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Preface

Harold Widom, born on September 23, 1932, passed away on January 20, 2021.
We have lost a good friend and colleague, an inimitable teacher, and an outstanding
mathematician. Harold has enriched mathematics with his ideas and groundbreaking
work since the 1950s until the present time. His personality has left its imprint on
all those who accompanied him some period or met him only occasionally.

This volume is dedicated to his memory. It contains a biography of Harold
Widom and personal notes written by his former students or colleagues. We are
at the same time sad and proud to publish also his last paper, Domain walls in the
Heisenberg-Ising Spin-; chain, which he started jointly with Axel Saenz and one
of us but could not see it accomplished. Harold’s most famous contributions were
made to Toeplitz operators, random matrices, and the asymmetric simple exclusion
process. While his work on the last two topics is part of almost all the present-day
research activities in these fields, his work in Toeplitz operators and matrices was
done mainly before 2000, and we therefore included an article which describes his
achievements in just this area.

The volume contains several invited and refereed research and expository papers.
These present new results or new perspectives on topics related to Harold’s work.
We are very grateful to all the authors for their effort to make this volume a highly
deserved tribute to Harold Widom.

Palo Alto, CA, USA Estelle Basor
Chemnitz, Germany Albrecht Bottcher
Santa Cruz, CA, USA Torsten Ehrhardt
Davis, CA, USA Craig A. Tracy

July 2022
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and Last Paper




Biography of Harold Widom )

Check for
updates

Estelle Basor, Albrecht Bottcher, Torsten Ehrhardt, and Craig A. Tracy

Harold Widom was born September 23, 1932, in Newark, New Jersey, during the
heart of the Depression. His parents were born in eastern Europe, and they came to
the United States in 1914, when his mother was 15 years old and his father 22. They
met in New York and were married there in 1924.

Harold was only eight when his father died. He had not seen him in the preceding
three years, since his father, a dentist who contracted tuberculosis while serving
in the US army in the First World War, had been in a tuberculosis sanitarium in
Arizona and then in Colorado. In 1939, Harold, his brother, and their mother moved
to Brooklyn.

Harold went to Stuyvesant High School in Manhattan. There he was captain of
the math team. Coincidentally, the captain of the rival team at the Bronx High School
of Science was Henry Landau, who became a long-time friend and colleague of
Harold’s. Al Kelley and Tony Tromba [1] write that the Stuyvesant team included
also “two other famous twentieth century mathematicians, Elias Stein of Princeton
and Paul Cohen of Stanford, who would all ultimately specialize in the field of
mathematical analysis. Elias was one year older than Harold, and Paul two years

E. Basor
American Institute of Mathematics, Palo Alto, CA, USA
e-mail: ebasor@aimath.org

A. Bottcher (B<)
Fakultit fiir Mathematik, Chemnitz, Germany
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younger. Paul, who would go on to win a Fields Medal in Mathematics in 1962 in
recognition of his path-breaking solution of Hilbert’s first problem, was generously
tutored by Harold for several years in high school. All three remained together to
study analysis under the guidance of Antoni Zygmund and Alberto Calderén in
graduate school at the University of Chicago. Reflecting on his life in a speech at
Stanford in 2001, Paul thanked Harold for the profound influence he had on his early
mathematical career.”

From 1949 to 1952, Harold attended the City College of New York, and in
1952 he moved to the University of Chicago, where he became a Ph.D. student
of Irving Kaplansky and defended his Ph.D. thesis, Embedding of AW*-algebras,
in 1955. Irving Kaplansky [5] beautifully characterizes the spirit of those times and
Harold’s place in them as follows. “In 1946 Marshall Stone left Harvard to accept
the chairmanship of the Department of Mathematics at the University of Chicago.
There followed quickly a series of stellar appointments that raised the department
to a very high level. (I can say this without being self-serving; John Kelley and I
were the last appointments made before the “Stone Age”.) It was an exciting time
to be at Chicago. But it was not only the faculty that created the excitement—a
stream of superb students arrived. I was lucky enough to attract my fair share, and
that included Harold. His thesis was on AW*-algebras ...His bibliography shows
three fine papers on the topic and then shifts. (With the shift, his output moved to a
different part of Mathematical Reviews). I understand that the shift can be attributed
to the influence of Mark Kac at Cornell and one could not ask for a better source of
inspiration. I am proud and happy about what Harold added to the theory of AW*-
algebras, and equally proud and happy about what he has accomplished since then.”

In 1955, Harold began his academic career as an instructor at Cornell University
where he rose through the ranks to become full professor in 1965. At Cornell,
he came under the influence of Mark Kac, who persuaded him to embark on
the asymptotic behavior of the spectra of operators, especially Toeplitz operators.
Harold then proved many of the early beautiful theorems about Toeplitz operators.
More about this can be found in the article [2]. Shortly before 1968, he spent one
year at Stanford University, and although at Cornell he had Mark Kac and his brother
Benjamin (on the Cornell faculty of chemistry) around him, he then felt, as a rumor
says, that the California weather is preferable to the Ithaca winters.

In the fall of 1968, Harold accepted an offer from University of California at
Santa Cruz to become a founding member of the Mathematics Department. He
served the department 26 years, with 3 years as the chairman, until 1994, when he
used the opportunity for early retirement. Every topic has its time. As for Toeplitz
and related operators, the late 1950s and 1960s may be regarded as the years of gold
rush. However, the period between the 1970s and the late 1990s was the true Golden
Age (or Belle Epoque, as Nikolai Nikolski once called it) of research into Toeplitz
and Wiener-Hopf operators as well as into pseudodifferential operators. It was not
only fortunate conicidence that Harold’s work in Santa Cruz fell into this age. In
fact, Harold was one of the principal figures in this development, and it was just he
who made some of the brightest contributions to the blossoming of the field. We
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refer again to [2] for a more detailed description of his tremendous achievements in
this period.

Harold’s self-chosen early retirement in 1994 was truly a huge loss for the
UCSC Mathematics Department. Tony Tromba always joked that when Harold
retired, the department entered a completely new chapter, Chapter 11. However,
for Harold it was the right decision. It was the beginning of his joint and fruitful
work with the fourth of us on random matrices and asymmetric simple exclusion
processes, which had lasted 30 years until Harold’s death in 2021. The discovery
of what is now called the Tracy-Widom distribution brought him wide international
recognition. Al Kelly and Tony Tromba [1] write “The densities of the Tracy-Widom
distributions are on the cover of each issue of the journal Random Matrices: Theory
and Applications, a rare tribute to someone’s work.” We refer to [4] for a profound
exposition of Harold’s work on random matrices and on the asymptotic behavior for
the asymmetric simple exclusion process.

As of July 2022, MathSciNet lists 167 publications by Harold with about 4000
citations by nearly 1800 authors. Solely the paper Level-spacing distributions
and the Airy kernel in Comm. Math. Phys. 159, 151-174 (1994), received more
than 600 citations. Harold wrote three books: the Springer Lecture Notes volume
Asymptotic expansions for pseudodifferential operators on bounded domains, which
was published in 1985, and the two beautiful short books Lectures on Integral
Equations and Lectures on Measure and Integration for students, based on lectures
he gave at Cornell. The latter two resulted in part from notes written by David
Drazin and Anthony Tromba, both students in his classes at the time. They were
first published by Van Nostrand in 1969 and later by Dover. His probably last paper,
Domain walls in the Heisenberg-Ising Spin-é chain, jointly with Axel Saenz and
one of us, is published in this volume.

Harold received numerous awards. In 2002, he was awarded the George Pélya
Prize. In 2006, he received the Norbert Wiener Prize in Applied Mathematics
and then in 2020, the American Mathematical Society’s Steele Prize for Seminal
Research. The fourth of us has the privilege to share these three prizes with Harold.
In 2006, Harold was elected to the American Academy of Arts and Sciences.

Harold successfully guided 8 Ph.D. students:
Lidia Luquet, 1972, p-Norm inequalities for entire functions,
Estelle Basor, 1975, Asymptotic formulas for Toeplitz determinants,

Ray Roccaforte, 1982, Asymptotic expansions of traces for certain convolution
operators,

Richard Libby, 1990, Asymptotics of determinants and eigenvalue distributions
for Toeplitz matrices associated with certain discontinuous symbols,

Xiang Fu, 1991, Asymptotics of Toeplitz matrices with symbols of bounded
variations,

Shuxian Lou, 1992, The second order asymptotics of a class of integral operators
with discontinuous symbols,
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Bobette Thorsen, 1992, An asymptotic expansion for the trace of certain integral
operators,

Bin Shao, 1993, Second order asymptotics for the discrete analogue of a class of
pseudodifferential operators.

Harold had many interests outside of mathematics. He played the violin as a
child and was part of the UCSC orchestra for several years. He especially loved
hiking. Al Kelly and Tony Tromba [1] write “For over 15 years, the three of us hiked
almost every week. We thoroughly enjoyed being together and having extended
conversations on almost any topic, mathematical, political, or simply campus and
departmental issues. After some time we only hiked every other week or so, and
then finally much less often. One favorite (and most spectacular) hike was to go
from Twin Gates on Empire Grade down to Wilder Ranch.”

Harold remained mathematically active until his last months. He maintained a
blackboard both at his home and at his university office which ought not to be
erased and which captured the problems on which he was currently working. When
a colleague of ours approached us in the Fall of 2019 with an intricate asymptotic
question, it was Harold who came up with the correct answer first. Harold kept
teaching until he was 79 years old. He was known to the students to enter the
classroom with at most a tiny piece of paper and deliver his lecture easily and
elegantly on the blackboard. He seemed in good spirits on his 88th birthday in
September 2020. He had recently broken a hip but had been recovering. Sadly, he
fell seriously ill a few months later.

Harold passed away on January 20, 2021. He is survived by his wife Linda
Larkin, former wife Lois Widom, brother Benjamin Widom, daughter Barbara
Widom, daughter Jennifer Widom, son Steven Widom, and four grandchildren.
Harold’s brother Benjamin is five years older. He is the Goldwin Smith Professor
of Chemistry at Cornell University and was awarded the Boltzmann Medal in
1998 for his achievements in physical chemistry and statistical mechanics. Harold’s
daughter Barbara Widom is an endocrinologist in Fort Collins, and his daughter
Jennifer Widom is the Frederick Emmons Terman Dean of Engineering at Stanford
University. Harold’s son Steven Widom is a software engineer.

Credits The present article is in part based on [1, 3, 5, 6].
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Domain Walls in the Heisenberg-Ising )
Spin- ; Chain Qe

Axel Saenz, Craig A. Tracy, and Harold Widom

Abstract In this chapter we obtain formulas for the distribution of the left-most
up-spin in the Heisenberg-Ising spin-1/2 chain with anisotropy parameter A, also
known as the XXZ spin-1/2 chain, on the one-dimensional lattice Z with domain
wall initial conditions. We use the Bethe Ansatz to solve the Schrodinger equation
and a recent antisymmetrization identity of Cantini, Colomo, and Pronko to simplify
the marginal distribution of the left-most up-spin. In the A = 0 case, the distribution
F> arises. In the A # 0 case, we propose a conjectural series expansion type formula
based on a saddle point analysis. The conjectural formula turns out to be a Fredholm
series expansion in the A — 0 limit and recovers the result for A = 0.

Keywords Heisenberg-Ising Spin Chain - XXZ - Bethe Ansatz - Saddle Point
Analysis

1 Introduction

We consider the dynamics of the Heisenberg-Ising spin-1/2 chain with anisotropy
parameter A, also known as the XXZ spin-1/2 chain, on the one-dimensional lattice
Z with domain wall initial conditions. We start with an initial state of N up-spins at
the sites {1, 2, ..., N} in a sea of down-spins; and by utilizing ideas from coordinate
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H. Widom
Department of Mathematics, UC Santa Cruz, Santa Cruz, CA, USA

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 9
E. Basor et al. (eds.), Toeplitz Operators and Random Matrices, Operator Theory:
Advances and Applications 289, https://doi.org/10.1007/978-3-031-13851-5_2


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13851-5_2&domain=pdf

 66 3765 a 66 3765 a
 
mailto:saenzroa@oregonstate.edu

 66 4056 a 66 4056 a
 
mailto:tracy@math.ucdavis.edu

 782 4612 a 782 4612 a
 
https://doi.org/10.1007/978-3-031-13851-5_2
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Bethe Ansatz [3, 13, 26, 37] to solve the Schrodinger equation, we find the quantum
state Wy (1) at time 7 is

Wy () =) YN (X, Dex,

X

where the sum is over all X = {x; < x2 < --- < xn} and ex denotes the state
with up-spins at X. Alternatively we can view a spin up at site x; as a particle and
a spin down as an empty lattice site or hole. The “Bethe-coordinates” ¥y (X, t) are
given below in Theorem 2.1 They have the interpretation that |y (X; z‘)|2 is the
probability the system is in state X at time ¢. Observe that the ¥y (X, t) have the
standard Bethe Ansatz structure as a sum over the permutation group Sy; where
now, each term in the summand is an N-dimensional contour integral.

1.1 One-Point Functions

If X1(¢) denotes the position of the left-most particle at time ¢, then

Py(Xi()=x)= Y [yn(X, 0

X, x1=x

where the sum is over all X = {x; = x < x2 < --- < xn}. In ASEP the
analogous quantity involves a single sum over Sy where as now we have a double
sum over Sy . In [29] an identity involving the sum over the permutation group” was
used to reduce the sum to a single N-dimensional integral. Cantini, Colomo, and
Pronko [9] have generalized the single sum permutation identity to a double sum
permutation identity, which also generalize to the (spin) Hall-Littlewood functions
[20, 36]. Employing this new identity reduces the expression for Py (X(t) = x)
to a single 2N-dimensional integral whose integrand involves the famous Izergin-
Korepin determinant [16, 18]. The resulting expression is given in Theorem 3. This
part of the paper overlaps the recent work of J. M. Stéphan [23, 25].

For the special case A = 0, the analysis simplifies considerably. Using Toeplitz
operators and their determinants, we show the N — oo limit can be taken resulting
in the representation

lim Py(X;(t) > x) = det( — L)
N—o00

! Since the Hamiltonian H 4 of the Heisenberg-Ising model is a (non-unitary) similarity transfor-
mation of the Markov generator of the ASEP [15], the results in [29] give immediately the Bethe
coordinates of Theorem 2 once an identification of parameters is made (see Sect. 3.3).

2 See equation (1.6) in [29].
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where L is an integral operator whose kernel is the discrete Bessel kernel [4, 6,
17] (see also Chapter 8 in [2]). This makes connections to the distribution of the
length of the longest increasing subsequence in a random permutation [1, 2]. See
Theorem 4 below. From this identification it follows that

(Xl(t)~|-2t

lim lim Py 13 > —y) = F(y)

=00 N—o00

where F, is the TW; distribution [27, 28]. This last result appears to be well-known
in the physics literature since the case A = 0 is reducible to a “free fermion” model
[12, 21,23, 34].

1.2 Contour Deformations and a Conjecture

Taking the contour integral functions for the one-point function to the infinite time
statistics is another major challenge. In the case of the ASEP, this was achieved by
Tracy-Widom [30] by deforming the contours to obtain a Fredholm determinant.
Then, in a later work by the same authors [31], the Fredholm determinant was
further analyzed by deforming the kernels to obtain the Tracy-Widom distribution.
We also deform the contour integrals for our one-point function, in Sect. 7, to obtain
a type of series expansion.

Theorem 1 Let X1(t) be the location of the left-most particle in the Heisenber-
Ising spin-1/2 chain with N particles, initial conditionsY = (y1 < y» < --- < YN),
and A € R so that A # 0. Then, P(X1(t) > x) is equal to

N
Z Z ‘(éR...féR fi}R-(éR INGE, C;DfECT) Hd§,~ dNé

n=01teT, jeJ

ey

where the integrand is given by (67), the summation is take over the set of maps T,
given by (59), and the contours Cgr and Cg' are circles centered at zero with radii
R, R' > 0 that satisfy the following inequalities max{2)A]~!, 2(1 +2|A]} < R <
max{4|A|~!, 4(1 +2|A])} < R'/2.

We expect this series expansion to to give rise to a series expansion of a Fredholm
determinant in the infinite time limit. In fact, we may deform the contours in the
previous formula to the steepest descent to contours in an effort to obtain the infinite
time limit by a saddle point analysis. The result is given by our Conjecture 1. Aside
from technical details of certain bounds and approximations, there are some terms
that we still can’t control after the saddle point analysis. Recent results [8, 10, 23,
241, based on numerical, hydrodynamic and analytical arguments are inconclusive
in the appropriate scaling, i.e. t!/? versus ¢!/3, for the fluctuations of the one-point
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function in the infinite time limit. Based on our conjecture, we expect the location
of the left-most particle to be at —2¢ with fluctuations on the order of !/3 but the
limiting distribution is still unclear.

2 XXZ Quantum Spin-; Hamiltonian

The definition of the quantum spin chain Hamiltonian on the infinite lattice Z
requires some explanation since there is the problem of making sense of infinite
tensor products in the construction of a Hilbert space of states. The general
construction uses the Gelfand-Naimark-Segal (GNS) construction; but in the case
considered here, there is an elementary treatment [19] which we now describe.

Let Ho = C. For each positive integer N we define

Xy = {X:{xl,...,xN} eZVN :x1<--- <xN}
and
Hy = 02(Xy).

The Hilbert space of states is

oo
H = @ H N-
N=0
The normalized state 2 = 1 € Hp is the ground state of all spins down. In

physicists’ notation
Q= d ol
Given N € ZT and X = {x1, ..., xn} € X, define ex € Hy by
ex(Y) =0dx,y.

The set {ex}xcx, defines a natural orthonormal basis of Hy. The physical
interpretation of ey is the state with up spins at x; < --- < xu in a sea of down
spins:

ex = - e o)

X1 X2 XN

This is a model of a quantum lattice gas (see, for example, §6.1.6 of [26]). We will
frequently use this particle interpretation.
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We introduce the Pauli operators aj‘?‘, je€lya=3,=.

a3eX _ ex if j e'X ={x1,...,xn}, ?)
J — ex otherwise.

a*ex _ 0 if je {xi, .. XN} . . 3)
J ex+ where X = {x1,..., Xk, j, Xk, - s XN} Xk < J < Xpt1

o ex = 0 1f]¢Xf{x1,...,xN} . )
J ex- where X~ = {X[, ..., Xk—1,Xktlr---»XN}» J = Xk

In words, U;_ : Hy — Hny+1 acts as the identity except at the site j where

it takes |~-1 and annihilates a 4 state. Similarly, o; Hn — Hn—1 acts as
the identity except at the site j where it takes 1~+| and annihilates a | state. By
definition 0/352 = 2,0, = 0and a+52 = e(j}. We also recall the Pauli

1

operators o; = U;_ + o and aj2 —lU —|— lU . Define

J
1 1
hjj+1 = ) (GJUJH +G]Uj+1 ~|—A(a a — 1))
:a]'."ojjrl ~|—aj o 1T (a oj3+1 -1
and

Hxxz = Zhj,j+1- )
JEL

The operator Hyxxz is the Heisenberg-Ising spin-% chain Hamiltonian; or more
briefly, the X X Z spin Hamiltonian. It’s clear from the above definitions that Hx x 7 :
Hny — Hn. Since the number of particles is conserved under the dynamics of
Hx x 7, we can work in a sector H .

A state ¥y = Wy (t) € Hy can be represented by

W) = Y Yn(X, Dex. 6)

XeXy

The initial condition is ¥ (0) = ey, Y = {y1,..., yn} € &N, so that Yn(X;0) =
8x.y. The dynamics is determined by the Schrodinger equation

0N
1 9 = Hxxz¥nN. @)
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The Hamiltonian Hyxz is self-adjoint and so by Stone’s theorem there exists a
unitary operator
U = exp(—itHxxz) such that Wy () = U (t)¥n (0). We have

W@, v@0) = Y [N eGP = 1.

XEXN

The goal is to describe the dynamics Ypw (¢) starting from the domain wall (DW)
initial state

e =1 LT ).
01

One immediately sees the difficulty in that ey is not an element of # for any N.?
If X,,(¢) denotes the position of the mth particle on the left, we define

Pn(Xm (1) = x) = ngnoo Py, . NyXm (@) = x).

