan to explore other aspects of privacy to further develop
our approach and compare it to well-known standards such as Differential
Privacy.
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Abstract. Cell suppression is a widely used statistical disclosure control
method for tabular data. Commonly, several linked tables are suppressed
simultaneously. After publication, additional tables may be requested. In
many contexts, new tables mean new ways of grouping and aggregating
data that has already been published. The suppression of the new tables
must be coordinated with the tables that have already been disseminated.
A certain type of synthetic decimal numbers has proven to be very useful
for this purpose. Based on the aggregation of these decimal numbers, one
can decide whether a cell should be suppressed or not. An aggregation
summing up to a whole number means the same as non-suppression.
This article describes the theoretical basis for such decimal numbers.
This is based on standard methodology from ordinary linear regression.
The method is illustrated by a small example. In addition, two practical
applications at Statistics Norway are presented, where one involves large
hierarchical and linked tables where more than 50000 unique cells were
primarily suppressed.

Keywords: Statistical disclosure control · Confidentiality · Tabular
data · Cell suppression · Synthetic data · Linear regression · Official
statistics

1 Introduction

Cell suppression is a common statistical disclosure control method for tabular
data [5,7]. Then the attacker cannot disclose the value of the sensitive cells
exactly, but intervals can still be computed. Releasing intervals instead of sup-
pression is also a method of disclosure control in itself [3]. Another possibility
is to release synthetic values as replacements for the suppressed values, and
leave unsuppressed values unchanged. Langsrud [8] described such a method as
a special application of information preserving statistical obfuscation (IPSO)
[2]. Special attention was given to frequency tables. Then, the synthetic values
generated are decimal numbers. The method ensures that table additivity is
preserved.
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A very interesting feature of this type of synthetic data is that any sum of
cell values resulting in a whole number corresponds to an unsynthesized true
value that does not require protection and is thus publishable. This has proven
to be very useful for practical applications, especially for the situation where the
new tables requested are linked to already published tables. Then, the main goal
of the synthetic data is to use them as a tool for suppression. In particular, this
is a possible way to deal with certain frozen cell problems [6]. The present paper
explores this method, and compared to [8], the method is slightly reformulated.
The description below is based on standard tools from ordinary linear regression
combined with random draws from the normal distribution. In this paper, we
have chosen to use the term whole number instead of integer. The paper can
be read as if these are synonyms, but in the applications considered, negative
integers will not be relevant.

This paper is outlined as follows. In Sect. 2 a motivating example is given,
before the theory behind the synthetic decimal numbers is described in Sect. 3.
Various technical aspects related to application of the method are discussed
in Sect. 4. Finally, Sect. 5 discusses real examples of synthetic decimal numbers
applied to tabular data at Statistics Norway. The paper finishes with some con-
cluding remarks.

It is worth pointing out that although the theory outlined in the paper is
based on synthetic decimal numbers, we are aware that this method for gener-
ating synthetic data is not optimal. We stress that the synthetic data are not
the final product but merely used as a means to keep track of the suppression
pattern across multiple linked tables and groupings.

2 A Motivating Example

As an example, Table 1 is a two-dimensional frequency table used as a starting
point for municipal statistics. The municipalities can be aggregated in two dif-
ferent ways (county and size). A suppressed table of age versus county where
frequencies less than four are primarily suppressed is given in Table 2. To make
this table, the size categorization was not considered. Suppose that one wants
to publish size aggregates afterwards, with the constraint that cells suppressed
in Table 2 should not be disclosed. By looking at Table 2 one can derive that the
following cells may be published:

– big:Total, since this is the sum of already published aggregates
(58 + 64 + 37 = 159).

– small:Total since this can be found by differentiation from the overall total
(199 − 159 = 40).

– big:middle, since this is the sum of D:middle and county-4:middle already
published (12 + 44 = 56).

– small:middle since this can be found by differentiation from Total:middle
(72 − 56 = 16).



Synthetic Decimal Numbers as a Flexible Tool for Suppression 107

Table 1. Example frequency table, inner cells only.

region age

municipality county size young middle old

A county-1 small 1 1 1

B county-2 small 5 6 8

C county-3 small 2 9 7

D county-3 big 35 12 11

E county-4 big 3 26 35

F county-4 big 5 18 14

Table 2. Suppressed frequency table. Primary and secondary suppressed cells are
denoted by “.” and “–” respectively.

region age

young middle old Total

A . . . .

B – – – –

C . 9 – 18

D – 12 – 58

E . – 35 64

F – – 14 37

county-1 . . . .

county-2 – – – –

county-3 37 21 18 76

county-4 8 44 49 101

Total 51 72 76 199

Table 3. Synthetic inner cells with aggregates. The synthesis is based on the suppres-
sion pattern of Table 2.

region age

young middle old Total

A 2.6845 3.3203 4.4218 10.4266

B 3.3155 3.6797 4.5782 11.5734

C 9.7418 9 −0.7418 18

D 27.2582 12 18.7418 58

E 5.6435 23.3565 35 64

F 2.3565 20.6435 14 37

county-1 2.6845 3.3203 4.4218 10.4266

county-2 3.3155 3.6797 4.5782 11.5734

county-3 37 21 18 76

county-4 8 44 49 101

small 15.7418 16 8.2582 40

big 35.2582 56 67.7418 159

Total 51 72 76 199
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Similar reasoning cannot be made for the remainder cells (small:young,
big:young, small:old, and big:old), and these will be suppressed.

The same information may be obtained in a different way without the use of
manual reasoning, but by using the synthetic decimal number approach. Table 3
of synthetic decimal numbers is obtained in two steps:

1. A synthetic version of the 18 frequencies in Table 1, which can be seen as a
sub-table of Table 3, is generated. That is, the 14 suppressed frequencies are
synthesized. This is done by using the unsuppressed frequencies in Table 2.

2. The result from the first step is used to find the remaining aggregate cells by
straightforward summation.

As expected, the unsuppressed cells in Table 2 have become whole numbers
in Table 3. As for the size aggregates, which are not included in Table 2, some
have become whole numbers, and some have not. All whole numbers in Table 3
match the real numbers. Thus, we may publish values that are whole numbers
and suppress the cells containing decimal numbers.

This simple example illustrates how the synthetic data can be used as a
stencil tool to determine the suppression pattern of the new aggregates. Note
that suppressing new data in this way is based on what can be released according
to already published data. This is a quick method that avoids a new round of
suppression where everything must be coordinated. In many cases, however,
more cells can be published if such a new coordinated suppression is performed.
An additional point is that it is advantageous to include all known crossings
and groupings in the initial suppression. This includes crossings and groupings
that may not be relevant for the initial publication, but that one expect to be
relevant in additional table requests from the data.

The synthetic frequencies may also be published directly as a replacement
for real frequencies. Note, however, that the underlying linear regression model
is not realistic. This is evident in Table 3 where we obtained a negative number.

3 A Theoretical Framework

The microdata underlying tabular data of sum aggregates can be represented by
an aggregated data set with one row per unique combination of all the dimen-
sional variables involved. This data set will have one column per aggregated
measurement variable (magnitude variable) in addition to a column represent-
ing the frequencies of the unique combinations in the microdata. We refer to this
type of aggregated data as the inner table. Depending on the problem, variable
combinations that are not represented in the microdata can be included in the
inner table with zeros. Multiple linked tables for publication can be based on a
common inner table.

We will now consider a single value variable within the inner table, either a
measurement variable or the frequency variable. Here we denote this column in
the inner table as the vector y. We denote the vector of all the aggregates based
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on y for all involved linked tables as zall. Values in zall may also be single values
from y.

Now, zall can be computed from y via a dummy matrix Xall:

zall = XT
ally. (1)

We assume that the data have been subjected to suppression. Without loss
of generality, we assume that the elements in zall are arranged so that zall and
Xall can be partitioned so that Eq. (1) can be written as

⎡
⎣

z
zd
zs

⎤
⎦ = [ X Xd Xs ]T y. (2)

Here zs consists of the suppressed cells and Xs consists of the corresponding
columns of Xall. To handle collinearity, the remaining part of Xall is divided into
two. Matrix X consists of linearly independent columns and Xd depends linearly
on X. That is, Xd can be written as

Xd = XM (3)

where M is a matrix.
Without considering the actual distribution of y, we will use tools from ordi-

nary linear regression to generate a synthetic version of y. By regressing y onto
X, we draw synthetic inner cells, y∗, as

y∗ = ŷ + e∗ (4)

where

ŷ = Hy (5)
e∗ = (I − H)u∗ (6)
u∗ ∼ N (

0, σ2I
)

(7)

H = X(XTX)−1XT (8)

where N refers to the multivariate normal distribution and where I is the identity
matrix. This means that the elements of u∗ are independently and identically
normally distributed with variance σ2. Here, H is the hat matrix, which is the
projection matrix that maps observed values to fitted values according to a
standard regression model (y = Xβ +error). Thus, y∗ is generated in a way that
preserves the regression fits. The distribution of y∗ follows from multivariate
normal distribution theory:

y∗ ∼ N (
ŷ, σ2(I − H)

)
(9)

And further it follows that the univariate distribution of a linear combination is

cT y∗ ∼ N (
cT ŷ, σ2(cT c − cTHc)

)
(10)
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where c is a vector of linear combination coefficients.
These synthetic data have interesting and useful properties that we will for-

mulate as four propositions.

Proposition 1. Synthetic inner cells, y∗, depends on y through the unsup-
pressed published cells only.

The proposition follows from Hy = X(XTX)−1z.

Proposition 2. The values of the unsuppressed published cells can be exactly
recalculated from y∗.

To show this proposition one can calculate XT y∗ = z and XT
d y∗ = zd by insertion

from Eqs. (2)–(6) and (8). In particular, XT (I − H) = 0.

Proposition 3. Assume a fixed σ2 > 0. Then, the value of any fixed linear
combination of synthetic inner cells, cT y∗, is with probability one a value differ-
ent from a whole number unless the linear combination can be found as a linear
combination of unsuppressed published cells.

The distribution of cT y∗ is given in (10). It follows from integral theory that
for any normal distribution, the probability of a whole number is zero. The
only exception is the degenerate case where the variance is zero. Since H is
a projection matrix, cTHc = (Hc)THc. It follows that the variance in (10) is
zero if and only if Hc = c. Thus, c is within the column space of X, which
means that c can be written as Xb where b = (XTX)−1XT c. Then, according
to Proposition 2, cT y∗ = bT (XT y∗) = bT z.

Proposition 4. Assume a fixed σ2 > 0. Whenever the value of a fixed linear
combination of synthetic inner cells is a whole number, it can be determined that
this is a combination of published cells.

This can be said to be a logical consequence of Proposition 3 and we will not
introduce more formalism.

Proposition 5. Assume a fixed σ2 > 0. Whenever the value of two independent
draws of a fixed linear combination of synthetic inner cells give exactly the same
result, it can be determined that this is a combination of published cells.

The rationale for this proposition is in line with the discussions above. Two
draws from a normal distribution will never be identical unless the variance is
zero. The zero variance case is also the reason for Proposition 3.

4 Application of the Theory

One possibility is to apply the theory to replace suppressed cells by synthetic
values. Then we compute

z∗
all = XT

ally
∗. (11)
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According to Proposition 2, the non-suppressed cells are preserved. As follows
from Proposition 1, the synthetic values of the suppressed cells can safely be
published. Synthetic replacements for suppressed cells can be made in several
ways. The method proposed here, which is based on ordinary linear regression,
may not be the best. In the present paper we focus on another application. The
synthetic inner cells can be stored without confidentiality requirements, and
they can be aggregated when needed. From these aggregates it can be possible
to determine suppression. This is most useful when all inner cells are included
in zall. In practice, this mean that some inner cells are suppressed, and some are
not.

4.1 Application to Frequency Tables

Application to frequency tables has already been illustrated in Sect. 2. Any group
of inner synthetic frequencies can be aggregated. Whenever aggregates are whole
numbers, they can safely be published as true unsuppressed frequencies. Other
aggregates will be suppressed or alternatively the synthetic values can be pub-
lished.

4.2 Precision and Implementation

In practice, a precision limit is needed to determine a whole number. With
standard double precision numbers, a reasonable choice of the tolerance is 10−9.
Then, the probability of obtaining a whole number by chance is relatively low.
Usually, the precision error will also be smaller than this tolerance, so that the
actual whole numbers are preserved.

For better control and for large data sets, it may be worthwhile to generate
multiple (e.g. 3) synthetic values. Thus, the tolerance can be increased (to e.g.
10−5) so that larger precision errors are handled. The probability of incorrect
whole numbers is kept low, since identical whole numbers are required for all
replicates.

Another possibility is to generate synthetic values that do not represent the
true frequencies. This can be done whenever the synthetic values are only used
to determine suppression. Then, one can let the y-value be one or zero for all
the inner cells. The latter means that e∗ (6) is the vector of synthetic values.
Looking for whole numbers then boils down to looking for zeros.

When implementing the methodology in practice, X and y should be reduced
as much as possible. Rows of unsuppressed inner cells can be removed and the
occurring redundant columns of X can also be removed.

4.3 Application to Magnitude Tables

Common magnitude tables consist of sum aggregates of measurement variables.
These are not necessarily whole numbers. But even if they are, the decision of
suppression based on synthesizing these numbers is not recommended. The rea-
son is that some cell values can be very large, and it can be difficult to control
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the precision errors. For the same reason, the method that checks equality of
two independent draws (Proposition 5) is also not recommended. To overcome
these difficulties, one may generate synthetic values that do not represent the real
magnitude values in the published table. This was described in detail in Sect. 4.2
above. Such synthetic values should be used only to determine suppression. If
the aim of the synthetic values is to replace suppressed values, the main app-
roach based on real inner cell values may be used. The underlying distribution
assumptions are, however, questionable.

4.4 Detection of Disclosure Risk

The suppression pattern of the initial data may be re-identified from the syn-
thetic decimal numbers. One must be aware that this may not work if the sup-
pressed data have a residual disclosure risk. Suppressed cells revealable by linear
relationships become whole numbers. This can be the case if linked tables are
handled by an iteration routine that does not consider possible disclosure by
combining information from all the tables. If such a residual disclosure risk is
considered acceptable, then synthetic decimal numbers are not recommended.
Suppressed cells can also be revealed as whole numbers if there is an error in the
program or algorithm underlying the suppression. Therefore, a spin-off usage of
synthetic decimal numbers is testing of suppression routines. This is now in use
through the R-package easySdcTable [9].

5 Real Applications

5.1 Register-Based Employment Statistics

Statistics Norway’s register-based employment statistics are based on employ-
ment information about persons between 15 and 74 years old. Confidentiality
treatment of the statistics involves suppression. Figures concerning only one or
two private enterprises are usually primarily suppressed. The suppression pat-
tern must be consistent across several tables where municipalities and industries
are aggregated differently. The latter contains many special groupings based
on NACE codes (European classification standard). In addition, commissioned
statistics are produced afterwards. Then municipalities and industries can be
aggregated in new, previously unknown ways.

Now, all such employment statistics are handled by synthetic decimal num-
bers. First an inner table with synthetic decimal numbers are produced. Then the
suppression pattern for any table, commissioned or not, is found by aggregating
this inner table.

To illustrate how large and complex data the synthetic decimal number
method can handle, we consider data from year 2019. Here, the dimension of
the dummy matrix, Xall (1), within this process is 80459 × 171678. Duplicate
columns have then been removed. Explicitly, there were 80459 inner cells and
171678 unique cells considered for publication. Of the 171678 cells, a total of
79373 cells were suppressed, of which 50198 were primarily suppressed.
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In this application the frequencies of employees were synthesized to decimal
numbers. Due to many and large frequencies, three replicates of the synthetic
values were generated. The tolerance was set to 10−5, which ensures that three
whole numbers due to chance are very unlikely.

The process of generating and managing the synthetic frequencies was not
very computationally intensive compared to the secondary suppression. In this
case, the secondary suppression was performed using the relatively fast Gaus-
sian elimination algorithm [10]. This took 127 min on a Linux server, while the
generation of the synthetic numbers took an additional 28 min.

5.2 Commissioned Data in Business Statistics

The synthetic decimal number method has also been successfully applied to
business statistics involving magnitude tables at Statistics Norway. Business
statistics are of wide interest to both the public and decision makers, and after
publication of statistics in this field Statistics Norway often receive requests on
additional tables. The type of requests are typically unknown at the time of
publication, but still an important task for Statistics Norway in order to fulfill
their role as information provider.

To ensure that the suppression pattern in the commissioned tables accom-
pany that of the already published tables, we collected a historical set of commis-
sioned tables to investigate which variables where requested, and at what level
of detail. We found that the requests often involved tables at more refined lev-
els of geographical regions and/or economic activity (NACE codes). There were
also requests on non-standard groupings of both dimensional variables. The vast
number of requests involved the four measurement variables turnover, wages
and salaries, value added and gross investments. Prior to the main publication
of business statistics, we therefore made sure to apply cell suppression and the
synthetic decimal number method to these four variables at the most detailed
geographical level and on 5-digit NACE level. Two extra levels of geographical
granularity were included compared to the tables that Statistics Norway usually
publish. There is of course a risk of obtaining much more suppressions in the
main publications when allowing a more granular representation. In this appli-
cation, however, the increase in suppressions as a result of finer dimensional
granularity were only between 1% and 2.5% for the four measurement variables.

Since business statistics often contain variables with a large number of dig-
its (e.g. gross investments), we applied the synthetic decimal number method
to the frequencies instead of the measurements (c.f. Sect. 4.3). Thus, four sets
of synthetic frequencies were made from the suppression patterns of the four
measurement variables. Note that these data are of smaller size and complexity
compared to the data in Sect. 5.1. Within a Windows environment, the run-time
for the suppression algorithm [10] was about 30 min. In addition, the extra time
used to generate decimal numbers was about 5 min.

Post publication, we will now be able to accommodate any request on these
four variables at various geographical regions and NACE levels. The flexibility of
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the synthetic decimal number method makes the task of building new and consis-
tently protected tables as simple as aggregating the decimal numbers according
to the new table. Many requested tables can be generated very easily, and a
demanding new round of coordinating suppression will thus be avoided. How-
ever, we are aware that this can be at the expense of the number of suppressed
cells.

6 Concluding Remarks

In [8] synthetic decimal numbers were described as a special case of IPSO [2]. This
means that e∗ (4) is rescaled so that the variance of the residuals is preserved.
Such preservation is not necessary in our suppression application. In fact, extra
re-scaling afterwards was suggested in [8] to prevent information leakage through
the variance. Note that the general multi-response framework of IPSO is also
not needed here.

An issue concerning the implementation is how ŷ should be calculated. In R,
the standard regression method (lm) make use of the QR decomposition [4]. In
[8] IPSO was formulated by a generalized QR decomposition. Implementation
by QR is not directly generalizable to large sparse matrices. An effective imple-
mentation that has now been used avoids QR and corresponds well with the
theory described above. That is, the first step is to find the matrix X of linearly
independent columns. To do this, Gaussian elimination is applied. The algorithm
is implemented in R and is a simplification of the algorithm used for secondary
suppression [10,11]. Thereafter, regression fits can be found efficiently according
to [1]. The whole process of generating and using such decimal numbers is made
available as extra features in the R package GaussSuppression [10].

All in all, this article has presented synthetic decimal numbers in a simplified
way that fits well with effective implementation. The properties are thoroughly
documented through Propositions 1–5.

Decimal numbers can be used to determine the suppression pattern of addi-
tional tables requested after the publication of pre-planned tables. The aggrega-
tion of decimal numbers is all that is needed, and this is an easy alternative to
running a new suppression routine that needs to be coordinated with published
tables. But it should also be mentioned that extra coordinating suppression can
result in fewer suppressed cells. As is often the case, the pros and cons must be
considered. The synthetic decimal method is already implemented and in use at
Statistics Norway, as described in Sect. 5.
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Abstract. When basic or descriptive summary statistics are reported, it may be
possible that the entire sample of observations is inadvertently disclosed, or that
members within a sample will be able to work out responses of others. Three
sets of univariate summary statistics that are frequently reported are considered:
the mean and standard deviation; the median and lower and upper quartiles; the
median and minimum and maximum. The methodology assesses how often the
full sample of results can be reverse engineered given the summary statistics. The
R package uwedragon is recommended for users to assess this risk for a given
data set, prior to reporting the mean and standard deviation. It is shown that the
disclosure risk is particularly high for small sample sizes on a highly discrete
scale. This risk is reduced when alternatives to the mean and standard deviation
are reported. An example is given to invoke discussion on appropriate reporting
of summary statistics, also giving attention to the box and whiskers plot which
is frequently used to visualise some of the summary statistics. Six variations of
the box and whiskers plot are discussed, to illustrate disclosure issues that may
arise. It is concluded that the safest summary statistics to report is a three-number
summary of median, and lower and upper quartiles, which can be graphically
displayed by the literal ‘boxplot’ with no whiskers.

Keywords: SDC · Statistic · Disclosure · Control · Summary · Quartile · Boxplot

1 Introduction

In statistical analyses there is potential conflict between providing useful results and pro-
tecting the confidentiality of individuals within the data [1]. Given commonly reported
univariate summary statistics, it may be possible to construct the exact frequencies of
values within a sample, which in many contexts would be unwarranted disclosure.

For illustrative purposes, consider a four-point scale for reporting health on a survey
(1=Good health, 2= Fair health, 3=Bad health, 4=Very bad health). In a summary of
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the results separated by gender and ethnicity, assume the following means and standard
deviations (SD) for males are reported:

White: N = 18 Mean = 2.06 SD = 0.998
Mixed: N = 8 Mean = 2.00 SD = 0.926
Asian: N = 6 Mean = 2.67 SD = 0.816
Black: N = 5 Mean = 2.00 SD = 0.000
Other: N = 1 Mean = 5.00 SD = 0.000

There is debate regarding ascribing numeric values to ordinal data for analyses.
This is frequently done in practice, and is might not be unreasonable when pragmatic
assumptions of equal distance between groups are stated [2].

In the example, the ethnic groups with standard deviation equal to zero must all
have reported the same value (the group mean). It may not be as straightforward to
reverse engineer the frequencies for the remaining three groups, but the R package
uwedragon will show the plausible frequency distributions for a given sample size,
mean and standard deviation [3]. For the ‘Asian’ and ‘Mixed’ groups there are only two
frequency distributions possible with the stated means and standard deviations. For the
‘White’ group there are four frequency distributions possible. Table 1 is the table of
results as given by Lowthian and Ritchie [4].

Table 1. Health survey responses for males by ethnicity.

Good Fair Bad Very bad Total

White 6 7 3 2 18

Mixed 2 2 3 1 8

Asian 1 0 5 0 6

Black 0 5 0 0 5

Other 0 0 0 1 1

Total 9 14 11 4 38

As Lowthian and Ritchie [4] state, from this table we draw several conclusions:

• The single male who does not identify with any of the ethnic groups has ‘Very bad
health’. This can cause group attribute disclosure but not necessarily reidentification.

• All of the individuals who identify as Black have ‘Fair health’.
• The one Asian who responded that he enjoys ‘Good health’ knows that his Asian
colleagues all report ‘Bad health’.

The reporting of mean and standard deviation in addition to, or as an alternative to,
the frequency table may also have similar associated disclosure risk. As stated, there
are two possible solutions for the Asian category with the given mean and standard
deviation. The R package uwedragon shows that sample values are either {1, 3, 3, 3,
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3, 3} or {2, 2, 2, 3, 3, 4}. Thus, again if an individual within this grouping reported 1
‘Good health’, he can work out that his Asian colleagues all reported 3 ‘Bad health’. If
in fact the second solution had been true, then the person reporting a 4 ‘Very bad health’
would know that all of the other respondents in that grouping had reported better health.

Theuwedragonpackage can help identify the level of risk by supplying detail of the
possible solutions for a given sample size,mean and standard deviation. Furthermore, the
uwedragon package offers suggestions for disguising the mean and standard deviation
when the risk level is high but there is still a need to report these figures [3]. The addition
of noise in this way, or a similar manner, reduces the risk of reconstruction [5].

It may be that there are other less disclosive summary statistics that could be alter-
natively reported. An alternative measure of location to the mean could be the median.
Likewise, an alternative measure of variability to standard deviation would be interquar-
tile range, taken from lower quartile and upper quartile. These alternatives are based
simply on an ordered location point, so will result in a reduced capacity to reconstruct
an entire set of values or identify extreme observations. Algorithms for estimating the
mean and standard deviation based on actual median, range and sample size can be
utilized [6]. Reporting median, range and sample size alongside estimates for the mean
and standard deviation would have a disguise effect reducing the risk of reconstruction.

This paper provides methodology and results that raise awareness of the potential
disclosure risk when reporting only the mean and standard deviation, particularly for
small measurement scales and small sample sizes. This paper further considers the use
of alternative summary statistics that may be less disclosive in these situations. The
alternative summary statistics considered are: either only the median, lower quartile and
upper quartile; or only the median, minimum and maximum.

2 Methodology

We consider a scale restricted to k defined points for a sample of size n. The total sample
space is the number of combinations for the values 1 to k in a sample of size n. Univariate
summary statistics of each combination within the sample space are calculated and
compared to the same summary statistics for each other combination within the sample
space. A high proportion of combinations within the sample space that can be uniquely
identified by the given summary statistics is a high disclosure risk.

For example, for a k = 5-point scale with n = 5, the total sample space is 129. The
combination of sample values {1, 2, 2, 3, 4}, has mean x = 2.40 with standard deviation
s = 1.14. No other combination within the sample space gives this same x and s, and
this is referred to as a unique identification. In fact, 87 of the 129 possible combinations
for k = 5 and n = 5 can be uniquely identified by their mean and standard deviation.

Using the approach by Derrick et. al. [7], we report the total number of possible
different sample configurations for sample sizes n = 3, 4, 5, … 10, 11, 12. We then
report the number of these samples which can be uniquely identified through knowing
the mean and standard deviation when reported with full precision, and when reported
to two decimal places or one decimal place (divisor of variance used = n −1).

A summary of the results is given for a 7-point scale and a 10-point scale (with
additional scales in the appendix). These tables summarise those situations where there
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is a unique one-to-one correspondence between (x, s, n) and a sample configuration
leading to (x, s, n) uniquely identifying the sample which gives rise to (x, s).

This methodology is herein extended to give the number of unique solutions when
alternative summary statistics are given. Firstly, if only themedian, first quartile (Q1) and
third quartile (Q3) are reported. Secondly, if only the median, minimum and maximum
are reported.

The minimum and maximum values are the true minimum and true maximum from
the sample. The median is calculated as the middle value in the ordered sample (or mid-
point of two central values if sample size is an even number). The calculation of quartiles
differs in common statistical software. We consider several of these approaches calcu-
lated using the quantile function in R [8]. Mathematical definition of the methods is
given by Hyndman and Fan [9]. SPSS and Minitab both use ‘method 6’, the R default
is ‘method 7’, whereas the SAS default is ‘method 2’.

3 Results

Table 2 gives the number of unique identifications for the given summary statistics
reported when data is from an inherent 7-point scale. Table 3 provides the same
information for a 10-point scale.

Table 2. Number of unique solutions, data on 7-point scale.

Sample
space

Mean and SD
 reported 

Median, Q1 and Q3
 reported 

Median, 
Min, Max 

Full 2dp 1dp SPSS R SAS reported
3 84 76 76 76 84 84 84 84
4 210 143 143 143 210 210 180 85
5 462 206 193 193 80 7 7 7
6 924 246 222 200 440 28 4 13
7 1716 295 253 203 0 24 0 7
8 3003 289 289 201 59 59 16 13
9 5005 405 325 215 0 0 0 7

10 8008 438 361 202 3 59 0 13
11 12376 493 397 198 0 0 0 7
12 18564 533 433 213 3 3 0 13

Reporting the median, Q1 and Q3, theoretically contains a smaller number of dis-
closive scenarios than reporting the mean and SD, when n > 6. By virtue of reporting
quantiles to decimals of 0 or 0.5 as per method 2 in [9], the approach to calculating
quantiles adopted by SAS is the least disclosive, relative to procedures in Minitab, SPSS
and R.
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Table 3. Number of unique solutions, data on 10-point scale.

Sample 
space

Mean and SD
 reported 

Median, Q1 and Q3
 reported 

Median, 
Min, Max 

Full 2dp 1dp SPSS R SAS reported
3 220 188 188 188 220 220 220 220
4 715 353 353 343 705 705 468 181
5 2,002 509 422 346 128 10 10 10
6 5,005 564 472 332 1072 52 4 19
7 11,440 747 527 310 0 36 0 10
8 24,310 603 603 344 64 64 16 19
9 48,620 955 676 310 0 0 0 10
10 92,378 944 749 338 0 64 0 19
11 167,960 1134 822 286 0 0 0 10
12 293,930 1143 895 291 0 0 0 19

Reporting the maximum, minimum and median has low disclosive risk in terms of
the entire set of sample values being revealed, particularly if the maximum or minimum
valuewithin a sample is not unique.However, theremay be seriousmisgivings in practice
regarding reporting the minimum and maximum. Paradoxically, revealing these values
may protect the rest of the sample from being revealed.

The unique solutions for n> 4 when reporting the median, minimum and maximum
represent the cases where all sample values are identical. Due to the standard deviation
of zero, such combinations are also identifiable if the mean and standard deviation are
instead reported. However, reporting the median, 1st quartile and 3rd quartile in these
instances does not necessarily reveal all sample values.

When reporting the mean and SD, if the sample space is large, i.e. k ≥ 10 and n ≥
10, the percentage of times the true underpinning sample is discovered is less than 1%.

Summary statistics assessed above may be reported in different combinations. The
methodology could be extended to numerous different statistical reporting combinations.
For example, the default descriptive statistics option in SPSS leads users to report all
of the univariate summary statistics above and also include statistics for skewness and
kurtosis. Note that adding additional summary statistics will increase the disclosure risk.
For instance, reporting mean and standard deviation with the median, will result in a
higher number of unique combinations being revealed than reporting only the mean and
standard deviation.
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4 Discussion Example

Consider the following hypothetical set of exammarks {1, 40, 50, 55, 58, 58, 60, 62, 65,
66, 66, 68, 70, 71, 72, 74, 75, 75, 80, 85}. Here there is a duty not to reveal individual
exam marks when summarising the results, and particular care will have to be taken
regarding the lowest scorer.

In this scenario the mean = 62.55 and SD = 17.90. You may take some comfort that
the sample size and possible scale combination is too large for the uwedragon package
to identify possible distributions of results. However, the high value of the standard
deviation indicates the presence of some extreme values, and work could commence on
identifying possible maximum and minimum values [7].

Themedian ismidway between the 10th and 11th observation= 66. How the quartiles
differ depending on approach used is shown in Table 4. The different approaches to
calculating the quartiles could offer further assistance to protecting the data from being
reversed engineered to reveal all values, if the method is chosen at random and not
reported to the end user. Reporting Q1 and Q3 gives an idea of the spread of the data
without revealing information about any potential extreme observations.

Table 4. Calculation of quartiles.

R function 1st quartile 3rd quartile Note

Quantile (type = 2) 58 73.0 As per SAS

Quantile (type = 6) 58 73.5 As per Minitab & SPSS

Quantile (type = 7) 58 72.5 Default in R

Summary 58 72.5

Fivenum 58 73.0

Boxplot 58 73.0 With true min/max

The true minimum is 1, and the true maximum is 85. Note that some statistical soft-
ware may present alternative minimum and maximum values with subsequent reporting
of ‘mild’ or ‘extreme’ outliers. However, values in the extremes may be sensitive infor-
mation, which may not be appropriate to disclose. Here, reporting the minimum is a risk
of revealing that the weakest performer scored 1/100 on the exam. Likewise, for scales
where there is no upper limit (e.g. salary) it may be more appropriate to report the upper
quartile rather than the maximum.
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5 Graphical Representation

Graphically, the summary statistics considered in examples like the above are often
displayed in a box and whiskers plot, so natural temptation may be to summarise the data
in this way. These depictions are often described as a five-number summary ofminimum,
lower quartile, median, upper quartile and maximum. However, this description is not
always entirely accurate, and in fact can disclose many more than five values when
‘outliers’ are present.

Six variations of box-and-whisker plots or ‘boxplots’ are considered. Illustrations of
each of the variations are given in Figs. 1 through Fig. 6, for the discussion example data.
Included below is a description of each variation with a statement of causes for concern.
The graphics, including the applicable quartile calculation, are as per the boxplot
function in R [8].

1 Tukey’s schematic plot. This is the traditional box and whiskers plot with inter-
quartile range (IQR) × 1.5 for whiskers [10].

• Extreme observations are explicitly revealed.
• For each ‘outlier’ that is revealed, in addition to values for the ‘minimum’ and

‘maximum’, it slightly increases the opportunity for the sample to be reconstructed
by a determined individual.

Fig. 1. Turkey schematic plot, traditional box and whiskers plot with IQR*1.5 for whiskers

2 Box and whiskers plot with mean inserted

• Reporting both the mean and median may give an indication of the direction and
magnitude of extreme observation/s, even if outliers are removed from the plot
the position of the mean relative to the median alludes to these extremes.

• The reporting of additional summary statistics increases the opportunity for the
sample to be reconstructed by a determined individual.

Fig. 2. Box and whiskers plot with mean added
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3 Modifications to the traditional calculation of the whiskers within a box and
whiskers plot

• Same issues as the traditional box and whiskers plot, but even more observations
are explicitly revealed if the multiplier for IQR is <1.5.

Fig. 3. Modification to traditional calculation IQR*0.5 for whiskers

4 Box and whiskers plot using true minimum and maximum. In this scenario
whiskers are not calculated based on IQR, but extend to the full range of the data.

• Maximum and minimum explicitly revealed.
• Distorted impression of distribution ifmaximumorminimum is an extremeoutlier.

Fig. 4. Box and whiskers plot unmodified for extreme values

5 Unstapled box and whiskers plot. Here whiskers are calculated as per Tukey [10],
but outliers are removed. The staples are subsequently removed herein to indicate
that there may be extreme values beyond the reach of the whiskers.

• The most extreme observations are not explicitly revealed, but individuals within
these missing extremes will be aware that they are ‘outliers’.

• Without clear statement of the form of boxplot, incorrect perception of the true
maximum and true minimum is possible.

Fig. 5. Unstapled box and whiskers plot (outliers removed, standard calculation of whiskers)
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6 ‘Boxplot’ - literally. A three-number summary is given: lower quartile; median;
and upper quartile. This plot includes no whiskers and no outliers, thus reducing the
disclosure risk particularly relating to extreme observations.

• Safest to report, but losing some insight into skewness that may be of interest.

Fig. 6. Literal box plot (whiskers and outliers removed)

6 Conclusion

This paper explores the disclosure risk when reporting univariate summary statistics.
It has been demonstrated that reporting themean and standard deviation to summarise

a sample can result in a disclosure risk. The risk generally decreases with increasing
sample size and as the range of possible values on the measurement scale increases.
The R package uwedragon can be used to check if reporting the mean and standard
deviation for a given sample uniquely identifies the sample values.

To reduce the risk of reconstruction from a sample that uniquely identifies the sample
values, noise can be added to summary statistics [5, 7]. In the case of quartiles, the
different ways in which these can be calculated, frequently adds what can be described
as naturally occurring noise, if the calculation method is not reported.

If concerned about the risk of reporting mean and standard deviation, when n > 6 a
three-figure summary can instead be reported: median; lower quartile and upper quartile.
Although limited to only three values, this can be graphically displayed by the literal
‘boxplot’ when a basic visualisation of the distribution is desired.

If the sample space is large, and standard deviation is not zero, then the reporting of
the mean and standard deviation has a low risk of being fully disclosive of all sample
values. However, some indication of extreme values may be apparent for a large standard
deviation.
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Appendix

See Tables A1, A2, and A3

Table A1. Number of unique solutions, data on 5-point scale.

Sample 
space

Mean and SD
 reported 

Median, Q1 and Q3
 reported 

Median, 
Min, Max 

Full 2dp 1dp SPSS R SAS reported
3 35 33 33 33 35 35 35 35
4 70 56 56 56 70 70 68 41
5 129 87 79 79 48 5 5 5
6 210 105 101 101 151 15 4 9
7 330 131 121 121 0 16 0 5
8 495 141 141 133 39 39 16 9
9 715 177 161 135 0 0 0 5
10 1001 205 181 157 7 39 0 9
11 1365 223 201 130 0 0 0 5
12 1820 243 221 149 7 7 0 9

Table A2. Number of unique solutions, data on 9-point scale.

Sample 
space

Mean and SD
 reported 

Median, Q1 and Q3
 reported 

Median, 
Min, Max 

Full 2dp 1dp SPSS R SAS reported
3 165 145 145 145 165 165 165 165
4 495 271 271 271 493 493 356 145
5 1,287 396 327 286 112 9 9 9
6 3,003 440 364 279 850 44 4 17
7 6,435 527 399 306 0 32 0 9
8 12,870 449 449 284 64 64 16 17
9 24,310 693 499 270 0 0 0 9

10 43,758 701 549 275 0 64 0 17
11 75,582 821 599 246 0 0 0 9
12 125,970 837 649 261 0 0 0 17
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Table A3. Number of unique solutions, data on 11-point scale.

Sample 
space

Mean and SD
 reported 

Median, Q1 and Q3
 reported 

Median, 
Min, Max 

Full 2dp 1dp SPSS R SAS reported
3 286 238 238 238 286 286 286 286
4 1,001 443 443 419 971 971 596 221
5 3,003 592 496 386 144 11 11 11
6 8,008 654 530 369 1296 60 4 21
7 19,448 830 580 342 0 40 0 11
8 43,758 652 652 355 64 64 16 21
9 92,378 1080 722 342 0 0 0 11
10 184,756 1044 794 363 0 64 0 21
11 352,716 1263 866 304 0 0 0 11
12 646,646 1232 938 311 0 0 0 21
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Abstract. Safe access centers, a.k.a. trusted research environments, and
digital marketplaces allow a user to submit her own statistical analyses
on the data stored by controllers. As a responsible organization for the
data, the controller may wish to enforce several ethical controls on the
user’s code. If data are personal or otherwise confidential, the controller
needs to make sure the outputs of user analyses do not leak any personal
information. Additionally, the data controller may require other ethical
properties of the user analyses, like fairness or explainability in case an
analysis consists of training a decision model. If a user analysis fails to
meet the controller’s ethical requirements, the controller stops running
the user’s code on his data. On the other side, the user would like to
achieve fair disclosure of her code, that is, stop disclosing the remain-
der of her code to the controller in case the controller refuses to return
the result of the current analysis. In this concept paper, we present a
framework allowing the user: i) to bind herself to a sequence of analyses
before receiving any actual output, which precludes disclosure attacks
via adaptive analyses; ii) to disclose her next instruction/analysis to the
controller only after the controller has returned the output of the current
instruction/analysis, which ensures fair disclosure. Our aim is to protect
both the controller’s and the user’s interests.

Keywords: Safe access centers · Digital marketplaces · Trusted research
environments · Confidentiality · Output checking · Fairness · Ethics

1 Introduction

There is an increasing demand of data of all sorts for research and decision making.
Yet, unrestricted sharing of data is often infeasible, for various reasons. On the one
side, personal data fall under the umbrella of data protection legislation, such as
the European Union’s General Data Protection Regulation [7]. On the other side,
there may be data that are confidential for other reasons, such as trade secrets.
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Anonymization [5,10] is a possible solution to reconcile the need of data dissem-
ination for secondary uses (different from the primary use that motivated their
collection) with the confidentiality constraints. However, anonymization entails
some accuracy loss, which may be unaffordable in some secondary analyses. This
creates a demand for accurate original data.

Possible workarounds to allow users to compute their analyses on original
data that are confidential is for them either to access a remote access center run
by the controller (where the users are under surveillance) or to submit the code
of the analyses to the data controller who holds the data. This latter case is
called remote execution: the controller runs the code on the user’s behalf, and
returns her the results if these do not leak any of the original data on which they
were computed. Examples of such arrangements include:

– National statistical institutes and data archives often feature so-called safe
access centers (a.k.a. research data centers or trusted research environments)
as an option for researchers who cannot be satisfied with anonymized data.
A safe access center may be a physical facility to which the researcher must
travel or an on-line service that the researcher can remotely access. For exam-
ple, Eurostat, the EU statistical office, operates both a physical safe access
center in Luxembourg and an on-line safe access center (called KIOSK [6]).
Whatever the case, there is an environment in which the researcher runs her
analyses using software provided by the controller and is under monitoring
by the controller’s staff during her entire work session. Furthermore, output
checking rules [1,8] are manually enforced by the controller’s staff to decide
whether the outputs of each statistical calculation by the researcher can be
safely returned to her.

– Some decentralized data marketplaces, like Ocean [12], complement their offer
of anonymized data (data-as-a-service) with the possibility of running com-
putations on the original data they store (compute-to-data). Yet, they have
no solution to thwart data leakages arising from the results of computations.

The approaches to monitoring user analyses sketched above are at best at
the level of each single statistical calculation (output checking rules) and aimed
only at ensuring the confidentiality of the data held by the controller. In fact, in
the case of decentralized data marketplaces, not even the above countermeasures
are provided.

Contribution and Plan of This Paper

This is a concept paper where we consider an entire sequence of user analyses
rather than a single statistical computation. In our approach:

– The user binds herself to her analysis sequence before seeing any of its outputs.
In this way, adaptive analyses aimed at isolating specific confidential records
are precluded: all possible strategies to isolate records must be programmed
beforehand in the code.
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– The user reveals her code on an instruction-by-instruction basis, that is, she
discloses her i+1-th statistical analysis only after she has received the output
of her i-th statistical analysis. In this way, fair disclosure is achieved: if the
controller aborts a certain statistical analysis, the user can avoid disclosing
the remainder of her planned analyses to the controller.

– Since the user binds herself to a sequence, this sequence can also be certified
by some certification authority as being compliant with other ethical prop-
erties. For example, if the analyses include training machine learning mod-
els, the fairness and explainability of the trained models are relevant ethical
properties.

Section 2 gives background on output checking rules. Section 3 presents our
scheme for user’s binding to a sequence of analyses with tit-for-tat instruction
disclosure. Section 4 analyzes how our framework can be leveraged to enforce
confidentiality for the controller’s data and other ethical properties, while guar-
anteeing fair disclosure of the user’s analyses. Conclusions and future research
avenues are gathered in Sect. 5.

2 Background

In [1,8] two slightly different sets of rules of thumb are proposed to decide
whether the outputs of various statistical analyses can be safely returned to
a user/analyst. “Safely” in this context means without leaking the underlying
confidential data.

Each rule can be formalized in terms of the following attributes: Analy-
sisType, Output, Confidential, Context and Decision. By way of example, we
next quote the rule concerning frequency tables:

AnalysisType: FrequencyTable
Output: Number of units in each cell.
Confidential: YES/NO (YES means the data on which the frequency table is
computed are confidential).
Decision: YES/NO

The decision is NO, that is, the output is not returned if data are confidential
AND {some cell contains less than 10 units OR a single cell contains more than
90% of the total number of units in a row or column}.

Similar rules are given for other statistical analyses. For example, in [1] rules
are specified for magnitude tables, maxima, minima, percentiles, modes, means,
indices, ratios, indicators, concentration ratios, variances, skewness, kurtosis,
graphs, linear regression coefficients, nonlinear regression coefficients, regression
residuals, regression residuals plots, test statistics, factor analyses, correlations
and correspondence analyses.
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3 Binding to a Sequence of Analyses with Tit-for-Tat
Analysis Disclosure

In [3,4], a hash-based coding of programs was proposed to allow a CPU to check
the integrity of programs at run-time. The goal of that coding was to detect
at run-time any alteration suffered by the code after it was written, e.g. due to
computer viruses.

We repurpose and adapt that scheme to allow the user, a.k.a. data analyst, to
bind herself to a certain sequence of analyses, which she cannot alter as a result
of seeing intermediate results. At the same time, the user does not disclose the
next analysis in her sequence until she has obtained the results of her previous
analysis.

We adapt here the above hash-based coding for a sequence of analyses.
The variants in [3,4] for non-sequential programs (with branches) could also
be adapted for our purpose in a way analogous to that described in the next
sections. Such an adaptation is left for future research.

3.1 Instruction Preparation

Assume the user’s sequence of analyses is i1, . . . , in, where each ij is an instruc-
tion describing a certain statistical analysis. Let H be a specified crypto-
graphically strong one-way hash function such that in general H(X ⊕ Y ) �=
H(X) ⊕ H(Y ), where ⊕ is the XOR operator (addition modulo 2).

We want to transform instructions i1, . . . , in so that they have a length close
but not greater than the output of H. This is necessary for the security properties
below.

If all instructions i1, . . . , in are shorter than the output of H, then fixed-
length instructions I1, . . . , In can be obtained by padding with a known filler or
a redundancy pattern.

However, if we want to accommodate complex statistical analyses or even
small routines in each instruction ij , the length of instructions may be greater
than the length of the output of H. In this case, the user can compute the hash
of ij , hj = H ′(ij), using another cryptographically strong secure hash function
H ′ whose output is shorter than the output of H. Then what is padded with
some redundancy into I1, · · · , In are, respectively, h1||p1, . . . , hn||pn, where each
key is appended a pointer pj to a location where instruction ij is stored. We
assume the output of H ′ concatenated with a pointer is not longer than the
output of H.

3.2 Hash-Based Coding and Execution

We encode I1, . . . , In into a trace sequence T0, T1, . . . , Tn, where traces are com-
puted in reverse order according to the following equalities:
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T0 = H(T1) ⊕ I1;
T1 = H(T2) ⊕ I2;

... (1)
Tn−1 = H(Tn) ⊕ In;

Tn = H(In).

To “seal” the trace sequence, the first trace T0 is signed by the user who has
written the analysis sequence or by some certification authority. Call t0 the
signed version of T0.

To start executing the analysis sequence, traces t0, T0 and T1 need to be
supplied to the controller/processor, who verifies the signature t0 on T0 and
retrieves the first instruction as

I1 := H(T1) ⊕ T0.

In general, after instructions I1, . . . , Ij−1 have been retrieved, learning trace Tj

allows the controller to retrieve the j-th instruction as

Ij := H(Tj) ⊕ Tj−1. (2)

The final step is to run the instruction/analysis:

– If Ij contains an instruction ij , this instruction/analysis is run by the con-
troller and, if appropriate, its results are returned to the user.

– If Ij contains hj ||pj , then the controller fetches an analysis instruction ij at
location pj , checks that H ′(ij) = hj and, if the check passes, runs ij and
returns its results to the user if appropriate.

The controller can decide on the “appropriateness” of returning a result by
(manually or automatically) using an output checking rule such as those recalled
in Sect. 2.

3.3 Security Properties

The above coding and execution scheme has two interesting properties.

Proposition 1 (Tit-for-tat instruction disclosure). The user having con-
structed the sequence of analyses can disclose her sequence to the controller instruc-
tion by instruction, upon receipt of partial results, rather than in one shot.

Proof. From Expressions (1), it can be seen that each trace Ti encrypts an
instruction Ii+1 by adding to it a pseudorandom value H(Ti+1) that is as long
as Ii+1. Thus, the controller cannot decrypt Ii+1 from Ti until the user reveals
Ti+1 to the controller. �

The second property refers to the binding nature of the sequence.
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Proposition 2 (Binding sequence of analyses). Even if the controller is
only revealed the sequence instruction by instruction, he can detect any changes
introduced to the sequence since its execution started.

Proof. We will show this by induction. After the user signs T0 and the signature
t0 is revealed to the controller, the latter can detect any change in T0 and abort
the sequence execution. For any j ≥ 1, if T0, . . . , Tj−1 are not changed, the
controller can detect any instruction substitution, deletion or insertion of Tj

at run-time as follows: if T ∗
j is supplied to the controller instead of Tj , then

Expression (2) will yield a gibberish I∗
j in place of Ij (because H is a strong

hash function). Two cases must be distinguished:

– If Ij contained an instruction ij , then I∗
j will be gibberish as well, rather than

a proper instruction, which will cause the execution to abort.
– If Ij contained a hash value plus a pointer, that is hj ||pj , then I∗

j will be gib-
berish and will not contain the redundancy that should have been embedded
with a valid concatenation of a hash value and a pointer. This will also result
in the execution being aborted.

Thus, we have proven that changes in the sequence of traces will be detected.
An alternative for an attacker when Ij contains a hash value hj plus a pointer

pj is to try to change the instruction ij at address pj , say, to i∗j . If the attacker

does this, the controller’s check H ′(i∗j )
?= hj will fail and cause the execution to

be aborted.
Thus, by just revealing t0 to the controller, the user is binding herself to the

entire (and yet undisclosed) sequence of analyses. �

4 Using Binding Sequences of User Analyses to Ensure
Ethical Compliance

When the user binds herself to a sequence of analyses, she actually binds her-
self to a certain behavior. As the user discloses one instruction/analysis after
the other, it is possible for the controller to monitor that the user’s behavior
stays compliant with some ethical values. We next discuss compliance with the
following values: confidentiality, fairness and transparency-explainability. The
latter two values are applicable when an analysis consists of training a machine
learning model on the controller’s original data.

4.1 Checking Confidentiality

A data controller offering to run statistical analyses on his confidential data on
the user’s behalf wants to prevent the user from learning specific confidential
records. There are two ways in which the user may seek to learn confidential
information from statistical queries:
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Single statistical query. A single statistical query/analysis may leak individ-
ual records if it affects a sufficiently small set of records. For example, com-
puting the average value of an attribute over a query set of size 1 obviously
leaks the value of the attribute for the affected record.

Sequence of statistical queries. Tracker attacks [2] have been known for
about 40 years: a sequence of queries is constructed such that it pads small
query sets with enough extra records to give them a size in the allowable
range. Then the effect of padding is subtracted, and statistical outputs over
small query sets can be obtained.

In our framework, the controller can defend against leaks from single statis-
tical queries by resorting to output checking, discussed in Sect. 2. The controller
uses output checking rules to decide whether the output of the current instruc-
tion/analysis can be safely returned to the user. If it cannot, then the controller
withholds the output and aborts the execution of the user’s analysis sequence.

Regarding leaks caused by a sequence of instructions, they can be prevented
by the controller by using query set size controls [11]. This strategy consists
in controlling the size of the set of records isolated by the queries processed
so far plus the current query. If the query set size is below a threshold set by
the controller, he withholds the output of the current query and aborts the
execution of the user sequence. Some amount of output perturbation can be
used to increase the safety of query set size control, as hinted in [2].

In case of sequence abort, the user does not need to disclose the remaining
instructions/analyses of her sequence. In case of non-abort, the user discloses a
new trace to allow the controller to recover a new instruction/analysis.

4.2 Ex ante Checking of Explainability and Fairness

If the user’s sequence of analyses trains a machine learning model on the con-
troller’s data, the controller/processor may wish to make sure the resulting model
is explainable or fair before returning it to the user or even before running the
user’s sequence that trains the model.

Whereas confidentiality can be checked as the user discloses one instruc-
tion/analysis after the other, checking that a sequence trains an explainable or
a fair model may require examining the entire sequence. Yet, this can hardly be
done by the controller if the next instruction is disclosed by the user only after
the controller returns her the results of the previous instruction.

A way around is for the user to have her sequence certified by a certification
authority trusted by the controller/processor and the user:

1. The user binds herself to her sequence of analyses by encoding its instructions
into traces and signing the first trace as explained in Sect. 3.

2. Then the user submits her entire binding sequence of analyses to the certifi-
cation authority. The user trust the authority not to disseminate or misuse
her sequence of analyses.

3. The authority checks the code for the required ethical value:
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– Checking for transparency-explainability can be done by making sure the
code corresponds to training an explicitly explainable model (decision
rules, decision trees, random forests, etc.).

– Checking for fairness by code analysis can be done by making sure
the code includes instructions for pre-processing, in-processing or post-
processing anti-discrimination (e.g. [9]).

4. If the check passes, the authority appends its signature to the first trace of
the binding sequence.

5. Upon finding the signature of the authority when being revealed the first
sequence trace, the controller is reassured that the sequence will train an
explainable, respectively fair, model.

5 Conclusions and Further Research

We have presented a new concept to make sure the sequence of analyses run by
a user in a safe access center or a trusted research environment is ethically com-
pliant. Ethical values to be enforced include respondent privacy (non-disclosure
of the underlying original microdata), user privacy (fair disclosure between user
and controller), and fairness of trained models if any, inter alia. On the one side,
the user binds herself to a sequence, which means she cannot modify it depending
on the intermediate results obtained. This prevents adaptive attacks and thus
thwarts disclosure of the underlying respondent microdata (respondent privacy).
If the user breaks this bond and tries to change her sequence, the controller stops
returning the results of the analyses. On the other side, the user reveals her next
analysis only if she obtains the result of her previous analysis. This ensures user
privacy for the rest of the analysis sequence, and it can be construed as a form
of fairness between user and controller.

Admittedly, our proposal can only be employed if the user’s research has
a pre-set purpose, so that it is possible for the user to define in advance the
sequence of analyses she wants to perform.

Future work will consist of building a demonstrator in a practical trusted
research environment. Also, we plan to extend the approach to non-sequential
analysis programs (with loops and subroutine calls).

Acknowledgments and Disclaimer. Thanks go to a reviewer for making com-
ments and raising stimulating questions. Partial support is acknowledged from the
European Commission (projects H2020-871042 “SoBigData++” and H2020-101006879
“MobiDataLab”), the Government of Catalonia (ICREA Acadèmia Prize), and UK
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Abstract. “Machine learning as a service” (MLaaS) in the cloud acceler-
ates the adoption of machine learning techniques. Nevertheless, the exter-
nalization of data on the cloud raises a serious vulnerability issue because
it requires disclosing private data to the cloud provider. This paper deals
with this problem and brings a solution for the K-nearest neighbors
(k-NN) algorithm with a homomorphic encryption scheme (called TFHE)
by operating on end-to-end encrypted data while preserving privacy.
The proposed solution addresses all stages of k-NN algorithm with fully
encrypted data, including the majority vote for the class-label assign-
ment. Unlike existing techniques, our solution does not require interme-
diate interactions between the server and the client when executing the
classification task. Our algorithm has been assessed with quantitative vari-
ables and has demonstrated its efficiency on large and relevant real-world
data sets while scaling well across different parameters on simulated data.

