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Abstract The Rado graph, also known as the random graphG(∞, p), is a classical
limit object for finite graphs. We study natural ball walks as a way of understanding
the geometry of this graph. For the walk started at i, we show that order log∗

2 i steps
are sufficient, and for infinitely many i, necessary for convergence to stationarity.
The proof involves an application of Hardy’s inequality for trees.
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1 Introduction

The Rado graph R is a natural limit of the set of all finite graphs (Fraissé limit, see
Sect. 2.1). In Rado’s construction, the vertex set is N = {0, 1, 2, . . .}. There is an
undirected edge from i to j if i < j and the i th binary digit of j is a one (where the
0th digit is the first digit from the right). Thus, 0 is connected to all odd numbers,
1 is connected to 0 and all j which are 2 or 3 (mod 4) and so on. There are many
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alternative constructions. Forp ∈ (0, 1), connecting i and j with probabilityp gives
the Erdős–Rényi graph G(∞, p), which is (almost surely) isomorphic to R. Further
constructions are in Sect. 2.1.

Let (Q(j))0�j<∞ be a positive probability on N (so, Q(j) > 0 for all j , and∑∞
j=0 Q(j) = 1). We study a ‘ball walk’ on R generated by Q: from i ∈ N, pick

j ∈ N(i) with probability proportional to Q(j), where N(i) = {j : j ∼ i} is the
set of neighbors of i in R. Thus, the probability of moving from i to j in one step is

K(i, j) =
{

Q(j)/Q(N(i)) if i ∼ j,

0 otherwise.
(1)

As explained below, this walk is connected, aperiodic and reversible, with stationary
distribution

π(i) = Q(i)Q(N(i))

Z
, (2)

where Z is the normalizing constant.
It is natural to study the mixing time—the rate of convergence to stationarity. The

following result shows that convergence is extremely rapid. Starting at i ∈ N, order
log∗

2 i steps suffice, and for infinitely many i, are needed.

Theorem 1 Let Q(j) = 2−(j+1), 0 � j < ∞. For K(i, j) and π defined at (1)
and (2) on the Rado graph R,

1. For universal A,B > 0, we have for all i ∈ N, � � 1,

‖K�
i − π‖ � Aelog

∗
2 ie−B�.

2. For universal C > 0, if 2(k) = 22
···
2

is the tower of 2’s of height k,

‖K�
2(k) − π‖ � C

for all � � k. Here ‖K�
i − π‖ = 1

2

∑∞
j=0 |K�(i, j) − π(j)| is the total variation

distance and log∗
2 i is the number of times log2 needs to be applied, starting from

i, to get a result � 1.

The proofs allow for some variation in the measure Q. They also work for the
G(∞, p) model of R, though some modification is needed since then K and π

are random.
Theorem 1 answers a question in Diaconis and Malliaris [8], who proved the

lower bound. Most Markov chains on countable graphs restrict attention to locally
finite graphs [25]. For Cayley graphs, Bendikov and Saloff-Coste [1] begin the study
of more general transitions and point out how few tools are available. See also [12,
20]. Studying the geometry of a space (here R) by studying the properties of the



A Random Walk on the Rado Graph 259

Laplacian (here I−K) is a classical pursuit (“Can you hear the shape of a drum?”)—
see [16].

Section 2 gives background on the Rado graph, Markov chains, ball walks,
and Hardy’s inequalities. Section 3 gives preliminaries on the behavior of the
neighborhoods of the G(∞, p) model. The lower bound in Theorem 1 is proved
in Sect. 4. Both Sects. 3 and 4 give insight into the geometry of R. The upper bound
in Theorem 1 is proved by proving that the Markov chain K has a spectral gap.
Usually, a spectral gap alone does not give sharp rates of convergence. Here, for
any start i, we show the chain is in a neighborhood of 0 after order log∗

2 i steps.
Then the spectral gap shows convergence in a bounded number of further steps.
This argument works for both models of R. It is given in Sect. 5.

The spectral gap for the G(∞, p) model is proved in Sect. 6 using a version
of Cheeger’s inequality for trees. For Rado’s binary model, the spectral gap is
proved by a novel version of Hardy’s inequality for trees in Sect. 7. This is the
first probabilistic application of this technique, which we hope will be useful more
generally. There are two appendices containing technical details for the needed
versions of Cheeger’s and Hardy’s inequalities.

2 Background on R, Markov Chains, and Hardy’s
Inequalities

2.1 The Rado Graph

A definitive survey on the Rado graph (with full proofs) is in Peter Cameron’s
fine article [6]. We have also found the Wikipedia entry on the Rado graph and
Cameron’s follow-up paper [7] useful.

In Rado’s model, the graph R has vertex set N = {0, 1, 2, . . .} and an undirected
edge from i to j if i < j and the i th digit of j is a one. There are many other
constructions. The vertex set can be taken as the prime numbers that are 1 (mod 4)
with an edge from p to q if the Legendre symbol (p

q
) = 1. In [8], the graph appears

as an induced subgraph of the commuting graph of the group U(∞, q)—infinite
upper-triangular matrices with ones on the diagonal and entries in Fq . The vertices
are points of U(∞, q). There is an edge from x to y if and only if the commutator
x−1y−1xy is zero. The infinite Erdős–Rényi graphs G(∞, p) are almost surely
isomorphic to R for all p, 0 < p < 1.

The graph R has a host of fascinating properties:

• It is stable in the sense that deleting any finite number of vertices or edges yields
an isomorphic graph. So does taking the complement.

• It contains all finite or countable graphs as induced subgraphs. Thus, the
(countable) empty graph and complete graphs both appear as induced subgraphs.

• The diameter of R is two—consider any i �= j ∈ N and let k be a binary number
with ones in positions i and j and zero elsewhere. Then i ∼ k ∼ j .
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• Each vertex is connected to “half” of the other vertices: 0 is connected to all the
odd vertices, 1 to 0 and all numbers congruent to 2 or 3 (mod 4), and so on.

• R is highly symmetric: Any automorphism between two induced subgraphs can
be extended to all of R (this is called homogeneity). The automorphism group
has the cardinality of the continuum.

• R is the “limit” if the collection of all finite graphs (Fraissé limit). Let us spell
this out. A relational structure is a set with a finite collection of relations (we
are working in first order logic without constants or functions). For example,
Q with x < y is a relational structure. A graph is a set with one symmetric
relation. The idea of a “relational sub-structure” clearly makes sense. A class
C of structures has the amalgamation property if for any A,B1, B2 ∈ C with

embeddingsA
f1→ B1 and A

f2→ B2, there exists C ∈ C and embeddingsB1
g1→ C

and B2
g2→ C such that g1f1 = g2f2. A countable relational structure M is

homogeneous if any isomorphism between finite substructures can be extended
to an automorphism of M . Graphs and Q are homogeneous relational structures.
A class C has the joint embedding property if for any A,B ∈ C there is a C ∈ C
so that A and B are embeddable in C.

Theorem 2 (Fraissé) Let C be a countable class of finite structures with
the joint embedding property and closed under ‘induced’ isomorphism with
amalgamation. Then there exists a unique countable homogeneous M with C
as induced substructures.

The rationals Q are the Fraissé limit of finite ordered sets. The Rado graph R is
the Fraissé limit of finite graphs. We have (several times!) been told “for a model
theorist, the Rado graph is just as interesting as the rationals”.

There are many further, fascinating properties of R; see [6].

2.2 Markov Chains

A transition matrix K(i, j), 0 � i, j < ∞, K(i, j) � 0,
∑∞

j=0 K(i, j) = 1 for all
i, 0 � i < ∞, generates a Markov chain through its powers

K�(i, j) =
∞∑

k=0

K(i, k)K�−1(k, j).

A probability distribution π(i), 0 � i < ∞, is reversible for K if

π(i)K(i, j) = π(j)K(j, i) for all 0 � i, j < ∞. (3)
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Example With definitions (1), (2) on the Rado graph, if i ∼ j ,

π(i)K(i, j) = Q(i)Q(N(i))

Z

Q(j)

Q(N(i))
= Q(i)Q(j)

Z
= π(j)K(j, i).

(Both sides are zero if i �∼ j .)

In the above example, we think of K(i, j) as a ‘ball walk’: From i, pick a neighbor
j with probability proportional to Q(j) and move to j . We initially found the neat
reversible measure surprising. Indeed, we and a generation of others thought that
ball walks would have Q as a stationary distribution. Yuval Peres points out that,
given a probability Q(j) on the vertices, assigning symmetric weight Q(i)Q(j) to
i ∼ j gives thisK for the weighted local walk. A double ball walk—“from i, choose
a neighbor j with probability proportional to Q(j), and from j , choose a neighbor
k with probability proportional to Q(k)/Q(N(k))”—results in a reversible Markov
chain with Q as reversing measure. Note that these double ball walks don’t require
knowledge of normalizing constants. All of this suggests ball walks as reasonable
objects to study.

Reversibility (3) shows that π is a stationary distribution for K:

∞∑

i=0

π(i)K(i, j) =
∞∑

i=0

π(j)K(j, i) = π(j)

∞∑

i=0

K(j, i) = π(j).

In our setting, since the Rado graph has diameter 2, the walk is connected. It is easy
to see that it is aperiodic. Thus, the π in (2) is the unique stationary distribution.
Now, the fundamental theorem of Markov chain theory shows, for every starting
state i, K�(i, j) → π(j) as � → ∞, and indeed,

lim
�→∞ ‖K�

i − π‖ = 0.

Reversible Markov chains have real spectrum. Say that (K, π) has a spectral gap if
there is A > 0 such that for every f ∈ �2(π),

∑

i

(f (i) − f )2π(i) � A
∑

i,j

(f (i) − f (j))2π(i)K(i, j), (4)

where f =∑∞
i=0 f (i)π(i). (Then the gap is at least 1/A.) For chains with a spectral

gap, for any i,

4‖K�
i − π‖2 � 1

π(i)

(

1 − 1

A

)2�
. (5)
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Background on Markov chains, particularly rates of convergence, can be found
in the readable book of Levin and Peres [19]. For the analytic part of the theory,
particularly (4) and (5), and many refinements, we recommend [23].

There has been a healthy development in Markov chain circles around the theme
‘How does a Markov chain on a random graph behave?’. One motivation being,
‘What does a typical convergence rate look like?’. The graphs can be restricted in
various natural ways (Cayley graphs, regular graphs of fixed degree or fixed average
degree, etc.). A survey of by now classical work is Hildebrand’s survey of ‘random-
randomwalks’ [14]. Recent work by Bordenave and coauthors can be found from [4,
5]. For sparse Erdős–Rényi graphs, there is remarkable work on the walk restricted
to the giant component. See [22], [11] and [3].