3 Bethe Ansatz Solution ¥y (¢)

This section closely follows [29, 37] and additional details may be found on the
arXiv version of this paper [22]. We first note that

hjjil-- 4 ) =0, ®)
Jjj+1

hjjvil--d 4 ) =0, )]
Jjj+1
Jji+l Jjitl Jjitl

hjjatlood 4 vy = =Al L )l ) (11)
Jjj+1 jj+1 jj+1

Define [37] (the Yang-Yang S-matrix)

L+ &aép —2A8

Spalbpe 60 == 0

12)

fora, =1,...,N and &, &5 € C.

3 Presumably, one could construct a domain wall Hilbert space # pw by replacing the state £2 by
en. Unfortunately, we do not know how to proceed with a Bethe Ansatz solution in this space.
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The generator of the finite N asymmetric simple exclusion process (ASEP) is
a similarity transformation (not a unitary transformation!) of the Heisenberg-Ising
Hamiltonian. Because of this the Schrodinger equation (7) for the quantum spin
chain is essentially identical to the master equation (Kolmogorov forward equation)
for the Markov process ASEP assuming the identification of parameters

/ p 1
i = S; ) = ) 2A = )
& =8&/Vt, T q N
1
SXXZ , &y :SASEP /, (; ; XX7Z — ASEP ;¢/ )
ba (5. 8a) = S (55, 8,), €777 () Jpqs &)

Thus given the ASEP result [29, 32] and the above identifications, we have

Theorem 2 For o € Sy, define

Ay () = ]_[ {Spa(Ep. &) : {B. @} is an inversion in o}, (13)

then the solution to (7) satisfying the initial condition ¥ (X; 0) = 8x,y is

YN(X;t) = Z /c /c Ag(§) l—[éf(i) (Elfyifl e—its(&)) dg - dey

GESN

(14)
where C, is a circle centered at zero with radius r so small that all the poles of A,
lie outside of Cy.

Additionally, we have a contour integral formula with large contours instead of
small contours as above in Theorem 2. Below, we will use a combination of the
small and large contour formulas.

Theorem 2a For o € Sy, define

Ay (&) = l_[ {Sﬂa(éﬁ, &y) 1 {B, o} is an inversion in a} ,

then the solution to (7) satisfying the initial condition ¥ (X; 0) = 8x,y is

YN(X;t) = Z /C /c Ag (§) l—[sgi(i) (Slfyifl e—it&(Si)) dgy - dey
R R i i

GESN

15)

where Cg is a circle centered at zero with radius R so large that all the poles of A,
lie inside of Cg.

The arguments for the proof of this statement are almost verbatim to the
arguments of the proof of Theorem 1 given in [29]. In this case, one would need
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to expand contours to infinity instead of shrinking them to zero as it was done in
[29]. The arguments are then adjusted mutatis mutandis; the details may be found
in Appendix A of the arXiv version of this paper [22]. We skip the details here for
conciseness sake.

4 Probability Py (x, m; t)

If the initial state is ey € Hy, Y € Xy, then at time ¢ the system is in state ¥y () =
ZXEXN Y (X; t)ex where ¥y (X; t) is given by (14) or (15). The quantity

ex, Un(O)* = YN (X; D>, X € Xy,

is the probability that the system is in state ey at time .

Denote by Py (x, m; t) the probability that at time ¢ the state has the mth particle
from the left at position x given initially the state is Y. Let X = {x1, x2,...,xn} €
Xn, 1 <m < N, and define the projection operator

ex if x,, = x,

16
0 otherwise. (16)

Px,meX = {

Then the outcome of the measurement yielding “the mth spin from the left is at
position x at time ¢” is that the system is now in state

Wy (x,m; 1) = Py () = Y Y (X; Dex.

XEXN
Xm=X
Thus the probability of this outcome is
Py.m;1) = (Oy(eomin), OnGeomin) = Y [y (X0 (17)
XEXN
Xm=X

4.1 Distribution of Left-Most Particle

We now restrict to the case m = 1, i.e. Py(x, 1; ). Let
X1=x,x2=x+0v, ..., xy=x+vi+v+ ---+uony_1, v; > 1,

and note that ¥y (x; 1) = Yy (x; —t). Then, using (14) for ¥ (x; ¢) and (15) for
U (x; —t) with Rr < 1, followed by performing the geometric sums (since Rr < 1,
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the summations may be brought inside)

Prx, i)=Y yn(X; DY (X; —1)

XEXN
X1=x
=Y [ E (e
o.ueSy Y Cr Cr =1

X (€5 (2)Cu@) " Eo(3)Cu3) T2 - (SU(N)CM(N))”'+"'+”N")

% l—[(gjgj)x*yj'*1e*it(€(§j)*6(§j)) dcy---deydg) - - déy

N—1,.N—-1

J
) f / Ao () An() E b33 Eon S
Cr G 172 (1= & ()8t - Eo ) Euev))

o, LeSy

% 1_[(gjgj)x*yj'*1e*it(€(§j)*6(§j)) dcy---deydg - - déy
i

In the formulas above, we have 2N contour integrals with the contour C, for
the first N contours and the contours Cg for the following N contours. Now, at the
analogous step in ASEP, an identity* was derived that simplified the sum over Sy
resulting in a single multidimensional integral.’ Now we have a double sum over
Sy and we need a new identity. Fortunately such an identity has been discovered by
Cantini, Colomo, and Pronko [9]. Let

1
d(x,y) = (1—xy)(x+y—2Axy) and Dy (&,¢) =det(d(&, ¢)li=i,j<n)
(18)
then
Y A®)AL©) 5o @S82 35 Sa )
o,ueSN l_[jy:Z (1 - %‘J(j)c,u.(j) o '%'J(N)Q‘M(N))
(1= T1; &) T =1 & + ¢ — 24&¢8)
= LIS Tt " Dy o) (19)

Il (0 + &8 — 2480 (1 + 4L — 248)

4 See (1.6) in [29].
5 See Theorem 3.1 in [29].
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Remarks

* The identity (19) is Proposition 6 of [9] (with a change of notation). The identity
(19) also appears in a more general setting of (spin) Hall-Littlewood functions in
[20, 36], which specializes to the ASEP case as shown in Corollary 7.1 in [20].

* In Appendix B of [9], the authors show that (19) reduces to (1.6) of [29] in the

limit & — \/;g £ and¢; —
e The determinant Dy (£, ¢) “is nothing but the well-known [Izergin-Korepin
determinant [16, 18] in disguise” [35].

‘We thus have

(1 =TT €56 TIY =1 6 + & — 24&¢)
Py(x,l;t)zf /
cr  Jo [l (1 +&& — 2460 (1 + &gy — 2A8)

(20)
x Dy (€. ¢) [ [ i le @ =D aV e aNe
J
The factor (1 — ] j &;¢;) is eliminated if we consider
o
Fy@, 1) :=Py(X1(t) = x) = Y _ Py(n, 1;1) @1)
n=x

From [9]

An(E)AN()

, 22
Mo —gjo0 VED @D

[1 Gi+a—2480) - Dvé o) =

1<j,k<N

where Qy is a “polynomial of degree N — 1 in each variable, separately symmetric
under permutations of the variables within each set” [9, 35].% Here Ay (&) is the
Vandermonde product [ [, ; <y (& — &;) (not to be confused with the constant
A). It’s useful to define

1+ &8 —2A%

UeE)= T,

6 For example
01,0 =1,
02(8,¢) = 4A%0 0616 — 2A8 01 — 2A8 5 — 2AL1 616 — 2A0E 6
+ah&sibh +ah +65k+1,

Q3 in expanded form has 459 terms, and Q4 has 60,820 terms.
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The identity (19) can be rewritten as

2 2 N—-1,.N-1

S0 @ u@853)%u@) " So ) Su)

> T1UGE o) &)U Gty Cui)
o i< [T= (1 =& (héuip - Ewnum)

=T8¢
= 1,1 - g0 OVED

(23)

The close relationship of (23) to (1.6) of [29] (see also Identity 17 in [33]) is now
clearer. We have proved

Theorem 3 Fy(x,t) = Py (X (¢) > x) equals

ce o Tjon U+ &8 — 248 + G5 —248)
x [ et CeEn—s@n gN ¢ gV (24)

J
=/ / ANE)ANEQ) ON(E )
ce Jo TIop (U + &8 — 248) (1 + ¢t — 248)) TT,, (1 — &40

X 1_[(gjé-j)x—)’j—16—”(8(’;‘/‘)—8({/')) dN{ ng (25)
J

where C, (resp. CRr) is a circle centered at zero with radius r (resp. R) so small
(resp. large) that all the poles of the integrand except for the the poles at the origin
(resp. infinity) lie outside C, (resp. inside Cr) and Rr < 1.

5 Special Case A =0

When A = 0, (25) reduces to

TN 0|

= e AN(S)AN(C) s X—)’j—l _it(s(gj)_ﬁ@j)) dN dN 26
/CR /Cr nj,k(l — &) 1:1(5151) e rdVe 26)

1 .
= det e YT gt EED—e)) gN ¢ gN -
fcR /c e (1_§j§k>|j|<sjfj> e Ve o
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since
I On(.©) _
im =1.
A=0 []; o (1 + &6 — 248) (1 + ¢ 5k — 2A8;)
and
d < 1 ) _ ANGE)AN)
et = .
L=&a) Tl —§00
More directly since Ay | Ao = sgn(o), we use the identity
2 .2 . gN-1,.N-1
Z sen(o)sen() g;(Z)gu(Z)gg@);M@) ‘i:a(N)é‘p.(N) _ det< 1 )
o [Ti= (1 = &(hut - EsnCum) 1 =&
(28)
5.1 Fredholm Determinant Representation
Define
d)/(s) — Sx—yj—le—its(g)’ 1///(4.) — ;.x—yj—leita(;)
and
: ¢ (&)Y (Ex)
K(j,ky= """ 29
G =" (29)
Thus
]—'N(x,t)|A:0=f / det(K)dN¢ dVe
Cr Cr
= f / det(K)dN¢ dVNe (30)
C, C,

For the second identity, we deformed the contours from Cg to C, for all the ¢-
variables. When we deform the contours, we don’t cross any poles since the poles,
given by 1 — &;¢; = 0, are located outside of the contour Cg since we have taken
Rr < 1. Additionally, note that the variable &; appears only in row j and i
appears only in column k. It follows that the multiple integral is gotten by integrating
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each K (j, k) with respect to &, ¢. Therefore the multiple integral (30) equals the
determinant with j, k entry

. 05 @)
Kn(j, k) = de¢d
v = [ [ P aa

We consider step initial condition, so that y; = j. In preparation for taking the
limit as N — oo, we make the replacements j — j + 1, k — k + 1, so that the
indicies run for O to N — 1 rather than 1 to N. Then, in preparation for eventual
steepest descent, we make the substitutions & — i&, ¢ — ¢/i. Aside from the
factor e#U—K)/2 \which will not affect the determinant, the kernel becomes

X—j—=2 ¢x—k-2
LyGi k) = //5 l_i%{ e OO+ g7 g

where we have set 0(§) = & — 1/&. We write the above as

(0.¢]
Z[ f EEIH2pr k=2 HOO+0) g g
¢=07Cr I

We may take all integrations over the unit circle C; and in the ¢-integral make
the substitution { — 1/¢. We obtain

LN(] k) Z/ L E)C j+e— 2 x+kféet(0($)79(§))d€.d§

In Toeplitz terms this is the operator
PNT(@T(a™") Py,

where Py is the projection from 2z to £2([0, ..., N — 1]) and where a is the
symbol

a(g) =§"e!0C,

It it known (see, e.g. §5.1 in [7]) that T(a)T(a™Y) is of the form I+trace class and
so det(K y) has the limit det(7 (a)T (a—1)) on £2(Z1).8

7 Z* denotes the set of nonnegative integers.
8 One can show that for x > 1 the determinant of the product is zero.
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By a well-known identity, T(a)T(a’l) =I1I—-H(a)H (&’1), where H (a) denotes
the Hankel operator and a(§) = a(Sfl). In this case @ = a~ ! and the square of
H(a) has kernel®

o
LGk = Z/ gri 3 px—k—t=3 I GOH0O) g7 g
=0 Cl Cl
and we are interested in det(/ — L). The substitutions § — 1/&,¢ — 1/¢ give

00
L(j, k)= Z/(; g ‘g’:—x+j+f+lé.—x+k+é+l e—t(9(5)+0(4“)) dede. (31)
=0 1 1

If we take our integrals over C, and sum we obtain

et pmx bk o= (0)H0(0)
LK) = / / drdg (32)
c Je, 1_‘5{

The kernel L(j, k) is known as the discrete Bessel kernel [4] (see also Chapter 8 in
[2]) due to the following representation. Using the Bessel generating function

exp(t0(§)) = Y £"J,(21)

in (31) and the identity, v # u,
> t
Z Jon (O) g (1) = 20— ) [Jo1(0) (1) = (@) 1 (1)] (33)
n=0
we find
LG K =1 Jj—x 4120 Jk—x42Q21) — Jj—x 1220 Jr—x+1(21)

Jj—k

For j = k one lets u — v in (33) to find

LG.j) =) Jopn(2)®

n=0

aJ

aJ
23 " .
5 |M=U71 = Jy—1(20) 5 |u=v1:| , v=—x+j+1.

=t |:Jv(2t)

9 Recall that the i, j-entry of H(f) is fiyjr1 = [ T2 f(£) dE.
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For x < 1 and domain wall initial condition ¥ = N, we have the Toeplitz
representation

PN(X1(1) = x)| \_g = det( — L)p2¢1—x2—x...}

)
—e! det(lj—k(Zt))‘j,Fo ,,,,, —x

where the last equality'? was proved in [5].

If L(¢) denotes the length of the longest increasing subsequence of a random
permutation of size N where N is a Poisson random variable with parameter 7,
then [1, 2, 14]

P(L(t) < n) =e " det(I;_(2))jk=0....n_1

Theorem 4 For x < 1 and domain wall initial conditions Y = N, we have
Pn(X1(1) = x)| ,\_g =P(L@) < 1—x) (34)

where L(t) denotes the length of the longest increasing subsequence of a random
permutation of size N so that N is a Poisson random variable with parameter t2.

5.2 Asymptotics

From the classic work of Baik, Deift, and Johnasson [1] (see also Chapter 9 in [2]),
we know that the limiting distribution of L(t) is

L(t) —2
i (0% <) = P @9

where F; is the 8 = 2 TW distribution [27, 28]. In the present problem, A = 0, we
can therefore conclude that the left-most particle for domain wall initial condition
Y = N has the limiting distribution

lim

—>0o0

X +2
P (M =) = o (36)

10 7, (2) is the modified Bessel function of order v.
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6 Steepest Descent Curve

6.1 Spectral Functions

We introduce a pair of functions

GE) =xloge —it(E+& Y, HE)=—xlog¢ —it(¢+¢7h, (37)

which we call the spectral functions. Note that the spectral functions appear in the
integrand of the formula for Fy (x, #) given by (51). In particular, we have

&g e TG = exp (G (&) — H(¢))} . (38)

In the following, we will deform the contours in the contour integral formula for
Fn given by (51) so that the real part of the difference of the spectral function is
negative, Re(G — H) < 0. Thus, making F suitable for asymptotic analysis. Some
more details for this section are given in the arXiv version of this paper [22].

6.2 Critical Points

The steepest descent contours in the contour integral formula F given by (24) are
determined by the critical points of the spectral functions. We have

—itE? + x& +it —ite? —x¢ +it
G'(¢) = e . H@Q) = e : (39)
so that the critical points are given by
x £ /x2 - 412 —x £ V/x2 — 412
£ = : . b= . : (40)
2it 2it

Note that each function, G and H, has a double critical point when x = +2¢ and
the critical point are

—i, =2t , =2t
50={il o o co={’ * : (41)

X = — —i, x=—2t

respectively. Physically, we expect the point x = —2t to correspond to the left-edge
of the up-spins and the point x = 2¢ to correspond to the right-edge of the up-
spins. Thus, we restrict our attention to the critical point given by x = —2¢ and take

(o, ¢0) = (i, —i).
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6.3 Steep Descent Curves

We introduce the steep descent contours given by three segments on three regions: in
the region near the critical points, we take straight lines emanating from the critical
point at angles £ /6 and 557 /6; in an intermediate region, we take horizontal lines
emanating from the end points of the straight lines in region near the critical point;
in the region far away from the critical point, we take a segment of a large circle that
connects with the horizontal lines. We use these contours so that we may explicitly
determine the location of the poles when we deform to these steep descent contours.
Although these contours don’t follow the path of steepest descent for the real part
of the spectral function, we show below that we still have the main property that
Re{G(&) — G(&)} < 0and Re{H(¢) — H(¢p)} > 0 along these steep descent
contours.

We now give a precise definition for the steep descent contours. We give a piece-
wise description based on the proximity to the critical points. Let B(z, r) be a ball
centered at z € C of radius r > 0 and B(z, r)¢ be its complement. Then, we take
the components

Y = (i +xe™/° 10 < x} N B(+i, 1),
I = (i +xe™7/0 |0 < x} N B(ki, 1)
IS = {di+ /0 4+ x |0 < x} N B(Fi, 1)° N BO, R+, (42)
I = (i + ™% — x |0 < x} N B(&i, 1)° N B(O, Ry)

r'® =cpnizeC|Im{z) < (E1)Im (&i + /%))

with radii R+ > +/3. The bound on the radii is chosen so that the horizontal
segments of the contours are non-trivial. Then, the steep descent contours are given
by

n=rPurPurPur®ur? 43)

for k = +£. See Figs. 1 and 2.

Lemma 1 Let x = —2t and take the contours I'y, k = %, given by (42) and (43).
Additionally, take t ™ < T < 1 with 1/4 < a < 1/3. Then, we have

Re{G(§) =G (%)} =0, Re{H(¢)—H(0)} =0 (44)

if¢ e I'tand ¢ € I'_. Moreover, if§ € 'L NB@,t*) and ¢ € I_NB(—i,17%)¢,
we have

Re{G() — G} < —e1(T) 1", Re{H({) = H()) > ea(T) 1!,
(45)

for some constants ¢1(T), c2(T) > 0 that depend only on T.
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Fig. 1 The components of
the Iy contour.

|_+(4) r+(3)

Fig. 2 The components of
the I_ contour.

Proof We prove the bounds by showing that derivative of the real part of the
functions are monotone along the different segments of the contours Iy as
parameterized in (42). Since G(§) — G(&y) =0for & =&y and H(¢) — H({p) =0
for ¢ = ¢, the first bounds (44) then follow by monotonicity. Moreover, since the
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real part of the functions are monotone, we establish the bounds (45) by bounding
the real part of the functions on the boundary of the segment 'y N B(&i, 1 7%).

The arguments for both functions are the same, except for some negative signs
here and there. So, we focus solely on the case for the G function. Additionally, the
arguments are fairly routine and standard. So, we just sketch the main idea needed
for the bounds.

Take & € Ff) U Ff). In this case, we have & = i+ xe™ /0 or & =i + xe 71/,
with 0 < x < 1 since Ff) U Ff) C B(i, 1). Then, we may write the real part of
the G function explicitly and show that it is monotone by taking its derivative. For
instance, we have

d Re {G(i +xe™/% —G(i)} = ! (1
X 2

244 1+4 2
. tax Aty ) (46)

14 x4x2 7 (14x+x2)?2

One may now check that the derivative is zero when x = 0 and negative if 0 < x <
1 + +/3. Thus, the bound (44) follows for this segment.

Take & € FJ(F?’)UFJ?). In this case, we have £ = i+e™/04-x or& = i+e7/0—x,
with x non-negative and bounded since I E) ur J(r4) C B(0, R+). Then, we may write
the real part of the G function explicitly and show that it is monotone by taking its
derivative. For instance, we have

d ; 3(W342
Re(G(i + ™/ +x)—G(i)y =1 [1— 3+20 ) (47)
dx 23 4+ /3 x +x2)2

Form this, one may show that the derivative is strictly negative for all x > 0. The
bound (44) follows for this segment.

Take & € FJ(rS). In this case, we have § = Ry e'?, with —nm/2 <0 <¢1 <m/2
and m/2 < ¢ < 6 < 3w /2 for some constants ¢; and ¢, since FJ(FS) c{zeC]|
Im{z} < Im{i + ¢™/%}}. In this case, we have

Re{G(§) — G(i)} = —21 log Ry + t(Ry + R7") sin6. (48)

Since R4 > 1, one may then show that this function is monotone on 8 for each of
the segments —7/2 <6 < ¢ < /2 and /2 < @ < 6 < 37/2. The bound (44)
follows for this segment.