Keywords: k-nearest neighbors · Homomorphic encryption · TFHE ·
Data privacy · IoT · Cloud computing · Privacy-preserving

1 Introduction

Cloud services have become central to data storage and data exploitation. Among
these services, a machine-learning service is offered to train different models to
predict for decision-making purposes. However, this raises the issue of data secu-
rity because the data processed by the cloud may be sensitive and confidential
while belonging to entities that do not trust the cloud provider.

The most commonly used cryptographic techniques are secret sharing, multi-
party computation, and homomorphic encryption (HE) to achieve privacy-
preserving for machine learning. Several techniques ensure strong privacy protec-
tion, often coming at the expense of reduced in terms of speed and communication.

Homomorphic encryption is an encryption technique that allows compu-
tations directly on encrypted data. The results are encrypted and can be
revealed/decrypted only by the owner of the secret key. This principle is very use-
ful in many domains where data sharing and privacy preservation are required.
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For example, externalizing personal data considered as sensitive such as medical
data or banking transactions [10]. This paper considers a scenario where sensi-
tive data are collected by IoT devices and outsourced on a resourceful cloud for
Machine Learning (ML) processing. Considering that the cloud provider is not
trustworthy, we propose using HE to preserve privacy.

ML over encrypted data has been particularly investigated in the domain of
neural networks (NN). However, as state-of-the-art non-linear NN layers (pool-
ing and activation) are too complex to be directly executed in the encrypted
world, there is a strong need for approximating them. Much of the subsequent
works have been proposed to address the limitation of implementing the non-
linear activation function by a polynomial approximation using Taylor series and
Chebyshev polynomials, among others [1,3,5,7]. Due to the high cost of the HE
systems, those methods do not scale well and are not appropriate for deep neural
networks [12], which are time-consuming due to the great depth of the network.

One way to solve the computational cost problem inherent to HE is to investi-
gate less complex supervised methods. The k-nearest neighbors (k-NN) approach
presents several advantages. Indeed, for a predefined number of neighbors k, the
model does not require any training step, the value of the response variable for a
given individual is obtained directly from the values observed on the neighbors
without needing to estimate new parameters. In addition, the method can han-
dle continuous, categorical, and mixed data. Furthermore, as a non-parametric
method, k-NN can be relevant for many data structures as long as the number
of observations is sufficiently large.

The prediction for a new observation is obtained by:

– Identifying the k nearest neighbors (according to a given distance)
– Computing the majority class among them (for a classification problem) or

by averaging values (for a regression problem).

HE has been recently investigated by various authors for k-NN [9,13,14,16].
[9] suggested a Homomorphic additive encryption scheme [11]. They inves-

tigated the privacy preservation in an outsourced k-NN system with various
data owners. The untrusted entity securely computes the computations of dis-
tances by using HE. However, the comparison and classification phases require
interactions. Given that the computational and communication difficulties scale
linearly, they admit that the method may not be practical for massive data vol-
umes. The cost of communications between the entities is also a limitation in
the deployment of this work [13].

[14], used an “asymmetric scalar-product-preserving encryption” (ASPE).
However, the client has the ciphertext, and the server can decrypt it. The pro-
posed solution is vulnerable to Chosen Plaintext Attacks as stated by [15].

Recently, [16] proposed a secure k-NN algorithm in quadratic complexity
concerning the size of the database completely non-interactively by using a fully
homomorphic encryption [6]. However, they assume that the majority vote is
done on a clear-text domain, which is a significant security flaw that we will
address here. Doing a majority vote on a clear-text domain imposes interaction
between entities, which causes information leakage.
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Unlike other existing works, in this paper, we propose a new methodology to
apply k-NN on encrypted data by using fully homomorphic encryption avoiding
interaction between entities.

We consider a client/service provider architecture that supports scenarios
described here. The service provider is a company that owns a labeled training
dataset D composed of sensitive data allowing predict for novel observation by
k-NN. This model is offered as a service.

We assume a context that is concerned by some privacy issues as in the
following:

– Because the training data are sensitive, they cannot be shared with a third
party such as a client.

– The model is an intellectual property of the service provider. Hence, the
service provider does not want to share the used model with his clients.

– A client who needs to perform classification on the service-provider platform
does not trust the service provider.

This work aims to do a classification using k-NN algorithm on sensitive data
using HE. Our solution assumes that the service provider, which is the dataset
owner, has all the necessary resources to perform the data classification and
storage. This assumption ensures that encrypting the training dataset is not
necessary since these data are kept with the data owner. Only the client will
need to encrypt his query that includes his data by using a private key and by
sending it to the data owner for classification. The goal is to protect the training
dataset, the query, and the model parameter k. Our solution meets the following
privacy requirement as in the following:

– The contents of D are known only by the data owner since they are not sent
to other parties.

– The client’s query is not revealed to the data owner.
– The client knows only the predicted class.
– The index of the k nearest neighbors is unknown from the data owner or the

client.

Our solution has a greater added value than the existing literature solutions.
First, it guarantees that no information leakage occurs during the process: the
only things known by the data owner are the dataset and the model used. The
only things that the client knows are the query and the class. All intermediate
results are encrypted. In addition, our solution is fully non-interactive since
prediction is performed by the data owner and do not need any decryption
during the process. Finally, it supports multi-label classification.

The rest of this paper is organized as follows: Sect. 2 presents the background
of HE before highlighting the principle of Fast Fully homomorphic encryption
over the Torus (TFHE). Our proposed solution is then described in Sect. 3. A
simulation study is presented in Sect. 4 to assess our methodology based on real
datasets. Finally, Sect. 5 concludes the paper.
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2 Background

2.1 Homomorphic Encryption

HE allows a third party (a service provider in our scenario) to compute functions
on ciphertexts to preserve the confidentiality of the data. An encryption scheme
is called homomorphic over an operation ∗ if it supports the following property:

E(m1) ∗ E(m2) = E(m1 ∗ m2)

where E is the encryption algorithm and m1,m2 belong to M the set of all pos-
sible messages. An additional algorithm is needed for homomorphic encryption
schemes, called the Eval algorithm. This algorithm is defined as follows:

Eval(f, C1, C2) = f(m1,m2)

where Dec(C1) = m1 and Dec(C2) = m2 and f is a function that determines the
type of the HE scheme. In case f supports the evaluation of arbitrary functions
for an unlimited number of times, the HE is called Fully homomorphic encryption
(FHE).

This paper uses “TFHE: Fast Fully homomorphic encryption over the Torus”
as an RLWE-based scheme in his fully homomorphic setting, especially in gate
bootstrapping mode. The bootstrapping procedure is the homomorphic evalua-
tion of a decryption circuit on the encryption of a secret key.

2.2 Functional Bootstrap in TFHE

TFHE defines three types of ciphertexts, TLWE Sample, TRLWE Sample and
TRGSW Sample.

There are two bootstraps algorithms in TFHE. Gate Bootstrap was intro-
duced to implement logic gates, and the Circuit Bootstrap, which converts
TLWE samples to TRGSW samples. In our work, we use Functional Bootstrap.
By “Functional” we mean that the bootstrap can evaluate functions using a
BlindRotate algorithm to perform a lookup table (Lut) evaluation. LUTs are
a simple, efficient way of evaluating discretized functions. For instance the sign
function was used in [2] and [8].

3 Our Contribution

3.1 The System Model

Our system uses the client-server architecture (see Fig. 1). The client is the
querier, and the server is the data owner.

1. The data owner: owns the data and can do heavy calculations. For exam-
ple, it receives the query in an encrypted way, performs an encrypted k-NN
algorithm then sends the result to the querier for decryption.

2. The querier: generates the keys, encrypts the query that contains its data and
sends it to the data owner for computations before decrypting the result. The
querier can be an ordinary computer or any IoT device that collects data.
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Fig. 1. The system model: the client is the querier, and the server is the data owner:
the data owner receives the query in an encrypted way, performs an encrypted k-NN
algorithm then sends the result to the querier for decryption.

3.2 Encrypted k-NN Challenges

In order to propose an encrypted version of k-NN, we should substitute the
challenging operations used in the standard k-NN with equivalent operations in
encrypted domains. As seen before, k-NN is composed of three parts: the distance
calculation, the distance sorting, the selection of the k nearest neighbors, and
the majority vote.

This subsection will introduce the equivalent operations as integrated with
our solution.

Distance Calculation. The euclidean distance calculation between the dataset
entries xi as well as the query q are necessary in order to find the k nearest
neighbors to the query. We can use the standard formula of the distance as
in (1).

d2(xi, q) =
p∑

j=0

x2
ij +

p∑

j=0

q2j − 2 ∗
p∑

j=0

xijqj (1)

What is relevant in our case is the difference between two distances to compare
them. So, we get the formula (2) as follows:

d2(xi, q) − d2(xi′ , q) =
p∑

j=0

(x2
ij − x2

i′j) − 2 ∗
p∑

j=0

(xi′j − xij)qj (2)

Since the dataset is a clear text, we can easily calculate formula (2) using
the TFHE scheme. However, we need to adapt it. Using TFHE, the difference
between the distances should be in the range of [− 1

2 , 1
2 ]. Another constraint is

that the multiplication is done between a clear-text integer and a ciphertext.
Two rescaling values are required to resolve these constraints. Let v be the first
one. It is used to have values of the differences between [− 1

2 , 1
2 ]. Let p be the

second one. It indicates the precision of the differences. Each attribute of the
dataset as well as the query are rescaled using v. p is used when calculating the
product (xi′j − xij)qj .
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Sorting. Sorting computed distances is a crucial step in k-NN. The stan-
dard algorithm for sorting, like the bubble sort, can be used while considering
encrypted data. However, these algorithms are time-consuming in an encrypted
world because the worst case is computed every time. The authors [4] propose
two methods to sort an array of values. The method of the direct sort is used in
[16]. It is based on a matrix of comparison called delta matrix:

⎛

⎜⎜⎜⎝

m1,1 m1,2 · · · m1,n

m2,1 m2,2 · · · m2,n

...
...

. . .
...

mn,1 mn,2 · · · mn,n

⎞

⎟⎟⎟⎠

with

mi,j = ¯sign(Xi − Xj) =
{

1 if Xi < Xj

0 else.

When summing columns of this matrix, we will have a sorting index of the
distances.

Majority Vote. The majority vote can cause a problem because the operation
requires comparison to detect the class. To determine the predicted class, we
need to know k nearest neighbors’ classes. This step is challenging in two ways:
first, we need to avoid information leakage, unlike the solutions in the literature.
Second, the majority vote requires comparison in order to predict the class.

To the best of our knowledge, no solution in the literature studied this point
in an encrypted way without information leakage. Therefore, in the following
subsection, we will demonstrate a solution to process k-NN with the majority
vote in an encrypted way while supporting a multi-label classification.

3.3 Our Proposed k-NN Algorithm

Our proposed algorithm, called “HE-kNN-V”, is composed of three steps: the
construction of the delta matrix, the selection of k-nearest neighbors, and the
majority vote. The two first steps are similar to the solution of [16] even if we
adapt the existing formulas in order to eliminate unnecessary calculations. [16]
use polynomials to define the formulas, while what interests us is just one term
of those polynomials to eliminate un-necessary calculations. The majority vote is
our added value and is specific to our solution. We will discuss in this subsection
the design of our solution, including each building block.

Building the Delta Matrix. To build the delta matrix, we need to know the
sign of the differences between the distances to sort. Since we defined a method
to calculate the differences in the last subsection, the sign can easily be achieved
using the standard bootstrapping sign function in TFHE. However, the standard
bootstrapping function returns +1 if the phase is greater than 0 and −1 if the
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phase is lower than 0. Therefore, since we need to have 0 or 1 in the matrix, we
need to adapt the bootstrapping operation to return 1

2 and − 1
2 then by adding

1
2 to the result we will have 0 or 1.

Even if building this matrix is time-consuming, it is highly parallelizable.

Selecting the k-Nearest Neighbors. To select the k–nearest neighbors, we
use the scoring operation proposed by Zuber [16]. By using the delta matrix, the
principle is as follows:

1. Sum m values in each column with m the number of possible operations
without bootstrapping.

2. If there are still values to sum: do a bootstrapping operation using the mod-
ified sign bootstrapping function (see Algorithm 1 in [16]) and go to Step 1.

3. Otherwise, execute the modified sign bootstrapping and return the last sign
returned by this operation.

Finally, we obtain an encrypted vector where the position i equals the cipher
of 1 if the individual with index i is among the k-nearest neighbors, the cipher
of 0 otherwise. We call this vector the “mask” (see Fig. 2 for more clarity).

Majority Vote. The majority vote is the most important added value in our
work. We propose to do the majority vote without any leakage of information,
unlike existing works like that of [16] in which the majority value is done in clear
text or by using other alternative solutions proposed in the literature.

First, we illustrate the issue with the method of [16]. We consider the sce-
nario where the querier does the calculations. The majority vote is done in clear
text, but we need to decrypt the vector of indexes of the nearest neighbor. The
data owner does the decryption. Significant information leakage occurs if the
data owner knows the vector of indexes. Then, he will know the classification
of the query, and by doing some triangulation, he can approximate the query.
In addition, the solution will be interactive. If we consider the scenario where
the data owner does the calculation, the decryption of the vector is done by the
querier. However, to do the classification, the querier should know the labels
of the dataset, which is also a critical leakage of information. In addition, the
querier will know the size of the dataset and the k parameter of nearest neigh-
bors considered. This information is considered as internal information of the
model used, and it should be protected.

In our solution, the majority vote is done by the data owner in an encrypted
way. First, the data owner encodes the labels using one hot encoding. Having
the mask and the matrix of labels in one hot form, it is easy to do an AND
operation between the mask and each column of the labels, as in Fig. 2. We get
a matrix A (for affectation) with Aij equal to 1 if the individual i is among the
k-nearest neighbors and its class is j. Using this matrix, it is possible to sum the
columns and obtain the probability of each class. We can now return only the
class and guarantee no information leakage and no interactivity.
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Fig. 2. Majority vote illustration by using the mask

4 Performance Evaluation

In this section, we discuss the experiments of our solution. First, we describe the
technical and the setup of the environment. Then, we will evaluate the perfor-
mances of our solution according to different criteria: execution time, accuracy,
bandwidth consumption.

4.1 Test Environment

Setup. Our solution is implemented using the TFHE scheme in C/C++ and
Python for training k-NN in clear text and for tests. To test the effect of paral-
lelism, we used OpenMP to do some parallelization. The source code is available
in the following github “https://github.com/Yulliwas/HE-kNN-V”. Our solu-
tion is tested on Linux Ubuntu 64-bit machine with i7-8700 CPU 3.20 GHz.

Table 1 shows the parameters used to setup TFHE scheme (Table 2).

Table 1. TFHE parameters: λ for the
overall security, N for the size of the
polynomials, σ for the Gaussian noise
parameter.

λ N σ

110 1024 10−9

Table 2. HE-kNN parameters: the num-
ber of operations m without needing a
bootstrapping, the bootstrapping base b,
and the rescaling factors v and p

m v p b

64 4 1000 4 * m−4

Datasets. To test our solution, we choose to use 6 datasets: Iris, Breast Cancer,
Wine, Heart, Glass and MNIST as in Table 3. The goal is to test the performances
of our algorithm in different distributions of data, so that to confirm that our
solution works with any dataset and that has performances that are equivalent
to those of clear-text domains.

https://github.com/Yulliwas/HE-kNN-V
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Table 3. Datasets: number of individuals (n), the size of the model (d) and number
of classes

Dataset n d Classes

Iris 150 4 3

Wine 178 13 3

Heart 303 75 5

Breast cancer 699 10 2

Glass 214 10 2

MNIST 1797 10 3

Simulation Procedure. First, we preprocess the data by rescaling each attri-
butes to a value between 0 and 1. Our dataset and the query should be rescaled
by a factor of v as seen above. We must also multiply the dataset vectors by the
precision factor τ and then rounded. In the other hand, the query vector is divided
by this same factor. To obtain the classification rate, first we need to divide our
dataset to a training set and a test set. We choose to use 20% of our dataset as a
test set and the rest as a training set. Among the training set, we select a certain
number of points that represent as well as possible our dataset. The process for
choosing the best points that represent our training set is as follows:

1. choose n individuals randomly;
2. calculate the classification rate;
3. Repeat the previous Step 1 and Step 2 a certain amount of time and keep the

best accuracy and the best individuals.

To select the k parameter, we use the same procedure as in the clear domain. In
our case, we tested different values of k and we keep the best k value that gives
the best results.

4.2 Performance Results

To position our approach according to existing works, and especially regarding
the voting step that is performed without information leakage, we compare in
Table 4 our solution with Zuber’s solution and with a clear-text version based on
the Iris dataset and a fixed k = 3. The comparison is done in terms of complexity
(C), Information Leakage (L), accuracy (A), interactivity (I) and execution time
(T). The accuracy and the prediction time are indicated only when it is possible.

Empirical Study

Classification Rate. To evaluate the classification rate, we have chosen the accu-
racy instead of other metrics like: recall or F1-score. We studied the accuracy
according to two parameters: the number of data sampled from the dataset and
the number k of neighbors. The goal is to choose the best points that represent
the datasets and the best k parameters for each dataset.
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Table 4. Comparison between solutions for Iris dataset: complexity (C), information
leakage (L), accuracy (A), interactivity (I) and execution time (T).

Work C L I A T

HE-kNN-V O(n2) N N 0.97 1.72 s

HE-kNN-VP O(n2) N N 0.97 0.46 s

Zuber O(n2) Y Y 0.98 1.74 s

Clear k-NN O(n) Y N 0.95 1.8 ms

We chose real-world datasets in order to see the evolution of the accuracy
and compared it to clear-text accuracy.

In one hand, we know that the accuracy depends on the k parameter and we
can confirm it easily in the graphs. On the other hand, the assumption that the
accuracy depends on the number of data used is not complete. For the dataset
where the data is well separated (like Iris), having a lot of data is not necessary,
the best accuracy can be achieved using only few data. But, in the case where
data is not well separated (like in Heart dataset), the accuracy seems to depend
on the number of data.

Fig. 3. Encrypted accuracy vs number
of individuals

Fig. 4. Clear-text accuracy vs number
of attributes

Fig. 5. Encrypted accuracy vs
k-parameter

Fig. 6. Clear-text accuracy vs
k-parameter
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According to our different simulations illustrated in Fig. 3 and Fig. 4, we do
not lose accuracy when we apply our HE-kNN-V method on the encrypted data
compared to the application of the kNN on the plain data. This is possible by
varying the number of individuals and by fixing k to 3.

We also notice that by setting the number of individuals to 40 and varying
k, (see Fig. 5 and Fig. 6) the accuracy behaves in the same way between the
application of the kNN on the plain data and the application of our method
HE-kNN-V on the encrypted data.

Execution Time. In our solution, the execution time is independent of the con-
tent of the dataset, it does not depend on the values, but does depend on the
content, since it depends on the number of tuples. We can use either simulated
dataset or real world dataset. To visualize the evolution of the execution time
according to k, n and d, we choose to use the Breast Cancer dataset instead of
simulating a new dataset. We change n, k, d and we see the evolution of the
execution time.

Fig. 7. Execution time vs number of
individuals

Fig. 8. Execution time vs number of
attributes

Fig. 9. Execution time vs k-parameter
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Our simulations, as depicted in Fig. 7, illustrate that HE-kNN-V is paralleliz-
able, and also that the number of individuals strongly impacts the execution time
unlike the two simulations of Fig. 8 and Fig. 9 where the variation of respectively
d the number of attributes and k does not impact the execution time.

Bandwidth. In our solution, the only thing that is communicated is the query
in the ciphertext and the response in the ciphertext. The size of the query is
proportional to the number of attributes d. Each attribute is a TLWE Sample
with the size of 4 KB and the size of the response (number of classes) * 4 KB.
The bandwidth according to each dataset is illustrated in Table 5.

Table 5. Bandwidth

Dataset Bandwidth (KB)

Iris 28

Wine 64

Heart 64

Breast cancer 128

Glass 60

MNIST 296

Discussion. According to our experiments, we can say that the accuracy in
our case depends on three factors: the number of individuals, the representativ-
ity of these individuals and the k parameter. To have a better model that fits
our dataset, we must select the individuals that are more representative of our
dataset and the best k parameter. We also should take care of the number of
individuals because most of the execution time depends on that number.

5 Conclusion

We proposed HE-kNN-V a method for performing k-NN on encrypted data
that includes a majority vote for class-label assignment. The proposed solution
addresses all stages of k-NN algorithm with fully encrypted data. It guarantees
that no information leakage occurs during the process. Unlike other techniques,
our solution eliminates the need for intermediate interactions between the server
and the client when performing classification tasks. Our algorithm has been eval-
uated using quantitative variables and demonstrated its efficiency on large and
relevant real-world data sets. As a perspective, it would be interesting to see
how a hardware acceleration of the TFHE scheme could improve the computa-
tion time of our proposed solution HE-kNN-V.
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Abstract. The standard approach to evaluate text anonymization methods con-
sists of comparing their outcomes with the anonymization performed by human
experts. The degree of privacy protection attained is then measured with the IR-
based recall metric, which expresses the proportion of re-identifying terms that
were correctly detected by the anonymization method. However, the use of recall
to estimate the degree of privacy protection suffers from several limitations. The
first is that it assigns a uniform weight to each re-identifying term, thereby ignor-
ing the fact that some missed re-identifying terms may have a larger influence on
the disclosure risk than others. Furthermore, IR-based metrics assume the exis-
tence of a single gold standard annotation. This assumption does not hold for
text anonymization, where several maskings (each one encompassing a different
combination of terms) could be equally valid to prevent disclosure. Finally, those
metrics rely on manually anonymized datasets, which are inherently subjective
and may be prone to various errors, omissions and inconsistencies. To tackle these
issues, we propose an automatic re-identification attack for (anonymized) texts
that provides a realistic assessment of disclosure risks. Our method follows a
similar premise as the well-known record linkage methods employed to evaluate
anonymized structured data, and leverages state-of-the-art deep learning language
models to exploit the background knowledge available to potential attackers. We
also report empirical evaluations of several well-knownmethods and tools for text
anonymization. Results show significant re-identification risks for all methods,
including also manual anonymization efforts.

Keywords: Text anonymization · Re-identification risk · Language models ·
BERT

1 Introduction

The availability of textual data is crucial for many research tasks and business analytics.
However, due to its human origin, textual data often includes personal private informa-
tion. In such case, appropriate measures should be undertaken prior distributing the data
to third parties or releasing them to the public in order to comply with the General Data
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Protection Regulation (GDPR) [1]. These measures involve either obtaining explicit
consent of the individuals the data refer to (which may be infeasible in many cases),
or applying an anonymization process by which the data can no longer be attributed to
specific individuals. The latter renders data no longer personal and, therefore, outside
the scope of the GDPR.

Data anonymization has been widely employed to protect structured databases, in
which the individuals’ data consist of records of attributes. In this context, a variety
of well-stablished anonymization methods and privacy models have been proposed,
such as k-anonymity and its extensions [2–4], or ε-differential privacy [5]. However,
plain (unstructured) text anonymization is significantly more challenging [6, 7]. The
challenges derive from the fact that the re-identifying personal attributes mentioned in
the text are unbounded and, quite often, not clearly linked to the individual they refer to.

Most approaches to text anonymization rely on natural language processing (NLP)
techniques –named entity recognition (NER)– [8–20] to detect andmaskwords of poten-
tially sensitive categories, such as names or addresses. Since thesemethods limitmasking
to (a typically reduced set of) pre-established categories, they usually offer weak pro-
tection against re-identification, the latter being caused by a large variety of entity types.
Alternately, methods proposed in the area of privacy preserving data publishing (PPDP)
[21–27] consider any information that jeopardizes individual’s anonymity. However, the
damage they cause to the data and several scalability issues make them unpractical in
many scenarios [6].

Moreover, because most text anonymization methods do not offer formal privacy
guarantees, the degree of protection they offer should be empirically evaluated, as done
in the statistical disclosure control (SDC) literature [28]. The standard way to evalu-
ate text anonymization methods consists of comparing their outcomes with manually
anonymized versions of the documents to be protected [8, 10–15, 18, 20, 21]. The per-
formance of anonymization methods is then measured through IR-based metrics, specif-
ically precision and recall. Whereas precision accounts for unnecessarily masked terms
(which would negatively affect the utility and readability of the anonymized outcomes),
recall, which accounts for the amount of undetected re-identifying terms, is roughly
equaled as the inverse of disclosure risk. However, recall is severely limited because i)
not all (missed) re-identifying terms contribute equally to disclosure, ii) several mask-
ings (each one encompassing a different combination of terms) could be equally valid
to prevent disclosure, and iii) it relies on manual anonymization, which may be prone to
errors and omissions [6, 29].

In contrast, in the SDC field, the disclosure risk of anonymized databases is empir-
ically measured by subjecting the anonymized data to re-identification attacks, more
specifically, record linkage attacks [30–33]. Record linkage matches records in the
protected database and a background database containing publicly available identified
information of the protected individuals. Because successful matchings between both
databases results in re-identification, the percentage of correct record linkages provides
a realistic an objective measure of the disclosure risk, and an accurate simulation of what
an external attacker may learn from the anonymized outcomes.
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Because assessing disclosure risks by measuring the performance of automatic re-
identification attacks ismore convenient and realistic than relying on (limited andhuman-
dependent) IR-based metrics, in this paper we propose a re-identification attack for text
anonymization methods grounded on the same formal principles as the record linkage
attack employed in structured databases. On that basis, we also provide an intuitive
disclosure risk metric based on the re-identification accuracy, which overcomes the
limitations of the commonly employed recall-based risk assessment.

Tomaximize re-identifiability, our attack leverages state-of-the-art machine learning
techniques for NLP [34]. These techniques have proved to obtain human or above-
human level in several language-related tasks, thereby making our method a realistic
representation of an ideal human attacker. We also show the application of our attack
to evaluate the level of protection offered by a variety of widely used and state-of-
the-art text anonymization methods and tools, in addition to a sample of human-based
anonymization employed in a previous work as evaluation ground truth [27].

The remainder of this paper is organized as follows. Section 2 provides background
on privacy evaluation for anonymized text. Section 3 presents our attack and metric
for assessing the re-identification risk of anonymized texts. Section 4 reports and dis-
cusses the empirical evaluation of a variety of automated and manual anonymization
approaches. The final section gathers the conclusions and depicts lines of future research.

2 Background

In the context of document anonymization, recall is used as standard to evaluate the
level of privacy protection attained by automatic anonymization methods [8, 10–15, 18,
20, 21]. Recall is an IR-based completeness metric, which is defined as the fraction of
relevant instances that were properly identified by the method to be evaluated:

Recall = #TruePositives

#TruePositives + #FalseNegatives
(1)

where #TruePositives is the number of relevant instances identified and #FalseNegatives
represents the missed ones. In text anonymization, the relevant instances correspond to
words or n-grams that should be masked. These are identified via manual annotation,
which is considered the ground truth.

Because IR-based metrics (precision and recall) are the standard way to evaluate
many NLP tasks (and NER in particular), and NER techniques are the most common
way to tackle text anonymization, perhaps by inertia, the vastmajority ofmethods employ
recall to assess the level of attained privacy protection. Nevertheless, this suffers from
a variety of issues [29, 35]. First, recall does not measure the actual residual disclosure
risk of anonymized documents, but just compares the outputs with manual annotations.
Manual anonymization is by definition, subjective and non-unique, and may be prone to
errors, bias and omissions [6, 29]. On top of that, manual annotation is costly and time
consuming, and usually involves several human experts, whose annotations should be
integrated through a non-trivial process. Another limitation of recall-based evaluation is
that it assumes that all identified/missed entities contribute equally to mitigate/increase
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the risk, which is certainly inaccurate [29]. Obviously, failing to mask identifying infor-
mation (such as a proper name) is muchmore disclosive on the individual to be protected
than just missing her job or her whereabouts.

On the other hand, in the area of SDC, the level of privacy protection attained by
anonymization methods on a structured database is measured according to the success of
a re-identification attack (record linkage [33]) that a hypothetical attacker could perform
on the anonymized outcomes. Record linkage tries re-identify anonymized records by
linking the masked quasi-identifiers present in those records with those available on
publicly available identified sources. Then, the re-identification risk is measured as the
percentage of correct linkages:

Re-identification risk ≈ Linkage accuracy = #CorrectLinkedRecords
#Records (2)

Compared to recall, the record linkage accuracy offers an automatic and objective
means to evaluate privacy that does not rely on manual annotations.

3 A Re-identification Attack for Evaluating Anonymized Text

In this section, we present a re-identification attack for (anonymized) text based on state-
of-the-art NLP machine learning techniques. Our attack aims to provide a practical,
realistic and objective mean to evaluate the privacy protection offered by anonymization
methods for textual data.

In broad terms, the attack aims to re-identify the individuals referred in a set of
anonymized documents by leveraging a classifier trained on a collection of identified
and publicly available documents encompassing a population of subjects in which the
individuals referred in the anonymized documents are contained. For example, one may
use publicly available social media publications from a city’s inhabitants to re-identify
anonymized medical reports from that city’s hospital. By construction, the publicly
available data should be a superset of the anonymized set. The protected documents
would contain confidential attributes (e.g., diagnoses) andmasked quasi-identifiers (e.g.,
age intervals) from unidentified individuals, whereas the publicly available documents
would contain identifiers (e.g., a complete name) and clear quasi-identifiers (e.g., a spe-
cific age) from known individuals. Consequently, unequivocal matchings of the (quasi-)
identifiers of both types of documents (due to a weak anonymization), would allow re-
identifying the protected documents and, therefore, disclose the confidential attributes
of the corresponding individuals.

Our method can be seen as an adaptation of the standard record linkage attack from
structured databases to textual data, where documents correspond to records, words (or
n-grams) roughly correspond to attribute values and the classifier provides the criterion
to find the best match/linkage between the anonymized and public documents.

The attack is designed with the aim of recreating as realistically as possible what
a real attacker would do to re-identify the protected individuals. This also accounts
for the amount of resources (computation and background data) that a real attacker
may reasonably devote and have available to execute the attack. This is in line with
the GDPR (Recital 26), which specifies that, to assess the risk of re-identification, one
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should take into account the reasonable means that can be employed to perform such
re-identification. This makes our attack and the derived risk metric more realistic.

Formally, let AD be the set of anonymized (non-identified) documents and BD the set
of identified publicly available documents (i.e., background documents). Each document
describes or refers to a specific individual, thereby defining the sets of individuals AI

and BI , and the mapping bijective functions FA: AD → AI and FB: BD → BI . Assuming
AI ⊆ BI (as in the original record linkage attack), FC : AD → BI is the re-identification
function that matches protected documents with the corresponding known individuals.
On this basis, from the point of view of an attacker, AD, BD, BI and FB are known, and
AI , FA and FC are unknown. Therefore, the purpose of the attack is obtaining FC’ (an
approximation of FC) by exploiting the similarities between AD and BD sets.

In Algorithm 1 we formalize our proposal, which returns the number of correct re-
identifications achieved by the attack on an input collection of anonymized documents.
First, a machine learning classifier is built and trained to predict FC (line 1, more details
in Sect. 3.1). Using the formal notation above, the classifier would implement FC’ by
learning which individuals from BI correspond to the documents in BD according to the
knowledge available to the attacker. Subsequently, the same classifier is evaluated with
the set of anonymized documentsAD (line 4). A correct re-identification would happen if
the prediction (i.e.,FC’)matchesFC (lines 5–6). Finally, the number of re-identifications
are returned (line 9).

Algorithm 1. Re-identification risk assessment for anonymized text documents
Input: AD // set of anonymized documents
  BD // set of background documents
  BI // set of individuals from background documents
  FB // mapping function from BD to BI
  FC // groundtruth mapping function from AD to BI
Output: numReIds // number of correct re-identifications

1 classf = build_classifier(BD, BI, FB, AD);
2 numReIds = 0; // Number of correct re-identifications
3 for each d in AD do // Evaluation loop for all documents
4 pred_ind = classf.predict(d); // Predicted BI individual for d
5 if (pred_ind == FC(d)) then // If correct re-identification
6 numReIds++;
7 end if
8  end for
9  return numReIds; 

Similarly to the record linkage method (Eq. 2), we assess the re-identification risk
of AD according to the accuracy of the re-identification attack:

Re-identification risk ≈ Re-identification accuracy = numReIds

|AI | (3)
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3.1 Building the Classifier

We next detail the internals of the build_classifier method (line 1 of Algorithm 1). Its
goal is to reproduce as faithfully as possible the techniques that a potential attacker may
employ to conduct the re-identification attack. This includes considering state-of-the-art
NLP classification models and taking advantage of the data available to the attacker.

To select the model, we consider state-of-the-art word embedding and transformer-
based models, which have recently revolutionized the area of NLP. Word embeddings
[36]mapwords (tokens) to real-valued vector representations that capture their meaning,
so thatwords closer in the vector space are expected to be semantically related. The initial
approaches to word embeddings produced a fixed vector for each token. Nevertheless, in
many cases, words’ meaning is affected by the context (especially for polysemic words)
and, therefore, they cannot be properly defined through unique embeddings. This led
to the creation of contextual word embeddings [37], where the embedding depends
on the context of the word instance. Since our classifier requires non-ambiguous words
representations, which allow to determine if aword is relatedwith a particular individual,
using contextual word embeddings is the best strategy.

Word embeddingmodels require from large training corpora in order to build general
and robust word representations. This has led to the popularization of pre-trainedmodels
[34, 38], which are trained once with an enormous corpus and then are used in multiple
NLP tasks. Even though the results obtained from these pre-trained models are good
enough for a variety of problems, better performance can be achieved throughfine-tuning,
a procedure inwhichword embeddings are further trainedwith the task’s specific corpus.
We expect the attacker to follow this paradigm, which provides high quality results while
significantly reducing cost of training models from scratch.

Another technology that took a step forward in NLP is the transformer architecture
[39]. The strengths of this approach are the capability of handling long-range depen-
dencies with ease and a reduced processing time based on parallelism. One of the most
popular and well-established transformer-based model for NLP is BERT (Bidirectional
Encoder Representations from Transformers) [34], which is pre-trained with a huge
corpora (Wikipedia and the BookCorpus), and is capable of learning high quality con-
textual word embeddings. After simple modifications and fine-tuning, BERT is capable
of obtaining human-level or even better performance in multiple language-related tasks,
including document classification. On this basis, we consider BERT (or its variations)
a well-suited model for our attack, since it can obtain outstanding results with neither a
huge cost nor unfeasible knowledge assumptions from the attacker.

In addition to build her own classifier, we also expect the attacker to define a develop-
ment set to have an intuition of the classifier’s performance. In this way, it would be also
possible to tune the classifier’s hyperparameters to maximize the re-identification accu-
racy. This configures training as a best model search, in which multiple hyperparameters
are evaluated according to the accuracy obtained on the development set.

Going back to our algorithm, the classifier returned by the build_classifier method
is such that, after the further pre-training and fine-tuning steps, obtains the best accuracy
on the development set. To this end, multiple trainings with different hyperparameters
are performed, searching the best combination. A fixed number of epochs is defined
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for further pre-training, and fine-tuning is run until a pre-defined maximum number of
epochs is achieved or development accuracy does not improve (early stopping).

Regarding the data that can be employed to build the classifier and the develop-
ment set, recall that the attacker knowledge is limited to BD, BI , FB and AD. On the one
hand, documents inBD provide knowledge of the individuals’ specific vocabulary, which
improves understanding of domain-specific words. Additionally, BD can be labeled on
BI by using FB, thereby providing useful information about the relationship between
the publicly available background data and the individuals’ identity. This can lead to the
detection of (quasi-)identifying attributes (e.g., the person’s name or her demographic
attributes), which are the base of the re-identification attack. On the other hand, unla-
beled documents in AD convey knowledge on the anonymized vocabulary. This includes
information such as the co-occurrence of words left in clear with those subjected to
masking, which may allow inferring the latter from the former.

On this basis, a straightforward approach would be to use all documents in BD and
AD for further pre-training, and documents in BD labeled on BI for fine-tuning. This
produces a model with domain-specific knowledge capable of mapping documents to
BI , as it is required for the attack. Nonetheless, it is important to note that the goal of
the model is to correctly classify documents in AD, which come from a different data
distribution than the documents in BD. Concretely, BD are clear texts (such as identi-
fied posts in social media) whereas AD are anonymized texts (such as non-identified
medical reports with some words masked via suppression or generalization). Because
machine learning algorithms are sensitive to differences between training and test data
distributions, this could hamper the accuracy. For example, during the fine-tuning step,
the classifier may learn to focus on identifying words or structures that are not present
in the anonymized documents, which would be useless for the attack. To tackle this
problem, we propose creating an anonymized version of BD called BD’ by using any off-
the-shelf text anonymization method available to the attacker. Ideally the same method
used for AD should be employed but, because such method would be usually unknown,
a standard NER-based method (being NER the most common approach for practical
text anonymization), can be used instead. As a result, documents in BD’ would provide
an approximation of how data are anonymized, by employing documents more simi-
lar to those in AD. This offers useful information on how known documents (BD) are
anonymized, thereby facilitating disclosure of masked words based on their context. In
addition, BD’ can be labeled on BI (since BD’ → BD is known), therefore facilitating
the discovery of the identities underlying the masked documents; for instance, by dis-
covering identifying words neglected by the anonymization method (e.g., a particular
street name) that are also present in documents from AD. Taking this into consideration,
we propose using BD, BD’ and AD documents for further pre-training and the union of
BD and BD’ labeled on BI for fine-tuning, thereby obtaining a classifier model better
adapted to the content of the anonymized documents.

For the development set, we propose to extract a random subset of configurable size
from the documents in BD, which we call CD, and transform it to match, as much as
possible, the data distribution of AD. An intuitive approach would be to anonymize CD;
however, this would result into identical documents to those in BD’, which are already
present in training data. Thereupon, a previous step is required, aiming to differentiate
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CD texts from the BD ones and, if possible, to assimilate them to those in AD prior
anonymization. To this end, we propose to perform a summarization-like process on
documents from CD, obtaining ĈD. On this basis, abstractive or hybrid summarization
methods are preferred rather than extractive ones [40], so that they produce summa-
rizations that do not include sentences present in documents from BD. After that, the
summarized documents in ĈD are anonymized (obtaining ĈD’) in the same way as done
for BD’. Finally, the documents in ĈD’ are used as the development set of the attack.

4 Empirical Experiments

This section reports empirical results on the application of our re-identification attack to
a variety of text anonymization methods, both NLP-oriented and PPDP-grounded. We
also test the risk resulting from a manual anonymization effort.

As introduced above, NLP methods [8–20] tackle anonymization as a NER task, in
which allegedly private information categories (names, locations, dates, etc.) are detected
and masked. Detection is based on rules and models trained to identify the specific
categories, andmasking consists of replacing the detected entities by their corresponding
categories. We considered the following systems and tools that have been employed for
NER-based text anonymization [6]:

• Stanford NER [41]: provides three pre-trained NER models: NER3, which detects
ORGANIZATION, LOCATION and PERSON types; NER4, which adds the MISC
(miscellaneous) type; and NER7, which detects ORGANIZATION, DATE, MONEY,
PERSON, PERCENT and TIME types.

• Microsoft Presidio1: a NER-based tool specifically oriented towards anonymization.
Among the variety of types supported by Presidio, we enabled those corresponding to
quasi-identifying information:NRP -person’s nationality, religious or political group-,
LOCATION, PERSON and DATE_TIME types.

• spaCy NER2: we used the en_core_web_lg, model, which is capable of detecting
named entities of CARDINAL, DATE, EVENT, FAC (e.g., buildings, airports, etc.),
GPE (e.g., countries, cities, etc.), LANGUAGE, LAW (named documents made
into laws), LOC (non-GPE locations such as mountain ranges), MONEY, NORP
(nationalities or religious political group), ORDINAL, ORG, PERCENT, PERSON,
PRODUCT, QUANTITY, TIME and WORK_OF_ART types.

Regarding PPDP text anonymization methods, most of them are on the theoretical
side [23, 25, 26], suffer from severe scalability issues [21, 42, 43] or seriously damage
data utility [22, 24], making them hardly applicable. The only practical methodwe found
is [27],which is based onword embeddingmodels.Due to the lack of a name, thismethod
will be referred to as Word2Vec, this being the backbone neural model employed by this
work.

In addition to automatic methods, we also considered the manual anonymization
conducted by the authors of [27], which allows us to assess the robustness of manual

1 https://github.com/microsoft/presidio.
2 https://spacy.io/api/entityrecognizer.

https://github.com/microsoft/presidio
https://spacy.io/api/entityrecognizer
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effort against our re-identification attack. Finally, we also report re-identification results
on the unprotected versions of the documents in AD. This constitutes the baseline risk
that anonymization methods should (significantly) reduce.

As evaluation data, we employed the corpus described in [27], which consists of
19,000 Wikipedia articles under the “20th century actors” category. To simulate the
scenario described in Sect. 3, we considered the article abstracts as the private documents
to be anonymized, whereas the article bodies (whose content overlap with the abstracts,
even thoughpresented in a different,more detailedway)were assumed to be the identified
publicly available information. From this corpus, 50 article abstracts corresponding to
popular, contemporary and English speaking actors were extracted in [27] as the set to
be subjected to both automatic and manual anonymization. In terms of our attack, the
50 actors in the extracted set constitute AI , the 50 abstracts anonymized with a method
m define AD

m, and the article bodies in the corpus constitute BD (with a population of
BI actors that should encompass AI ).

The amount of background documents BD used to perform the attack, and their
overlap with AI , have a critical role in the success of the attack. To test this aspect, we
defined several attack scenarios by setting increasingly larger BDs:

• 50_eval: a worst case scenario for privacy, in which BI exactly matches AI , thereby
constituting the easiest re-identification setting. In this case BD comprises the 50
article bodies of the 50 anonymized abstracts.

• 500_random: a synthetic scenario consisting of 500 random article bodies taken from
the total of 19,000 in the corpus plus those corresponding to the 50 actors in AI that
were not included in the initial random selection. This ensures that AI ⊆ BI .

• 500_filtered: a set of 581 article bodies obtained by systematically filtering the initial
19,000 according to several features related to the actors in AD. In particular, we
discarded non-native English speakers, non-actors (e.g., directors), dead individuals,
those born before 1950 or after 1995 (latter included) and those whose article included
less than 100 links and was present in less than 40 languages (the latter two being
related to the ‘popularity’ of the actor). These criteria aim to maximize the number
of individuals in AI present in BI , even without knowing AI , as it would happen in
practice. As a result, 40 out of the 50 actors in AI appeared in BI . This limits the
re-identification accuracy to 80%.

• 2000_filtered: a set of 1,952 article bodies obtained by using the same criteria as in the
prior set but omitting the filter on the number of languages. This results in 41 actors
from AI appearing in BI , which limits the re-identification accuracy to 82%.

Once BD is set for a particular scenario, the corresponding BD’, CD, ĈD and ĈD’
sets required to define the training and development sets should be created as detailed
in Sect. 3.1. To create BD’, we anonymized the documents in BD by using spaCy NER.
On the other hand, ĈD comprised a subset of the abstracts corresponding to the bod-
ies in BD. Being the abstracts summaries of the article bodies, this procedure follows
the summarization-based approach proposed in Sect. 3.1, thus not requiring explic-
itly building CD. The size of ĈD was set to 10% for the 2000_filtered, 500_filtered
and 500_random scenarios, and 30% for 50_eval. Finally, the documents in ĈD were
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anonymized by following the same method employed for BD’, thus obtaining the ĈD’
set that constitutes the development set.

To realistically simulate the implementation of our method by a potential attacker,
we considered the resources that such attacker would reasonably devote. On this basis,
we employed Google Colaboratory, which offers the most powerful free platform for
building and running machine learning models. Resources at Google Colaboratory may
vary depending on the actual demand. In our tests, the running environment consisted of
an Nvidia Tesla K80GPUwith 16GB of VRAM, an Intel Xeon CPU and 12GB of RAM.
Google Colaboratory’s free tier limits the maximum duration of a run to 12 h. Trainings
with a longer duration require from saving the current model and manually restoring the
process, resulting in a new environment with a potentially different hardware allocation.
In order to ensure that all the computation is made on the same hardware (and also to
avoid the tedious manual restoring of the test), we didn’t consider scenarios with training
runtimes longer than 12 h. This discarded a potential scenario using the whole 19,000
articles as BD, whose fine-tuning runtime is estimated at about 21 h for 10 epochs.
The other scenarios had runtimes of 31, 99, 297 and 301 min, respectively. Note that
500_filtered took 2.5 times longer to train than 500_random because the length of the
documents in the former was 3 times larger, since the popularity filters applied resulted
in longer articles.

Out of the wide variety of pre-trained models based on BERT3, we have considered
those that stand out for their accuracy and/or efficiency, and that can befine-tunedwith the
limitations of our execution environment (e.g., GPU memory). Under this premise, we
selected DistilBERT (distilbert-base-uncased), a distilled version of the original BERT
which reduces 40% the model’s size but keeps a 97% of its performance in multiple
tasks; this provides a great trade-off between accuracy and cost.

As discussed in Sect. 3.1, themodel training included performing a bestmodel search
based on model’s hyperparameters. Considering the number of tests to be conducted,
their runtime and their similarities, we applied it to the 50_eval scenario and used the
obtained parameters in the remaining scenarios. Specifically, the hyperparameters that
provided the best accuracy for the development set were: learning rate 5e-5, batch
size 16, sliding window length/overlap 512/128 and sliding window length/overlap for
classification 100/25. Additionally, the Hugging Face’s AdamW optimizer was used
with default parameters except for the learning rate (betas 0.9 and 0.999, eps 1e-8 and
weight decay 0).

Pre-training was performed during 3 epochs and fine-tuning during a maximum of
20 epochs. Using the accuracy at the development set for early stopping criteria with
a patience of 5 epochs, fine-tuning was run for ~20 epochs for the 50_eval, 500_ran-
dom and 500_filtered scenarios and during ~10 epochs for the 2000_filtered scenario.
Additionally, it is important to note that the pre-training only used BD and BD’ without
performing the optimal fine-tuning using each one of the ADs. Doing so would increase
the number of tests by a factor of 8 (the number of methods/configurations tested), and
we observed no noticeable benefits in the worst-case scenario 50_eval.

3 https://huggingface.co/docs/transformers/index.

https://huggingface.co/docs/transformers/index


Automatic Evaluation of Disclosure Risks of Text Anonymization 167

4.1 Results

Figure 1 depicts the re-identification risk of each combination of background knowledge
and anonymization approach.

100 

56

C
le

ar
 te

xt

St
N

ER
3

76 

42

C
le

ar
 te

xt

St
N

ER
3

(a) 50_ev

(c) 500_

56 54 

86 

62 

St
. N

ER
3

St
. N

ER
4

St
. N

ER
7

Pr
es

id
io

42

28 

68 

42 
80

St
. N

ER
3

St
. N

ER
4

St
. N

ER
7

Pr
es

id
io

val    

_filtered

78 

22 

14 

sp
aC

y

W
or

d2
V

ec

M
an

ua
l

46 

10 6 

sp
aC

y

W
or

d2
V

ec

M
an

ua
l

98 

C
le

ar
 te

xt
53 

A
ve

ra
ge

35 

A
ve

ra
ge

78 

C
le

ar
 te

xt
  (b) 500

(d) 2000

58 50 

78 

St
. N

ER
3

St
. N

ER
4

St
. N

ER
7

28 

24 

62 

St
. N

ER
3

St
. N

ER
4

St
. N

ER
7

0_random 

0_filtered

54 

68 

14 

12

Pr
es

id
io

sp
aC

y

W
or

d2
V

ec

M
l

32 

34 8 

82

Pr
es

id
io

sp
aC

y

W
or

d2
V

ec

12

48 

M
an

ua
l

A
ve

ra
ge

6 

28 

M
an

ua
l

A
ve

ra
ge

Fig. 1. Re-identification risk percentages of several anonymization approaches with different
sets of background documents. In (c) and (d) the maximum possible re-identification accuracy is
depicted as a horizontal line.

First, we notice that the re-identification risk of AD
Clear text (that is, non-anonymized

documents) is close to the maximum, which is, 100% for 50_eval and 500_random, and
80% and 82% for 500_filtered and 2000_filtered, respectively. This proves the effec-
tiveness of the tuned DistilBERT model as classifier. For the case of anonymized doc-
uments, we observe that the attack is capable of re-identifying individuals even from
AD

Manual, with accuracies well-above the random guess, which is 2% for 50_eval, 0.2%
for 500_random, 0.17% for 500_filtered and 0.05% for 2000_filtered. This illustrates
that manual anonymization efforts are prone to errors and omissions, and are limited
when used as evaluation ground truth.

On the other hand, the average re-identification risk illustrate how BD influences the
results. In particular, the 500_random scenario provides just slightly less re-identification
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risk than 50_eval, because the common features of the 50 protected individuals make
them easily differentiable within the random set. In contrast, the risk of the filtered BDs
is significantly lower because i) not all the protected individuals are present in BD and
ii) those present are more similar to the other individuals in BD, thereby being harder to
discriminate.

Regarding the different anonymization methods, NER-based techniques show sig-
nificant deficiencies, reaching re-identification risks greater than 50% for the 50_eval
worst-case scenario and, still, no lower than 20% for 2000_filtered. On the other hand,
the PPDP approach from [27] achieved the best results of any automated method across
all BDs, with a re-identification risk just slightly greater than the manual anonymization.
That fact that this method does not limit masking to a pre-defined set of categories (as
NER-based methods do) certainly contributes to better mimic the human criteria and
decrease the disclosure risk.

5 Conclusions and Future Work

We have proposed an attack-based disclosure risk assessment method for evaluating
text anonymization methods. Compared to the standard recall-based privacy evalua-
tion employed in the literature, our method offers an objective, realistic and automatic
alternative that does not require costly and time consuming manual annotations. The
experimental results we report provide empirical evidences to the criticisms raised in [6,
27] on the limitations of NER-based methods for text anonymization. Our results also
suggest that privacy-grounded methods based on state-of-the-art language models (such
as the approach in [27]) offer more robust anonymization that better mimics the criteria
of human experts. Nevertheless, the reported re-identification accuracies, which are sig-
nificantly greater than the randomguess, suggest that there is still room for improvement,
even for manual anonymization.

As future work, we plan to evaluate the influence of the different hypermarameters
in the re-identification accuracy and training runtime and, also, test the behavior of
other pre-trained models. Furthermore, we plan to compare our re-identification risk
assessment to the standard recall metric.
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Abstract. Releasing and sharing mobility data, and specifically trajec-
tories, is necessary for many applications, from infrastructure planning
to epidemiology. Yet, trajectories are highly sensitive data, because the
points visited by an individual can be identifying and also confiden-
tial. Hence, trajectories must be anonymized before releasing or shar-
ing them. While most contributions to the trajectory anonymization lit-
erature take statistical approaches, deep learning is increasingly being
used. We observe that natural language sentences and trajectories share
a sequential nature that can be exploited in similar ways. In this paper,
we present preliminary work on generating synthetic trajectories using
machine learning models typically used for natural language processing.
Our empirical results attest to the quality of the generated synthetic
trajectories. Furthermore, our methods allow discovering natural neigh-
borhoods based on trajectories.

Keywords: Privacy · Synthetic data generation · Mobility data

1 Introduction

Personal mobility data in their simplest form are data about individuals that
include their locations at specific times. Sources of real-time raw individual loca-
tion data include, but are not limited to, cell towers, Wi-Fi access points, RFID
tag readers, location-based services, or credit card payments. Historical location
data, in the form of data sets in which each of the records corresponds to an
individual and includes her location data for some time periods, are referred to
as trajectory microdata sets. Such trajectory microdata sets are often interest-
ing to transport authorities, operators, and other stakeholders to evaluate and
improve their services, the state of the traffic, etc. Recently, due to the COVID-
19 pandemic, the health authorities have also become interested in mobility data
to predict the spread of infectious diseases.

The above landscapemotivates the need to share or even publicly releasemobil-
ity data. Sharing is occasionally done at an aggregate level (e.g., heat maps),
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rather than at an individual level. Whichever the specific type of mobility data,
sharing them entails a potential privacy risk. Mobility data are highly unique and
regular. Unicity refers to the data of different individuals being easily differen-
tiable, particularly at some specific locations. The starting and ending locations
of an individual’s trajectories are often their home and work locations which,
again, are highly unique and can lead to reidentification. In [4] it is shown that
individual full trajectories can be uniquely recovered with the knowledge of only
2 locations, and knowledge of 4 locations can lead to full reidentification of
95% of individuals in data set containing trajectories for 1.5 million individuals.
The regularity of trajectories implies that each individual’s data follows peri-
odic patterns. Namely, individuals tend to follow the same trajectories during
workdays–home to work and back to home.

These features may allow attackers with publicly available data or back-
ground knowledge about an individual (such as place of work) to infer sensi-
tive information about that individual, including health status, religious beliefs,
social relationships, sexual preferences, etc.

Our interest in this paper is trajectory microdata. A trajectory is a list of
spatio-temporal points visited by a mobile object. A trajectory microdata set
contains a set of trajectories, where each trajectory normally corresponds to a
different individual. The points in each trajectory are both quasi-identifiers and
confidential information: indeed, some locations can be very identifying (e.g.
the trajectory origin can be the individual’s home) and other locations can be
very confidential (e.g. if the individual visited a hospital, a church or a brothel).
Thus, anonymizing trajectories is not easy. Several anonymization mechanisms
have been proposed, but most of them do not provide solid privacy guarantees or
distort the data too much [9]. An alternative to releasing anonymized trajectories
is to generate synthetic trajectories that do not correspond to any specific real
trajectory [18].

Contribution and Plan of this Paper

We propose to leverage deep learning models used in natural language process-
ing, and in particular for next-word prediction, to generate synthetic trajectory
data. A key idea in the proposal is that road networks impose a context to peo-
ple’s movements, and so there is semantics connected to the transition from one
trajectory point to the next. Capturing this semantics is something that modern
language models based on deep learning have shown to excel at.

