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Abstract. Intrusion detection system plays an important role in network security,
however, the problem with data imbalance limits the detection ability of intru-
sion detection system. In order to improve the performance of intrusion detec-
tion system, this paper proposes to use the adaptive synthetic sampling technique
(ADASYN) and random under sampling technique to alleviate the problem of
data imbalance in intrusion detection. Firstly, the majority class samples in the
dataset are removed by undersampling technology and the minority class samples
are oversampled, so the samples can reach a balanced state. Subsequently, a sparse
autoencoder (SAE) extracts features from the resampleddata tofit the original sam-
ple as closely as possible. Finally, LightGBM is applied on the processed dataset
for the classification process. Multi-classification experiments were conducted on
KDD99 and UNSWNB15 datasets. We compare six models’ performance and
find LightGBM is superior to other models. Furthermore, we also compare exist-
ing methods and the results show that our proposed method outperforms current
methods.

Keywords: Intrusion detection systems · Resampling · LightGBM ·
Autoencoder

1 Introduction

With the advent of the big data era, network traffic is on an exponential growth trend.
The growing data makes it increasingly difficult to detect intrusion traffic. As a secu-
rity device, the intrusion detection system plays a vital role in protecting the country’s
information infrastructure [1]. According to the detection technology, intrusion detec-
tion systems can be divided into misuse-based intrusion detection systems (MIDS) and
anomaly-based intrusion detection systems (AIDS). The former detects anomaly traffic
based on historical traffic statistics and known attack libraries, while the latter detects
anomaly traffic based on statistical deviations [2, 3]. MIDS is unable to detect unknown
attacks and is vulnerable when dealing with zero-day attacks. AIDS can detect unknown
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attacks, so it has become a popular research topic. In recent years, machine learning
in intrusion detection has achieved success [4]. Typical methods such as decision tree
(DT) [5], support vector machine (SVM) [6], random forest (RF) [7], etc., have shown
high accuracy in the detection of abnormal traffic. Compared with traditional meth-
ods, machine learning technology can efficiently detect attacks in the face of massive
traffic data, so it exerts an important influence in intrusion detection. As an extension
of machine learning techniques, deep learning has gained widespread attention owing
to its ability to extract features [8–11]. It can learn low-dimensional expressions from
high-dimensional data so that massive data can be processed. The popular methods are
deep belief networks (DBN) [12, 13], Autoencoders (AE) [14, 15], which are efficient
in feature extraction.

In the era of big data, the issue that needs to be addressed in intrusion detection is
how to identify the attack traffic with only contains a small number of traffic. Generally,
in the network flow, most of them are normal traffic, and only a few are anomaly traffic.
It is also in line with people’s observations in life. The currently available public datasets
for intrusion detection include binary and multiclass. Most of these datasets do not have
imbalance problems on binary classification. However, different types of attacks require
different defensemechanisms [16], and simply dividing traffic into normal and abnormal
traffic cannot allowmanagers to take targeteddefensemeasures. Therefore, it is necessary
to identify the traffic to a specific type. Although machine learning technology can be
handy in coping with massive data, it is inefficient in the detection of minority classes.

An efficient way is to use resampling techniques [17, 18]. In the multi-classification
task, only a few data are attack classes, which makes the classifier tend to the majority
classes when training data. Although it has high performance in general, it is espe-
cially low when detecting the minority classes. Resampling technology can address this
problem. For the minority classes, the oversampling technology is used to increase the
number of the minority class data. At the same time, the undersampling technology is
used to reduce the number of majority class data. After data resampling, the number of
majority class and minority class samples reaches a balanced state, so that the classifier
can detect minority class samples. However, how to ensure that the resampling samples
come from the same data distribution as the real samples is a key issue of resampling
techniques. In general, the resampling technology adopts the Euclidean distance to judge
whether the data come from the same distribution. The method assumes that spatially
close samples are from the same distribution. Whereas the use of Euclidean distance
ignores the outliers, making the resampling technique have errors in fitting the real sam-
ples. Deep learning techniques provide a solution for this problem. Using deep learning
technology for feature extraction can alleviate the problems caused by data fitting.