The bound (45), now that we have established that the function is monotone
along all the segments of the contours, follows by evaluating the function on the
boundary of the segment Iy N B(i, ~%). That is, we evaluate the function at the
points & = & + 1~ /% and & = & + t~%e>"/%_ In particular, we use the Taylor
expansion

GE) — G(&) = — ;x%““ + 0O (49)

to approximate the function at the desired points. Since ™% < T < 1, we obtain
the bound (45). |
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7 Contour Deformations

7.1 Small to Large Contour deformations

We deform the contours in the probability function for the left-most particle given by
(24). In particular, we deform the contours C,, for the ¢-variables, to some contour
Cg with a large radius R’ > 0. Let

¢ =cCOu-—cPu-—c®y...u-—cM™ 50)

be the union of (N + 1) circles so that —CY), for j =1,..., N, is a negatively
oriented circle centered at Sj_l with radius 7/ > 0 and C* is a positively oriented
circle centered at the origin with radius R > 0. We give precise conditions on
the radii in the statement of Lemma 2 below. Then, as we deform the C, contour,
we will encounter poles at §; = 5._1 fori,j = 1,..., N. As a result, we obtain
the contour £2(£) when we deform the contour C, to Cg. This result and the proof
for the contour deformations, given by Lemma 2 below, is similar to the contour
deformation in [11].

Lemma 2 For A #0, Fy(x,t) =Py (X1(t) > x) equals

/ / [T + & — 24840 Dut.0)
e Jee [Tja(+E&i& —248)0 + &5 — 24A8)) N
% H(g’:jé-j)x_Yj_le_it(E(Sj)—S(Zj)) dN{' ng’_- 51

J

where the contour Cg for the &-variables is a circle centered at zero with radius R >
0 and the contour $2(§) for the ¢ -variables is given by (50) with radii R' > 0 and
¥’ = 1/(2R), so that the radii satisfy the following inequalities max{2|A|~!, 2(1 +
2|AD} < R < max{4|A|7!, 4(1 +2]AD} < R'/2.

Proof We take formula (24) with radius R as given in the conditions in the Lemma
and radius r > 0 so that max{4|A|~!,4(1 + 2|A])} < r~! < R’/2. Note that
the conditions on the contours Cg and C, given in Theorem 3 (i.e. all the poles lie
inside/outside of the contours) are satisfied for our choice of radii. Then, we deform
the contour in (24) for the ¢-variables to a large radius R’ > 0, with R’ satisfying
the conditions given in the Lemma. We begin by deforming the contour for ¢y, then
the contour for {y_1, and continue successively until we deform the contour for ;.
When we deform the contour for the ¢, variable, we encounter three types of poles

(@1—=88 =0, )1+ —245=0,i<n; ()14 =240, n<j
(52)
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foranyi, j = 1,..., N. The contribution for a type (a) pole is given by the contour
integral with respect to the variable ¢, with contour —C, i.e. a negatively oriented
circle centered at sfl with radius r’ > 0 as given in the conditions of the Lemma.
Note that the only pole, with respect to the variable ¢,, inside the contour —C®) is
given by ¢, = sfl because r’ is chosen to be small enough. The result then follows
by showing that the type (b) and (c) poles contribute no residue.

Assume we have already deformed the ¢; variables for j > n so that ¢; € C, for
i <nand{; € £2(&) for j > n. We then deform the contour for the ¢, variable.
Below, we consider the residue contribution from the type (») and (c) poles.
Case (b). We compute the residue at

tn = (2AL — 1)/ & (53)

for £ < n. Theresultis a (2N — 1)-fold contour integral with the same integrand, say
In (&, ¢;t), except that the term 1 + ¢¢, — 2A¢, is replaced by ¢, and the variable
¢ is evaluated at (2AZy — 1) /¢, for the rest of the terms.

We then compute the integral with respect to the ¢, variable for the resulting
residue term. The integral is computed by analyzing the poles and residues inside
the contour C, for ¢;. The possible poles are given by

1 — &, =0, k=1,...,N
1+8gj —2A0=0, €< j, ¢ €RF)
14+¢¢e—2A =0, i<¥, el

. (54)
14+, —245 =0, i<n, el
1 +808; +2480, =0, n<j, ¢e28)
—yi—1 y— — .
o o i =0 j#n
In particular, the location of the possible poles is given by the following
&= S = i >r
248 —1 248 —1
. = =24-¢; ' =g
Q_ZA—Q Cn— Q _Cj
é’z :2A_§i71 : ‘2A_§i71’ =r (55)
w=24-5" = =y
2A —¢; QA — ¢
fe= 4 ¢ = ) ¢ >r
4A% —-2As; — 1 4A2 -2As —1

""" = w—ye=1.
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We use the assumptions on the radii R, R’,r’ > 0 given in the statement of the
Lemma and the condition on the radius r > 0 fixed at the beginning of the proof
to establish the inequalities above. For the first two inequalities, it suffices to have
R,r~! > 1 +2|A]. For the third inequality, we have to consider two cases ¢; € C©©)
or {; € C® with k # 0. In the first case when ¢; € C©, we have that |¢;| = R’
and we use the bounds R’ > 16|A| and R’ > 8|A|~! that follow from the condition
on the statement of the Lemma. In the second case when ¢; € C ®) with k # 0,
we have that |;]| < (3/2)R~" and we use the bound (3/2)R~! < |A| that follows
from the statement of the Lemma. Then, in all the cases above except for the second
and fourth case, the poles lie outside the contour C,, meaning that there is no residue
contribution. In the second and fourth cases, the determinant term Dy (&, ¢) vanishes
because two columns in the matrix of the determinant are equal to each other since
two ¢ variables are equal to each other. In the last case, there is no pole since the
exponent is positive. Then, the pole from the denominator and the zero from the
determinant cancel out, meaning that these cases don’t produce a residue.
Therefore, by computing the integral with respect to the ¢, variable, we have that
the residues from the type (b) poles vanish.
Case (c). We compute the residue at

1

24— ] (56)

Cn

with n < €. The resultis a (2N — 1)-fold contour integral with the same integrand,
say Iy (&, ¢; t), except that the term 1 + ¢,y — 2A¢, is replaced by 2A — ¢, and the
variable ¢, is evaluated at 1/(2A — ¢;) for the rest of the terms.

In this case, we have have ¢, € §2(&) since £ > n. Thus, we have two possibilities:
(i) ¢ € CO = Cg , or (ii) ¢ € —C™ for some k = 1,..., N (i.e. a negatively
oriented small circle of radius r’ centered at &, 1. In the first case, we will not cross
a pole in the contour deformation and there will be no residue to consider. In the
second case, the pole will cancel out with a zero from the numerator and, again,
there will be no residue to consider. We give more details below.

In the first case, when ¢y € Cg/, we have ¢, = 1/(2A — ;). This pole lies inside
the contour C, since R’ r > 2 and r < (1 + 2|A|)~!. Thus, we don’t cross this pole
when we deform the C, contour to C® = Cp'.

In the second case, when ¢, € —C ®) | we first compute the residue at §y = &~ I
We obtain an (2N — 1)-fold contour integral with the same integrand, say Iy (€, ¢; 1),
except that the determinant Dy (£, ¢) is replaced the same determinant with the k*"
row and the ¢ removed and multiplied by the factor (1 + Ekz — 2A&)7!, and the
rest of the terms are the same with the variable ¢¢ evaluated at & L

We now deform the contour for ¢, to the contour C(?). After taking the ¢ = & !
residue, it turns out that the terms giving rise to the pole {, = 1/(2A — ¢¢) becomes

(1+ Ene — 2A8,) = & (& + &0 — 2A880). (57)

Note that this term also appears in the numerator of the integrand, meaning that this
term cancels out and there is no residue in this case.
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Therefore, when we deform the contour for the ¢, to infinity, we don’t cross any
type (c¢) poles. Moreover, this, along with the argument for the type (b) poles, means
that we only cross the poles due to the type (a) poles. This establishes the result.

o

7.2 Series Expansion

We write the contour formula (51) as a summation by expanding the integrals over
the contour £2(§), given by (50), as a summations of N + 1 integrals. We introduce
some notation to encode the different terms in the summation.

Take the set of all maps from the index set {1, ..., N} to the set {0, 1,..., N}
and denote it by

Ti={r:{l,...,N} > {0,1,....,N}} =Hom({l,..., N}, {0, 1,...,N}).
(58)

In the following, a map t € 7 will correspond to a term with contours C*(®)),
given by (50), for the ¢ variable and k = 1, ..., N. Moreover, we will show that
some contour integrals will vanish for certain t € 7. We consider the set of maps
that map injectively to the elements {1, ..., N} in the and the cardinality of the
preimage o 1 (0) is fixed;

To={reT |t " O)|=nt7"k)| <1, k=1,..., N} (59)

Lemma 3 For A #0, Fy(x,t) =Py (X1(t) > x) equals

N
ZZ% 7§ f 7{ InG, ¢x,0dNgdVe (60)
Cr Cg JCE) cxV)

n=07te7T,

where the integrand Iy (&, ¢; x, t) is the same integrand as in (51), the summation
is take over the set of maps T, given by (59), the contour Cr is a circle centered
at zero with radius R > 0, the contours C™®) are given by (50) with radii r' =
R™'/2, R’ > 0 so that the radii satisfy the bounds max{2|A|~", 2(1 + 2|A]} <
R < max{4|A|~!,4(1 4+ 2|A])} < R'/2

Proof We take the contour formula (51) from Lemma7.1. We then expand the
integrals over the contours £2(£) as a sum of N 4 1 integrals with contours given
by the right side of (50). The result is a summation over the set of maps 7 given by
(58),

fN(x,t)=Zy§ 7{ 7{ f IvE. cix.ndVca¥s. (61
7 ek cr Jeam) CE(N))
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The result of this lemma follows by showing that some terms vanish, i.e. if © ¢ 7,
the corresponding contour integral will vanish. Below, we show that a term in the
summation vanishes if t(j) = t(k) > 0 with j # k.

Taket € T witht(j) =t(k') =€ >O0withn #£A#mand j/, k' =1,...,N. We
show that the term in the summation (61) with this 7 € 7 vanishes by taking the
integrals with respect to the variables ¢;» and ¢x. We take the integral with respect
to the ¢; and ¢y variables by taking the residues at the poles given by ¢ = &, !
and ¢ = é[l. Note that the poles given by ¢;» = é[l and ¢ = é[l correspond
to the (£, j')-entry and the (£, k)-entry of the matrix for the Dy (&, ¢) determinant.
First, we take the residue at ¢ = é[l, the determinant transforms as follows

1 N
D , ) =det
N £) ((1_éfjfk)(fj+§k—2A§j§k)>j’k:1
(62)
(—1)TUN=Ji"=1 1
— det( ) .

For the rest of the factors in the integrand, one evaluates ;; = &, ! when we take
the residue at ;; = é[l. One may check that this doesn’t introduce any poles with
respect to the ¢/ variable inside the C® contour. Then, the residue at ¢ =&, !

doesn’t have a pole at {yr = §, ! since the pole at {p = é[l is removed when
we take the residue and no other pole is introduced. Thus, by taking the residue at
e =&, ! after taking the residue at £ = § [1, we have that the term vanishes. That

1s,
7{ 7{ f f IvE ¢ x,0dVedVE =0 (63)
Cr Cg Jer) C(x(N)

ift(n) =t(m) =¢>0withn #mandn,m=1,..., N.

The result of the lemma then follows by taking the summation representation
given by (61) and noting that the terms with t ¢ 7, for some n = 0,1,..., N
vanish due to the identities (63). |

7.3 Residue Computations

We compute the contour integrals with respect to the i variables with t (k) # O for
each of the terms in the series expansion given by (60). First, we introduce some
notation to represent the resulting integrand after the residue computations.
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Fix T € Ty_pm with 0 < M < N and Ty_pm given by (59). Then, define the
following sets

Ki=1'0)={ki < <kn-mb.
K> :=Kf={k1 < - < kyl,

(64)
Sri=1(Ky) ={rn=tk),....tu = tlkm)},
Jii=Jy ={ji < < jN-m}
We let w : Ty—m < Sy be an injection given by
k =1,....M
7'[('[) — m > Tm, m ’ ’ ) (65)
kn+> jn, n=1,....N—M

Also, we take the set of permutations that fix every element of the set J,, denoted as
follows

Sn():={o €Sy |o(j) =], J€ L} (66)
Lastly, we introduce the following functions

njeJl,keKl(Ej + g‘k - 2A§]{k)DN(‘$;:1 é‘s ‘C)

1 , G =
NE L) [T j<x A+&& =248 T] j<x (1 + &0k —2A8))
jokedy J-keKy
y l—[ S;_Yj_le—ité(sj') l‘[ (;If*ykfleite(ck)
Jjed keK
Dy, ¢ 1) = (=DM Oldet (d(&). ¢0) oy, ke,
= (DO 3" DT déEpw. o) (67)
yeSn(J2) kekK
M
N L+ £ b —2Aék)
f(s,f,f) _81:[1 < r!:[k (1+§rz§k_2A§rz

M

Eop + o — 248, 4k Vg —Yep—1

) H (TZE + —2Z Hét@kl @

ke <k w + =1
k#kp41,-eskm

where the function d(&, ¢) is given by (18), (=)l denotes the signature of a
permutation for any o € Sy, and the sets K, J; are given by (64) and M =
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N — |t71(0)|. Note that Iy (&, ¢; 7) is equal to the integrand of contour integrals
(24), (51) and (60) if [t~ (0)| = N.

Lemmad4 Fixt € Ty_py, with0 < M < N, and take the notation from (64). Then,
for A # 0, we have

7§7§7§ 7§ InE 0)dVcaVe
CR CR Cr(l) CT(N)

= f b wecnrenn| ]|
e JerJew  Jeu

keK

(68)

where the integral on the left side is a 2N-fold contour intergal and the integral on
the right side is a (N + |K1]|)-fold contour integral, the integrand on the left side is
equal to the integrand in (51) and the integrand on the right side is given by (67),
and the contours are the same as in the statement of Lemma 3 so that the ¢ variables
are integrated with respect to Cg' contours.

Proof We obtain the identity in this lemma by computing the integrals with respect
to the ¢k, variables with ky € K». In particular, the contours are given by —C @0,
which are negatively oriented circles of radius ' = 1/(2R) and centered at &, ! for
the integrals with respect to &, and k; € K>. Then, we compute the integrals by
taking the residues at gy, = &, !, We start by taking the residue at Cky = E;Ml and
continue successively until we take the residue at §x, = &,/ I

Let’s take the residue with respect to &, = "E;MI- Note that the pole correspond-
ing to this residue comes from the (tjs, kjr)-entry of the matrix of the Dy (€, ¢)
determinant. Then, when we take the residue, the determinant is replaced by a
determinant of the same matrix with the t3;-row and kj;-column removed and a
prefactor (—1)™ —m (1 4 EEM —2A EIM)’l. That is,

N
det( ! )
(I =&E)E +¢ —248¢8) ), 1

(_1)‘[M—kM—1 q 1
t .
14 %}ZM —2A&,, © ((1 —&C)E+ ¢ — 2A§i§/)>i¢rM,j¢kM

(69)

The other terms of the integrand, when we compute the residue, transform by
evaluating &, = §;Ml. Then, the result after taking the residue is
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[Ty kot G+ S — 24861)
[T jex A48 =248 ] jax (148 —24A8))

JikFTm Jk#km
x—=yi—1 _ite(&)) x—=yk—1 ite(tr)
x [[ &7 e [Ta e
J#Tm k#km

(70)
1

(A —=&a) &)+ & — 2A§j§k))j¢rM,k¢kM

Yiys —Vey—1 1+ &g 8 — 24&) (E + & — ZASZCk)
XS l_[ (1 + &6 — 248 Hk Eo+ & —24

v <k ky <

x (—1)™ —km det<

The sign infront of the determinant changed by negative one since we are taking the
integral over a negatively oriented circle.

We continue taking the integrals with respect to the variables {y,, successively
with £ decreasing, and evaluating the residues at {x, = &, ! The computations are
similar to the base case ¢, = "E;MI- In particular, the pole giving rise to residue
comes from the (7, k¢)-entry of the determinant. Then, when we take the residue,
the determinant transforms by removing the ty-row and the k;-column and adding a
prefactor. The other terms in the integrand transform by evaluating {x, = &, ' We
skip the details here since the computations are very similar to the base case. The
result follows by computing all the integrals with respect to the i, variable with
ke e K. m|

Theorem 5 For A # 0, Fy(x,t) =Py (X1(t) > x) equals

N
Sy yﬁfé fé ?ﬁ e cofe o | ] dea|

n=0rte7T, keK
(71)

where the integrand is given by (67), the summation is take over the set of maps T,
given by (59), and the contours Cg and Cg' are circles centered at zero with radii
R, R > 0 so that max{2|A|~!, 2(1 + 2|A])} < R < max{4|A|~",4(1 +2|A]} <
R'/2.

Proof The result is a direct consequence of Lemmas 3 and 4. O

7.4 Deformation to Steep Descent Contours

We take the series expansion formula (71) and deform the contours to the steep
descent contours given by (43).
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Fig. 3 The contour r.

Let I be a positive oriented rectangle centered at zero, with length equal to
2L = 2+/R? — 1 and height equal to 2, and two half-circle bumps as indicated on
Fig. 3. The bump centered at i has radius €] and the bump centered at i + 2A has
radius € sothat 0 < e K €1 K 1.

Lemma 5 Fixt € Ty_py, with0 < M < N, take the notation from (64). Then, for
A # 0, we have

$ 4 ¢ f neonreandae

[ ) [ [

—§ f e (fof recnate)aticats
Iy r- T T

where the integrand is given by (67), the differentials dS& or dS¢ are |S|-fold
differential over the variables & or {s with s € S, the contours I'y are given by
(43) with Ry = R and R = R’ so that§; € I'y and & € I' for j € Ji and
k € K1, the contour I" is given by Fig. 3, the contours Cr and Cg are circles
centered at zero with radii R, R’ > 0 so that max{2|A|~!, 2(1 +2|A])} < R <
max{4|A|~!, 4(1 +2|A])} < R'/2.

(72)

Proof We obtain the result by deforming the contours and showing that we don’t
cross any poles. We begin by deforming the contour, for the §; variables with j € J2,
from Cg to I". Then, for the &; variables with j € Ji, we deform the contours Cg
to the contours ;. Finally, for the ¢ variables, we deform the contours Cgs to the
contours /.
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Consider the integral wit’l} respect to & € Cgr and £ € J;. We deform the
contour Cg to the contour I". Note that the factor Iy (&, ¢; t) is independent of
the &, variable. Then, the only possible poles are given by

1486k — 2486 =0, &+ —24=0. (73)

In the first case of (73), the location of the pole is given by (2A — Sk)_1 with
& e Croré € r , depending on the index and if the contour for the variable has
been deformed. If & € Cp, the location of the pole (2A — ék)_1 clearly lies inside
the unit circle since R > 1 + 2|A|. In particular, we don’t cross this pole when
we deform from the contour Cp to the contour F since the contour I lies outside
the unit circle. If & € r , we note that the location of the pole (2A — &)~ I also
lies inside the unit circle except for the region with the small half-circle bump of
radius e3. We then consider & lying on the small half-circle bump of I’ and we
write & =i+ 2A + € €. Then, the location of the pole is given by

QA—-g) ' = (mi—edh) T =i— g + O, (74)

where the last equality follows from 0 < €, < 1. Moreover, since €3 < €1, we have
that the location of the pole (2A — &)~! lies inside the large bump of the contour
r , when & lies on the small bump. Then, we have that the pole (2A — Sk)*1 lies
inside the unit circle if & doesn’t lie on the small bump, and the pole lies inside the
large bump if & lies on the small bump. In particular, if & € Cg U r , the location
of the pole lies inside the contour I’ and we don’t cross any poles, given by the first
case of (73), when we deform form the contour Cp to the contour r.

In the second case of (73), the location of the pole is given by 2A — .
Additionally, we have that ¢, € Cp/. Given the conditions on the radii R, R’ > 0,
it follows that R < R’ — 2| A|. Then, the pole given by 2A — ¢ lies outside the
contour Cg. In particular, we don’t cross the pole when we deform the contour form
Cr to I'. Thus, we don’t cross any poles, given by the second case of (73), when we
deform the contours from Cg to r.