Section 2 reviews related work on trajectory data protection and synthetic
generation, including methods based on deep learning. Section 3 describes our
mechanism for synthetic trajectory data generation. Section 4 shows the results
of our experimental evaluation. Finally, Sect. 5 concludes the paper and high-
lights ideas for future work.
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2 Related Work

2.1 Sequential Models for Trajectory Prediction

Since trajectories have the same sequential nature as natural language sentences,
sequence models used for next-word prediction have also been extended to next
location prediction task. [2,21] use recurrent neural networks (RNNs) [19] and
their variations in the next location prediction task. RNNs have shown superior
performance due to their ability to capture trajectory data’s latent spatial and
temporal features. [25] utilise the bidirectional long-short-term memory (BiL-
STM) model and the similarity-based Markov model (SMM) to predict the indi-
viduals’ next locations while maintaining the semantic and spatial patterns of
the individuals’ trajectories.

2.2 Privacy-Preserving Tajectory Data Publishing

Existing methods for privacy-preserving trajectory publishing can be divided
into statistical methods and deep learning (DL)-based methods.

Statistical methods rely on one of the following principles [9,13]: (i) sup-
pression by removing points of trajectories that can identify individuals; (ii)
generalization by making the trajectories indistinguishable via grouping them
into larger ranges; (iii) distortion by using differential privacy (DP) to ensure
that the presence of a record in a data set leaks a controlled amount of informa-
tion; and (iv) perturbation by using techniques like location merging, clustering,
or generating virtual trajectories.

Most of the proposed works in the literature adopt one or more of the tech-
niques above to release privacy-preserving trajectory data. For instance, NWA [1]
anonymizes trajectories following a two-step procedure: 1) building clusters of
at least k similar trajectories, and 2) anonymizing trajectories in each cluster to
produce k-anonymous trajectory data. GLOVE [12] adopts a different procedure
with two steps as well: 1) computing trajectory-wise merge costs and 2) itera-
tively building clusters by merging two trajectories with the smallest cost until
satisfying k-anonymity. [6] use microaggregation clustering to group trajectories
according to their similarity and then replace them with group representatives.
[7] group similar trajectories and remove some of them to ensure k-anonymity.
KTL [22] adapts both l−diversity and t−closeness to trajectory data to counter
attacks facilitated by k-anonymity (e.g., attribute linkage). [3,14] adopt DP-
based methods to release distorted trajectories. [14] merge coexistent points
from different trajectories using a partitioning procedure based on the exponen-
tial DP mechanism, whereas [3] propose a mechanism for perturbing semantic
trajectories that satisfies ε-local DP.

However, statistical methods generally do not provide a proper trade-off
between the utility and privacy of their published trajectory data [24]. Non-
DP methods, to some extent, maintain the utility of the published data, but
they are vulnerable to several privacy attacks (e.g., attribute linkage and back-
ground knowledge attacks). Although l-diversity and t-closeness methods offer
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better protection against privacy attacks, they can have a negative impact on the
utility [16]. On the other hand, DP-based methods attempt to make the pres-
ence or absence of any single record unnoticeable from the protected output,
which makes such methods ill-suited to protect microdata (records correspond-
ing to individual subjects) without (i) severely reducing the data utility or (ii)
significantly degrading the privacy guarantee being offered [5].

DL-based methods aim to generate synthetic trajectories that can realis-
tically reproduce the patterns of individuals’ mobility [18]. The intuition is that
the generated synthetic data come from the same distribution of real trajectories
(thereby preserving utility). At the same time, they do not correspond to real
trajectories (thereby preserving privacy).

Existing DL methods leverage sequence natural language processing (NLP)
models, such as RNNs [19], or generative models, such as generative adversarial
networks (GANs) [11], to approximate the distribution of the real trajectory
data and then sample synthetic trajectories from that distribution.

[10,17] exploit the ability of RNNs to model problems over sequential data
having long-term temporal dependencies. Like training a next-word prediction
model, they train a next location prediction model using the real trajectory data
as training data. Then, they construct a synthetic trajectory by starting at some
arbitrary location and iteratively feeding the current output trajectory sequence
as input to the next step in the trained model.

GANs [11] set up a game between two neural networks: the generator G and
the discriminator D. G’s goal is to generate “synthetic” data classified as “real”
by D, whereas D’s goal is to correctly distinguish between real and synthetic
data and provide feedback to G to improve the realism of the generated data.
trajGAN [24] consists of a generator G which generates a dense representation
of synthetic trajectories from a random input vector z and a discriminator D,
which classifies input trajectory samples as “real” or “fake”. To capture contex-
tual and hidden mobility patterns and generate more realistic trajectories, traj-
GAN [24] uses RNNs to create dense representations of trajectories. SVAE [15]
builds its generator G based on an LSTM and a Variational Autoencoder (VAE)
to combine the ability of LSTMs to process sequential data with the ability of
VAEs to construct a latent space that captures key features of the training data.
MoveSim [8] uses a self-attention-based sequential model as a generator to cap-
ture the temporal transitions in human mobility. In addition, the discriminator
uses a mobility regularity-aware loss to distinguish real from synthetic trajec-
tories. [23] propose a two-stage GAN method (TSG) to generate fine-grained
and plausible trajectories. In the first stage, trajectories are transformed into a
discrete grid representation and passed as input for a generative model to learn
the general pattern. In the second stage, inside each grid, an encoder-decoder
generator is used to extract road information from the map image and then
embed it into two parallel LSTMs to generate trajectory sequences.

Although DL-based methods have shown promising performance in gener-
ating high-utility synthetic trajectories, privacy issues are likely to arise due to
overfitting the trained models on the original training data [18]. Consequently,
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a synthetic trajectory may resemble a real one and give an attacker the chance to
use this information for re-identification. In our proposed work, we adopt a DL-
based method to generate plausible synthetic trajectories and also mitigate the
above-mentioned privacy risk by integrating a randomization mechanism during
the synthetic trajectory generation phase.

3 Synthetic Trajectory Generation Method

This section presents our proposed mechanism for synthetic trajectory data gen-
eration. We first explain our approach to preprocess the original data, to con-
vert them from lists of spatio-temporal points into sequences of labels. Then,
we describe the BiLSTM neural network architecture, which we use to train a
next-point prediction model. Finally, we present the data generation process, in
which we use the randomization of next-point predictions to limit or prevent the
release of trajectories or subtrajectories present in the original data.

3.1 Data Preprocessing

The first step is to preprocess the trajectory data so that they are amenable
to be used as training data for a natural language processing model. Trajec-
tory microdata contain spatio-temporal points (id, x, y, t), where id is a trajec-
tory identifier, (x, y) is a latitude-longitude location and t is the time at which
the location was visited by the moving object. Analogously, NLP models take
sequences of tokens representing words (or parts of words) and punctuation. In
our preprocessing, we first define a bounding box around the area of interest
and discard outlying points. For example, when dealing with trajectory data in
a given city, trajectories that depart from the city to a far away area are not of
great interest.

Then, we build a grid of an arbitrary resolution within the bounding box.
The more resolution, the better accuracy we can obtain from further analysis of
the generated data, but also the more resources we will need in order to train the
generator model. The grid resolution also has an effect on the privacy properties
of the generated data. Continuing with the NLP example, the more resolution,
the bigger the dictionary of words that our model has to deal with. Next, we
assign each of the points in the data set to cells in the grid and label cells using an
invertible encoding function (such as alphabetic labeling or a number computed
as row × number of columns + column). Once each of the points is encoded as
a label, we discard all grid labels that do not appear in the data set, so as to
reduce the dictionary size, and recode the labels to the range [0 . . . #labels − 1].
At this point, each of the trajectories is a sequence of labels, similar to what
sentences are.

In addition, we compute and store the distribution of trajectory lengths and
discard trajectories with outlying lengths, again to save training resources. This
length distribution will later be used during the trajectory generation process.
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(a) Original trajectory data (b) Tessellation and cell labeling

Fig. 1. From trajectories to sequences of labels

Finally, we obtain the training (and validation) data by extracting n-grams
from the trajectories, using a growing window, and taking the last point in each
n-gram as the label for next-word prediction.

3.2 Next-Point Prediction Model

After preprocessing the training data, we use the bidirectional long short-term
memory (BiLSTM) model to solve the trajectory next-point prediction task.
BiLSTM’s main advantage over the other sequence models is that its input
flows from the past to the future and vice versa, making BiLSTMs a powerful
tool for modeling the sequential dependencies between trajectory points. Since
the presence of an individual at a specific location is usually influenced by the
previous and next locations the individual visits, BiLSTM is expected to capture
those local contextual patterns. Moreover, training BiLSTM on the trajectory
data of many individuals’ visited points within a limited geographic area is
expected to capture the global pattern of the individuals’ mobility in that area.
Therefore, BiLSTM is expected to predict the individuals’ next points more
accurately than other models.

Figure 2 shows the architecture of the proposed BiLSTM-based model for
the next-point prediction.

The first layer of the model takes a processed trajectory as input, which is
represented as sequence of points (pt−1, pt, . . . , pt+k), where pt is the point an
individual visited as time t. The embedding layer then maps each point in the
processed trajectory to a multidimensional vector with a predefined length so
the BiLSTM units can process it. Then, the BiLSTM units run the obtained
embeddings in two ways, one from past to future and one from future to past,
to preserve information from both past and future. Finally, the softmax layer
uses the output vectors of the BiLSTM units to produce a vector of probabilities
∈ RL of the next point, where L is the total number of labels.
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Fig. 2. Proposed BiLSTM-based model for next-point prediction

3.3 Synthetic Data Generation

The generation process starts by choosing the trajectory lengths (number of
points per trajectory) from the original length distribution obtained during the
preprocessing of the training data. Then, we generate batches of synthetic tra-
jectories of the same length to leverage on the parallelization capabilities of DL
models.

To generate each of the synthetic trajectories, we start by drawing a random
location label from the dictionary and feeding it to the trained model to predict
the next point. Then, we append the predicted point to the trajectory and feed
it again to the model. We repeat this process until we obtain trajectories of the
desired length.

One potential issue with this approach is that the model learns a 1-to-1
representation or mapping of the training data. This is especially (but not only)
possible when ML models overfit the training data. In these cases, the synthesized
trajectories are likely to mimic trajectories or sections of trajectories from the
training data (which would be akin to sampling them from the training data),
and thus not be truly synthetic. The solution we propose in this case is to
collect the top-k predictions of the next point and choose one of them uniformly
at random. In this case, even if the model is a 1-to-1 mapping of the original
data, the probability of a trajectory or sub-trajectory being equal to one in
the training data falls to (1/k)length. Even so, if the data were big and diverse
enough to contain any single possible trajectory in a grided area, all synthetic
data generated from them would necessarily be a sample of the original data.
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The above described top-k fix can still have issues if the distribution of prob-
abilities for the top k next-point candidates is close to uniform, or if there is
a clear peak for the first candidate and very similar probabilities for the rest
(which is often a symptom of overfitting). In such cases, the quality of the gen-
erated data can decrease, introducing artifacts in the trajectories, such as very
long transitions from one point to the following one. The k parameter has to be
adequately tuned to avoid these issues. In our experiments, we took k = 3.

4 Experimental Analysis

We run experiments that generate synthetic trajectory data out of two public
mobility data sets, namely the Cabspotting data set and the GeoLife data set.

4.1 Data Sets and Preprocessing

The Cabspotting data set [20] contains trajectories of occupied taxi cabs in
San Francisco and the surrounding areas in California. The data set contains
trajectories of nearly 500 taxis collected over 30 days. The trajectories consist
of points containing each a GPS location, a timestamp and an identifier. In our
preprocessing, we just keep points with longitudes between −122.6◦ and −122.0◦

and latitudes between 37.0◦ and 37.4◦. These points define an area of 2, 938.38
km2 around the San Francisco Bay area. Next, we define two grids with different
resolutions to generate two different data sets:

San Francisco 128: This is a grid of 128 × 128 cells, which results in 16, 384
cells, of which 4, 944 are visited at least once. These will become the labels
in our location dictionary for the first data set. They are shown in Fig. 3a.

San Francisco 256: This is a grid of 256 × 256 cells, or a total 65, 536 cells,
of which 12, 393 are visited at least once. These are the labels for the second
data set. Figure 3b shows the unique locations in the dictionary.

In both cases, we keep only trajectories with a length between 3 and 45
locations, which result in 437, 335 distinct trajectories. Figure 4 shows the dis-
tribution of the lengths of trajectories in the San Francisco 128 and 256 data sets.

The GeoLife data set [26–28] is a trajectory microdata set collected by
Microsoft Research Asia during the Geolife project. The data collection pro-
cess was carried out by 182 users during a period of over 3 years (2007–2012).
Each of the trajectories consists of a sequence of timestamped locations, col-
lected with varying sampling rates of one point every 1–5 s or every 5–10 m.
The data set collects different mobility modes and activities. Again, we keep
only points within longitudes 115.9904◦ and 116.8558◦ and latitudes 39.67329◦

and 40.22726◦, which yields an area of 4, 548.78 km2 around the city of Beijing.
We generate two data sets by defining two different grids of spatial resolutions
128 × 128 and 256 × 256:
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(a) San Francisco 128 (b) San Francisco 256

Fig. 3. Unique locations in the San Francisco data set for resolutions 128 and 256

(a) San Francisco 128 (b) San Francisco 256

Fig. 4. Distribution of the lengths of trajectories in the San Francisco 128 and San
Francisco 256 data sets

Beijing 128: The first data set is generates by tessellating the given area using
a grid of 128 × 128 cells, which results in 16, 384 cells, of which 7, 079 are
visited at least once. Thus, the location dictionary of the Beijing 128 data
set consists of those 7, 079 unique locations. Figure 5a shows these unique
locations in the dictionary. We keep trajectories with a number of points
between 3 and 70, which results in a total 36, 827 distinct trajectories.

Beijing 256: The second grid consists of 256 × 256 cells, or a total 65, 536
cells, of which 15, 831 are visited at least once. These are the labels for the
Beijing 256 data set. In this case, we keep 43, 741 trajectories, which have
lengths between 3 and 100 points. Figure 5b shows the unique locations in
the dictionary.

Figure 6 shows the distribution of the lengths of trajectories in the Beijing
128 and 256 data sets.
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(a) Beijing 128 (b) Beijing 256

Fig. 5. Unique locations in the Beijing data set for resolutions 128 and 256

(a) Beijing 128 (b) Beijing 256

Fig. 6. Distribution of the lengths of trajectories in the Beijing 128 and Beijing 256
data sets

In all four data sets, we completed the preprocessing phase by generating the
n-grams from the trajectories and keeping the last point in each of the n-grams
as the classification label for the next-point prediction models.

4.2 Model Training

For the San Francisco 128 data set, we trained a BiLSTM consisting of an
embedding layer of input dimension 4, 944 and output dimension 64, followed
by two BiLSTM layers of 256 and 128 units, respectively, and a dense layer of
128 units. The output layer consisted of 4, 944 units with the softmax activation
function. Dropout layers were included before and after the second BiLSTM
layer, with a dropout rate of 20%. The model was trained for 250 epochs with a
batch size of 250 and a validation split of 20%, using the Adam optimizer on the
sparse categorical crossentropy loss function. The model obtained an accuracy
of 48.53% and a validation accuracy of 48.7%.
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In the case of the San Francisco 256 data, we used a similar architecture
and training process, except for the embedding layer’s input dimension and the
number of units of the output layer, which were set to 12, 393, according to
the dictionary size. The accuracy of the model was 33.86%, while its validation
accuracy was 34.3%.

For the Beijing 128 and Beijing 256 data sets, we increased the BiLSTM
layer sizes to 512 and 256, respectively. The embedding layer’s dimensions and
output layer sizes were set to 7, 079 for Beijing 128 and 15, 831 for Beijing 256,
according to the sizes of their label dictionaries. The model trained on Beijing
128 obtained an accuracy of 79.3% and a validation accuracy of 62.29%. The
one trained on Beijing 256 obtained a 75.40% accuracy and a 47.81% validation
accuracy. These two models show overfitting to the training data, partly because
there are many fewer trajectories in these two data sets than in the San Fran-
cisco data sets with respect to the number of location labels (7, 079 labels for
36, 827 trajectories in Beijing 128, and 15, 831 labels for 43, 741 trajectories in
Beijing 256).

4.3 Results of Data Generation

Finally, we generated 20 synthetic data sets for each of the 4 training data sets
(San Francisco 128 and 256, and Beijing 128 and 256) both using the top-1 pre-
diction and our randomized strategy, that is, choosing the next point randomly
among the top-k predictions, for k = 3. Each of the synthetic data sets consisted
of 400 synthetic trajectories. For comparison, we also sampled the 4 training data
sets, again drawing 20 samples of 400 trajectories for each of them. Figures 7
and 8 show examples of the sampled and generated data sets.

As mentioned before, both Beijing synthetic data sets show some artifacts in
the shape of long jumps across points. This is partly the effect of being smaller
data sets and also the effect of overfitting.

In order to assess the quality of the generated data, we compared the original
samples with the synthetic data sets, according to the following metrics:

– dSL, computed as the mean of the sum of the distances (in km) between all
consecutive locations over all trajectories.

– Δr, defined as the average distance (in km) between any two consecutive
points over all trajectories.

– dmax, computed as the mean maximum distance (in km) between any two
consecutive locations over all trajectories.

– #locs, obtained as the mean number of distinct locations visited in each
trajectory.

– The mean number of visits per unique location #V/loc for all trajectories.

Table 1 shows the results for each of the data sets, averaged over the 20
different samples drawn or generated for each of them.

In the case of the San Francisco synthetic data sets, the results show smaller
values for dSL, Δr, and dmax under the top-1 and top-3 predictions than in
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Fig. 7. Examples of San Francisco trajectories. Top figures use a 128× 128 grid and
bottom figures use a 256× 256 grid. Figures in the left are samples from the original
data set, figures in the middle show the results of using top-1 predictions, while figures
in the right use random top-3 predictions.

Fig. 8. Examples of Beijing trajectories. Top figures use a 128× 128 grid and bottom
figures use a 256× 256 grid. Figures in the left are samples from the original data set,
figures in the middle show the results of using top-1 predictions, while figures in the
right use random top-3 predictions.
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Table 1. Quality metrics for the generated data

City Resolution Method dSL Δr dmax #locs #V/loc

San Francisco 128 sample 5.94 0.78 1.16 8.40 6.87

top-1 4.50 0.60 0.84 8.30 8.84

top-3 4.96 0.67 1.09 8.13 7.20

256 sample 5.73 0.64 1.11 9.83 3.78

top-1 3.94 0.45 0.81 9.57 4.81

top-3 4.70 0.54 1.16 9.52 4.11

Beijing 128 sample 5.91 0.56 0.71 10.37 3.43

top-1 6.26 0.62 1.31 7.83 4.01

top-3 14.5 1.45 4.90 8.38 3.41

256 sample 4.79 0.35 0.48 13.4 2.47

top-1 5.81 0.45 1.82 9.47 3.00

top-3 21.47 1.69 6.71 10.93 2.47

the sampled trajectories. This indicates that the synthetic trajectories tend to
be slightly shorter than the original ones, especially under the top-1 prediction.
The #locs metric shows similar results among the sampled and synthetic data
sets, while the #V/loc metric show slightly higher values for the synthetic data.
This, together with the shorter trajectories, seem to indicate that the trajectories
are more concentrated in the synthetic data than in the training data sets. This
might be caused by the sometimes limited capability of RNNs and BiLSTMs
to capture long-range relationships. ML models based on transformers seem to
capture these relationships better, and we plan to conduct experiments in this
regard in the future.

Regarding the Beijing data, the results reveal the effects of the artifacts
described above, reflected by values for dSL, Δr, and dmax under top-1 and top-
3 that are much higher than those in the sampled data (especially in the top-3
case). The number of locations, and the number of visits per location, however,
do not show such big deviations.

4.4 Additional Remarks on the Experimental Work

One point of independent interest appears when analyzing the vector embed-
dings learnt by the models, especially in the case of the San Francisco data set.
Figure 9 shows a clustering of the vector embeddings projected on the San Fran-
cisco map together with a neighborhood division of the same city1. While not
exactly aligned, the clustering shows three big areas in the west and three in
the east, surrounding a central area with several divisions, similar to that in the
neighborhood map.
1 A SF local’s guide to the neighborhoods of San Francisco. https://sfgal.com/sf-

locals-guide-to-neighborhoods-of-san-francisco/.

https://sfgal.com/sf-locals-guide-to-neighborhoods-of-san-francisco/
https://sfgal.com/sf-locals-guide-to-neighborhoods-of-san-francisco/
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Fig. 9. Clustering of embeddings compared to a map of neighborhoods

Such results suggest that analyzing the vector embeddings resulting from
trajectory data sets might be of use to other applications based on city areas,
possibly together with additional information. One possible example of applica-
tion would be the prediction of house prices in different areas of a city.

5 Conclusions and Future Work

In this paper, we have shown preliminary work on the generation of synthetic
trajectory microdata using machine learning models typically used for natu-
ral language processing and time series. We have shown the potential of such
approaches and proposed a strategy to limit the possible data leakages from
the data generation. An independent result arising from the study of the vec-
tor embeddings learnt during the training process might be of interest in other
related areas.

As future work, we plan to replicate the experiments using modern architec-
tures for NLP based on transformers, which have shown a higher performance in
NLP tasks than BiLSTMs, especially regarding long-term relationships between
concepts. Additionally, we plan to study the effects of differential privacy in the
synthetic data, using different approaches such as DP-SGD and PATE. Other
potential research directions involve including the time dimension in the generated
data and replicating the process in distributed or federated learning scenarios.
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Abstract. The United States Internal Revenue Service Statistics of
Income (SOI) Division possesses invaluable administrative tax data from
individual income tax returns that could vastly expand our understand-
ing of how tax policies affect behavior and how those policies could be
made more effective. However, only a small number of government ana-
lysts and researchers can access the raw data. The public use file (PUF)
that SOI has produced for more than 60 years has become increasingly
difficult to protect using traditional statistical disclosure control meth-
ods. The vast amount of personal information available in public and
private databases combined with enormous computational power create
unprecedented disclosure risks. SOI and researchers at the Urban Insti-
tute are developing synthetic data that represent the statistical proper-
ties of the administrative data without revealing any individual taxpayer
information. This paper presents quality estimates of the first fully syn-
thetic PUF and shows how it performs in tax model microsimulations as
compared with the PUF and the confidential administrative data.

Keywords: Disclosure control · Synthetic data · Utility ·
Classification and regression trees

1 Introduction

The United States Internal Revenue Service (IRS) possesses invaluable adminis-
trative tax data from individual income tax returns that could vastly expand our
understanding of how tax policies affect behavior and how those policies could
be made more effective. For decades, the IRS Statistics of Income (SOI) Divi-
sion has released an annual public use file (PUF), a privacy-protected database of
c© Springer Nature Switzerland AG 2022
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sampled individual income tax returns. Several organizations, including the
American Enterprise Institute and the Urban-Brookings Tax Policy Center use the
PUF as the basis of microsimulation models that help the public understand the
potential impacts of policy proposals. However, awareness of the growing threats
to public use microdata and a general concern for protecting participants’ privacy
have led the IRS to increasingly restrict and distort information in the PUF. This
makes the PUF less useful for policy analysis and academic research.

To address the threats to privacy, we generate a fully synthetic public use file
or SynPUF, consisting of pseudo records of individual income tax returns that
are statistically representative of the original data (Little 1993; Rubin 1993). Our
methodology is an extension ofBowen et al. (2020), which synthesized nonfiler data
from tax year 2012, but not all lessons directly apply to the PUF, because individ-
ual taxpayer data are much more complex and diverse than the nonfiler data.

Our most important contribution is our methods for addressing these addi-
tional challenges to synthesize data, such as synthesizing the survey weights,
selecting the order of variables for synthesis, and applying variable constraints.
Our ultimate goal is to generate a SynPUF that maintains strong data confiden-
tiality while providing better data utility than the PUF that SOI traditionally
releases. For this purpose, we rigorously evaluate the SynPUF against both the
administrative tax data and the PUF on various disclosure risk metrics and
utility measures.

We organize this paper as follows. Section 2 describes how we generate the
SynPUF data source from the confidential administrative tax data and details
the data synthesis methodology for the SynPUF, covering our measures for dis-
closure risk. Section 3 evaluates and compares the SynPUF to the original PUF
and confidential administrative tax data. Conclusions and discussions about
future work are in Sect. 4.

2 Data Synthesis Methodology

In this section, we describe how the SOI creates the administrative tax data
and the PUF. We then outline the subsampling procedure used to generate the
most recent PUF. We also provide an overview of our synthetic data generation
process and how we address several of the challenges in synthesizing complex
tax data.

2.1 Administrative Tax Data

The IRS processes all federal individual income tax returns – Form 1040, its sched-
ules and supplement forms, and relevant informational return – and stores them in
the IRS Master File, a massive tax database of more than 100 million unedited tax
returns (145 million records in 2012). However, the Master File has limited use for
tax policy analysis due to potential data inconsistencies (e.g., original tax forms
filed by taxpayers) and its size. To produce a dataset more suitable for analytical
purposes, SOI annually produces the INSOLE (Individual and Sole Proprietor),
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a stratified sample of all individual income tax returns drawn from the Master File
and cleaned by the SOI (Burman et al. 2019). In 2012, for example, the INSOLE
contained 338, 350 records. The selected returns are edited to add items not cap-
tured in the Master File and to be internally consistent.

To produce the PUF, SOI draws a sample from the INSOLE and applies tradi-
tional statistical disclosure control (SDC) techniques (Bryant et al. 2014; Bryant
2017). To protect privacy, many INSOLE records are dropped to reduce the sam-
pling rate, making any individual return unlikely to be in the PUF, and records
with an extremely large value for a key variable are aggregated into one of four
aggregate records (Burman et al. 2019). The 2012 PUF has 172,415 records.

2.2 Synthetic Data Generation

We describe our synthetic generation in three steps: a synthesis preparation step,
a synthetic data generation step, and a post-processing step. We classify any data
preparation as our synthesis preparation step. Our synthetic data generation step
encompasses the synthetic data generation process and any additional noise or
modifications we introduced. The post-processing step includes any changes we
made to the synthesized data, such as ensuring consistency among variables.

Synthesis Preparation: We draw from the INSOLE to create a new file called
the modINSOLE. This approach allows us to keep more of the original records
from the INSOLE than those used in the PUF for developing our synthesis
model. To generate the 2012 modINSOLE, we use tax returns for tax year 2012
that were filed in calendar year 2013. This excludes a small number of tax-year
2012 returns filed after 2013, because some people filed their taxes late.

Since the INSOLE is a weighted sample of the IRS Master File, we sample the
new modINSOLE records within each INSOLE stratum to preserve the pattern of
survey weights. To increase data privacy, we combine the 98 INSOLE strata into
25 modINSOLE strata, grouped by weight and the greater of gross positive or the
absolute value of gross negative income. Because the combined strata have differ-
ent weights, we sample with replacement using sampling weights larger than the
stratum’s smallest sampling weight. We then recalculate the weights until every
record in the new modINSOLE stratum has an identical sampling weight. This
process allows us to vary the synthesis order and other synthesis strategies by stra-
tum, and implement a wider range of machine learning algorithms, particularly
ones that cannot accommodate a sample of records with different weights.

For strata that include records sampled at a rate greater than 0.2 (i.e., 20% of
the population), we randomly remove observations and then increase the weights
of the remaining observations to maintain the correct population count until the
sampling rate of those strata equals 0.2.

Overall, the sampling procedure discards fewer records from the INSOLE
than the PUF, which increases the amount of information we can use to train
our model. This presents little increase in disclosure risk because, unlike the
PUF, no actual tax returns are included in the SynPUF. The final modINSOLE
file contains 265, 239 records, which we will refer to as the confidential data.
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Synthetic Data Generation Step: For our synthetic data step, we implement
a sequence of Classification and Regression Tree (CART) models within each
modINSOLE stratum (Breiman et al. 1984; Reiter 2005).

Our synthesis procedure begins with 28 categorical variables (e.g., tax filing
status), integer counts (e.g., number of dependents), or integer numeric variables
(e.g., age in years). These variables create at least two key challenges. First, the
sequential synthesis must avoid impossible combinations of variables (e.g., a
spouse age for a record that has a single filing status). Second, our method for
adding additional noise to variables (outlined later in the sections) only works
for plausibly continuous variables.

To deal with these challenges, we first sort categorical variables into essen-
tial, non-essential, and modeled (i.e., variables calculated from the essential vari-
ables). We then draw new records from observed combinations of essential vari-
ables to guarantee that the synthesized combinations match observed combina-
tions. This preserves the distribution of categorical variables and prevents the
creation of impossible combinations. We also check that the joint frequencies
of these categorical variables are sufficiently dense (i.e., counts are not ones or
twos). Based on the set of values from each draw of essential variables, we gen-
erate the modeled variables before synthesizing sequentially the non-essential
variables.

To synthesize continuous variables, we apply a sequence of CART models.
These models use previously synthesized variables as their explanatory variables.
We select the order of variables to be synthesized within each stratum. The
synthesis order is important because variables synthesized later in the sequence
tend to produce noisier values (Bonnéry et al. 2019). After testing, we find that
the order produced by the greatest to least weighted sum of absolute values
yields the best synthesis based on our utility metrics.

The application of CART in data synthesis dates to Reiter (2005), who pro-
posed to use a collection of nonparametric models to generate partially synthetic
data. CART sorts data through a sequence of binary splits that end in nodes
that are intended to be homogenous. When the target variable is categorical,
CART predicts the outcome using classification trees. This method builds the
tree through an iterative process of splitting the data into binary partitions.
For continuous variables, CART uses regression trees to choose the value that
splits the continuous values into the partitions. A regression tree creates nodes
with the smallest sum of squared errors (calculated as squared deviations from
the mean). Because this data-driven method is more flexible than parametric
approaches, such as regression-based models, it can account for unusual vari-
able distributions and nonlinear relationships that can be hard to identify and
model explicitly. Recent research has demonstrated that it tends to outperform
regression-based parametric methods and it is computationally feasible (Bonnéry
et al. 2019; Drechsler and Hu 2021).

We estimate CART models for each variable with all previously synthesized
outcome variables as potential predictors. Our synthetic-data generation method
is based on the insight that a joint multivariate probability distribution can be
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represented as the product of a sequence of conditional probability distributions.
We define this mathematically as

f(X|θ) = f(X1,X2, ...,Xk|θ1, θ2, ..., θk)
= f1(X1|θ1) · f2(X2|X1, θ2)...fk(Xk|X1, ...,Xk−1, θk)

(1)

where Xi for all i = 1, ..., k are the variables to be synthesized, θ are vectors of
model parameters, such as regression coefficients and standard errors, and k is
the total number of variables. As mentioned above, we use the weighted sum of
absolute values to determine our synthesis order.

Here we navigate the tree splits until a unique final node is identified to
predict each observation. Traditionally, predictions are made with a conditional
mean, but that method may result in incorrect variances and covariances, and
too few values in the tails of the marginal distributions (Little and Rubin 2019).
Similar to other implementations, we sample from the final node to predict
observations, which remedies this issue.

Since the ith CART model would need to consider i − 1 variables, and i
can be as large as 150, we drop predictors with very low variance (Kuhn and
Johnson 2019). These are variables in which the most common value occurs
in about 95% of observations, the second most common value occurs in about
five percent of the observations and unique values make up no more than one
percent of the observations. In addition, we pre-select predictors to be considered
based on subject matter expertise, as is common for parametric models like
linear regression. Bonnéry et al. (2019) used that approach in their synthesis of
education data from the Maryland Longitudinal Data System.

Noise Addition to Protect Against Disclosure: Sampling from final nodes of a
fitted CART model reproduces the observed values of the confidential data,
creating disclosure risk. Reiter (2005) used a kernel smoother, replacing each
value with a local average. We apply the method similar to Bowen et al. (2020),
where the noise is added to each value instead, completely obscuring it. A brief
summary of the process is the following:

1. Split the outcome variable from the confidential data into equal sized and
ordered groups. If a group has an identical minimum and maximum (i.e., the
group has no variation), then combine with adjacent groups.

2. Estimate a Gaussian kernel density on each group.
3. Map the predicted value from the CART algorithm to the corresponding

group from step 1.
4. Draw a value from a normal distribution with mean equal to the value pre-

dicted by the CART algorithm and variance equal to the optimal variance for
the kernel density estimator calculated in step 2. The derived value becomes
part of the synthetic observation.

This process results in a smooth and unbounded distribution of synthetic
data. Furthermore, the procedure adds more noise in sparse parts of the distri-
bution where individual values are distinct and less noise in parts of the distri-
bution where values are common and unidentifiable. No noise is added to very
common values, such as zeros.



196 C. M. Bowen et al.

Mid-synthesis Constraints: Without any constraints, the synthesis may gener-
ate values that fall outside the bounds of the data. We outline three types of
constraints to address this issue (Drechsler 2011):

1. Unconditional bracketed constraints are univariate constraints on the minima
and maxima of continuous variables. For example, net capital losses may only
take values in the range of $0 to −$3,000.

2. Conditional bracketed constraints are multivariate constraints on the minima
and maxima of continuous variables. For example, educator expenses have
a maximum of $500 for married taxpayers filing jointly and $250 for other
taxpayers. A variable may need to simultaneously satisfy many conditional
bracketed constraints.

3. Some variables must be greater than or equal to another variable or vari-
ables. For example, total dividends must be greater than or equal to qualified
dividends, total IRA distributions must be greater than or equal to taxable
IRA distributions, and total pensions and annuities must be greater than or
equal to taxable pensions and annuities. To impose these linear constraints,
we calculate some variables during post-processing (e.g., child tax credit),
synthesize component parts (e.g., taxable and nontaxable IRA distributions),
or model some variables as proportions of other variables. For example, we
model the wage split between primary and secondary taxpayers on married
filing jointly return as a function of total reported wage and salaries and other
variables.

Synthesized Components: If a variable is a sum of component variables and it
does not have a bracket constraint for the maximum, the component variables
should be synthesized and summed to generate the overall variable. If a con-
straint cannot be applied with post-processing or synthesizing components, we
apply two different approaches: hard bounding and z-bounding (Drechsler 2011).
When a value falls outside of a lower or upper bound, we can set that value to
the closest bound, which is called hard bounding. While this approach is easy to
implement, it causes biases because values may cluster at those bounds. How-
ever, hard bounding can work well for certain variables that already have values
clustered at the bounds. For instance, net capital loss is capped at $3,000 and
the underlying values naturally cluster at that bound.

We also implement the Z-bounding technique that resamples the problematic
value up to z times. If none of the sampled values satisfies the constraint the
value is hard bounded (Drechsler 2011). This approach can potentially have
a high computational cost if many values fail to satisfy the constraint on the
first synthesis, because a smaller but still significant proportion may fail on
subsequent re-syntheses.

Post-processing Step: To avoid internal inconsistencies, the variables synthe-
sized thus far do not include calculated variables. In this step, we compute these
variables based on previously synthesized values. In addition, several variables
are capped to protect data privacy or to preserve relationships between variables
in the INSOLE.
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Calculated Tax Variables: We calculate some variables during the post-processing
step instead of synthesizing the variable. For example, the Child Tax Credit is
a function of synthesized variables, including the number of qualifying children,
AGI, and filing status.

Capping Variables: We restrict the values of some variables to protect data pri-
vacy, to preserve relationships between variables in the INSOLE, and to resemble
the PUF. For example, we cap age at 85.

Data Modifications: We limit or recode some variable values because these values
are not needed to calculate tax liability, are restricted due to SOI policy, or pose
a disclosure risk due to too few observations having those values. For example, we
restrict the number of dependents to four based on SOI policy. This minimally
affects the data utility because there are very few households that have over
four dependents. Additionally, all tax variables are rounded according to SOI
rounding rules applied to the current PUF.

Reweighting the Strata: Our final post-processing step is ensuring the SynPUF is
a representative sample of the confidential data. We plan to reweight synthetic
tax return records to ensure means and counts of selected variables approxi-
mately match SOI published totals by income group. Guaranteeing that key
aspects of the synthetic data, like the distribution of capital gains income, match
the US population facilitates the use of SynPUF as a data source for building
microsimulation models. Note that this reweighting would not incur any addi-
tional privacy loss given that the targets are already published.

2.3 Disclosure Risk Measures

Replacing actual data with fully synthetic data protects against identity dis-
closure or a data intruder associating an individual with a specific record in
the released data. This is because no real observations are released. Similarly,
fully synthetic data helps prevent attribute disclosure because no actual values
are released while limiting a data intruder’s confidence in any given value of
a sensitive variable (Reiter 2002). But synthetic data may still risk disclosing
information if they are not carefully constructed for various reasons, such as
perfectly replicating the observations (Raab et al. 2017). We, therefore, evaluate
our processes with two risk measures based on the modINSOLE and before the
noise addition step to verify that the risk of disclosure is extremely small.

Frequency: We count the number of records from the original data that are
replicated completely in the synthetic data. But because it is very difficult to
exactly replicate observations with 175 variables, these counts should also be
performed on a meaningful subset of variables, such as the variables on the front
and back of Form 1040. We do this in three different ways. First, we count
the number of observations from the modINSOLE replicated in the SynPUF.
However, the modINSOLE may contain many identical records. If these records
were replicated in the SynPUF, there would not be any disclosure risk because
the records represent many tax returns and thus could not uniquely identify
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any individual tax unit. Many of these records consist almost entirely of zero
entries, which also reduces the disclosure threat. Our second measure adjusts
for this by counting the number of unique observations from the modINSOLE
replicated in the SynPUF. In principle, an attacker can also gain some infor-
mation about the modINSOLE from the SynPUF because a unique record on
the SynPUF might reflect a unique record on the modINSOLE. Consequently,
our third measure counts the number of observations that are identical and
unique in both the confidential data and the synthetic data before smoothing
(so-called unique-uniques). Adding noise changes these values, so testing the
unique-uniques beforehand (as we do) is a conservative measure.

Sample Heterogeneity: The second risk metric concerns heterogeneity or a
check for attribute disclosure risk. In other words, when a data intruder can
associate sensitive data characteristics to a particular record or group of records
without identifying any exact records. We check for heterogeneity in the SynPUF
using a measure known as l-diversity (Machanavajjhala et al. 2007). For each
node in the CART models, this measure counts the number of distinct non-zero
values in the modINSOLE. For each variable, we count the number of records
that contain a value derived from a node with fewer than 3 values (the so-called
“rule of 3” used as a rough screen for disclosure risk by government agencies).

We calculate the l-diversity of the final node for each synthetic value for each
synthesized variable because more diversity provides more privacy protection.
The measures are applied to data before the noise addition in the synthetic data
generation step and before IRS rounding rules are applied. These measures are
therefore unrealistically pessimistic and the actual privacy protection in the Syn-
PUF is greater than they indicate. We count the number of observations in the
SynPUF generated from nodes with fewer than three unique values, excluding
all-zero nodes.

3 Evaluation

For disclosure risk, the synthesizer does a good job of creating records that are
plausible but do not match records in the confidential data too closely. Table 1 in
the Appendix shows that no observations in the synthetic dataset exactly match
observations in the confidential data under different matching conditions. When
examining just variables from the Form 1040, four observations are recreated
out of the possible 265,239 records, and one unique observation is recreated. As
noted, adding noise and rounding will eliminate these few matches.

Table 2 in the Appendix demonstrates that the overwhelming majority of
synthetic values come from heterogenous nodes. More than 75% of values in all
variables come from nodes with three or more unique values and 99% of values
in 59% of the variables come from nodes with fewer than three unique values.
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Table 3 (also in the Appendix) measures node heterogeneity within observa-
tions. For example, all the 170 numeric tax variables (out of the 175 variables)
come from nodes with at least three unique values in 9,181 observations (which
represents 11% of all synthesized observations). Similarly, for 50,106 observa-
tions, or 19% of all synthesized observations, all but three variables come from
nodes with at least three unique values. This demonstrates that the overwhelm-
ing majority of values in each observation come from nodes with heterogeneity.
In particular, 89.5% of all observations have at most eight variables whose values
come from nodes with fewer than three unique values, and all observations have
at most 20 variables whose values come from such nodes.

Next, we show that utility of the SynPUF is generally high. Figure 1a in the
Appendix shows that the weighted mean for each variable in the SynPUF closely
matches the weighted mean in the confidential data. In contrast, the standard
deviations of some variables are markedly smaller in the SynPUF than in the
confidential data (Fig. 1b in the Appendix). We suspect this is due to some of our
post-processing procedures (e.g., capping variables). We plan to investigate this
divergence further in several ways, such as examining the error from the CART
models, noise addition, mid-synthetic restrictions, and post-processing step.

Figure 2 in the Appendix shows the density of pairwise differences in correla-
tion coefficients. A value of zero means the correlation between two variables in
the synthetic data exactly matches the correlation in the confidential data. While
there are a few outliers, most of the correlations are extremely close. 96.1% of
differences are less than 0.01 and 55.7% of differences are less than 0.001.

Finally, we compare tax microsimulation results from the PUF, SynPUF, and
confidential data. To do this, we apply a tax calculator designed by the Open
Source Policy Center and maintained by the Policy Simulation Library1 to the
modINSOLE, the PUF, and the SynPUF. For each dataset, we calculate forms of
income, such as adjusted gross income, taxable income, and income from capital
gains, taxes on ordinary income and capital gains. We then simulate a uniform
increase in tax rates and compare how well tax calculations on the PUF and
the SynPUF match the same calculations on the modINSOLE. Figure 3a shows
that the synthetic data closely matches the confidential data’s distribution of
Adjusted Gross Income (AGI) except for the top one percent. Figure 3b illus-
trates that the synthesizer closely reproduces the number of filers with taxable
income. For more microsimulation results, see Bowen et al. (Forthcoming).

4 Conclusions and Future Work

This paper demonstrates the feasibility of producing a fully synthetic public
use file of individual income tax return information. The SynPUF matches
key characteristics of the confidential data, such as univariate means and most
correlations between variables, fairly well. The data also adhere to hundreds
of logical constraints that reflect the complexity of the tax code complexity.
Based on preliminary tests, the SynPUF appears promising for microsimulation
1 See https://pslmodels.org/.

https://pslmodels.org/
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modeling, but certain aspects, such as the correlation between certain variables,
need improvement.

The SynPUF have several advantages over the PUF produced using tradi-
tional SDC methods. First, the synthesis is designed to provide a robust pro-
tection against disclosure of individual data for every variable and record. In
constrast, traditional SDC methods require identifying privacy risks associated
with particular records or variables and designing targeted approaches to miti-
gate those risks.

Second, the process of manual risk assessment and mitigation is labor-
intensive and time consuming. In principle, the process of creating a synthetic
PUF can be largly automated, especially in years when the tax law does not
change, making the production of subsequent PUFs faster. SOI will still need to
carefully assess the utility and privacy of the resultant file and probably submit
it to trusted users for testing before release. But, the synthesis process should
allow fast creation of synthetic PUFs. More importantly, given the resource con-
straints at the IRS, this process requires much less staff time than the current
methods.

Third, a synthetic data file can safely include all the variables in the INSOLE
including variables that are not currently released in the PUF. These variables
allow analysts at the Joint Committee on Taxation and Office of Tax Analysis
to model the effects of a wide range of policies. Including those variables on the
SynPUF would allow analysts outside of government to analyze the same range
of policies as the official scorekeepers. That independent vetting of the effects of
current and proposed policies better informs the public and can strengthen con-
fidence in the information released from official sources. Further, SynPUF can
safely include observations with extreme (albeit synthesized) values which facil-
itate microsimulation analyses that encompass this subpopulation of taxpayers.
Currently, records with extreme values have been aggregated into a handful of
aggregate records in the PUF.

Finally, because the synthetic PUF does not include any actual tax records,
SOI can safely distribute it to a larger audience than the select few institutions
who currently have access.

Acknowledgments. The projects outlined in this paper relied on the analytical capa-
bility that was made possible in part by a grant from Arnold Ventures. The findings
and conclusions are those of the authors and do not necessarily reflect positions or
policies of Internal Revenue Service, the Urban Institute, or its funders.
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Appendix

Table 1. Number of duplicate records out of the possible 265, 239 records.

Duplicate All variables count 1040 variables count

Records recreated 0 4

Unique records recreated 0 1

n < 3 records recreated 0 1

Unique records recreated
as a unique record

0 1

Table 2. l-diversity results within each variable.

More than 75% More than 95% More than 99%

Percent of variables 100% 80% 59.4%

Table 3. l-diversity results across observations.

Variables with
l -diversity < 3

Observation count Percent of total Cumulative
percentage

0 9,181 11.0% 11.0%

1 11,495 4.3% 15.3%

2 14,894 5.6% 21.0%

3 50,106 18.9% 39.8%

4 32,025 12.1% 51.9%

5 28,230 10.6% 62.6%

6 22,620 8.5% 71.1%

7 28,732 10.8% 81.9%

8 20,088 7.6% 89.5%

9 9,322 3.5% 93.0%

10 4,616 1.7% 94.7%

11 4,582 1.7% 96.5%

12 6,244 2.4% 98.8%

13 1,293 0.5% 99.3%

14 1,504 0.6% 99.9%

15 208 0.1% 100.0%

16 67 0.0% 100.0%

17 20 0.0% 100.0%

18–20 12 0.0% 100.0%



202 C. M. Bowen et al.

(a) Variable weighted means in the Syn-
PUF versus modINSOLE.

(b) Standard deviations in the SynPUF
versus modINSOLE.

Fig. 1. Each dot represents a variable, such as wages and salaries or interest income.
The diagonal line represents equivalence, and dots off of it indicate that the SynPUF
and modINSOLE have different variable weighted means and standard deviations.

Fig. 2. Density of pairwise correlation differences.
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(a) Distribution of Adjusted Gross Income (AGI).

(b)

Fig. 3. Tax microsimulation results from the confidential data, PUF, and SynPUF,
which are grouped in that order for these plots.
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Abstract. The synthesis mechanism given in [4] uses saturated models,
along with overdispersed count distributions, to generate synthetic cat-
egorical data. The mechanism is controlled by tuning parameters, which
can be tuned according to a specific risk or utility metric. Thus expected
properties of synthetic data sets can be determined analytically a pri-
ori, that is, before they are generated. While [4] considered the case of
generating m = 1 data set, this paper considers generating m > 1 data
sets. In effect, m becomes a tuning parameter and the role of m in rela-
tion to the risk-utility trade-off can be shown analytically. The paper
introduces a pair of risk metrics, τ3(k, d) and τ4(k, d), that are suited to
m > 1 data sets; and also considers the more general issue of how best to
analyse m > 1 categorical data sets: average the data sets pre-analysis
or average results post-analysis. Finally, the methods are demonstrated
empirically with the synthesis of a constructed data set which is used to
represent the English School Census.

Keywords: Synthetic data · Privacy · Categorical data · Risk
metrics · Contingency tables

1 Introduction

When disseminating data relating to individuals, there are always two conflicting
targets: maximising utility and minimising disclosure risk. To minimise risk, statis-
tical disclosure control (SDC) methods, which typically involve either suppressing
or perturbing certain values, are applied to a data set prior to its release. One such
method is the generation of synthetic data sets [6,14], which involves simulating
from a model fit to the original data. These methods, while reducing risk, adversely
impact the data’s utility resulting in a clear trade-off between risk and utility.

This paper focuses on the role of multiple data sets when synthesizing cate-
gorical data (that is, data consisting of only categorical variables) at the aggre-
gated level using saturated count models [4]. Saturated synthesis models allow
the synthesizer to generate synthetic data with certain pre-specified properties,
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thus allowing them to easily tailor the synthesis to suit the data environment
[3]. For example, if the intention is to release open data, relatively more noise
can be applied to the data than if the data are released in a secure environment.
While the Poisson model is often used to model categorical data, for synthesis
this is not necessarily an optimal choice, because the synthesizer - that is, the
person(s) responsible for synthesizing the data - has no control over the variance
and has, therefore, no way to add additional noise to at-risk records in the data.
For this reason, the negative binomial (NBI), a two-parameter count distribu-
tion, is much more effective for synthesis. As the NBI distribution’s variance is
not completely determined by the mean - though the variance is always greater
than the mean - the variance can be increased accordingly. Nevertheless, there
are still restrictions and these are discussed later on.

Specifically, this paper explores how flexibility can be incorporated into the
mechanism through the use of multiple synthetic data sets. In some cases (as
explained in Sect. 3), m > 1 synthetic data sets must be generated; while in
other cases, though it may be sufficient to generate just m = 1 synthetic data
set, the optimal m can still be considered in relation to the risk-utility trade-
off: does the improvement in utility sufficiently outweigh the cost in terms of
greater risk? This is because, since it reduces simulation error, increasing m
leads to greater utility but also, inevitably, greater risk [11,12]. More generally,
considering m > 1 introduces another tuning parameter for the synthesizer to
set, thereby providing further flexibility.

This paper is structured as follows: Sect. 2 summaries the (σ, α)-synthesis
mechanism, on which the results in this paper are based; Sect. 3 extends the
mechanism to incorporating m > 1; Sect. 4 introduces the τ3(k, d) and τ4(k, d)
metrics, developed to assess risk in multiple categorical synthetic data sets;
Sect. 5 presents an illustrative example; and lastly Sect. 6 ends the paper with a
discussion and areas of future research.

2 Review of the Use of Saturated Models for Synthesis

The discrete nature of categorical data allow it to be expressed as a multi-
dimensional contingency table (multi-way table). As a multi-way table, the data
consist of a structured set of cell counts f1, . . . , fK , which give the frequencies
with which each combination of categories is observed.

Synthetic data sets can then be generated by replacing these observed counts
(known henceforth as “original counts”) with synthetic counts. There are two dis-
tinct modelling methods for contingency tables: multinomial models and count
models. The multinomial approach ensures that the total number of individuals
in the original data n is equal to the total number of individuals in the synthetic
data nsyn. The syn.catall function in the R package synthpop [7] can be used
to generate synthetic data via a saturated multinomial model.

The (σ, α)-synthesis mechanism [4] uses saturated count models for synthesis;
specifically, either a saturated negative binomial (NBI) model or a saturated
Poisson-inverse Gaussian (PIG) [13] model. In this paper, for brevity, only the
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NBI has been considered. Besides, the NBI and PIG distributions are broadly
similar, as they share the same mean-variance relationship.

The (σ, α)-synthesis mechanism has two parameters which are set by the
synthesizer. The first, σ > 0, is the scale parameter from a two-parameter count
distribution (such as the NBI). The parameter σ can be tuned by the synthesizer
to adjust the variability in the synthetic counts, thus increasing or decreasing
their expected divergence from the original counts. More noise is required for sen-
sitive cells - usually small cell counts, which correspond to individuals who have
a unique (or near-unique) set of observations - to generate sufficient uncertainty
to mask the original counts’ true values.

The mechanism’s second parameter, denoted by α ≥ 0, relates to the size of
the pseudocount - in practice, this is not actually a count but a small positive
number such as 0.01 - which is added to zero cell counts (zero cells) in the
original data. This assigns a non-zero probability that a zero cell is synthesized
to a non-zero. The pseudocount α is only applied to non-structural zero cells
(known as random or sampling zeros), which are zero cells for which a non-zero
count could have been observed. Throughout this paper it has been assumed,
for brevity, that α = 0.

Given an original count fi = Ni i = 1, . . . , K, the corresponding synthetic
count f syn

i is drawn from the following model:

f syn
i | fi = Ni, σ ∼ NBI(Ni, σ), and therefore,

p(f syn
i = N2 | fi = N1, σ) =

Γ (N2 + 1/σ)

Γ (N2 + 1) · Γ (1/σ)
·
(

σN1

1 + σN1

)N2

·
(

1

1 + σN1

)1/σ

.

Using a saturated count model has certain advantages in data synthesis. Firstly,
it guarantees the preservation of relationships between variables, as no assump-
tions are made as to which interactions exist. Secondly, the method scales equally
well to large data sets, as no model fitting is required - the model’s fitted counts
are just the observed counts. Finally, as the fitted counts are just equal to the
observed counts, it allows expected properties of the synthetic data to be deter-
mined a priori (that is, prior to synthesis). The (unwelcome) uncertainty around
model choice is, in effect, minimised, and instead uncertainty is injected where
it is most needed: to add noise to sensitive cells in the original data.

2.1 The τ Metrics

The following τ metrics [4], give a basic quantification of risk (and utility) in
tabular data:

τ1(k) = p(f syn = k) τ3(k) = p(f syn = k|f = k)
τ2(k) = p(f = k) τ4(k) = p(f = k|f syn = k),

where f and f syn are arbitrary original and synthetic counts, respectively. The
metric τ2(k) is the empirical proportion of original counts with a count of k,
and τ1(k) is the proportion of synthetic counts of size k. The metric τ3(k) is the
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probability that an original count of size k is synthesized to k; and τ4(k) is the
probability that a synthetic count of size k originated from a count of size k. The
metrics τ3(1) and τ4(1), in particular, are the most associated with risk, as these
relate to uniques and can be viewed as outliers in the data. When, for example,
τ4(1) is close to 1, it is possible to identify, with near certainty, uniques in the
original data from the synthetic data.

When saturated models are used, the expected values of these τ metrics
can be found analytically as functions of the tuning parameters (σ, α and, as
later described, m). Hence the synthesizer knows, a priori, the noise required to
achieve a given τ3(1) or τ4(1) value.

3 The Role of m as a Tuning Parameter

The original inferential frameworks for fully and partially synthetic data sets
[9,10] relied on the generation of m > 1 synthetic data sets, because they required
the computation of the between-synthesis variance bm (see below). However,
when the original data constitute a simple random sample, and the data are
completely synthesized, valid inferences can be obtained from m = 1 synthetic
data set [8]. In this instance, while m > 1 data sets are not intrinsic to obtaining
valid inferences, the quality of inferences - for example, the width of confidence
intervals - can, nevertheless, be improved upon by increasing m - but at the
expense of higher risk. It is less a question, therefore, of which m allows valid
inferences to be obtained, but rather a question of which value of m is optimal
with respect to the risk-utility trade-off?