There have been many studies on data imbalance [16, 19–23]. Particularly, in this
paper, an intrusion detection method based on data imbalance is presented. The method
adopts ADASYN oversampling and random undersampling techniques. The ADASYN
technique oversamples the minority class samples and can help the classifier to learn a
better decision boundary. In addition, a random undersampling technique is used in this
paper to remove the samples from most classes. A combination of oversampling and
undersampling methods enables the classifier to detect minority class samples. After
oversampling and undersampling, a sparse autoencoder is designed to extract features.
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The autoencoder is trained from raw data, so it is helpful for data fitting problems caused
by data resampling. The LightGBM is used as the classifier. LightGBM is a boosting
ensemble method, which is improved based on GBDT. LightGBM gives more weight to
the misclassified samples so that they can get more attention in the weak classifiers later.
For minority class samples, LightGBM can improve the detection rate. Histogram and
feature bundling methods were introduced into the LightGBM, which can reduce the
training time while obtaining high accuracy. Therefore, the LightGBM model is used
for classification in this paper. The main contributions of this study are as follows:

(1) To solve the data imbalance problem, we proposed a hybrid sampling method to
process the dataset and used theLightGBMfor classification. Thismethod alleviates
the imbalance problem.

(2) We adopted sparse autoencoders to perform feature extraction. In addition, we
designed a resampling method to make the resampled data closer to the actual
distribution. It is shown in Sect. 3.2.

(3) We adopted several metrics, including accuracy rate, precision rate, detection rate,
and F1 score to evaluate the performance of the method. Furthermore, the pro-
posed method was compared not only with classical methods but also with current
advanced methods.

The rest of the paper is organized as follows: Sect. 2 introduces the theory related
to ADASYN techniques and LightGBM. Section 3 presents the proposed method in
detail. Section 4 is the experimental part of the paper, which describes and analyzes the
experimental results. The final part is the conclusion and outlook.

2 Related Works

2.1 Adasyn

The ADASYN method oversamples minority classes on the boundary to move the
decision boundary to the minority classes that are difficult to learn [24]. The specific
steps of the method are as follows: Assume that the training set Dtr has m samples
{xi, yi}m,yi ∈ {+1,−1}. There are ms minority class samples and ml majority class
samples in the training set Dtr , ms + ml = Dtr .

(1) Calculate the imbalance ratio in the Dtr :

d = ms

ml
(1)

(2) If d < dth (dth is the preset threshold), enter the loop:

a. Calculate the number of minority class samples that need to be generated (β ∈
[0, 1], is a balance parameter):

G = (ml − ms) × β (2)
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b. For each minority class sample, K nearest neighbor samples are picked based
on the euclidean distance (�i represents the number of samples that K nearest
neighbor samples belong to the majority class)

ri = �i

K
(i = 1, 2, . . .ms) (3)

c. Calculate the weights:

r̂i = ri/
ms∑

i

ri (4)

(3) Calculate the number of samples that need to be synthesized for each minority class
sample:

gi = r̂i × G (5)

(4) For each minority class sample xi, randomly select a sample xzi from its K nearest
neighbor samples to generate a new sample according to the following formula:

si = xi + (xzi − xi) × λ(λ ∈ [0, 1]) (6)

2.2 LightGBM

Among the tree-based ensemble algorithms, GBDT, XGBoosting, and LightGBM are
recognized as the best performing algorithms. In recent years, they have made a big
splash in Kaggle competitions. GBDT and XGBoost algorithms need to traverse the
entire dataset when dividing nodes, whichmakes them have a large time overhead. Com-
pared with other algorithms, LightGBM has a greater advantage in training overhead.
LightGBM adopts gradient-based one-sided sampling (GOSS) method and exclusive
feature bundling (EFB) algorithm [25], making it significantly smaller in training time
than GBDT and XGBoosting.

Assuming that each sample is associated with its gradient information, it is generally
believed that a sample with a small gradient has a low training error. For the following
classification or regression tasks, samples with small gradients have smaller contribution
values. Therefore, the GOSS method sorts the gradients of all samples according to
their absolute value and saves all samples with large gradients. Subsequently, randomly
selects some samples from small gradient samples for preservation. Suppose there are n
training instances in the training set, denoted as {x1, . . . , xn}. After the gradient boosting
calculation, the negative gradient of the output of the model is recorded as {g1, . . . , gn}.
The information gain of the split feature j at point d is defined as:

Vj|O(d) = 1

nO

⎛

⎜⎝

(∑
{xi∈O:xij≤d}

)2

njl|O(d)
+

(∑
{xi∈O:xij>d}

)2

njr|O(d)

⎞

⎟⎠ (7)
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whereO is the parent node of the decision tree division, nl is the left node of the decision
tree, and nr is the right node of the decision tree, and nO = ∑

I [xi ∈ O], njl|O(d) =
∑

I
[
xi ∈ O : xij ≤ d

]
and njr|O(d) = ∑

I
[
xi ∈ O : xij > d

]
.