Consider now the integral with respect to & € Cgr with £ € J;. We deform the
contour Cg to the contour Iy with §; € I for J € J2. The location of the possible
poles are given by

QA —&)~!, 2A—.§;1, o (75)

In the first case of (75), the variable £; may lie on the the contours Iy or Cg,
depending on the index. In particular, if &§; € r , then j = t; for some k, see (64).
Moreover, Iy (€, ¢; T) is independent of §; = &;, and the pole due to the f(§,¢; 7)
function is of the form (2A — Srk)’l; see (67). Thus, for the first case, &; will never
lie on the contour I and only lie on the contours Cg or I'y. If §; € Cg, the location
of the pole (2A — & j)’l clearly lies inside the unit circle since R — 2|A] > 1.
In particular, we don’t cross this pole when we deform from the contour Cr to the
contour Iy, since the contour Iy lies outside the unit circle. If §; € Iy, the location



38 A. Saenz et al.

of the pole (2A — Sj)*1 will also lie outside the unit circle. This due to the fact the
Ais areal number and R — 2|A| > 1. In particular, if §; € Cg U Iy, we don’t cross
a pole, given by the first case of (75) when we deform from the contour Cg to the
contour I7.

In the second case of (75), the variable &; may lie on the the contours I}, Cg,
or I, depending on the index. In all three cases, we have that the —El._l point lies
inside the unit circle since the contours lie outside the unit circle. Then, the pole
2A — 5/_1 will lie inside I} since A is a real number and 2(1 4+ 2|A]) < R. In

particular, if §; e CR U Ty U ", we don’t cross a pole, given by the second case of
(75), when we deform from the contour Cg to the contour I';.

In the third case of (75), we have ¢ € Cg/. Then, the location of the pole {kfl
lies completely inside the unit circle. Then, since Iy lies outside the unit circle, we
don’t cross a pole when we deform the contour Cg to the contour I'™;..

Lastly, consider the integral with respect to ¢y € Cg with £ € K. We deform
the contour Cgs to the contour . The location of the possible poles is given by

Qa-¢pt 2a-¢t 2a-g, & (76)

where the variables may lie on different contours depending on the indexes.

In the first case of (76), the variable ¢; may lie on the contour Cg/ or on the
contour I_. In either case, the location of the pole lies completely inside the unit
circle. When ¢; € Cg, this follows from the bound R > 2(1+2|A|). When¢; € I,
in addition the bound R > 2(1+42|A|), we also need the fact that A is a real number,
which means that (2A — ¢;) lies outside the unit circle for ¢; € I'_. Then, we have
that the location of the pole (2A — ¢ j)_l lies completely inside the unit circle and
we don’t cross any poles when we deform the contour Cgs to the contour /.

In the second case of (76), the variable ¢; may lie on the contour Cg/ or on the
contour /. In either case, we know that ¢ j_l lies inside the unit circle since Cg and
I'_ lie outside the unit circle. Then, since A is a real number and 4(1 + 2|A|) < R’
, we have that the location of the pole 2A — ¢ j_l lies completely inside the contour
I'_. Thus, we don’t cross any poles when we deform the contour Cgs to the contour
I_.

In the third case of (76), the variable & may lie on I since this pole is due to
the f (&, ¢; t) factor in the integrand; see (67). In this case, the location of the pole
2A — & lies completely inside the contour /_ due to the bumps of the contour
I'. Since 0 < € < 1, the large bump of the contour T lies completely above the
horizontal section of the contour /. Since the small bump in the contour T lies
inside the rectangle, the small bump will also lie completely above the V-section of
the I'_ contour. Additionally, since R +2|A| < R/, the rest of the contour I will lie
completely inside the contour /. Then, we don’t cross any poles when we deform
the contour Cg’ to the contour /.

In the fourth case of (76), we have & € I;. Then, the location of the pole
& ! lies completely inside the unit circle, since the contour I} lies outside the unit
circle. Then, since I_ lies outside the unit circle, we don’t cross a pole when we
deform the contour Cy- to the contour /.
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We have now shown that we don’t cross any poles in any case when we deform
the contours. Thus, the result follows.

O
Proposition 1 For A # 0, Fy(x,t) = Py(X1(t) > x) equals
N
> Zyg yg InG.¢5 D) (y&--yﬁf@,c; r)dfzs) ¥z ahg
n=0teT, Ty r- r r
(77

where the integrand is given by (67), the sets J1, J», K1, K> are given by (64), the
summation is take over the set of maps T, given by (59), and the contours I't and
I are given by (50) and Fig. 3 with Ry = R, R_ = R’ so that max{2|A|~", 2(1 +
2|AD} < R < max{4|A|~", 4(1 +2|AD} < R'/2.

Proof The result is a direct consequence of Proposition 7.4 and Lemma 5. O

8 Asymptotic Analysis, a Conjecture

We believe that the formula for the probability of the left-most particle given by
(71) in Theorem 7.6 may be suitable for asymptotic analysis when t < N —
oo. Note that we have decomposed the integrand into two factors, Iy (€, ¢; T) and
f (&, ¢; t). In particular, note that that the factor f(&, ¢; t) is independent of time
t. Additionally, for the variables of the term Iy (£, ¢; T), we have deformed the
contours to steepest descent paths. Thus, in the asymptotic limit, we expect the
main contribution for the Iy (€, ¢; T) term to come from the saddle point (&, {p) =
(i, —i). Moreover, we expect the asymptotic limit of Iy (&, ¢; T) to be given by the
Airy kernel. We give some details of the computation below but, unfortunately, we
don’t give all the technical details here. The arguments below need more careful
consideration.

Fix t € 7, and let’s consider the contribution of the contour integrals near the
saddle point. We use the following notation for the index sets:

Ki:=1t70), Ky:=(K), Ji:=1(K2) Jo:=1(K2) (78)

The sets K1 and K> will be used to index the ¢-variables and the sets J; and J, will
be used to index the &-variables. In particular, variables with index from the sets K
and J; will lie on the contours Iy, respectively, and the variables with index from
the set J> will lie on the contour . There are no variables with index from the set
K> because these variable have been integrated out, but nonetheless, this index set
will appear in our formulas. Note K1 U K, = J1 U J, = {1,..., N}.
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Recall that the spectral functions G and H, given in (37), have a double critical
pointat £ =i and ¢ = —i, respectively, when x = —2¢. Let B(z, r) be an open ball
centered at z € C of radius r > 0 and B5(z, r)¢ be its complement. Then, we take
the following scaling

x=-2—s5t"P E=itifr V3 c=—itize"P oy 1=v;1'
(79)

ifé e Bi,t %) and¢ € B(—i,t %) with 1/4 < a < 1/3.

We also have that the integrand Iy (&, ¢; T) is exponentially small if &; €
B@i,t=%)¢, for j € Ji, or §; € B(—i,t7)¢, for j € K. This follows
from Lemma 1. Additionally, we may uniformly bound the factor f(&,¢; 1),
independently of 7, on all the £ and ¢ variables. Then, we may restrict the contourss
Iy to the a neighborhood around the saddle points and only lose an exponentially
small term. That is,

$f e (fofrecoae)atica -
Iy r- I3 F

f y{ InE £ 0) (ﬁ-~-y§f@,;;r)dfzs)d’“zd’lé
L NB3G,r~*) Ir_NB(—i,t=%) r r

+ O(eictlffmt)
(80)

for some positive constant C > 0, based on Lemma 1, and 1/4 < o < 1/3.

Let us now approximate the integrands Iy (§,¢; 7) and f(&§,¢; 7) when &; €
'y NB,t7%), for j € Ji,and ¢ € I N B(—i,t=%), for k € K. In particular,
we take the scaling (79) for the variables with indexes in the sets J; and K1, for the
&-variables and ¢ -variables respectively.

Note that Iy (&, ¢; t) only depends on the variables with indexes from the sets
K and J;. Then, we have

InG.0:7) = (—1)|J"+|”(T)| Z (_1)\3’\ 1_[ ((_i)yy(k)—yk

y€Sn () keZ;
x 8(Ey - Gk Vy (- Vi) t"/3) + O3

exp (367 - 10— G+ 0E+6+21)

8,8 x,2) = -0 ,

81)
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where 7 : T, < Sy is given by (65) and Sy (J2) is given by (66). This
approximation is obtained by expanding the determinant in the term Iy (&, ¢; 7),
given by (67) and taking the scaling (79). More details regarding this approximation
are given in Appendix B of the arXiv version of this paper [22].

Now, consider the approximation of the term f(&,¢;7) when §; € I} N
B@i,t™*), for j € Ji,and & € - N B(—i,t™%), for k € K;. We introduce the
following function

Ben =[] <1 +&rée() — 2A&(,~>> )
j<kjkek, M ErwE() — 2480

t(k)<t()j)

with the indexes j, k € K> and 7(k), t(j) € J». Also, let us denote the number of
inversions of the T map as follows,

v =#j ekl <j, () >1()}
wii=#j ekl j<j. t()>7()} (83)
v(jir) = —t(j) + (i) —vi(ji 1)

Note that, in the case Ko = {1,2,..., N}, wehave v(j;7) =0forj =1,..., N.
Then, by taking the scaling (79), we obtain

fE, &)

Sy — @A+ )V(j;r) yi—yr(h—1 -1/3
= B(; 1) ( . . g7 77T L o).
,-1;([2 (2iA + DE(j) — i jgz ()

(84)

This approximation is obtained by applying the scaling (79) and taking the leading
term in the /3 expansion of the f (£, ¢; T) function. More details regarding this
approximation are given in Appendix B of the arXiv version of this paper [22].

We now combine the approximations (80), (81) and (84), given above. Note that
the leading term of the approximation (84) is independent of the & and  variables.
We then introduce the term

| £y — QA+ ) )”“‘”
— ikl d .. ; .
F(1) = (—i) ff yng(S,r)jl;{L((ziAJrl)Er(j)—i

x [ iggyro-tae,

JEK2

(85)
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where we have taken the leading term of the f (&, ¢; ) function and also incor-
porated the (i)’»® ™ term from the approximation of Iy (&, {; t) given by (81),
noting that >y g, Yy k) — Yk + D_gek, Yrk) — Yk = 0. Then, for fixed 7 € Ty, we
obtain the following approximation near the saddle point

f f InE ¢ ) (ﬁ---yﬁf@,;;r)d’zs) K1z g
ry r- F T

= 3 (1@ Z F(r)(—=D! l—[ K, (s + v, 1), 5 + Uk))
yeSn(J2) kekK

1-3a

+ 03y L O@E ).
(86)

The r~/3 term and the Airy kernel Ky; are obtained by taking the change of
variables (79) and the following expression for the Airy kernel

00?3 oo e™/3 exp <§§3 — §§3 —xé&4+z2 ()
K= [ [ dsde. 87
oo e=2m/3 Joo e~mi/3 §—¢

where the contours for the & (resp. ¢) variable starts at coe™" i/3 (resp. oo e—2mi/3)
goes through the origin and ends at oo e™!/3 (resp. oo e27i/3).

Let’s now consider the formula (77) and, in particular, the summation over 7,, and
n. We substitute the term in the summation by the right side of the approximation
(86). The result is a summation over 7,, n, and injective maps y : K; — J;. More
precisely, the summation is over a pair of bijective maps

1:Ky— b, y:Ki— Ji, (88)

where K1 U K, = J1 U Jp = {1,2,..., N}. This means that we may write the
summation, over 7T,, n and the injective maps y : K — Jyand 7 : Ky — J,, as
the summation over permutations of the set [N] = {1, 2, ..., N}. In particular, we
may uniquely identify a pair of bijective maps (t, y) with a permutationo € Sy and
a subset S C [N] so that (t, y) = (0|sc, os), where the right side are restrictions
of the permutation to the indicated sets. Then, under this identification, we rewrite
some the notation introduced earlier. For (o, S) with o|sc = T, we have

B0, =BEn= ][] ( (89)
j.keSe, j<k
o (j)>o (k)

1+ &6 wéo() — 2A€a(/‘>)
1+ & wés(j) — 24851
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Additionally, for (o, S) with o|sc = t, we write the inversion sets as follows,

vi(jio, ) =) =#j €S Nj <j, o(i)>a()}
w(:o,)=wn(;0)=#,cS1j<j, o()>ac()} (90)
v(j;0,8) =v(j;1)=j—0()+wn(j;o, S —v(;o,S).

Lastly, for (o, S) with o|gc = T, we write

F(0,8) = F(1)
e Gy — QA+1) 'S
= ()¢ ...d BE: 0.8 (‘?(l) ( )
(=) ff ff ¢0 )j]e_[y Gid+ Divy — i o)
x [T igeyimota s,
jese

Then, under the identification of the pair of injective maps and the permutations, we
have

N
IN(E, ¢ L T)d? )dKl dh
szﬂ ﬁmmw(ygf fff(&zr) £) d¥icate

n=0rte7T,
= > D7) (—1)'S't—'s'/3<F(a, 9)
oceSy SC[N]
, Yoty +1 Y+ 1 ~1/3 —C1-3
ngA,<s+ TR S +(9(t >-|-(9<e )

92)

Assuming that the error terms don’t contribute in the limit, we have the following
conjecture.

Conjecturel Ast < N — oo, Fy(x,1) = Py(X1(1) = x), with x = =27 —
s tfl/?’ and v +1= vj t1/3, is equal to the limit of

D=0 Y (=PSB Ee, $) T Kai (s + vow). s + vx) (93)

oeSy SC[N] keS

where F is given by (85) and the Airy kernel Ky; is given by (87).
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At the moment, we are not able to control the limit of (93) whent < N — oo.
The main obstacle is the term F (o, S) on (93). However, under some assumptions,
we may simplify (93) as a determinant of the difference of two kernels. For instance,
assume

Fo.8) =[] Q). /) (94)
jES(r
for some kernel Q on the set {1, ..., N}. Then, we have
o+ 1 41
Y =D Z (=D BIPF (o, $) [ [ Kai ( O s )
oeSy keS
= > 1 Z DSBS TT Qe (). )
oeSy SC[N] jese
‘ Yoy +1 ye+1
X]HSKAZ (S+ /3 , 8+ (/3 (95)
(S

N
ok + 1 +1
-y (—1)“]‘[(Q(o(k»k)—t‘“KAi (s+y TR SO ))

ogeSy k=1
—det (QU, k) — 1 1PKy; ALY
=de Q(.]a )_ Ai s+ t1/3 ’S+ t1/3 - 1’
J k=

given the assumption (94). In fact, when A = 0, one may check the assumption to
be true and we have

F(o,8) =1 (o]sc =Idsc) = ]_[ Le(j) =), (96)
jese

where the functions with 1 are indicator functions. This identity is easy to check
since the first two terms in the intergand for F (o, S), given by (85), are identically
equal to one when A = 0. Then, we have

, _ yi+1 v+ 1)\
det(ld(],k)—t 3K 4 (s+ " ’S+y,1/3 ))
Jj.k=1
= > =17 > ((—1)S'z—'s/3F(o, S)

ogeSN SC[N]
‘ Yoy +1 ye+1
XHKAZ (S+ (/3 , S+ (/3

keS
0
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when A = 0. This means that Conjecture 1 is true when A = 0. Moreover, if
A =0and y; = j, we may take the limit t «< N — o0. The right side becomes
a sum of Riemann integrals, corresponding to the series expansion of a Fredholm
determinant. Then, we have

. Xi(t) + 2t

. _ j+1 k+1
= lim E E 715173 det (KAi (s + s+
- 1/3 1/3 )

<N OOO'ESN SC[N] it/ el j.keS (98)

=det (Id — K ;)2

(s,00)

= Fy(s).

This matches the earlier result (36) for A = 0.
We also may compute the terms in (93) when S = #and S¢ = {1, ..., N} = [N].
In that case, the formula for F (o, ) simplifies as follows

N
F(o,0) = 7§ 7§ l—[ <1 + &b — 2AEr<j>> l_léyj._yr(j)_lst
r r i 14 & by — 248 B )
o(k)<o(j)
99)

where i, j = 1,2,..., N on the first product of the integrand. Additionally, we
may deform the contours I to arbitrarily large circles centered at the origin. Note
that (—1)? F (o, ¥) is equal to the integral inside the sum of (15) with x; = y;, for
i=1,...,N,andr = 0. Then, by Theorem 2a, we have

Z (=)’ F(o,%) = 1 (100)

ogeSN

forany N > 0.
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Harold Widom’s Contributions m)
to the Spectral Theory and Asymptotics St
of Toeplitz Operators and Matrices

Estelle Basor, Albrecht Bottcher, and Torsten Ehrhardt

Abstract This is a survey of Harold Widom’s work in the spectral theory of
Toeplitz and Wiener-Hopf operators and on asymptotic problems for truncations
of these operators as the truncation parameter goes to infinity. The asymptotic
problems include Toeplitz and Wiener-Hopf determinants, extreme eigenvalues,
and collective eigenvalue distribution. Harold Widom has made groundbreaking
contributions to all these topics.

Keywords Toeplitz operators - Toeplitz matrices - Wiener-Hopf operators

1 Toeplitz Matrices and Operators

An n x n Toeplitz matrix is an n X n matrix that is constant along its diagonals, that
18, a matrix of the form
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The entries are complex numbers. If the entries are N x N matrices, and hence
the matrix actually has dimension nN, one speaks of block Toeplitz matrices. An
infinite Toeplitz matrix is a matrix of the form

apa_1 a—s ...
o ay ay a_ ...
(ajfk)jyk=1 “la ar ag ...

We may think of the infinite matrix as a linear operator acting on £> := ¢2(N), and
the first question that arises is to characterize the sequences {ay }rcz for which this
operator is bounded. This question was answered by Otto Toeplitz in (a footnote
of) his 1911 paper [43]. He showed that the infinite matrix induces a bounded linear
operator on £ if and only if the numbers gy are the Fourier coefficients of a function
a € L™ on the complex unit circle T:

1 2 . .
ar = / a@e ™ qo  (k € Z).
27 0

If such a function a exists, it is unique. We denote the infinite matrix as well as the
bounded linear operator it induces on £2 by T'(a) and the finite matrix, which may
be regarded as the principal n x n truncation of the infinite matrix, by 7, (a). The
function a is in this context referred to as the symbol. Clearly, we may even chose a
from L! on the unit circle, take the Fourier coefficients, and built the matrices T, (a)
and T (a), but in that case T (a) need not generate a bounded operator.

The next question to ask after boundedness is about the spectrum of the operator
T (a). Since

T(a) — Al = T(a —\),

this question essentially amounts to finding invertibility criteria for Toeplitz opera-
tors. A simpler problem is to study invertibility modulo compact operators, which
is the task of Fredholm theory for Toeplitz operators. These topics have been
investigated for a century, and the seminal contributions made to them by Harold
Widom will be the subject of this paper.

Questions about explicitly given finite Toeplitz matrices 7, (a) may nowadays
quickly be answered by the computer if n is of moderate size. Things become
mathematically interesting if the matrix dimension n is large or unspecified or if the
matrix involves parameters. It was only a few years after Toeplitz when Gabor Szegd
came across the problem of describing the asymptotic behavior of the determinants
of T,(a) as n goes to infinity. Further questions have led into the study of the
behavior of inverses and of the eigenvalues of 7, (a) for large n or for n tending
to infinity. It was again Harold Widom who brought us fundamental insights and
results in this connection. These will be described in the following pages.
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The present paper is in part based on our article [2].

2 Toeplitz Operators with Continuous Symbols

As for invertibility and Fredholmness, it was not primarily Toeplitz operators but
rather their relatives that were studied in the first half of the previous century. The
main relatives are the operators coming from the Riemann-Hilbert boundary value
problem, singular integral operators, and Wiener-Hopf integral operators. Many
mathematicians, including F. Noether, J. Plemelj, S. G. Mikhlin, G. Fichera, and
T. Carleman, studied singular integral operators with continuous coefficients. Stated
in terms of the Toeplitz operator T (a), their results say that if a is a continuous
function on T, then for for T (a) to be Fredholm it is sufficient that a have no zeros
on T and for T (a) to be invertible it is sufficient that a have no zeros on T and that
the winding number of a about the origin be zero. Only in 1952, Israel Gohberg, by
an ingenious application of Gelfand theory of Banach algebras, was able to prove
that these sufficient conditions are also necessary.

Inversion of Toeplitz operators or the description of the kernel and co-kernel
in the case where the operator is not invertible were then mainly tackled by
versions of what is now called Wiener-Hopf factorization. The first variant of
such a factorization appeared in a 1931 paper by Norbert Wiener and Eberhard
Hopf. A complete understanding of that method was gained only in the works of
F. D. Gakhov in 1949 and I. Gohberg and Mark Krein in the 1950s. In the language
of Toeplitz operators, this factorization amounts to factoring

a@t) =a_t“ayr(t) (€T

with invertible analytic and anti-analytic factors a4 and a_ and with « € Z. This
gives the representation

T(a) =T (a)T ()T (a4)

with the upper triangular Toeplitz matrix 7 (a—), the lower triangular Toeplitz
matrix T (a4+), and a “middle factor” T (¢*), which is the Toeplitz matrix whose
kth diagonal consists of ones and the remaining diagonals of which are zero. The
matrix T (a) generates an invertible operator if and only if ¥ = 0, that is, if and only
if the middle factor is absent. In that case the inverse 7~!(a) := [T (a@)]~! is given
by T~ (a) = T(a;HT(aZh).