Thus m can be viewed as a tuning parameter, and, as with the other tuning
parameters σ and α, expected risk and utility profiles can be derived analytically,
a priori. When saturated models are used for synthesis, ignoring the small bias
arising from α > 0, simulation error is the only source of uncertainty - and
increasing m reduces simulation error. The notion is that m > 1 may allow
a more favourable position in relation to the risk-utility trade-off than when
m = 1; in short, it increases the number of options available to the synthesizer.

The use of parallel processing can substantially reduce the central processing
unit (CPU) time when generating multiple data sets. Besides, the CPU time
taken is typically negligible anyway; the synthesis presented in Sect. 5 took 0.3 s
for the NBI with m = 1 on a typical laptop running R.

3.1 Obtaining Inferences from m > 1 Data Sets

Analysing the m > 1 Data Sets Before Averaging the Results. When
analysing multiple synthetic data sets, traditionally the analyst considers each
data set separately before later combining inferences. While point estimates are
simply averaged, the way in which variance estimates are combined depends on
the type of synthesis carried out: such as whether fully or partially synthetic
data sets are generated and also whether synthetic counts are generated by
simulating from the Bayesian posterior predictive distribution or by simulating
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directly from the fitted model. The combining rules also depend on whether
an analyst is using the synthetic data to estimate a population parameter Q,
or an observed data estimate Q̂: the former needs to account for the sampling
uncertainty in the original data whereas the latter does not.

Suppose, then, that an analyst wishes to estimate a univariate population
parameter Q from m > 1 synthetic data sets. A point estimate q(l), and its
variance estimate v(l), is obtained from each synthetic data set, l = 1, . . . , m.
Before these estimates are substituted into a set of combining rules, it is common,
as an intermediary step, to first calculate the following three quantities [2]:

q̄m =
1
m

m∑

l=1

q(l), bm =
1

(m − 1)

m∑

l=1

(q(l) − q̄m)2, v̄m =
1
m

m∑

l=1

v(l),

where q̄m is the mean estimate, bm is the ‘between-synthesis variance’, that is,
the sample variance of the m > 1 estimates, and v̄m is the mean ‘within-synthesis
variance’, the mean of the estimates’ variance estimates.

The quantity q̄m is an unbiased estimator for Q̂, and is so regardless of
whether fully or partially synthetic data sets are generated. When using the
synthesis method described in Sect. 2, partially - rather than fully - synthetic
data sets are generated, because a synthetic population is not constructed and
sampled from, as stipulated in [9]. Hence, the following estimator Tp [10], is valid
when estimating Var(Q̂),

Tp =
bm
m

+ v̄m.

The sampling distribution (if frequentist) or posterior distribution (if Bayesian)
of Q̂ is a t-distribution with νp = (m − 1) (1 + mv̄m/bm)2 degrees of freedom.
Often, νp is large enough for the t-distribution to be approximated by a normal
distribution. However, when the between-synthesis variability is much larger
than the within-synthesis variability, that is, when bm is much larger than v̄m
- as may happen when large amounts of noise are applied to protect sensitive
records - then νp is crucial to obtaining valid inferences.

As the data sets are completely synthesized in the sense of [8] - that is, no
original values remain - the following estimator Ts is valid, too, under certain
conditions:

Ts = v̄m

(nsyn

n
+

1
m

)
≈ v̄m

(
1 +

1
m

)
.

These conditions are: firstly, that the original data constitute a simple random
sample - therefore, Ts would not be valid if the data originate from a complex
survey design - and secondly, that the original data are large enough to support
a large sample assumption. The overriding advantage of Ts is that, assuming its
conditions do indeed hold, it allows valid variance estimates to be obtained from
m = 1 synthetic data set.

The large sample assumption facilitates the use of a normal distribution for
the sampling distribution (or the posterior distribution) of Q̂ when Ts is used to
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estimate the variance. The notion is that, in large samples, bm can be replaced
with v̄m. It is difficult to assess, however, when a large sample assumption is
reasonable, because it also depends on the specific analysis being undertaken on
the synthetic data, that is, it depends on the analysis’s sufficient statistic(s).

The estimators Tp and Ts assume that nsyn = n (or that nsyn is constant
across the m synthetic data sets in the case of Ts). When using count models
as opposed to multinomial models, nsyn is stochastic and this assumption is vio-
lated. However, in a simulation study unreported here, the effect of varying nsyn

was found to have a negligible effect on the validity of inferences, for example,
confidence intervals still achieved the nominal coverage. Nevertheless, in some
cases, new estimators may be required; such estimators may introduce weights
w1 . . . , wm that relate to n

(1)
syn, . . . , n

(m)
syn , the sample sizes of the m synthetic

data sets.

Averaging the m > 1 Data Sets Before Analysing Them. When faced
with multiple categorical data sets, analysts (and attackers) may either pool
or average the data sets before analysing them. This is feasible only with con-
tingency tables, as they have the same structure across the m > 1 data sets.
There are several advantages to doing so. Firstly, it means that analysts only
have to undertake their analyses once rather than multiple times, thus leading
to reduced computational time. Note, although averaging leads to non-integer
“counts”, standard software such as the glm function in R can typically cope
with this and still allow models to be fit. Secondly, model-fitting in aggregated
data is often hampered by the presence of zero counts, but either averaging or
pooling reduces the proportion of zero counts, since it only takes one non-zero
across the m > 1 data sets to produce a non-zero when averaged or pooled.

When the NBI is used, for a given original count fi = N (i = 1, . . . , K), the
corresponding mean synthetic cell count f̄ syn

i has mean and variance,

E(f̄ syn
i ) = N and Var(f̄ syn

i ) =
1
m

(
N + σN2

)
, (1)

as the synthetic data sets are independent.
Thus, for a given original count, the variance of the corresponding mean

synthetic count is inversely proportional to m, and linearly related to σ. This
means that the minimum obtainable variance when σ alone is tuned - which
is achieved as σ → 0 and the NBI tends towards its limiting distribution, the
Poisson - is N/m. On the other hand, increasing m can essentially take the
variance to zero. If m is too large, though, the original counts are simply returned
when averaged, which, of course, renders the synthesis worthless. This, perhaps,
suggests the suitability of m as a tuning parameter in cases where the original
counts are large and relatively low risk, such that a relatively small variance
suffices.

4 Introducing the τ3(k, d) and τ4(k, d) Metrics

When multiple synthetic data sets are generated and the mean synthetic count
calculated - which is no longer always an integer - it becomes more suitable to
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consider the proportion of synthetic counts within a certain distance of original
counts of k. To allow this, the metrics τ3(k) and τ4(k) can be extended to τ3(k, d)
and τ4(k, d), respectively:

τ3(k, d) := p(|f syn − k| ≤ d | f = k), τ4(k, d) := p(f = k | |f syn − k| ≤ d).

The metric τ3(k, d) is the probability that a cell count of size k in the original
data is synthesized to within d of k; and τ4(k, d) is the probability that a cell
count within d of k in the synthetic data originated from a cell of k. Unlike
k, d > 0 does not need to be an integer. By extending the τ1(k) metric, such
that τ1(k, d) is the proportion of synthetic counts within d of k, it follows that
τ3(k, d)τ2(k) = τ4(k, d)τ1(k, d).

The τ3(k) and τ4(k) metrics are then special cases of τ3(k, d) and τ4(k, d),
respectively (the case where d = 0). For small k, these τ(k, d) metrics are
intended primarily as risk metrics, because they are dealing with uniques or
near uniques. However, when d is reasonably large, τ3(k, d) and τ4(k, d) are,
perhaps, better viewed as utility metrics, because they are dealing with the pro-
portion of uniques that are synthesized to much larger counts (which impacts
utility).

When m > 1 is sufficiently large, tractable expressions for the τ3(k, d) and
τ4(k, d) metrics can be obtained via the Central Limit Theorem (CLT), as the
distribution of each mean synthetic count can be approximated by a normal dis-
tribution, with mean and variance as given in (1). That is, given an original count
fi = N (i = 1, . . . , K), when m is large, the distribution of the corresponding
mean synthetic cell count f̄ syn

i is given as:

f̄ syn
i | fi = N,σ,m ∼ Normal(N, (N + σN2)/m).

This can be used to approximate τ3(k, d) and τ4(k, d):

τ3(k, d) = p(|f̄ syn − k| ≤ d | f = k),
= p(f̄ syn < k + d | f = k) − p(f̄ syn < k − d | f = k),

= Φ

(
(k + d) − k√
(k + σk2)/m

)
− Φ

(
(k − d) − k√
(k + σk2)/m

)

= 2Φ

(
d√

(k + σk2)/m

)
− 1, (2)

τ4(k, d) = p(f = k | |f̄ syn − k| ≤ d)

=
τ3(k, d) · τ2(k)∑∞

i=0 p(|f syn − k| ≤ d | f = i) · p(f = i)

=

[
2Φ

(
d
/√

(k + σk2)/m
)
− 1

]
· τ2(k)

∞∑
i=1

[
Φ

(
(k + d − i)

/√
(i + σi2)/m

)
− Φ

(
(k − d − i)

/√
(i + σi2)/m

)]
· τ2(i)

(3)
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where Φ is which is used to denote the cumulative distribution function (CDF)
of the standard normal distribution.

5 Empirical Study

The data set synthesized here was constructed with the intention of being used
as a substitute to the English School Census, an administrative database held by
the Department for Education (DfE). It was constructed using publicly available
data sources such as English School Census published data and 2011 census
output tables. The data - along with a more detailed description of its origin -
is available at [1]. While the data is constructed from public sources, it shares
relevant features present in large administrative databases that serve to illustrate
risk and utility in synthetic data and, specifically, the role that m plays in relation
to the risk-utility trade-off. The framework developed here could be equally
applied to any categorical data set.

The data comprises 8.2 ×106 individuals observed over p = 5 categorical
variables. The local authority variable has the greatest number of categories with
326; while sex has the fewest with 4. When aggregated, the resulting contingency
table has K = 3.5×106 cells, 90% of which are unobserved, that is, have a count
of zero.

The function rNBI from the R package gamlss.dist [16] was used to generate
multiple synthetic data sets using the (σ, α)-synthesis mechanism described in
Sect. 2. This was done for a range of σ, 0, 0.1, 0.5, 2 and 10, and 50 synthetic
data sets were generated for each. This allowed comparisons to be drawn for a
range of m, for example, taking the first five data sets gives m = 5, taking the
first ten gives m = 10, etc.

5.1 Measuring Risk

Evaluating risk in synthetic data, particularly in synthetic categorical data, is
not always straightforward. Attempting to estimate the risk of re-identification
[12] is not possible, because the ability to link records is lost when a microdata
set is aggregated, synthesized and disaggregated back to microdata again.

The τ3(1, d) and τ4(1, d) metrics (that is, setting k = 1), introduced in Sect. 4,
were used as risk metrics. Figure 1 in the Appendix shows that either increasing
m or decreasing σ increases τ3(1, d) and τ4(1, d) and hence risk. There is an
initial fall in the τ3(1, 0.1) curves as m increases initially, suggesting lower not
higher risk. However, this is just owing to the small d: for example, when d = 0.1,
the only way to obtain a mean synthetic count within 0.1 of k when, say m = 5,
is by obtaining a one in each of the five synthetic data sets, compared to just
once when m = 1.

When m is large, the τ3(k, d) and τ4(k, d) metrics can be approximated ana-
lytically through (2), which relies on the CLT. There is uncertainty in both the
empirical values (owing to simulation error) and the analytical values (owing to
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the normal approximation), though the divergences between the empirical and
analytical values are small.

In general, then, increasing m or decreasing σ increases risk. This is also
shown visually in Fig. 2 (Appendix), which demonstrates how m and σ can be
used in tandem to adjust risk. Here, τ3(1, 0.1) is used as the z-axis (risk) but
any τ3(k, d) or τ4(k, d) would give similar results.

5.2 Measuring Utility

As saturated models are used, increasing m (for a given σ) causes the mean
synthetic counts to tend towards the original counts. This can be seen in the
Hellinger and Euclidean distances given in Fig. 3 (Appendix), which show an
improvement in general utility when either increasing m or reducing σ.

These measures are equally relevant to risk, too, hence Fig. 3 reiterates that
risk increases with m. It is fairly trivial, however, that reducing simulation error
increases risk and utility. It is more useful to gain an insight into the rate at
which risk and utility increase with m, that is, the shape of the curves. For
example, Fig. 3, shows that increasing m has greater effect when σ = 1 than
when σ = 0.1.

The utility of synthetic data can also be assessed for specific analyses by, for
example, comparing regression coefficient estimates obtained from a model fit
to both the observed and synthetic data. While such measures only assess the
synthetic data’s ability to support a particular analysis, they nevertheless can be
a useful indicator to, for example, the required m needed to attain a satisfactory
level of utility.

Here, the estimand of interest is the slope parameter from the logistic regres-
sion of age Y (aged ≤ 9 = 0, ≥ 10 = 1) on language X. A subset of the data
were used, as just two of the language variable’s seven categories were consid-
ered, while the age variable was dichotomised. When estimated from the original
data, β1 - which is a log marginal odds ratio - was equal to −0.0075 with a 95%
confidence interval of (−0.0151, −0.0001). Note that, in order to estimate this, it
was assumed that the original data constituted a simple random sample drawn
from a much larger population. It is hugely doubtful whether such an assump-
tion would be reasonable in practice, but the purpose here was just to evaluate
the ability of the synthetic data to produce similar conclusions to the original
data.

The analysis was undertaken in the two ways described in Sect. 3. Firstly,
the m > 1 synthetic data sets were analysed separately and variance estimates
were obtained through the estimator Tp. Secondly, the m > 1 synthetic data sets
were pooled into one data set prior to the analysis and variance estimates were
obtained through the estimator Ts.

As can be seen in Fig. 4, the estimates from Tp were noticeably larger than
those from Ts, for small m. This was worrying for the validity of Ts - and
the confidence intervals subsequently computed using Ts - especially since the
sampling distribution of Tp was not approximated by a normal distribution, but
by a t-distribution with νp degrees of freedom, thus widening confidence intervals
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further. This suggests that the large sample approximation that Ts relies on was
not reasonable in this case.

The confidence interval computed from the original data set was compared
with the confidence intervals computed from the synthetic data sets via the con-
fidence interval overlap metric [5,15]. This metric is a composite measure that
takes into account both the length and the accuracy of the synthetic data confi-
dence interval. Yet whether these factors are weighted appropriately is open to
debate. Valid confidence intervals estimated from synthetic data, that is, con-
fidence intervals that achieve the nominal coverage, are longer than the corre-
sponding confidence intervals estimated from the original data, because synthetic
data estimates are subject to the uncertainty present in the original data esti-
mates, plus have additional uncertainty from synthesis. However, a synthetic
data confidence interval, say, one that is x% narrower than the original data
confidence interval (hence clearly invalid) would yield roughly the same overlap
as, say, a confidence interval that is x% wider. Moreover, either an infinitely wide
or infinitely small synthetic data confidence interval would achieve an overlap
of 0.5.

The confidence interval overlap results are presented in Table 1 in the
Appendix. The top frame gives the overlap values from when the data sets
are analysed separately, and the bottom frame gives the results from when the
data sets are pooled. It can be seen that increasing m broadly results in an
increase in the overlap; and that the overlap tends towards 1 as the original and
synthetic data confidence intervals converge. The confidence intervals computed
using Ts are less robust as those using Tp, which is evident in the zero overlap
when m = 20 and σ = 10. This is because, unlike the variance estimator Tp,
Ts only considers the within-synthesis variability v̄m, not the between-synthesis
variability bm.

5.3 Tuning m and σ in Relation to the Risk-Utility Trade-Off

The plots in Fig. 5 (Appendix) show how m and σ can be tuned in tandem to
produce synthetic data sets that sit favourably within the risk-utility trade-off.
These trade-off plots, though, depend on the metrics used to measure risk and
utility. Here, risk was measured by either τ4(1, 0.5) or τ4(1, 0.75), and utility by
either confidence interval overlap (using Tp) or Hellinger distance. The Hellinger
distances were standardised onto the interval of [0,1] (by dividing by the largest
Hellinger distance observed and then subtracting from 1, so that 1 and 0 repre-
sent maximum and minimum utility, respectively).

It is possible to strictly dominate synthetic data sets over others, that is,
obtain lower risk and greater utility values. For example, looking at the top-left
plot, synthetic data sets generated with m = 50, σ = 2 have higher risk but lower
utility than when m = 20, σ = 0.5. These visual trade-offs are plotted using
the empirical results, so are subject to variation from simulation; the confidence
interval overlap values, in particular, can be volatile, especially when σ is large.
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The intention is that the synthesizer produces such plots before releasing
the data. Furthermore, as many metrics can be expressed analytically when
using saturated models, they can be produced before the synthetic data is even
generated.

6 Discussion

The setting of the synthesis mechanism’s tuning parameters is a policy decision,
and therefore is subjective. The general notion is that the synthesizer decides
on an acceptable level of risk and maximises utility based on this; a larger m
would necessitate a larger σ to maintain a given level of risk. As many metrics
can be expressed as functions of the synthesis mechanism’s tuning parameters,
these functions’ partial derivatives may be useful to determine the rate at which
risk and utility change; for example, there may be a point where any further
increases in m lead to a disproportionately small improvement in utility.

In addition to m, the synthesizer could also increase or decrease E(nsyn),
the expected sample size of each synthetic data set. A single synthetic data
set (m = 1) with E(nsyn) = n contains roughly the same number of records
as two synthetic data sets (m = 2) each with E(nsyn) = n/2. To generate a
synthetic data set with an expected sample size of n/2, the synthesizer simply
takes draws from NBI distributions with means exactly half of what they were
previously. Reducing E(nsyn) should reduce risk, as fewer records are released,
but inevitably reduces utility, too; once again, it calls for an evaluation with
respect to the risk-utility trade-off.

Moreover, there are further tuning parameters that could be incorporated
into this synthesis mechanism. One way would be to use a three-parameter dis-
tribution. When using a two-parameter count distribution, the synthesizer can
increase the variance but cannot control how the variability manifests itself. The
use of a three-parameter count distribution would allow the synthesizer to con-
trol the skewness, that is, they could change the shape of the distribution for a
given mean and variance.

There are, of course, disadvantages to generating m > 1 synthetic data sets
with the most obvious being the increased risk. Nevertheless, the potential bene-
fits warrant further exploration, especially in relation to the risk-utility trade-off:
does the gain in utility outweigh the increase in risk?

Organisations are taking a greater interest in making data - such as adminis-
trative data - available to researchers, by producing their own synthetic data. For
this to be successful, organisations need to guarantee the protection of individu-
als’ personal data - which, as more data becomes publicly available, becomes ever
more challenging - while also producing data that are useful for analysts. There-
fore, there needs to be scope to fine tune the risk and utility of synthetic data
effectively, and integrating m as a tuning parameter into this a priori framework
helps to achieve this.

Acknowledgements. This work was supported by the Economic and Social Research
Council (ESRC) via the funding of a doctoral studentship.
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Appendix
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Fig. 1. The left hand plots give the empirical values of τ3(1, d) for d = 0.1 and 0.2; the
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Table 1. The confidence interval overlap results from when: (i) the data sets were
analysed separately and Tp was used to estimate confidence intervals; and (ii) the data
sets were pooled and Ts was used to estimate confidence intervals.

m = 2 m = 5 m = 10 m = 20 m = 30 m = 40 m = 50

The overlap when the data sets were analysed separately and Tp used

σ = 0 0.883 0.901 0.950 0.992 0.990 0.994 0.983

σ = 0.1 0.533 0.692 0.822 0.898 0.913 0.925 0.917

σ = 0.5 0.536 0.635 0.778 0.843 0.878 0.909 0.923

σ = 2 0.000 0.587 0.667 0.726 0.716 0.742 0.780

σ = 10 0.522 0.535 0.554 0.583 0.604 0.623 0.638

The overlap when the data sets were pooled and Ts used

σ = 0 0.881 0.905 0.951 0.988 0.990 0.994 0.983

σ = 0.1 0.700 0.317 0.802 0.942 0.904 0.920 0.915

σ = 0.5 0.221 0.344 0.653 0.789 0.864 0.915 0.967

σ = 2 0.020 0.436 0.856 0.775 0.825 0.809 0.906

σ = 10 0.000 0.664 0.454 0.000 0.078 0.258 0.465
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Fig. 5. Risk-utility trade-off plots to show where various synthetic data sets are located
with respect to the risk-utility trade-off. The optimal position in each plot - that is,
the lowest risk and the highest utility - is the bottom right corner. To measure risk, the
metrics τ4(1, 0.5) and τ4(1, 0.75) were used. To measure utility, the confidence interval
overlap and Hellinger distance were used.
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Abstract. Evaluating the utility of the generated data is a pivotal step
in any synthetic data project. Most projects start by exploring vari-
ous synthesis approaches trying to identify the most suitable synthesis
strategy for the data at hand. Utility evaluations are also always neces-
sary to decide whether the data are of sufficient quality to be released.
Various utility measures have been proposed for this purpose in the lit-
erature. However, as I will show in this paper, some of these measures
can be misleading when considered in isolation while others seem to be
inappropriate to assess whether the synthetic data are suitable to be
released. This illustrates that a detailed validity assessment looking at
various dimensions of utility will always be inevitable to find the optimal
synthesis strategy.

Keywords: Confidence interval overlap · Confidentiality · Global
utility · pMSE · Privacy

1 Introduction

The synthetic data approach for disclosure protection gained substantial popu-
larity in recent years. While applications were mostly limited to the U.S. Cen-
sus Bureau [1,12,13] a decade ago, more and more statistical agencies and other
data collecting organizations are now exploring this idea as a possible strategy to
broaden access to their sensitive data [2,4,16,29]. Recent developments in com-
puter science, most notably the use of Generative Adversarial Networks (GANs,
[10]) further stimulated the synthetic data movement and several start-up compa-
nies now offer synthetic data as a product, often with high flying promises regard-
ing the unlimited usefulness of the data paired with claims of zero risk of disclo-
sure. However, from an information theoretic stand point it is obvious that we can
never have both, preservation of all the information from the original data while
offering full protection of any sensitive information (except for the corner case in
which the original data can be released without risk making the release of synthetic
data pointless). Thus, all we can hope for is to find the optimal trade-off between
utility and data protection, that is, we can try to maximize the utility for a desired
level of data protection or maximize the level of protection for a level of utility that
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is still deemed acceptable. Of course, in practice this is easier said than done. To
fully utilize this optimization problem the data disseminating agency would need
to know which levels of utility and disclosure protection the different stakeholders
consider acceptable. Even more important, the agency needs reliable measures of
utility and risk. Various metrics have been proposed in the literature for measuring
the risk and utility for datasets that have undergone some procedure for statistical
disclosure control [5,23]. However, not all of them are suitable for synthetic data.
Especially with fully synthetic data measuring the disclosure risk remains an open
research question. Most risk measures that have been proposed in the literature
try to estimate the risk of re-identification. Given that there is no one-to-one map-
ping between the original and the fully synthetic data, these measures cannot be
meaningfully applied. The few proposals for measuring the risk of disclosure for
fully synthetic data either rely on the opaque concept of perceived risk (the syn-
thetic record looks too close to a real record), are computationally infeasible in
practical settings [22] or make unrealistic assumptions regarding the knowledge
of the attacker [25] (but see [26] for an interesting approach for measuring the risk
of attribute disclosure).

However, even measuring the utility of the generated data can be more diffi-
cult than it might seem. A key challenge is that the data disseminating agencies
typically only have limited knowledge for which purposes the data will be used
(if they had this information they could simply publish all the analyses of inter-
est as protecting the analysis output is typically much easier than protecting the
full microdata). Thus, utility is typically measured by running a couple of analyses
deemed to be of interest for the users and comparing the results from the synthetic
data with those obtained for the original data. Alternatively, utility measures have
been proposed that try to directly compare the synthetic data with the original
data. In this paper, I will demonstrate that some of the measures that have been
proposed in the literature can be misleading when considered in isolation while
others seem to be inappropriate to assess whether the synthetic data are suitable
to be released. The main conclusion based on this small assessment is that users
of the synthetic data approach should always ensure that they evaluate several
dimensions of utility before they decide which synthesis method works best for
their data and whether the data are ready to be released.

2 Measuring the Utility

Utility measures are typically divided into two broad categories: narrow or
analysis-specific measures and broad or global measures. The former focus on
evaluating the utility by measuring how well the protected data preserve the
results for a specific analysis of interest, while the letter try to directly compare
the original and synthetic data providing a measure of similarity between the
two datasets. Examples of analysis-specific utility measures are the confidence
interval overlap measure proposed by [11] or the ratio of estimates (ROE) pro-
posed by [27] for tabular data. The global utility is commonly assessed using
distance measures such as the Kullback-Leibler divergence [11] or the propen-
sity score mean squared error (pMSE) proposed in [30] and further developed
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in [24]. As pointed out by various authors [9,11,17], both types of measures
have important drawbacks. While narrow measures provide useful information
regarding the specific analysis considered, high utility based on these measures
does not automatically imply high utility for other types of analyses. Since the
data providers typically do not know which purposes the data will be used for
later, it will be impossible to fully assess the utility of the synthetic data based
on these measures. The global utility measures on the other hand are so broad
that they might miss important weaknesses of the synthetic data. Furthermore,
the measures are typically difficult to interpret, that is, it is difficult to decide
whether the level of utility is acceptable or not. In practice, these measures
are therefore mostly used to compare different synthesis approaches and not to
decide whether the synthetic data offer enough utility to be released.

A final class of measures–termed fit-for-purpose measures here–can be con-
sidered to lie between the previous two. These measures typically only focus
on specific aspects of the data, that is, they cannot be considered as global
measures but also do not necessarily reflect statistics users might be interested
in directly. Examples include plausibility checks such as ensuring only positive
age values in the synthetic data, but also visual comparisons of univariate and
bivariate distributions. Goodness-of-fit measures such as the χ2-statistic for var-
ious cross-tabulations of the data or Kolmogoroff-Smirnov tests for continuous
variables also belong to this group. As illustrated by [17], the pMSE can also be
used for this purpose by simply including only the variables to be evaluated as
predictors in the propensity model. Fit-for-purpose measures are typically the
first step when assessing the utility of the generated data and we will illustrate
the importance of these measures in the next section demonstrating that both,
the global and the analysis specific measures of utility can be misleading when
considered in isolation. Before we discuss the empirical evaluations, we provide
further details regarding the utility measures used.

2.1 A Global Utility Measure: The pMSE

As mentioned above the pMSE has become a popular measure in recent years to
assess the utility of the generated data. The procedure consists of the following
steps:

1. Stack the norg original records and the nsyn synthetic records adding an
indicator, which is one if the record is from the synthetic data and zero
otherwise.

2. Fit a model to predict the data source (original/synthetic) using the informa-
tion contained in the data. Let pi, i = 1, . . . , N with N = norg + nsyn denote
the predicted value for record i obtained from the model.

3. Calculate the pMSE as 1/N
∑

N (pi − c)2, with c = nsyn/N .

The smaller the pMSE the higher the analytical validity of the synthetic data. A
downside of the pMSE is that it increases with the number of predictors included
in the propensity model even if the model is correctly specified. To overcome this
problem, [24] derived the expected value and standard deviation of the pMSE
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under the hypothesis that both, the original and the synthetic data are generated
from the same distribution, that is, the synthesis model is correctly specified.
Based on these derivations, the authors propose two utility measures: The pMSE
ratio, which is the empirical pMSE divided by its expected value under the null
and the standardized pMSE (S pMSE ), which is the empirical pMSE minus its
expectation under the null divided by its standard deviation under the null.

2.2 Two Outcome-Specific Measure: The Confidence Interval
Overlap and the Mean Absolute Standardized Coefficient
Difference

The confidence interval overlap measure was first proposed by [30]. Paraphrasing
from [6], its computation can be summarized as follows: For any estimate, we first
compute the 95% confidence intervals for the estimand from the synthetic data,
(Ls, Us), and from the original data, (Lo, Uo). Then, we compute the intersection
of these two intervals, (Li, Ui). The utility measure is

I =
Ui − Li

2(Uo − Lo)
+

Ui − Li

2(Us − Ls)
. (1)

When the intervals are nearly identical, corresponding to high utility, I ≈ 1.
When the intervals do not overlap, corresponding to low utility, I = 0.
The second term in (1) is included to differentiate between intervals with
(Ui − Li)/(Uo − Lo) = 1 but different lengths.

The mean absolute standardized coefficient difference (MASD) is imple-
mented in the synthpop package as a utility measure for regression mod-
els. It computes the standardized difference for each regression coefficient as
zj = (q̄m − Q̂)/(

√
(vorg/m), where q̄m and Q̂ denote the estimated coefficient

from the synthetic and original data, respectively, vorg is the estimated variance
of Q̂ and m is the number of synthetic datasets. The MASD is then computed as∑p

j=1 |zj |/p, where p is the total number of regression coefficients in the model.

3 Misleading Utility Measures: An Illustration

For this small illustration, I use a subset of variables and records from the pub-
lic use file of the March 2000 U.S. Current Population Survey (CPS). The data
comprise eight variables measured on N = 5,000 heads of households (see Table 1
for details). Similar data are used in [7,8,19,20] to illustrate and evaluate var-
ious aspects of synthetic data. To simplify the modeling task I have removed
some variables, subsampled the data, excluded some records, and recoded some
variables compared to previous applications.

3.1 Synthesis Strategies

Overall we use four different synthesis strategies, three based on fully parametric
models and one using a CART approach. We use the R package synthpop [15]
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Table 1. Description of variables used in the empirical studies

Variable Label Range

Sex sex Male, female

Race race White, other

Marital status marital 5 categories

Highest attained education level educ 4 categories

Age (years) age 15–90

Social security payments ($) ss 0, 1–50,000

Household property taxes ($) tax 0, 1–98,366

Household income ($) income 1–582,896

to generate the synthetic data leaving most of the parameters at their default
values. Specifically, we always synthesize all variables, keeping the size of the
synthetic data the same as the size of the original data. We also keep the hyper-
parameters for the CART models at their default values and use standard options
for the parametric variables: All continuous variables are synthesized using a lin-
ear regression model, while sex and race are synthesized using a logit model,
and marital and educ are synthesized using multinomial regression. We always
use the same synthesis order relying on the order in which the variables appear
in the dataset with the minor adjustment that synthesis always starts with the
variable sex. This adjustment was necessary as synthpop currently forces the
synthesis for the first variable to be based on sampling when generating fully
synthetic data (according to the maintainers of synthpop this issue will be fixed
in future versions of the package). Since simply sampling from the marginal dis-
tribution arguably can be risky for continuous variables as exact values from the
original data will be revealed, we decided to start the synthesis with a binary
variable for which sampling original values does not pose any risks. Based on
the same concerns–releasing exact values for continuous variables–we also use
the smoothing option for the CART models. This option fits a kernel density
estimator to the original values in any leaf of the tree and samples synthetic val-
ues from this estimator instead of sampling original values directly. We always
generate m = 5 synthetic datasets.

The three parametric synthesizers differ in the way they account for distribu-
tional aspects of the original data. The first synthesizer (which we label the naive
synthesizer below) does not consider these aspects at all, running the synthesis
models without preprocessing the data. The second synthesizer (transform) tries
to address the skewness of the continuous variables by taking the cubic root of
all continuous variables before the imputation. Figure 1 shows the distribution of
income and age before and after the transformation. The transformations make
the distribution more symmetric, which can help to make the assumptions of the
linear model more plausible. The final synthesis model (two-stage) additionally
accounts for the fact that ss and tax have large spikes at zero as illustrated in
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Fig. 1. Histogram of the variables income and age on the original scale and after
transformation by taking the cubic root.

Fig. 2. To account for these spikes, we use the semicont option in synthpop which
implements the two-stage imputation approach described in [18].

Looking at these synthesis strategies we would expect that the utility of the
synthetic data would improve with each model, as the synthesis models better
account for the properties of the original data. The only question should be,
how these strategies perform relative to the CART synthesis model. We note
that the synthesis models could certainly be further improved. The goal of this
small exercise is not to find the best way of synthesizing the CPS data. We only
use these synthetic datasets to highlight some caveats when relying on commonly
used utility metrics.

3.2 Results for the Fit-for-Purpose Measures

Figures 3 and 4 provide visual comparisons of the distribution of the original and
synthetic data for the variables tax and income generated using the compare
function in synthpop. The findings for age and ss are comparable to the findings
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Fig. 2. Histogram of the variables tax and ss after transformation by taking the cubic
root. Both variables have large spikes at zero.

for income and tax, respectively and thus are omitted for brevity. We also do
not report the results for the categorical variables as all methods performed
similarly well for those. We transform the variables in Figs. 3 and 4 by taking
the cubic root as the skewness of the variables would make visual comparisons
difficult on the original scale (more precisely, we transform the variables using
f(x) = sign(x)|x|1/3 to also allow for x to be negative). The numbers included in
the title of each figure are the standardized pMSEs computed by using only the
depicted variables as predictors in the model to estimate the propensity scores.

Several points are noteworthy: The naive approach that neither transforms
the data nor considers the spikes at zero performs very poorly, as expected.
Both variables have a considerable amount of negative values in the synthetic
data despite the fact that they all only contain positive values in the original
data. The spread of the synthetic data is also considerably larger than for the
original data. This is especially true for tax due to its large spike at zero. Moving
to the second synthesis approach (transform), which transformed the continuous
variables to bring them closer to normality, we see that this approach helped to
improve the quality of the synthetic data. Especially for income the distribution
is much better preserved. This is also reflected in the substantial reduction in
the standardized pMSE from over 260 to 7.66. However, the problems from not
modeling the spike at zero are still obvious for tax.

This problem is also taken into account in the two-stage synthesis strategy
where we see the positive impacts of separately modeling the spike. With this
approach the spike is well preserved and the distributions in the synthetic data
never differ substantially from the distributions in the original data. The results
for the CART synthesizer are compatible with the results for the two-stage syn-
thesis. We see some minor deviations in the distributions between the original
and the synthetic data, but overall the distributions are well preserved. In terms
of the standardized pMSE the two-stage approach outperforms the CART syn-
thesis for income. Interestingly, the pMSE for tax is much small for the CART
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Fig. 3. Histogram of the variable income based on the original and synthetic data for
various synthesis methods. The numbers in parentheses are the standardized pMSEs.

approach, although the CART synthesis does not preserve the spike at zero as
well as the two-stage approach. We speculate that this is due to synthpop not
using the variable directly to compute the measure. Instead, a categorical vari-
able is derived by grouping the units into five equal sized bins using quantiles.
The S pMSE is computed using class membership as a predictor. This is obvi-
ously a crude measure as it ignores heterogeneity within the bins.

3.3 Results for the Outcome Specific Measures

We focus on one linear regression example to illustrate that weaker performance
regarding the preservation of the marginal distributions does not necessarily
imply worse results for a specific analysis task. We assume the analyses of interest
is a linear regression of log(income) on the other variables contained in the
dataset. This model is only for illustrative purposes and we do not claim that the
model specification is appropriate. Results for the different synthesis methods are
depicted in Fig. 5. The numbers in parentheses are the average confidence interval
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Fig. 4. Histogram of the variable tax based on the original and synthetic data for
various synthesis methods. The numbers in parentheses are the standardized pMSEs.

overlaps (CIO) computed as the average across all regression coefficients from the
model and the mean absolute standardized coefficient difference (MASD). We
note that the CART synthesis model offers the lowest utility for both measures
(note that larger values are better for CIO, while smaller values indicate higher
utility for MASD). The CART model did not capture the relationship between
marital status and income correctly. Even more problematically, the sex variable
has the wrong sign in the synthetic data. For the CIO measure the utility order
matches the order from the previous section, that is, two-stage offers higher
utility than transform, which has higher utility than naive. Interestingly, the
MASD measure indicates a reversed order with the naive approach offering the
highest utility.
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Fig. 5. Comparison of results of a regression of log(income) on the other variables
included in the CPS data for various synthesis methods. The lines indicate the length
of the 95% confidence intervals. The numbers in parentheses are the average confi-
dence interval overlap (CIO) and the mean absolute standardized coefficient difference
(MASD). Both are computed by averaging across all regression coefficients.

The results illustrate that utility can be high for certain analysis goals even if
some aspects of the data are poorly captured but also that aggregated measures
which average results across various estimates can potentially be misleading and
visualizations such as those shown in Fig. 5 might be better suited to identify
strengths and weaknesses of the synthetic data.

3.4 Results for the Global Utility Measures

To estimate the standardized pMSE for the entire dataset, we need to specify a
model for estimating the individual membership propensities pi. The most com-
mon choice in the propensity score literature is the logit model, but any model
can be used as long is it returns predicted probabilities of class membership. In
our application, we use the two models available in synthpop: the logit model
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Fig. 6. Standardized pMSE (on the log-scale) for various combinations of synthesis
strategies and propensity score models.

and CART models. We always include all variables, when fitting the different
models. However, for the logit model we vary the exact specification of the model
evaluating three different settings: The first, labeled main in the figure below,
only includes all main effects. The second (1-way) additionally includes all one-
way interactions between the variables. The final model (2-way) also includes
all two-way interactions. For the CART models we do not need to specify the
model, as the method will automatically identify the best splits of the data.
However, an important tuning parameter with CART models as implemented
in rpart [28], the library used in this application, is the complexity parameter
cp. Any split that does not decrease the overall lack of fit by a factor of cp is
not attempted. Thus, smaller values of cp generally imply that larger trees are
grown. We evaluate two settings: In the first setting (CART small), we use the
default settings of synthpop, which presumably use the default values from the
rpart package, which is cp = 0.01. In the second setting (CART big), we use a
very small value of cp = 10−7.

Results are presented in Fig. 6. A couple of things are noteworthy: First,
the results confirm that like other global utility measures, the S pMSE cannot
be used to assess whether the data are ready to be released. It can vary sub-
stantially depending on which model is used to estimate the propensity score.
For example, for the naive synthesis approach, the S pMSE changes from 39.76
to 6.06 when switching from CART small to CART big. Second, the measure
is unable to detect the substantial improvements in the synthetic data when
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switching from the naive approach to the transform approach. In fact, the 2-
way logit model is the only model that suggests that transforming the variables
before the synthesis improves the results. All other models indicate that the
naive synthesis offers at least similar utility, with the main model suggesting
substantial quality improvements without transformation. Finally, while two of
the logit models (main and 1-way) suggest that a careful parametric synthesis
approach (the two-stage approach) should be preferred over CART synthesis,
the two CART based propensity score models always prefer the CART synthesis
strategy.

The results indicate that the global utility measure is not a reliable indicator
for deciding which synthesis strategy should be preferred. Results are highly
dependent on the model used to estimate the propensity scores and the approach
sometimes seems incapable of detecting major differences in the quality of the
synthesis models.

4 Conclusions

Given the large variety of synthesis strategies that have been proposed in recent
years, picking the most suitable synthesis method is a difficult task. In this
situation it seems tempting to rely on global utility measures that return only
one number and just pick the strategy that achieves the highest utility according
to this score. As I have shown in this paper, things unfortunately are not that
easy. The small illustration included in this paper demonstrates fundamental
weaknesses of one popular global utility metric: the standardized pMSE. I showed
that results for this metric are highly dependent on the model used to estimate
the propensity score. Maybe even more worrying, the metric was unable to detect
important differences in the utility for most of the model specifications.

On the other hand, I also showed (perhaps unsurprisingly) that utility can
still be relatively high for certain types of analyses even if some distributional
features of the data are poorly preserved. This implies that a thorough assess-
ment of the utility is inevitable when deciding which synthesis method to pick
and whether the data are ready to be released. This assessment should start
by evaluating if the data are fit for purpose in various dimensions. If the data
disseminating agency already has some information for which types of analyses
the data will be used later, it will also be useful to compute outcome specific
utility measures for a large variety of analyses to better understand, which anal-
ysis models still cause problems and use this information to refine the synthesis
models. The findings from this paper seem to indicate that decisions based on
global utility measures should better be avoided.

From a user’s perspective, verification servers can also be an important alter-
native tool to increase confidence in the results obtained from the synthetic data.
These servers hold both the synthetic and the original data. Researchers can sub-
mit their analysis of interest to the server, it runs the analysis on both datasets,
and reports back some fidelity measure how close the results from the synthetic
data are to the results based on the original data. However, some care must
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be taken, as even fidelity measures might spill sensitive information. Developing
such measures is currently an active area of research [3,14,21,31].
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Abstract. Most statistical agencies release randomly selected samples
of Census microdata, usually with sample fractions under 10% and with
other forms of statistical disclosure control (SDC) applied. An alterna-
tive to SDC is data synthesis, which has been attracting growing interest,
yet there is no clear consensus on how to measure the associated utility
and disclosure risk of the data. The ability to produce synthetic Census
microdata, where the utility and associated risks are clearly understood,
could mean that more timely and wider-ranging access to microdata
would be possible.

This paper follows on from previous work by the authors which mapped
synthetic Census data on a risk-utility (R-U) map. The paper presents a
framework to measure the utility and disclosure risk of synthetic data by
comparing it to samples of the original data of varying sample fractions,
thereby identifying the sample fraction which has equivalent utility and
risk to the synthetic data. Three commonly used data synthesis packages
are compared with some interesting results. Further work is needed in sev-
eral directions but the methodology looks very promising.

Keywords: Data synthesis · Microdata · Disclosure risk · Data utility

1 Introduction

Many statistical agencies release randomly selected Census samples to
researchers (and sometimes publicly), usually with sample fractions under 10%
and with other forms of statistical disclosure control (SDC) [14] applied. How-
ever, as noted by Drechsler et al. [8], intruders (or malicious users) are becoming
more sophisticated and agencies using standard SDC techniques may need to
apply them with higher intensity, leading to the released data being of reduced
quality for statistical analysis.

An alternative to SDC is data synthesis [21,38], which takes original data and
produces an artificial dataset with the same structure and statistical properties
as the original, but that (in the case of fully synthetic data) does not contain any
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of the original records. As the data is synthetic, attributes which are normally
suppressed, aggregated or top-coded (such as geographical area or income) may
then be included, allowing more complete analysis. As no synthetic record should
correspond to a real individual, fully synthetic data should present very low
disclosure risk – the risk of re-identification is not meaningful, although there is
still likely to be a residual risk of attribution [41]. Interest in synthetic data is
growing, yet there is no clear consensus on how to measure the associated utility
and disclosure risk of the data, such that users may have an understanding of
how closely a synthetic dataset relates to the original data.

This paper follows on from previous work [20], which mapped synthetic Cen-
sus data on the risk-utility (R-U) map, and presents a framework to measure
the utility and disclosure risk of synthetic data by comparing it against random
samples of the original data of varying sample fractions, thereby identifying the
sample fraction equivalence of the synthetic dataset. For instance, a particular
synthetic dataset might be equivalent in terms of utility to a 20% sample of
the original data, and in terms of disclosure risk to a 10% sample. Since Census
microdata tends to be released with sample fractions between 1% to 10%, the
ability to determine how a synthetic dataset compares in terms of utility and
disclosure risk would allow data producers a greater understanding of the appro-
priateness of their synthetic data. To test our framework, we performed exper-
iments using four Census microdata sets with synthetic data generated using
three state-of-the-art data synthesis methods (CTGAN [45], Synthpop [25] and
DataSynthesizer [29]).

Section 2 provides a brief introduction to the data synthesis problem, partic-
ularly in terms of microdata, and an introduction to the data synthesis methods.
Sect 3 outlines the design of the study, describing the methods and the Census
data used. Sect 4 provides the results whilst Sect. 5 considers the findings, and
Sect. 6 concludes with directions for future research.

2 Background

2.1 Data Synthesis

Rubin [38] first introduced the idea of synthetic data as a confidentiality pro-
tection mechanism in 1993, proposing using multiple imputation on all variables
such that none of the original data was released. In the same year, Little [21]
proposed an alternative that simulated only sensitive variables, thereby produc-
ing partially synthetic data. Rubin’s idea was slow to be adopted, as noted by
Raghunathan et al. [32], who along with Reiter [35–37], formalised the synthetic
data problem. Further work (e.g. [8,9,34]) has involved using non-parametric
data synthesis methods such as classification and regression trees (CART) and
random forests and more recently deep learning methods such as Generative
Adversarial Networks [12] have also been used to generate synthetic data.

There are two competing objectives when producing synthetic data: high
data utility (i.e., ensuring that the synthetic data is useful, with a distribution
close to the original) and low disclosure risk. Balancing this trade-off can be
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difficult, as, in general, reducing disclosure risk comes with a concomitant cost
for utility. This trade-off can be visualised using the R-U confidentiality map
developed by Duncan et al. [10]. There are multiple measures of utility, ranging
from comparing summary statistics, correlations and cross-tabulations, to con-
sidering data performance using predictive algorithms. However, for synthetic
data there are fewer that measure disclosure risk. As noted by Taub et al. [41],
much of the SDC literature focuses on re-identification risk, which is not mean-
ingful for synthetic data, rather than the attribution risk, which is relevant. The
Targeted Correct Attribution Probability (TCAP) [11,41] can be used to assess
attribution risk.

2.2 Synthetic Census Microdata

Since Census microdata is predominantly categorical, it requires synthesis meth-
ods that can handle categorical data. CART, a non-parametric method devel-
oped by Breiman et al. [2], can handle mixed type (and missing) data, and can
capture complex interactions and non-linear relationships. CART is a predictive
technique that recursively partitions the predictor space, using binary splits, into
relatively homogeneous groups; the splits can be represented visually as a tree
structure, meaning that models can be intuitively understood (where the tree is
not too complex). Reiter [34] used CART to generate partially synthetic micro-
data, as did Drechsler and Reiter [8], who replaced sensitive variables in the
data with multiple imputations and then sampled from the multiply-imputed
populations. Random forests, developed by Breiman [3], is an ensemble learning
method and an extension to CART in that the method grows multiple trees.
Random forests were used to synthesise a sample of the Ugandan Census [9] and
to generate partially synthetic microdata [4].

Synthpop, an open source package written in the R programming language,
developed by Nowok et al. [25], uses CART as the default method of synthesis
(other options include random forests and various parametric alternatives). Since
CART is a commercial product, Synthpop uses an open source implementation of
the algorithm provided by the rpart package [43]. Synthpop synthesises the data
sequentially, one variable at a time; the first is sampled, then the following are
synthesised using the previous variables as predictors. Whilst an advantage of
Synthpop is that it requires little tuning and performs very quickly, a disadvan-
tage is that it (and tree-based methods in general) can struggle computationally
with variables that contain many categories. As suggested by Raab et al. [31]
methods to deal with this include aggregation, sampling, changing the sequence
order of the variables and excluding variables from being used as predictors.
Synthpop has been used to produce synthetic longitudinal microdata [26] and
synthetic Census microdata [30,42].

Another method that can process mixed type data is DataSynthesizer, devel-
oped by Ping et al. [29], a Python package that implements a version of the
PrivBayes [46] algorithm. PrivBayes constructs a Bayesian network that models
the correlations in the data, allowing approximation of the distribution using a
set of low-dimensional marginals. Noise is injected into each marginal to ensure
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differential privacy and the noisy marginals and Bayesian network are then used
to construct an approximation of the data distribution. PrivBayes then draws
samples from this to generate a synthetic dataset. DataSynthesizer allows the
level of differential privacy to be set by the user, or turned off. It has been used
to generate health data [33] and in exploratory studies [7,13,24].

In the field of deep learning [19], Generative Adversarial Networks (GANs)
have been generating much research interest and have been used for various
applications, although as detailed by Wang et al. [44] these are predominantly
in the image domain. GANs, developed by Goodfellow et al. [12], typically train
two neural network (NN) models: a generative model that captures the data
distribution and generates new data samples, and a discriminative model that
aims to determine whether a sample is from the model distribution or the data
distribution. The models are trained together in an adversarial zero-sum game,
such that the generator goal is to produce data samples that fool the discrim-
inator into believing they are real and the discriminator goal is to determine
which samples are real and which are fake. Training is iterative with (ideally)
both models improving over time to the point where the discriminator can no
longer distinguish which data is real or fake. From a data synthesis perspective
GANs are interesting in that the generative model does not access the original
(or training) data at all, and starts off with only noise as input; in theory this
might reduce disclosure risk.

GANs for image generation tend to deal with numerical, homogeneous data;
in general, they must be adapted to deal with Census microdata, which is
likely to be heterogeneous, containing imbalanced categorical variables, and
skewed or multimodal numerical distributions. Several studies have done this
by adapting the GAN architecture, these are often referred to as tabular GANs
(e.g. [5,6,28,47]). CTGAN, or Conditional Tabular GAN, developed by Xu
et al. [45] uses “mode-specific normalisation” to overcome non-Gaussian and
multimodal distribution problems, and employs oversampling methods and a
conditional generator to handle class imbalance in the categorical variables. In
their study CTGAN outperformed Bayesian methods, and other GANs, for gen-
erating mixed type synthetic data.

National statistical agencies have released synthetic versions of microdata
using forms of multiple imputation. The United States Census Bureau releases
a synthetic version of the Longitudinal Business Database (SynLBD) [18], the
Survey of Income and Program Participation (SIPP) Synthetic Beta [1] and the
OnTheMap application [22]. Whilst governmental organisations have not so far
released synthetic microdata created using deep learning methods, research in
this area is ongoing (e.g. [15,16]).

3 Research Design

To determine the sample equivalence, the risk and utility of generated synthetic
Census data was compared to the risk and utility of samples of the original
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Census data (of various sample fractions).1 Four different Census microdata sets
were used to demonstrate results on datasets from different underlying popula-
tion data structures. Three state-of-the-art data synthesis methods were used to
generate the synthetic data, each using the default parameters. To obtain con-
sistent results, multiple datasets were generated (using different random seeds)
for the sample and synthetic data, and the mean of the utility and risk metrics
for each calculated.2

3.1 Data Synthesisers

The methods used were Synthpop [25], DataSynthesizer [29] and CTGAN [45].
These were selected as they are established, open-source methods that should
produce good quality data. Whilst the focus of these experiments was on evaluat-
ing the resulting utility and risk of the generated data, rather than the individual
methods, for DataSynthesizer the differential privacy parameter was varied in
order to understand how the use of differential privacy affects the quality and
risk of the synthetic data and how such differentially private synthetic datasets
compare to samples. For each parameter setting, five fully synthetic datasets
were generated, each using a different random seed.

Synthpop. Version 1.7-0 of Synthpop was used with default parameters. As
described in Sect. 2.2, Synthpop allows the sequence order of the variables to be
set by the user, however there is no default for this (other than the ordering
the data is in). Since the Census microdata used for these experiments is pre-
dominantly categorical, with many variables containing many categories, and it
is known that Synthpop can struggle with variables containing many categories,
the visit sequence was set such that variables were ordered by the minimum to
maximum number of categories, with numerical variables first (and a tie decided
by ordering alphabetically). Moving variables with many categories to the end
of the sequence is suggested by Raab et al. [31].

DataSynthesizer. Version 0.1.9 of DataSynthesizer (described in Sect. 2.2) was
used with Correlated Attribute mode (which implements the PrivBayes [46] algo-
rithm). Default parameters were used, whilst differing the Differential Privacy
(DP) parameter. DP is controlled by the ε parameter and a value of zero turns
DP off. Four different values were used (DP = off, ε = 0.1, 1, and 10). Lower
values of ε tend to be used in practise, but the range of values aims to understand
the effect at both the higher and lower end, as well as turning off DP altogether.

1 Note that, for calculating the risk and utility, the sample data was treated in the
same way as the synthetic data, namely by comparing against the original data.
However, for simplicity, in the metric descriptions only synthetic data is mentioned.

2 The project code is available here: https://github.com/clairelittle/psd2022-
comparing-utility-risk.

https://github.com/clairelittle/psd2022-comparing-utility-risk
https://github.com/clairelittle/psd2022-comparing-utility-risk
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Table 1. Census data summary

Dataset Sample size #Total variables #Categorical #Numerical

Canada 2011 32149 25 21 4

Fiji 2007 84323 19 18 1

Rwanda 2012 31455 21 20 1

UK 1991 104267 15 13 2

CTGAN. Version 0.4.3 of CTGAN was used for all experiments. CTGAN as
described in Sect. 2.2, is a Conditional GAN implemented in Python. There are
many hyperparameters that might be altered for a GAN; the default values were
used, with the number of epochs set at 300.

3.2 Data

Four Census microdatasets were used, each from a different continent. Each
dataset contains individual records, pertaining to adults and children. The vari-
ables include demographic information such as age, sex and marital status (i.e.,
variables that are often considered key identifiers) and a broad selection of vari-
ables pertaining to employment, education, ethnicity, family, etc. Each dataset
contained the same key variables, and target variables that broadly cover the
same overall themes. The purpose of using multiple datasets was not to directly
compare the countries, but rather to determine whether any patterns uncovered
during the experiments were replicated on similar (but not identical) datasets.
Table 1 describes the data in terms of sample size and features.

The data was minimally preprocessed and missing values were retained.
Three of the datasets (UK [27], Canada [23] and Rwanda [23]) were subset-
ted on a randomly selected geographical region; this was to reduce data size and
also to naturally reduce the categories for some of the variables. The entire Fiji
sample [23] was used. AppendixA contains a summary of the datasets.

Creating the Census Data Samples. For each Census dataset, random sam-
ples (without replacement) of increasing sizes were drawn (0.1%, 0.25%, 0.5%,
1%, 2%, 3%, 4%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%,
96%, 97%, 98%, 99%). A focus was placed on those sample fractions closer to
zero since released Census samples tend to be relatively small, and closer to
100% to map the data as it became closer in size to the original. For each sam-
ple fraction 100 datasets were generated (with different random seeds), and the
results of the individual risk and utility measures averaged.

3.3 Measuring Disclosure Risk Using TCAP

Elliot [11] and Taub et al. [41] introduced a measure for the disclosure risk
of synthetic data called the Correct Attribution Probability (CAP) score. The
disclosure risk is calculated using an adaptation used in Taub et al. [40] called the
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Targeted Correct Attribution Probability (TCAP). TCAP is based on a scenario
whereby an intruder has partial knowledge about a particular individual. That
is, they know the values for some of the variables in the dataset (the keys) and
also that the individual is in the original dataset3, and wish to infer the value
of a sensitive variable (the target) for that individual. The TCAP metric is then
the probability that those matched records yield a correct value for the target
variable (i.e. that the adversary makes a correct attribution inference).