It is worth contrasting these works with the present efforts. The above results
pick a neighbor uniformly at random. In the present paper, the ball walk drives the
walk back towards zero. The papers above are all on finite graphs. The Markov
chain of Theorem 1 makes perfect sense on finite graphs. The statements and proofs
go through (with small changes) to show that order log∗

2 i steps are necessary and
sufficient. (For the uniform walk on G(n, 1/2), a bounded number of steps suffice
from most initial states, but there are states from which log∗

2 n steps are needed.)

2.3 Hardy’s Inequalities

A key part of the proof of Theorem 1 applies Hardy’s inequalities for trees to prove a
Poincaré inequality (Cf. (4)) and hence a bound on the spectral gap. Despite a large
expository literature, Hardy’s inequalities remain little known among probabilists.
Our application can be read without this expository section but we hope that some
readers find it useful. Extensive further references, trying to bridge the gap between
probabilists and analysts, is in [17].

Start with a discrete form of Hardy’s original inequality [13, pp. 239–243]. This
says that if an � 0, An = a1 + · · · + an, then

∞∑

n=1

A2
n

n2
� 4

∞∑

n=1

a2n,

and the constant 4 is sharp. Analysts say that “the Hardy operator taking {an} to
{An/n} is bounded from �2 to �2”. Later writers showed how to put weights in. If
μ(n) and ν(n) are positive functions, one aims for

∞∑

n=1

A2
nμ(n) � A

∞∑

n=1

a2nν(n),
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for an explicit A depending on μ(n) and ν(n). If μ(n) = 1/n2 and ν(n) = 1,
this gives the original Hardy inequality. To make the transition to a probabilistic
application, take a(n) = g(n) − g(n − 1) for g in �2. The inequality becomes

∞∑

n=1

g(n)2μ(n) � A

∞∑

n=1

(g(n) − g(n − 1))2ν(n). (6)

Consider a ‘birth and death chain’ which transits from j to j + 1 with probability
b(j) and from j to j − 1 with probability d(j). Suppose that this has stationary
distribution μ(j) and that

∑
j g(j)μ(j) = 0. Set ν(j) = μ(j)d(j). Then (6)

becomes (following simple manipulations)

Var(g) � A
∑

j,k

(g(j) − g(k))2μ(j)K(j, k) (7)

with K(j, k) the transition matrix of the birth and death chain. This gives a Poincaré
inequality and spectral gap estimate. A crucial ingredient for applying this program
is that the constant A must be explicit and manageable. For birth-death chains, this
is indeed the case. See [21] or the applications in [9]. The transition from (6) to (7)
leans on the one-dimensional setup of birth-death chains. While there is work on
Hardy’s inequalities in higher dimensions, it is much more complex; in particular,
useful forms of good constants A seem out of reach. In [21], Miclo has shown
that for a general Markov transition matrix K(i, j), a spanning tree in the graph
underlyingK can be found. There is a useful version of Hardy’s inequality for trees
due to Evans, Harris and Pick [10]. This is the approach developed in Sect. 7 below
which gives further background and details.

Is approximation by trees good enough? There is some hope that the best tree is
good enough (see [2]). In the present application, the tree chosen gives the needed
result.

2.4 The log∗ Function

Take any a > 1. The following is a careful definition of log∗
a x for x � 0. First, an

easy verification shows that the map x 	→ (log x)/x on (0,∞) is unimodal, with a
unique maximum at x = e (where its value is 1/e), and decaying to −∞ as x → 0
and to 0 as x → ∞. Thus, if a > e1/e, then for any x > 0,

loga x = log x

log a
� x

e log a
< x.

Since loga is a continuous map, this shows that if we start with any x > 0,
iterative applications of loga will eventually lead to a point in (0, a) (because there
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are no fixed points of loga above that, by the above inequality), and then another
application of loga will yield a negative number. This allows us to define log∗

a x

as the minimum number of applications of loga , starting from x, that gets us a
nonpositive result.

If a � e1/e, the situation is a bit more complicated. Here, log a � 1/e, which
is the maximum value of the unimodal map x 	→ (log x)/x. This implies that there
exist exactly two points 0 < ya � xa that are fixed points of loga (with ya = xa if
a = e1/e). Moreover, loga x < x if x /∈ [ya, xa], and loga x � x if x ∈ [ya, xa].
Thus, the previous definition does not work. Instead, we define log∗

a x to be the
minimum number of applications of loga , starting from x, that leads us to a result
� xa . In both cases, defining log∗

a 0 = 0 is consistent with the conventions. Note
that log∗

a x � 0 for all x � 0.

3 The Geometry of the RandomModel

Throughout this section the graph is G(∞, 1/2) — an Erdős–Rényi graph on N =
{0, 1, 2, . . .} with probability 1/2 for each possible edge. From here on, we will
use the notation N+ to denote the set {1, 2, . . .} of strictly positive integers. Let
Q(x) = 2−(x+1) for x ∈ N. The transition matrix

K(x, y) = Q(y)

Q(N(x))
1{y∈N(x)}

and its stationary distribution π(x) = Z−1Q(x)Q(N(x)) are thus random variables.
Note that N(x), the neighborhood of x, is random. The main result of this section
shows that this graph, with vertices weighted by Q(x), has its geometry controlled
by a tree rooted at 0. This tree will appear in both lower and upper bounds on the
mixing time for the random model.

To describe things, let p(x) = minN(x) (p is for ‘parent’, not to be confused
with the edge probability p in G(∞, p)). We need some preliminaries about p(x).

Lemma 1 Let B be the event that for all x ∈ N+, p(x) < x. Then we have that
P(B) � 1/4.

Proof Denote E � {{x, y} : x �= y ∈ N}, and for any e ∈ E, consider Be = 1E(e),
whereE is the set of edges in G(∞, 1/2), so that (Be)e∈E is a family of independent
Bernoulli variables of parameter 1/2.

For x ∈ N+, define Ax the event that x is not linked in G to a smaller vertex.
Namely, we have formally

Ax �
⋂

y∈�0,x−1�

{B{y,x} = 0},
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where �0, x−1� := {0, 1, . . . , x−1}. Note that the family (Ax)x∈N+ is independent,
and in particular, its events are pairwise independent. We are thus in position to
apply Kounias–Hunter–Worsley bounds [15, 18, 26] (see also the survey [24]), to
see that for any n ∈ N+,

P

( ⋃

x∈�1,n�

Ax

)

� min

{ ∑

x∈�1,n�

P(Ax) − P(A1)
∑

y∈�2,n�

P(Ay), 1

}

,

where we used that P(A1) � P(A2) � · · · � P(An), which holds because

∀ x ∈ N+, P(Ax) =
∏

y∈�0,x−1�

P(B{y,x}) = 1

2x
.

We deduce that

P

( ⋃

x∈�1,n�

Ax

)

� min

{ ∑

x∈�1,n�

1

2x
− 1

2

∑

y∈�2,n�

1

2y
, 1

}

= 1

2
+ 1

4
− 1

2n+1 .

Letting n tends to infinity, we get P
(⋃

x∈N+ Ax

)
� 3

4 . To conclude, note that Bc =
⋃

x∈N+ Ax . ��

Remark 1 Assume that instead of 1/2, the edges of E belong to E with probability
p ∈ (0, 1) (still independently), the corresponding notions receive p in index. The
above computations show Pp(B) � 1− (2− 3p + p2) ∧ 1, so that Pp(B) goes to 1
as p goes to 1, but this bounds provides no information for p ∈ (0, (3 − √

5)/2].
In fact the above observation shows that the Kounias–Hunter–Worsley bound is

not optimal, at least for small p > 0. So let us give another computation of Pp(B):

Lemma 2 Consider the situation described in Remark 1, with p ∈ (0, 1). We have

Pp(B) =
(∑

n∈N
p(n)(1 − p)n

)−1

where p(n) is the number of partitions of n. In particular P(B) > 0 for all p ∈
(0, 1).

Proof Indeed, we have B = ⋂
x∈N+ Ac

x , so that by independence of the Ax , for
x ∈ N+,

Pp(B) =
∏

x∈N+
P(Ac

x) =
( ∏

x∈N+

1

1 − (1 − p)x

)−1

=
( ∏

x∈N+

∑

n∈N
(1 − p)xn

)−1
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LetN be the set of sequences of integers (nl)l∈N+ with all but finitely many elements
equal to zero. Applying the distributive law to the above expression, we have

Pp(B) =
( ∑

(nl)l∈N+∈N

∏

x∈N+
(1 − p)xnx

)−1

=
(∑

n∈N
p(n)(1 − p)n

)−1

where p(n) is the number of ways to write n as
∑

x∈N+ xnx , with (nl)l∈N+ ∈ N.
��

Consider the set of edges

F � {{x, p(x)} : x ∈ N+}

and the corresponding graph T � (N, F ). Under B, it is clear that T is a tree. But
this is always true:

Lemma 3 The graph T is a tree.

Proof The argument is by contradiction. Assume that T contains a cycle, say
(xl)l∈Zn with n � 3. Let us direct the a priori unoriented edges {xl, xl+1}, for l ∈ Zn,
by putting an arrow from xl to xl+1 (respectively from xl+1 to xl) if p(xl) = xl+1
(resp. p(xl+1) = xl). Note that we either have

∀ l ∈ Zn, xl → xl+1, or ∀ l ∈ Zn, xl+1 → xl, (8)

because otherwise there would exist l ∈ Zn with two arrows exiting from xl , a
contradiction. Up to reindexing (xl)l∈Zn as (x−l )l∈Zn , we can assume that (8) holds.

Fix some l ∈ Zn. Since p(xl) = xl+1, we have xl ∈ N(xl+1), so xl+2 =
p(xl+1) � xl . Due to the fact that xl �= xl+2 (recall that n � 3), we get xl+2 < xl .
Starting from x0 and iterating this relation (in a minimal way, n/2 times if n is even,
or n times if n is odd), we obtain a contradiction: x0 < x0. Thus, T must be a tree.

��
Let us come back to the case where p = 1/2. The following result gives an idea of
how far p(x) is from x, for x ∈ N+.

Lemma 4 Almost surely, there exist only finitely many x ∈ N+ such that p(x) >

2 log2(1 + x). In particular, a.s. there exists a (random) finite C � 2 such that

∀ x ∈ N+, p(x) � C log2(1 + x).

Proof The first assertion follows from the Borel–Cantelli lemma, as follows. For
any x ∈ N+, consider the event

Ax � {p(x) > 2 log2(1 + x)}.
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Denoting �·� the the integer part, we compute

∑

x∈N+
P(Ax) =

∑

x∈N+
P(B{0,x} = 0, B{1,x} = 0, . . . , B{�2 log2(1+x)�,x} = 0)

=
∑

x∈N+

1

21+�2 log2(1+x)� �
∑

x∈N+

1

(1 + x)2
< +∞.