Harold Widom entered the Toeplitz operators scene with his 1959 paper [20],
jointly with Alberto Calderén and Frank Spitzer. This paper deals with Toeplitz
operators T (a) generated by symbols a in the Wiener algebra, that is, by symbols a
satisfying Y |ax| < oo. Clearly, such symbols are continuous. The point is that for
functions in Wiener algebra one can write down explicit formulas for the Wiener-
Hopf factors. Namely, if @ has no zeros on T and k € Z is the winding number about
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the origin, then a ()t = = ¢”) with a function b in the Wiener algebra, which gives
a(t) = a—(t)t“a4(t) with

a_(t) =exp Z bitk, a+(t) = expz bit*.

k<0 k>0

Using this factorization, Calderén, Spitzer, and Widom considered T (a) as an
operator on £ and on £2, and they show that in both contexts 7' (a) is invertible
if and only if a has no zeros on T and winding number zero about the origin. The
paper was submitted in May 1958, and in a note added in proof, the authors remark
that a substantial part of their results are also in a 1958 paper by M. Krein.

3 Toeplitz Operators with L Symbols

Fortunately, one theorem of [20] was not in Krein’s paper: it replaces the condition
> lak| < oo by the sole requirement that a € L% (T) and says that for T (a) to be
invertible on ¢ it is sufficient that a is invertible in L°°(T) and a/la| = exp(i V)
with a real-valued v € L°(T) and with ¥ denoting the conjugate function of v.
What a great first step into the depth of L°°! For example, if w is a conformal map
of the open unit disk onto the region {x + iy : y > |tanx|, —7/2 < x < 7/2},
then, considering the boundary values of w, the real part v = Re w is in L* while
the imaginary part 7 = Im o is unbounded, so that T (¢’ ¥) is an invertible operator
with a heavily oscillating symbol.

In August 1958, Widom submitted his 1960 paper [45], which laid the foun-
dations for the invertibility theory of Toeplitz operators on £2. The paper has four
theorems. In Theorems II and III, unaware of previous work by A. Wintner (1929)
and P. Hartman and A. Wintner (1954), he rediscovered their invertibility criteria for
triangular and Hermitian Toeplitz matrices. Theorem I was a real breakthrough. It
states that for T (a) to be invertible it is necessary and sufficient that a = a_a4 with
atleL? (), afl € Li(T) such that the operator f +— aIlPa:lf is bounded on
L?(T). Here Li(T) are the usual Hardy spaces and P is the orthogonal projection of
L?(T) onto Li(T). Note that P = (1 +5)/2 where S is the Cauchy singular integral
operator. He understood that this is a question about the weights w for which S is
bounded on L?(T, w). It was a lucky tie of events that just at that time, in 1960,
H. Helson and G. Szeg6 were able to characterize these weights. Combining his
Theorem I and the Helson-Szeg6 theorem, Widom arrived at the conclusion that
T (a) is invertible if and only if a is invertible in L*° and

a/la| = exp(i(c + u +)),

where ¢ is a real constant, u and v are two real-valued functions in L°°(T), and
lulloo < m/2. This beautiful result, which was published in 1960 by Widom in
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[46] and was rediscovered by Allen Devinatz in 1964, entered the text books as the
Widom-Devinatz theorem.

We should mention that an essential generalization of Widom’s Theorem I,
namely, its extension to Toeplitz operators with matrix-valued symbols on the Hardy
spaces Li(T) was independently discovered by Igor Simonenko in 1961. In fact
several basic results on Toeplitz operators which nowadays appear on the first pages
of the textbooks were established just around 1960 and tracing back to the sources
of these results is a subtle matter. Those years were turbulent times. For example,
the Brown-Halmos theorem, according to which the spectrum of 7'(a) is a subset
of the convex hull of the essential range of a, though explicitly published for the
first time by P. Halmos and A. Brown in 1963, was known to at least Widom and
Igor Simonenko already in 1960. As for Widom, the theorem is in his article [51],
which is based on lectures at the IAS in 1960. We also remark that in the very
early 1960s, Simonenko [41, 42] already had the results of [26] on locally sectorial
symbols and the theorem that a Toeplitz operator is invertible if and only if it is
Fredholm of index zero, which was published by Lewis Coburn in 1967 and is
known as Coburn’s lemma since then.

4 Toeplitz Operators with Piecewise Continuous Symbols

Bounded piecewise continuous functions are in L°° and hence covered by the
previous section. So why a new section about them? The point is that we were
cheating in Sect. 1 when saying that due to the equality 7(a) — AI = T(a — A),
the description of the spectrum of 7 (a) essentially amounts to finding invertibility
criteria for Toeplitz operators. The results of Sect. 3 solve the invertibility problem
for Toeplitz operators with arbitrary L°° symbols completely but in analytical
language. In contrast to this, the nice index zero condition quoted in Sect. 2 gives
an answer not only to invertibility but also a description of the spectrum in purely
geometric language: if a is continuous, then the spectrum of 7 (a) is the union of
the curve a(T) and of all points in the plane that are encircled by this curve with
nonzero winding number.

Let’s come back to Widom’s paper [45]. Theorem IV in it concerns the case
where a € L™ is piecewise continuous with at most finitely many jumps. Consider
the continuous and naturally oriented curve in the plane that arises from the essential
range of a by filling in line segments between the endpoints a(t — 0) and a (¢ 4-0) of
each jump. Widom proved that T (a) is invertible on £ if and only if this curve does
not contain the origin and has winding number zero about the origin. This delivers a
geometrical description of the spectrum of 7' (a) analogous to the case of continuous
symbols, the only difference being that instead of the curve a(T) one has to take the
curve that arises from the essential range after filling in line segment between the
endpoints of the jumps. How beautiful!

In fact, Theorem IV of [45] was the very beginning of a long and fascinating
story. The first chapter of this story was written by none other than Widom himself
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in [47]. The space £ may be naturally identified with the Hardy space H> = Li
of the unit circle (equivalently, of the unit disk). Consequently, the ¢> theory of
Toeplitz operators bifurcates into the £7 and LP? theories for 1 < p < oo. The
latter two theories are based on completely different techniques although, and this
is something of a mystery, in the case of piecewise continuous symbols the final
results are almost identical. In [47], Widom studied Toeplitz operators T (a) with
piecewise continuous symbols a on the Hardy space Li (R) of the upper half-plane.
These operators are defined by f — P(af) where P = (I + S)/2 and S is the
Cauchy singular integral operator on L”(R). (One could equally well work on the
Hardy space H? = Li (T), the differences being only technical and psychological.)
Widom again arrived at the boundedness of f — aIl Pa_! f on L{;(R). This time
it is the question about the weights w for which S is bounded on L?(R, w). He
showed that S is bounded if w(x) = (1 + |x)¥ [[;=; |x — xx|* with

m
—1/p<ar<l1l/g and —1/p <a+Zak <1/q,
k=1

where 1/p+1/q = 1. Using this insight, he was able to prove that T (a) is invertible
on Lf’F (R) if and only if a certain curve does not contain the origin and has winding
number zero about the origin. This curve results from the essential range of a by
filling in certain circular arcs Ay (a(x — 0), a(x + 0)) depending on p between the
endpoints of the jumps at x € R and the arc A, (a(+00), a(—00)) for the jump at
infinity. Here, for two distinct points «, § € C and a number r € (1, 00), we denote
by A, (a, B) the circular arc at the points of which the line segment [, 8] is seen
at the angle 27/ max{r, s}, where 1/r + 1/s = 1, and which lies on the right (resp.
left) of the oriented line passing first o and then S if | <r < 2 (resp. 2 < r < 00).
For r =2, A, (a, B) is simply the line segment [¢, B]. In formulas,

1 —a 1
ﬂr(a,ﬁ)z{a,ﬁ}u{zyéa,ﬁ:zn argi_z er+Z}.

A parametric representation of A, («, B) is

W) =a+o(WPB-a), 0=su=<l,

where o, (i) = u forr =2 and

or (1) = sin.(é,u) exp(z:é,u) with 8 — 7 (1 B 1)
sin(0) exp(if) ros

for r # 2. For example, if a(x) = sign x, then we have two circular arcs A, (-1, 1)
and A, (1, —1), and since A (1, —1) = Ap(—1,1), it follows that T (sign) is
invertible if and only if p # 2. Widom also computed the kernel and co-kernel
dimensions of the operators if the curve has nonzero winding number. Overall,
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paper [47] contained the full Fredholm theory of Toeplitz operators with piecewise
continuous symbols on Li (R), including an index formula.

In different language, particular cases of the Fredholm results of [47] were
already evident in papers by B. V. Hvedelidze since 1947. The characterization of
the weights w for which S is bounded on L?(I", w) has a long history, starting
with G. H. Hardy and J. E. Littlewood and culminating with work by R. Hunt,
B. Muckenhoupt, R. Wheeden (1973), A. Calder6n (1977), G. David (1984). In
the late 1960s and the 1970s, I. Gohberg and N. Krupnik introduced their local
principle by means of which they could not only give a simpler proof of Widom’s
result but also consider Lyapunov curves I" with power weights w, the case of
matrix-valued symbols, and Banach algebras generated by Toeplitz operators with
piecewise continuous symbols. In 1972, R. Duduchava settled matters for Toeplitz
operators on £7. The theory reached a certain final stage only in the 1990s by work
of I. Spitkovsky (general weights w) and Yu. I. Karlovich and the second author
(general curves " and general weights w). In these more general situations, Harold
Widom’s circular arcs undergo a metamorphosis into horns, logarithmic double-
spirals, spiralic horns, and eventually into leaves with a halo. See the book [11].

The results on Toeplitz operators with continuous or piecewise continuous
symbols we have cited imply that their spectrum and essential spectrum are
connected sets. (The essential spectrum of an operator T is the set of all complex A
for which T — A1 is not Fredholm, that is, not invertible modulo compact operators.
In the case of a continuous symbol a, the essential spectrum of 7' (a) is simply
the curve a(T), and for a piecewise continuous symbol, it is the essential range
with connected sets filled in between the endpoints of the jumps.) In 1963, Paul
Halmos posed the question whether the spectrum of 7' (a) is connected for every
a € L°°(T). In [50], submitted in April 1963, Widom proved that the answer is
Yes for the spectrum of Toeplitz operators on £2, and in his paper [52] of 1966, he
performed the same feat for Toeplitz operators on Li (T). In 1972, Ronald Douglas
established the connectedness of the essential spectrum of Toeplitz operators on
¢2, and only in 2009, A. Yu. Karlovich and I. Spitkovsky [35] were able to prove
that both the spectrum and the essential spectrum of Toeplitz operators are always
connected on Li(]“, w) for 1 < p < oo and general curves I" and weights w.
In Fig. 1 we see some of the mathematicians whose names we encountered above.
Figs. 2, 3, 4, scattered over the rest of this paper, show Harold Widom in the years
1969, 1985, 2002.

S Asymptotics of Extreme Eigenvalues

Extreme eigenvalues of Hermitian Toeplitz matrices have been studied at least
since Kac, Murdock, and Szegd’s work in the 1950s. In the 1960s, Seymor Parter
undertook the matter a thorough analysis and established a series of deep results. As
Harold told us, there was an agreement between Parter and him that Parter should
focus on the Toeplitz case while he would embark on integral operators, that is, on
the Wiener-Hopf case.
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Fig. 1 Joint German-Israeli workshop “Linear and one-dimensional singular integral equations”
in Tel Aviv in March 1995. From the left to the right: Bernd Silbermann, Harold Widom, Joe Ball,
Amelia Ball, Ludmilla Meister, Erhard Meister, Asya Moiseyevna Vishik, Albrecht Bottcher, Mark
Vishik, Lothar von Wolfersdorf, unknown, Yuri Karlovich, Luise Blank, Uri Toeplitz (a son of Otto
Toeplitz), Naum Krupnik, Elias Wegert, Victor Katsnelson, Steffen Roch, Israel Gohberg, Rien
Kaashoek, Efim Spigel, Asher Ben-Artzi, Israel Feldman, Ilya Spitkovsky, Yan Zucker, Johannes
Elschner, Victor Vinnikov, Vladimir A. Marchenko.

Consider the integral operators W given by
T
Wehw = [ k= fordy, x e 0.0,

on L?(0, 7). These operators are the continuous analogue of finite Toeplitz matrices.
We may think of W, as the compression to L?(0, 7) of the Wiener-Hopf integral
operator defined by

(Wf)(x)=/0 k= fOdy. x € (0, 00).

on L%(0, o). Clearly, W is the continuous analogue of an infinite Toeplitz matrix.
The symbol of the operators at hand is the Fourier transform of the function k,

k() := /oo k(x)e's*dx, & eR.
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Of interest is the case in which the function k is real-valued and even and in L' R).
In that case W; is a compact Hermitian operator and we may label the upper
eigenvalues as A1 (W) > A2(W;) > .... As predicted by Kac, Murdock, Szegé,
and Parter in the discrete case, the asymptotic behavior of A ; (W) for fixed j and
for v going to infinity depends heavily on the behavior of the symbol k near its
maximum. Suppose that the maximal value is 1 and that it is attained at £ = 0 and
only there. Under the assumption that

k&) =1—cl&|” +0(&*) as € = 0

and that some more minor technical conditions are satisfied, Widom proved that

c 1 1
Aj(We) =1~ i T +0<‘C°‘> as T — 00,

where the u;, are certain constants. For « = 2, this was done in his 1958
paper [44], where he even improved the 0(1/12) to vj,a/t3 + 0(1/13). Papers [48]
and [49] of 1961 are for general @ € (0, o0). The constants ;o are shown to
be the eigenvalues of a certain positive definite integral operator with some kernel
K,(x,y) on L?(=1,1). If « = 2k is an even natural number, then K (x, y) is
Green’s function of the differential operator u +—> (—1)ku(2k) on (—1, 1) with the
boundary conditions ¥ (—1) = u®(1) =0for0 < ¢ <k — 1.

To prove these results, Widom derives a formula for the determinants of banded
Toeplitz matrices and some kind of an analogue of this formula for integral
operators. Subtracting Al and putting the resulting determinants zero, he gets the
eigenvalues, and a clever approximation argument then yields the desired result.

Widom’s formula for the determinants of banded Toeplitz matrices is of interest
by itself. So let us cite the formula here in the form presented by Schmidt and Spitzer
in [38]. The formula along with a full proof is also contained as Theorem 2.8 in the
book [10]. Let

a(t) = Z ajt! (teT)

j==r

withr > 1,5 > 1,a_, # 0,ay; # 0, and let z1, ..., z,4s be the zeros of the
polynomial z"a(z) = a_, + a_r41z + --- + agz" ™. If these zeros are pairwise
distinct, then

detT,(a) = Y _ Cuwly
M
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Fig. 2 Harold Widom in 1969. (Photo by Paul Halmos.).

for every n > 1, where the sum is taken over all (r'SH) subsets M C {1,2,...,r+s}
of cardinality |M| = s and

wy =Das [Tz, eu=]]7 [] @G-w"

jeM jeEM  jeM.k¢M

This formula came to full effect in Schmidt and Spitzer’s paper [38]. We here
confine ourselves to a nice application of the formula in connection with a
periodicity phenomenon for Toeplitz determinants. Consider the Toeplitz matrices
with the symbol

s s+l

a(t) = Ztkzt_r -

k=—r

For sufficiently large n, T,,(a) has r + 1 ones followed by zeros in the first row and
s + 1 ones followed by zeros in the first column. Since z’}” Ferl 2’} for the roots

of the polynomial z"a(z), Widom’s formula immediately yields
det Ty yst1(a) = (=Dt det T, (a) = (—1)"* det Ty, (a).

It follows that det 7, (a) has the period r 4+ s + 1 if r or s is even and that the period
is 2(r +s + 1) if r and s are odd (with merely a sign change after r + s + 1 steps
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in the latter case). This is an explanation for the period 4 detected in [1] in the case
r=1,s =2.

6 Asymptotics for Collective Eigenvalue Distribution

In 1915, Gédbor Szegé established his celebrated first limit theorem, which states
that if a is positive on T, then the quotient det 7;,(a)/ det T,—1 (a) converges to

2
G(a) == exp (211[0 1oga(e"9)d9>

as n — oo. This theorem implies that if a is real-valued, in which case the matrices
T, (a) are all Hermitian, and if we denote by A1(T,(a)) < ... < XA, (Ty(a)) the
eigenvalues of T}, (a), then

1< 1 (2= .
lim oA j(Ty(a))) = f p(a(e’”))do
; / 27‘[ 0

n—oon

for every “test function” ¢ € C(R). This is a first order asymptotic result for
the collective eigenvalue distribution of Toeplitz matrices. In 1952, eventually
motivated by Lars Onsager’s formula for the spontaneous magnetization of the two-
dimensional Ising model, Szegd improved the result to a second order asymptotic
formula, which is now called Szeg6’s strong limit theorem. We refer to the article
[23] for an exhaustive treatment of this story.

Widom made several fundamental contributions to the collective eigenvalue dis-
tribution of truncated Toeplitz and Wiener-Hopf operators and their generalizations,
such as pseudodifferential operators. In this section, we focus our attention on two
of his papers on this topic.

In his 1980 paper [36] with Henry Landau, he investigated the positive definite
operator given on L?(—t, 7) by

T pmie(i—y) _ ,~if(x—y)

(Cof)x) = zy./ FO)dy. x€(-1.7).
Tl

-7 X =Yy

This operator is of crucial interest in random matrix theory and in laser theory. For
example, as observed by H. Brunner, A. Iserles, and S. Ngrsett [19], if y = m,
o = —2, B = 2, in which case the operator is convolution by sin(2¢)/¢, the
eigenvalues of C; are the singular values of the famous Fox-Li operator. After
changing integration over (—7, T) to integration over (0,2t), the operator C.
becomes a Wiener-Hopf integral operator with the symbol y x(q,g), which has two

jumps. No general result of the type of Szegd’s strong limit theorem delivered a
second order trace formula in this situation. By an extremely ingenious argument,
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Fig. 3 Harold Widom in 1985. (Photo by Paul Halmos.).

Landau and Widom nevertheless succeeded in establishing a second order result for
the eigenvalues, which confirmed a conjecture by D. Slepian of 1965. The result
says that if ¢ is in C*°(R) and ¢(0) = 0, then

D o) =1 dx + 0(1).

j=1

p()(B— 10g(2f) / yo(x) — w(y)
b3 x(y —

The other paper we want to emphasize here is [62] of 1990. One is tempted to
think that the eigenvalues of the n x n Toeplitz matrices 7} (a) somehow mimic the
spectrum of the infinite Toeplitz matrix 7' (a) as n — oo. This is indeed the case
if a is real-valued, but already in 1960, P. Schmidt and F. Spitzer [38] showed that
this is in general no longer true if a is a Laurent polynomial (< T (a) is banded).
On the other hand, it was known that if a is piecewise continuous with exactly one
jump and this jump is not too large, then the spectrum of 7, (a) converges to the
essential range of a. So what could the overall picture be? In [62], Widom raised
the brave conjecture that except in rare cases, the eigenvalues of T, (a) are, in a
sense, asymptotically distributed as the values of a. Such a rare case takes place,
for instance, if a extends analytically a little into the interior or the exterior of T,
which happens in particular if @ is a Laurent polynomial. And Widom proved this
conjecture for various classes of symbols. One of the results of [62] says that if a is
continuous, the range a(T) is a Jordan curve, a is C! with nonvanishing derivative
on T\ {1} butnotin C! on all of T, then the eigenvalues asymptotically cluster along
a(T). The proofis based on a thorough analysis of the determinants det(7;, (a) —A1).
In the case at hand, the function @ — A is nonvanishing but has nonzero winding
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number about the origin, and getting asymptotic formulas for such determinants is
one of the most difficult problems in the Toeplitz determinants business.

Widom’s paper [62] already contained aspects of the idea to tackle eigenvalue
distribution via potential theory. This idea has subsequently led to enormous success
in understanding the collective asymptotics of eigenvalues. See [24, 25, 27]. And for
another topic, we refer to [9, 22] for recent developments concerning the asymptotic
behavior of individual eigenvalues in the bulk of the spectrum of large Toeplitz
matrices.