TCAP has a value between 0 and 1; a low value would indicate that the
synthetic dataset carries little risk of disclosure whereas a TCAP score close to
1 indicates a higher risk. However, a baseline value can be calculated (this is
essentially the probability of the intruder being correct if they drew randomly
from the univariate distribution of the target variable) and therefore a TCAP
value above the baseline might indicate some disclosure risk. Given this, we have
chosen to scale the TCAP value between the baseline and a value of 1. This does
create the possibility of a synthetic dataset receiving a negative TCAP score
(which can still be plotted on the R-U map) but that simply indicates a risk
level below that of the baseline. We refer to the scaled TCAP value as the
marginal TCAP; i.e. it is the increase in risk above the baseline.

For each Census dataset, three target and six key variables were identified
and the corresponding TCAP scores calculated for sets of 3, 4, 5 and 6 keys. The
overall mean of the TCAP scores was then calculated as the overall disclosure risk
score. Where possible, the selected key/target variables were consistent across
each country. Full details of the target and key variables are in AppendixB.

3.4 Evaluating Utility

Following previous work by Little et al. [20] and Taub et al. [42], the utility
of the synthetic and sample data was assessed using multiple measures. The
confidence interval overlap (CIO) and ratio of counts/estimates (ROC) were
calculated. This was to provide a more complete picture of the utility, rather
than relying upon just one measure. The propensity score mean squared error
(pMSE) [39] was not used as, whilst it is suitable for analysing the synthetic
data it is not suited to the analysis of sample data as it is structurally tied to
the original data (since the sample data is a subset of the original data).

To calculate the CIO (using 95% confidence intervals), the coefficients from
regression models built on the original and synthetic datasets are used. The CIO,
proposed by Karr et al. [17], is defined as:

CIO =
1
2

{
min(uo, us) − max(lo, ls)

uo − lo
+

min(uo, us) − max(lo, ls)
us − ls

}
, (1)

where uo, lo and us, ls denote the respective upper and lower bounds of the
confidence intervals for the original and synthetic data. This can be summarised
3 This is a strong assumption, which has the benefit of then dominating most other

scenarios, the one possible exception is a presence detection attack. However, for
Census data, presence detection is vacuous, and the response knowledge assumption
is sound by definition.
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by the average across all regression coefficients, with a higher CIO indicating
greater utility (maximum value is 1 and a negative value indicating no overlap).
For each synthetic Census dataset, two logistic regressions were performed, with
the CIO for each calculated. The mean of these two results (where a negative,
or no overlap was counted as zero) was taken as the overall CIO utility score for
that dataset. Details of the regression models for each dataset are presented in
AppendixC.

Frequency tables and cross-tabulations are evaluated using the ROC, which
is calculated by taking the ratio of the synthetic and original data estimates
(where the smaller is divided by the larger one). Thus, given two corresponding
estimates (for example, the number of records with sex = female in the original
dataset, compared to the number in the synthetic dataset), where yorig is the
estimate from the original data and ysynth is the corresponding estimate from
the synthetic data, the ROC is calculated as:

ROC =
min(yorig, ysynth)
max(yorig, ysynth)

. (2)

If yorig = ysynth then the ROC = 1. Where the original and synthetic datasets
are of different sizes (as is the case when calculating the ROC for the various
sample datasets) the proportion, rather than the count can be used. The ROC
was calculated over univariate and bivariate cross-tabulations of the data, and
takes a value between 0 and 1. For each variable the ROC was averaged across
categories to give an overall score.

To create an overall utility score for comparing against the overall disclosure
risk score (marginal TCAP), the mean of the ROC scores and the CIO was
calculated – a score closer to zero indicates lower utility; a score closer to 1
indicates higher utility.4 The results for the synthetic and sample data were
plotted on the R-U map for each country separately.

4 Results

Fully synthetic datasets of the same size as the original were generated, and
no post-processing was performed on the data. For Synthpop and CTGAN five
different models were created (using different random seeds) and a synthetic
dataset generated for each. The mean utility and risk over the five datasets is
plotted on the R-U map. For DataSynthesizer five different models for each value
of ε were created and a point (the mean over the 5) is plotted for each of a series of
values for ε. Figure 1 illustrates the R-U map for the UK 1991 Census data. The
sample fractions form a curved line, with a point representing each increasing
sample fraction (from left to right). The utility starts to drop quite steeply once
the sample fraction drops below about 3%. Both the risk and utility of the data at
100% (i.e. the whole original sample) is necessarily 1. The synthetic datasets are

4 We recognise that averaging different utility metrics may not be optimal and in future
work we will consider an explicitly multi-objective approach to utility optimisation.
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plotted alongside the different sample fractions to illustrate how they compare
with the sample data. Considering Fig. 1 the Synthpop point falls almost on the
sample curve, meaning it has utility and disclosure risk equivalence of between
a 10% and 20% sample of the original data. Plots for the other three Census
datasets are contained in AppendixD.
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Fig. 1. Risk-Utility map plotting the mean synthetic data and sample fraction results
for UK 1991 Census data. DP stands for Differential Privacy.

Table 2 provides detail on the utility and risk (mean over five datasets) of
the synthetic data for each of the Census datasets together with the associated
sample fraction equivalence.5 A synthetic dataset with higher sample fraction
equivalence for utility but lower sample fraction equivalence for risk would be
optimal from the point of view of synthetic data producers. For all four data
sets Synthpop has higher sample fraction equivalence for utility than for risk.
CTGAN has mixed results with two outcomes of higher risk equivalence than
utility (although all equivalences are low compared to the other methods). The
effect of different ε values can be observed for DataSynthesizer. For ε = 0.1
the risk and utility equivalence is less than a 0.1% sample (across all Census
datasets); and all but the UK dataset have a negative value for risk (meaning
5 Standard deviation not included for clarity as this was generally small, <0.01.
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Table 2. Synthetic data risk and utility (mean of 5 datasets), and comparable sample
equivalence for each of the Census datasets. (Note that the values of ε indicated here
are per dataset created, not for the whole synthesis process which will be five times as
large given that m = 5)

Data Synthesizer Overall
utility

Risk
(marginal TCAP)

Sample Equiv.
for Utility

Sample Equiv.
for Risk

UK 1991 CTGAN 0.514 0.371 0.25%–0.5% 2%–3%

Synthpop 0.774 0.516 10%–20% 10%–20%

DataSynthesizer :

ε = 0.1 0.330 0.043 <0.1% <0.1%

ε = 1 0.416 0.303 <0.1% 0.1%–0.25%

ε = 10 0.536 0.424 0.25%–0.5% 5%–10%

No DP 0.643 0.440 1%–2% 5%–10%

Canada 2011 CTGAN 0.495 0.165 0.25%–0.5% <0.1%

Synthpop 0.830 0.294 20%–30% 2%–3%

DataSynthesizer :

ε = 0.1 0.342 −0.102 <0.1% <0.1%

ε = 1 0.425 0.011 0.1%–0.25% <0.1%

ε = 10 0.521 0.126 0.25%–0.5% <0.1%

No DP 0.688 0.231 3%–4% 1%–2%

Fiji 2007 CTGAN 0.469 0.439 0.1%–0.25% 3%–4%

Synthpop 0.816 0.555 20%–30% 10%–20%

DataSynthesizer :

ε = 0.1 0.301 −0.173 <0.1% <0.1%

ε = 1 0.360 0.233 <0.1% <0.1%

ε = 10 0.477 0.414 0.1%–0.25% 2%–3%

No DP 0.727 0.526 5%–10% 5%–10%

Rwanda 2012 CTGAN 0.430 0.412 0.5%–1% 0.25%–0.5%

Synthpop 0.752 0.437 20%–30% 1%–2%

DataSynthesizer :

ε = 0.1 0.203 −0.404 <0.1% <0.1%

ε = 1 0.259 −0.045 <0.1% <0.1%

ε = 10 0.373 0.230 0.1%–0.25% <0.1%

No DP 0.720 0.413 10%–20% 0.25%–0.5%

the risk is below the baseline). Considering Figs. 1 and 2 the DataSynthesizer
points have a curvilinear relationship with each other, although where they fall
in relation to the sample fractions equivalence varies between the four different
Census datasets.

5 Discussion

The initial results are very interesting in several respects. Firstly the risk-utility
relationship for sample data is curvilinear. With risk dropping fast at first as the
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sample reduces before utility declines rapidly with smaller sample fractions. This
is of course ideal and if repeated on larger trial would be a vindication of the use
of sampling as a default disclosure control for Census microdata. The curve also
indicates a sweet spot sample fraction is around 2–3%, below this level there is
little risk benefit and a large decrease in utility. There is a big caveat to place
on this finding, which we will come to shortly. Second, the results are mixed
when comparing synthetic data and samples, with outcomes appearing to vary
by country. Synthpop generally performs well with the datasets it produced in
each country (other than UK) falling to the right of the risk utility curve for the
samples. CTGAN produced two results on the curve and two to the left of the
curve as did DataSynthesiser. This would need a more thorough investigation
before conclusions could be reached but the driver is presumably variations in
data structure.

Third, the impact of varying ε in data synthesiser was also curvilinear but in
the opposite less favourable direction (utility decreasing first). Simply switching
the differential privacy option on (but with a high value of ε) causes a substantial
decrease in utility with little appreciable impact on risk. The often advised level
of ε = 0.1 produces datasets that are right down in the left hand corner, with
little utility and no risk. This result if validated through larger scale studies
would vindicate that impression analysts have about the impact of differential
privacy. The above findings must be strongly caveated on three points.

1. The experiments were conducted using samples of microdata. The experi-
mental samples were in fact sub-samples. The results may not generalise to
full population data (i.e. we should not assume that sub sample to sample
relationships will be replicated in sample to population ones). The true test
will be to compare synthetic populations with microdata samples.

2. The study underestimates the risk of samples relative to synthetic data in
general. While we might reasonably assume that synthetic data do not contain
identification risk, this is not true for samples (by virtue of them being drawn
from real data).

3. The risk measure employed here uses a response knowledge attribution disclo-
sure. This is sound for Census data but for other datasets, presence detection
might be a significant risk that would need to be taken account of. In further
work we will be examining this issue further.

6 Conclusion

This paper has introduced the notion of sample fraction equivalence risk and
utility. With experiments using Census data from four countries, we have demon-
strated a mechanism for comparison of data synthesis and sampling for micro-
data. A second subsidiary aim was to bring differential privacy into the same
evaluation framework.

The results of the experiments are quite compelling and illustrate the value
of the approach. In future work we will be aiming to extend this initial study in
three ways: (i) to run experiments on full population data, (ii) to assess other
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disclosure control methods for sample fraction equivalence, and (iii) to integrate
a measure of re-identification disclosure risk into the framework.
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Appendices

Appendix A

A brief summary of the Census microdata:

Canada 2011: Subsetted on the province of Manitoba, containing 32,149
records (3.47% of the total available dataset which was a 2.78% sample of the
2011 Census). Downloaded from IPUMs [23], courtesy of Statistics Canada.

Fiji 2007: The entire 10% sample (n = 84,323) of the 2007 Fiji Census. Down-
loaded from IPUMs [23] courtesy of the Bureau of Statistics, Fiji.

Rwanda 2012: Subsetted on the Karongi region, containing 31,455 records
(3.03% of the total available, a 10% sample of the 2012 Census). Downloaded
from IPUMs [23] courtesy of the National Institute of Statistics, Rwanda.

UK 1991: Subsetted on the region of West Midlands, containing 104,267 records
(9.34% of total, a 2% sample of the 1991 Individual Sample of Anonymised
Records for the British Census). Downloaded from UK Data Service [27].

Appendix B

Summary of TCAP key/target variables. The six key variables are listed
together; the first 3 were used in the case of 3 keys, first 4 for 4 keys, etc.

Canada 2011: For target variables (RELIG, CITIZEN and TENURE) the key
variables were: AGE, SEX, MARST (marital status), MINORITY (part of a
visible minority), EMPSTAT (labour force status), BPL (birthplace).

Fiji 2007: For target variables (RELIGION, WORKTYPE and TENURE) the
key variables were: PROVINCE (of residence), AGE, SEX, MARST (marital
status), ETHNIC (part of a visible minority), CLASSWKR (employment status).

Rwanda 2012: For target variables (RELIGION, EMPSECTOR and OWN-
ERSH (tenure)) the key variables were: AGE, SEX, MARST (marital sta-
tus), CLASSWK (employment status), URBAN (urban/rural area), BPL (birth-
place).

UK 1991: For target variables (LTILL (long-term illness), FAMTYPE and
TENURE) the key variables were: AREAP, AGE, SEX, MSTATUS (marital
status), ETHGROUP (ethnic group), ECONPRIM (economic status).
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Appendix C

Description of regression models used to calculate the CIO. For each dataset two
logistic regressions were performed using marital status and housing tenure as
the targets (a binary target was created). Eight predictors were used, these were
the same for both models (with tenure/marital status removed accordingly):

Canada Predictors: ABIDENT (aboriginal identity), AGE, CLASSWK,
DEGREE, EMPSTAT, SEX, URBAN, TENURE/MARST.

Fiji Predictors: AGE, CLASSWKR, ETHNIC, RELIGION, EDATTAIN (edu-
cational level attained), SEX, PROVINCE, TENURE/MARST.

Rwanda Predictors: AGE, DISAB1, EDCERT (highest educational qualifica-
tion), CLASSWK, LIT (languages spoken), RELIG, SEX, TENURE/MARST.

UK Predictors: AGE, ECONPRIM, ETHGROUP, LTILL, QUALNUM, SEX,
SOCLASS, TENURE/MSTATUS.

Appendix D
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Fig. 2. Risk-Utility map plotting the mean synthetic data and sample fraction results
for Fiji 2007, Canada 2011 and Rwanda 2012 Census data.
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Abstract. This paper introduces two methods of creating differentially
private (DP) synthetic data that are now incorporated into the synthpop
package for R. Both are suitable for synthesising categorical data, or
numeric data grouped into categories. Ten data sets with varying char-
acteristics were used to evaluate the methods. Measures of disclosiveness
and of utility were defined and calculated. The first method is to add DP
noise to a cross tabulation of all the variables and create synthetic data by
a multinomial sample from the resulting probabilities. While this method
certainly reduced disclosure risk, it did not provide synthetic data of ade-
quate quality for any of the data sets. The other method is to create a set
of noisy marginal distributions that are made to agree with each other
with an iterative proportional fitting algorithm and then to use the fitted
probabilities as above. This proved to provide useable synthetic data for
most of these data sets at values of the differentially privacy parameter ε
as low as 0.5. The relationship between the disclosure risk and ε is illus-
trated for each of the data sets. Results show how the trade-off between
disclosiveness and data utility depend on the characteristics of the
data sets.

1 Introduction

Differential privacy (DP)1 [9] is considered by theoretical computer scientists to be
the most rigorous system of protecting the privacy of individuals in data released
to the public. Formally, the release of a statistic that has been altered to comply
with ε-DP limits, restricts the absolute value of the log-likelihood-ratio of obtain-
ing this result with the complete data to the that from data without any one indi-
vidual. Small values of ε lead to greater protection of privacy by increasing the
distance between the original and the ε-DP result, while large values do little to
preserve privacy and give results closer to those that would be found from the orig-
inal data. The initial development of DP focussed on privacy without reference to
utility, although it was recognised that DP results could provide answers far from
the original, expecially for statistics based on small data sets.
1 This acronym will also be used for “differentially private”.
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In contrast, the generation of synthetic data, as initially implemented in our
synthpop package for R [21], provides a tool to obtain and evaluate the best pos-
sible utility but without any formal privacy guarantee, although the fact that no
synthetic record corresponds to a real individual gives some reassurance. Addi-
tional privacy protection for the output from the synthpop package is afforded
by the use of statistical disclosure control measures (sdc) that are available as
part of the package. This includes the removal of “replicated uniques” defined
as records that are unique in the synthetic data, but are also present and unique
in the original data, as well as other methods such as smoothing and top and
bottom coding of numeric data.

The original conception of DP was that a DP mechanism would be designed
to answer individual queries, or a series of queries. When a series of queries are
answered for the same data set, the person receiving these DP answers would
have increased the disclosure risk to the sum of all the εs in the individual queries.
This appeared to rule out the possibility of using it to generate synthetic data for
which there would be no limit on the number of queries. The few early attempts
to create DP synthetic data seemed to result in poor utility, but the last ten
years have seen many developments of practical DP methodology, much of it
encouraged by endeavours to apply DP to outputs from the 2020 US Census [2,7,
10,12]. These initiatives are not universally accepted as a good thing. There have
been criticisms that DP distorts tasks such as redistricting voter areas [15] as well
as claims that DP does not prevent the leakage of confidential information [19].

The computer science literature uses different language and conventions from
the statistical literature. This makes it difficult for statisticians to evaluate, espe-
cially as some of the DP algorithms are complex, see e.g. [13]. In this paper we
introduce two easy-to-understand models for creating synthetic data for grouped
data that are now incorporated into the development version of synthpop, cur-
rently on github2. Since its introduction there have been several modifications
of the original DP definition, such as ε-δ-DP and other variants [22]. In this
paper we use only the original definition and use only the Laplace methanism
for adding DP noise. The models are evaluated on 10 data sets with differ-
ent characteristics, and the utility and disclosure risk of the synthetic data are
assessed. These methods could be developed further and they may not work as
well as those developed by teams working with the US Census, but they can
provide an experience of creating DP synthetic data to a wider group of people
who can gain experience with the method.

2 Methods for Creating Synthetic Data Sets

2.1 Without DP Guarantee

Many methods of creating synthetic data are based on original proposals in
1993 [16,26] that began to be implemented and developed from 2003 [25].
There is already a large literature for creating completely synthetic data,

2 It can be installed from https://github.com/bnowok/synthpop.

https://github.com/bnowok/synthpop
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without reference to DP; see Drechslerś monograph [8] for a comprehensive
review. While the original developments in this field built on ideas from multiple
imputation, it is simpler to consider the methodology as generating data from a
model fitted to the real data [23]. Synthetic data are simulated from this model
using either the fitted parameters, or a sample or samples from the posterior
distribution of the fitted parameters. The parameters may be obtained by a fit
to the joint distribution of all the variables or, more commonly, by defining the
joint distribution in terms of a series of conditional distributions.

Synthesis Methods Implemented in synthpop. Synthesising from condi-
tional distributions was the only method available in the original version of the
synthpop package. It provides great flexibility by allowing a choice of model for
each conditional distribution, by changing the order of the conditional distribu-
tions and by defining the predictors to be used for each conditional distribution.
This allows the synthesiser to improve the quality of the synthetic data using
tools to evaluate its utility [24] that are now part of the package.

From Version 1.5 [20] in 2018, synthpop includes two methods based on a log-
linear fit to the joint distribution for data when all variables are categorical. The
first (catall) fits a saturated model by selecting a sample from a multinomial dis-
tribution with probabilities calculated from the complete cross-tabulation of all
the variables in the data set. This is very close to a method recently proposed by
Jackson et al. [14]. Jackson et al. also use a saturated model, but they generate
data from a Poisson distribution. They present interesting results of different ways
in which the synthetic data can be made less disclosive by simulating from overdis-
persed distributions, such as the negative binomial or the Poisson inverse Gamma.
The catall procedure can be made exactly equivalent to the Poisson method if the
number of records in the synthetic data is itself sampled from a Poisson distri-
bution. When the cross-tabulation contains cells with zero counts these will be
reproduced as zero cells in the synthetic data unless a small positive quantity (α)
is added to each cell in the table. The synthpop package allows for this by spread-
ing a total count, defined by the parameter nprior, across all the cells in the table
that are not structural zeros, so that α = nprior/k is added to each cell where
k is the number of cells in the table that are not structural zeros (e.g. a cell for
the type of qualification for people with no qualifications). The second method
ipf fits log-linear models to a set of margins defined by the user using the method
of iterative proportional fitting3 implemented in the package mipfp in R. As for
catall the parameter α can be set to allow non-structural zeros to appear in the
synthetic data. Both catall and ipf are only feasible for a small number of vari-
ables because of the need to create very large cross-tabulations of all the variables.
synthpop currently prints a warning if the total cells exceed 108, though a user
can attempt to increase this.

Other Methods. More recently, the computer science and machine learn-
ing literature has introduced many new methods for creating synthetic data. A

3 Also known as the RAS algorithm and as raking in Computer Science.
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web search for “synthetic data solutions” generates links to many firms offering
synthetic data services4, 5. One can even find a link to a list of firms who can
provide synthetic data for businesses6. Many of the machine learning algorithms
are based on Generalized Adversarial Networks (GANs) [11]. These methods
involve an iterative process where a ‘Generator’ fits a model to the data and a ’Dis-
criminator’ attempts to distinguish between the real data and the model. Feed-
back to the ’Generator’ is used to improve the fit of the data at the next iteration.

Compatible Generative Models. Users of synthetic data can use it to cal-
culate any summary statistic or to estimate any statistical model. The results
obtained and the standard errors calculated for them [23] will only be unbiassed
if the model used in generating the synthetic data is at least as complex as that
used in the analysis. We will refer to this aspect as the use of a generative model
that is compatible with the analysis. Even more important is the condition that
the original data is well represented by the generative model. The synthetic
data may then appear to provide a good fit for an analysis compatible with the
synthesis model, when an analysis of the original data would have indicated a
lack-of-fit. If the analysis being used is incompatible with the generative model
creating the synthetic data, results may be biassed compared to those from the
original data; i.e. synthetic data will have poor utility. Synthesis methods that
appear to provide the most useful synthetic data are adaptive methods where the
fitting procedure explores the relationships between variables to obtain the best
fit. Such methods include a full conditional model where all conditional distri-
butions are fitted by an adaptive CART model (the default model in synthpop)
as well as the many different implementations of GANs.

The method catall is compatible with any analysis of categorical data. Syn-
thesis with ipf is only compatible with analyses for which the sufficient statistics
are members of the set of margins used to contrain the iterative fitting. If the
data have significant interactions that are not included in the set of margins, the
results of any incompatible analyses will be biassed. Poor utility will be found
in these cases when evaluated from a fit to an incompatible model. However,
unlike synthetic data created by adaptive methods, knowledge of the marginals
will allow the user of synthetic data to know which analyses can be trusted. For
example, one could create synthetic data with ipf with all two-way marginals
and their interactions with the outcome of interest. Then a logistic regression
of the outcome on all other variables and their two-way interactions would be a
compatible analysis model.

4 Hazy https://hazy.com/, Accessed 18 May 2022.
5 Mostly AI https://mostly.ai/ebook/synthetic-data-for-enterprises, Accessed 18 May

2022.
6 https://research.aimultiple.com/synthetic-data/, Multiple AI: In-Depth Synthetic

Data Guide, Accessed 18 May 2022.

https://hazy.com/
https://mostly.ai/ebook/synthetic-data-for-enterprises
https://research.aimultiple.com/synthetic-data/
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2.2 Adapting Methods for Synthetic Data to Make Them DP

Background. For a comprehensive review of practical methods for DP data
synthesis see Bowen and Liu, 2020 [5]. This section will provide a brief summary,
focussing mainly on the methods for categorical data used in this paper.

The earliest real application of DP synthetic data was the data set that sits
behind the US Census Bureau’s online tool ‘On the Map’7 that allows visual-
isation of where people work and where they live. The technique used was to
add noise to the raw data for this example by either simulating from data with
a Multinomial-Dirchilet distribution or by adding Laplace noise to the counts
[4,17]. The values of ε had to be larger than was desirable and data had to be
modified to make it appear plausible.

A more promising approach to creating synthetic data is to add DP noise
to the parameters of the joint distribution, rather than to the raw data. The
ε for the whole dataset is the sum of the individual values for each parameter.
Shlomo [27] has recently illustrated this approach for synthesising data with a
multivariate Normal distribution.

Methods Used in the NIST Challenge. In recent years several groups have
developed methods and software for creating DP synthetic data. These initiatives
have been encouraged by a series of challenges, with substantial prizes, promoted
by the National Institute of Standards and Technology (NIST)8. Participating
teams had to provide synthetic versions of the data for each challenge where
the versions satisfied DP for a given set of values of ε and δ. The teams had
to provide code that would convince the judges that their data satisfied ε-δ
differential privacy. The software used by many of the teams who entered can
be accessed via the NIST web site. Those submissions that passed this hurdle
were then compared using utility metrics. Bowen and Snoke [6] have published
a detailed evaluation of the synthetic data that were submitted and describe the
methods used by the teams.

Two main types of methods were employed in the challenge. The first was
those based on DP GANs. GANS can be easily made DP by providing feedback
from the Discriminator to the Generator via the results of DP queries. The total
ε for the method is the sum of those used at each iteration and the iterations
have to stop once this DP budget is exhausted. The second method, used by
many teams, was to generate synthetic data from a model fitted to the margins
of the data. Each margin is first made DP and a model is fitted that assumes
that only the interactions defined by the chosen margins are present in the
population from which the data can be considered to have been generated. After
noise has been added to the margins to make them DP, they no longer sum to
the same totals for lower order marginals. Several methods have been used to

7 see https://lehd.ces.census.gov/applications/, Accessed 16th March 2022.
8 https://www.nist.gov/ctl/pscr/open-innovation-prize-challenges/past-prize-

challenges, where you will find details of the winning methods and links to
some of the software used.

https://lehd.ces.census.gov/applications/
https://www.nist.gov/ctl/pscr/open-innovation-prize-challenges/past-prize-challenges
https://www.nist.gov/ctl/pscr/open-innovation-prize-challenges/past-prize-challenges
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make the margins agree and ensure they are non-negative. Once this is achieved
synthetic data can be generated from a model fitted to the DP margins. The
resulting synthetic data are DP because once the DP margins are created, any
data derived from them without further input from the original data will also
be DP9. The choice of margins cannot be based on an analysis of the data to
be synthesised as this would incur an addition to the privacy budget. The NIST
teams used analyses of other similar data sets to inform their choices or, in some
cases, used part of their privacy budget to identify the margins to fit. In the
evaluation the teams who used marginal methods scored more highly than those
using GANs. One such team who scored highly on all challenges [18] has provided
a detailed description of their methodology including their model choice and the
post-processing methods used.

DP Methods in synthpop. The methods catall and ipf can be made DP.
The first by a method similar to the method used by Abowd and Villhuber
[4] in 2008. The second is similar to the marginal models used by the NIST
teams. Note that the choice of margins to use for DP ipf cannot be made from
an analysis of the original data, unless the analyses to determine the choice of
margins contributes to the privacy budget. In this preliminary investigation the
choice of margins is all two-way interactions in all cases. The process of making
these two methods DP, as implemented in the latest version synthpop10, involves
the following steps:

1. Determine the value of ε to use.
2. Create cross-tabulations of all the variables (catall) or of the selected margins

(ipf ).
3. If the parameter nprior > 0 add nprior/ncells to each cell in every table,

where ncells is the number of cells over which the prior is to be spread.
4. Add Laplace noise with dispersion parameter 1/ε (catall) or M/ε for (ipf ),

where M is the number of margins fitted, to each cell of the table.
5. Set any negative counts to zero or a small positive value.
6. Rescale the counts to become probabilities that sum to unity.
7. For catall create the synthetic data as a multinomial distribution from this

probability vector with the selected sample size.
8. For ipf use the Ipfp algorithm from the mipfp package11 for R to obtain a

fit to the probabilities calculated from the noisy marginals, and then generate
synthetic data as for catall.

Note that when iterative proportional fitting is applied to the probabili-
ties from incompatible margins, rather than compatible counts, the margins are
adjusted as part of the process so they become compatible with each other.
Convergence for iterative proportional fitting is always slow compared to the
Newton-Raphson algorithms, but it is usually slow but sure. It becomes even

9 This is described as robustness to post-processing.
10 See footnote 2. It will be made available on CRAN after Version 1.7.0.
11 See https://CRAN.R-project.org/package=mipfp.

https://CRAN.R-project.org/package=mipfp
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slower when the initial margins are incompatible, and in a few cases it may fail
to converge in a large number of iterations; see Table 3 for details. For the case
when the margins are compatible the eventual convergence is guaranteed, but is
not clear if this is the case when margins are not compatible. Steps 5 and 6 are
post-processing steps that can have a considerable influence on disclosiveness
and utility.

3 Measures of Utility and Disclosure Risk for Synthetic
Categorical Data

3.1 Disclosure Risk

For DP synthetic data ε provides a measure of disclosure risk. It is desirable
to have another measure of disclosure risk that can be calculated for non-DP
synthetic data and that can be compared to ε for DP synthetic data. One such
measure is the percentage of unique records in the synthetic data that are also
unique in the original data, designated as ru (replicated uniques)12. Below we
introduce the notation used and define replicated uniques for the case when all
variables are categorical. The measure ru will depend on the disclosiveness of the
original data. In the extreme, if there are no unique records in the original data
then ru will always be zero. This measure relates to the expected behaviour of
an intruder who knows the characteristics of a unique individual in the data base
and attempts to identify them. A more nuanced version of this type of measure
has been discussed by Taub et al. [29], but this relates to a particular target
variable for which the value might be determined from a set of key variables. To
obtain a measure for a data set this would need to be averaged over a selection
of targets. Replicated uniques were used by Jackson et al. [14] in their evaluation
of syntheses from saturated models.

N Number of observations in the original data

k Total cells in the cross-tabulation of all variables

y1, y2, ..., yk Counts of original data in each cell of the cross-tabulation

s1, s2, ..., sk Counts of synthetic data in each cell of the cross-tabulation

100 Σi=1,k(yi = 1)/N Percentage of unique records in the original data (p1)

100 Σi=1,k(yi = 1)/k Percentage of empty cells in the cross-tabulation (p0)

100 Σi=1,k(si = 1 & yi = 1)/k Percentage of uniques in the synthetic data that are

also unique in the original (replicated uniques ru)

3.2 Utility

Raab et al. [24] have carried out an extensive review of utility measures that have
been proposed for synthetic data. The measures are computed by first attempting
to discriminate the synthetic data from the original according to some method.
All the measures evaluated were found to be highly correlated with each other,
12 Also sometimes termed “correct matches”.
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and in some cases even identical. The model used to discriminate between the real
and synthetic data is more important than the choice of measure. Some of the
measures have expected values that can be calculated, or obtained by simulation,
when the generative model is the correct one that could have produced the
original data. The utility measure that we will use here is the propensity score
mean-square-error (pMSE) whose expected value for a correct generative model
is discussed in [28]. A standardised version can be calculated as the ratio of
pMSE to its expectation (S pMSE). For non-DP synthesis this value will have
an expected value of 1.0 when the generative model is correct, with higher values
indicating poor utility. Experience of using this measure for many synthetic data
sets suggests that synthetic data with values of S pMSE below 10 provide useful
results that agree well with analysis of the original data, and those under 30
generally produce usable results.

When the model used to evaluate utility consists of a tabulation, the pMSE
has a simple form [24] that is identical to the utility measure proposed by Voas
and Williams [30]. The formula for this and its standardised version for table m,
designated as Um, is shown below. These formulae assume that a synthetic data
set of the same size as the original has been produced. A summary measure for
the whole data set can be obtained by averaging Um over a set of M marginals
to give UM . When the synthetic data are created by a method like ipf that
constrains a set of marginals, then the expected value of Um for each constrained
marginal will be 1.0.

M Number of margins selected

m1, m2, ...mM Number of cells in the mth margin

yi1, yi2, ..., yim Counts of original data in each cell of the ith margin

si1, si2, ..., sim Counts of synthetic data in each cell of the ith margin

pMSEm = Σj [(yij − sij)
2/{(yij + sij)/2}] pMSE for the ith margin

dfm Degrees of freedom for the mth marginal

Um = pMSEm/dfm S pMSE standardised utility for the mth marginal

UM = ΣmUm/M Average standardised utility for the set of M marginals

4 Data Sets Used for the Evaluation

Table 1. Features of the data sets.

S3 S5 S7 P3 P5 P7 P7x Ps3 Ps5 Ps7

N 5,000 1,035,201 13,309

k 60 2,160 77,760 70 2,100 94,500 3,420,900 70 2,100 94,500

p0 0 6.23 98.20 5.71 37.62 94.49 96.62 34.29 73.19 99.10

p1 0 6.74 35.84 0.00 0.02 0.12 4.51 0.03 0.96 2.66

Data sets used to evaluate the DP synthesis methods were subsets of variables
from two sources. The data set (SD2011) is a sample of 5000 records from a sur-
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vey on the quality of life in Poland in 201113. In all cases any numeric variables
were grouped into 5 classes14. The data used to synthesise was a subset of the
first 3, first 5 and first 7 variables in this data set, labelled S3, S5 and S7. The
second data set was supplied to teams from National Statistics Agencies (NSOs)
as part of the evaluation of a guide to synthetic data for NSOs [1]. It consisted
of an extract of just over a million records from the American Community Sur-
vey, made available by the IPUMS project15. As well as demographic data it
included an area identifier that divided the area for the survey into 181 Public
Use Microdata Areas (PUMAs). Data extracts from this source were 3, 5 and
7 demographic variables (P3, P5 and P7), then one with 7 variables including
PUMA (P7x) and finally three smaller data sets from one PUMA with 13 thou-
sand records (Ps3, Ps5 and Ps7). This is important since better utility can be
obtained for this type of data by stratifying it into subsets by area. If each subset
is made DP the overall ε is the maximum of those used for each subset, since a
person can only be in one PUMA. Features of the data sets are summarised in
Table 1 and the variables in each are given in the Appendix A.1.

The number of cells in the cross-tabulation of all the variables ranged from
60 to over 3 million. Extracts with 7 variables had the most sparse tables (high
p0). The % of unique records is a disclosure measure for the original data that
is an upper limit for ru from synthetic data sets. For a given sample size p0 and
p1 increase with the number of cells in the table and they are greatest for small
sample sizes. Two of the three data sets with just three variables have no unique
records, and the third has only a very small number of unique records. Those
datasets with 7 variables are all very sparse with two having over 98% of the
cells in the cross-tabulation as zeros.

5 Results

5.1 Utility and Disclosure Risk for Non-DP Synthesis

Each of the 10 datasets was synthesised using synthpop by the method catall
and then by ipf with all two-margins. Results for disclosiveness and utility,
averaged over 10 replications, are shown in Table 2. Synthesis by catall reduces
the disclosure risk, as assessed by ru, to an average of about 37% of p1 and to a
greater extent (varying by data set) for ipf synthesised from two-way margins.
As expected all the two-way and three-way utility measures are centred on 1.0
for catall. This is also true for synthesis by ipf for utility evaluated from two-way
margins, but for utility evaluated from three-way margins we find the expected
lack-of-fit from the incompatible generating model. There was very little evidence
of three-way interactions in the SD2011 data sets, but more for the PUMS data.
For synthesis by ipf we show the utility for the three-way marginal that gave

13 Available as a data set as in the synthpop package.
14 The only numeric variables selected from SD2011 were Age and Income, and from

the PUMS data only Age.
15 https://www.ipums.org/.

https://www.ipums.org/
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the worst utility in an evaluation of a two-way synthesis. This choice of worst
marginal was carried forward into the DP syntheses reported below. This will
allow the loss of utility due to an incompatible margin to be compared to that
due to the addition of DP noise. For the PUMS data the variables with the most
evidence of a three way interaction were age and sex with either marital status
or group quarters.

Table 2. Non DP synthesis results for the 10 data sets, all results are average for 10
syntheses.

S3 S5 S7 P3 P5 P7 P7x Ps3 Ps5 Ps7

Original data

p1 0.00 6.74 35.84 0.00 0.02 0.12 4.51 0.03 0.96 2.66

catall saturated model

% replicated uniques ru 2.44 13.16 0.01 0.04 1.66 0.01 0.34 0.95

(ru) as a % of p1 36 37 37 36 37 28 36 36

Mean two-way utility 0.97 1.02 1.00 0.93 1.01 0.92 0.99 1.10 1.02 0.99

Mean.three-way.utility 0.92 1.03 0.99 0.96 0.98 0.97 1.02 1.05 1.01 1.00

ipf with all two-way margins

% replicated.uniques(ru) 1.67 6.41 0.00 0.03 1.00 0.00 0.28 0.63

(ru) as a % of p1 30 13 25 17 22 15 22 24

Mean two-way utility 0.97 0.96 1.04 1.09 0.98 0.98 1.04 0.97 0.98 1.07

Mean three-way utility 1.48 1.76 1.77 4.41 20.58 10.34 10.26 1.54 2.14 1.67

Worst.three-way.utility 1.48 1.92 2.37 4.41 81.74 81.40 82.14 1.54 5.52 1.20

5.2 Utility and Disclosure Risk for DP Synthesis

The results for DP synthesis by catall confirmed the expectation that this
method would not prove useful; similar results were found by Bowen and Liu [5].
Even for some larger values of ε utilities often exceeding 100 times their value
for non-DP synthesis. The disclosure, measured by ru did fall to low levels, espe-
cially for data sets with very sparse cross-tabulations, but this was not associated
with acceptable utility for any of the data sets. The process of adding noise leads
to many negative values. These have to be set to either zero or a small value to
allow the probabilities to be used in generating the synthetic data. Exactly how
steps 5 and 6 distort the data for these sparse tables depends on the relative
proportion of 0s and 1s in the cross-tabulation. For small ε applied to sparse
tables step 5 increases the sum of the noisy counts and step 6 reduces large
counts. The US Census Bureau have noted the contribution of this type of post-
processing to their area counts [10,12], but the top-down solution they have used
[3], including some agreed fixed totals, does not appear applicable to synthetic
data generation. Post-processing by steps 5 and 6 are less of a problem for ipf
because counts in the margins are larger. Some teams using marginal approaches
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Fig. 1. Percentage of replicated uniques for ipf DP and non-DP syntheses expressed
as a % of the percentage of uniques in the original data set. Results for each of 7 data
sets with DP method of adding Laplace noise to the two-way margins.

in the NIST challenge appear to have used the method described here [31], but
better methods could be explored.

Table 3 displays the disclosure risk and utility for the 10 data sets and six differ-
ent choices of ε synthsised by ipf . In a few cases with small values of ε the fitting
procedure failed to converge in 5,000 iterations.16 Figure 1 plots ru as a % of p1
against log10(ε), with the non-DP synthesis being plotted at 3, equivalent to an
ε of 100. Disclosure risk, as measured by replicated uniques decreases with ε as
we would expect. Two data sets (S7 and Ps7) each with 7 variables and a rela-
tively small sample size, show a good reduction in ru by an ε of 1, and better for
lower values. To evaluate utility, we first consider two-way margins that will not
be affected by the lack-of-fit found for three-way margins in the non-DP synthesis.
For the data sets analysed here ε values of 1 and above give satisfactory utility,
judged by having average values below 30. Other data sets require a lower ε of 0.1
to get an improvement in %ru, and hence higher (worse) utility measures. An ε
of 0.5 gives satisfactory utility for most of the data sets. For the lower values of ε
used here (0.1 and 0.01) utility is too poor to be acceptable. Additional exploratory
checks illustrated the failure of the synthetic data to show the same relationships
between variables as was found in the original data. The process of adding noise
to the margins has the effect of bringing them all closer to a constant value and
thus inevitably weakening the relationships found in the original. Looking at the
results for utility from three-way tables, we can see that the results are limited
by the utility that can be achieved by non-DP synthesis with the same models.

16 It is possible that the added noise produced margins that are impossible to reconcile.
These cases do not correspond to useable syntheses.
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Table 3. Disclosure measures and utility for differentially private ipf synthesis with
6 values of ε and 10 data sets. All figures are averages over 10 independent syntheses.
Rows marked with * indicate that one or more of the ipf fits failed to converge in 5,000
iterations

S3 S5 S7 P3 P5 P7 P7x Ps3 Ps5 Ps7

ε 0.01

% ru 0.00 0.01* 0.00* 0.00 0.00 0.00 0.02 0.00 0.00 0.00

ru as a % of p1 0.18 0.01 1.95 0.75 0.41 0.00 0.08 0.00

Mean two-way utility 245.71 325.45 365.47 83.03 412.38 1942.99 1692.89 227.55 767.38 1240.11

Mean three-way utility 139.81 135.90 133.32 62.22 258.10 949.60 786.60 131.96 365.65 543.98

Worst three-way utility 139.81 221.15 159.31 62.22 501.79 1236.90 1211.84 131.96 501.07 441.72

ε 0.1

% ru 0.00 0.04 0.02* 0.00 0.00 0.01 0.55 0.00 0.02 0.00

ru as a % of p1 0.56 0.05 7.46 8.45 12.24 0.00 1.88 0.14

Mean two-way utility 12.63 99.01 172.29 5.47 23.05 128.11 104.59 16.48 81.11 261.94

Mean three-way utility 10.27 56.77 79.06 9.51 32.04 78.55 61.82 11.46 49.17 135.13

Worst three-way utility 10.27 75.29 94.35 9.51 102.79 136.49 159.38 11.46 58.53 149.41

ε 0.5

% ru 0.00 0.99 0.68* 0.00 0.00 0.02 0.88 0.00 0.14 0.06

ru as a % of p1 14.69 1.90 18.64 16.58 19.57 10.00 14.30 2.26

Mean two-way utility 1.69 14.59 31.67 1.38 3.51 19.66 15.65 2.85 15.16 46.60

Mean three-way utility 1.90 8.91 20.85 4.61 21.67 21.20 17.45 2.89 9.82 28.59

Worst three-way utility 1.90 9.70 24.30 4.61 81.96 91.95 92.17 2.89 18.52 7.38

ε 1

% ru 0.00 1.29 3.46 0.00 0.00 0.02 0.95 0.00 0.20 0.21

ru as a % of p1 19.20 9.66 23.08 19.41 20.99 10.00 20.39 7.99

Mean two-way utility 1.15 5.48 15.21 1.14 2.04 8.32 6.58 2.09 5.34 22.03

Mean three-way utility 1.40 4.21 9.51 4.34 20.72 14.47 12.77 2.06 4.69 14.50

Worst three-way utility 1.40 4.89 11.82 4.34 80.48 84.96 82.32 2.06 9.18 2.78

ε 2

% ru 0.00 1.55 5.55 0.00 0.00 0.02 0.98 0.01 0.24 0.37

ru as a % of p1 23.03 15.49 22.96 20.57 21.79 17.50 25.31 13.76

Mean two-way utility 1.08 2.84 5.86 0.85 1.29 3.90 3.32 1.36 3.31 11.86

Mean three-way utility 1.31 2.65 4.37 3.97 20.27 11.87 11.16 1.65 3.27 8.16

Worst three-way utility 1.31 3.16 5.57 3.97 79.48 82.24 80.19 1.65 7.10 1.66

ε 10

% ru 0.00 1.63 6.68 0.00 0.00 0.03 1.00 0.01 0.24 0.59

ru as a % of p1 24.15 18.64 24.02 21.96 22.18 35.00 25.00 22.26

Mean two-way utility 1.15 1.15 1.64 0.91 1.07 1.32 1.54 1.05 1.25 2.55

Mean three-way utility 1.40 1.82 2.05 4.06 20.02 10.38 10.20 1.52 2.28 2.58

Worst three-way utility 1.40 2.14 2.53 4.06 78.29 80.65 80.81 1.52 5.97 1.26

In many cases, especially for the worst three-way interaction this lack-of-fit to the
generative model is more damaging to utility than the DP adjustment. All of the
evaluations were carried out with a very small value of a prior α added to each
cell of the tables17. Increasing α can itself contribute to preventing disclosure [14],

17 A count determined by the parameter nprior is distributed equally over the table or
margin entries except those defined as structural zeros. This is important for non-DP
synthesis so as to prevent them remaining as zeros. The default value of 1 for nprior
was used.
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as used in the Dirchilet-Multinomial synthesiser [17]. Using this approach without
any DP adjustment gave some improvement in ru for large α but at the expense of
greatly damaged utility. When α was adjusted for DP syntheses, its influence was
much less than that of the DP parameter.

6 Discussion and Future Work

We have introduced a very simple modification of two methods to allow them to
produce DP synthetic data. The saturated model is useful for non-DP data syn-
thesis, well suited to large administrative data bases of count data. But efforts,
so far, to make this model differentially private find poor utility, even for large
values of ε that provide little improvement in disclosure.

In contrast, the ipf method, based on margins, seems to be easily adapted to
provide DP synthetic data. This model can be fitted in synthpop with code like
this example. This code creates a synthetic data object (synipf) by the default
method of fitting all two-way interactions. The percentage of replicated uniques
can then be found with the next line, and the third line calculates the average
two-way utility for all two-way interactions. The default utility measure, pMSE,
is used but there is a choice of a further 15 measures available.

synipf <- syn(S7, method= "ipf", ipf.priorn = 0, ipf.epsilon = 1)

ru_S7_1 <- replicated.uniques(synipf, S7)$per.replications

util_S7_2way <- mean(utility.tables(synipf,SD20113,"twoway", plot = FALSE)$tabs[,2])

This is just a preliminary version of DP synthesis with synthpop. It has some
clear limitations. In particular, it is limited to data sets with a relatively small
number of variables because of the need to store the complete cross tabulation.
The teams using marginal models for the NIST challenge have used graphical
models to define the parameters of the models. It may be possible to make
their open-source routines, usually written in Python, accessible within R. A
further limitation is that the methods apply only to categorical variables. Non-
DP versions of catall and ipf can be used for numeric data by asking the program
to categorise the variables, and then select from the groups in the original data
at the end of the synthesis. For DP synthesis a method that did not access
the original data again would be required. Many other modifications could be
attempted. In particular options should be made available to add noise to the
margins by methods other than a Laplace distribution. Examples are trimmed
ε − δ Gausian noise and the Exponential mechanism, see [18] for other choices.

Further investigation of the disclosure risks posed by synthetic data, both
DP and non-DP, would be helpful. These should include realistic evaluations of
the behaviour of those attempting to find confidential information about data
subjects. A disclosure from synthetic data that turns out to be false can also
cause harm, both to the data subject and to the reputation of the data holder.
This underlines the importance of ensuring that everyone who has access to
synthetic data is aware that it is not real.
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Inference from synthetic data will always be limited by the model used in
creating it. George Box’s caveat that “all models are wrong, but some are useful”
needs to be borne in mind when using results from synthetic data whether DP or
not. There is a powerful argument that no important decisions should be taken
using analyses of synthetic data. Confirmatory analyses on the real data, perhaps
via a validation server, should be carried out. But synthetic data can still have an
important role in widening access to confidential data and in providing realistic
data sets for training.
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A Appendix

A.1 Details of the Variables in Data Sets

Tables 4 and 5 give details of the variables selected from each of the two data
sets. See section data for how each of the data set were created. The two Age
variables were each grouped into 5 categories.

Table 4. Variables selected from the SD2011 data set.

Variable Number of missing values Number of distinct values

1 Sex 0 2

2 Age grouped 0 5

3 Placesize 0 6

4 Education level 7 4

5 Social and professional group 33 9

6 Income grouped 683, 603 not applicable 5

7 Marital status 9 6

Table 5. Variables selected from the IPUMS data set.

Variable Number of missing values Number of distinct values

1 Public use microdata area 0 181

2 Year 0 7

3 Group quarters 0 5

4 Sex 0 2

5 Age 0 73

6 Marital status 0 6

7 Race 0 9

8 Hispanic 0 5
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Abstract. This paper studies the performance of membership inference
attacks against principal component analysis (PCA). In this attack, we
assume that the adversary has access to the principal components, and
her main goal is to infer whether a given data sample was used to com-
pute these principal components. We show that our attack is successful
and achieves high performance when the number of samples used to
compute the principal components is small. As a defense strategy, we
investigate the use of various differentially private mechanisms. Accord-
ingly, we present experimental results on the performance of Gaussian
and Laplace mechanisms under naive and advanced compositions against
MIA as well as the utility of these differentially-private PCA solutions.

Keywords: Membership inference attack · Principal component
analysis · Differential privacy · Laplace mechanism · Gaussian
mechanism

1 Introduction

Over the past decade, machine learning (ML) algorithms have found application
in a vast and rapidly growing number of systems for analyzing and classifying
usually privacy-sensitive data.

In order to analyze and interpret such data, PCA [18] is employed as one of
the most commonly used unsupervised ML algorithm. PCA is used for summa-
rizing the information content in databases by reducing the dimensionality of
the data while preserving as much variability as possible. The output of this sta-
tistical tool is a set of principal components whose size is usually much smaller
than the total number of attributes of the underlying data.

The increasing popularity of ML algorithms, including PCA, opened the door
for attackers especially when ML techniques are deployed in critical applications.
This work focuses on a particular type of attack named Membership Inference
Attack (MIA) against PCA, where an adversary is assumed to intercept the
principal components computed over some dataset and infer whether a data
c© Springer Nature Switzerland AG 2022
J. Domingo-Ferrer and M. Laurent (Eds.): PSD 2022, LNCS 13463, pp. 269–282, 2022.
https://doi.org/10.1007/978-3-031-13945-1_19
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sample was part of this dataset or not. The membership prediction is yield by
comparing the reconstruction error; the distance between the original target
sample and its PCA projection against a threshold. In this paper, we study the
effectiveness of MIA against PCA and show that it achieves high performance
when the number of samples used by PCA is small.

Furthermore, to cope with such attacks that take advantage of the leakage
of principal components, we propose to study the use of differentially private
mechanisms and evaluate the privacy budget affects the success rate of the attack
as well as the utility of the PCA under differential privacy (DP).

Our main contributions are summarized as follows.

1. We study, for the first time, the impact of MIA against PCA whereby the
adversary has access to the principal components.

2. We propose the use of differentially-private PCA algorithms to cope with
MIA and analyze the impact of the privacy budget on both utility and the
success rate of MIA for both vector and scalar queries under the so-called
naive and advanced composition approaches.

3. The experimental results present a comparison between the aforementioned
different approaches under Gaussian and Laplace mechanisms for protecting
the PCA against MIA.

2 Background

2.1 Principal Component Analysis

Given a set D = {xn ∈ R
d : n = 1 : N} of N raw data samples corresponding

to N individuals of dimension d, we denote the data matrix where each column
is a data sample by X = [x1, . . . , xN ]. We assume that data X has zero mean,
which can be ensured by centering the data. The standard PCA algorithm is to
find a k–dimensional subspace that approximates each sample xn. This problem
can be formulated as follows:

min
Πk

L =
1
N

N∑

n=1

Ln =
1
N

N∑

n=1

‖xn − Πkxn‖22 (1)

where L denotes the average reconstruction error and Πk is an orthogonal projec-
tor which is used for approximating each sample xn by x̂n = Πkxn. The solution
to this problem can be achieved via singular value decomposition (SVD) of the
sample covariance matrix, which is defined by A = 1

N XXT = 1
N

∑N
n=1 xnxT

n . A
is a symmetric positive semi-definite matrix, hence its singular value decom-
position is equivalent to its spectral decomposition. SVD of A yields A =∑d

i=1 λiviv
T
i , where λ1 ≥ λ2 ≥ . . . , λd ≥ 0 and v1, v2, . . . , vd denote the eigen-

values and their corresponding eigenvectors of A, respectively. Let us denote
the matrix whose columns are the top k eigenvectors by Vk = [v1, . . . , vk]. The
orthogonal projector Πk = VkV T

k is a solution to the problem in (1). PCA uses
Vk to project the samples into the low k–dimensional subspace Y = V T

k X.
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2.2 Membership Inference Attacks

The goal of an MIA is to infer whether or not a target sample is included in
the training dataset. When an adversary learns whether or not a target sample
was used to release any statistics or to train a machine learning model, this
refers to an information leakage. This attack could cause serious problems in
terms of privacy if the training dataset contains privacy-sensitive information.
An example that highlights the implications of such an attack is [7], which was
able to identify individuals contributing their DNA to a health-related project.

3 Related Work

Since the introduction of MIA against deep neural network (DNN) models in
[22], this attack has been extensively studied on DNNs and other ML models.
The cited work formalized the attack as a binary classification problem and
trained neural network (NN) classifiers to distinguish between training mem-
bers and non-members. The authors demonstrates that the main factor con-
tributing to the success of MIA on DNN models is overfitting. Subsequent works
[13,15,21,23,27] further developed MIAs with different approaches against DNN
of different architectures. The work in [23] revealed that by using suitable met-
rics, metric-based attacks result in similar attack performance when compared
with NN-based attacks. Besides DNN, MIAs have also been investigated against
logistic regression models [20,25], k-nearest neighbors [24,25], and decision tree
models [25,27]. Our work extends the investigations of MIAs against machine
learning models to PCA. As we shall elaborate later in Sect. 4.1, we propose, to
this end, a new metric-based MIA against PCA. To the best of our knowledge,
there is no previous work trying to perform MIA on PCA.

To mitigate MIAs, DP has been widely applied to various ML models
[12,13,26,28]. In [1], the authors show how to train DNNs with DP by adding
noise to the gradients or parameters during model training. In [19], the authors
empirically evaluate MIAs using the proposal of [1]. They find that DP can
partially mitigate the attack with an acceptable level of privacy budget. In our
study, we investigate the effectiveness of DP PCA algorithms on mitigating our
proposed attack.

4 Membership Inference Attacks Against PCA

The first part of this work focuses on the study of the impact of MIA targeting
PCA. We aim to investigate how the sample size and the number of the inter-
cepted principle components affect the performance of such attacks. In Sect. 4.1,
we define the threat model and the actual MIA targeting PCA. This is fol-
lowed by the experimental setup and the corresponding experimental results of
Sects. 4.2 and 4.3, respectively.
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4.1 Threat Model and Attack Methodology

In our setting, the curator computes the principal components Vk using the train-
ing dataset D, and sends these to a trusted party. We assume the adversary A
intercepts some or all of those components by eavesdropping the communication
channel. With them, the adversary aims to identify whether or not a certain
sample z is included in D. In other words, the adversary’s goal is to discover
members of the training dataset.

Such an attack can of course occur in a distributed setting [2] where sev-
eral parties may compute the principal components of their individual (and
usually smaller [10]) training datasets and send those to an aggregator, which
ultimately may compute the global principal components. Analogously to the
non-distributed case, here A would compromise individual privacy by intercept-
ing the principal components conveyed by each party.