Having shown that a.s. there exists only a finite number of integers x ∈ N+
satisfying p(x) > 2 log2(1+ x), denote these points as x1, . . . , xN , with N ∈ N. To
get the second assertion, it is sufficient to take C � max{p(xl)/log(1 + xl) : l ∈
�1, N�}, with the convention that C � 2 if N = 0. ��

4 The Lower Bound

The lower bound in Theorem 1, showing that order log∗
2 i steps are necessary for

infinitely many i is proved in [8] for the binary model of the Rado graph and we
refer there for the proof. A different argument is needed for the G(∞, 1/2) model.
This section gives the details (see Theorem 3 below).

Let μ be the stationary distribution of our random walk on G(∞, 1/2) (with
Q(j) = 2−(j+1), as in Theorem 1), given a realization of the graph. Note that μ is
random. For each x ∈ N, let τx be the mixing time of the walk starting from x, that
is, the smallest n such that the law of the walk at time n, starting from x, has total
variation distance� 1/4 from μ. Note that the τx ’s are also random.

Theorem 3 Let τx be as above. Then with probability one,

lim sup
x→∞

τx

log∗
16 x

� 1.

Equivalently, with probability one, given any ε > 0, τx � (1 − ε) log∗
16 x for

infinitely many x.

We need the following lemma.

Lemma 5 With probability one, there is an infinite sequence x0 < x1 < x2 < · · · ∈
N such that:

1. For each i, xi+1 is connected to xi by an edge, but not connected by an edge to
any other number in {0, 1, . . . , 2xi − 1}.

2. For each i, 23xi � xi+1 � 23xi+1 − 1.
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Proof Define a sequence y0, y1, y2, . . . inductively as follows. Let y0 be an arbitrary
element of N. For each i, let yi+1 be the smallest element in {23yi , 23yi +
1, . . . , 23yi+1 − 1} that has an edge to yi , but to no other number in {0, 1, . . . , 2yi −
1}. If there exists no such number, then the process stops. Let Ai be the event that
yi exists. Note that A0 ⊇ A1 ⊇ A2 ⊇ · · · .

Let F(x) := 23x , G(x) := 23x+1 − 1, a0 = b0 = y0, and for each i � 1, let

ai := F ◦ F ◦ · · · ◦ F︸ ︷︷ ︸
i times

(y0), bi := G ◦ G ◦ · · · ◦ G︸ ︷︷ ︸
i times

(y0).

Since 23yi � yi+1 � 23yi+1 −1 for each i, it follows by induction that ai � yi � bi

for each i (if yi exists). Now fix some i � 1. Since the event Ai−1 is determined
by y1, . . . , yi−1, and these random variables can take only finitely many values (by
the above paragraph), we can write Ai−1 as a finite union of events of the form
{y1 = c1, . . . , yi−1 = ci−1}, where c1 < c2 < · · · < ci−1 ∈ N.

Now note that for any c1 < · · · < ci−1, the event Ai ∩ {y1 = c1, . . . , yi−1 =
ci−1} happens if and only if {y1 = c1, . . . , yi−1 = ci−1} happens and there is some
y ∈ {23ci−1, 23ci−1 + 1, . . . , 23ci−1+1 − 1} that has an edge to ci−1, but to no other
number in {0, . . . , 2ci−1 − 1}. The event {y1 = c1, . . . , yi−1 = ci−1} is in Fci−1 ,
where Fx denotes the σ -algebra generated by the edges between all numbers in
{0, . . . , x}. On the other hand, on the event {y1 = c1, . . . , yi−1 = ci−1}, it is not
hard to see that

P(Ai |Fci−1) = 1 − (1 − 2−2ci−1)2
3ci−1

.

Thus,

P(Ai ∩ {y1 = c1, . . . , yi−1 = ci−1})
= P(y1 = c1, . . . , yi−1 = ci−1)(1 − (1 − 2−2ci−1)2

3ci−1
)

� P(y1 = c1, . . . , yi−1 = ci−1)(1 − e−2ci−1
),

where in the last step we used the inequality 0 � 1 − x � e−x (which holds for
all x ∈ [0, 1]). Note that the term inside the parentheses on the right side is an
increasing function of ci−1, and the maximum possible value of yi−1 is bi−1. Thus,
summing both sides over all values of c1, . . . , ci−1 such that {y1 = c1, . . . , yi−1 =
ci−1} ⊆ Ai−1, we get P(Ai) = P(Ai ∩ Ai−1) � P(Ai−1)(1 − e−2bi−1

). Proceeding
inductively, this gives

P(A1 ∩ · · · ∩ Ai) �
i−1∏

k=0

(1 − e−2bk
).
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Taking i → ∞, we get P(B) �
∏∞

k=0(1−e−2bk
), where B :=⋂∞

k=1 Ak . Now recall
that the event B, as well as the numbers b0, b1, . . ., are dependent on our choice of
y0. To emphasize this dependence, let us write them as B(y0) and bk(y0). Then by
the above inequality,

∑

y0∈N
P(B(y0)

c) �
∑

y0∈N

(

1 −
∞∏

k=0

(1 − e−2bk(y0)

)

)

,

where B(y0)
c denotes the complement of B(y0). Due to the extremely rapid growth

of bk(y0) as k → ∞, and the fact that b0(y0) = y0, it is not hard to see that
the right side is finite. Therefore, by the Borel–Cantelli lemma, B(y0)

c happens for
only finitely many y0 with probability one. In particular, with probability one, B(y0)

happens for some y0. This completes the proof. ��
Proof (Of Theorem 3) Fix a realization of G(∞, 1/2). Let x be so large that
μ([x,∞)) < 1/10, and

∏∞
k=1(1 − 2−ak(x)+1) � 9/10.

Let x0, x1, x2, . . . be a sequence having the properties listed in Lemma 5 (which
exists with probability one, by the lemma). Discarding some initial values if
necessary, let us assume that x0 > x. By the listed properties, it is obvious that
xi → ∞ as i → ∞. Thus, to prove Theorem 3, it suffices to prove that

lim inf
i→∞

τxi

log∗
16 xi

� 1. (9)

We will now deduce this from the properties of the sequence.
Suppose that our random walk starts from xi for some i � 1. Since xi connects

to xi−1 by an edge, but not to any other number in {0, . . . , 2xi−1 − 1}, we see that
the probability of the walk landing up at xi−1 in the next step is at least

1 − 1

2−xi

∞∑

k=2xi

2−k = 1 − 2−xi+1.

Proceeding by induction, this shows that the chance that the walk lands up at x0 at
step i is at least

∏i
k=1(1 − 2−xk+1). Let μi be the law of walk at step i (starting

from xi , and conditional on the fixed realization of our random graph). Then by the
above deduction and the facts that x0 > x and xk � ak(x0) � ak(x), we have

μi([x,∞)) �
i∏

k=1

(1 − 2−xk+1) �
i∏

k=1

(1 − 2−ak(x)+1).

By our choice of x, the last expression is bounded below by 9/10. But μ([x,∞)) <

1/10. Thus, the total variation distance between μi and μ is at least 8/10. In
particular, τxi > i. Now, xi � 23xi−1+1 − 1 � 16xi−1 , which shows that
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log∗
16 xi � log∗

16 xi−1 + 1. Proceeding inductively, we get log∗
16 xi � i + log∗

16 x0.
Thus, τxi > log∗

16 xi − log∗
16 x0. This proves (9). ��

5 The Upper Bound (Assuming a Spectral Gap)

This section gives the upper bound for both the binary and random model of the
Rado graph. Indeed, the proof works for a somewhat general class of graphs and
more general base measures Q. The argument assumes that we have a spectral gap
estimate. These are proved below in Sects. 6 and 7.We give this part of the argument
first because, as with earlier sections, it gives a useful picture of the random graph.

Take any undirected graph on the nonnegative integers, with the property:

{
There exists C > 0 such that for any j � 2,

j is connected to some k � C log j.
(10)

Let {Xn}n�0 be the Markov chain on this graph, which, starting at state i, jumps to
a neighbor j with probability proportional to Q(j) = 2−(j+1). The following is the
main result of this section.

Theorem 4 Let K be the transition kernel of the Markov chain defined above.
Suppose that K has a spectral gap. Let μ be the stationary distribution of the chain,
and let a := e1/C . Then for any i ∈ N and any � � 1,

‖K�
i − μ‖ � C1e

log∗
a ie−C2�,

where C1 and C2 are positive constants that depend only the properties of the chain
(and not on i or �).

By Lemma 4, G(∞, 1/2) satisfies the property (10) with probability one, for
some C that may depend on the realization of the graph. The Rado graph also
satisfies property (10), with K = 1/ log 2. Thus, the random walk starting from
j mixes in time log∗

2 j on the Rado graph, provided that it has a spectral gap. For
G(∞, 1/2), assuming that the walk has a spectral gap, the mixing time starting from
j is log∗

a j , where a depends on the realization of the graph. The spectral gap for
G(∞, 1/2) will be proved in Sect. 6, and the spectral gap for the Rado graph will
be established in Sect. 7. Therefore, this proves Theorem 1 and also the analogous
result for G(∞, 1/2).

Proof (Of Theorem 4) Note that a > 1. Let Zn := log∗
a Xn. We claim that there is

some j0 sufficiently large, and some positive constant c, such that

E(eZn+1|Fn) � eZn−c if Zn > j0, (11)
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where Fn is the σ -algebra generated by X0, . . . , Xn. (The proof is given below.)
This implies that if we define the stopping time S := min{n � 0 : Xn � j0}, then
{eZS∧n+c(S∧n)}n�0 is a supermartingale with respect to the filtration {Fn}n�0 (see
details below). Moreover, it is nonnegative. Thus, if we start from the deterministic
initial condition X0 = j , then for any n,

E(eZS∧n+c(S∧n)|X0 = j) � eZS∧0+c(S∧0) = elog
∗
a j .

But ZS∧n � 0. Thus, E(ec(S∧n)|X0 = j) � elog
∗
a j . Taking n → ∞ and applying

the monotone convergence theorem, we get

E(ecS |X0 = j) � elog
∗
a j . (12)

Now take any j � 1 and n � 1. Let μ be the stationary distribution, and let μj,n be
the law of Xn when X0 = j . Take any A ⊆ {0, 1, . . .}. Then for any m � n,

μj,n(A) = P(Xn ∈ A|X0 = j)

=
m∑

i=0

j0∑

l=0

P(Xn ∈ A|S = i, Xi = l, X0 = j)P(S = i, Xi = l|X0 = j)

+ P(Xn ∈ A|S > m, X0 = j)P(S > m|X0 = j).

But

P(Xn ∈ A|S = i, Xi = l, X0 = j) = P(Xn ∈ A|Xi = l) = μl,n−i (A),

and

μ(A) =
m∑

i=0

j0∑

l=0

μ(A)P(S = i, Xi = l|X0 = j) + μ(A)P(S > m|X0 = j).

Thus, |μj,n(A) − μ(A)| can be bounded above by
m∑

i=0

j0∑

l=0

|μl,n−i (A) − μ(A)|P(S = i, Xi = l|X0 = j) + P(S > m|X0 = j).