7 Szeg6-Widom

The revolutionary contributions of Widom to Toeplitz determinants with “regular”
symbols are in his papers [54], [55], [56], which appeared from 1974 to 1976.

P

Szegd’s strong limit theorem says that, under certain assumptions,
det T, (a)/G(a)"

converges to a nonzero limit E(a) as n — oo. The original positivity assumption
needed by Szegd was over the years relaxed by many mathematicians, including
G. Baxter, I. I. Hirshman, Jr., A. Devinatz, to the requirement that a satisfies some
mild smoothness condition, has no zeros on T and has winding number zero about
the origin. The constants G(a) and E(a) are then given by

G(a) = exp(loga)o,

E(a) =exp ) _ k(loga)(loga) .
k=1

where (loga) j denotes the jth Fourier coefficient of any continuous logarithm of a.
Widom did two important things. First, he extended the theorem to block Toeplitz
matrices, and secondly, he found a remarkably elegant operator theoretic proof with
immense impact on subsequent research into the asymptotics of Toeplitz matrices.
Due to these achievements, Szeg6’s theorem for block Toeplitz matrices is now
usually referred to as the Szeg6-Widom theorem.

In the block case, a is a function of T into CV*¥ | the Fourier coefficients a j
are N x N matrices, and T, (a) is accordingly a matrix of order nN. Given a matrix
function a on the unit circle T, we define, following Widom [56], the matrix function
da by da(t) = a(1/t) for t € T. This matrix function associated with a plays an
important role in the block case. Note that in the scalar case (N = 1) the matrix
T (@) is simply the transpose of T (a). This is in general not true in the block case.
We also note that in the following the tilde always has the meaning just introduced
and no longer stands for the conjugate function we encountered in Sect. 3.
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In addition to the block Toeplitz operator T (a), we need the block Hankel
operator H (a) defined by the infinite block Hankel matrix

ay a az ...

a as ...
H(a) = (aj+k—1)7,°k:1 =

on the CN-valued ¢2. Widom’s paper [56] contains the two beautiful identities

T(ab) = T(@)T (b) + H(a)H (b),
H(ab) = T(@)H () + H(a)T (D).

These identities had been known and used for a long time, for example in the form

PabP = PaPbP + PaQbP,
PabQ = PaPbQ + PaQbQ,

but writing them in the above form, with the Hankel operators, was one of Widom’s
strokes of genius.
Widom’s smoothness assumption was that

° 172
lali = Nalloo + (D 1illlaI?) " < os,

Jj=—00

where || - || is the spectral norm on CV*¥  In 1966, Mark Krein showed that such
matrix functions form a Banach algebra. They key observation of Krein was that
H (a) is Hilbert-Schmidt if and only if Z?‘;O Jjlla j||2 < o00. Consequently, if
lallx < oo and ||b|[x < oo, then T'(a) and T (b) are bounded while H (a) and
H (b) are Hilbert-Schmidt. The identity H(ab) = T(a)H () + H (a)T(E) and its
analogue for H (55) therefore immediately imply that ||ab| x < oo, too.

The Szeg6-Widom theorem is the theorem established in [55] and [56]. It states
that if a satisfies the above smoothness condition and T (a) and T (@) are Fredholm
operators of index zero, then T(a)T(a~1) — I is a trace class operator and

detTy(a) _

lim = E(a)

n—oo G (a)”
where

G(a) = exp(logdeta)g, E(a)=det T(a)T(a_l).
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Here det T(a)T(a’l) is an operator determinant. If K is a trace class operator and
{A;} denotes the collection of its eigenvalues counted with algebraic multiplicity,
then the operator determinant det(/ + K) is defined as [] j(l + ;). That in the

concrete case at hand T (a)T (a~') — I is a trace class operator follows from the
identity

T@Ta@ HY—I1=T@Ta@ ") =T@a ") =H@HG"

and the fact that the two Hankel operators are Hilbert-Schmnidt.

But why is det T (a) T (¢~ ") equal to Szeg&’s original constant in the scalar case?
Widom observed that this follows from another remarkable identity, namely, the
formula

det(eteBeAeB) = (N (AB=BA)

which holds whenever A, B are bounded Hilbert space operators such that AB— B A
is of trace class. This formula was established independently by J. D. Pincus in 1972
and J. W. Helton and R. E. Howe in 1973, and a simple proof was given by the third
author [29] in 2003. Widom had to struggle with several subtle complications, and
we here confine ourselves to citing his argument in the simple case where a has a
Wiener-Hopf factorization a = a_a. Then

detT(a)T(a™") = detT(a_)T(a)T (az)HT(aZ")
— det ¢! (loga-) ,T(logay) ,~T (logay) ,~T (loga-)
— (lI[T(loga)T (loga)~T (loga)T (loga-)]
— lI[T(loga_loga+)~T (loga)T (loga-)]

— etr H(logat)H ((loga—)~)

and since

clp ¢ Cc3 ... b_1b_rb_j3...

bob >
wHEOHG)=tr | ¢ 3 203 =" kerbs,
c3 ... b_s... P
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it follows that

o]

tr H(logay)H((loga_)™) = > k(logay)i(loga_) ¢
k=1

8

=) k(loga)(loga) ¢,

k=1

which gives Szeg6’s scalar case formula for the constant E(a).

Thus, we know that Widom’s constant det 7' (a)T (a~!) coincides with Szegd’s
constant in the scalar case. But where does the det 7' (a)T (¢~!) come from? We
first of all want to remark that all previous proofs of the Szeg strong limit theorem
were very complicated and rather indirect and did not convincingly reveal the actual
origin of the constant E(a). This changed with Widom’s operator theoretic proof.
However, instead of embarking on this proof here, we go some 25 years ahead. In
2000, Alexei Borodin and Andrei Okounkov [7] established a formula which, in
notation subsequently suggested by no-one but Widom, reads

detT,(a) _ det( — Q,H(b)H(c)Qn)
G()" ~  detd —HMbLH®G)

Here Q,, is projection onto the coordinates indexed by n+1,n+2, ..., a is assumed
to have the Wiener-Hopf factorizations a = u_u; = v v_ (note that in the matrix
case one has to distinguish between “left” and “right” Wiener-Hopf factorizations),
and b, c are defined by b = v_ujrl, c= u:1v+. Obviously, bc = I. Since Q;, — 0
strongly and H (b) H (c) is of trace class, it follows that the right-hand side converges
to 1/ det(I — H(b)H (¢)), and since

1/det(I—H(b)H(S)) = 1/det T(b)T(c)
= 1/det T(v_)T wHT @=")T (vy)
= det T(v; )T ()T (uy)T (")
=det T(u_)T (u)T(W-")T (v}
=detT(u_u)T(w-'vi") =detT(@)T(a™ ),

we arrive at Szeg6-Widom.

Something like the Borodin-Okounkov formula was asked for by P. Deift and
A. Its in 1999, and later it turned out that J. Geronimo and K. Case [31] had a similar
formula proved earlier in 1979. Borodin and Okounov’s proof of their formula was
very intricate. Simple operator theoretic proofs were subsequently given by Widom
and two of the authors in [5], [18]. The simplest of these proofs is based on Jacobi’s
formula, which says that if K is a trace class operator on the CV-valued £>(Z)
such that I — K is invertible, P, denotes the canonical projection onto the first n
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coordinates, and Q, = I — P, is as above, then

det P, (1 — k)~ p, = 4t = QnK On)
det(I — K)

for all n > 1. Letting K = H(b)H (¢) we have the right-hand side of Borodin-
Okounkov, and taking into account that

P,(I—HBH@)'P, = P, T ()T )P,
= P, T T @ )T )T Py = T, (@ T (02"

and det T}, (vfrl)Tn (a)Tn(vjl) = G(a) " detT,(a), we get the left-hand side. We
refer to the monograph [40] for an exhaustive presentation of the topics touched in
this section and for nearly everything around Szeg&’s strong limit theorem.

To mention at least one impact of Widom’s proof in [56] on the research in the

years to follow, we note that in [56] we also see the beautiful identity
T (a)Ty(b) = Ty (ab) — Py H(a)H (b) P, — Wy H (@) H (b) Wy

for the product of two finite Toeplitz matrices. As above, P, is projection onto the
first n coordinates. The operator W, is P, followed by reversal of the coordinates.
We remark that Widom himself wrote Q,, instead of W,,. The W,, was introduced
in [12] (which was written before [39] but appeared only after that paper), not only
because Q, is there used for / — P, but mainly to give merit to Widom. It was
this eye-catching identity along with the observation that the products of the Hankel
operators are compact if @ or b is continuous which inspired Bernd Silbermann in
1980 to study the stability of the sequence {7}, (a)},2 ; by embedding it into a Banach
algebra of sequences in which sequences of the form

{PuK Py + Wy LW, + Cy}o2

with compact K, L and ||C,|| — O form a closed two-sided ideal [39] and
by subsequently applying a so-called local principle. (Stability of the sequence
{T, (a)}"i‘):1 means that the inverses [T, (a)]~! exist and have uniformly bounded
norms for all sufficiently large n.) Harold told us that, although his command of
German language is very limited, he had read Silbermann’s paper [39] with great
enthusiasm. Since the early 1980s, Silbermann’s idea has led to enormous progress
in the foundation of plenty of approximation methods and numerical algorithms;
see, e.g., [13, 33, 34, 37]. The article [8] contains a photo showing Widom’s
paper [56].
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8 Fisher-Hartwig

Symbols with discontinuities, zeros, poles, or nonzero winding number are referred
to as singular symbols. If one of these four evils happens, Szegd’s limit theorem
breaks down. The 1968 paper [30] by Michael Fisher and Robert Hartwig set a big

ball rolling. They introduced the class of singular symbols given by

R
a(ele) — b(ele) 1_[ |619 _ ei0r|20{r (pﬂr’gr(eie)

r=1

where b is a nice function (smooth, nonvanishing on T, and with winding number
zero about the origin), e . ¢iPR are distinct points on T, and the functions ¢g, g,
are defined by

0p,.6,(€") = exp(iBrarg(—e' 7))

with the argument taken in (—, 7 ]. The function ¢g, g, satisfies

©p,.6, (ei(0r+0)) — e_ﬂiﬂr’ ©p,.6, (ei(0r—0)) — eﬂiﬂr’
and it is continuous on T\ {¢!? }. Such symbols a may have zeros (Re o, > 0), poles
(Re o, < 0), oscillating discontinuities ( Re o, = 0), jumps (B, ¢ Z), and nonzero
winding numbers (8, € Z).

Hartwig and Fisher raised the conjecture that

det T, (a)/ G ()" ~ C(a) n=@ =B
with some nonzero constant
Ca)=C(b,01,...,0r,01,...,ar, B1,..., BR),

where x, ~ y, means that x,/y, — 1 asn — oo. Itis required that Reor, > —1/2
for all , which guarantees that a is in L! (0, 27r) and hence has well-defined Fourier
coefficients. The assumption that |[Re §,| < 1/2 for all r is a basic case of the
conjecture. It avoids certain unpleasant ambiguities caused by larger exponents S;,
in particular by the situation where some of the numbers «, + B, are integers.

In special cases, the conjecture was confirmed by A. Lenard and by Fisher and
Hartwig themselves. With his 1973 paper [53], Widom was the first to provide a
rigorous proof of the conjecture in a sufficiently general case: he proved it under the
assumption that 8, = 0 for all r, and this proof is a gigantic piece of mathematical
analysis. Hirschman writes in his review MR0331107 (48#9441) “The present paper
represents a jump of several quanta in depth and sophistication in an area which is
not only of great interest to mathematicians, but to theoretical physicists as well.”



Harold Widom’s contributions to Toeplitz Operators and Matrices 67

Widom also proved the conjecture for R = 1, o1 > —1/2, —1/2 < B1 < 1/2,
however, without determining the constant C(a) in this case.

The conjecture of Fisher and Hartwig was subsequently confirmed by the first
author under the assumption that Re , = 0 for all » (1978) or that o, = 0 and
[Re B:| < 1/2 for all r (1979), by B. Silbermann and the second author in the case
where |[Rea,| < 1/2 and |Re ;| < 1/2 for all r (1985), and by B. Silbermann and
the third author for R = 1, Reo; > —1/2, 1 € C arbitrary (1996). In each case,
the constant C(a) was completely identified. If |[Re«,| < 1/2 and |Re B,| < 1/2
and b is in the Wiener algebra, the constant is

R —8r s
C@ = EW [[[Gysb-) bt ] 1_,,)

Ig
r=1 1<r#s<t,
where 7, = ezQV, Vr =0 + Br, 6, = o — By,

G _ GU+YGA+3)
T G4y +6)

with Barnes’ double Gamma function G(z),

b_(1) = exp Z(log b)it*,  bi(t) =exp Z(log bt
k<0 k>0

and E(b) = exp Z,‘:il k(logb)i(logb) k.

It was observed by several authors, for example by Silbermann and the second
author already in 1981, that the conjecture is in general no longer true if «, £ B,
may assume values in Z \ {0}. A new conjecture, which covers all possible cases,
was formulated by Craig Tracy and the first author [3] in 1991. This new conjecture
was proved by the third author [28] in 1997 in all cases in which it coincides with
the original conjecture and by Percy Deift, Alexander Its, and Igor Krasovsky [21]
in 2009 in full generality. The entire development from Fisher and Hartwig’s 1968
paper up to the present has both demanded and produced great progress in operator
theory for Toeplitz and related matrices.

The Fisher-Hartwig conjecture has a continuous analogue for Wiener-Hopf deter-
minants. In the 1983 paper [4] by Widom and the first author, this conjecture was
proved for piecewise continuous symbols with a continuous argument, that is, for the
case where o, = 0 and Re 8, = O for all r. The idea of the proof is that Wiener-Hopf
determinants when discretized become Toeplitz determinants. Unfortunately, one is
led to determinants of the form det 7;,(a") in this way. Thus, not only the order
of the determinant but also the symbol depend on n. However, sufficiently precise
asymptotic results for Toeplitz matrices and determinants eliminate this obstacle.

For general piecewise symbols, the continuous analogue of the Fisher-Hartwig
conjecture was settled in 1994 in the papers [15] and [16] by Widom, Silbermann,
and the second author. These papers are based on another idea. This time it is
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that Wiener-Hopf operators may be regarded as Toeplitz matrices with operator-
valued entries by thinking of L2(0, 00) as €2-space with values in L2(0, 1) and
thus interpreting a convolution integral operator on L?(0, 00) as a Toeplitz matrix
whose entries are integral operators on L2(0,1). This idea was motivated by
papers [14, 32].

We consider Wiener-Hopf operators whose symbol ¢ is a (complex-valued)
function in L®(R) such that o — 1 € L?*(R). The corresponding Wiener-Hopf
operator on L2(0, co) is defined by

o]

(W(a)f)(x):f(x)—i—/ k(x —t)f(t)dt, 0<x < o0,
0

where

1 [ :
k(x) = f (0(§) — De " dk
27 J_ oo

is the inverse Fourier-Plancherel tranform of o — 1. For t > 0, let, as in Section 5,
Wz (o) denote the compression of W (o) to L?(0, 7). The assumption that o — 1
be in L2(R) implies that so also is k, and hence W; (o) is of the form [ plus
Hilbert-Schmidt operator for every (finite) 7 > 0. If even o — 1 € L'(R), then
k is continuous and therefore W (o) is of the form I plus trace class operator. In
the latter case the determinant det W; (o) is well-defined, in the former case we may
consider the so-called second regularized determinant dety W (o):

det Wy (o) = ]_[(1 + 1)), detbW(o) = ]_[(1 +Aj)e M,
j

where A1, Ay, ... are the eigenvalues of W;(o0) — I (counted up to algebraic
multiplicity).

Suppose now that o € L>(R) is a piecewise smooth function with jumps at the
points wi, ..., w, € R. There are uniquely defined complex numbers ; such that

; i +0
e2miBj — o (w; + ), —1/2 <Repj <1/2.
o(wj—0)
Note that g; is purely imaginary or real, respectively, if and only if o has a
continuous argument or a continuous modulus at ;. In [15], it was proved that
if

oc—1leL'(R)
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and some index zero condition is satisfied (which is equivalent to the invertibility of
W (o) and includes that —1/2 < Re B; < 1/2 for all j), then

det We (o) ~ G(0) "t~ BT+ E(o)g(Br) - 8(y)
as T — 0o, where G (o), E (o) are explicitly given constants, and
2 ad 2
g(B) =TT+ B2 /n?ye P/ =G+ BGU — p)
n=1

with Euler’s constant y and Barnes’ double Gamma function G(z). In the case of
continuous arguments, that is, if Re; = 0 for all j, this result had been established
in [4] ten years before.

The requirement that ¢ — 1 be in L'(R) ruled out many standard piecewise

continuous symbols. In particular, if o is the “canonical” piecewise continuous
function given by

(a&)—(g_")/S ¢ eR)

(with an appropriate branch of P ), then o — 1 is in L2(R) but notin L' (R).In [16],
this final hurdle was taken. It was shown that if

o—1eL*R)
and the index zero condition is satisfied, then
dety We (0) ~ Go(0) e Fit "t E(o)g(B1) -~ g(B)

with some new constant G;(0) and with E(o) as before. In the case of the
“canonical” symbol one gets

£—i\’ LT\
dets (WT <s+i> )~h(ﬁ) (2) 2(B)

with

/2 /o 2
h(ﬁ)=eXp<2/ (S‘?ﬂy) dy)
7 Jo sin y
—1/2<Ref < 1/2.

Over the years it has become clear that the asymptotic behavior of Toeplitz
and Wiener-Hopf determinants with several Fisher-Hartwig singularities can be
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Fig. 4 Harold Widom at his
70th birthday in 2002.

determined by employing localization techniques provided one knows the asymp-
totics for at least one symbol with a single Fisher-Hartwig singularity. In the Toeplitz
case, such a symbolis (1—¢)"(1 -1/ 1)? (r € T) because we have the factorizations

It =17 =1 -0%1 - 1/0°,
pp.0(1) = exp(iparg(—1)) = (1 — P (1 —1/1)7P,

which gives (1 — 1)(1 — 1/1)® with y = « + B and § = « — B. Both exact
and asymptotic formulas for the corresponding Toeplitz determinants were found
in 1985 by Silbermann and the second author, and two elementary derivations of
these formulas are also in the 2005 paper [17]. We remark in this connection that
the symbols in the Fisher-Hartwig class may also be written in the form

R t Yr 1 Sy
a(t):c(t)l_[(l—t) (1—t> (t €T),
r=1 r

where c is a nice function and #1, .. ., g are points on T. In that case the exponent
> (a2 — B2) becomes Y 1,6,
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In the Wiener-Hopf case, things are dramatically more complicated. Only in
2004, in [6], Widom and the first author were able to prove the predicted asymptotic
behavior for the Wiener-Hopf determinants with the symbol

N NS
(é +0.’) (5 0.’) (¢ €R).
E+i E—i

still requiring that y = o + B and § = « — B with the real parts of «, B
in (—1/2,1/2). The proof is highly sophisticated. Roughly speaking, it is based
on introducing a parameter to regularize the symbol, on applying the Wiener-
Hopf analogue of the Borodin-Okounkov formula, which was established in 2003
by Y. Chen and the first author, on considering the quotient of the Wiener-Hopf
determinant over (0, R) and an appropriate n x n Toeplitz determinant, on taking
the limit n, R — oo with n/R — 1, and on finally returning to the original symbol
by passing to the limit that makes the regularization parameter disappear.

In his journey from eigenvalue distribution problems to Szegd’s theorem and
generalizations for singular symbols, Widom sometimes did an excursion into other
more general classes of operators. In a series of papers in the late 1970s, [57-60],
he proved a far-reaching extension of the classical Szegd theorem by developing a
symbolic calculus for pseudodifferential operators. The context was general enough
to include extensions with variable convolutions, higher dimensions, and general
Riemannian manifolds. The applications ranged from the classical theorems in the
Toeplitz case to heat expansions for Laplace-Beltrami operators. Many of these
results entered his book [61].

Credits The two photos of Harold Widom in 1969 and 1985 are courtesy of the
Paul R. Halmos Photograph Collection, The Dolph Briscoe Center for American
History, The University of Texas at Austin. The photo of the German-Israeli
workshop is the conference photo, and the photo of Harold Widom in 2002 is
courtesy of the authors.
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Visualizations of Two Functions m)
Emerging in Connection with Toeplitz s
Determinants

Elias Wegert

Abstract In this note we visualize the Barnes G-function and some related
functions emerging in formulas for Toeplitz determinants, and discuss some of their
properties using phase plots.