To identify whether or not sample z was actually used for the computation
of the principal components, A computes the reconstruction error L(z, Vk) of
the target sample z based on the intercepted Vk, and then compares this error
with some tunable decision threshold R. If the reconstruction error of the tar-
get sample is lower than the threshold, A predicts that z is a member of the
training dataset D. Otherwise, A predicts that z is not a member of D. Our
intuition is that samples from the training dataset are more likely to incur lower
reconstruction error compared to other non-member samples.

4.2 Experimental Setup

We proceed with a detailed description of the datasets used in our experiments.

Datasets:1 We assess the performance of the attack using two groups of datasets:
(i) datasets including personal information, namely, UCI Adult [16] (for short,
Adult), Census [4], and LFW [8]; and the image dataset MNIST [14], which is
typically used in the literature of MIAs. As preprocessing, we standardize the
datasets to unit variance before constructing our attack.

– The UCI Adult dataset includes 48,842 records with 14 attributes. It con-
tains both numerical (e.g. age, hours per week, etc.) and categorical (e.g.
working class, education, etc.) attributes. We employ the standard one-hot
encoding approach to construct the numerical representation of the categor-
ical attributes [9].

– Census: it contains 1080 records with 13 attributes of business statistics.
– Labeled Faces in the Wild (LFW): It includes 13,233 images of 5749 human

faces collected from the Web. 1680 of the 5749 people pictured have at least
two distinct images in this dataset. The resolution of the images is 25 × 18. In
our evaluation, in order to balance the number of samples for each individual,
we only take one picture of each individual in the dataset.

1 Due to page limit constraint, we report only the results for Adult and LFW datasets.
We refer the reader to the full version of this paper [29].
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– MNIST: it includes 10 classes of handwritten digits formatted as grayscale
28 × 28 pixel images. The dataset is used to predict the class of the digit
represented in the image. The total number of samples is 70,000.

Performance Metric: As an evaluation metric of the attack’s success, we use
the area under the receiver operating characteristic(ROC) curve (AUC) metric,
which indicates the relationship between true positive and false-negative rates
over several decision thresholds R that the adversary can use to construct the
attack. In all experiments, we choose equal-sized samples for both members and
non-members at random and report the mean of the results over 10 trials.

4.3 Experimental Results

We evaluate the success rate of the attack in terms of the number of principal
components intercepted by the adversary, denoted by k. For this, we measure the
attacker’s performance through the AUC. Figure 1 shows the maximum AUC
that the adversary can achieve by observing the top-k principal components.
Recall that k may take values from 1 to d, where d is the number of attributes of
the dataset. We report results for various number of samples N . The closer the
AUC is to 0.5, the less successful the attack is as the adversary cannot distinguish
between a member and a non-member.

We observe that the AUC increases with increasing k. This is justified by the
fact that the attacker has access to more information and therefore is more likely
to succeed in identifying the membership. We also observe that the AUC decreases
with increasing N , perhaps, indicating that the sample covariance matrix A con-
verges to the true covariance matrix of the dataset, which renders the reconstruc-
tion error of member and non-member samples of D indistinguishable. The same
behaviour is observed with NNs when the training dataset is large [22].

The results for the MNIST and LFW datasets indicate that the AUC is
always greater than 0.5 and reaches 0.9 when N = 1, 000. As for the Census
and Adult datasets, the corresponding AUC values are much lower (compared
to the other datasets). This is mainly justified by the small dimension d of these
datasets. We note that MIA against machine learning models trained using the
Adult dataset is usually unsuccessful [21,22].

5 Differentially-Private PCA and MIA

In this section, we present PCA(DP-PCA) algorithms introduced in [6,17], and
study their protection against MIAs with various privacy budget values and their
utility. Accordingly, we first remind several preliminaries DP in Sect. 5.1. This
is followed by the experimental results in Sect. 5.3.

5.1 Preliminaries on Differential Privacy

Definition 1 (Neighboring datasets). Any two datasets that differ in one
record are called neighbors. For two neighbor datasets x and x′, the following
equality holds:
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Fig. 1. Impact of the sample size N and the observed top-k components on the attack’s
performance. Shaded areas show 95% confidence intervals for the mean.

d(x,x′) = 1,

where d denotes the Hamming distance.

Definition 2 ((ε, δ)-Differential privacy [5]). A randomized mechanism M
on a query function f satisfies ε-DP with ε, δ � 0 if, for all pairs of neighbor
databases x,x′ and for all O ⊆ range(M),

P{M(f(x)) ∈ O} � eε P{M(f(x′)) ∈ O} + δ.

We say that M satisfies pure DP if δ = 0, and approximate DP otherwise.

Definition 3 (Lp-global sensitivity [5]). Let D be the class of possible data
sets. The Lp-global sensitivity of a query function f : D → R

d is defined as

Δp(f) = max
∀x,x′∈D

‖f(x) − f(x′)‖p,

where x,x′ are any two neighbor datasets.

Definition 4 (Laplace mechanism [5]). Given any function f : D → R
d, the

Laplace mechanism mechanism is defined as follows:

ML(x, f(·), ε) = f(x) + (Y1, . . . , Yd),

where Yi are i.i.d. random variables drawn from a Laplace distribution with zero
mean and scale Δ1(f)/ε.

Definition 5 (Gaussian mechanism [5]). Given any function f : D → R
d,

the Gaussian mechanism mechanism is defined as follows:

MG(x, f(·), ε) = f(x) + (Y1, . . . , Yd),

where Yi are i.i.d. random variables drawn from a Gaussian distribution with
zero mean and standard deviation Δ2(f)

√
2 log(1.25/δ)/ε.
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Theorem 1 ([5]). The Laplace mechanism satisfies (ε, 0)-DP.

Theorem 2 ([5]). For any ε, δ ∈ (0, 1), the Gaussian mechanism satisfies (ε, δ)-
DP.

Theorem 3 ([5]). If each mechanism Mi in a k-fold adaptive composition
M1, . . . ,Mk satisfies (ε′, δ′)-DP for ε′, δ′ � 0, then the entire k-fold adaptive
composition satisfies (ε, kδ′ + δ)-DP for δ � 0 and

ε =
√

2k ln(1/δ)ε′ + kε′(eε′ − 1). (2)

5.2 Differentially Private PCA Approaches

As in the previous scenario where no privacy protection was implemented, the
first step for the data curator is to compute the principal components of the
covariance matrix A, which are to be shared with a trusted entity. However,
to protect individual privacy against an adversary who may intercept some or
all components of A, the curator now decides adding Laplace noise directly on
the coefficients qij of A. In the context of DP, this approach is called output
perturbation.

To protect the α
.= d(d + 1)/2 distinct2 coefficients of A, we consider two

strategies: (i) using a joint query function that simultaneously queries all such
coefficients, and (ii) querying each coefficient separately. We shall refer to these
procedures as vector and scalar queries, respectively.

For i = 1, . . . , d, let attribute i take values in the interval [li, ui] after stan-
dardization, and denote by Λi the absolute difference |li − ui|. Recall [17] that
Δ1(qij) = ΛiΛj/N , from which we can easily derive an upper bound on Δ1(A)
just by adding up the sensitivities of all distinct coefficients. Accordingly, the
scale of the Laplace noise injected to each coefficient yields Δ1(A)/ε in the vec-
tor case, and Δ1(qij)/εij in the scalar case, where ε is the total privacy budget
and εij the fraction thereof assigned to the coefficient qij .

Using the standard sequential composition property, we can compute the
total privacy cost of the scalar strategy by adding up all εij for i � j. In our
experiments, in order to compare the two approaches for a same total privacy
budget, we shall assume εij = ε/α. Note that, in this case, the noise scales will
coincide only if

∑
i�j ΛiΛj = αΛiΛj .

We shall also consider a variation of the scalar case that relies on the advanced
(sequential) composition property. Notice that even though this property is
defined in the context of approximate DP, Theorem 3 also applies if the mecha-
nisms being composed satisfy pure ε-DP. With advanced composition, however,
the total privacy cost can be estimated more tightly (compared to the standard
property) when the number of coefficients is significantly large. Said otherwise,
for the same privacy budget ε (and small δ) and for large α, the scale of the noise
introduced with advanced composition can be reduced notably with respect to

2 Recall that A is a symmetric matrix.
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that injected with standard sequential composition. The noise scale yields in this
case ΛiΛj/Nε′, where ε′ satisfies Eq. (2) for k = α and a given total privacy
budget ε, δ.

Finally, the fourth protection approach we shall use in our experimental
evaluation guarantees approximate DP through the Gaussian mechanism. More
specifically, the algorithm in [6] queries all coefficients of A simultaneously and
estimates Δ2(A) to be 1/N ; the sensitivity bound follows after normalizing D
so that each row has at most unit l2 norm. Accordingly, the scale of the noise
added to each coefficient yields

√
2 log(1.25/δ)/Nε. Table 1 summarizes the four

protection mechanisms we shall evaluate in the next subsection.

Table 1. Overview of the DP mechanisms aimed to protect PCA against MIA. Here, ε
denotes the total privacy budget and ε′ the fraction thereof assigned to each coefficient
of A.

Approach Privacy notion noise scale

Laplace scalar query with naive composition DP αΛiΛj/Nε

Laplace vector query DP
∑

i�j ΛiΛj/Nε

Laplace scalar query with advanced composition approx. DP ΛiΛj/Nε′

Analyze Gauss (AG) Algorithm [6] approx. DP
√

2 log(1.25/δ)/Nε

5.3 Experimental Results

We first study the protection of DP mechanisms against our attack. Therefore,
we implement the four aforementioned approaches and evaluate the AUC of the
attack with various privacy budgets ε, ranging from 10−2 to 108. We would like
to notice that this is not the usual range of values used in the literature. For
example, in privacy-preserving data publishing, values of ε above 3 progressively
seem to lose any meaningful guarantees [3]. However, for us, the fact that we will
be using such large values is irrelevant, since we will empirically measure privacy
leakage not through the ε itself, but through the effectiveness of an MIA. Finally,
at the end of this section, we study the utility of the protected data provided by
such approaches.

DP Mechanisms and AUC. Figure 2 shows the performance of the attack
with respect to the k observed principal components when AG and Laplace
vector query algorithms are used with various values of ε. In the case of the AG
algorithm, ε varies from 0.01 to 1 and δ is set to δ = 1

N whereas for the Laplace
vector query algorithm, we select larger values of ε from 10−1 to 107. We also
present the AUC of the attack in the non-private setting where DP-mechanisms
are not adopted. Under AG, we observe that for all values of ε, the AUC of
the attack is only marginally above 0.5 (random guess baseline). Hence, the AG
algorithm mitigates the effectiveness of MIA. With larger ε values under the
Laplace vector query approach, AUC starts to increase and gets closer to the
non-private case. We also observe that for the Adult and Census datasets, for
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ε = 102 the Laplacian vector query approach provides roughly the same level of
protection than AG for ε = 1. For the LFW dataset, for ε = 104 the Laplace
vector query approach provides the same protection as AG with ε = 1. Hence,
even with a higher privacy budget ε, the Laplace vector query approach limits
the success of the attack.

(a) The AUC of the attack when the AG algorithm is applied with respect to k

(b) The AUC of the attack when the Laplace vector query algorithm is applied w.r.t.
k.

Fig. 2. The AUC of the attack when the AG algorithm (a) and the Laplace vector
query approach (b) are applied with various values of ε. Shaded areas are the 95%
confidence intervals for the mean.

Laplacian Approaches. Figure 3 compares the protection of the aforemen-
tioned Laplacian approaches for various levels of the total privacy budget based
on the maximum AUC of the attack. We observe that the advanced composi-
tion approach achieves better protection than the näıve one in the low privacy
regime (when ε is large). This observation can be explained through the noise
scales injected by the two approaches. From Sect. 5.2, it is easy to verify that
the algorithm based on the advanced composition will introduce less noise than
that relying on the naive composition when ε′ < ε/α. In Fig. 4, we plot in the
hashed area the set of points (ε, α) where this inequality holds. From the figure,
we can see that, for a fixed α, increasing ε will ultimately result in less noise for
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naive composition. And the other way round, for a fixed ε, increasing the num-
ber of coefficients will, at some point, make the advanced mechanism introduce
less noise. We thus justify the observation above by assuming that adding more
noise leads to stronger protection against the MIA.

Specifically, for the Adult (d = 14, α = 105) and Census (d = 13, α = 91)
datasets, where the dimension is relatively small, the AUCs corresponding to the
two different approaches intersect at ε ≈ 102. As for LFW (d = 450, α ≈ 105)
and MNIST (d = 784, α ≈ 3 × 105), where d is large, the intersection occurs at
the very low privacy regime at ε ≈ 105. Furthermore, as depicted in the figure,
the vector query and the scalar query with naive composition approaches achieve
the same protection, because they consume the same total privacy budget ε.

Fig. 3. Attack performance with Laplacian approaches when the adversary intercepts
all components (k = d). The infinity point represents the non-private case

Trade-off Between Privacy and Utility. We use the total privacy budget ε
as well as the AUC of an MIA to quantify privacy. As for utility, which refers to
the accuracy of the principal components produced by the DP-PCA algorithms
of Sect. 5.2, we adopt the metric introduced in [11]. In particular, we compute
the percentage of captured energy of the principal components produced by

Fig. 4. The hashed area shows where naive composition introduces less noise than
advanced composition.
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those algorithms, V̂k, with respect to the principal components of non-private
PCA (SVD), Vk. Accordingly, we measure utility as q = tr(V̂ T

k AV̂k)

tr(V T
k AVk)

, where A is
the sample covariance matrix. We note that, for all the datasets, we select the
reduced dimension k such that Vk have the captured energy of 90%.

Figure 5 and 6 show the utility of the DP-PCA algorithms as a function of
the privacy budget ε, and of the AUC, respectively. We observe that the AG
algorithm offers good utility for the Adult and Census datasets. However, AG
has a low utility for the other datasets. The Laplacian PCA solutions show lower
utility in comparison with AG for ε ≤ 1. The vector and scalar query with naive
composition approaches show almost the same utility, except for the MNIST and
Census datasets, where the scalar query with naive composition achieves better
utility than the vector query approach. Advanced composition provides better
utility than the naive composition where ε and α are in the blank area of Fig. 4.
In summary, the utility of the DP-PCA algorithms is influenced by the amount
of noise added, as one would expect.

Fig. 5. Trade-off posed by the four DP-PCA algorithms described in Sect. 5.2, between
the total privacy budget ε and data utility. Utility is measured as the percentage of
captured energy w.r.t. SVD.

Fig. 6. Trade-off posed by the four DP-PCA algorithms described Sect. 5.2, between
attack performance and data utility. We measure attack performance through AUC,
and utility through the percentage of captured energy w.r.t. SVD.
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On the other hand, the vector query approach outperforms the scalar query
approach if the sensitivity of the coefficients is skewed. In order to enjoy better
utility, the scalar query approach with advanced composition should be used
rather than with naive composition when the privacy budget ε and the number
of queries α are in the blank area of Fig. 4.

6 Conclusion

In this paper, we have implemented and evaluated the first membership inference
attack against PCA, whereby an adversary has access to some or all principal
components. Our attack sheds light on privacy leakage in PCA. Specifically, we
have demonstrated that an MIA can be deployed successfully, with high perfor-
mance, when the number of samples used by PCA is small. We have evaluated the
protection of DP-PCA under different protection algorithms, privacy budgets,
number of principal components intercepted, and number of covariance coef-
ficients. Our work may be useful to assess the practical value of privacy when
DP-PCA algorithms are employed along with the desired utility. For future work,
to investigate whether there is a correlation between the vulnerable samples in
PCA and the ones in the downstream tasks such as neural network classifiers.
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24. Tramèr, F., et al.: Truth serum: poisoning machine learning models to reveal their
secrets. ArXiv, abs/2204.00032 (2022)

https://doi.org/10.1145/2591796.2591883
https://doi.org/10.1145/2591796.2591883
https://doi.org/10.1109/ICASSP.2018.8462519
https://doi.org/10.1109/ICASSP.2018.8462519
https://doi.org/10.1109/ICASSP.2016.7472095
https://doi.org/10.1109/ICASSP.2016.7472095
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://arxiv.org/abs/1806.01246
http://arxiv.org/abs/1610.05820
http://arxiv.org/abs/1610.05820


282 O. Zari et al.

25. Truex, S., et al.: Demystifying membership inference attacks in machine learning
as a service. IEEE Trans. Serv. Comput. 14, 2073–2089 (2021)

26. Truex, S., et al.: Effects of differential privacy and data skewness on membership
inference vulnerability. In: 2019 First IEEE International Conference on Trust,
Privacy and Security in Intelligent Systems and Applications (TPS-ISA), pp. 82–
91 (2019)

27. Yeom, S., et al.: Privacy risk in machine learning: analyzing the connection to
overfitting. In: 2018 IEEE 31st Computer Security Foundations Symposium (CSF),
pp. 268–282 (2018)

28. Ying, Z., Zhang, Y., Liu, X.: Privacy-preserving in defending against membership
inference attacks. In: Proceedings of the 2020 Workshop on Privacy-Preserving
Machine Learning in Practice (2020)

29. Zari, O., et al.: Membership inference attack against principal component analysis
(2022). https://www.eurecom.fr/index.php/en/publication/6913

https://www.eurecom.fr/index.php/en/publication/6913


When Machine Learning Models Leak:
An Exploration of Synthetic Training

Data

Manel Slokom1,2,3(B), Peter-Paul de Wolf2, and Martha Larson3

1 Delft University of Technology, Delft, The Netherlands
m.slokom@tudelft.nl

2 Statistics Netherlands, The Hague, The Netherlands
pp.dewolf@cbs.nl

3 Radboud University, Nijmegen, The Netherlands

m.larson@cs.ru.nl

Abstract. We investigate an attack on a machine learning classifier that
predicts the propensity of a person or household to move (i.e., relocate)
in the next two years. The attack assumes that the classifier has been
made publically available and that the attacker has access to informa-
tion about a certain number of target individuals. That attacker might
also have information about another set of people to train an auxil-
iary classifier. We show that the attack is possible for target individuals
independently of whether they were contained in the original training
set of the classifier. However, the attack is somewhat less successful for
individuals that were not contained in the original data. Based on this
observation, we investigate whether training the classifier on a data set
that is synthesized from the original training data, rather than using the
original training data directly, would help to mitigate the effectiveness
of the attack. Our experimental results show that it does not, leading us
to conclude that new approaches to data synthesis must be developed if
synthesized data is to resemble “unseen” individuals to an extent great
enough to help to block machine learning model attacks.

Keywords: Synthetic data · Propensity to move · Attribute
inference · Machine learning

1 Introduction

Governmental institutions charged with collecting and disseminating informa-
tion may use machine learning models to produce estimates, such as imputing
missing values or inferring variables that cannot be directly observed. When
such estimates are published, it is also useful to publish the machine learning
model itself, so that researchers using the estimates can evaluate it closely, or
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even produce their own estimates. Moreover, society also asks for more insight
into the models that are used, e.g., to address possible discrimination caused by
decisions based on machine learning models.

Unfortunately, machine learning models can be attacked in a way that allows
an attacker to recover information about the data set that they were trained
on [19]. For this reason, publishing machine learning models can lead to a risk
that information in the training set is leaked. In this paper, we carry out a
case study of an attribute inference attack on a machine learning classifier to
better understand the nature of the risk. The classifier that we study predicts
propensity to move, i.e., whether an individual or household will relocate their
home within the next two years. The attack scenario assumes that the classifier
has been released to the public, and that an attacker wishes to learn a sensitive
attribute for a group of victims, i.e., target individuals. The attacker has non-
sensitive information about these target individuals that is used for the attack
and has scraped information about other people from the Web.

Our experimental investigation first confirms that a machine learning classi-
fier is able to predict propensity to move for individuals in its training data set as
well as for previously “unseen” individuals, reproducing [3]. We then attack this
classifier and demonstrate that an attacker can learn sensitive attributes both
for individuals in the training data as well as for previously “unseen” individ-
uals. However, for “unseen” individuals the attack is somewhat less successful.
We reason that data synthesis might potentially allow us to create data that we
could use for training and that would be far enough from the original data, than
any real individual would have the somewhat higher resistance to attack of an
“unseen” individual. Based on this idea, we create a synthetic training set, train
a machine learning classifier on that set, and repeat the attacks. Interestingly,
the resulting classifier is just as susceptible to attack as the original classifier,
which was trained on the original data. We relate this finding to the success
of an attack that infers sensitive information from individuals using priors and
not the machine learning model. Our findings point to the direction that future
research must pursue in order to create synthetic data that could reduce the risk
of attack when used to train machine learning models.

2 Threat Model

Our goal is to test whether a machine learning model trained on synthetic data
can replace a machine learning model trained on original data. The idea is to
release a machine learning model trained on synthetic data such that there is no
leak of original data. The synthetic data serves as a replacement of the original
data. In this section, we specify our goal more formally in the form of a threat
model.

Inspired by [23], a threat model follows three main dimensions. First, the
threat model describes the adversary by looking at the resources at the adver-
sary’s disposal and the adversary’s objective. In other words, it specifies what
the attacker is capable of and what the attacker’s goal is. Second, it describes
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the vulnerability, including the opportunity that makes an attack possible. Then,
the threat model specifies the nature of the countermeasures that can be taken
to prevent the attack.

Table 1 provides the specifications of our threat model for each of the dimen-
sions. As resources, we assume that the attacker has access to our released
machine learning classifier. In addition to the ML model, the attacker has a
subset of the data that is used to train an attacker model. The adversary’s
objective is to infer sensitive information about individuals. In our experiments,
the attack model is trained using subset of data in addition to the released
machine learning model that predicts propensity-to-move. The opportunity for
attack is the possession of original data including sensitive attributes. Finally,
the countermeasure that we are investigating is data synthesis.

Table 1. Threat model addressed by our approach

Component Description

Adversary: Objective Specific attributes about individuals

Adversary: Resources The attacker has access to the released classifier and
has a subset of data

Vulnerability: Opportunity Possession of original data and inference of
individuals’ sensitive data

Countermeasure Make access to original data and model unreliable

3 Background and Related Work

In this section, we give a brief overview on basic concepts and related work on
predicting the propensity to move, on privacy in machine learning, and model
inversion attribute inference attack.

3.1 Propensity to Move

The propensity to move is defined as desires, expectations, or plans to move to
another dwelling [5]. Multiple factors come to play to understand and estimate
the propensity to move in a population. In [5], the authors have grouped those
factors into two categories: (1) Residential satisfaction which is defined as the
satisfaction with the dwelling and its location or surroundings. Residential sat-
isfaction is divided into housing satisfaction and neighborhood satisfaction. (2)
Household characteristics which is related to demographic and socioeconomic
characteristics of the household. The gender and age are indicators of a house-
hold are important demographic attributes. For instance, a male household has
different mobility patterns than a female household. Also, education and income
of the household are important socioeconomic attributes.

In [10], authors investigated the possible relationship between involuntary job
loss and regional mobility. In a survey, the German socio-economic panel [10]
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looked at whether job loss increases the probability to relocate to a different region
and whether displaced workers who relocate to another region after job loss have
better labor market outcomes than those staying in the same area. They found
that job loss has a strong positive effect on the propensity to relocate. In [17], the
authors examined the residential moving behavior of older adults in the Nether-
lands. [17] used a data collected from the Housing Research Netherlands (HRN) to
provide insights into the housing situation of the Dutch population and their living
needs. A logistic regression model was used to assess the likelihood that respon-
dents would report that they are willing tomove in the upcoming two years. Among
their key findings, they showed that older adults with a propensity to move are
more often motivated by unsatisfactory conditions in the current neighborhood.
Further results revealed that older adults are more likely to have moved to areas
with little deprivation, little nuisance, and a high level of cohesion.

In [3], the authors studied the possibility of replacing a survey question about
moving desires by a model-based prediction. To do so, they used machine learn-
ing algorithms to predict moving behavior from register data. The results showed
that the models are able to predict the moving behavior about equally well as the
respondents of the survey. In [4], the authors used data collected by the British
Household Panel Survey. The data is conducted using a face to face interviews.
They examined the reasons why people desire to move and how these desires
affect their moving behavior. The results show that the reasons people report
for desiring to move vary considerably over the life course. People are more likely
to relocate if they desire to move for targeted reasons like job opportunities than
if they desire to move for more diffuse reasons relating to area characteristics.
In [18], the authors studied the social capital and propensity to move of four dif-
ferent resident categories in two Dutch restructured neighborhoods. They defined
social capital as the benefit of cursory interactions, trust, shared norms, and col-
lective action. Using a logistic regression model, they showed that (1) age, length
of residency, employment, income, dwelling satisfaction, dwelling type and per-
ceived neighborhood quality significantly predict residents’ propensity to move
and (2) social capital is of less importance than suggested by previous research.

3.2 Privacy in Machine Learning

In this section, we will discuss challenges and possible solutions in privacy pre-
serving techniques. Existing works can be divided into three categories according
to the roles of machine learning (ML) in privacy [19]: First, making the ML model
private. This category includes making ML model (its parameters) and data pri-
vate. Second, using ML to enhance privacy protection. In this category, the ML
is used as a tool to enhance privacy protection of the data. Third, ML based
privacy attack. The ML model is used as an attack tool of the attacker.

Based on the threat model, both data and the prediction model are impor-
tant. Predicting and estimating the propensity to move requires access to models
as well as to data. However, since the propensity to move data contains sensitive
data such as income, gender, age, education level, the data is treated as sensi-
tive and once collected from individuals it cannot be shared with third parties.
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One possible solution is to generate synthetic data that captures the distribution
of the original data and generates artificial, but yet realistic data. The synthetic
data offers a replacement for the original data to enable model training, model
validation and model explanation. In order to attempt to protect the machine
learning model before release or sharing, we propose to train our model on the
synthetic data instead of the original data. The goal is to test whether it is
possible to release a machine learning model trained on synthetic data without
leaking sensitive information.

Synthetic data generation is based on two main steps: First, we train a model
to learn the joint probability distribution in the original data. Second, we gen-
erate a new artificial data set from the same learned distribution. In recent
years, advances in machine learning and deep learning models have offered us
the possibility to learn a wide range of data types.

Synthetic data was first proposed for Statistical Disclosure Control (SDC) [8].
The SDC literature distinguishes between two types of synthetic data [8]. First,
fully synthetic data sets create an entirely synthetic data based on the original
data set. Second, partially synthetic data sets contain a mix of original and
synthetic values. It replaces only observed values for variables that bear a high
risk of disclosure with synthetic values. In this paper, we are interested in fully
synthetic data. For data synthesize, we used an open source and widely used R
toolkit: Synthpop. We used a CART model for synthesize since it has been shown
to perform well for other type of data [9]. Data synthesis is based on sequential
modeling by decomposing a multidimensional joint distribution into conditional
and univariate distributions. In other words, the synthesis procedure models and
generates one variable at a time, conditionally to previous variables:

fx1,x2,..,xn
= fx1 × fx2|x1 × ..× fxn|x1,x2,..xn−1 (1)

Synthesis using CART model has two important parameters. First, the order
in which variables are synthesized called visiting.sequence. This parameter has an
important impact on the quality of the synthetic data since it specifies the order in
which the conditional synthesize will be applied. Second, the stopping rules that
dictate the number of observations that are assigned to a node in the tree.

3.3 Attribute Inference Attack

Privacy attacks in machine learning [6,22] include membership inference
attacks [24], model reconstruction attacks such as attribute inference [29], model
inversion attacks [11,12], and model extraction attacks [28]. Here, we focus on a
form of model inversion attacks, namely, attribute inference attack.

Model inversion attacks try to recover sensitive features or the full data sam-
ple based on output labels and partial knowledge (subset of data) of some fea-
tures [1,22]. [1] provided a summary of possible assumptions about adversary
capabilities and resources for different model inversion attribute inference attacks.
In [11,12], the authors introduced two types of model inversion attacks: Black-box
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attack and white-box attack. The difference between black-box attack and white-
box attack lies in the amount of resources that are available for the adversary. In [1],
the authors proposed two types of model inversion attacks: (1) confidence score-
based model inversion attack and (2) label-only model inversion attack. The first
attack assumed that the adversary has access to the target model’s confidence
scores, whereas the second assumed that the adversary has access to the target
model’s label predictions only.Other attacks such as [14] assumed that the attacker
does not have access to target individuals non-sensitive features.

Attribute Inference Attack. An attribute inference attack or attribute disclosure
occurs if an attacker is able to learn new information about a specific individual,
i.e., the values of certain attributes. Examples from the Statistical Disclosure
Control (SDC) literature include [8,16].

Here, we study attribute inference attack as prediction. An attacker trains
a model to predict the value of an unknown sensitive attribute from a set of
known attributes given access to raw or synthetic data [15,25]. We implemented
our attribute inference attack using adversarial robustness toolbox1. In order to
perform an attribute inference attack, we assume that the attacker has access to
a subset of data, a marginal prior distribution representing possible values for the
sensitive features in the training data, and the released ML model’s predictions.
Using this resources, an attacker is able to train a model to learn sensitive
information. This attack is called black-box attack because the predictions of
the model, but not the architecture or the weights are available to the attacker.
Further details about our black-box attack will be discussed in Sect. 4.3.

In addition to black-box attack, we use two other attack models as baselines
for comparison, namely, random attack and baseline attack. Both attacks assume
that the attacker does not have access to the released ML model. First, the
random attack has only access to the marginal prior distribution of the sensitive
feature that is being targeted. Our random attack uses random classifier with
a stratified strategy, i.e., it generates random predictions that respect the class
distribution of the training data. Second, the baseline attack also access to the
prior distribution of the sensitive feature. However, in addition it also uses a
ML model, i.e., a random forest classifier, to infer sensitive attributes. Recall
that only the black-box attack is related to our threat model defined in Sect. 2.
The random and baseline attacks provide comparative conditions, which the
black-box attack must outperform.

Measuring Success of Inference. Prior work on synthetic data disclosure risk [26]
looked at either matching probability by comparing perceived match risk,
expected match risk, and true match risk [20], or Bayesian estimation approach
by assuming that an attacker seeks a Bayesian posteriori distribution [21]. In this
paper, our black-box attack is considered successful if its accuracy outperforms
the accuracy of a random attack. In other words, we assume that going beyond
a random guess, can reveal sensitive information about individuals. This type of

1 https://github.com/Trusted-AI/adversarial-robustness-toolbox.

https://github.com/Trusted-AI/adversarial-robustness-toolbox
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measurement is similar to previous work on model inversion attribute inference
attacks [11,12,14], which measure the difference between the adversary’s predic-
tive accuracy given the model and the best, i.e., ideal, accuracy that could be
achieved without the model [29]. Methods for measurements of success are dis-
cussed in [2], who also covers the precise or probabilistic measures conventionally
used in the SDC community, i.e., using matching or Bayesian estimate.

4 Experimental Setup

In this section, we describe our data sets, utility measures measured by applying
different machine learning algorithms, and adversary resources.

4.1 Data Set

For our experiments, we used an existing data about someone’s propensity-to-
move. The data was collected by [3]. [3] linked several registers from the Dutch
System of Social Statistical Datasets (SSD). The data set has around 150K indi-
viduals including 100K individuals drawn randomly from register data and 50K
individuals are sampled from the Housing Survey 2015 (HS2015) respondents.
The resulting data set has used in [3] has 700 variables containing for each indi-
vidual: (1) “y01” the binary target variable indicating whether (=1) or not (=0)
a person moved in year j where j = 2013, 2015. The target attribute “y01” is
imbalanced and dominated by class 0. (2) time independent personal variables,
(3) time dependent personal, household, and housing variables, (4) information
about regional variables.

Feature Selection. Different from [3], we applied feature selection to reduce the
number of features. Some features can be noise and potentially reduce the per-
formance of the models. Also, reducing number of feature helps to reduce the
complexity of synthesize and to better understand the output of the ML model.
To do so, we applied SelectKBest from Sklearn2. We use chi2 method as a scoring
function. We selected top K = 30 features with the highest scores. Our final data
set contains 30 best features for a total of 150K individuals3. In addition to the
30 features, we added gender (binary), income (categorical with five categories),
and age (categorical with seven categories) as sensitive features that will be used
in our attribute inference attack later (Sect. 5.2). Gender, age, and income have
balanced classes. Similar to [3], we found that the most important features are
age (lft), time since latest change in household composition (inhehalgr3), and
time since latest move or number of moves (rinobjectnummer).

2 https://scikit-learn.org/stable/modules/generated/sklearn.feature selection.Select
KBest.html.

3 We note that reducing the number of features does not have an impact on the success
rate of the attack because there is a redundancy in some variables since they go until
17 years back [3].

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html
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Data Splits. As mentioned earlier, our propensity to move data was collected
in 2013 and 2015. Following [3], we use the 2013 data to train our classifier
and the 2015 data to test the classifier and to carry out the attacks. The 2015
data contains individuals who were present in the 2013 data set, and also new
individuals. We split the 2015 data set into two parts “original individuals”
(inclusive) and “new in 2015 individuals” (exclusive) in order to test our classifier
and our attacks on individuals who were in the training set but also in the also
on “unseen individuals”.

4.2 Utility Measures

Machine Learning Algorithms. We selected a number of machine learning algo-
rithms to predict propensity-to-move. The chosen machine learning techniques
provide insight into the importance of the features and are easy to interpret and
understand [3].

In our experiments in Sect. 5.1, we used: decision tree where a tree is created/
learned by splitting the source set into subsets based on an attribute value test.
This process is repeated on each derived subset in a recursive manner. Extra trees
and random forest are part of ensemble methods. In random forest, each tree in the
ensemble is built from a sample drawn with replacement (i.e., a bootstrap sample)
from the training set. Extra trees fits a number of randomized decision trees on
various sub-samples of the data set and uses averaging to improve the predictive
accuracy and control overfitting. Naive Bayes is a probabilistic machine learning
algorithm based on applying Bayes’ theorem with strong (naive) independence
assumptions between the features.KNN, K-nearest neighbors, is a non-parametric
machine learning algorithm. KNN uses proximity to make predictions about the
grouping of an individual data point.

Metrics for Evaluating Performance of ML Models. Similar to [3] and since
our target propensity-to-move attribute is imbalanced, we used: F1-score, as a
harmonic mean of precision and recall score. Matthews Correlation Coefficient
(MCC), and Area Under the Curve (AUC) that measures the ability of a classifier
to distinguish between classes.

4.3 Adversary Resources

In Sect. 3.3, we provided description of our attack models. The attacker is inter-
ested to infer target individual sensitive features. Below, we briefly discuss dif-
ferent attack models used in our experiments along with different resources that
are available for the attacker.

– Random attack : uses a subset of data and marginal prior distribution.
– Baseline attack : uses a subset of data, marginal prior distribution, and ran-

dom forest classifier.
– Black-box attack : uses a subset of data, marginal prior distribution, released

ML model, and random forest classifier.
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In random attack model, a random classifier4 randomly infers target individual’s
sensitive features i.e., gender, age, income. In baseline attack model, a random
forest classifier5 is trained on a subset of data and marginal prior distribution
to predict sensitive features. Last but not least, a black-box attack model has
access to the released ML model’s predictions, in addition to having access to
subset of data and marginal prior distribution. Then, a random forest classifier
is trained to infer target individual’s sensitive features.

Understanding the vulnerability of a model to attribute inference attack
requires using right metric to evaluate different attack models. Since our sensi-
tive target features (gender, age, income) are balanced [11], we used precision,
recall to measure the effectiveness of the attacks. Precision measures the ability
of the classifier not to label as positive a sample that is negative. Precision is
the ratio of tp/(tp + fp) where tp is the number of true positives and fp the
number of false positives. Recall measures the ability of the classifier to find all
the positive samples. Recall is the ratio of tp/(tp+fn) where tp is the number of
true positives and fn the number of false negatives. We also measure accuracy
which is defined as the fraction of predictions that our classifier got right.

5 Experimental Results

Now, that we have defined our threat model including the adversary resources
and capabilities, and utility measures to evaluate the quality of synthetic data
and machine learning algorithms, we turn to discuss our experimental results.

5.1 Evaluation of Machine Learning Algorithms

Table 2 shows our results of classification performance of propensity to move,
and confirms the results of [3]. As expected, all classifiers outperform the ran-
dom baseline, with classifiers using trees generally the stronger performers. We
also see that when the test set includes only individuals already present in the
training set (inclusive), the performance is better than when it includes only
“unseen” individuals (exclusive). Note that if the data for the inclusive individ-
uals were identical in the training and test set, we would have expected very high
classification scores. However, the data is not identical because it was collected
on two different occasions with two years intervening, and individuals’ situations
would presumably have changed.

Reproducing Burger et al.,’s [3] results In Table 2, results show that all
machine learning classifiers outperform random classifier. Overall we observe
that our results are in line with [3] across different metrics. This confirms that
we can still predict individuals moving behavior in the same level as in [3] even
after reducing number of features.
4 Random Classifier using Stratified strategy from https://scikit-learn.org/stable/

modules/generated/sklearn.dummy.DummyClassifier.html.
5 Random Forest Classifier: https://scikit-learn.org/stable/modules/generated/sklea

rn.ensemble.RandomForestClassifier.html.

https://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
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Table 2. Classification performance of propensity-to-move measured in terms of AUC,
MCC, and F1-score on original data and synthetic data. (Right) the data splitting
is similar to [3]. The training set individuals and test set individuals are inclusive.
(Left) A different data splitting where we train the model on individuals data from
2013, then, we test the model on different individuals from 2015.

Machine learning
algorithms

Training and test
individuals are exclusive

Training and test
individuals are
inclusive

AUC MCC F1-score AUC MCC F1-score

Original
data

Random 0.4962 −0.0105 0.2139 0.5014 0.0029 0.1633

NaiveBayes 0.5656 −0.0328 0.5491 0.6815 0.2204 0.2992

RandomForest 0.7061 0.3210 0.6322 0.7532 0.3121 0.4460

DecisionTree 0.6372 0.2692 0.5376 0.6568 0.2292 0.3057

ExtraTrees 0.7226 0.3197 0.6325 0.7597 0.3212 0.4525

KNN 0.6304 0.2074 0.4104 0.6717 0.1744 0.2235

Synthetic
data

Random 0.4991 −0.025 0.2261 0.5011 0.0022 0.1657

NaiveBayes 0.5658 0.045 0.5451 0.6822 0.2029 0.2578

RandomForest 0.7053 0.3282 0.6343 0.7467 0.3133 0.4471

DecisionTree 0.6489 0.2598 0.4878 0.6618 0.2125 0.3078

ExtraTrees 0.7188 0.3185 0.6321 0.7557 0.3138 0.4464

KNN 0.6067 0.1152 0.1857 0.6542 0.1637 0.2070

In addition to reproducing [3], we looked at another prediction model where
train and test individuals are exclusive/different. We found that it is also possible
to predict moving behavior of new individuals from 2015 based on a classifier
trained on different individuals from 2013.

Measuring the Utility of Synthetic Data. In order to evaluate the quality of
synthetic data, we run machine learning algorithms on synthesized training set
(2013 data). we used TSTR [13] evaluation strategy where we train classifiers
on 2013 synthetically generated data and we test on 2015 original data. Results
in Table 2 show that the performance of machine learning algorithms trained
on synthetic data is very close and comparable to the performance of machine
learning algorithms trained on original data. This confirms that the synthetic
training set can replace the original training set. In the remainder of the paper,
we will focus on decision tree model. We will assume that we are releasing a
decision tree model.

5.2 Model Inversion Attribute Inference Attack

In this section, we present the results of our experiments on attribute inference
attack using the three attack models: (1) random attack, (2) baseline attack, (3)
black-box attack (Sect. 4.3). Recall that we assume that the adversary can have
access to three different subsets of data (Sect. 2).
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1. Inclusive individuals (2013): the attacker has access to a subset of the
data that is used from 2013 to train the released machine learning algorithm.

2. Inclusive individuals (2015): the attacker has access to a more recent
subset of data from 2015, but for the same set of individuals that are used to
train the released machine learning algorithm.

3. Exclusive individuals (2015): the attacker has access to a recent subset
of data from 2015, but the individuals are different from individuals that are
used to train the released machine learning algorithm.

Table 3 shows results of different attribute inference attacks for three type of
sensitive features gender, age and income. We notice that attack always achieves
better than random scores, which demonstrates the viability of the attack.

Table 3. Results of model inversion attribute inference attacks. Adversary resources
can be either: Inclusive individuals (2013), Inclusive individuals (2015), or
Exclusive individuals (2015). ± represents the standard deviation over ten times
of running the experiments. Numbers in gray represent the best inference results across
conditions. Note that only black-box attack is related to threat model described in
Sect. 2. An attack is considered successful if its score is higher than a score of random
attack.

Adversary

Resources

Released

ML

Attack

Models

Gender Age Income

Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

Inclusive

individuals (2013)

Original

Random
0.500

±0.00

0.500

±0.00

0.500

±0.00

0.1095

±0.00

0.1129

±0.00

0.1112

±0.00

0.2086

±0.00

0.2060

±0.00

0.2077

±0.00

Baseline
0.6107

±0.007

0.6103

±0.007

0.6104

±0.007

0.1472

±0.003

0.1566

±0.003

0.1407

±0.001

0.1483

±0.005

0.1590

±0.005

0.2323

±0.006

Black-Box
0.6187

±0.005

0.6181

±0.005

0.6183

±0.005

0.1482

±0.004

0.1577

±0.004

0.1412

±0.001

0.1469

±0.004

0.1576

±0.005

0.2302

±0.006

Synthetic

Random
0.500

±0.00

0.500

±0.00

0.500

±0.00

0.1164

±0.00

0.1223

±0.00

0.1213

±0.00

0.1838

±0.00

0.1889

±0.00

0.1983

±0.00

Baseline
0.6262

±0.00

0.6263

±0.006

0.6264

±0.006

0.1562

±0.004

0.1561

±0.004

0.1412

±0.001

0.1509

±0.003

0.1575

±0.003

0.2189

±0.004

Black-Box
0.6298

±0.005

0.6299

±0.005

0.6300

±0.005

0.1562

±0.003

0.1561

±0.003

0.1412

±0.001

0.1492

±0.003

0.1553

±0.004

0.2182

±0.006

Inclusive

individuals (2015)

Original

Random
0.500

±0.00

0.500

±0.00

0.500

±0.00

0.1095

±0.00

0.1129

±0.00

0.1112

±0.00

0.2086

±0.00

0.2060

±0.00

0.2077

±0.00

Baseline
0.6240

±0.006

0.6228

±0.006

0.6227

±0.00

0.1552

±0.003

0.1590

±0.003

0.1467

±0.001

0.1502

±0.004

0.1552

±0.004

0.2327

±0.007

Black-Box
0.6235

±0.009

0.6226

±0.009

0.6223

±0.009

0.1547

±0.003

0.1585

±0.003

0.1463

±0.001

0.1545

±0.003

0.1599

±0.003

0.2428

±0.005

Synthetic

Random
0.500

±0.00

0.500

±0.00

0.500

±0.00

0.1164

±0.00

0.1223

±0.00

0.1213

±0.00

0.1838

±0.00

0.1889

±0.00

0.1983

±0.00

Baseline
0.6186

±0.006

0.6188

±0.006

0.6186

±0.006

0.1657

±0.003

0.1606

±0.003

0.1465

±0.001

0.1620

±0.003

0.1592

±0.003

0.2169

±0.005

Black-Box
0.6236

±0.006

0.6237

±0.006

0.6236

±0.006

0.1646

±0.003

0.1595

±0.003

0.1456

±0.001

0.1626

±0.003

0.1596

±0.003

0.2259

±0.006

Exclusive

individuals (2015)

Original

Random
0.500

±0.00

0.500

±0.00

0.500

±0.00

0.1095

±0.00

0.1129

±0.00

0.1112

±0.00

0.2086

±0.00

0.2060

±0.00

0.2077

±0.00

Baseline
0.5269

±0.009

0.5198

±0.009

0.5201

±0.009

0.0830

±0.001

0.2116

±0.005

0.1279

±0.001

0.0829

±0.003

0.1779

±0.008

0.2182

±0.02

Black-Box
0.5272

±0.005

0.5195

±0.005

0.5199

±0.005

0.0817

±0.001

0.2100

±0.005

0.1280

±0.001

0.0804

±0.003

0.1693

±0.008

0.2283

±0.02

Synthetic

Random
0.500

±0.00

0.500

±0.00

0.500

±0.00

0.1164

±0.00

0.1223

±0.00

0.1213

±0.00

0.1838

±0.00

0.1889

±0.00

0.1983

±0.00

Baseline
0.5268

±0.009

0.5198

±0.009

0.5201

±0.009

0.0825

±0.001

0.2116

±0.005

0.1279

±0.001

0.0829

±0.003

0.1779

±0.008

0.2182

±0.02

Black-Box
0.5272

±0.005

0.5195

±0.005

0.5198

±0.005

0.0817

±0.001

0.2100

±0.005

0.1280

±0.001

0.0804

±0.003

0.1693

±0.008

0.2283

±0.02
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Comparing the row “Original” for the three individuals sets and across all three
sets of sensitive attributes (columns), we see that the attack is less successful for
the “Exclusive” individuals who were unseen in the training data of the classifier.
This fact might lead us to wonder whether training the classifier on synthetic
data might lead to less successful attacks, since the individuals in the training
data would be in some way “different” with the target individuals. This, how-
ever, turns out not to be the case. Comparing the row “Synthetic” for the three
individuals sets and across all three sets of sensitive attributes (columns), we see
that if the training data is synthesized using the original training data, the model
is just as susceptible to attack as when trained on the original data. This point
is less surprising when we take into account the high success of the “Random”
attack. This attack recovers sensitive attributes of individuals without access to
the trained machine learning model. Instead, priors are used. We assume that
the information of the priors is also retained in the trained model. These results
demonstrate the magnitude of the challenge that we face, if we wish to release
a trained machine learning model publically.

6 Conclusion and Future Work

In this paper, we have investigated an attack on a machine learning model trained
to predict individual’s propensity-to-move i.e., in the next two years. for indi-
viduals in the training data as well as for “unseen” individuals. However, we
observed that for “unseen” individuals, the attribute inference attack is some-
what less successful. This result is consistent with the training data used to train
ML model having a different distribution than the “unseen” individuals.

To explore the ability of synthetic data to protect against attribute infer-
ence attack, we created fully synthetic data using CART model. The ML model
trained on synthetic data maintained prediction performance, but was found to
leak in the same way as the original classifier. This result is not particularly sur-
prising. Synthetic data mimics properties of the original data including overall
structure, correlation between features, and the joint distributions [25].

Our results is interesting because until now The SDC community working
with synthetic data has mainly focused on measuring the risk of identity disclo-
sure rather than attribute disclosure [26]. In the identity disclosure literature,
synthetic data has been shown to provide protection [7,27].

Our work draws attention to the fact a lot of work is still needed to protect
against attribute disclosure [2]. A potential solution to protect against attribute
inference attack is to apply privacy-preserving techniques during synthesis, e.g.,
data perturbation or masking sensitive attributes. Also, it would be interesting
to explore different combinations of ML and conventional models to synthesize
and carry out attribute attacks. From an evaluation perspective, future work
should look at other metrics [15] (e.g., from SDC and/or ML perspective) to
evaluate and quantify the success of attribute inference attack for a given target
individual. Finally, future research should expand the threat model that we have
adopted in this research (Sect. 2) and other attack scenarios in which the attacker
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has access to more limited resources, e.g., assuming that attacker does not have
access to all attributes in data.
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Abstract. In 2018, the US Census Bureau designed a new data recon-
struction and re-identification attack and tested it against their 2010 data
release. The specific attack executed by the Bureau allows an attacker
to infer the race and ethnicity of respondents with average 75% preci-
sion for 85% of the respondents, assuming that the attacker knows the
correct age, sex, and address of the respondents. They interpreted the
attack as exceeding the Bureau’s privacy standards, and so introduced
stronger privacy protections for the 2020 Census in the form of the Top-
Down Algorithm (TDA).

This paper demonstrates that race and ethnicity can be inferred from
the TDA-protected census data with substantially better precision and
recall, using less prior knowledge: only the respondents’ address. Race
and ethnicity can be inferred with average 75% precision for 98% of
the respondents, and can be inferred with 100% precision for 11% of
the respondents. The inference is done by simply assuming that the
race/ethnicity of the respondent is that of the majority race/ethnicity
for the respondent’s census block.

We argue that the conclusion to draw from this simple demonstration
is NOT that the Bureau’s data releases lack adequate privacy protec-
tions. Indeed it is the Bureau’s stated purpose of the data releases to
allow this kind of inference. The problem, rather, is that the Bureau’s
criteria for measuring privacy is flawed and overly pessimistic. There is
no compelling evidence that TDA was necessary in the first place.

1 Introduction

The US Census Bureau releases privacy-protected statistics from the decennial
census. In past decades, this data was protected using aggregation and swapping:
occasionally exchanging an individual response from one geographic area, or
block, with that in another block.

In 2019, the US Census Bureau reported on a new re-identification
attack, developed by the Bureau, against these traditional swap-protected data
releases [3]. The attack was demonstrated on the 2010 release. The Bureau con-
sidered the attack serious enough that they developed a new privacy protection
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Fig. 1. CDF of precision for our simple inference “non-attack” run on the US Census
Bureau’s new disclosure protection mechanism (TDA) as well as the Bureau’s prior
mechanism (Swap). For comparison, the precision for the Bureau’s re-identification
attack on the prior swap mechanism is also shown. Points to the lower-right mean a
more effective “attack”. Note that effectiveness of the non-attack on swap-protected
data is virtually identical to that of the TDA-protected data (lines overlap).

method. Called the Top-Down Algorithm (TDA), the new method uses aggre-
gation and noise addition: perturbing counts with random noise from a normal
distribution [5]. The 2020 census release is TDA-protected.

The Bureau also prepared a TDA-protected release of the 2010 census so
that stakeholders could evaluate data quality1.

The specific re-identification attack demonstrated by the Bureau has two
parts. First they reconstruct the original data from the swap-protected data.
The reconstructed attributes are block, age, sex, race, and ethnicity (Hispanic
or not). Next they link externally-derived data (address, age, and sex) with the
reconstructed data to infer race and ethnicity of the re-identified respondents.
The re-identification attack achieved 75% precision (75% of race/ethnicity infer-
ences were correct assuming correct prior knowledge).

This paper demonstrates that race/ethnicity inferences with better precision
and recall can be made against the 2010 TDA-protected release using less prior
knowledge (only address instead of address, age, and sex). Our demonstration
yields better than 95% precision for 23% of respondents, and virtually 100%
precision for 11% of respondents (see Table 1).

Our demonstration operates by merely predicting that the race/ethnicity of
any given respondent is that of the majority race for the corresponding block2.
In Sect. 4.1, we argue that it is in fact the intention of the Bureau that the
majority race/ethnicity of any block can be accurately inferred. If this is so,
then our demonstration is not an attack at all. Rather, it simply utilizes the

1 https://www.census.gov/programs-surveys/decennial-census/decade/2020/plannin
g-management/process/disclosure-avoidance/2020-das-development.html.

2 An idea borrowed from Ruggles et al. [13].

https://www.census.gov/programs-surveys/decennial-census/decade/2020/planning-management/process/disclosure-avoidance/2020-das-development.html
https://www.census.gov/programs-surveys/decennial-census/decade/2020/planning-management/process/disclosure-avoidance/2020-das-development.html
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Table 1. Summary of the Bureau’s attack and our simple inference non-attack. The
reported precision and recall for the re-identification attack are for all blocks, blocks
with between 10 and 49 respondents, and blocks with between 1 and 9 respondents
respectively. The reported precision and recall for the non-attack are limited to blocks
where the majority race has at least 5 persons.

Bureau’s re-identification attack Our simple inference “non-attack”

Released data 2010 swap-protected release 2010 TDA-protected release

Prior knowledge Address, age, sex Address

Inferred information Race and ethnicity Race and ethnicity

Linking attributes Address/block, age, sex Address/block

Mechanism Constraint-solver reconstruction Simple table lookup

Ground truth Census’ internal raw data 2010 swap-protected release

Precision/Recall P = 75%, R= 85% (all) P = 75%, R= 98%

(block size) P = 92%, R= 17% (10-49) P >= 95%, R= 23%

P = 97%, R= 1.5% (1-9) P = 100%, R= 11%

statistical inferences that census data is supposed to enable. As such, we refer
to our demonstration as a simple inference non-attack.

In 2018, Ruggles et al. [12] argued that the Bureau’s reconstruction attack
is not particularly effective, and that TDA is not necessary. In 2021, Ruggles
and Van Riper [13] simulated a simple statistical random reconstruction from
national-level statistics, and showed that it can be roughly as effective as the
Bureau’s reconstruction attack (see Sect. 4.3).

The contribution of this paper is that it is a much more concrete demon-
stration of the mismeasure of the Bureau’s attack, for two reasons. First, our
non-attack uses the 2010 census data as high-quality ground truth. By contrast,
Ruggles and Van Riper use simulated data. Second, our non-attack runs on the
TDA-protected data itself. This demonstrates directly that either the Bureau
does not intend to protect against this inference, or that TDA fails to provide
the intended protections.

We argue that it is the former. Indeed it is important to note that the Bureau
as far as we know has not run its own reconstruction attack against the TDA-
protected release. We suspect that doing so would yield results similar to the
same attack on the 2010 swap-protected release.

Finally, note that this paper is intentionally narrow in scope. It pertains only
to inferring race/ethnicity. Other types of inferences (i.e. age) would not have
similarly high precision. Likewise we say nothing about other reconstruction
attacks that may exist and may be more effective than that demonstrated by
the Bureau. Finally, we make no recommendations as to how the Bureau may
better define its privacy measures and criteria.

Section 2 describes the Bureau’s re-identification attack in more detail.
Section 3 describes our non-attack. Section 4 explores the question of whether
our non-attack represents a meaningful privacy loss or (more likely) not.
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The code and data for our non-attack may be found at https://gitlab.mpi-
sws.org/francis/census-misinterpretation.