Now, if our Markov chain has a spectral gap, there exist constants C1 and C2
depending only on j0 and the spectral gap, such that

|μl,n−i (A) − μ(A)| � C1e
−C2(n−i) � C1e

−C2(n−m)
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for all 0 � i � m and 0 � l � j0. Using this bound and the bound (12) on
E(ecS |X0 = j) obtained above, we get

|μj,n(A) − μ(A)| � C1e
−C2(n−m) + elog

∗
a j−cm.

Taking m = �n/2�, we get the desired result. ��
Proof (Of inequality (11)) It suffices to take n = 0. Suppose that X0 = j for some
j � 1. By assumption, there is a neighbor k of j such that k � K log j = loga j .
Assuming that j is sufficiently large (depending on K), we have that for any l � k,

log∗
a l � log∗

a k � log∗
a(loga j) = log∗

a j − 1.

Also, log∗
a l � log∗

a j for any l � j . Thus,

E(eZ1−Z0 |X0 = j) � e−1
P(X1 � k|X0 = j) + P(k < X1 � j |X0 = j)

+
∑

l>j

elog
∗
a l−log∗

a j
P(X1 = l|X0 = j).

Now for any l � k,

P(X1 = l|X0 = j) � P(X1 = l|X0 = j)

P(X1 = k|X0 = j)
= Q(l)

Q(k)
= 2−(l−k).

Thus,

∑

l>j

elog
∗
a l−log∗

a j
P(X1 = l|X0 = j) �

∑

l>j

elog
∗
a l−log∗

a j2−(l−k),

which is less than 1/4 if j is sufficiently large (since k � log∗
a j ). Next, let L be the

set of all l > k that are connected to j . Then

P(X1 > k|X0 = j) � P(X1 > k|X0 = j)

P(X1 � k|X0 = j)
=

∑
l∈L 2−l

2−k +∑l∈L 2−l
.

Since the map x 	→ x/(2−k + x) is increasing, this shows that

P(X1 > k|X0 = j) �
∑

l>k 2
−l

2−k +∑l>k 2
−l

= 1

2
.
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Combining, we get that for sufficiently large j ,

E(eZ1−Z0 |X0 = j) � e−1
P(X1 � k|X0 = j) + P(X1 > k|X0 = j) + 1

4

= e−1 + (1 − e−1)P(X1 > k|X0 = j) + 1

4

� e−1 + 1 − e−1

2
+ 1

4
= 3 + 2e−1

4
< 1.

��
Proof (Of the Supermartingale Property) Note that

E(eZS∧(n+1)+c(S∧(n+1))|Fn)

=
n∑

i=0

E(eZS∧(n+1)+c(S∧(n+1))1{S=i}|Fn) + E(eZS∧(n+1)+c(S∧(n+1))1{S>n}|Fn)

=
n∑

i=0

E(eZi+ci1{S=i}|Fn) + E(eZn+1+c(n+1)1{S>n}|Fn).

The events {S = i} are Fn-measurable for all 0 � i � n, and so is the event {S > n}.
Moreover, Z0, . . . , Zn are also Fn-measurable. Thus, the above expression shows
that

E(eZS∧(n+1)+c(S∧(n+1))|Fn)=1{S�n}eZS∧n+c(S∧n)+1{S>n}E(eZn+1+c(n+1)|Fn).

But if S > n, then Zn > j0, and therefore by (11),

E(eZn+1+c(n+1)|Fn) � eZn−c+c(n+1) = eZn+cn.

Thus,

E(eZS∧(n+1)+c(S∧(n+1))|Fn) � 1{S�n}eZS∧n+c(S∧n) + 1{S>n}eZn+cn

= eZS∧n+c(S∧n).

��

6 Spectral Gap for the Random Model

Our next goal is to show that the random reversible couple (K, π) admits a spectral
gap. The argumentsmake use of the ideas and notation of Sect. 3. In particular, recall
the event B = {p(x) < x ∀ x ∈ N+} from Lemma 1 and the random tree T with
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edge set F from Lemma 3. The argument uses a version of Cheeger’s inequality for
trees which is further developed in Appendix 1.

Proposition 1 On B, there exists a random constant � > 0 such that

∀ f ∈ L2(π), �π[(f − π[f ])2] � E(f )

where in the r.h.s. E is the Dirichlet form defined by

∀ f ∈ L2(π), E(f ) �
1

2

∑

x,y ∈N

(f (y) − f (x))2 π(x)K(x, y).

Taking into account that for any f ∈ L2(π), the variance π[(f − π[f ])2] of
f with respect to π is bounded above by π[(f − f (0))2], the previous result
is an immediate consequence of the following existence of positive first Dirichlet
eigenvalue under B.

Proposition 2 On B, there exists a random constant � > 0 such that

∀ f ∈ L2(π), �π[(f − f (0))2] � E(f ). (13)

The proof of Proposition 2 is based on the pruning of G into T and then resorting
to Cheeger’s inequalities for trees. More precisely, let us introduce the following
notations. Define the Markov kernel KT as

∀ x, y ∈ N, KT(x, y) �

⎧
⎨

⎩

K(x, y) if {x, y} ∈ F,

1 −∑z∈N\{x} KT(x, z) if x = y,

0 otherwise.

Note that this kernel is reversible with respect to π . The corresponding Dirichlet
form is given, for any f ∈ L2(π), by

ET(f ) �
∑

x,y ∈N

(f (y) − f (x))2
π(x)KT(x, y)

2
=
∑

{x,y}∈F

(f (y) − f (x))2 π(x)K(x, y)

It will be convenient to work with Ẽ � ZET, where Z is the normalizing constant
of π , as in equation (2). Define a nonnegative measure μ on N+ as

∀ x ∈ N+, μ(x) � Q(x)Q(p(x)). (14)

Proposition 3 On B, there exists λ > 0 such that

∀ f ∈ L2(μ), λμ[(f − f (0))2] � Ẽ(f ). (15)
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This result immediately implies Proposition 2. Indeed, due on one hand to the
inclusion N(x) ⊂ �p(x),∞� and on the other hand to the nature of Q, we have

∀ x ∈ N+, Q(p(x)) � Q(N(x)) � 2Q(p(x)). (16)

Thus for any f ∈ L2(μ),

λπ[(f − f (0))2] = λ

Z

∑

x∈N+
(f (x) − f (0))2Q(x)Q(N(x))

� 2λ

Z

∑

x∈N+
(f (x) − f (0))2Q(x)Q(p(x))

= 2λ

Z
μ[(f − f (0))2] � 2

Z
Ẽ(f ) = 2ET(f ) � 2E(f ),

and thus, Proposition 2 holds with � � λ/2.
The proof of Proposition 3 is based on a Dirichlet-variant of the Cheeger

inequality (which is in fact slightly simpler than the classical one, see Appendix 1).
For any A ⊂ N+, define ∂A � {{x, y} : x ∈ A, y �∈ A} ⊂ E. Endow E with the
measure ν induced by, for any {x, y} ∈ E,

ν({x, y}) � Zπ(x)KT(x, y) =
{

Q(x)Q(y) if {x, y} ∈ F,

0 otherwise.

Define the Dirichlet–Cheeger constant

ι � inf
A∈A

ν(∂A)

μ(A)
� 0

whereA � {A ⊂ N+ : A �= ∅}. The proof of the traditional Markovian Cheeger’s
inequality given in the lectures by Saloff-Coste [23] implies directly that the best
constant λ in Proposition 3 satisfies λ � ι2/2. Thus it remains to check:

Proposition 4 On B, we have ι � 1/2 and in particular ι > 0.

Proof Take any nonempty A ∈ A and decompose it into its connected components
with respect to T: A = ⊔

i∈I Ai , where the index set I is at most denumerable.
Note that

μ(A) =
∑

i∈I
μ(Ai), ν(A) =

∑

i∈I
ν(Ai),

where the second identity holds because there are no edges in F connecting two
different Ai’s. Thus, it follows that ι = inf

A∈Ã ν(∂A)/μ(A), where Ã is the set of
subsets ofA which are T-connected.



276 S. Chatterjee et al.

Consider A ∈ Ã, it has a smallest element a ∈ N+ (since 0 �∈ A). Let Ta be the
subtree of descendants of A in T (i.e., the set of vertices from N+ whose non-self-
intersecting path to 0 passes through a). We have A ⊂ Ta , and ∂A ⊃ {a, p(a)} =
∂Ta , and it follows that ν(∂A)/μ(A) � ν(∂Ta)/μ(Ta). We deduce that

ι � inf
a∈N+

ν(∂Ta)

μ(Ta)
= inf

a∈N+

Q(a)Q(p(a))

μ(Ta)
.

On B, we have for any a ∈ N+, on the one hand

∀ x ∈ Ta, p(x) � p(a), (17)

and on the other hand

Ta ⊂ �a,∞�. (18)

We get μ(Ta) equals
∑

x∈Ta

Q(x)Q(p(x)) � Q(p(a))
∑

x∈Ta

Q(x) � Q(p(a))
∑

x∈�a,∞�

Q(x) = 2Q(p(a))Q(a).

It follows that ι � 1/2. ��
Lemma 4 can now be used to see that the ball Markov chain on the random
graph has a.s. a spectral gap. Indeed, we deduce from Lemma 4 that there exists a
(random) vertex x0 ∈ N such that for any x > x0, p(x) < x. Consider

x1 � max{p(x) : x ∈ �1, x0�}.

It follows that for any a > x1, we have, for all ∀ x ∈ Ta , p(x) < x. (To see this, take
any path a0, a1, . . . in Ta , starting at a0 = a, so that p(ai) = ai−1 for each i. Let
k be the first index such that ak � ak+1, assuming that there exists such a k. Then
ak+1 � x0, and so ak = p(ak+1) � x1. But this is impossible, since a0 � ak and
a0 > x1.) In particular, we see that (17) and (18) hold for a > x1. As a consequence,

inf
a>x1

ν(∂Ta)

μ(Ta)
� 1

2
.

By the finiteness of �1, x1�, we also have infa∈�1,x1� ν(∂Ta)/μ(Ta) > 0. So, finally,

ι = inf
a∈N+

ν(∂Ta)

μ(Ta)
> 0,

which shows that G(∞, 1/2) has a spectral gap a.s.
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7 Spectral Gap for the Rado Graph

This section proves the needed spectral gap for the Rado graph. Here the graph has
vertex setN and an edge from i to j if i is less than j and the ith bit of j is a one. We
treat carefully the case of a more general base measure, Q(x) = (1− δ)δx . As delta
tends to 1, sampling from this Q is a better surrogate for “pick a neighboring vertex
uniformly”. Since the normalization doesn’t enter, throughout take Q(x) = δx . The
heart of the argument is a discrete version of Hardy’s inequality for trees. This is
developed below with full details in Appendix 2.