Keywords Toeplitz determinants - Barnes’ double-Gamma function -
Fisher-Hartwig conjecture - Phase plot

As shown in the two papers [1, 2] in this volume, the Barnes function G(z) is
currently emerging in formulas for Toeplitz determinants. Albrecht Bottcher asked
me to make a short contribution to this volume with visualizations of the related
functions.

The pure Fisher-Hartwig determinant is the determinant of the n x n Toeplitz
matrix
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The formula for the determinant given in [2] is

Gy +8+n+1) Gy+1)  G@E+1)
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" Giy+8+1) Giy+n+1)G@E+n+1)
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e

Fig. 1 Phase plot of the Barnes function G(z) in the domain —4 < Rez < 6, |[Imz| < 5.

where G(z) is the Barnes function.! A phase plot of this function in the domain
—4 < Rez < 6, |Imz| < 5 is shown in Fig. 1.

The points where all colors meet are zeros of G(z) (located at the points
0,—1,-2,...), their orders 1, 2, 3, ... correspond to the numbers of isochromatic
lines (of one specific color) ending at these points. The isochromatic lines run in
the direction of the gradient of the modulus of the function. The function grows (or
decays) the faster the higher the density of the isochromatic lines is; parallel lines
correspond to exponential growth. The “converging” lines towards the left upper
and lower corners as well as in the direction of the positive real line indicate that
|G(z)| grows even faster than exponential. On the other hand, the function decays
quickly in the direction of the other two “red arms”. For further information how to
read phase plots we refer to [4] and the book [3].

! The function was introduced by Ernest Barnes (1874—1953) in a series of papers around 1900. In
1906, Barnes became John Littlewood’s thesis advisor. Littlewood quickly solved the first problem
Barnes gave him; the second problem posed by Barnes was the Riemann hypothesis. In 1915
Barnes left his job as a professional mathematician, and in 1924 he became Bishop of Birmingham.
See [5].



Two Functions Emerging in Connection with Toeplitz Determinants 77

4

Fig. 2 Truncated analytic landscape of the Barnes function G(z) with —2 < Rez < 6, |[Imz| < 4.

The enormous growth of the Barnes function along the positive real line can also
be seen from the functional equations G(z + 1) = I'(2) G(2), I'(z + 1) = z ' (2),
involving G(z) and the Euler Gamma function I"(z). The colored analytic landscape
of G(z) depicted in Fig. 2 illustrates the behavior described above, though it is
truncated at height 6.

The choices (y, §) = (o, @) and (y, §) = (—p, B) in formula (1) yield the pure
modulus singularity

W (@) = (1 — e 10)2(1 — ¢i®)* = |¢l0 — 1|2
and the canonical jump function
pp(e?) = (1 —e )P (1 = = (=)
Note that, in general, both functions are complex-valued. Their singularities are

located at ¢‘? = 1. At this point, the modulus |cqa (e”’)l has a zero if Reax > 0 and
a pole if Rear < 0, and the argument arg w, (¢'?) has a logarithmic singularity if
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Fig. 3 Modulus (red) and argument (blue) of wgy (€'?) (left window) and oy, %) (right window)
fora =8=1+i/2.

Fig. 4 Left picture: the function G(1 + @)2/G(1 + 2a) for —2 < Rea < 6 and [Ima| < 4.
Right picture: the function G(1 + B8)G(1 — B) for |[Re 8] < 4, |[Im 8| < 4.

Ima # 0. For the function ¢g (¢'?) jump singularities of modulus and argument are
typical; see Fig. 3 for an illustration.

Combining formula (1) for the corresponding Toeplitz determinants with known
asymptotic formulas for the Barnes function, one obtains the asymptotic formulas

G(l+a)?
det T, (wy) G + 20) n Rea > —1/2), 2)
det T, (pp) ~ G(1 + B)G(1 — B) (B ¢ ), 3

which have actually been known for decades.

Phase plots of the coefficients in (2) and (3) as functions of « and 8 are shown
in Fig. 4. The saturated subdomain corresponds to Rea > —1/2 in which the
asymptotic formula is valid. The function has poles at « = —1/2, —3/2, ..., the
white dots are two of them. Note that zeros and poles can be distinguished by the
different orientations of colors in their neighborhood.
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0.5 o 0.5 1 15 2 25 3 35 4 0.5 o 05 1 15 2 25 3 35 4

Fig. 5 The function G(1 + 8)G(1 — B) along the lines Im 8 = 0.01, 0.1, 0.2, 0.5, 1, 2: logarithm
of modulus on the left and argument on the right.

0.5 0 0.5 1 15 2 25 3 35 4 0.5 ] 0.5 1 15 2 25 3 35 4

Fig. 6 The function G(1 4+ 8)G(1 — B) along the lines Re 8 = 0, 0.6, 1.4, 2.2, 2.9, 3.7: logarithm
of modulus on the left and argument on the right.

On the left of Fig. 5 the modulus of G(1 + 8)G(1 — B) along some horizontal
lines in the B-plane is depicted using a logarithmic scale. The image on the right
shows a continuous branch of the argument of these functions. The lines are
Impg = 0,0.1,0.2,0.5, 1, 2. Figure 6 shows the corresponding functions along
the vertical lines given by Re 8 = 0,0.6, 1.4,2.2,2.9,3.7. For both figures the
associated colors of the graphs are in this order: green, yellow, red, magenta, violet,
and blue.
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A Remarkable Advisor, Mentor, )
and Friend creme

Estelle Basor

Abstract This article contains some personal reflections of Harold Widom as my
remarkable advisor, mentor, and friend.

Keywords Harold Widom - Personal history - Toeplitz - Determinants

In the Fall of 1968 I was a senior at the University of California, Santa Cruz (UCSC)
and taking for the first time serious courses in mathematics. I was not by any means
precocious as a mathematics student. I had started college thinking that I might go
into social work, but mathematics seemed to be the only thing I was reasonably good
at. [ had had courses in calculus, linear algebra, differential equations, set theory, and
combinatorics, but had little idea of what was to follow. When I look back at that
year, I realize how lucky I had been to have had a course in abstract algebra taught
by Nick Burgoyne, one of the pioneers in the simple group classification project, a
functional analysis course taught by Robert Bonic, and the most influential for me,
the undergraduate analysis course taught by Harold.

As other students will attest, Harold’s lectures were captivating. He came to class
with only a small piece of paper and with it produced exquisite lectures that revealed
the deep inner core of analysis. His lectures were heuristic in a sense. He would
motivate and outline steps and then fill in details, but always with a natural flow and
often engaging the students to help.

The analysis sequence spanned two quarter terms and near the end of the second
quarter, Harold approached me about staying at Santa Cruz for graduate school. The
campus was only four years old at this time and many of the departments were just
starting programs. I did not hesitate to agree. Thus I began graduate school in the
Fall of 1969. The academic year 1969-1970 was a turbulent time for American
universities and Santa Cruz was no exception. By the time Spring quarter had
come around, most students were not attending class and protesting the American
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involvement in the Vietnam war. [ was a teaching assistant and only meeting with
students informally. Harold was chair of the department and this must have been an
especially trying time for him.

Things settled down in the following years. Harold agreed to be my thesis
advisor as I had hoped and my first task was to read his landmark paper, “Toeplitz
determinants with singular generating functions.” I spent the better part of a year
trying to understand the paper, which confirmed the determinant conjecture of
Fisher and Hartwig in the first general cases.

In June of 1972 I attended my first ever mathematics conference at the University
of Georgia. It was not the custom then for graduate students to go to conferences
unless they were held nearby. The conference featured a series of talks by Ron
Douglas on index theory for Toeplitz operators and there I also met Al Devinatz and
Bill Helton. My trip was funded by Harold’s grant and we flew together to Atlanta.
On the way, he suggested that we have martinis. (Dinner was offered free-of-charge
on planes back then.) I had never had gin before, but it was not hard to appreciate.
Over the years, Harold and I, along with Linda, his wife, and Kent, my husband,
had many dinners together always starting with a gin martini.

By the summer of 1972, I had understood the singular determinant paper well
enough so that Harold thought I might start working on a different, but related
problem. The goal was to do something with singular symbols for Hankel matrices,
relating them back to the techniques he had used. One minor hitch in the plan was
that he was planning to spend the following year in France. There was no email
then, no Skype, no Zoom and so if I made any progress I wrote a letter and he
replied back. The truth was that everything I tried did not work and I was fairly
discouraged by my lack of progress.

On a side note, just before the Widom family left for France, Kent and I were
married with the Widom family at our wedding. After they arrived in France, they
sent us a beautiful hand-painted souffle dish that I cherish.

When Harold came back from France, we worked through everything I had tried
and finally both agreed the problem was not something that could be done—at least
at that time. But one good thing that came out of my frustrating year is that I had
learned a good many analysis techniques and I thought that perhaps I could push
the Fisher-Hartwig results even further. And that was what became the main topic
of my thesis.

After I graduated and started working at Cal Poly in San Luis Obispo I read
with great care another one of his landmark papers, “Asymptotic behavior of
block Toeplitz matrices and determinants,” which appeared in the Advances in
Mathematics in 1975. I thought that perhaps some of the Fisher-Hartwig results
could be redone using the operator theory methods. Of course the first person I told
about this idea was Harold.

In the Fall of 1978, right around the November 11th Veterans Day holiday, Harold
came to Cal Poly to give a colloquium. The next year (since that was always a day
I did not teach) I visited him in Santa Cruz. So we made it a tradition for several
years to always meet on the 11th, talk about mathematics and go out to lunch.
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Over the years we often ended up at the same meetings and conferences. In
1985, we both attended the International Conference in Operator theory that was
held in Bucharest, Romania. This was of course when the President of Romania
was Ceausescu. The western mathematicians were housed in one hotel and ones
from the east in another. The conference spanned two weeks and the organizers
planned a non-optional bus tour for the participants for the weekend. On Saturday
morning we went first to a very old orthodox monastery. Then we were taken to
a hotel and then up to a dinner at an experimental farm that had been converted
from a private estate. I actually have no idea where we really were, but when we
arrived folk dancers greeted us. They attempted to get everyone to dance—all the
mathematicians. Harold had a very funny look on his face. I knew he was not going
to do this. One of the dancers grabbed my arm and I began to dance. Harold was left
holding my purse. The next day we toured Dracula’s castle in Transylvania.

The last meeting we attended together was an AIM workshop, Fisher-Hartwig
asymptotics, Szegd expansions, and applications to statistical physics, held in March
of 2017. Harold’s talk was the highlight of the week.

It seems to me that when I look back, almost all the mathematics I know I learned
from Harold. He was a master of analysis. He could change variables, integrate by
parts, and in a flash transform something that could not be done into something
doable. He was always rigorous, but his analysis was never tedious or dull. Working
with him was just plain fun. I cherish every moment that I did and I miss him terribly.

Credits The photo in Fig. 1 is courtesy of the author, the photo in Fig. 2 is courtesy
of Wolfgang Spitzer.

Fig. 1 Harold in Romania holding my purse.
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Fig. 2 Harold, Craig Tracy and myself at the 2017 AIM workshop.



My Encounters with Harold Widom m)

Check for
updates

Albrecht Bottcher

Abstract This is an essay containing personal reminiscences, including some
photos, and describing a few selected topics of joint mathematical work of the author
and Harold Widom.

Keywords Toeplitz operators - Toeplitz matrices - Wiener-Hopf operators

Let’s begin with some prehistory. In the second half of the 1970s, I was a student of
mathematics in Chemnitz, and in the second or third year I decided to go to Bernd
Silbermann. I had attended his lecture courses Analysis I to Il in the first three terms
and felt that he was the right man under the guidance of whom I should continue the
advanced terms of my study. Silbermann was a student of Siegfried Prossdorf, who
left Chemnitz for Berlin in the mid of the 1970s, and when I approached Silbermann,
he was still Dr. Silbermann. Only in 1979 he was appointed full professor.

Under the influence of Prossdorf, Silbermann had entered singular integral
operators with so-called degenerate symbols. It had been known for a long time that
certain operators are Fredholm if and only if a function associated with them, the so-
called symbol, has no zeros. Degenerate symbols are those which have zeros, and in
those years it was some kind of a business to understand what in the degenerate case
happens. Prossdorf and Silbermann studied in particular projection methods for the
solution of equations with degenerate symbols. In the course of these investigations
large matrices emerge, their invertibility is one of the crucial questions, and hence
it is no surprise that Silbermann came across theorems on Toeplitz determinants, in
particular Widom’s two papers [24, 25]. As a result, Silbermann made two major
contributions to the topic [21].
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P

First, the assumption of Szeg&’s theorem is that the symbol is sufficiently smooth,
has no zeros, and has winding number zero. Silbermann established asymptotic
formulas for the Toeplitz determinants generated by symbols of the form

a)=b0) [J¢-1p% @),

j=1
where b(¢) satisfies the assumptions of Szegd’s theorem, #1, . . ., #, are points on the
complex unit circle T, and 81, . . ., 8, are positive numbers. The points 71, . . ., #, are

zeros and so a(t) does not satisfy the assumptions of Szegd. I should notice that all
these zeros are of “analytic” type, which simplifies things (from the perspective of
today!). The actual challenge is symbols of the form

r N\ Vi
at)y=bn ] (1 - t;) (t—1)% (teT),
j=1

where the zeros appear in both the “analytic” and the “anti-analytic” types. The
famous Fisher-Hartwig conjecture of 1968 concerns the Toeplitz determinants
generated by symbols of the latter form where, in addition, b(¢) is not assumed
to be smooth but is allowed to make jumps (even at just the points 7;).

The second major contribution of Silbermann addressed the smoothness condi-

tion needed in Szegd’s strong limit theorem. To state things in an easy case, Szeg6’s
strong limit theorem holds if

o]

1/2
> inl'lan] < oo,

n=—0oo

where {a,} is the sequence of the Fourier coefficients of a(¢). Silbermann observed
that one can relax the requirement on one half of the coefficients if at the same time
the conditions on the other half is strengthened. For example, he proved Szegd under
the assumption that

-1 00

Z |n|°‘|an|+Zn’3|an|<oo with «>0,8>0,a+8>1.

n=—oo n=1

In the late 1970s, Silbermann posed me the extension to block Toeplitz matrices
of the latter result as the topic of my diploma paper. He gave me a photocopy of a
paper on block Toeplitz matrices, and at this point Harold Widom stepped into my
life. The paper was Widom’s article [25]. I have kept it until now. Figure 1 shows
my well thumbed copy. What resulted was my very first publication, [12], joint
with Silbermann. One section of that paper has the title “An extension of Widom’s
arguments.”
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Fig. 1 My copy of paper [25]. I read it more than 40 years ago and have kept it since then.

In the 1980s, I embarked on several topics in Toeplitz operators and matrices.
As for Toeplitz determinants, the Fisher-Hartwig conjecture was in the focus of
my joint research with Silbermann. We read in particular with great admiration the
papers by Estelle Basor [3, 4] and Harold Widom [24] and were eventually able to
prove the Fisher-Hartwig conjecture in a basic case [13]. For more on this subject,
I refer to [6, 14] and for the continuation in the 1990s to [19] (which is essentially
Torsten Ehrhardt’s dissertation, written under the guidance of Silbermann).

It was only in 1989 that I met Harold for the first time in person. At that
time I knew many mathematicians by their name only, but things changed with
the fall of the Iron Curtain. In 1989, Israel Gohberg, Rien Kaashoek, and Erhard
Meister organized the (by now at least in our community legendary) Oberwolfach
conference “Toeplitzoperatoren, Wiener-Hopf-Probleme und deren Anwendungen.”
There I made personal acquaintance with various of my mathematical heroes,
including Israel Gohberg and, as said, Harold Widom. I received a true abundance
of unforgettable impressions from this conference, meeting Harold being one of the
highlights.

My second meeting with Harold was in 1992. I was invited to participate in
the conference “Toeplitz and Wiener-Hopf Operators in Honor of Harold Widom,”
which was dedicated to Harold on his 60th birthday and took place in Santa Cruz.
What an event! It was my very first trip across the Atlantic Ocean, the organizers
had booked a rental car for me, and I experienced the joy of power steering and
automatic transmission for the first time in my life. At the conference, I met in
person many of my other mathematical heroes, including Estelle Basor, Ronald
Douglas, and Donald Sarason. We all had lots of inspiring talks and discussions, an
amazing birthday reception, and a wonderful dinner in Harold’s house. Harold also
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Fig. 2 Break at the conference in honor of Harold Widom on his 60th birthday in Santa Cruz in
1992. On the front table from the left to the right: Lidia Luquet, Cora Sadosky, Richard Libby, I,
Israel Gohberg, Donald Sarason, Richard Rochberg, Ronald Douglas.

took me with his car on a half-day trip to Carmel Bay in the south of Santa Cruz.
Figures 2, 3, and 4 are photos taken in those days of 1992. As I had a few more
days after the conference, I made it with my rental car also to Yosemite and Lake
Tahoe. Moreover, Estelle Basor invited me to a talk at the California Polytechnic
State University in San Luis Obispo. So I enjoyed travelling on Highway 1 from
Santa Cruz to San Luis Obispo. I remember with great pleasure the warm hospitality
of Estelle and her husband Kent Morrison in their house and devouring the sunset
behind the rock in Morro Bay with them.

After the reunion of Germany all professors of eastern universities lost their posts
and had to apply anew. I remember that I took leave from Harold in Santa Cruz with
the words that on my return in Germany I will find a letter on my desk beginning
either with “We regret to inform you” or with “We are pleased to inform you”.
Fortunately the latter happened and my professional life went into stable tracks.
This enabled me to invite Harold to a visit in Germany, which he accepted in 1993.

We both liked everything connected with asymptotic eigenvalue distributions,
and a fresh conjecture in those days was one raised by Anselone and Sloan [1].
They considered the truncated Wiener-Hopf integral operator given by

(er)(x)=Z/Xetfxf(l)dt+/Tex7tf(t)dt, 0<x <,
0 X
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Fig. 3 Harold Widom and
Estelle Basor at the birthday
reception in Santa Cruz.

on the space L*(0, t) and conjectured on the basis of numerical computations that
the spectrum of W; converges in the Hausdorff metric to the union of the circle
{, € C: |x—1/12] = 1/12} and the line segment [3/2 — +/2,3/2 + +/2] as
T — 00. During Harold’s visit in Chemnitz in 1993, we understood that the symbol
of W, is a rational function, W; = W;(a) with

0 00 :

a(e) = f el dr + f 2etei€t gy = 5 T 15
—00 0 I+ E 2

and that hence Anselone and Sloan’s question is a particular case of the more
general problem of establishing a Wiener-Hopf analogue of the famous results by
P. Schmidt, F. Spitzer, and K. M. Day on the asymptotic eigenvalue distribution
of large Toeplitz matrices with rational symbols. We were indeed able to solve the
problem and so wrote [15]. The general result of this paper applied to the concrete
situation at hand says that a nonzero point A € C is in the limiting set of the spectra
if and only if the two zeros &1 (A) and & (X) in

1— la(g) _ 134 E=8H0)E - £O)
» h1+82 & +0)(E — i)
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Fig. 4 With Harold at Point Lobos in the Carmel Bay in the south of Santa Cruz.

have equal imaginary parts. Since

i 1
A) = + —402 4120 — 1,
&12(A) " 2)\\/ +
we obtain

Im& () =Imé (L) < &(L) — &(A) isreal
= EO-80) =0 &= —4+120/A)—1/22=5>0
— A=1/(6++/32-8) or A =1/(6—+/32—28) with § > 0.

The parameters § € [0, 32] give the two line segments
3/2—+/2<A<1/6 and 1/6<i<3/2+2,

while § = 32 4 y2 with y > 0yields A = 1/(6 & iy), which is readily seen to be a
parametrization of the circle [A —1/12] = 1/12, exactly as conjectured by Anselone
and Sloan.

Of course, when Harold visited me, we did not only mathematics. Some morning
Harold came into my office and proudly reported “Yesterday I was in seven churches
of Chemnitz!” And clearly, we also travelled with my car (without power steering
and with gear shift) around Saxony, in part together with my family. Figure 5 is a
remembrance of one of the short trips.
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Fig. 5 In 1993, with Harold and my two children, Eva and Igor, on the Fichtelberg in the Ore
Mountains, the highest summit in the eastern part of Germany.