2 The Bureau’s Re-identification Attack

The Bureau’s re-identification attack, as well as our non-attack, combine prior
knowledge with released data to infer the race and ethnicity of a target individual
(the census respondent). Table 1 summarizes both attacks.

The re-identification attack works as follows (Fig. 2):

1. Derive a set of constraints from the swap-protected release (per block).
2. Use a constraint solver to reconstruct the original data per block. The result-

ing reconstructed records are pseudonymous (not linked to identified persons).
3. Link the reconstructed records to externally-derived prior knowledge data on

attributes shared by the reconstructed data and the prior knowledge data.
This serves to identify the persons in the reconstructed data.

4. Infer the unknown attributes from the so-identified reconstructed data.

A good overview of the re-identification attack and its results can be found
in Abowd [4]. A general description of the constraint solver approach can be
found in Garfinkel et al. [6].

In the attack demonstrated by the Bureau, the reconstructed data consisted
of attributes block, age, sex, race, and ethnicity. Blocks are geographical areas
ranging from zero persons to several thousand persons. There are 6M blocks in
the USA. There are two ethnicity values, Hispanic and Not Hispanic. There are
63 race values. The values are built from six basic categories (white, black, asian,
native, island, and other), either individually or in combinations (mixed race).
The majority of race values, however, are white, black, or asain. In total there
are 126 race/ethnicity combinations.

The Bureau ran the attack twice using two different sources of prior knowl-
edge. One source consists of commercially-available data, and can therefore be
run by anybody. The accuracy of the commercial data is questionable, leading to
some uncertainty as to whether any lack of attack effectiveness is due to errors
in reconstruction or errors in the prior knowledge. The second source consists of
the Bureau’s own internal data, and is therefore a perfect match. This represents
the worst-case scenario. For the purpose of comparing our non-attack with the
Bureau’s re-identification attack, we focus only on these worst-case results. This
second internal source is referred to as CEF (Census Edited File) in Abowd [4].

A reconstructed record is correct when its name, address, age (within one
year), sex, race, and ethnicity match with a record in the Bureau’s internal data.

Abowd [4] provides measures of precision and recall. Precision is defined as
the percentage of correct records to linked records, and we use this definition
as well (i.e. in Table 1 and Fig. 3). Abowd’s recall is defined as the percentage
of correct reconstructed records to all prior knowledge records. This definition
doesn’t make sense to us because the attacker does not know whether a recon-
structed record is correct or not, and therefore has no basis on whether to make

https://gitlab.mpi-sws.org/francis/census-misinterpretation
https://gitlab.mpi-sws.org/francis/census-misinterpretation
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a prediction or not. We therefore use a different measure of recall: the fraction of
linked records to total prior knowledge records. This definition is used in Table 1.

There are 279,179,329 prior knowledge records (Abowd’s Table 2, column
“Records with PIK, Block, Sex, and Age”, row “CEF”). Abowd’s Table 6 gives the
number of linked records (column “Putative Re-identifications (Source: CEF)”)
and the number of correct records (column “Confirmed Re-identifications (Source
CEF)”) for each binned block size as well as for all blocks taken together. Abowd’s
Table 6 provides the precision measures. The recall measures can be computed by
dividing the putative re-identifications by the total prior knowledge records.

Three of the precision and recall values are given in (this paper’s) Table 1.
One is for all blocks, and the other two are for the block sizes with the highest
precision.

Fig. 2. Bureau’s re-identification attack.

3 Our Simple Inference Non-attack

Our inference mechanism (non-attack) requires only the street address of the tar-
get individual as prior knowledge. The information needed to link street address
to census block is public information3.

To infer a person’s race and ethnicity, we simply look up the majority race and
ethnicity for the person’s census block, and infer that this is the race/ethnicity
of the person. The majority race/ethnicity for a given block is that with the
highest count of all 126 race/ethnicity values.

3 For instance https://geocoding.geo.census.gov.

https://geocoding.geo.census.gov
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We define precision as the majority race/ethnicity count divided by the block
count. This is simply the statistical probability that any given person in a block
indeed has the majority race/ethnicity.

To measure precision, we use the 2010 swap-protected release as the ground
truth. This is not a perfect ground truth, but we believe that it is close enough for
our purpose, which is merely to show that the Bureau’s re-identification attack
and our simple inference non-attack are in the same ballpark.

In the 2010 swap-protected release, the block count is an exact count (not
noisy, see paragraph 37 of Abowd [4]). Because of swapping, race/ethnicity
counts may not be exact, but we assume that the majority race/ethnicity count is
almost always exact. This is because swapping generally occurs with households
that are unique, i.e. those with rarer race/ethnicities. Our non-attack depends
only on the count of the majority race/ethnicity, which is less prone to dis-
tortion from swapping. Note that the exact parameters for swapping are not
published [9] so we are not completely certain of this assumption.

The block-level 2010 swap-protected and TDA-protected releases were com-
piled into a single table4 by IPUM NHGIS (National Historical Geographic
Information System). The block-level data is available as per-state tables, so
we merged the tables for all states plus DC and Puerto Rico for our measure.
We measured only voting-age (over 18 years) counts to better compare with the
Bureau’s attack, which also uses voting age data (paragraph 5 from Abowd [4]).

Our procedure for measuring per-block precision goes as follows:

1. Find the block’s majority race/ethnicity MRTDA from the TDA-protected
data (the race/ethnicity with the highest count).

2. Set the majority count MCGT as the count for race/ethnicity MRTDA from
the swap-protected data (ground truth).

3. If MCGT < 5, set precision as zero (see Sect. 3.1).
4. Otherwise, set the block count BCGT as that of the swap-protected data

(ground truth).
5. Set precision as MCGT /BCGT .

In most cases, the TDA-protected data and the swap-protected data
have the same majority race/ethnicity (MRTDA = MRSWAP ). In this case,
there is no precision penalty incurred by the noise from TDA. The majority
race/ethnicity is different in blocks where the majority race/ethnicity and the
second race/ethnicity have similar counts. In these cases, the noise from TDA
can be enough to promote the second race/ethnicity to the majority. The preci-
sion penalty in these cases, however, is relatively small since the counts are not
very different.

For example, suppose that the ground-truth count for the majority race/
ethnicity for a block with 100 persons is 51, and for the second race/ethnicity is 49.

4 https://www.nhgis.org/privacy-protected-2010-census-demonstration-data, Vintage
2021-06-08.

https://www.nhgis.org/privacy-protected-2010-census-demonstration-data
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However, the noise from TDA causes the second race/ethnicity to be the major-
ity. In this case, the measured precision for TDA will be 49% instead of the correct
51%—the precision penalty paid for the noise is relatively small.

The recall for a given precision is measured as the fraction of records with the
given precision or better for blocks where there are at least 5 persons with the
majority race/ethnicity. Table 1 gives several illustrative precision/recall values.

Figure 1 is a CDF showing the precision of all records for our non-attack
executed on both the TDA-protected and swap-protected releases. A precision
of zero is conservatively assigned when the associated block has fewer than 5
persons with the majority race. The precision of the non-attack on the swap-
protected data is virtually identical to that of the TDA-protected data. In other
words, the TDA protection does not affect the ability to (statistically) infer
peoples’ race and ethnicity.

Also shown in Fig. 1 are the precision measures taken from Abowd [4]. Each
point represents a different range of block sizes. Prior-knowledge records with-
out a match among the reconstructed records are assigned a precision of zero.
From Fig. 1 we see that simple inference is substantially more effective than the
Bureau’s re-identification.

Note that in our non-attack, the attacker knows roughly what precision any
given block has. Because of noise added to TDA-protected counts, an attacker
does not know the exact precision for a given block. The amount of noise, how-
ever, is relatively small, so the attacker has a good estimate of precision.

The race/ethnicity of a substantial fraction of the population (11%) can be
inferred with virtually 100% precision. This is for the simple reason that many
blocks have only a single race/ethnicity.

Note that this result is supported by Kenny et al. [8], which also predicts
individual race and ethnicity, but additionally uses analysis of names to help
predict race and ethnicity. Kenny et al. found that TDA (using a version of
TDA with more noise than the final version we tested) did not degrade the
quality of these predictions.

Figure 3 shows the non-attack precision as a whisker plot per block size group
(1–9 persons, 10–49 persons etc.). This figure shows that the noise of TDA sub-
stantially distorts the data for the smallest blocks (9 or fewer persons), but not
for blocks larger than that. We assume that the near-perfect precision measure
for the swap-protected data for the smallest blocks is because small blocks tend
to be very homogeneous, and because swapping removes most of what little
non-homogeneity remains. Note in particular that the relative distortion due to
swapping is greater for small blocks. As such, the near-perfect precision measure
for small blocks for swap-protected data does not accurately reflect reality. In
other words, it would not necessarily be correct to conclude from this figure that
swapping fails to protect privacy for small blocks.

Figure 4 shows the absolute error between swap-protected and TDA-
protected counts. Most of the comparisons are for the majority race/ethnicity.
When the two releases have different majority race/ethnicity, the comparison
uses the majority race of the TDA-protected data. The error is relatively small,
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Fig. 3. Non-attack precision by block size for TDA-protected and swap-protected
releases.

Fig. 4. Absolute error in count introduced by TDA noise between swap-protected and
TDA-protected data for the same race/ethnicity in each block. Measured as TDA-count
minus swap-count.

less than plus or minus 10 in most cases. The standard deviation in error for the
smallest blocks is 2.8, and 4.0 for the largest blocks. This supports the observa-
tion that most of the loss of precision occurs for the smallest blocks. We don’t
know enough about TDA or swapping to understand why the median error is
greater than zero, or why the range of error increases with larger blocks.

3.1 Effect of Majority Race/Ethnicity Threshold

In our non-attack, we ignore blocks where the majority race/ethnicity has fewer
than 5 persons. The idea here is that a group of 5 persons is a reasonable privacy
threshold. In other words, revealing that there are at least 5 persons with a given
race and ethnicity does not unduly compromise the privacy of those 5 persons
since they are not race/ethnicity uniques. The measures given in Table 1 and
Fig. 1 use this threshold.

The choice of 5 is our own, and others may feel that a larger threshold is
required, or that a smaller threshold is adequate. We therefore give the cumu-
lative distribution of precision for several different thresholds in Fig. 5. Note
that even with a threshold of 20, a substantial fraction of blocks allow correct
inference with 100% precision.
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Fig. 5. CDF of precision for our non-attack for different thresholds for the number of
persons with the majority race/ethnicity. Blocks with fewer than the threshold number
of persons are conservatively assigned a precision of zero. For comparison, the precision
for the Bureau’s re-identification attack on the prior swap mechanism is also shown.

4 Discussion and Conclusion

In this paper, we show that the TopDown Algorithm (TDA) used by the US Cen-
sus Bureau for the 2020 census in no way prevents attackers from inferring race
and ethnicity with high accuracy for a substantial portion of census respondents.

Here we discuss two questions. First, does the ability to make this inference
constitute a privacy violation of some sort? Note that it not up to us to answer
this question. Rather, this is a matter for US Census and US Government policy
makers. Nevertheless, if the answer is no, then the US Census has incorrectly
measured the effectiveness of their attack. If the answer is yes, then TDA is an
inadequate defense.

Second, assuming the answer is no (there is no privacy violation), then what
did the Bureau do wrong in its privacy measure?

4.1 Has Privacy Been Violated?

The US Census Bureau has quite clearly stated that it is a goal to allow for
accurate statistical inferences. The following is from [5]:

Some inferences about confidential information can be achieved with purely
statistical information (especially for blocks with many identical records).
These inferences rely on aggregate statistical information about groups and
do not rely on any individuals’ confidential census responses. For example,
suppose Alice is trying to learn how Bob responded to the race question,
and she already knows Bob lived in Montana at the time of the 2010 Census
enumeration. Alice could then review the 2010 Census tables, and because
she can find that 89.4 percent of respondents reported “White Alone” in
Montana, Alice can guess with high confidence that Bob’s census response
was “White Alone.” This is an example of an inference based on aggregate
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statistical information about groups, rather than knowledge of Bob’s confi-
dential census response. The Disclosure Avoidance System (DAS) permits
accurate inferences based on aggregate statistical information about groups.

It seems to us very clear from this that the US Census Bureau intends to
allow accurate statistical inferences. Indeed the Census here has for all practical
purposes described our non-attack. As with our non-attack, Alice’s best strategy
is to simply guess the majority attribute (here race). The only differences are
that we use address mapped to block rather than state, and infer both race and
ethnicity.

4.2 What is Wrong with the US Census Privacy Measure?

It is important to point out that the Bureau doesn’t use inference as its measure
of privacy. In Abowd [4], two measures of privacy are given, neither of which is
inference.

The first measure is simply the fraction of correctly reconstructed records.
Referring to Fig. 2, this would be the fraction of reconstructed records that match
the original census records on block, age, sex, race, and ethnicity.

The first seven pages of Abowd [4] pertain to the reconstruction measure.
These seven pages conclude with:

Consequently, the new technology-enabled possibility of accurately recon-
structing HDF microdata from the published tabular summaries and the
fact that those reconstructed data do not meet the disclosure avoidance
standards established at the time for microdata products derived from the
HDF demonstrate that the swapping methodology as implemented for the
2010 Census no longer meets the acceptable disclosure risk standards estab-
lished when that swapping mechanism was selected for the 2010 Census.

In other words, the mere ability to reconstruct with some level of success
(see Abowd’s Table 1), whether or not the reconstructed records can be matched
to named persons, is the only criteria required by the Bureau.

A simple thought experiment, however, shows that reconstruction alone is
not a valid measure of privacy. Imagine, for instance, a table with one column,
sex, with values ‘M’ and ‘F’ over thousands of rows. Given noisy counts of the
two values, it would be easy to reconstruct the table with high accuracy. Clearly
this in and of itself is not a violation of privacy. At a minimum, the number of
unique values in the table is also important. The census data used for the attack
has only 57% uniques on the five attributes.

In any event, the Bureau recognizes the importance of being able to link
reconstructed records with named persons, and so the subsequent 12 pages of
Abowd [4] focus on the second measure, that of re-identification. This measures
the fraction of reconstructed records that can be successfully linked to prior
knowledge of named persons. Referring again to Fig. 2, this is the box labeled
“Link on age, sex, block/address”.
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Strictly speaking, this re-identification measures the ability to identify name,
address, age, sex, race, and ethnicity with some level of success. Abowd [4]
reports that the Bureau finds that this also fails its criteria for privacy:

The Data Stewardship Executive Policy Committee (DSEP) determined
that the simulated attack success rates in Table 6 were unacceptable for
the 2020 Census. Decennial census data protected by the 2010 disclosure
avoidance software is no longer safe to release.

Although Abowd [4] never uses the word ‘infer’, given that re-identification
requires prior knowledge of name, age, sex, and address, it seems perfectly rea-
sonable to describe the re-identification as inferring race and ethnicity from
name, age, sex, and address. The Bureau is implicitly saying that this is not
acceptable. On the other hand, they are saying that it is ok to infer race and
ethnicity from address, because they very intentionally release data designed to
do this.

There are perhaps three possible responses that the Bureau could make to
this apparent contradiction:

1. Re-identification using prior knowledge and inference using the same or less
prior knowledge are different and can’t be compared.

2. It is not this specific re-identification per se that is a problem, but the fact
that re-identification can happen in general.

3. The re-identification doesn’t really matter, since in any event the reconstruc-
tion alone failed the privacy criteria.

The first seems non-sensical.
Regarding the second, it would be helpful if the Bureau identified cases of re-

identification that revealed substantially more information than what the data
release is supposed to reveal statistically.

4.3 The Ruggles and van Riper Reconstruction

Regarding the third, Ruggles and Van Riper [13] provide evidence that even the
Bureau’s reconstruction reveals nothing more than what is meant to be revealed
statistically. In their demonstration, Ruggles et al. used the following statistical
information as the basis for reconstruction (taken from the 2010 census):

1. The national distributions of ages, sexes, and block sizes.
2. The fact that 78% of individuals on average have the majority race/ethnicity

of their block.

Armed with only this knowledge, Ruggles et al. built 10000 synthetic blocks
by randomly assigning block size according to the national distribution, and
then randomly assigning individuals to the blocks with age and sex following
the national distributions. They then mimicked reconstruction of the synthetic
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blocks by fresh random assignments age and sex following the national distri-
butions. Finally, they assumed that on average the race and ethnicity would be
correct 78% of the time.

The result is that on average 41% of records matched on all five attributes
(block, age, sex, race, and ethnicity), compared to 45% for the Bureau’s attack
(using commercially obtained name, age, sex, and address). These two recon-
struction measures are certainly in the same ballpark.

The idea that the Bureau’s reconstruction is little better than random is also
supported by Muralidhar [11]. He shows that the Bureau’s reconstruction can
produce a large number of different solutions. Any given solution chosen by the
Bureau is effectively a random choice among many.

4.4 Conclusion

In conclusion, we believe that the Bureau has not adequately demonstrated a
meaningful privacy threat against the 2010 swapping method. The threat may
exist, but has not been demonstrated. We also believe that the criteria used by
the Bureau to measure privacy is flawed in that it does not take the intended
released statistical knowledge into account. This is demonstrated partially by the
Ruggles and Van Riper reconstruction, and more definitively by the inference
non-attack of this paper.

Note that implementing TDA has been costly both in terms of data quality
and timely data release. Numerous studies point to problems for a variety of
research tasks and government functions, including redistricting [8], health [7,
14,15], and demographics [10,15,16]. (Note that some of these studies may be
based on earlier proposed versions of anonymization with more noise than the
final version.)

The state of Alabama filed a (failed) lawsuit in part to force the Census
Bureau return to the former low-distortion method of anonymization [1], and a
second lawsuit to force the Bureau to release delayed housing data is ongoing as
of this writing (Spring 2022) [2]. The Bureau has yet to release all of the tables
that it normally releases.

Although this paper does not make any concrete proposals on how better to
measure privacy, it seems clear to us that more research is needed, especially
regarding the role that expected statistical inference plays in measuring privacy.
We hope that this paper serves to motivate that research, and that it leads to a
more circumspect approach to measuring privacy loss in statistics organizations.
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Abstract. Recent analysis by researchers at the U.S. Census Bureau claims that
by reconstructing the tabular data released from the 2010 Census, it is possible to
reconstruct the original data and, using an accurate external data file with identity,
reidentify 179 million respondents (approximately 58% of the population). This
study shows that there are a practically infinite number of possible reconstructions,
and each reconstruction leads to assigning a different identity to the respondents
in the reconstructed data. The results reported by the Census Bureau researchers
are based on just one of these infinite possible reconstructions and is easily refuted
by an alternate reconstruction. Without definitive proof that the reconstruction is
unique, or at the very least, that most reconstructions lead to the assignment of
the same identity to the same respondent, claims of confirmed reidentification are
highly suspect and easily refuted.

Keywords: Disclosure · Reconstruction · Reidentification

1 Introduction

According to the declaration by Dr. John Abowd, Chief Scientist and Associate Director
for Research and Methodology at the United States Census Bureau, the disclosure pre-
vention procedures used in the 2010 Census did not prevent the ability of an adversary to
identify the Census respondents and results in the confirmed reidentification of as many
as 179 million respondents to the 2010 Census. (Abowd 2021a, p. 12). The complete
procedure used by the Census Bureau (hereafter, REID) consisted of three steps:

(1) Reconstruct microdata (individual level data) for all respondents in the US by using
publicly available Census data.

(2) Link the reconstructed microdata to a commercial database using (Age, Sex) and
assign a name and address to the reconstructed microdata records.

(3) Compare the enhanced microdata with the original Census data to confirm the
identity of the respondents.

The Census collects both individual and household level data. The original data that
is gathered is edited for errors and any other issues and the Census Edited File (CEF) is
created. All personally identifiable information is removed and replaced with a unique
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identifier, the Protected Identification Key. Statistical disclosure limitation procedures
(privacy protection measures) are applied to CEF which results in the creation of the
Hundred Percent Detail File (HDF). All Census publications are produced from HDF.

The Census data released to the public are released in two categories, personal and
household. No linkage between the two categories is provided. The personal level data
that is released to the public consists of (Age, Sex, Race, and Ethnicity). Household
level data is similar but has additional information (number of individuals in household,
relationship to the householder) and the data release also provides additional information
on the Age variable (average and median).

The Census releases data at different geographic levels: nation, state, county, tract,
block group, and block. The final three are census-defined constructs and do not nec-
essarily correspond to traditional geographic classification. For personal level data, the
data at the smaller geographic level is aggregated to the next higher level, that is, the
results at the block level are aggregated to block groups, block groups are aggregated
to tracts, etc. The multiple tables that are released (Total Population, Sex by Age, Total
Races, and others) are all aggregations of the most detailed data release (Age by Sex, by
Race, by Ethnicity). The different tables released form the basis of the reconstruction of
the respondent microdata.

Every respondent record consists of both personal information and information about
how the respondent is related to the householder (the primary individual in the household
in whose name the housing unit is owned or rented). Information regarding the relation-
ship variable is only released in the household tables and not as a part of the individual
level data. During the reconstruction, the REID team did not recreate the entire record
for the respondent, but only the variables released in individual level tables, namely,
Age, Sex, Race, Ethnicity (Abowd 2021a). REID procedure is implemented using two
external data files: commercial data sources and CEF as the external data file.

Unfortunately, it is impossible for anyone outside the Census to have access to either
of these two files. As far as the commercial data, while the sources of the data have been
identified, the accuracy of these specific data files were never identified (Rastogi and
O’Hara 2012). Since the reidentification claims are directly affected by the accuracy of
the external data, the accuracy of the external data source must be verified. However, it is
very difficult (if not impossible) to recreate this external data file to serve as a comparison.
According to Abowd (2021a), using CEF as the external data file is a worst-case scenario
since it is the most accurate data that an adversary can have. As a result, the choice of
CEF as the external data favors the results and claims of REID. Again, unfortunately,
the Census Bureau does not provide access to CEF without special authorization. Thus,
we have a situation where it is practically impossible to gain access to the data to verify
the results of REID. To overcome this impossible situation, I have chosen to generate a
hypothetical CEF based on the characteristics of the available data and as the “external
data” file. As with the use of the true CEF, it is assumed that there is no inaccuracy
between the true and external data.

The analysis in this paper is basedondata fromTract 5.01,LaramieCounty,Wyoming
(https://data.census.gov/cedsci/advanced). It should be noted that the choice of this tract
was simply amatter of convenience. Similar data are available in practically every county
in every state in the nation. The tract consists of a total of 148 blocks, 127 occupied

https://data.census.gov/cedsci/advanced
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blocks, and a total population of 8164. The largest block in the tract has a population
of 450 and the smallest occupied block has a population of 1. Table 1 shows the race
and ethnicity breakdown for this tract (AIAN represents American Indian or Alaskan
Native, NHPI represents Native Hawaiian or Pacific Islander and Multiple represents
two or more races).

Table 1. Race breakdown for Tract 5.01, Laramie County, Wyoming

Ethnicity White Black AIAN Asian NHPI Other Multiple

Not Hispanic 6420 210 56 115 26 14 155

Hispanic 688 32 20 4 3 304 117

2 Reconstruction of Respondent-Level Data

The basic premise underlying the entire REID experiment can be summarized by the
following statement: “While the statistical and computer science communities have been
aware of this vulnerability since 2003, only over the last few years have computing power
and the sophisticated numerical optimization software necessary to perform these types
of reconstructions advanced enough to permit reconstruction attacks at any significant
scale.” (Abowd 2021a, p. 14)”.

This is incorrect. The Census data files from 2010 (and even 2000) could be used
reconstruct the microdata for every respondent in the nation very easily. At the tract
level, Census releases tables of count by individual year of age, sex, race, and ethnicity
(PCT12A-O). To reconstruct the data at the tract level is just a matter of creating a
list of individuals based on the counts provided in the tables. The difference between
the description above and the reconstruction in the REID experiment is the level of
geography. The reconstruction above is at the tract level while the REID reconstruction
is at the block level. At the block level, the Age variable is grouped (except for ages
20 and 21). In addition, other than White respondents, Age by Sex is only provided
for the Race category as a whole and breakdown by Ethnicity is not provided. The
reconstruction procedure at the block level must be applied twice (first for Hispanic
respondents followed by non-Hispanic respondents) for all respondents who are not
White.

Within each tract, the reconstruction can be performed independently for each Sex
and Age Group (23 in total). My analysis in this paper focuses on Males in the Age
Group (25–29) in Tract 5.01 in Laramie County, Wyoming. At the tract level, there are
a total of 338 respondents in this Age Group in 87 different blocks. From Tables P8 and
P9, the tract level race breakdown for this Age Group is shown in Table 2. From Tables
P8 and P9 at the block level, the adversary can also create a similar table for each of
the 87 blocks (except for Ethnicity for non-White individuals as noted earlier). Table 2
provides information for one such block (Block 4000) in Tract 5.01.

Given the information for Block 4000 in Table 2, reconstructing the individuals in
Block 4000 is simply a matter of creating a list as shown in Table 3. The individuals in



A Re-examination of the Census Bureau Reconstruction and Reidentification 315

all other blocks can be similarly reconstructed with the exception that this reconstruction
presents age only as a group (25–29), rather than individual year of age.

Table 2. Race breakdown for ages (25–29), Tract 5.01, Laramie County, Wyoming

White Black AIAN Asian NHPI Other Multiple

Tract 5.01 Not Hispanic 263 13 3 6 1 1 3

Hispanic 28 0 2 0 1 12 5

Block 4000 Not Hispanic 9 0 0 1 0 0 0

Hispanic 3 0 0 0 0 0 0

Table 3. Reconstructed records for Block 4000 (with Age Groups only)

Tract Block Sex Race Ethnicity Age

5.01 4000 Male White Not Hispanic (25–29)

5.01 4000 Male White Not Hispanic (25–29)

5.01 4000 Male White Not Hispanic (25–29)

5.01 4000 Male White Not Hispanic (25–29)

5.01 4000 Male White Not Hispanic (25–29)

5.01 4000 Male White Not Hispanic (25–29)

5.01 4000 Male White Not Hispanic (25–29)

5.01 4000 Male White Not Hispanic (25–29)

5.01 4000 Male White Not Hispanic (25–29)

5.01 4000 Male White Not Hispanic (25–29)

5.01 4000 Male White Hispanic (25–29)

5.01 4000 Male White Hispanic (25–29)

5.01 4000 Male White Hispanic (25–29)

5.01 4000 Male Asian Not Hispanic (25–29)

For all Males in Age Group (25–29) in Tract 5.01, individual year of age breakdown
by (Race and Ethnicity) can be obtained from PCT12A-O and is reconstructed below in
Table 4.

This reconstruction can be performed independently for each Sex and Age Group
in the tract. This is precisely why the reconstruction problem “is massively parallel in
tracts” (Abowd 2018, p. 16). Note that the values for (Sex, Race, Ethnicity) reconstructed
for every individual in every block in Tract 5.01 (like Block 4000 in Table 3) will always
satisfy all the additivity constraints for these three variables at the tract level. The only
missing variable in the reconstructed data is the individual year of age. Hence, the entire
reconstruction problem reduces to one of assigning individual year of age values at the
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tract level for a given (Sex, Race, Ethnicity) to the respondents in the blocks with the
same (Sex, Race, Ethnicity).

Table 4. Individual year of age by (Race and Ethnicity) for Tract 5.01

Ethnicity Age White Black AIAN Asian NHPI Other Multiple

Not Hispanic 25 39 1 0 0 0 0 1

26 53 7 1 4 0 1 1

27 56 2 0 1 0 0 0

28 57 2 1 1 1 0 1

29 58 1 1 0 0 0 0

Hispanic 25 3 0 1 0 0 5 1

26 6 0 0 0 0 1 0

27 6 0 0 0 0 1 0

28 9 0 0 0 1 1 2

29 4 0 1 0 0 4 2

For the purposes of illustration, consider the reconstruction of (Male, Black, non-
Hispanic) respondents in the Age Group (25–29) in Tract 5.01. Table 5 shows the dis-
tribution of the 13 (Male, Black, non-Hispanic) respondents in the (25–29) Age group
in the blocks in Tract 5.01.

Table 5. Male, Black, non-Hispanic respondents in different blocks in Tract 5.01

Block 3014 3017 3019 3021 4002 4003 4012 4021 4026

Respondents in (25–29) Age
Group

1 1 1 1 1 1 4 1 2

The REID approach to the reconstruction of individual year of age for these 13
respondents is to express the problem as a system of linear equations to find individual
year of age assignment at the block levelwhich satisfies individual year of age frequencies
at the tract level. This system of linear equations is solved using Gurobi optimization
software. The purpose of optimization software is to find the best possible solution
(optimal) from among many solutions that satisfy the mathematical equations (feasible),
where the best possible is evaluated based on the objective function. In some cases, there
are multiple optimal solutions, but usually only a few. The reconstruction problem does
not have an objective function (there is no reason to treat one reconstruction as being
superior to any other), and every feasible solution is an acceptable solution. Hence, the
number of potential solutions remains very large.

Even for this small group of 13 individuals, the number of possible solutions runs in
the hundreds of thousands. The single age 25 value can be assigned to any one of the 13
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respondents in the block in 13 different ways. The seven age 26 values can be assigned
to the remaining 12 respondents in 792 different ways. The two age 27 values can be
assigned to the remaining five respondents in 10 different ways. The two age 28 values
can be assigned to the remaining three respondents in three different ways. Finally, there
is only way to assign the single age 29 value to the single remaining respondent. In total,
there are (13× 792× 10× 3× 1=) 308,880 different assignments of age values across
this small group of individuals. Every one of these assignments is a feasible solution to
the system of linear equations representing (Male, Black, non-Hispanic) respondents in
Age Group (25–29) in Tract 5.01. This process can then be repeated for each Age Group
in each (Race, Ethnicity) combination for each Sex in each Tract.

The reconstruction reduces to the problem of assigning individual year of age at the
block level while preserving the frequency of the respective age at the tract level. A
simpler way to achieve this is to create a vector of individual years of age with the same
frequency as at the tract level, randomly sort this vector, and assign them to individuals in
each block. Every random sort of the age vector satisfies the age frequencies at the tract
level and represents a feasible solution to the system of linear equations. Table 6 shows
five different individual year of age assignments for the (Male, Black, non-Hispanic)
individuals in Tract 5.01.

Table 6. Five different reconstructions of age

Block Respondent I II III IV V

3014 1 25 27 26 28 29

3017 1 26 26 27 26 25

3019 1 27 27 28 26 26

3021 1 26 26 26 26 26

4002 1 26 26 26 26 26

4003 1 26 28 29 26 28

4012 1 29 26 26 29 26

2 27 28 26 27 26

3 28 29 26 25 26

4 28 26 27 26 26

4021 1 26 25 26 27 27

4026 1 26 26 25 26 28

2 26 26 28 28 27

White, non-Hispanic respondents constitute 263 of the 338 respondents in Tract 5.01,
of whom 39 respondents are of age 25. The possible assignments of just the 39 values
of age 25 across the 263 respondents is greater than 1046. The reconstruction of each
race and ethnicity combination is performed independently of all others. As a result, the
number of feasible assignments is the product of the possible solutions for each race and
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ethnicity combination. Suffice it to say that the number of alternative reconstructions
is practically infinite. Every one of these infinite reconstructions represents a feasible
solution to the system of linear equations representing the data and consistent with all
the tables used by the REID team both at the block and tract level.

3 Putative Reidentification

The Census reidentification attack is explained in detail in Abowd (2021a). The process
is as follows:

Identify the corresponding census block for every address in the source file. Then,
looping through all the records in the reconstructed microdata file produced from the
reconstruction, find the first record in the source file that matches exactly on block, sex,
and age. Once this step is completed, run through the remaining unmatched records from
the reconstructed microdata and find the first unmatched record from the source file that
matches exactly on block and sex, and matches on age plus or minus 1 year (Abowd
2021a, Appendix B, p. 7).

When a match is found, it represents a putative identification, and the identification
information is harvested from the external data file and appended to the reconstructed
data. Abowd (2021b, Table 2) reports a putative identification of 77% (238,175,305 out
of 308,745,538).

This procedure was applied to the 10 different reconstructions for Tract 5.01 and the
putative identification results are provided in Table 7. These results are consistent with
the national level putative identification rate of 77% observed by Abowd (2021b). When
these results are viewed independently, these results seem to provide strong support for
the REID reidentification results.

Table 7. Aggregate putative identification rates for Tract 5.01

Reconstruction 1 2 3 4 5 6 7 8 9 10

Putative identification (%) 80 77 81 76 76 78 80 79 79 80

These results, however, cannot be viewed independently. Each row of the 338 recon-
structed records in this data set represents a unique individual (as does the reconstructed
record of each of the 308,745,538 respondents across the nation). The objective of the
REID reconstruction and reidentification experiment is to assign identity to each of these
unique individuals. The ten different reconstructions presented above for the 338 indi-
viduals in Tract 5.01 are the result of applying different values of age (from 25 to 29)
to these unique individuals. To conclude that matching with the external data results in
putative reidentification, it is necessary that the same record in the reconstructed data
is assigned the same identity on every reconstruction. Assigning different identities to
the same reconstructed record on different reconstructions implies uncertainty in the
validity of the reidentification. The fallacy in the REID approach is to treat a single
reconstruction as definitive proof of reidentification.
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It is important to note that this analysis can be performed by the adversary with
knowledge of the external data (sans race and ethnicity) and the tabular data released by
theCensus.Any intelligent adversarywould realize thatmaking claimsof reidentification
based on a single reconstruction can be immediately refuted by the Census Bureau by
presenting one of the infinite alternate reconstructions. Yet valid reidentification based
on a single reconstruction is precisely the claim that the REID team is making.

Generally, the extent of agreement between two alternate reconstructions represents
a simplemeasure of the similarity between two reconstructions. Agreement between two
reconstructions was computed as the number of respondents for whom the same identity
was assigned in both reconstructions. If most of the reconstructions show strong agree-
ment, that would be evidence that conclusions based on multiple reconstructions will
not be very different from one another. Analyzing the 10 reconstructions for Tract 5.01
indicates that this is not the case. The average agreement between any two reconstruc-
tions is 16% with a minimum of 10% and a maximum of 21%. There is little confidence
that any two reconstructions will lead to the same conclusion.

Table 8 shows the number of times the same identity from the external data file was
assigned to the same record in the reconstructed data over all 10 reconstructions for all
338 records. If the same identity is assigned to the same reconstructed record every time,
it supports the conclusion that reidentification has occurred, which is not the case. Not
a single record was assigned the same identity across all reconstructions (or even nine
out of 10 reconstructions). Furthermore, only three reconstructed records were assigned
the same identity in eight of the 10 reconstructions. For the adversary to be confident
in the putative identifications, it is necessary that the same identity is assigned to the
same individual on all (or at least most reconstructions). These results provide little or
no confidence in the putative identification.

Table 8. Number of records for which the same identity was assigned

Number of reconstructions where the same identity was
assigned

1 2 3 4 5 6 7 8 9 10

Number of records 6 96 96 66 41 14 16 3 0 0

Table 9, which shows the number of different identities assigned to the same record,
provides a different perspective but leads to the same conclusion. The most impor-
tant observation from this table is that, not one of the reconstructed records had the
same identity assigned to it in all 10 reconstructions. Almost 75% of the reconstructed
records were assigned at least four different identities. From the adversary’s perspec-
tive, the inability to consistently assign the same identity to the same individual across
all 10 reconstructions implies that assigning identity based on the reconstructed data is
unreliable.

The number of identities assigned is dictated by the size of the block.When the block
size is k, there can be no more than (k+ 1) identities (number of individuals in the block
+ no match) that can be assigned. This implies that of the 35 records for which only
two identities were assigned, 26 of them belonged to a block with a single individual.
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Table 9. Number of identities assigned to the reconstructed records in Tract 5.01

Number of different identities assigned over 10
reconstructions

1 2 3 4 5 6 7 8 9 10

Number of records 0 35 52 90 45 48 28 27 12 1

For every block with 10 or more individuals, at least four identities were assigned to
each record. In the largest block, 27 of the 29 records were assigned at least six different
identities.

It is also illustrative to analyze results pertaining to a single block. Consider Block
4012 with a total of 10 individuals: four (White, non-Hispanic), four (Black, non-
Hispanic), one (AIAN, Hispanic), and one (White, Hispanic) with unique identifiers
(RR226 to RR236 for the reconstructed records and 226 to 336 for individuals in the
external data). Table 10 provides the assignment of identity for these individuals on the
10 different reconstructions. This table shows that no reconstructed record is assigned the
same identity more than five times. Every reconstructed record is also assigned between
four and eight different identities.

Table 10. Identity from external data assigned to each reconstructed record in Block 4012 (The
numbers in the table represent the ID of the original record. Blank cells indicate no match was
found)

Reconstructed record 1 2 3 4 5 6 7 8 9 10

RR226 228 227 229 227 229 226 234 234 227 227

RR227 227 234 234 234 228 229 229 231 229 232

RR228 226 232 226 232 226 232 226 228 234 226

RR229 234 233 232 229 230 227 227 227 231 228

RR230 232 233 226 231 228 235 232 228 230

RR231 230 228 235 228 227 233 232 230 226

RR232 231 230 230 230 233 234 230 233 230 233

RR233 236 235 227 231 234 230 233 226 232 234

RR234 229 231 228 235 235 231 228 233 231

RR235 233 226 231 233 235 231 229

Table 11 shows the race and ethnicity assigned to every individual (identified by the
ID) in the external data file from the 10 reconstructions. There is no individual from
the external data who is assigned the same race and ethnicity across all reconstructions.
Furthermore, every record is assigned at least three different race and ethnicity com-
binations. The table shows that the race and ethnicity of: (a) every individual from the
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external data is designated as (Black, non-Hispanic) at least once; (b) at least eight dif-
ferent individuals are designated (AIAN, Hispanic) at least once; (c) and seven different
individuals are designated (White, Hispanic) at least once.

Interestingly, individuals with IDs 226, 232, and 234, who are most frequently desig-
nated as (Black, non-Hispanic), all happen to be (White, non-Hispanic). Individuals with
IDs 227, 228, 230, and 233, who happen to be (Black, non-Hispanic) are least frequently
designated as (Black, non-Hispanic). If the adversary were to rely on the reconstruction
to designate race and ethnicity to the individuals in the external data (which lacks this
information), the probability of a correct designation is no better than designating them
randomly. If the intent of the team that designed the release of the 2010 Census tabular
data was to prevent disclosure, they were extremely successful indeed!

Table 11. Race and ethnicity assigned to individuals in Block 4012 from the 10 reconstructions
(W=White, not Hispanic; WH=White, Hispanic; B= Black; A=AIAN Hispanic. Blank cells
indicate no match was found)

ID 1 2 3 4 5 6 7 8 9

226 B W B B B W B B WH

227 B W B W WH A A A W

228 W WH W WH B B W B B

229 W W A W B B B

230 WH W W W A B W WH W

231 W W W B B W W B A

232 B B A B B WH B B

233 W A B W W WH B W W

234 A B B B B W W W B

235 B WH W W W B

Given that even putative identification is highly questionable, any analysis regarding
confirmation of identification is entirely moot.

4 Conclusions

Abowd (2021a) claims that the objective of REID analysis “a modern database
reconstruction-abetted re-identification attack can reliablymatch a large number of 2010
census responses to the names of those respondents – a vulnerability that exposed infor-
mation of at least 52 million Americans and potentially up to 179 million Americans”
(p. 8). To make this claim based on a single reconstruction, it is necessary to prove that
the reconstruction was unique. The first section of this paper definitively shows that the
reconstruction is not unique.
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In the absence of a unique reconstruction, the only other way for the REID team to
make a claim of confirmed reidentification is to show that all (or at least most) recon-
structions result in the same assignment of identity to the reconstructed records. Without
this minimal level of proof, the reidentification is essentially the result of randommatch-
ing. Thus far, the REID team has provided no such proof. Using real Census data and the
same analysis as the REID team, my analysis clearly shows that multiple reconstructions
result in multiple identities being assigned to the same record in the reconstructed data,
which is all that is required to refute any claim of meaningful reidentification. This study
adds support to Ruggles and van Riper (2021) and Francis (2022) who showed that a
random assignment performs as well as the Census reconstruction.

Somemay consider results based on a single tract, in a single county, in a single state,
or that only 10 reconstructions were performed, no better than a single reconstruction.
But this would be missing the point. It is the Census Bureau which made the claim
“Internal research has conclusively proven the fundamental vulnerabilities of the 2010
swapping methodology (Abowd 2021c)”. I am simply refuting this claim by showing
that, for any given track, a practically infinite number of such reconstructions exist, each
reconstruction provides different results about the identity of a respondents, which casts
serious doubt on this claim. It is up to the Census Bureau researchers to show either that
the reconstruction was unique or, at the very least, that most reconstructions lead to the
same conclusion regarding the identity of a respondent. Without such proof, claims of
confirmed reidentification are highly suspect and easily refuted.

Any claims made by an adversary based on a single reconstruction can be refuted
by the data administrator by issuing the following challenges:

(1) The adversary is challenged to provide the identity of the (Male, White, Hispanic,
Age Group 25–29) record in Block 4012. Based on the first reconstruction, the
adversary identifies this record as belonging to the individual with ID 230 in the
external data. Using the same data, the data administrator counters by showing that,
based on the remaining nine reconstructions, that this record could also belong to
individuals with IDs (228, 235, 227, 233, 232, 230, 226) or not identified at all
(reconstruction 10).

(2) The adversary is challenged to identify the (Black, non-Hispanic) individuals in
Block 4012. Based on the first reconstruction, the adversary can only identify indi-
viduals with ID (226, 227, 232) in the external data as being (Black, non-Hispanic)
since an age match was not found for one reconstructed record. Using the same
data, the data administrator counters with the remaining nine reconstructions to
show that any of the 10 individuals could be identified as (Black, non-Hispanic).

The interesting fact is that, to prevent any disclosure, the administrator never actually
confirms or denies the adversary’s claim. The administrator simply shows that there exist
reconstructions that present alternative solutions that refute the adversary’s claim. Faced
with these facts, the adversary has no recourse but to acknowledge that the claims of
reidentification cannot be substantiated. As the data administrator, it would be theCensus
Bureau’s duty to challenge the claims made by the REID team, which they have not. I
am doing so on behalf of the public.
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Abstract. National Survey on Drug Use and Health (NSDUH) public use files
(PUFs) have been produced using a statistical disclosure control technique named
MASSC, which stands for Micro Agglomeration, Substitution, Subsampling, and
Calibration, to protect confidentiality and quality of data. To inform researchers
that NSDUH PUFs maintain high data quality and comparability with NSDUH
restricted-use files (RUFs), about 300 NSDUH published tables (based on RUF
data) of substance use and mental health were selected and reproduced using PUF
data. Key estimates and their respective standard errors (SEs) produced from the
two sets of 2014 to 2019 data files were compared. Summary statistics of ratios of
the estimates and ratios of their SEs fromPUF andRUFdatawere produced.Out of
22,000 estimates compared, average ratios for estimated percentages across years
werewithin the 0.99 to 1.01 range, and the average increase in SEs for the estimates
produced from PUFs across years was about 7–11%, for both substance use and
mental health measures. Multiyear trend comparisons between PUF and RUF
estimates were also conducted graphically to demonstrate PUF estimates provide
similar trend patterns to RUF estimates across years. This study will provide
confidence to researchers and policymakers for making policies and public health
decisions based on NSDUH PUFs.

Keywords: Statistical disclosure limitation · MASSC · Quality assessment ·
Public use file · NSDUH

1 Introduction

The National Survey on Drug Use and Health (NSDUH) is an annual survey that collects
data on substance use, mental health, and other health measures among the U.S. civilian,
noninstitutionalized population aged 12 years or older. It is sponsored by the Substance
Abuse and Mental Health Services Administration (SAMHSA), U.S. Department of
Health and Human Services, and is planned and managed by the SAMHSA Center for
Behavioral Health Statistics andQuality (CBHSQ). Data collection and analysis are con-
ducted under contract with RTI International. NSDUH data have been used extensively
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by researchers to study substance use (e.g., alcohol use, tobacco use, marijuana use,
prescription drug misuse, heroin use) and mental health issues (e.g. major depressive
episode and mental illness).

NSDUH collects personal information on substance use, substance use treatment,
mental illness, and other health-related measures, which are sensitive and private. Dis-
closure risk is always a concern with such data. Disclosure occurs when an unauthorized
individual (an “intruder”) tries to link a record in the microdata file to an identifiable
respondent (a “target”). Variables used in the identification of the target’s record are
called identifying variables (IVs), which are usually known to others or can be found
elsewhere. Such variables may include age, gender, race, education, income, and so on.

CBHSQ is a statistical unit approved by the U.S. Office of Management and Budget
and has the responsibility to protect confidential data from disclosure identification. As
such, NSDUH data are protected under the federal law known as the Confidential Infor-
mation Protection and Statistical Efficiency Act of 2002 (CIPSEA). CIPSEA establishes
confidentiality protections for information collected by U.S. statistical agencies, which
ensures that all NSDUH data are used for statistical purposes only. During data collec-
tion, CIPSEA language is included in the lead letter and informed consent materials that
are sent to respondents, informing respondents that all survey responses will be fully
protected under federal law by CIPSEA. To protect the respondents’ confidentiality,
comply with federal regulations, and honor the confidentiality pledge, statistical disclo-
sure treatment has been imposed on all NSDUH public use files (PUFs) to minimize
disclosure risk.

To meet the increasing needs of researchers at large and protect data confidentiality
and data quality, NSDUHPUFs have been produced using a statistical disclosure control
technique called MASSC, which stands for Micro Agglomeration, Substitution, Sub-
sampling, and Calibration [1–3]. In the micro agglomeration step, using a selected set
of key IVs, the data are partitioned into risk strata to control for the level of treatment.
Then, on a random basis, a sample of records is drawn from each stratum, and variables
are substituted from a similar donor record. This substitution step introduces uncertainty
about the identity of a record in the database and makes it difficult for an intruder to be
certain that any record corresponds to a specific individual, because some of the variables
used to identify the record may have come from other individuals. Next, a portion of
the records is randomly removed from the file to reduce the probability of determining
that any known respondent was in the PUF. This subsampling step introduces further
uncertainty about the presence of a target record in the database. These two steps in com-
bination substantially minimize the risk of an individual being identified or targeted. In
MASSC, substitution and subsampling are done while simultaneously constraining the
resulting file to aminimal increase in bias and aminimal decrease in precision for several
substance use outcomes across several domains. In addition, the weights on the final file
are recalibrated to known totals from the full analytic RUF to minimize the decrease
in precision. Other perturbation techniques like variable collapsing, dropping, and local
suppression (called post-MASSC treatment) are also used for NSDUH PUFs.

Quality assessment for the 2002 to 2013 PUFs have been conducted and published
on the SAMHSA website [4]. A study was conducted to continue to gauge the impact of
NSDUH disclosure avoidance treatment on the data quality of the 2014 to 2019 PUFs.
This paper summarizes findings from that study. Amore detailed report will be available
on the SAMHSA website.
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2 Materials and Methods

A subset of NSDUH tables was replicated using PUF data. Those estimates (i.e., esti-
mates based on the restricted-use data) and their associated standard errors (SEs) for
key substance use and mental health measures were compared with estimates produced
from NSDUH PUFs. In addition, correlations of PUF and RUF estimates and SEs were
examined, andmultiyear trends for a small subset of key substance use andmental health
measures were compared between the PUFs and RUFs.

2.1 Selection of NSDUH Published Tables to Replicate Using PUF Data

About 300 tables of substance use and mental health estimates from the 2014 to 2019
NSDUH substance use and mental health detailed tables (https://www.samhsa.gov/
data/) (i.e., estimates based on the RUFs, and referred to as the RUF estimates) were
selected and replicated using the corresponding PUFs (referred to as the PUF estimates).
These tables were used to determine the impact of NSDUH disclosure treatment on the
bias and precision of the PUF estimates compared with estimates from the untreated
RUFs. Substance use outcomes included tobacco use, alcohol use, illicit drug use, per-
ceived risk of substance use, and substance use disorder and treatment. Mental health
outcomes included past year serious mental illness or any mental illness, major depres-
sive episode, and suicide. Tables included domains such as age, gender, and race/ethnicity
and were based on a variety of outcomes and included variables for which partial records
were substituted and other variables that were not directly perturbed. Due to subsampling
on the PUF, all variables were indirectly affected.

2.2 NSDUH PUFs and Comparison Table Production

NSDUH PUFs are publicly available on a data archive website (https://www.datafiles.
samhsa.gov/), and the PUF-estimated percentages produced are based on downloaded
data. Estimated percentages from RUFs (available online in NSDUH detailed tables,
and referred to as RUF estimates) are displayed alongside PUF estimates. The tables
also include SEs of these two sets of estimated percentages and ratios between RUF and
PUF estimates and their corresponding SEs. Usual NSDUHprecision-based suppression
rules [5] are applied for RUF estimates but not for PUF estimates because PUF estimates
can be calculated using data in the public domain. Thus, if an estimate is suppressed
from a RUF table, the PUF estimate is still retained. However, the ratio of the estimates
or corresponding SEs is suppressed.

2.3 Quality Assessment

The quality assessmentwas conducted by examining ratios of estimates and SEs from the
PUF and RUF data on each substance use and mental health measure in the comparison
tables. The ratios were calculated using the following equations:

Ratio of Estimates = θ
∧

PUF (i)

θ
∧

RUF (i)
(1)

https://www.samhsa.gov/data/
https://www.datafiles.samhsa.gov/
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Ratio of SEs = SEPUF (i)

SERUF (i)
, (2)

where θ
∧

PUF (i) and θ
∧

RUF (i) are the estimated percentages (referred to as estimates) from
the PUF and RUF, respectively, for measure i, and SEPUF (i) and SERUF (i) are their
corresponding SEs.

Correlations between PUF and RUF estimates as well as PUF and RUF SEs were
produced. No statistical tests of significance between PUF and RUF estimates were
conducted because it was believed that, for most estimates, such tests would be unlikely
to detect any significant differences given that the underlying data were almost the same.

Multiyear trend plots for a select set of measures and domain combinations (e.g.,
age groups, gender) were plotted to visually compare differences in trends between the
estimates from the RUF and PUF data. All estimates from 2014 to 2018 were compared
with the 2019 estimates.

3 Results and Discussion

3.1 Point Estimate Comparison

Forty-nine tables (from the set of NSDUH detailed tables) showing estimated percent-
ages and their respective SEs were selected for comparison from each year (30 for
substance use outcomes and 19 for mental health outcomes) of data from the 2014 to
2019 NSDUHs, resulting in a total of about 300 tables to be reproduced and compared.
All ratios of estimates and their corresponding SEs from the PUF and RUF data in
the selected tables for substance use and mental health measures were calculated using
Eqs. (1) and (2). Unrounded PUF and RUF estimates were used in the calculation of
these ratios, then the ratios were rounded to two decimal places in the tables. Examples
of tables investigated are presented for substance use in Appendix Table A1 and for
mental health in Appendix Table A2. A complete set of tables that were examined will
be available in a comprehensive report on the SAMHSA website.

If the ratios of the estimates and SEs were close to 1, one can say that the PUF
provided estimates that were similar to the RUF estimates. For example, the RUF and
PUF estimated percentages of past year alcohol use among individuals aged 21 or older
for 2017 in Appendix Table A1 were 70.7 and 70.6%, respectively, which yielded a ratio
of the estimates of 1.00. The associated SEs of this past year alcohol use measure were
0.37 and 0.39%, as produced from the RUF and PUF, respectively, which gave a ratio
of the SEs of 1.07. This comparison shows that the 2017 estimates produced from the
PUF and RUF for this particular outcome and domain were fairly similar and that there
was a 7% increase in the SEs produced from the PUF compared with the SEs produced
from the RUF.

Large ratios indicate that PUF estimates have a larger than expected deviation from
RUF estimates. Appendix Table A2 shows that estimated percentages of adults with
serious mental illness in the past year among Native Hawaiian or Other Pacific Islanders
for 2018 were 4.5 and 4.9% from the RUF and PUF, respectively, and SEs were 1.97
and 2.29% from the RUF and PUF, respectively. This comparison resulted in a ratio of
estimates of 1.09 and a ratio of SEs of 1.16, which means there was a 9% increase in the
PUF estimate and a 16% increase in the PUF SEs.
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3.2 Distribution Analysis of the Ratios of the Estimates

To assess the overall impact of disclosure treatment on NSDUH data quality, the dis-
tributions of the ratios of estimates and the ratios of SEs were studied to examine the
change in estimates and precision. Summary statistics for these ratios of estimates and
SEs were produced. Table 1 shows the distribution of the ratios of all estimates (percent-
ages) by year across all substance use and mental health measures considered for this
study. Table 2 shows the distribution of the ratios of all associated SEs. For substance
use measures, for each year, about 2,400 estimates were examined, and for mental health
measures, for each year, about 1,200 to 1,400 estimates were examined. Results show
that the average (mean) ratios for estimated percentages across years were within the
0.99 to 1.01 range (Table 1) for both substance use and mental health measures. Also,
the average (mean) increase in SEs across years was about 7 to 9% for substance use
measures and about 8 to 11% for mental health measures (mean ratios in Table 2 range
from 1.07 to 1.11 overall). Because each PUF had about a 20% reduction in sample
size (i.e., the PUF sample size is about 80% of the RUF sample size), some increase in
SEs for PUF estimates was to be expected. That is, the ratio of PUF SEs and RUF SEs
would be roughly around 1/

√
0.8 which is 1.12. Thus, the overall PUF estimates were

expected to have a 12% increase in SEs compared with the RUF estimates. Tables 1 and
2 demonstrate that in spite of using MASSC to perturb the PUF data, the quality of the
PUF data remained similar to that of the RUF data. Across all 22,144 substance use and
mental health estimates reviewed using 2014 to 2019 NSDUH data, the average ratio of
estimates from the PUF and RUF was 1.00, and the average ratio of SEs from the PUF
and RUF was 1.08. Thus, on average, NSDUH PUF and RUF estimates are similar and
the decrease in precision is only about 8%.
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Table 1. Distributions of ratios of percentages of substance use and mental health measures
produced from the PUF and the RUF, by year: 2014–2019 NSDUHs

Description N Mean 0% Min 10% 50% Median 90% 100% Max

Substance Use (SU)

2014 2,362 1.01 0.47 0.97 1.01 1.07 1.46

2015 2,369 1.00 0.17 0.95 1.00 1.05 4.15

2016 2,362 1.00 0.00 0.94 1.00 1.05 3.01

2017 2,363 1.00 0.00 0.96 1.00 1.06 1.50

2018 2,366 1.01 0.00 0.97 1.00 1.06 1.74

2019 2,366 1.00 0.00 0.96 1.00 1.06 1.52

Overall SU:
2014–2019

14,188 1.00 0.00 0.96 1.00 1.06 4.15

Mental Health (MH)

2014 1,229 1.00 0.00 0.94 1.01 1.07 1.53

2015 1,245 0.99 0.09 0.93 1.00 1.05 1.49

2016 1,257 1.00 0.39 0.95 1.00 1.06 1.46

2017 1,402 1.01 0.51 0.96 1.01 1.08 1.47

2018 1,403 1.00 0.00 0.95 1.00 1.06 1.50

2019 1,420 1.00 0.37 0.95 1.00 1.07 1.34

Overall MH:
2014–2019

7,956 1.00 0.00 0.95 1.00 1.07 1.53

Overall SU and
MH 2014–2019

22,144 1.00 0.00 0.95 1.00 1.06 4.15

PUF = public use file; RUF = restricted-use file. Ratio = PUF % ÷ RUF %. Ratios that were
suppressed because the RUF estimate was suppressed have been excluded from this summary
table.
Source: SAMHSA, Center for Behavioral Health Statistics and Quality, NSDUH, 2014 to 2019.