Consider the transition kernel K reversible with respect to π and associated to
the measure Q given by Q(x) � δx for all x ∈ N, where δ ∈ (0, 1) (instead of
δ = 1/2 as in the introduction, up to the normalization). Recall that

∀ x, y ∈ N, K(x, y) �
Q(y)

Q(N(x))
1N(x)(y),

∀ x ∈ N, π(x) = Z−1Q(x)Q(N(x)),

where N(x) is the set of neighbors of x induced by K and where Z > 0 is the
normalizing constant. Here is the equivalent of Proposition 3:

Proposition 5 We have

λ � 1 − δ

16(2 ∨ �log2 log2(2/ log2(1/δ))�)
.

This bound will be proved via Hardy’s inequalities. If we resort to Dirichlet–
Cheeger, we rather get

λ � (1 − δ)2

2
. (19)

To see the advantage of Proposition 5, let δ come closer and closer to 1, namely,
approach the problematic case of “pick a neighbor uniformly at random”. In this
situation, the r.h.s. of the bound of Proposition 5 is of order

1 − δ

16�log2 log2(1/(1 − δ))�
which is better than (19) as δ goes to 1−.

Here we present the Hardy’s inequalities method to get Proposition 5 announced
above. Our goal is to show that K admits a positive first Dirichlet eigenvalue:

Proposition 6 There exists � > 0 depending on δ ∈ (0, 1) such that

∀ f ∈ L2(π), �π[(f − f (0))2] � 1

2

∑

x,y ∈N

(f (y) − f (x))2 π(x)K(x, y).
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It follows that the reversible couple (K, π) admits a spectral gap bounded below
by � given above. Indeed, it is an immediate consequence of the fact that for any
f ∈ L2(π), the variance of f with respect to π is bounded above by π[(f −f (0))2].

The proof of Proposition 6 is based on a pruning of K and Hardy’s inequalities
for trees. Consider the set of unoriented edges induced byK:E � {{x, y} ∈ N×N :
K(x, y) > 0} (in particular, E does not contain the self-edges or singletons). For
any x ∈ N+, let p(x) the smallest bit equal to 1 in the binary expansion of x, i.e.,

p(x) � min{y ∈ N : K(x, y) > 0}.

Define the subset F of E by

F � {{x, p(x)} ∈ E : x ∈ N+}

and the function ν on F via

∀ {x, p(x)} ∈ F, ν({x, p(x)}) � Zπ(x)K(x, p(x)) = Q(x)Q(p(x)).

To any f ∈ L2(π), associate the function (df )2 on F given by

∀ {x, p(x)} ∈ F, (df )2({x, p(x)}) � (f (x) − f (p(x)))2.

Finally, consider the (non-negative) measure μ defined on N+ via

∀ x ∈ N+, μ(x) � Q(x)Q(p(x)). (20)

Then we have:

Proposition 7 There exists λ > 0 depending on δ ∈ (0, 1) such that

∀ f ∈ L2(μ), λμ[(f − f (0))2] �
∑

e∈F

(df )2(e)ν(e).

This result implies Proposition 6. Indeed, note that by the definition of Q,

∀ x ∈ N+, Q(p(x)) � Q(N(x)) � 1

1 − δ
Q(p(x)). (21)

Thus, for any f ∈ L2(μ),

λπ[(f − f (0))2] = λ

Z

∑

x∈N+
(f (x) − f (0))2Q(x)Q(N(x))

� λ

(1 − δ)Z

∑

x∈N+
(f (x) − f (0))2Q(x)Q(p(x))
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= λ

(1 − δ)Z
μ[(f − f (0))2] � 1

(1 − δ)Z

∑

e∈F

(df )2(e)ν(e)

� 1

2(1 − δ)

∑

x,y ∈N

(f (y) − f (x))2 π(x)K(x, y)

namely Proposition 6 holds with � � λ(1 − δ).
Note that N endowed with the set of non-oriented edges F has the structure of a

tree. We interpret 0 as its root, so that for any x ∈ N+, p(x) is the parent of x. Note
that for any x ∈ N, the children of x are exactly the numbers y2x , where y is an odd
number. We will denote h(x) the height of x with respect to the root 0 (thus, the odd
numbers are exactly the elements of N whose height is equal to 1).

According to [21] (see also Evans, Harris and Pick [10]), the best constant λ in
Proposition 7, say λ0, can be estimated up to a factor 16 via Hardy’s inequalities for
trees, see (23) below. To describe them we need several notations.

Let T the set of subsets T of N+ satisfying the following conditions

• T is non-empty and connected (with respect to F ),
• T does not contain 0,
• there exists M � 1 such that h(x) � M for all x ∈ T ,
• if x ∈ T has a child in T , then all children of x belong to T .

Note that any T ∈ T admits a closest element to 0, call itm(T ). Note thatm(T ) �= 0.
When T is not reduced to the singleton {m(T )}, then T \ {m(T )} has a denumerable
infinity of connected components which are indexed by the children of m(T ). Since
these children are exactly the y2m(T ), where y ∈ I, the set of odd numbers, call
Ty2m(T ) the connected component of T \ {m(T )} associated to y2m(T ). Note that
Ty2m(T ) ∈ T. We extend ν as a functional on T, via the iteration

• when T is the singleton {m(T )}, we take ν(T ) � ν({m(T ), p(m(T ))}),
• when T is not a singleton, decompose T as {m(T )} �⊔y∈I Ty2m(T ) , then ν is

defined as

1

ν(T )
= 1

ν({m(T )}) + 1
∑

y∈I ν(Ty2m(T ) )
. (22)

For x ∈ N+, let Sx be the set of vertices y ∈ N+ whose path to 0 passes through x.
For any T ∈ T we associate the subset

T ∗ � (Sm(T ) \ T ) � L(T )

where L(T ) is the set of leaves of T , namely the x ∈ T having no children in T .
Equivalently,T ∗ is the set of all descendants of the leaves of T , themselves included.
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Consider S ⊂ T the set of T ∈ T which are such that m(T ) is an odd number.
Finally, define

A � sup
T ∈S

μ(T ∗)
ν(T )

.

We are interested in this quantity because of the Hardy inequalities:

A � 1

λ0
≤ 16A, (23)

where recall that λ0 is the best constant in Proposition 7. (In [21], only finite trees
were considered, the extension to infinite trees is given in Appendix 2). So, to prove
Proposition 7, it is sufficient to show that A is finite. To investigateA, we need some
further definitions. For any x ∈ N+, let

b(x) �
Q(2x)

Q(p(x))
.

A finite path from 0 in the direction to infinity is a finite sequence z � (zn)n∈�0,N�
of elements of N+ such that z0 = 0 and p(zn) = zn−1 for any n ∈ �1, N�. On such
a path z, we define the quantity

B(z) �
∑

n∈�1,N�

b(zn).

The following technical result is crucial for our purpose of showing that A is finite.

Lemma 6 For any finite path from 0 in the direction to infinity z � (zn)n∈�0,N�, we

have B(z) � C, where C �
∑

l∈N δ2
2l −l < +∞.

Proof Note that for any n ∈ �1, N�, h(zn) = n. Furthermore, for any x ∈ N+, we
have h(x) � x and we get h(p(zn)) = h(zn) − 1 = n − 1, so that p(zn) � n − 1.
Writing zn = yn2p(zn), for some odd number yn, it follows that

b(zn) = Q(2yn2p(zn)
)

Q(p(zn))
= δ2

yn2p(zn)−p(zn) � δ2
2p(zn)−p(zn) � δ2

2n−1−n−1.

The desired result follows at once. ��
We need two ingredients about ratios μ(T ∗)/ν(T ). Here is the first one.

Lemma 7 For any T ∈ T which is a singleton, we have μ(T ∗)
ν(T )

� 1
1−δ

.

Proof When T is the singleton {m(T )}, on the one hand we have

ν(T ) = ν({p(m(T )),m(T )}) = μ(m(T )).
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On the other hand, T ∗ is the subtree growing from m(T ), namely the subtree
containing all the descendants of m(T ). Note two properties of T ∗:

T ∗ ⊂ {y ∈ N+ : y � m(T )} and ∀ y ∈ T ∗, p(y) � p(m(T )), (24)

and we further have p(y) � m(T ) for any y ∈ T ∗ \ {m(T )}. It follows that

μ(T ∗) =
∑

y∈T ∗
Q(y)Q(p(y)) � Q(p(m(T )))

∑

y�m(T )

Q(y) = Q(p(m(T )))
∑

y�m(T )

δy

= Q(p(m(T )))
Q(m(T ))

1 − δ
= 1

1 − δ
μ(m(T )). (25)

Thus, we get μ(T ∗)/ν(T ) � 1
1−δ

. ��
For the second ingredient, we need some further definitions. The length �(T ) of
T ∈ T is given by �(T ) � maxx∈T h(x) − minx∈T h(x), and for any l ∈ N, we
define

Tl � {T ∈ T : �(T ) � l}

Lemma 8 For any l ∈ N, we have supT ∈Tl

μ(T ∗)
ν(T )

< +∞.

Proof We will prove the finiteness by induction over l ∈ N. First, note that T0 is the
set of singletons, and so Lemma 7 implies that supT ∈T0

μ(T ∗)
ν(T )

� 1
1−δ

. Next, assume
that the supremum is finite for some l ∈ N and let us show that it is also finite for
l + 1.

Consider T ∈ Tl+1, with �(T ) = l + 1; in particular, T is not a singleton.
Decompose T as {m(T )} �⊔y∈I Ty2m(T ) and recall the relation (22). Since T ∗ =
⊔

y∈I T ∗
y2m(T ) , it follows that

μ(T ∗)
ν(T )

=
∑

y∈I
μ(T ∗

y2m(T ) )

(
1

ν({m(T )}) + 1
∑

y∈I ν(Ty2m(T ) )

)

=
∑

y∈Iμ(T ∗
y2m(T ) )

ν({m(T )}) +
∑

y∈Iμ(T ∗
y2m(T ) )

∑
y∈I ν(Ty2m(T ) )

�
μ(�y∈IT ∗

y2m(T ) )

μ(m(T ))
+ sup

{
μ(T ∗

y2m(T ) )

ν(Ty2m(T ) )
: y ∈ I

}

. (26)

Consider the first term on the right. Given y ∈ I, the smallest possible element of
T ∗

y2m(T ) is y2m(T ), and we have for any x ∈ T ∗
y2m(T ) ,

p(x) � p(y2m(T )) = m(T ).



282 S. Chatterjee et al.

Thus we have the equivalent of (24):

⊔

y∈I
T ∗

y2m(T ) ⊂ {y ∈ N+ : y � 2m(T )}, ∀ x ∈
⊔

y∈I
T ∗

y2m(T ) , p(x) � m(T ). (27)

Following the computation (25), we get

μ

⎛

⎝
⊔

y∈I
T ∗

y2m(T )

⎞

⎠ <
1

1 − δ
Q(m(T ))Q(2m(T )),

where the inequality is strict, because in (27) we cannot have equality for all x ∈⊔
y∈I T ∗

y2m(T ) . It follows that

∑
y∈Iμ(T ∗

y2m(T ) )

μ(m(T ))
<

1

1 − δ

Q(m(T ))Q(2m(T ))

Q(m(T ))Q(p(m(T )))
= b(m(T ))

1 − δ
� C

1 − δ
(28)

where C is the constant introduced in Lemma 6. Since for any y ∈ I, we have
Ty2m(T ) ∈ Tl , we deduce the desired result from the induction hypothesis. ��
We are now ready to prove Proposition 7.