Let a and b be the sampling ratios of large gradient and small gradient instances,
respectively. According to the sorted instance gradient values, the first a × 100% large
gradient sample is selected, and then randomly selects b× 100% small gradient samples
from the rest of the data. After many iterations, the final calculated information gain is:

Ṽj(d) = 1

n

(
(
∑

xi∈Al gi + 1−a
b

∑
xi∈Bl gi)

2

njl(d)
+ (

∑
xi∈Ar gi + 1−a

b

∑
xi∈Br gi)

2

njr(d)

)
(8)

where Al = {
xi ∈ A : xij ≤ d

}
,Ar = {

xi ∈ A : xij > d
}
,Bl = {

xi ∈ B : xij ≤ d
}
,Br ={

xi ∈ B : xij > d
}
.

EFB method exploits the sparsity of high-dimensional spaces to reduce features. In
high-dimensional space, the values between two instances aremostlymutually exclusive,
that is, they are not all zero in the same row. Therefore, an undirected graph with weights
can be further constructed. The nodes of the graph represent a feature, and the weights
are expressed as the number of mutually exclusive values between two features. It is
then transformed into a graph coloring problem and solved using a greedy algorithm.

3 Methodology

Network flow presents the characteristics of massive and high dimensions. In order to
improve the detection ability, an intrusion detection method based on oversampling and
undersampling is designed in this paper. The schematic diagram of the method is shown
in Fig. 1. The proposedmethod includes data preprocessingmodule, resamplingmodule,
feature extraction module, and classification module.

In the data preprocessing module, these methods including numeralization, one-hot
coding, and normalization are used for data processing. After data preprocessing, it is
partitioned into a training set and test set. It is described in Sect. 3.1.

In the resampling module, this paper uses the ADASYN and random undersampling
technology to make the training data reach a relatively balanced state. This is described
in detail in Sect. 3.2.

In the feature extraction module, a sparse autoencoder is trained from the original
data. Then the autoencoder is used to feature extraction on the resampled data, which
reduces the data dimension while decreasing the fitting error caused by data resampling.
The details of feature extraction are presented in Sect. 3.3.

In the classification module, the LightGBM model is used to train the data after
processing so that the trained LightGBM model is obtained. Finally, the test set is input
into the LightGBM model for testing, and the final results are output.



A High Performance Intrusion Detection System 643

Numeralization

One-hot Encoding

Normalization

Dataset

Preprocessing  
module

Resamping 
module

Extraction
module

Classification
module

Test set

Undersamping

Oversamping

SAE for Feature 
extraction 

LightGBM for 
classification

Results

Train set
Get

Fig. 1. A schematic diagram of the intrusion detection system

3.1 Dataset Description and Preprocessing

The KDD99 dataset comes from the intrusion detection project at Lincoln laboratory in
the United States. A total of nine weeks of network connection data was collected in
the dataset, which contained 7 million records. The dataset contains a total of 39 attack
types, of which 22 appear in the training set and 17 in the test set. These 39 attack types
can be classified into four categories, namely Probe, Dos, R2L, and U2R. 10% of the
KDD99 dataset is used in this paper. On the basis of this dataset, it is further divided
into training set and test set with a ratio of 7:3.

The UNSWNB15 dataset was developed by the Australian Cyber Security Centre
in 2015 using the IXIA tool. The dataset contains 2 million records, which are saved in
four CSV files. The dataset contains a total of 9 attack types. In this paper, all the data in
this dataset are used for experiments. Similarly, the UNSWNB15 dataset is also divided
into training set and test set in a ratio of 7:3.

The KDD99 dataset contains 41-dimensional features, of which the three features of
protocol, service, and flag are symbol types, and the others are numeric types. Since the
classifier cannot process symbolic data, the symbolic data is first converted into numeric
types. Then the data are sparsely encoded by one-hot encoding. Taking the KDD99
dataset as an example, the protocol feature contains three values: TCP, UDP, and ICMP,
which are encoded as 100, 010, and 001 respectively. The service feature has 66 values,
so it is represented using 66 numbers consisting of 0 and 1. The flag feature has 11
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values, which are represented by 11 numbers containing 0 and 1. After one-hot coding,
the dimensionality of the KDD99 dataset is extended to 118. Similarly, the UNSWNB15
dataset is processed in the same way.