The distributions of estimate ratios across years in Table 1 appeared to be stable
across the timeline. For ratios of estimates, data were centered (median) around 1.00,
and most estimates had ratios between 0.94 (lowest 10th percentile) and 1.07 (highest
90th percentile) for substance use measures and between 0.93 (lowest 10th percentile)
and 1.08 (highest 90th percentile) for mental health measures. Ratios of percentages
ranged from 0.00 to 4.15 for substance use measures and from 0.00 to 1.53 for mental
health measures. For the ratios of SEs (Table 2) for substance use measures, data were
centered (median) around 1.07 to 1.09 across years, andmost ratios of SEs were between
0.90 (lowest 10th percentile) and 1.26 (highest 90th percentile). For the ratios of SEs for
mental health measures, data were centered (median) around 1.08 to 1.11 across years,
andmost ratios of SEs were between 0.91 (lowest 10th percentile) and 1.28 (highest 90th
percentile). Ratios of SEs spread from 0.00 to 3.46 and from 0.00 to 1.89 for substance
use and mental health measures, respectively.
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Table 2. Distributions of ratios of standard errors of percentages of substance use and mental
health measures produced from the PUF and the RUF, by year: 2014–2019 NSDUHs

Description N Mean 0% Min 10% 50% Median 90% 100% Max

Substance Use (SU)

2014 2,362 1.08 0.44 0.93 1.08 1.24 1.56

2015 2,369 1.09 0.20 0.93 1.08 1.25 3.46

2016 2,362 1.07 0.00 0.90 1.07 1.24 2.15

2017 2,363 1.07 0.00 0.91 1.07 1.23 1.58

2018 2,366 1.08 0.00 0.92 1.09 1.25 1.74

2019 2,366 1.09 0.00 0.93 1.09 1.26 1.57

Overall SU:
2014–2019

14,188 1.08 0.00 0.92 1.08 1.25 3.46

Mental Health (MH)

2014 1,229 1.09 0.00 0.93 1.09 1.28 1.69

2015 1,245 1.08 0.10 0.93 1.08 1.24 1.60

2016 1,257 1.08 0.33 0.92 1.08 1.23 1.61

2017 1,402 1.11 0.31 0.94 1.11 1.26 1.65

2018 1,403 1.11 0.00 0.95 1.11 1.29 1.89

2019 1,420 1.09 0.37 0.91 1.08 1.27 1.55

Overall MH:
2014–2019

7,956 1.09 0.00 0.93 1.09 1.26 1.89

Overall SU and
MH 2014–2019

22,144 1.08 0.00 0.92 1.08 1.25 3.46

PUF = public use file; RUF = restricted-use file; SE = standard error. Ratio = PUF SE ÷ RUF
SE.
Ratios that were suppressed because the RUF estimate and, consequently, its standard error were
suppressed have been excluded from this summary table.
Source: SAMHSA, Center for Behavioral Health Statistics and Quality, NSDUH, 2014 to 2019.

3.3 Extreme Ratios

Extreme ratios of the estimates and the SEs from PUF and RUF were identified, which
were defined as ratios <0.5 or >1.5 for either the estimates or SEs. Reasons for these
extreme ratios are mainly because of zero or near zero prevalence (low prevalence) and
small sample sizes. Examples of tables with extreme ratios are presented for substance
use in Appendix Table B1 and for mental health in Appendix Table B2.
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In Appendix Table B1, in 2015, for nicotine (cigarette) dependence in the past month
among Asian persons aged 12 to 17, RUF and PUF estimates were 0.1 and 0.3%, respec-
tively, and RUF and PUF SEs were 0.06 and 0.21%, respectively. The ratio of the
unrounded estimates was 4.15, and the ratio of the unrounded SEs was 3.46, which were
the maximum ratios for percentages as well as SEs of all substance use measures studied
(Tables 1 and 2). These extreme ratios were due to low prevalence rates of the measure
and a small domain with RUF and PUF sample sizes being less than 1,000. A similar
case was seen among American Indian or Alaska Native persons aged 12 to 17, where
the PUF and RUF estimates ratio was 0.43.

In Appendix Table B2, for the 2019 marijuana use disorder in the past year among
persons aged 12 to 13 withMDE in the past year, both PUF and RUF estimates were less
than 1% (low prevalence) and the sample size was small (i.e., below 1,000), resulting in
ratios of both estimates and SEs being <0.5. As a reminder, ratios of estimates close to
1 are desirable.

Another reason for extreme ratios is that SEs for the PUFwere larger than SEs for the
RUF, but the RUF relative SEs (RSEs) were relatively small (<30%). This indicates that
the RUF estimates were fairly stable, but, after disclosure treatment, the PUF estimates
became less precise. For example, in Appendix Table B2, for the 2019 illicit drug use
disorder in the past year among males aged 12 to 17 with no MDE in the past year, the
PUF and RUF estimates were 3.0 and 2.9%, respectively, and the sample size was not
small (>6,000). However, the PUF and RUF SEs were 0.41 and 0.27%, respectively,
yielding a ratio of the SEs of 1.55. This might be due to the subsampling in MASSC
treatment that can cause some inflation in variance. The ratio of their estimates was
not affected much (in this example, the ratio of estimates was 1.04). Among the 22,144
ratios of estimates and 22,144 ratios of SEs that were observed for this study, only 58
(23 cases for substance use and 35 cases for mental health) were identified as being
in this category, where the RUF estimate was stable (RUF RSE < 30%) and the PUF
estimate was less precise (ratio of PUF SE to RUF SE > 1.5), which means only 0.13%
of cases were greatly impacted by PUF treatment.

In summary, among the 14,000 estimates (and their corresponding SEs) that were
compared for the substance use measures, 97 cases were identified as having extreme
ratios (based on either the ratio of estimates or the ratio of SEs). For the approximately
8,000 estimates (and their corresponding SEs) that were compared for the mental health
measures, 65 cases were identified with extreme ratios. Thus, across all substance use
and mental health measures observed for this study, only a small amount (i.e., 0.4%) of
cases had extreme ratios.
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3.4 Correlations Between RUF and PUF Estimates

For researchers, agencies, and NSDUH data users to make sound policy decisions based
on PUF data, it is important that RUF and PUF data be highly correlated. To verify
this, correlations were calculated between the rounded PUF and RUF estimates and SEs
across 2014 to 2019 for the selected set of substance use and mental health measures.
Results (not shown) indicated that the estimates were all highly correlated, with corre-
lation coefficients approximately equal to 1.00 for both substance use and mental health
measures. The SEs were also highly correlated, with correlation coefficients between
0.98 and 0.99 for both substance use and mental health measures.

3.5 Multiyear Trend Comparison

Trend analysis is important in NSDUH for providing information on changes in rates and
occurrences of substance use and mental health conditions over time. Such information
can be used in prediction, prevention, intervention, and new policy development. To
examine whether the PUF estimates provide similar trend patterns to the RUF estimates
across years, several measures from the tables that compare the PUF estimates and
the RUF estimates were selected. These estimates include tobacco use, alcohol use,
illicit drug use, substance use disorder, mental illness, depression, suicidal thoughts
and behavior, receipt of mental health services, and receipt of drug use treatment, by
age group and gender. Because the underlying data between the PUF and the RUF
were almost the same, no tests of significance between RUF and PUF trends were
done. However, pairwise t tests were conducted to compare the estimates in 2019 with
corresponding estimates in prior years from both the PUF and the RUF. Trends were
assessed by plotting the PUF and RUF estimates by year to obtain graphical evidence
of the overall direction of both trends (i.e., trends from PUF estimates and trends from
RUF estimates). These plots also present whether PUF estimates had changes across
time (by comparing 2014 estimates with 2019 estimates, comparing 2015 estimates
with 2019 estimates, and so on), as observed from testing conducted using the RUF
data. Significance testing was conducted at the 5% level.

Plots of PUF and RUF estimates over time were generated for substance use and
mental health measures. Overall, 15 trend plots were produced for select age groups
and 10 trend plots were produced by gender, where trends for males and females were
plotted separately. For illustration purposes, one plot for a substance use measure and
one for a mental health measure across years are displayed in Figs. 1 and 2. The PUF
estimates demonstrated similar trends to the RUF estimates. For example, from 2014 to
2019, prevalence tended to decrease with time for past year alcohol use among youths
aged 12 to 20 (Fig. 1). Also, the pattern of significant changes observed in the RUF and
PUF estimates is the same. Estimates for 2014 and 2015 alcohol use were significantly
different from (and higher than) the estimate for 2019 alcohol use among youths, but
estimates for 2016 to 2018 alcohol use were not significantly different from the 2019
alcohol use estimate. Thus, conclusions about trends of alcohol use among youths that
one could draw from RUF and PUF data are that the trends are similar (Table 3).

For the most part, trend plots by gender for substance use measures and mental
health measures, where both males and females were plotted on the same graph for PUF
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and RUF, show a similar pattern to plots by age groups. That is, the PUF estimates by
gender demonstrated similar trends to the RUF estimates by gender for both males and
females. Regarding serious suicidal thoughts in the past year among adults aged 18 or
older (Fig. 2), some differences in the estimates comparison against 2019 were observed
in PUF versus RUF. For example, there was a significant difference between the 2017
and 2019 estimates of serious thoughts of suicide in the past year among RUF females
aged 18 or older, but that difference was not significant among PUF females (Fig. 2,
Table 4). One possible reason for the dissimilarity is that the SE of the PUF estimate
was relatively larger than that of the RUF estimate, which could lead to the PUF test
not being significant at the 0.05 level. However, the directionality of the change was
maintained for all such cases.

Out of 162 estimate comparisons (paired t tests) between 2014 to 2018 estimates
and 2019 estimates for selected measures over the 25 trend plots that were examined,
nine changes in significance occurred. That is, the pair test went from being significant
using RUF data to being nonsignificant using PUF data, or vice versa, which accounted
for roughly 6% of the overall comparisons. This testing was done at the 5% level of
significance, which means there was a 5% risk of concluding that a difference existed
when there was no actual difference. Thus, some of the discrepancies that were seen in
the RUF tests and the PUF tests could also be explained due to this reason. However,
because PUF SEs were expected to be larger than RUF SEs due to subsampling on the
PUF, some differences in tests were expected.

Fig. 1. Past year alcohol use among persons aged 12 to 20

Table 3. Past year alcohol use among persons aged 12 to 20

% 2014 2015 2016 2017 2018 2019

RUF 37.7+ 35.9+ 34.7 34.9 33.8 33.5

PUF 37.7+ 36.3+ 34.6 35.1 34.1 33.8

PUF = public use file; RUF = restricted-use file.
+Difference between estimate and the 2019 estimate is statistically significant at the .05 level.
Source: SAMHSA, Center for Behavioral Health Statistics and Quality, NSDUH, 2014–2019.
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Fig. 2. Had serious thoughts of suicide in past year among persons aged 18 or older

Table 4. Had serious thoughts of suicide in past year among persons aged 18 or older

% 2014 2015 2016 2017 2018 2019

RUF Male 3.9+ 3.9+ 4.1 4.1 4.1 4.5

PUF Male 3.9+ 3.8+ 4.1 4.1 4.0 4.5

RUF Female 4.0+ 4.2+ 4.0+ 4.6+ 4.6+ 5.1

PUF Female 4.1+ 4.2+ 4.0+ 4.7 4.6+ 5.2

PUF = public use file; RUF = restricted-use file.
+Difference between estimate and the 2019 estimate is statistically significant at the .05 level.
Source: SAMHSA, Center for Behavioral Health Statistics and Quality, NSDUH, 2014–2019.

3.6 NSDUH PUF Limitations

There is always a trade-off between disclosure risk and information loss. Precision
for PUF estimates may be compromised for small sample sizes, small domains, or rare
outcomes using a single year of data. However, this can also be true for RUFs. Unreliable
RUF estimates are routinely suppressed in NSDUH detailed tables. In such cases, PUF
users are encouraged to apply precision-based suppression rules to unreliable estimates
from the PUF. Examples of suppression rules for publishing NSDUH estimates can be
found on the SAMHSAwebsite [5]. Alternately, multiple years of datamay be combined
to generate more stable estimates.
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Toprotect confidentiality, geographic identifierswere not includedonNSDUHPUFs.
Therefore, the PUFs cannot be used to produce estimates at the region, state, or substate
levels or to perform related analyses. Similarly, for any other variables that were deleted
due to disclosure reasons, estimates cannot be obtained using the PUFs. In such cases,
users can request access to the NSDUH RUFs via the SAMHSA research data center
website (https://www.samhsa.gov/data/data-we-collect/samhsa-rdc).

4 Conclusions

Based on the comparisons between the 2014 to 2019 PUF and RUF estimates and
corresponding SEs, it can be concluded that the NSDUH PUFs continue to provide
high-quality data for producing estimates and SEs for substance use and mental health
measures. In general, consistent analytic results can be expected between the two types
of files even when the actual numbers are slightly different. The MASSC disclosure
treatment controls bias and variance so that information loss due to treatment is minimal.

NSDUH data are used by stakeholders at all levels of the U.S. government as well as
states, localities, nonprofit organizations, and academic researchers. It is imperative that
publicly available NSDUH data produce accurate and high-quality prevalence estimates
while maintaining the confidentiality of survey respondents. MASSC treatment allows
stakeholders to use NSDUH PUFs to obtain reliable estimates and to track substance
use prevalence or rates of mental health conditions over time (i.e., to monitor trends).
However, PUF users are cautioned in the analysis and interpretation of near zero or
low prevalence rates and of estimates based on small sample sizes or small domains.
Thus, PUF users are encouraged to consider employing suppression rules to estimates
considered to have low precision.

An extension of this work in the future may involve examining the interrelations
among NSDUH variables via bivariate or multivariate analyses from the PUFs and
RUFs.

https://www.samhsa.gov/data/data-we-collect/samhsa-rdc
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Abstract. Maintaining the privacy of the data providers, preserving the confiden-
tiality of the information they provide and its use only for statistical purposes must
be fully guaranteed within the statistical activity. This principle largely underpins
the credibility of a statistical organization and must be present in all phases of
statistical production [2]. Since 1998, research work has been carried out in this
field at Eustat: the provision of a scholarship for the study of the most common
techniques [3] for protecting microdata files and statistical tables, the application
of specific protection measures to real data, the establishment of standard criteria
for the protection of statistical information and the widespread dissemination of
microdata. In 2018, an expert group was created at Eustat that coordinates and
promotes all these tasks within the Organisation. This paper collects the main
works and results obtained by the group over these latest five years. Firstly, the
preparation and updating of the criteria document on confidentiality and data pro-
tection in statistical dissemination is described. The aim is to provide the staff
with a guide to basic confidentiality criteria when preparing statistical products
for dissemination. Next, the type of analysis that is carried out to prepare secure
microdata for dissemination (public use files) is shown. As an example, the anal-
ysis carried out for the microdata of the Population Survey in Relation to Activity
(PRA) is included. Finally, a solution for the automatic protection of statistical
tables by τ-Argus [5] using a SASmacro is presented. Specifically, the application
to tables of the Directory of Economic Activities of Eustat is shown.

Keywords: Statistical disclosure control · Official statistics ·Microdata
protection · Statistical tables protection

1 Eustat Confidentiality Document for Data Release

1.1 Context

The European Statistics Code of Practice [1], adopted by the European Statistical System
Committee on November 16, 2017, establishes in its Principle 5 on Statistical Confiden-
tiality and Data Protection, the need to provide staff with guidelines and instructions on
the protection of statistical confidentiality throughout all statistical processes, and that
the confidentiality policy is publicly available.

© Springer Nature Switzerland AG 2022
J. Domingo-Ferrer and M. Laurent (Eds.): PSD 2022, LNCS 13463, pp. 347–360, 2022.
https://doi.org/10.1007/978-3-031-13945-1_24
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This Principle is what inspires the development of this document, which basically
refers to the establishment of a general written regulation, which serves as a guide in the
preparation of microdata files and tables in the statistical dissemination of Eustat. Since
1998, Eustat has been working on establishing criteria for the protection of statistical
data in the data dissemination stage and preparing and updating the document that sets
these criteria and serves as a guide for all the staff.

The elaboration of this regulation is the result of the analysis of the statistical data
protection treatments that are carried out in Eustat. It also addresses the existing regula-
tions in Europe, Spain, and in the Basque Country, in terms of data protection, and looks
to the treatment of confidentiality regarding microdata and statistical tables available in
other statistical offices and in Eurostat to stablish protection criteria.

During the last year, the SDC group in Eustat has carried out a profound update of
this document that has addressed the following aspects:

• Updating of the regulations on the protection of personal data
• Review and update of the protection criteria applied to the statistical tables
• Review and update of the protection criteria applied to microdata for public use
• Data protection in other dissemination products (specific requests, GIS, etc.)

1.2 Regulations on Personal Data Protection

Statistical operations collect and process data of different types, to which different
regulations are applied, even more than one, depending on the scope of application
(Fig. 1):

Fig. 1. Regulations by geographical scope.

However, it must be borne in mind that in the pyramid of sources of law, EU Regu-
lations are always at the top. Therefore, Regulation (EU) 2016/679 [6] of the European
Parliament and of the Council of 27 April 2016 on the protection of natural persons with
regard to the processing of personal data and on the free movement of such data, and
repealing Directive 95/46/EC, will always be applied directly and in preference to any
other regulation (Fig. 2):
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Fig. 2. Pyramid of legal sources.

In addition, the document also includes the main functions of the Basque Data
Protection Agency, which is the supervisory body for compliance with data protection
regulations at the level of the Autonomous Community of the Basque Country. The
document also highlights the figure of the Delegate of Data Protection of the Adminis-
tration of the Autonomous Community of Euskadi that acts as a contact point between
the Agency and the Administration itself.

1.3 Protection Criteria Applied to Statistical Tables

The main product of statistical dissemination is the statistical data tables. Given the
different nature of the data and statistical units represented, a distinction ismade between
population and housing tables and tables of economic establishments and companies in
order to define the protection criteria within the confidentiality document:

Population and Household Tables. Frequencies of less than 3 statistical units will be
avoided in tables of small geographical areas (municipal and sub-municipal). These
cells will be protected by concealment or recoding when it is considered that there is a
reasonable risk of indirect identification and, therefore, a possible disclosure of data or
individual characteristics that should be protected by statistical secrecy. To assess this
risk, it will be necessary to analyse, in each specific case, various factors such as:

• Proportion of cells with low frequency in the table.
• Population size of the geographical areas to be disseminated.
• Identifying power of the crossing variables.
• Sensitivity of the information provided.

Excluded from the application of protection measures are tables in which population
totals are given involving only sex, age or both at the same time, provided that age is
represented by intervals of sufficient width.
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Tables of Economic Establishments and Companies. Frequencies lower than 3 sta-
tistical units will be avoided regardless of the geographical area to be disseminated. Said
cells will be protected by concealment or recoding and, furthermore, when variables
intervene that, due to their dominance, allow the identification of companies or estab-
lishments, it is recommended to apply rules of concentration or dominance, that is, to
locate those cells or intersections where there are a few companies that contribute to
excess to the value of the cell. A well-known rule is the p% rule which consider the two
main contributors to the cell and is widely applied.

Data Protection in Other Statistical Products
The need for increasingly detailed information, both at a geographical and conceptual
level of the variables represented, makes it necessary to apply ‘ad-hoc’ protection mea-
sures for non-general data compilation or for tools that allow multiple data selections
(i.e.: GIS). Eustat confidentiality document also includes these cases and recommends
the application of data modification treatments (for example: replacement of a range of
values by the midpoint of that range) or the hiding of geographic layers with information
about few statistical units. In the case of applying perturbation techniques, the effect on
the totals and variable distribution is checked.

2 Micro-data Protection

2.1 Generation of Ready-to-Access Microdata

The microdata are the individual data of the informants that are used to prepare tables of
results. They are normally presented as tables in which each row (“record”) stores the
information of a unit and each column (“field”) is a variable.

The microdata files that are available for public access will be protected, that is, they
will not include direct identification data and will have been processed in such a way
that the possible disclosure of data based on indirect identifiers is greatly hindered.

To protect a microdata file, the first phase consists of evaluating which records can
be easily identified and the second phase consists of applying some protection measure.
The assessment of the statistical disclosure risk (or statistical risk) of microdata sets is
based on measuring in some way the occurrence of rare records.

A key combination is a selection of certain variable values that are considered iden-
tifiers for records because they are rare in some way. In short, a key combination allows
to detect the rare records in the data set. Those records that have the values established in
the key combination will be the records that can reveal confidential information because
they are easily identifiable and therefore measures will have to be taken to protect the
information.

There is no systematic procedure to establish the combinations of key variables, and
these must be established by those responsible for each operation or data set. However,
for statistics belonging to the same area, the combinations of key variables analyzed will
be very similar, since these combinations often include characteristics common to all of
them (for example: sex, age, geographical areas, in sociodemographic statistics or sector
of activity or employment strata in economic statistics).
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Once the combinations to be used have been determined, they are applied to the
microdata and the frequencies of the combinations are observed in the file. If the
frequencies are lower than a set limit, some protection measure must be applied.

Protection with information restriction methods is based on reducing the amount of
information offered, either because it is directly suppressed, or because it is given at a
less detailed level.

The most common method is global recoding, this method consists of giving the
information with a lower level of disaggregation: for example, at the province level
instead of the municipal level, ages in five-year groups instead of year by year, economic
activity at a digit instead of two etc. Global recoding applies to the entire file, not just the
records to be protected, and can be applied to both qualitative and quantitative variables.
Disaggregation thresholds can be established for the variables common to different
statistical operations within the same scope (eg: maximum geographical disaggregation,
age intervals, economic sectorization, etc.).

We can also resort to protection with disturbance methods, this is based on altering
the information offered, trying to maintain the global characteristics of the whole. There
are several techniques that can be applied, the most used is the exchange of records
(data swapping). The exchange of data between records consists of changing certain
characteristics of the records to make them non-identifiable. Closeness criteria are nor-
mally established between the records to be exchanged so as not to alter the global
characteristics of the microdata set, for example, exchanging records that are in the
same municipality and have the same age, or have the same number of employees, or
that they are in the same branch of activity etc.

If it is decided to apply disturbance methods, the user must be warned of the applica-
tion of such methods for reasons of statistical secrecy, but no details will be given about
the records affected neither about the parameters of the protection method.

In general, themicrodata files that are disseminated will not present geographic iden-
tifiers that refer to areas with less than 10,000 inhabitants. This threshold is considered a
suitable limit for the basque geographical context. Therefore, geographic variables will
be added to meet this criterion, this includes those referring to place of birth, place of
residence, etc.

2.2 Example of Application to PRA Microdata

The growing demands from researchers, policy makers and others for more and more
detailed statistical information leads to a conflict. The respondents are only willing
to provide a statistical office with the required information if they can be certain that
their data will be used with the greatest care, and in particular will not jeopardise their
privacy. So statistical use odata by outside users should not lead to a compromise of
confidentiality. However, making sure that microdata cannot be misused for disclosure
purposes requires, generally speaking, that they should be less detailed, or modified in
another way that hampers the disclosure risk.
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This is in direct conflict with the wish of researchers to have as detailed data as
possible. Much detail allows not only more detailed statistical questions to be answered,
but also more flexibility: the user can lump together categories in a way that suits his
purposes best. The field of statistical disclosure control in fact feeds on this trade-off:
How should a microdata set be modified in such a way that another one is obtained with
acceptable disclosure risk, and with minimum information loss? How exactly can one
define disclosure risk? How should one quantify information loss? Once these problems
have been solved - no matter how provisionary - the question is how all this wisdom
can actually be applied in case of real microdata. If a certain degree of sophistication is
reached the conclusion is inescapable: specialised software is needed to cope with this
problem and μ−Argus [4] is such software.

Producing safe micro data is not a trivial issue. It should first be explained when
microdata are considered safe or unsafe. It should also be explained how unsafe data
can be modified to become safe.

All the microdata that we publish in the Eustat have been and continue to be subject
to review in order to provide the maximum information with the minimum risk. The
first survey we analyzed was: PRA Population In Relation To Activity. (Labour Force
Survey).

The Population Survey in Relation to Activity operation is a continuous source of
information on the characteristics and dynamics of the workforce of the A.C. from
Euskadi. It includes the relationship with the productive activity of the population resid-
ing in family households, as well as the changes produced in their employment situation;
prepares indicators of quarterly variations on the evolution of the active population; it
also estimates the degree of participation of the population in activities that are not
economically productive. It offers information at the level of historical territories and
capitals.

We start from the dataset with the PRA microdata of the last available quarter,
to determine the risk of the same we have used the μ-Argus program. The objective
of Argus is to hinder the re-identification of individuals represented in the data to be
published, that is, to prevent the disclosure of confidential data (disclosure). When a
file is considered insecure, anonymization techniques (SDC) will be applied, which will
produce modifications in the data, so that an adequate level of security is reached, that
is, adequate depending on the use that is going to be made of them: public or scientific.

What concepts must we handle to understand μ-Argus?

• Key variable: variables that allow the informants to be identified. Important: theymust
be defined as qualitative variables (Categorical).

• Combination: crossing of variables that forms a table.
• Dimension (dimension): number of variables that cross in a table.
• Threshold: the limit at which a frequency or risk, for a combination, is considered
safe or unsafe: values below the threshold will be unsafe, above safe.
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We are going to carry out a first individual registration risk analysis. The variables
that we are going to consider as their potentially identifying crosses are:

• TERH - Province of residence
• SEXO - Sex
• LNAC - Place of birth
• EDAD - Age
• NACI - Nacionality

The weight variable that we use to calculate the risk is ELEV2.
Taking those variables into account directly without any recoding what we get in

μ-Argus is (Fig. 3):

Fig. 3. μ-Argus risk chart without global recoding.

The dataset has 12,749 records, the re-identification ratio is low (0.337%) and so is
the number of unsafe records (739), considering a risk greater than 0.02% unsafe.

We review the frequencies and see that age is the variable with the most insecure
records in all dimensions (Fig. 4):
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Fig. 4. Mu-Argus unsafe combinatios (EDAD).

We decide to group the age into five-year groups. We recalculate the individual risk
of each record after recoding and we have (Fig. 5):

Fig. 5. Mu-Argus risk chart with global recoding (EDAD-five groups).

The risk of re-identification for all registries has dropped considerably, as has the
re-identification ratio (0.069%) and the number of insecure registries (128). Right now
we would assume that 128 of the records could be identifiable with reasonable effort.

The next variable with the most insecure records is NACI (nationality), we are going
to group this into two categories: Spanish/Foreign (Fig. 6).
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Fig. 6. μ-Argus unsafe combinatios (NACI).

Once recoded, we calculate the individual risk of re-identification and we have
(Fig. 7):

Fig. 7. μ-Argus risk chart with global recoding (EDAD and NACI)

We now have half as many insecure records as in the previous step. The risk of
re-identification has also decreased (0.053%), right now we would assume that 92 of
the records could be identified with reasonable effort. However, μ-Argus offers the
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possibility to suppress values in the unsafe combinations at the end of the protection
process.

Summary of the Process

Step 1: Choose the classification variables that we are going to study (you can think of
adding some to the chosen ones).

Step 2: Calculate the matches of all of them and the individual risk for each record
according to those matches.

Step 3: Choose the variables to be recoded and what this recoding will be based on the
frequencies in each of the crossings.

Step 4: Recalculate the risk for new recordings for asmany combinations aswe consider
until we find the recoding that fitswhatwewant to give based on the information
we offer and the protection of it.

Step 5: Generate the protected file, deleting information, or not, and review which
records are problematic.

3 Protection of Statistical Tables

3.1 Example of Protection of Establishment Tables with τ-Argus

The Directory of Economic Activities (DIRAE), the register of establishments in
the Basque Country, receives numerous requests for tables disaggregated at different
geographical levels, employment strata and economic activity.

The Statistics Law allows us to offer records of establishments with information
on their corresponding locations, names, activities, corporate email addresses, corpo-
rate telephone numbers and size indicators for classification purposes. An employment
stratum is used as an indicator of size.

The employment is a variable subject to statistical secrecy, therefore we have to
protect this variable in the tables to be disseminated. For this reason, for the tables
including the number of establishments and the employment, we must have a minimum
number of establishments in each cell (3 units, according to the criteria established in
our confidentiality document). In addition, we must ensure that there is no disclosure by
concentration, that is, when a company contributes a very high percentage to the value
of the cell.

This analysis is traditionally performed at the Office with the SAS software, through
‘ad hoc’ programming. This requires a high dedication of resources. The τ-Argus tool
has been tested to carry out this analysis and try to make this unveiling control phase
more efficient.
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The necessary files have been prepared for the analysis with τ-Argus, microdata
file and metadata file, and the employment variable has been analyzed in the following
crosses:

• th*A10
• th*A64
• comarca*A10

where:

• A10, A64 are different classifications of the economic activity variable (NACE)
• th (province) and comarca (region) are different levels of geographical disaggregation

We evaluate all three tables with the same restrictions (Fig. 8):

Fig. 8. τ-Argus Specify Tables option

The results are the following:

Province by A10
No unsafe cell appears (Table 1).
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Table 1. Province by A10

Region by A10
The unsafe cells according to the applied criteria appear in red, the blue ones correspond
to secondary suppression (Table 2).

Table 2. Region by A10
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To see more information about any of the cells, by positioning yourself in any of
them, its description appears: (the following image refers to one of the insecure cells,
region 48 A10 01) (Fig. 9):

Fig. 9. τ-Argus cell information

Province by A64
Similar to the previous table, unsafe cells according to the applied criteria appear in red
and blue cells correspond to secondary suppression (Table 3):

Table 3. Province by A64
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3.2 Automatization of the Table Protection Process

A batch file has also been generated that automatically reproduces the entire protection
process.

Subsequently, the application of a sas macro - SAS2Argus - developed by Statistics
Sweden, whose purpose is to facilitate the integration of τ-Argus with the SAS software,
has been analyzed.

The macro prepares the necessary input files for τ-Argus, and is also capable of
starting a τ-Argus batch job. The macro can also import the results of the τ-Argus
execution into SAS, thus integrating the risk analysis phase and/or the deletion of cells
or another protection method that is decided into the production environment.

4 Conclusions and Future

The SDC group together with the support of the different production andmethodological
areas of our Statistical Office has made a great effort during the last years to implement
security and confidentiality measures in the Office. As a result, guidelines and protection
criteria exist in all phases of statistical production and are available to all staff.

In addition, a wide range of microdata, duly anonymized and processed, has been
made available to the general public. It is intended to expand this offer over the next
few years with the inclusion of new periods for existing microdata and new files for
other statistics. It is also one of our main objectives to improve and expand the metadata
accompanying the files and to make available to the user in several formats and support
for reading them.

Finally, the use of the SAS2Argus macro is already being extended to other statistics
produced by the Office, such as the R&D Statistics and the Tourism Survey, which
require massive table protection processes, both for general dissemination and for ad
hoc requests.
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Abstract. The COVID-19 pandemic highlights the need for broad dissemination
of case surveillance data. Local and global public health agencies have initiated
efforts to do so, but there remains limited data available, due in part to concerns
over privacy. As a result, current COVID-19 case surveillance data sharing poli-
cies are based on strong adversarial assumptions, such as the expectation that an
attacker can readily re-identify individuals based on their distinguishability in a
dataset. There are various re-identification risk measures to account for adversar-
ial capabilities; however, the current array insufficiently accounts for real world
data challenges - particularly issues of missing records in resources of identifiable
records that adversariesmay rely upon to execute attacks (e.g., 10 50-year-oldmale
in the de-identified dataset vs. 5 50-year-old male in the identified dataset). In this
paper, we introduce several approaches to amend such risk measures and assess
re-identification risk in light of how an attacker’s capabilities relate to missing
records. We demonstrate the potential for these measures through a record link-
age attack using COVID-19 case surveillance data and voter registration records
in the state of Florida. Our findings demonstrate that adversarial assumptions, as
realized in a risk measure, can dramatically affect re-identification risk estimation.
Notably, we show that the re-identification risk is likely to be substantially smaller
than the typical risk thresholds, which suggests that more detailed data could be
shared publicly than is currently the case.

Keywords: Data sharing · Re-identification risk · COVID-19 · Health data ·
Data privacy

1 Introduction

The Coronavirus Disease 2019 (COVID-19) outbreak caused a global pandemic that has
resulted in devastating and sustained health and economic crisis [1]. As of May 2022,
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there have been over 80 million confirmed cases (i.e., a person with laboratory confir-
mation of COVID-19 infection) in the United States and over 500 million worldwide.
Though expected to become endemic at some point, COVID-19 continues to be a public
health problem with waves of infection that are likely to reoccur for some time [2]. In
this respect, it provides a clear justification for the creation of more timely case reporting
strategies and surveillance efforts.

Public health departments typically rely on a case surveillance process to routinely
collect information that is critical for disease control and prevention [3]. Case surveil-
lance reports contain data on various infected individuals, including demographics,
symptoms, epidemiologic characteristics (e.g., case confirmed date and location), health
conditions, characteristics of hospitalizations, clinical outcomes, and exposure history.
When surveillance data is made accessible at the population scale, it can enable faster
responses to health emergencies and support data-driven public health research [4, 5].
Over the past several years, several resources of COVID-19 case surveillance data have
been made available for public use. For instance, theWorld Health Organization (WHO)
requests all member states to report data at a fidelity no less than national-level aggre-
gated counts of confirmed cases, deaths, and hospitalizations within 48 h of detection
[6]. In the United States, the Centers for Disease Control and Prevention (CDC) reports
aggregate case and death counts, as well as person-level data that includes age, race,
ethnicity, state, and county of residence of those infected [7, 8].

Despite the need to share COVID-19 case surveillance data, concerns about privacy
have been raised due to the sensitive nature of the information [9–11]. There are partic-
ular concerns that the identities of the corresponding individuals could be inadvertently
exposed. In public datasets, typically referred to as anonymised or de-identified data,
it is obvious that direct identifiers, such as personal names, national ID numbers, and
detailed residential addresses must be removed. However, it is possible that indirect
or, what is often referred to as, quasi-identifiers (QIDs) [12], such as the demographic
data shared in the CDC’s COVID-19 datasets, can indicate small groups of patients in a
de-identified dataset, which creates an opportunity for re-identification [13].

It is anticipated that attackers will rely upon QIDs to attempt to match de-identified
records to accessible identified datasets through record linkage mechanisms [14, 15].
Prior studies have measured re-identification risks for QIDs by considering the degree
of distinguishability within the de-identified dataset [16, 17]. The notion of k-anonymity
[13] leads to a typical risk threshold applied in this case, whereby a de-identified dataset
is considered protected if, and only if, each combination of QIDs appears at least k
times in the dataset. Currently, the CDC relies on this notion of privacy and releases two
datasets for COVID-19 case surveillance—one for public use and the other for scientific
use—at a level of 11- and 5-anonymity, respectively [7, 18].

The CDC’s data publication policies are based on strong adversarial assumptions.
Measures of privacy that focus solely on the degree of distinguishability within the
dataset to be shared (as k-anonymity does) assume that the recipient of the data is
aware that a named individual of interest is in the sample. However, this is a worst-case
scenario andweaker adversarial scenarios can be, and inmany cases are, considered [19].
Specifically, distinguishability in the de-identified only creates a potential for intrusion.
For a re-identification attack to be successful, the recipient of the data either needs to
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know the identity of the corresponding individuals according to some prior experiences
(i.e., background knowledge) or they need to demonstrate re-identification by linking
the records to an external, identified dataset through QIDs [19, 20]. This is important to
recognize because the estimation of risk in these situations could be quite lower than in
the worst-case scenario. In recognition of this fact, alternative approaches estimate re-
identification risks based on population uniqueness [21–23]. This perspective, realized
in the k-map model [24] for instance, assumes the attacker only knows that the targeted
individual in the sample was drawn from a broader population of individuals, such that
uniqueness in the dataset is insufficient to claim re-identification success. This model is
used when the data sharer has a reasonable expectation of the identified resources that
will be leveraged for an attack.

The aforementioned risk measures assume that all individuals below a threshold
are equally at risk; by contrast, the marketer risk measure assumes a record’s risk is
inversely proportional to the number of records it relates to [25]. This risk measure
typically assumes that the de-identified dataset is a subset (or a sample) of the identified
dataset. However, in reality, both the de-identified and the identified datasets are samples
from a broader population, and they do not necessarily demonstrate a sub-/super-set
relationship. As a consequence, and as we show in this paper, there can be combinations
of QIDs in the de-identified dataset that do not exist in the identified dataset. Similarly,
the number of people with a certain combination of QIDs in the de-identified data could
be larger than that observed in the identified dataset. For example, imagine that there are
10 patients in the de-identified dataset who are male and 50 years old, but that there are
only 5 individuals present in the identified dataset who exhibit the same combination of
QIDs. This raises a question about how missing records should be handled in the risk
calculation. To the best of our knowledge, current re-identification risk measures do not
explicitly address such real world challenges.

Our study introduces novel re-identification risk measures to fill in the gap between
the previously proposed risk estimation methods and challenges caused by missing
records. Our study extends traditional risk measures to address missing record chal-
lenges and allow data sharers to evaluate re-identification risk under various assump-
tions of an attacker’s capability. To demonstrate how different assumptions could affect
the estimation of risks, we perform a re-identification risk analysis for case surveillance
data of COVID-19 and voter registration records in the United States. Our findings indi-
cate that the re-identification risks vary according to adversarial assumptions. Using an
actual record linkage test, we show that the external re-identification risk is likely to be
substantially smaller than 0.09, which corresponds to the CDC’s intended threshold of
11-anonymity. Our findings suggest that more detailed data could be shared publicly
than the current generalization level.

2 Methods

In this paper, the internal dataset refers to the de-identified patient-level data to be shared.
Formally, this is represented as a set D of n individuals d1, d2, . . . , dn defined over a
set of quasi-identifying features Y1,Y2, . . . ,Ym. The records for these individuals can
be partitioned into a set of equivalence classes (i.e., the set of unique combinations of
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quasi-identifying values) q1, q2, . . . , qJ . Let fi be the number of records in D for the
equivalence class qj associated with record di.

In addition, we assume there exists one or more external datasets that potentially
contains the identities of the individuals whose records in the internal dataset are at risk
for re-identification.A typical example of such a dataset in theUS that has been leveraged
for re-identification purposes is a voter registration list [15]. Set E of N individuals
e1, e2, . . . , eN is defined over the same set of quasi-identifying features Y1,Y2, . . . ,Ym.
Let Fi be the number of records in E for the equivalence class qj associated with record
di inD. Records from the internal dataset and the external dataset are linked if they share
the same set of quasi-identifying features Y1,Y2, . . . ,Ym.

We represent qj with fi larger than Fi as invalid classes, denoted as qj_invalid . There
are nr individuals from D who are in qj_invalid .

2.1 Internal Marketer Risk Measure

Based on the formulation introduced by Dankar et al. [24, 25], we define an Internal
Marketer (IM) Risk measure:

IM Risk(D) =
(∑n

i=1
1
fi

n

)
= J

n
(1)

which corresponds to the probability that a record in a de-identified dataset can be cor-
rectly linked to a targeted individual through QIDs. This measure assumes the adversary
knows that a specific individual is in the de-identified dataset. As a result, it represents
a worst-case scenario for the data sharer.

2.2 Record Linkage and External Risk Measures

As alluded to earlier, the external dataset is typically a sample from a larger population
and, for some equivalence classes, patients in the internal dataset could be linked to
a fewer number of identified persons. This incorrectly implies that the probability of
correct re-identification is larger than 1. We introduce three newmeasures to correct this
sampling issue under specific adversarial assumptions.

Conservative External Marketer (CEM) Risk: In this scenario, we assume that, if
a person exists in the internal dataset, he should also be included in the external dataset.
However, for some qj_invalid , the fi may be larger than the correspondingFi in the external
dataset. Thus, we add dummy records to the external dataset so that the equivalence class
is of the same size as that observed in the internal dataset. We leave the external dataset
unchanged for all qj, where fi is no larger than the corresponding Fi.

Figure 1 depicts a situation in which a de-identified patient dataset is linked to an
identified voter registration list. In this figure, there are three male patients who were
born in 1959, but there are only two voters in the same equivalence class. Thus, to
account for the “missing” patient, we add one voter record (“Imputed for Male 1959”
in the upper section of Fig. 1) to the identified dataset. We assume that the attacker has
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the same prior knowledge about individuals in qj_invalid and in qj. This yields an upper
bound for re-identification risk, which is calculated as follows:

CEM Risk(D,E) =
∑n

i=1
1

max(Fi,fi)

n
(2)

Fig. 1. An illustration of record linkage and risk computation for CEM (upper),OREM (middle),
and AREM (lower).

Observable Records External Marketer (OREM) Risk: In this setting, we assume
that patients in the internal dataset with no corresponding records in the external dataset
(as defined by their QID) are protected by their lack of presence. As a result, in this
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measure, we assume they are not at risk of re-identification. Thus, these patients are
removed from the computation. As shown in the middle section of Fig. 1, three male
patients who were born in 1959 and one male patient who was born in 1950 are removed
from the internal dataset in the linkage process. This measure yields a risk that is no
greater than the upper bound and is calculated as follows:

OREM Risk(D,E) =
∑n−nr

i=1
1
Fi

n− nr
(3)

All Records External Marketer (AREM) Risk: In this setting, we assume that the
attacker has no knowledge about individuals in qj_invalid (i.e., in the equivalence classes
that do not have enough corresponding records in the external dataset). In the examples
shown in the bottom section of Fig. 1, we add dummy records to the external dataset in
the same manner as CEM risk. As a result, this risk is calculated as follows:

AREM Risk(D,E) =
∑n−nr

i=1
1
Fi

n
(4)

It should be recognized that AREM risk is a combination of the other two risk
measures. The numerator is the same as that in the OREM, while the denominator is the
same as that in CEM.

3 Experiments

We use two real datasets to demonstrate how risk is influenced by adversarial assump-
tions. For the internal dataset, we use case line data for COVID-19 confirmed cases in the
state of Florida (FL) as of June 3, 2021 [26]. This dataset is updated daily and includes
the following information about infected individuals: 1) residential county, 2) age, 3)
gender, 4) FL residency status, and 5) record date. For the external dataset, we use the
FL’s voter registration list as of June 8, 2020, the latest dataset accessible at the time
of this study. The voter registration list includes an individual’s 1) full name, 2) gender,
3) date of birth, 4) race, 5) residential address, 6) ZIP code, 7) county and 8) contact
information (such as email address). For the purpose of this study, we use county, year
of birth (YOB), and gender as quasi-identifiers. From the internal dataset, we remove
5% of records 1) whose patient ID, county, gender, and diagnosis date are unknown, 2)
have an age below 0, or 3) those are not FL residents. Table 1 provides a summary of
the datasets used in the experiments.

The COVID-19 case-line data covers January 5, 2020, to June 1, 2021. Since rapid
growth in cases is a characteristic of pandemic patient-level data, we evaluate risk at
each three-month interval till June 1, 2021, yielding six time points: April 1, July 1, and
October 1, 2020, and January 1, April 1, and June 1, 2021.

To investigate how different policies affect the risk across demographic groups, we
designed 12 alternative case-reporting policies, as shown in Table 2. These are defined
by the QID generalization levels, such that policies P1 through P11 vary in their gen-
eralization of age and sex. The policies include six potential generalizations of age and
two potential generalizations of sex. Here, suppressed indicates that the corresponding
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Table 1. Summary of the dataset used in this study. a b c represents the first quartile, median,
and third quartile. d ±e represents the mean and one standard deviation. f g% indicates that the
percentage of f patients (in a given category) is g% among all patients.

Female 508,316 53.5% 7,363,027 53.7%
Number of counties 67 67
Event date 2020-01-05 to 2021-06-01 NA 

Characteristic Distribution
COVID-19 Case line Voter Registration

Age 23 38 55 39.5±20.6 NA
Date of Birth NA 1912-12-12 to 2020-05-31
Race/Ethnicity NA 

Non-Hispanic White NA 9,009,488 65.7%
Hispanic NA 2,420,628 17.6%
Non-Hispanic Black NA 1,950,476 14.2%

    Other Races/Ethnicities NA 328,628 2.3%
Gender 

Male 441,413 46.4% 6,346,193 46.2%

QID is reported as a null value for all individuals and, thus, the corresponding QID is not
used in the linkage experiments. The current policy corresponds to the generalization
level for the actual COVID-19 case line data from the FL Department of Health.

The re-identification experiments are composed of four steps: 1) apply the pol-
icy to the COVID-19 data, 2) harmonize the patients’ demographic characteristics in
the COVID-19 database with the FL voter database, 3) match the de-identified patient
database with the identified voter database, and 4) compute the re-identification risk
measures.

In these experiments, we link patients by their county, YOB, and gender. YOB is
not directly available in the COVID-19 database and could be inferred from the age of
the patient at the COVID-19 positive test event date, but there is an ambiguity in the
transformation. For example, imagine that we observe a patient who is 30 years old,
for whom the event date is March 1st, 2021. This patient’s date of birth could be as
early as March 1, 1990, but as late as March 1, 1991. To address this issue, we create
a YOB range for each patient with (event date − age − 1, event date − age). In the
situation where age is generalized to a range in different case-reporting policies, such as
a 30-year range, the aforementioned example’s age is generalized to 30–59. The YOB
lower bound is 1961 and the upper bound is 1991. In general, the YOB lower bound is
(event date − age range upper bound − 1 and the YOB upper bound is (event date −
age lower bound). We compare the YOB of voter records to YOB lower bound and YOB
upper bound of patient records for the linkage.
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Table 2. Case-reporting generalization policy rules.

Policy Age generalization level Sex generalization level

P1 Suppressed Suppressed

P2 60 year range: 0–59, 60 +
P3 30 year range: 0–29, 30–59, 60–89, 90 +
P4 15 year range: 0–14, 15–29, 30–44, …

P5 5 year range: 0–4, 509, 10–14, 15–19, …

P6 1 year range

P7 Suppressed Male/Female

P8 60 year range: 0–59, 60+

P9 30 year range: 0–29, 30–59, 60–89, 90+

P10 15 year range: 0–14, 15–29, 30–44, …

P11 5 year range: 0–4, 509, 10–14, 15–19, …

Current policy 1 year range

4 Results

4.1 Internal Risk Evaluation

We evaluate the IM Risk at the end of each time period starting on the date of the
first confirmed case. As time proceeds, both the number of patients and the number of
unique QIDs groups grow, but at different rates. Figure 2 shows the risks for each policy.
Following the U.S. Institute of Medicine report [27] and European Medicines Agency
guidelines [28], we set a risk threshold of 0.09 (which corresponds to 11-anonymity for
a public dataset) as an acceptable level of risk for our following analysis. It can be seen
that in April 2020, all of the policies exhibited risks higher than the threshold. In July
2020, October 2020, and January 2021, policies P1-P3, P1-P4, and P1-P5 satisfy the
requirement, respectively. After April 2021, all of the policies were under the threshold.

Fig. 2. IM Risk evaluated as a function of time.
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4.2 External Risk Evaluation

We compare the CEM, OREM, and AREM risks by linking the FL COVID-19 case-line
data to FL’s voter registration list. Risk is evaluated at each of the six time points, the
results of which are summarized in Fig. 3. Recall that the CEM Risk is an upper bound
of the external marketer risk. In this case, some patients may not be matched to the
corresponding voters in the voter registration list, but we added dummy records in the
external dataset to acknowledge the existence of the missing records. It can be seen in
Fig. 3A that only policies P6 and P11, as well as the current policy, achieve risks that
are higher than the 0.09 threshold in April 2020. Still, these risks are lower than the IM
Risk. By July 2020, policy P6 and the current policy’s risks are higher than 0.09. By
October 2020, only the current policy has a risk higher than 0.09. After January 2021

Fig. 3. External risk evaluation with the A) CEM, B) OREM, and C) AREM risks over time.
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(one year after the first case-line data was released), all policies exhibit CEM risk that
is smaller than 0.09.

Next, we analyze the OREM (i.e., evaluated with all valid records) and AREM (i.e.,
evaluated with all the records) risks. As shown in Figs. 3B and 3C, none of the policies
have risks higher than 0.09 after April 2020.

4.3 Internal vs. External Risks

As anticipated, a comparison of IM Risk and external risks shows that risks decrease for
all policies once a real identified dataset is factored into the risk assessment. However,
the rate of change in risk is not constant across all policies. To illustrate this fact, we
defined a risk reduction rate from the IM Risk to the external risk as follows:

Risk reduction rate

= Internal marketer risk − External marketer risk

Internal marketer risk
× 100% (5)

Figure 4 shows the risk reduction rate for each policy. In this figure, the arrows
indicate a hierarchical structure, where moving up the hierarchymeans the data becomes
more specific. The lattice graphs illustrate the partially ordered generalization levels
between policies. Here, the current policy corresponds to the most specific policy. The
arrow between two policies indicates a decrease in the generalization level of one of the
QID variables. Specifically, an orange arrow indicates a change in age generalization
level, whereas a blue arrow indicates a change in sex generalization level but remains
the same level of age generalization.

The results show that policies P1 and P7 exhibit the largest reduction rates with
respect to the three externalmarketer riskmeasures.When compared to policyP1, change
in the age generalization level from completely suppressed to the 30-year-old range (i.e.,
P3) result in risk reduction rate decreases by 20%. When the age generalization level is
less strict (e.g., 15-year-old range, 5-year-old range, and 1-year-old range), the effect on
the risk reduction rate is almost constant.

4.4 Risk Reduction Rate

Figure 5 depicts the risk reduction rates for different measures. It was observed that the
average risk reduction rate for the current policy evaluated with the CEM Risk is 24%
larger than the AREM Risk. As the age generalization level becomes more specific, the
average risk reduction rate differences between the CEM Risk and the AREM Risk grow
(i.e., from P1 to P6, and P7 to the current policy). However, for all policies, there is no
difference between the average risk reduction rate for the OREM and AREM risks.
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Fig. 4. Risk reduction rates (average of the six time points ± 1 standard derivation) from the IM
risk to the external risks for policies organized in generalization hierarchy: A) CEM, B) OREM,
and C) AREM risks.

Fig. 5. Change in risk reduction rates (average value across six time points ± 1 standard
derivation) between risks evaluated with: A) CEM and AREM risks and B) OREM and AREM
risks.
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5 Discussion and Conclusion

As this work shows, re-identification risk measures have insufficiently addressed real
world data challenges, particularly the missing records in an identified resource that an
attacker is expected to leverage. The externalmarketer riskmeasureswe introduced show
that missing records can contribute to risk in different ways depending on adversarial
assumptions. Our experiments with FLCOVID-19 case line data show that such assump-
tions non-trivially affect re-identification risk estimation. In particular, our results reveal
that the risks under all 12 policies are below the typical risk threshold of 0.09 as of April
2021 for the internal marketer risks. The CEM, OREM, and AREM risks are below the
threshold as of January 2021, April 2020, and April 2020, respectively. It suggests that
more detailed data could be shared publicly than the current generalization policy.

Further, in our comparison of risk reduction rates, we observed that there is no
difference in the risk reduction rates between the OREM and the AREM Risk. This
suggests that the data sharer could use either risk measure considering an attacker’s
decision to target the invalid groups does not affect external marketer risk estimation.
We also observed that the risk reduction rates between the IM Risk and external risks are
relatively stable for all policies evaluatedwith theOREM andAREM risks. This suggests
that data sharers could use the IM Risk as a proxy to estimate the external risks for a
data sharing policy based on the reduction rate and use that estimation for other policies.
Finally, the reduction rate between the IM Risk and the CEM Risk is the smallest. Thus,
the CEM Risk is a more reliable measure compared to the other two measures. The risk
reduction rate could be utilized as an approximation for the CEM Risk from the IM Risk
when the external dataset is not accessible.

There are also several limitations we wish to acknowledge as opportunities for future
investigations and improvements. First, residency does not always imply the place where
an individual currently lives. Our study assumes residency per the voter registration list
is equal to the residency in the internal dataset. Second, we only evaluate the risks with
COVID-19 case surveillance data from Florida. Yet different states may adopt different
approaches to collecting, generalizing, and releasing medical data. Third, the FL’s voter
registration list is updated on a monthly basis, such that an analysis of the recency of
the voter data for the COVID data should be assessed to determine the influence on
risk. One particularly notable question is how to maximize the re-identification risk-
utility trade-off when data is released with dynamically updated policies [29]. Fourth,
our study evaluates re-identification risks without considering the benefits inherent in
sharing data and the attacker’s gain from the re-identification attack. Future studies could
use economic arguments (e.g., based on game theory) to analyze the balance between
privacy and utility [30].
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