Proof (Of Proposition 7) Fix some T ∈ S, we are going to show that
μ(T ∗)/ν(T ) � 1 + C/(1 − δ), where C is the constant introduced in Lemma 6.
Due to Lemma 7, this bound is clear if T is a singleton. When T is not the singleton
{m(T )}, decompose T as {m(T )} � ⊔y∈I Ty2m(T ) and let us come back to (26).
Denote z1 � m(T ) and

ε �
b(z1)

1 − δ
−
∑

y∈Iμ(T ∗
y2m(T ) )

μ(m(T ))

which is positive according to (28). Coming back to (26), we have shown

μ(T ∗)
ν(T )

� b(z1)

1 − δ
+ μ(T ∗

z2
)

ν(Tz2)

where z2 ∈ {y2m(T ) : y ∈ I} is such that

sup

{
μ(T ∗

y2m(T ) )

ν(Ty2m(T ) )
: y ∈ I

}

�
μ(T ∗

z2
)

ν(Tz2)
+ ε.

To get the existence of z2, we used that the supremum is finite, as ensured by
Lemma 8.
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By iterating this procedure, define a finite path from 0 in the direction to infinity
z � (zn)n∈�0,N�, such that for any n ∈ �1, N − 1�,

μ(T ∗
zn

)

ν(Tzn)
� b(zn)

1 − δ
+ μ(T ∗

zn+1
)

ν(Tzn+1)

and TzN is a singleton. We have N � max{h(x) : x ∈ T }. We deduce that

μ(T ∗)
ν(T )

� B(z)

1 − δ
+ μ(T ∗

zN
)

ν(TzN )
� C + 1

1 − δ
,

as desired. ��
To get an explicit bound in terms of δ, it remains to investigate the quantity C.

Lemma 9 We have

C �
{
2 if δ ∈ (0, 1/

√
2],

1 +
⌈
log2 log2

(
2

log2(1/δ)

)⌉
if δ ∈ (1/

√
2, 1).

Proof Consider l0 � min(l ∈ N+ : δ2
2l −l � 1/2). Elementary computations show

that

∀ l � 1, 22
l+1 − l − 1 � 2(22

l − l),

so we get

∑

l�l0

δ2
2l −l �

∑

n�0

1

22n �
∑

n�1

1

2n
= 1.

Since we have for any l ∈ N, 22
l − l � 0, we deduce

C � 1 +
∑

l∈�0,l0−1�

δ2
2l −l � 1 + l0.

It is not difficult to check that for any l � 1, 22
l − l � 1

22
2l
, so that

l0 = min{l ∈ N+ : 22
l − l � 1/ log2(1/δ)} � min{l ∈ N+ : 22

l � 2/ log2(1/δ)}
= 1 ∨ �log2 log2(2/ log2(1/δ))�.
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The announced result follows from the fact

log2 log2(2/ log2(1/δ)) � 1 ⇔ δ � 1√
2
.

��
The following observations show that Q needs to be at least decaying exponen-

tially for the Hardy inequality approach to work.

Remark 2

(a) In view of the expression of π , it is natural to try to replace (20) by

∀ x ∈ N+, μ(x) � Zπ(x) = Q(x)Q(N(x)).

But then in Lemma 7, where we want the ratios μ(T ∗)/ν(T ) to be bounded
above for singletons T , we end up with the fact that

Q(N(m(T )))

Q(p(m(T )))
= μ(T )

ν(T )
� μ(T ∗)

ν(T )

must be bounded above for singletons T . Namely an extension of (21) must
hold: there exists a constant c > 0 such that

∀ x ∈ N+, Q(N(x)) � cQ(p(x)). (29)

Writing x = y2p, with y ∈ I and p ∈ N, we must have Q(N(y2p)) � cQ(p).
Take y = 1 + 2 + 4 + · · · + 2l , then we get that p,p + 1, . . . , p + l all belong
to Q(N(y2p)), so that Q({p,p + 1, . . . , p + l}) � cQ(p), and letting l go to
infinity, it follows that Q(�p,∞�) � cQ(p), namely, Q has exponential tails.

(b) Other subtrees of the graph generated by K could have been considered. It
amounts to choose the parent of any x ∈ N+. But among all possible choices of
such a neighbor, the one with most weight is p(x), at least if Q is decreasing.
In view of the requirement (29), it looks like the best possible choice.

(c) If one is only interested in Proposition 7 with μ defined by (20), then many
more probability measures Q can be considered, in particular any polynomial
probability of the form Q(x) � 1

ζ(l)(x+1)l
, for any x ∈ N, where ζ is the

Riemann function and l > 1.
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Appendix 1: Dirichlet–Cheeger Inequalities

We begin by showing the Dirichlet–Cheeger inequality that we have been using in
the previous sections. It is a direct extension (even simplification) of the proof of
the Cheeger inequality given in Saloff-Coste [23]. We end this appendix by proving
that it is in general not possible to compare linearly the Dirichlet–Cheeger constant
of an absorbed Markov chain with the largest Dirichlet–Cheeger constant induced
on a spanning subtree.

Let us work in continuous time. ConsiderL a sub-Markovian generator on a finite
set V . Namely, L � (L(x, y))x,y∈V , whose off-diagonal entries are non-negative
and whose row sums are non-positive. Assume that L is irreducible and reversible
with respect to a probability π on V .

Let λ(L) be the smallest eigenvalue of−L (often called the Dirichlet eigenvalue).
The variational formula for eigenvalues shows that

λ(L) = min
f∈RV \{0}

−π[fL[f ]]
π[f 2] . (30)

The Dirichlet–Cheeger constant ι(L) is defined similarly, except that only indicator
functions are considered in the minimum:

ι(L) = min
A⊂V, A�=∅

−π[1AL[1A]]
π[A] . (31)

Here is the Dirichlet–Cheeger inequality:

Theorem 5 Assuming L �= 0, we have

ι(L)2

2�(L)
� λ(L) � ι(L)

where �(L) � max{|L(x, x)| : x ∈ V } > 0.

When L is Markovian, the above inequalities are trivial and reduce to ι(L) =
λ(L) = 0. Indeed, it is sufficient to consider f = 1 and A = V respectively in
the r.h.s. of (30) and (31). Thus there is no harm in supposing furthermore that L

is strictly sub-Markovian: at least one of the row sums is negative. To bring this
situation back to a Markovian setting, it is usual to extend V into V � V � {0}
where 0 �∈ V is a new point. Then one introduces the extended Markov generator L

on V via

∀ x, y ∈ V , L(x, y) �

⎧
⎨

⎩

L(x, y) if x, y ∈ V,

−∑z∈V L(x, z) if y = 0,
0 otherwise.
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Note that the point 0 is absorbing for the Markov processes associated to L.
It is convenient to give another expression for ι(L). Consider the set of edges

E � {{x, y} : x �= y ∈ V }. We define a measure μ on E:

∀ e � {x, y} ∈ E, μ(e) �

⎧
⎨

⎩

π(x)L(x, y) if x, y ∈ V,

π(x)L(x, 0) if y = 0,
π(y)L(y, 0) if x = 0.

(Note that the reversibility assumption was used to ensure that the first line is well-
defined.) Extend any f ∈ R

V into the function f on V by making it vanish at 0 and
define

∀ e � {x, y} ∈ E, |df |(e) � |f (y) − f (x)|.

With these definitions we can check that

∀ f ∈ R
V , −π[fL[f ]] =

∑

e∈E

|df |2(e)μ(e).

These notations enable to see (31) as a L1 version of (30):

Proposition 8 We have

ι(L) = min
f ∈RV \{0}

∑
e∈E |df |(e)μ(e)

π[|f |] .

Proof Restricting the minimum in the r.h.s. to indicator functions, we recover the
r.h.s. of (31). It is thus sufficient to show that for any given f ∈ R

V \ {0},
∑

e∈E |df |(e)μ(e)

π[|f |] � ι(L). (32)

Note that |df |(e) � |d|f ||(e) for any e ∈ E, so without lost of generality, we can
assume f � 0. For any t � 0, consider the set Ft and its indicator function given
by

Ft � {f > t} = {f > t} and ft � 1Ft .

Note that

∀ x ∈ V, f (x) =
∫ +∞

0
ft (x) dt,



A Random Walk on the Rado Graph 287

so that by integration,

π[f ] =
∫ +∞

0
π[Ft ] dt.

Furthermore, we have

∑

e∈E

|df |(e)μ(e) =
∑

e�{x,y} : f (y)>f (x)

(f (y) − f (x))μ(e) =
∑

e�{x,y} : f (y)>f (x)

∫ f (y)

f (x)

μ(e) dt

=
∫ +∞

0

∑

e�{x,y} : f (y)>t�f (x)

μ(e) dt =
∫ +∞

0
μ(∂Ft) dt,

where for any A ⊂ V , we define

∂A � {{x, y} ∈ E : x ∈ A and y �∈ A}.

Note that for any such A, we have μ(∂A) = −π[1AL[1A]], so that

∑

e∈E

|df |(e)μ(e) = −
∫ +∞

0
π[ftL[ft ]] dt � ι(L)

∫ +∞

0
π[Ft ] dt = ι(L)π[f ],

showing (32). ��

Proof (Of Theorem 5) Given g ∈ R
V , let f = g2. By Proposition 8, we compute

ι(L)π[f ] �
∑

e∈E

|df |(e)μ(e) =
∑

e�{x,y}∈E

|g2(y) − g2(x)|μ(e)

=
∑

e�{x,y}∈E

|g(y) − g(x)||g(y) + g(x)|μ(e)

�
√ ∑

e�{x,y}∈E

(g(y) − g(x))2μ(e)

√ ∑

e�{x,y}∈E

(g(y) + g(x))2μ(e)

�
√−π[gL[g]]

√
2

∑

e�{x,y}∈E

(g2(y) + g2(x))μ(e)

= √−π[gL[g]]
√
4

∑

e�{x,y}∈E

g2(x)μ(e)

= √−π[gL[g]]
√
2
∑

x∈V

g2(x)π(x)
∑

y∈V\{x}
L(x, y)
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= √−π[gL[g]]
√

2
∑

x∈V

g2(x)π(x)|L(x, x)|

�
√
2�(L)

√−π[gL[g]]
√

π[g2] = √2�(L)
√−π[gL[g]]√π[f ].