Dataset normalization processing. To speed up the training, the data normalization
method is required. In this study, the maximum and minimum normalization method
is used to scale the data to [0,1]. The maximum-minimum normalization method is
calculated as follows:

MaxMinScaler = x − xmin
xmax − xmin

(9)

Among them, xmax and xmin represent the maximum and minimum values of the
column where the feature x is located, respectively.

3.2 Resampling Method

In order to obtain a proper representation of the data distribution in practice, this paper
does not simply resample all data to the same amount. Instead, the majority and minority
class data are resampled to a relatively balanced state. First, a threshold θ is preset, which
represents an acceptable balance ratio. In general, the threshold is set to 0.5. For a dataset,
its balanced degree is determined by the following equation:

d = |Ti|
|T | (10)

where |Ti| represents the number of instances of the i-th type of data, and |T | represents
the total number of samples.

For each class of samples, its balance degree is calculated according to the formula
(10). If the balance degree exceeds the threshold θ, the samples are undersampled. The
sample size is calculated as:

∣∣∣T
′
i

∣∣∣ = |Ti|
C

(11)

where C represents the number of categories in the dataset, and
∣∣∣T ′

i

∣∣∣ is the number of

samples of this category after undersampling.

After that, sort all
∣∣∣T ′

i

∣∣∣ and save the smallest
∣∣∣t ′i

∣∣∣ = Min
(∣∣∣T ′

i

∣∣∣
)
. For the minority

class whose balance degree is less than θ, it needs to be oversampled. The sample size
for oversampling is calculated as:

∣∣∣T
′
i

∣∣∣ = |Ti| + 10N (12)

where N is the number of digits of
∣∣∣t ′i

∣∣∣.
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After the above calculations, the number of samples required for each class is
obtained. To ensure that the number of samples for all classes is in the same order
of magnitude, it needs to be traversed. For classes that are not in the same order of
magnitude, they are further processed so that they are in the same order of magnitude as
other samples.

3.3 Feature Extraction and Classification

After data resampling, a sparse autoencoder is used to extract features from the data.
First, in the data preprocessing module, training a sparse autoencoder so that the autoen-
coder can extract the low-dimensional representation of the data. The trained sparse
autoencoder will be used to recover a low-dimensional representation of the resampled
data. The structure of the sparse autoencoder used in this paper is shown in Fig. 2. A
sparse autoencoder consists of an input layer, an encoding layer, a middle layer, a decod-
ing layer, and an output layer. The size of the input and output layers is determined by the
dimensionality of the input data. Both the encoding and decoding layers are composed
of two neural network layers with sizes of 80 and 50, respectively. The middle layer con-
sists of neurons with size 16 and is a low-dimensional representation of original data.
After feature extraction, the data will be input into the LightGBM classifier training.
Finally, the test data will be input into the LightGBM model for testing.

Input Output

Encode Decode

Middle

Fig. 2. The structure of the sparse autoencoder

4 Experiment and Discussion

This part presents the performance of the LightGBM model before and after the data
resampling. Furthermore, to validate the performance of LightGBM, the paper compared
with support vector machine, random forest, GBDT, and so on. The experiments were
deployed on a Dell host with 32Gmemory and were programmed using Python 3.8. The
sklearn library and the keras framework were used to build the model.
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4.1 Evaluate Metrics

In this paper, the four metrics of accuracy rate (AC), precision rate (P), detection rate
(DR), and F1 scores (F1) are used to evaluate the model.

AC = TP + TN

TP + TN + FP + FN
(13)

P = TP

TP + FP
(14)

DR = TP

TP + FN
(15)

F1 = 2/

(
1

P
+ 1

DR

)
(16)

4.2 Results and Analysis

We conducted multi-classification experiments on KDD99 and UNSWNB15 datasets.
The experiments compared the LightGBM’s performance before and after data resam-
pling. To ensure the comparability of the methods, the random_state was set to 42. Note
that all results were rounded to two decimal places.

The performance of LightGBM is shown in Fig. 3. As shown in Fig. 3, the accuracy,
precision, and F1-score of the model on the KDD99 dataset are improved by 0.46% after
data resampling. In addition, the accuracy, precision, and F1-score of the model on the
UNSWNB15 dataset are improved by 0.63%, 1.13%, and 0.83% respectively. It can be
concluded that the performance of the model has improved after data resampling.