Thus, we have

ι(L)2

2�(L)
π[g2] � −π[gL[g]],

which gives the desired lower bound for λ(L). The upper bound is immediate. ��
The unoriented graph associated to L is G � (V ,EL) where EL � {e ∈ E :

μ(e) > 0}. Consider T, the set of all subtrees of G, and for any T ∈ T, consider the
sub-Markovian generator LT on V associated to T via

LT (x, y) �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

L(x, y) if {x, y} ∈ E(T ),

−∑z∈V \{x} LT (x, z) if x = y and {x, 0} �∈ E(T ),

−∑z∈V \{x} LT (x, z) − L(x, 0) if x = y and {x, 0} ∈ E(T ),

0 otherwise,

where x, y ∈ V and E(T ) is the set of (unoriented) edges of T .
Note that LT is also reversible with respect to π (it is irreducible if and only if

0 belongs to a unique edge of E(T )). Denote μT the corresponding measure on E.
It is clear that μT � μ, so we get ι(LT ) � ι(L). In the spirit of Benjamini and
Schramm [2], we may wonder if conversely, ι(L) could be bounded above in terms
of maxT ∈T ι(LT ). A linear comparison is not possible:

Proposition 9 It does not exist a universal constant χ > 0 such that for any L as
above, χι(L) � maxT ∈T ι(LT ).

Proof Let us construct a family (L(n))n∈N+ of sub-Markovian generators such that

lim
n→∞

maxT ∈T ι(L
(n)
T )

ι(L(n))
= 0 (33)
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For any n ∈ N+, the state space V (n) of L(n) is �n� × {0, 1} (more generally, all
notions associated to L(n) will marked by the exponent (n)). Denote V

(n)
0 � �n� ×

{0} and V
(n)
1 � �n� × {1}. We take

L(n)(x, y) �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ε if x ∈ V
(n)
i , y ∈ V

(n)
1−i with i ∈ {0, 1},

nε + 1 if x = y ∈ V
(n)
0 ,

nε if x = y ∈ V
(n)
1 ,

0 otherwise,

where x, y ∈ V (n), and ε > 0, that will depend on n, is such that nε < 1/2.
Recall that 0 is the cemetery point added to V (n), we have

∀ x ∈ V (n), L
(n)

(x, 0) =
{
1 if x ∈ V

(n)
0 ,

0 if x ∈ V
(n)
1 .

Note that π(n) is the uniform probability on V (n). Let us show that

ι(L(n)) = nε. (34)

Consider any ∅ �= A ⊂ V (n), and decompose A = A0 � A1, with A0 � A ∩ V
(n)
0

and A1 � A∩V
(n)
1 . Denote a0 � |A0| and a1 � |A1|. We have that ∂A is given by

{{x, y} : x ∈ A0, y ∈ V
(n)
1 \ A1}{{x, y} : x ∈ V

(n)
0 \ A0, y ∈ A1} � {{x, 0} : x ∈ A0},

and thus μ(n)(∂A) = 1
2n (ε(a0(n − a1) + a1(n − a0)) + a0). It follows that

μ(n)(∂A)

π(n)(A)
= nε + a0(1 − 2εa1)

a0 + a1
.

Taking into account that 1 − 2εa1 > 0, the r.h.s. is minimized with respect to a0 ∈
�0, n� when a0 = 0 and we then get (independently of a1), μ(n)(∂A)/π(n)(A) = nε.
We deduce (34).

Consider any T ∈ T
(n) and let us check that

ι(L
(n)
T ) � ε. (35)

Observe there exists x ∈ V
(n)
1 such that there is a unique y ∈ V

(n)
0 with {x, y} being

an edge of T . Indeed, put on the edges of T the orientation toward the root 0. Thus
from any vertex x ∈ V

(n)
1 there is a unique exiting edge (but it is possible there are

several incoming edges). Necessarily, there is a vertex in V
(n)
0 whose edge exits to 0.

So there are at most n − 1 vertices from V
(n)
0 whose exit edge points toward V

(n)
1 . In

particular, there is at least one vertex from V
(n)
1 which is not pointed out by a vertex
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from V
(n)
0 . We can take x to be this vertex from V

(n)
1 and y ∈ V

(n)
0 is the vertex

pointed out by the oriented edge exiting from x.
Considering the singleton {x}, we get

μ
(n)
T (∂{x}) = μT ({x, y}) = ε

2n
and π(n)(x) = 1

2n
.

implying (35) (a little more work would prove that an equality holds there). As a
consequence, we see that maxT ∈T(n) ι(L

(n)
T ) � ε. Taking for instance ε � 1/(4n) to

fulfill the condition nε < 1/2, we obtain
max

T ∈T(n) ι(L
(n)
T )

ι(L(n))
� 1

n
, and (33) follows. ��

Appendix 2: Hardy’s Inequalities

Our goal here is to extend the validity of Hardy’s inequalities on finite trees to
general denumerable trees, without assumption of local finiteness. We begin by
recalling the Hardy’s inequalities on finite trees. Consider T = (V ,E, 0) a finite
tree rooted in 0, whose vertex and (undirected) edge sets are V and E. Denote
V � V \ {0}, for each x ∈ V , the parent p(x) of x is the neighbor of x in the
direction of 0. The other neighbors of x are called the children of x and their set is
written C(x). For x = 0, by convention C(0) is the set of neighbors of 0. Let be
given two positive measures μ, ν defined on V . Consider c(μ, ν) the best constant
c � 0 in the inequality

∀ f ∈ R
V , μ[f 2] � c

∑

x∈V

(f (p(x)) − f (x))2ν(x) (36)

where f was extended to 0 via f (0) � 0.
According to [21] (see also Evans, Harris and Pick [10]), c(μ, ν) can be

estimated up to a factor 16 via Hardy’s inequalities for trees, see (39) below. To
describe them we need several notations.

Let T the set of subsets T of V satisfying the following conditions

• T is non-empty and connected (in T),
• T does not contain 0,
• if x ∈ T has a child in T , then all children of x belong to T .

Note that any T ∈ T admits a closest element to 0, call it m(T ), we have m(T ) �=
0. When T is not reduced to the singleton {m(T )}, the connected components of
T \ {m(T )} are indexed by the set of the children of m(T ), namely C(m(T )). For
y ∈ C(m(T )), denote by Ty the connected component of T \ {m(T )} containing y.
Note that Ty ∈ T.

We extend ν as a functional on T, via the iteration
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• when T is the singleton {m(T )}, we take ν(T ) � ν(m(T )),
• when T is not a singleton, decompose T as {m(T )} � ⊔y∈C(m(T )) Ty , then ν

satisfies

1

ν(T )
= 1

ν(m(T ))
+ 1
∑

y∈C(m(T )) ν(Ty)
. (37)

For x ∈ V , let Sx be the set of vertices y ∈ V whose path to 0 pass through x. For
any T ∈ T we associate the subset

T ∗ � (Sm(T ) \ T ) � L(T )

where L(T ) is the set of leaves of T , namely the x ∈ T having no children in T .
Equivalently,T ∗ is the set of all descendants of the leaves of T , themselves included.

Consider S ⊂ T, the set of T ∈ T which are such that m(T ) is a child of 0.
Finally, define

b(μ, ν) � max
T ∈S

μ(T ∗)
ν(T )

. (38)

We are interested in this quantity because of the Hardy inequality:

b(μ, ν) � c(μ, ν) ≤ 16 b(μ, ν). (39)

Our goal here is to extend this inequality to the situation where V is denumerable
and where μ and ν are two positive measures on V , with

∑
x∈V μ(x) < +∞.

Remark 3 Without lost of generality, we can assume 0 has only one child, because
what happens on different Sx and Sy , where both x and y are children of 0, can be
treated separately.

More precisely, while V is now (denumerable) infinite, we first assume that the
height of T � (V ,E, 0) is finite (implying that T cannot be locally finite). Recall
that the height h(x) of a vertex x ∈ V is the smallest number of edges linking x to
0. The assumption that supx∈V h(x) < +∞ has the advantage that the iteration (37)
enables us to compute ν on T, starting from the highest vertices from an element of
T. Then b(μ, ν) is defined exactly as in (38), except the maximum has to be replaced
by a supremum. Extend c(μ, ν) as the minimal constant c � 0 such that (36) is
satisfied, with the possibility that c(μ, ν) = +∞ when there is no such c. Note that
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in (36), the space RV can be reduced and replaced by B(V ), the space of bounded
mappings on V :

Lemma 10 We have

c(μ, ν) = sup
f ∈B(V )\{0}

μ[f 2]
∑

x∈V (f (p(x)) − f (x))2ν(x)
.

Proof Denote c̃(μ, ν) the above r.h.s. A priori we have c(μ, ν) � c̃(μ, ν). To prove
the reverse bound, consider any f ∈ R

V and consider for M > 0, fM � (f ∧M)∨
(−M). Note that

∑

x∈V

(fM(p(x)) − fM(x))2ν(x) �
∑

x∈V

(f (p(x)) − f (x))2ν(x).

(This a general property of Dirichlet forms and comes from the 1-Lipschitzianity of
the mapping R � r 	→ (r ∧ M) ∨ (−M).) Since fM ∈ B(V ), we have

μ[f 2
M ] � c̃(μ, ν)

∑

x∈V

(fM(p(x)) − fM(x))2ν(x)

� c̃(μ, ν)
∑

x∈V

(f (p(x)) − f (x))2ν(x).

Letting M go to infinity, we get at the limit by monotonous convergence

μ[f 2] � c̃(μ, ν)
∑

x∈V

(f (p(x)) − f (x))2ν(x).

Since this is true for all f ∈ R
V , we deduce that c(μ, ν) � c̃(μ, ν). ��

Consider (xn)n∈N+ an exhaustive sequence of V , with x0 = 0 and such that for
any n ∈ N+, V n � {x0, x1, . . . , xn} is connected. We denote Tn the tree rooted on
0 induced by T on V n and as above, Vn � V n \{0} = {x1, . . . , xn}. For any n ∈ N+
and x ∈ Vn, introduce the set

Rn(x) � {x}
⊔

y∈C(x)\Vn

Sy.

In words, this is the set of elements of V whose path to 0 first enters Vn at x.
From now on, we assume that 0 has only one child, taking into account Remark 3.

It follows that

V =
⊔

x∈Vn

Rn(x). (40)
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Let μn and νn be the measures defined on Vn via

∀ x ∈ Vn,

{
μn(x) � μ(Rn(x)),

νn(x) � ν(x).

The advantage of the μn and νn is that they brought us back to the finite situation
while enabling to approximate c(μ, ν):

Proposition 10 We have limn→∞ c(μn, νn) = c(μ, ν).

Proof We first check that the limit exists. For n ∈ N+, consider the sigma-field Fn

generated by the partition (40). To each Fn-measurable function f , associate the
function fn defined on Vn by

∀ x ∈ Vn, fn(x) � f (x).