Figure 4 and Fig. 5 show the detection rates of each class on the two datasets before
and after data resampling. It can be seen from Fig. 4 that the detection rates of Normal
and Dos classes are above 90% before resampling because of their high proportion in the
original dataset. The detection rates of Probe and R2L classes are lower than 80% before
resampling. After resampling, the detection rate increased significantly. In particular, the
detection rate of U2R before resampling is zero. The reason is that the number of U2R
in the original data is rare, with only 52 records. After resampling, the detection rate
of U2R reaches 94.12%. The performance of the model on the UNSWNB15 dataset is
shown in Fig. 5. After resampling, the detection rate of Exploits decreases, indicating
that the boundary between this data and adjacent samples becomes blurry. However, the
model improves the detection rate to varying levels in the remaining attack classes. In
general, the detection of minority classes is improved after resampling.
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Fig. 3. The performance of model before and after resampling for KDD99 and UNSWNB15
datasets

Fig. 4. The detection rates of each class for the KDD99 dataset

Tables 1 and 2 show the performance of different models after resampling. On the
KDD99 dataset, the LightGBM model achieves 99.87% accuracy, which is the highest
among all models. In addition, the model obtains 99.88% and 99.87% in precision and
F1 scores, respectively. The RFmodel also performs the same in thesemetrics. However,
the training time for the LightGBM is significantly less than for the RF model. Though
the DTmodel has the lowest training time among all models, its accuracy, precision, and
F1 scores are lower than the LightGBM model. On the UNSWNB15 dataset, although
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Fig. 5. The detection rates of each class for the UNSWNB15 dataset

the RF and XGBoost models have an outstanding performance in some metrics, the
training time of RF is 6 times longer than the LightGBMmodel and the training time of
XGBoost is 7 times longer than the LightGBMmodel. In general, the LightGBMmodel
balances time overhead and overall performance on both the KDD99 dataset and the
UNSWNB15 dataset.

Table 1. The performance of different models on the KDD99 dataset after resampling

Model SVM DT RF GBDT XGBoost LightGBM

AC (%) 99.31 99.66 99.86 99.31 99.84 99.87

P (%) 99.69 99.71 99.88 99.60 99.86 99.88

F1 (%) 99.46 99.68 99.87 99.42 99.85 99.87

Time (s) 72.66 1.03 15.75 156.96 13.97 1.56

Table 2. The performance of different models on the UNSWNB15 datasets after resampling

Model SVM DT RF GBDT XGBoost LightGBM

AC (%) 96.62 96.64 96.99 96.73 96.95 96.94

P (%) 97.86 97.73 97.92 97.92 98.02 98.06

F1 (%) 97.07 97.10 97.36 97.19 97.36 97.36

Time (s) 8412.03 3.97 65.42 735.57 76.41 10.09
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Tables 3 and 4 show the detection rate for specific classes. On the KDD99 dataset,
all models have identical performance in the detection of the Dos and Probe classes. On
the detection of Normal, LightGBM and RF models perform the best. On the detection
of R2L, XGBoost and LightGBM have the highest detection rate. GBDT and SVM
perform best in the detection of U2R. Overall, the LightGBM model outperforms in
all classes, although detection on U2R is not the best. On the UNSWNB15 dataset, for
classes of Analysis and Backdoors, all models have a low detection rate, no more than
50%. The possible reason is that the boundaries of Analysis and Backdoor samples are
relatively blurred, which makes the model unable to distinguish them effectively. The
detection rates of LightGBM models are above 50% for all classes excluding Analysis
and Backdoor classes. However, the SVM and GBDT models do not reach 50% in the
detection of Exploits. DT, RF, and XGBoost models also do not reach 50% in detecting
Worm classes. It means that the LightGBM model is more effective than other models
in detecting minority classes.