This function determines f , since for any x ∈ Vn and any y ∈ Rn(x), f (y) = fn(x).
Furthermore, we have:

μ[f 2] = μn[f 2
n ]

∑

x∈V

(f (p(x)) − f (x))2ν(x) =
∑

x∈Vn

(fn(p(x)) − fn(x))2νn(x).

It follows that

c(μn, νn) = sup
f∈B(Fn)\{0}

μ[f 2]
∑

x∈V (f (p(x)) − f (x))2ν(x)
,

where B(Fn) is the set of Fn-measurable functions, which are necessarily bounded,
i.e., belong to B(V ). Since for any n ∈ N+ we have Fn ⊂ Fn+1, we get that the
sequence (c(μn, νn))n∈N+ is non-decreasing and, taking into account Lemma 10,
that

lim
n→∞ c(μn, νn) � c(μ, ν).

To get the reverse bound, first assume that c(μ, ν) < +∞. For given ε > 0, find a
function f ∈ B(V ) with

μ[f 2]
∑

x∈V (f (p(x)) − f (x))2ν(x)
� c(μ, ν) − ε.

Consider π the normalization of μ into a probability measure and let fn be the
conditional expectation of f with respect to π and to the sigma-field Fn. Note
that the fn are uniformly bounded by ‖f ‖∞. Thus by the bounded martingale
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convergence theorem and since π gives a positive weight to any point of V , we
have

∀ x ∈ V, lim
n→∞ fn(x) = f (x).

From Fatou’s lemma, we deduce

lim inf
n→∞

∑

x∈Vn

(fn(p(x)) − fn(x))2νn(x) = lim inf
n→∞

∑

x∈Vn

(fn(p(x)) − fn(x))2ν(x)

�
∑

x∈V

lim inf
n→∞ [(fn(p(x)) − fn(x))21Vn(x)] ν(x) =

∑

x∈V

(f (p(x)) − f (x))2ν(x).

By another application of the bounded martingale convergence theorem, we get

lim
n→∞ μn[f 2

n ] = lim
n→∞ μ[f 2

n ] = μ[f 2],

so that

lim sup
n→∞

μn[f 2
n ]

∑
x∈V (fn(p(x)) − fn(x))2ν(x)

� μ[f 2]
∑

x∈V (f (p(x)) − f (x))2ν(x)
.

It follows that limn→∞ c(μn, νn) � c(μ, ν) − ε, and since ε > 0 can be chosen
arbitrary small,

lim
n→∞ c(μn, νn) � c(μ, ν).

It remains to deal with the case where c(μ, ν) = +∞. Then for any M > 0, we can
find a function f ∈ B(V ) with

μ[f 2]
∑

x∈V (f (p(x)) − f (x))2ν(x)
� M.

By the above arguments, we end up with limn→∞ c(μn, νn) � M , and since M can
be arbitrary large, limn→∞ c(μn, νn) = +∞ = c(μ, ν). ��
Our next goal is to show the same result holds for b(μ, ν). We need some additional
notations. The integer n ∈ N+ being fixed, denote Tn and Sn the sets T and
S associated to Tn. The functional νn is extended to Tn via the iteration (37)
understood in Tn. To any T ∈ Tn, associate Tn the minimal element of T containing
T . It is obtained in the following way: to any x ∈ T , if x has a child in T , then add
all the children of x in V , and otherwise do not add any other points.
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Lemma 11 We have the comparisons

νn(T ) � ν(Tn) and μn(T
∗) � μ(T ∗

n ),

where T ∗ is understood in Tn (and T ∗
n in T).

Proof The first bound is proven by iteration on the height of T ∈ Tn.

• If this height is zero, then T is a singleton and Tn is the same singleton, so that
νn(T ) = ν(Tn).

• If the height h(T ) of T is at least equal to 1, decompose

T = {mn(T )} �
⊔

y∈Cn(mn(T ))

Tn,y

where mn(·), Cn(·) and Tn,· are the notions corresponding to m(·), C(·) and T· in
Tn.

Note that T and Tn have the same height and decompose

Tn = {m(Tn)} �
⊔

z∈C(m(Tn))

Tn,z.

On the one hand, we have m(Tn) = mn(T ) and Cn(mn(T )) ⊂ C(mn(T )) and on
the other hand, we have for any y ∈ Cn(mn(T )), νn(Ty) � ν((Ty)n) = ν(Tn,y),
due to the iteration assumption and to the fact that the common height of Ty and
(Ty)n is at most equal to h(T ) − 1. The equality (Ty)n = Tn,y is due to the fact
that Tn,y is obtained by the same completion of Ty as the one presented for T just
above the statement of Lemma 11, and thus coincides with (Ty)n. It follows that

1

νn(T )
= 1

νn(mn(T ))
+ 1
∑

y∈Cn(mn(T )) νn(Ty)

= 1

ν(m(Tn))
+ 1
∑

y∈Cn(mn(T )) νn(Ty)
≤ 1

ν(m(Tn))
+ 1
∑

y∈Cn(mn(T )) ν(Tn,y)

� 1

ν(m(Tn))
+ 1
∑

y∈C(m(Tn))
ν(Tn,y)

= 1

ν(Tn)
,

establishing the wanted bound νn(T ) � ν(Tn). We now come to the second
bound of the above lemma. By definition, we have

T ∗ = �x∈Ln(T )Sn,y,

where Ln(T ) is the set of leaves of T in Tn and Sn,y is the subtree rooted in y in
Tn.
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Note that Ln(T ) ⊂ L(Tn) and by definition of μn, we have

∀ y ∈ Ln(T ), μn(Sn,y) = μ(Sy).

It follows that

μn(T
∗) =

∑

x∈Ln(T )

μn(Sn,y) =
∑

x∈Ln(T )

μ(Sy) �
∑

x∈L(Tn)

μ(Sy) = μ(T ∗
n ).

��
Let S̃n be the image of Sn under the mapping Sn � T 	→ Tn ∈ S. Since Sn � T 	→
Tn ∈ S̃n is a bijection, we get from Lemma 11,

b(μn, νn) � max
T ∈Sn

μn(T
∗)

νn(T )
� max

Tn∈Sn

μ(T ∗
n )

ν(Tn)
� b(μ, ν),

so that

lim sup
n→∞

b(μn, νn) � b(μ, ν). (41)

Let us show more precisely:

Proposition 11 We have limn→∞ b(μn, νn) = b(μ, ν).

Proof According to (41), it remains to show that

lim inf
n→∞ b(μn, νn) � b(μ, ν). (42)

Consider T ∈ S such that the ration μ(T ∗)/ν(T ) serves to approximate b(μ, ν),
namely up to an arbitrary small ε > 0 if b(μ, ν) < +∞ or is an arbitrary large
quantity if b(μ, ν) = +∞. Define

∀ n ∈ N+, T (n) � T ∩ Vn.

Arguing as at the end of the proof of Proposition 10, we will deduce (42) from

lim
n→∞

μn((T
(n))∗)

νn(T (n))
= μ(T ∗)

ν(T )
,

where (T (n))∗ is understood in Tn. This convergence will be the consequence of

lim
n→∞ μn((T

(n))∗) = μ(T ∗), (43)

lim
n→∞ νn(T

(n)) = ν(T ). (44)
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For (43), note that

μ(T ∗) =
∑

x∈L(T )

μ(Sy),

and as we have seen at the end of the proof of Lemma 11,

μ(T ∗) =
∑

x∈Ln(T (n))

μ(Sy).

Thus (43) follows by dominated convergence (since μ(V ) < +∞), from

∀ x ∈ T , lim
n→∞1Ln(T (n))(x) = 1L(T )(x).

To show the latter convergences, consider two cases:

• If x ∈ L(T ), then we will have x ∈ Ln(T
(n)) as soon as x ∈ Vn.

• If x ∈ T \ L(T ), then we will have x �∈ Ln(T
(n)) as soon as Vn contains one of

the children of x in T .

We now come to (44), and more generally let us prove by iteration over their
height, that for any T̃ ∈ T and T̃ ⊂ T , we have

lim
n→∞ ↑ νn(T̃ ∩ Vn) = ν(T̃ ), (45)

i.e., the limit is non-decreasing. Indeed, if T̃ has height 0, it is a singleton {x}, we
have νn(T̃ ∩ Vn) = ν(T̃ ) as soon as x belongs to Vn, insuring (45).

Assume that T̃ has height a h � 1 and that (45) holds for any T̃ whose height is
at most equal to h − 1. Write as usual

1

ν(T̃ )
= 1

ν(m(T̃ ))
+ 1
∑

y∈C(m(T̃ )) ν(T̃y)
. (46)

Assume that n is large enough so that C(m(T̃ )) ∩ Vn �= ∅ and in particular m(T̃ ) ∈
Vn and mn(T̃ ∩ Vn) = m(T̃ ). Thus we also have

1

νn(T̃ ∩ Vn)
= 1

νn(mn(T̃ ∩ Vn))
+ 1
∑

y∈Cn(mn(T̃ ∩Vn)) νn((T̃ ∩ Vn)y)

= 1

ν(m(T̃ ))
+ 1
∑

y∈Cn(m(T̃ )) νn(T̃y ∩ Vn)
. (47)
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On the one hand, the set Cn(m(T̃ )) is non-decreasing and its limit is C(m(T̃ )), and
on the other hand, due to the induction hypothesis, we have for any y ∈ C(m(T̃ )),

lim
n→∞ ↑ νn(T̃y ∩ Vn) = ν(T̃y).

By monotone convergence, we get

lim
n→∞ ↑

∑

y∈Cn(m(T̃ ))

νn(T̃y ∩ Vn) =
∑

y∈C(m(T̃ ))

ν(T̃y),

which leads to (45), via (46) and (47). This ends the proof of (42). ��
The conjunction of Propositions 10 and 11 leads to the validity of (39), when V is
denumerable with T of finite height.

Let us now remove the assumption of finite height. The arguments are very
similar to the previous one, except that the definition of b(μ, ν) has to be modified
(μ and ν are still positive measures on V , with μ of finite total mass). More
precisely, for any M ∈ N+, consider VM � {x ∈ V : h(x) � M}. Define on
VM the measure νM as the restriction to VM of ν and μM via

∀ x ∈ VM, μM(x) �
{

μ(x) if h(x) < M,

μ(Sx) if h(x) = M.

By definition, we take

b(μ, ν) � lim
M→∞ b(μM, νM).

This limit exists and the convergence is monotone, since he have for any M ∈ N+,
b(μM, νM) = maxT ∈SM

μ(T ∗)
ν(T )

, where SM � {T ∈ S : T ⊂ VM}. Note that a direct
definition of b(μ, ν) via the iteration (37) is not possible: we could not start from
leaves that are singletons.

By definition, c(μ, ν) is the best constant in (36). It also satisfies c(μ, ν) �
limM→∞ c(μM, νM), as can be seen by adapting the proof of Proposition 10. We
conclude that (39) holds by passing at the limit in

∀ M ∈ N+, b(μM, νM) � c(μM, νM) ≤ 16 b(μM, νM).
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