Table 3. The detection rates of different models for each class on the KDD99 dataset after
resampling

Model SVM DT RF GBDT XGBoost LightGBM

Normal 0.97 0.99 1.00 0.97 0.99 1.00

Probe 0.99 0.98 0.99 0.99 0.99 0.99

Dos 1.00 1.00 1.00 1.00 1.00 1.00

R2L 0.85 0.92 0.95 0.90 0.96 0.96

U2R 1.00 0.76 0.88 1.00 0.94 0.94

Table 4. The detection rates of different models for each class on the UNSWNB15 dataset after
resampling

Model SVM DT RF GBDT XGBoost LightGBM

Normal 0.98 0.98 0.99 0.98 0.99 0.99

Dos 0.76 0.55 0.51 0.74 0.70 0.74

Exploits 0.43 0.54 0.61 0.49 0.54 0.52

Fuzzers 0.67 0.71 0.79 0.71 0.78 0.77

Generic 0.97 0.97 0.97 0.97 0.97 0.97

Backdoors 0.16 0.04 0.04 0.12 0.15 0.14

Reconnaissance 0.77 0.63 0.75 0.72 0.76 0.76

Analysis 0.18 0.16 0.19 0.17 0.20 0.21

Worms 0.66 0.24 0.26 0.59 0.40 0.50

Shellcode 0.45 0.52 0.63 0.66 0.67 0.66
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Tables 5 and 6 show the detection rates compared to other advanced methods. For
the KDD99 dataset, it is clear from Table 10 that FE-SVM has the poor performance.
Among all the methods, our proposed method has the best performance in detecting the
U2R class. The RU-Smote method performs best in detecting the R2L class. Overall, our
proposedmethod achieves an average detection rate of 97.8%and ismore effective on the
KDD99 dataset compared to other methods. For the UNSWNB15 dataset, the TSDL,
CASCADE-ANN, and DBN methods achieve a 0% detection rate on some classes.
By contrast, ICVAE-DNN, SAE, and our proposed method can detect all classes. In
particular, our proposed method achieves an average detection rate of 62.6%, which is
the highest among all methods. This proves the generalizability of our proposed method.

Table 5. Comparison multi-class classification results with advanced methods on the KDD99
dataset.

Method FE-SVM[6] ACAE-RF[7] PDAE[15] RU-Smote[18] MSML[23] Our
method

Normal 0.99 1.00 1.00 0.98 0.86 1.00

Probe 0.70 0.99 0.99 0.99 0.98 0.99

Dos 0.96 1.00 1.00 1.00 1.00 1.00

R2L 0.45 0.88 0.92 0.97 0.91 0.96

U2R 0.14 0.47 0.75 0.83 0.73 0.94

Avg 0.648 0.868 0.932 0.954 0.896 0.978

Table 6. Comparison multi-class classification results with advanced methods on the
UNSWNB15 dataset.

Method TSDL[8] CASCADE-ANN[10] ICVAE-DNN[11] DBN[13] SAE[14] Our
method

Normal 0.82 0.80 0.81 0.70 0.78 0.99

Dos 0.00 0.00 0.08 0.00 0.06 0.74

Exploits 0.57 0.57 0.71 0.86 0.94 0.52

Fuzzers 0.40 0.00 0.35 0.57 0.52 0.77

Generic 0.61 0.98 0.96 0.96 0.97 0.97

Backdoors 0.00 0.00 0.21 0.00 0.04 0.14

Reconnaissance 0.25 0.34 0.80 0.73 0.81 0.76

Analysis 0.01 0.00 0.15 0.00 0.01 0.21

Worms 0.00 0.00 0.80 0.00 0.11 0.50

Shellcode 0.01 0.00 0.92 0.00 0.59 0.66

Avg 0.267 0.269 0.579 0.382 0.482 0.626

https://doi.org/10.1007/978-3-031-13870-6_10


A High Performance Intrusion Detection System 651

5 Conclusions

For the problem that the abnormal traffic in the network flows is less than the normal
traffic, we propose adaptive synthetic oversampling technology and random undersam-
pling technology to process imbalanced data. In the experiments with two datasets, the
model performance before and after data resampling was compared. After resampling,
the LightGBMachieves 99.87%accuracy, 99.88%precision, and 99.87%F1 score on the
KDD99 dataset, respectively. On the UNSWNB15 dataset, it achieves 96.94%, 98.06%,
and 97.36% for accuracy, precision, and F1 scores respectively. The overall performance
of LightGBM is improved after resampling.Meanwhile, the paper also compares the per-
formance of different models after data resampling. The results show that our proposed
method not only performs better but also has a low time overhead. Furthermore, the
paper compares the proposed methods with state-of-the-art methods, and the results are
promising. Although the LightGBM model performs well in the overall performance, it
still needs to be improved in detecting minority classes such as Analysis and Backdoors.
In the future, we will further optimize the model so that it can exceed 50% detection rate
for these classes.
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