In the years that followed, I met Harold on several occasions and we had of
course been in permanent email contact. In 2000, Borodin and Okounkov published
a formula that expresses Toeplitz determinants in a form that was asked for earlier
by Deift and Its. See [8] and the article [6] in this volume. Basor and Widom [7]
found a new proof of this formula, and the two papers [7, 8] landed on my desk
from the Mathematical Reviews with the request to write a combined review. When
reading them, I discovered still another way of proving the formula. I included my
proof into the review (MR1780118 and MR1780119). I also communicated it to
a few colleagues involved in business. Harold’s wonderful reply was “So you can
add yourself to the list of people who can kick themselves for not having found the
formula when they were so close.” Percy Deift wrote back that he had just finished
a joint paper with Jinho Baik and Eric Rains, [2], and asked me whether I could also
give proofs in my style for the determinant formulas found there. Fortunately, I was
able to manage this.

This was around Christmas of 2000, and I enjoyed myself with the idea to
post my proofs in the arXiv and to receive the arXiv identifier 0101001 for the
first preprint of the new millennium. Thus, in the early morning of January 1,
2001, I got into my car, drove to my university office, and submitted the preprint
(nowadays I could have done this from my computer at home). I was a little too
late: the preprint, [9], received the identifier 0101008. The winners with 0101001
were Jingiao Duan and Bjorn Schmalfuss.
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Jacobi’s formula says that if K is a trace class operator on £2(Z,) such that
I — K is invertible, P, denotes the canonical projection onto the first # coordinates,
and O, = I — P,, then

det P, (1 — k)~ p, = 4t = QnK On)
det(I — K)

for all n > 1. It became clear quite quickly that this formula is at the heart of the
Borodin-Okounkov formula. This is implicitly in [7] and explicitly in [9]. More
about this can be found in the article [6] in this volume. A question of those
days was whether one can also derive other results on Toeplitz determinants from
Jacobi’s formula, for example, results in the case where the underlying Toeplitz
operator has nonzero Fredholm index. Opinions differed. In 2006, Harold and I
felt we should save Jacobi and wrote our paper [17]. Its intention was to show
that Jacobi’s theorem on the minors of the inverse matrix remains one of the most
comfortable tools for tackling the matter. We repeated my proof of the Borodin-
Okounkov formula and thus of the strong Szeg6 limit theorem that is based on
Jacobi’s theorem. We then used Jacobi’s theorem to derive exact and asymptotic
formulas for Toeplitz determinants generated by functions with nonzero winding
number. The latter derivation was new and completely elementary.

In 2002, I participated in the MSRI workshop on random matrix theory in
Berkeley which was dedicated to Harold on his 70th birthday. As in 1992, 1
was overwhelmed by meeting in person so many mathematicians I had until that
time known by their names only, for example, Alexei Borodin, Persi Diaconis,
Freeman Dyson, Alice Guionnet, Kurt Johansson, Andrei Okounkov, Craig Tracy
(in alphabetical order). I myself have always resisted the temptation to try my hands
in random matrices, and in the course of this workshop I realized that indeed I had
never reached the level of all these mathematical giants and that hence my resistance
was very reasonable. So I left Berkeley with a good feeling.

Harold had multifarious mathematical interests, but Toeplitz determinants have
never left him. Some day in 2003, I received a manuscript by him which contained
an elementary proof of the pure Fisher-Hartwig determinant. This is the determinant
of the n x n Toeplitz matrix

Tw(a) = (aj—k)j =
generated by the Fourier coefficients of the function
a(@®) = (1 — e~y (1 — %)
Note that the kth Fourier coefficient of a equals

o Fy+8+1)
Dy r1ebreri—n €T
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The formula for the determinant is

Gy +8+n+1) Gy+1) GG+1)

dethi@=6n+D 541 Gu4ntD Gé+nt+ 1)’

where G(z) is the Barnes function. In our 1985 paper [13], Silbermann and I
derived this formula from a factorization of the Toeplitz matrix 7;(a) due to Roland
Duduchava and Steffen Roch. Harold’s proof was analogous to the usual derivation
of the Cauchy determinant, and its philosophy was that the most elegant way to
determine a rational function is to find its zeros and poles. It was self-contained and
occupied nearly two pages. I wrote him that I have a proof of less than one page
that is based on mere elementary row and column operations. I don’t remember the
exact wording of Harold’s reply, but it was something like “Now that you say this,
I remember that I also had such a proof, even before Silbermann and you. I have
simply forgotten it. However, as I have never published that proof, this does not
count.” He invited me to record our two proofs in a short joint paper, and this led to
the 4-pager [16]. I hope the reader will also enjoy [22].

Another of my mathematical adventures connected with Harold is described in
my contribution to [5]. Our paper [18] is a continuation of the story told in [5]. Let
o be a natural number and consider the eigenvalue problem

(=D%u@ (x) = ru(x) for x €[0,1],
u@ =0 =...=u*P0)=0, u(H)=ud/H=...=u*"D1)=0.

This problem has countably many eigenvalues, which are all positive and converge
to infinity. Let Amin,o denote the smallest of them. In an earlier paper we proved that

4o\ > 1
Aming = V8ra 14+ 0 as o — oo.
e Ja

For o = 3, the minimal eigenvalue Anin 3 is exactly equal to (2n)6. We wanted
to understand whether this coincidence is an accident or not. Paper [18] gives an
answer. In the case @ = 3, it is convenient to start indexing the eigenvalues with
n = 2, that is, to denote the eigenvalues by

A2 (= Amin,3)s A3, A4, ...

We proved that A, = (n7)® if n is even and that A, = (n7 + 8,)° if n is odd, where
the §,,’s are nonzero numbers satisfying

8y ~ 8(— 1)/ A1 ,=Cr3/Dn oy o .

here [n/2] is the integral part of n/2. Yes, Harold loved asymptotics! Let us write
Iy = ,ug. Mark Embree computed the first five u, up to ten correct digits after the
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comma. The following list shows the values of the first five ,, and of the first five
L= 8(_1)[n/2]+1e—(nJ3/2)n_
u3 = 9.4270555708 = 37 4 0.0022776101 A3z = +0.0022821082
ws = 15.7079533785 = 57 — 0.0000098894  As = —0.0000098893
w7 = 21.9911486179 = 77 + 0.0000000428 A7 = 40.0000000428
wo = 28.2743338821 = 9 — 0.0000000002 A9 = —0.0000000002
w11 = 34.5575191894 = 11z + 0.0000000000 Aq; = 4+0.0000000000.

I met Harold for the last time in Edinburgh in 2007. However, our correspondence
remained alive over the years. Let me finish with the last joint mathematical
adventure with him.

In 2008, I received a (beautifully handwritten) letter from Peter Dorfler with the

question whether I could help with the large n behavior of the maximal singular
value (= spectral norm) of the (n + 1) x (n + 1) triangular Toeplitz matrices

= (=1" U )

composed of binomial coefficients with an integer v > 1. The matrix 7}, is
the representation of the operator taking the vth derivative, f +— D" f, in the
orthonormal basis of Laguerre polynomials in the space P, of algebraic polynomials
of degree at most n with the Laguerre norm given by || f||*> = fo | f(x)|2e™ dx.
Thus, the norm || 7, is just the best constant for which the so-called Markov-type
inequality || D" f|| < M|| f|| holds for all f € P,.

This question reminded me of an ingenious trick used in Harold’s 1966 paper
[23] (and employed independently also by Lawrence Shampine in [20]). Given an
n X n matrix A, = (a jk);'.’;l: o» denote by H,, the integral operator on LZ(O, 1) with
the piecewise constant kernel %, (x, ¥) = a[nx],[ny], Where [-] stands for the integral
part. Widom and Shampine proved that ||A, || = n||Hy||. Thus, instead with having
the matrices A, on the sequence {C"} of increasing spaces, we so can work with
a sequence {H,} of operators in one and the same space L>(0, 1). The goal is to
show that after appropriate scaling the operators H,, converge in the operator norm
to some nonzero operator H, that is, n=* H,, — H in norm. This would imply that

n~*|[Hall = | H | and hence | A, || ~ ||H|ln**".

To compute || 7, ||, we may ignore the factor (— 1)” and the diagonal of zeros. In
the resulting n x n matrix, the j, k entry is equal to ( ) for j < k. Thus,ifx <y
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then the kernel of the scaled integral operator n~""V H,, is

1 1 (Iny] - nx)
nv_lalnxl,lny] = -1 v—1

_ 1 Iyl=Inx] [ny] = [nx] =1 [ny] = [nx] —v+2
T w=1) n n n ’

and this converges uniformly to (y — x)"~'/(v — 1)! as n — oo. In the end we
obtain the asymptotics || T, || = ||Ly||n" (1 4+ o(1)) where L, is the Volterra integral
operator on L>(0, 1) given by

o= / b =" F) dy.

Clearly, L, = L} (= vth power of L1) and ||L, | = ||L} || with

winw= " [

Note that it is well-known that ||L1|| = 2/m. I refer to paper [10] for more on
the subject and in particular for more about pieces of the amazing story around the
norms of the Volterra operators L,.

After 2012, Holger Langenau was a PhD student (a Doktorand in German) of
mine. He worked on best constants in Markov-type inequalities between spaces
with different weights. In a large range of more general cases, things are not as
simple as in the preceding paragraph, but we still encounter constants involving the
operator norm of certain Volterra integral operators and the proofs can be based
on the happy circumstance that these operators are Hilbert-Schmidt. The conjecture
was and still is that in the remaining cases the same operators occur. A proof is
outstanding. One (but not the only) step towards a proof is to show that certain
operators are compact. Holger Langenau and I were able to prove the compactness
of these operators, even their membership in certain Schatten classes, but for one of
them the proof was extremely intricate and occupied many pages. We submitted the
paper to Birkhéduser’s OT volume containing the proceedings of the IWOTA 2014 in
Amsterdam. As usual with the IWOTA proceedings, the submissions were strongly
refereed. The report we received on our submission was positive but also contained
an elegant argument that reduced the many pages we needed for the compactness
of the one operator to about a single page. We asked the handling editor to ask the
referee whether he or she would be willing to release anonymity and to join us as
co-author. The referee agreed to the proposal and—you guess it—the referee was
none other than Harold Widom. The 2016 paper [11] was the result of our joint
effort. Holger Langenau was a great admirer of Harold Widom and was therefore
full of joy and pride for having made it to a joint publication with him.
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I am really glad and thankful for having had Harold as a partner and friend for
decades. He is in the top of the many colleagues who have strongly influenced my
interests and my way of doing mathematics. Now he has left us, but as the story
with Holger Langenau reveals, I am sure that his name and achievements will live
on and inspire future generations.

Credits The photos are courtesy of the author.
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Check for
updates

Richard A. Libby

Abstract This tribute shares personal memories of Harold Widom during the
author’s years in and after graduate school. These memories reflect on Harold’s
skills as a teacher and mathematician, but also on how his insights proved valuable
in applications of mathematics in the author’s professional work.

Keywords Harold Widom - UC Santa Cruz - Toeplitz operator

To begin a memorial tribute it is best to begin at the beginning. An invisible hand in
this story is that of my grandfather, who gave me a large dose of academic career
advice shortly before he passed away. He asserted that it was a mistake to get one’s
PhD from the same university as one’s undergraduate degree. I was in my first
year of a PhD program at UC San Diego, which had conferred my BA degree in
mathematics the previous June. My father’s father was a retired statistics professor
from USC who had climbed his own career ladder into a successful administrative
role and therefore probably knew the value of his advice, which I took, along with an
MA in mathematics soon thereafter. (Among Harold’s eight students Estelle Basor
is a notable counterexample to my grandfather’s advice.)

UC Santa Cruz as the choice for my eventual PhD came down to two ingredients:
first, a known tenure dispute at the time in the Berkeley math department seemed too
similar to my grandfather’s stories of academic politics and so the second ingredient
became a side trip to the UC Santa Cruz admissions office, where I received a very
impressive brochure covering the accomplishments of its own faculty, including
Harold’s by then successful research in Toeplitz and Wiener-Hopf operators. I was
duly admitted in the Fall of 1984.

My first interaction with Harold was in his core graduate analysis course using his
lecture “Notes on Measure and Integration” as written up by David Drasin and Tony
Tromba. As I write this memorial article I thumb through the pages of these notes
conveniently bound with the back of each page left blank for the copious scribbled
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notes of additional course materials, often proofs of results using techniques of
obvious general utility. Harold’s lecturing style was quick and precise, interspersed
with occasional comments more about style or strategy of proof than the specific
content of the theorem at hand. I later took Harold’s Functional Analysis course,
which increased the quantity and latitude of good ideas worth copying onto the
blank backs of pages in the bound lecture notes as well as the soul of wit evidenced
in the brevity of Harold’s lecturing style. In this course Harold would entertain
speculative disruptions from some of the students as to the importance of various
mathematicians or the sophistication of their techniques, but if a student asserted
anything false in the way of mathematical content, Harold would pounce and rebut
with solid and efficient reasoning. Out of respect for Harold I generally kept quiet
during these side discussions except for one time when Harold wondered out loud,
while lecturing on Cesaro summation and the Fejér kernel, where the accent went
in spelling Lip6t Fejér’s last name. I offered a response based on my knowledge of
French pronunciation while foolishly assuming Fejér was French and that we were
pronouncing it as such. Harold gave me a funny look and I took it as a stroke of good
luck on such a small matter, to only jump into these things in the future when I had
as solid an understanding as Harold evidenced each day, and when I was positive I
would be wasting no one’s time in doing so. With this course I decided I would be
even more foolish to not ask Harold to be my thesis advisor, given the quality of his
work and what seemed my own mathematical predisposition to functional analysis
and operator theory.

In all the courses and seminars where Harold either lectured or took part
he always commanded a vast breadth of knowledge and could ask penetrating
questions, the value of which I would sometimes only discover much later in life.
When lecturing he would occasionally hit a snag of some kind, saying, “Hold on
...hold on!” as he studied the blackboard intently before delivering the missing
detail or shifting direction slightly in the argument at hand. I must admit I acquired
this technique and have discovered its principal value is in preserving the audience’s
attention across the pause in the stream of ideas, the momentum of which is a truly
valuable commodity in the hands of any lecturer. I have made good use of another
quote of Harold’s showing his appreciation for self-referential paradox: “One thinks
about mathematics to figure out why one does not need to think about mathematics.”
On another occasion in one seminar the presenter made use of the heat kernel,
prompting Harold to ask a pair of rhetorical questions about the heat equation: was
it not true the equation presumes information travels infinitely far in an infinitesimal
amount of time? How would we modify it knowing nothing travels faster than the
speed of light? Later in life I borrowed Harold’s line of questioning for use against
a different parabolic PDE used in finance, the Black-Scholes equation, which since
its discovery has led to a number of financial losses for those who think of it as an
exact answer rather than as an approximation.

One-on-one discussions with Harold during my later years in graduate school
were a good way to polish one’s argumentation style. The department had at the
time the number theorist Sol Friedberg who introduced a few of us to the Circle
Problem: how many integer lattice points are found inside a circle of radius R
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centered at the origin? I poked at it a bit and came up with the estimate 7 R> with an
error O (R), basically duplicating the result Gauss found back in the early nineteenth
century by putting the lattice points inside unit squares and then bounding the area
above by a larger circle and bounding below by another, smaller one. The problem
is of interest in part because the actual error seems to be quite smaller, perhaps
o(R'/>*€), an open problem. One day Harold brought up the Circle Problem on
his own and asked me what the estimate should be. I said, “7R%” and Harold
immediately asked, “Why?” Now, Gauss’ (and my) methods are true, but rather
dull. Harold appeared more interested in why the intuition should be correct, so I
gave him a different proof. I swapped the circle of radius R for one of unit radius
and made the lattice points take integer values divided by R and sit within squares
having side length 1/R. I said, “Now, organize those little squares into columns
and you have a picture you could show to undergraduate students demonstrating
Riemann sums. The estimate holds because those little squares each have area 1/R?
and because, as we all know, Riemann integration works!” Harold said, “Right!”

The Circle Problem led to my learning of Harold’s deep suspicion of all results
computer generated. The Problem’s conjectured error term was easily supported
by computer evidence obtained in the department’s computer lab, but Harold had no
interest in seeing it. He did, however, ask me to calculate finite Toeplitz determinants
for a symbol of interest to him. When I showed him the result, he was clearly
pleased but absolutely did not want any more computer time spent on it. Around this
time Harold received a batch of computer generated plots of eigenvalues for finite
Toeplitz symbols related to the Fisher-Hartwig conjecture. He showed me one that
was consistent with the conjecture and when I showed enthusiasm for the result he
immediately showed me a second one that was not consistent. I knew enough about
“machine arithmetic” to understand that potential rounding errors in the calculations
showed the limitations of this kind of research.

Outside of the lectures, seminars and my one-on-one discussions with Harold of
a mathematical nature, I had the opportunity to see Harold as Department Chair for
several years. I succeeded another graduate student who, having taken the PhD,
was no longer the student representative at faculty meetings and, with no other
volunteers stepping forward, I took over the role. I found myself occasionally caught
between a student’s complaint about faculty decisions and the faculty who made
them. I learned quickly how to represent a student without implying I was taking
sides and found Harold was quite fluent in this valuable skill. Harold had a very
precise sensibility about the importance of rules of order in meetings and would
never tolerate the breaking of rules around confidentiality of certain information
and similar items. With Harold running them, I found myself entering and exiting
ongoing meetings based on what was about to be discussed.

It was during this time that the department received one of its periodic visits from
the accreditation committee, who asked to interview a graduate student as part of the
process. I found myself on a team of four students who spoke with the committee.
Later on, Harold passed me a copy of the draft accreditation report that covered
many topics and gave both compliments and criticisms. The report also contained a
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somewhat withering comment, “The graduate students seem to be a happy lot.” My
sense is that we were simply charmed by the attention from a distinguished group of
outside professors. Along with Harold’s occasional comments on how one conducts
one’s research with the goal of attaining tenure, I found the report’s materials as
efficient and precise an academic career guide as Harold’s coaching and teaching of
mathematics.

It was also during this time that I fell in with a number of musicians and theater
people, my amateur talents as a pianist having found a bit of a home among
them. During a 1987 summer stock production of “Tomfoolery,” a London West
End musical revue based on the comedy songs of Tom Lehrer, Harold took in a
performance and gave me a great deal of encouragement afterwards. As it happened
Tom Lehrer appeared on campus each spring to teach a theater arts course and a
liberal arts introductory math course. Tom called the latter course “Math for Ribbon
Clerks” and for one term I was his teaching assistant. In retrospect I appreciate
Harold’s and the department’s tolerance for my side excursions into music, which
preserved some of my sanity as the pressure to finish the PhD within a reasonable
time naturally grew more urgent.

Graduate school is likely impossible without some form of setback. In my case
my first attempt at an oral candidacy exam went awry over a rules challenge.
A major theme of the 1980s was the cross fertilization of different areas of
mathematics and I got the idea I should reflect this trend strategically by doing
a candidacy exam on the Atiyah-Singer Index Theorem, an idea I succeeded
in convincing a committee to undertake. Before the exam one professor bowed
out and the replacement immediately objected on the grounds that the exam is
supposed to be about a field of mathematics, not a theorem. As the committee
chair Harold pointed out that the exam covered two fields, analysis and topology,
but could not convince the new committee member to change his mind. After
a few minutes of this impasse I could see in Harold’s eyes an idea had formed
and he quickly and quietly brought about agreement we would cancel the exam.
Shortly afterwards Harold shared his idea, that instead of the theorem I could do
an exam on pseudodifferential operators and not only satisfy the rule but also cut
the material needed to demonstrate mastery exactly in half. Unfortunately, Harold
also mentioned he would soon be taking a year’s sabbatical, so instead of taking his
suggestion, and in the interest of time, I reformed the committee on the more general
topic of partial differential equations. In retrospect this setback was very fortunate
for my later career in banking when doing battle with abuses of the Black-Scholes
equation. I take the true lesson learned from the experience was that navigating
graduate school should have been more tactical and less strategic.

In comparing stories with Harold’s other PhD students I have since discovered I
was not the only one to tackle one thesis problem before switching to another. My
first choice was to derive a Szeg6 theorem for spherical harmonics, a task that soon
ended in a sea of Clebsch-Gordan coefficients having no discernible pattern. At this
point the switch to a special case of the Fisher-Hartwig conjecture seemed a good
choice given that I had an inkling as to how to do it. In writing this memorial I have
Harold’s 1973 paper “Toeplitz Determinants with Singular Generating Functions”
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next to me as a reminder of which techniques were Harold’s and where mine
began. Fewer dissertation topics could have been a better fit. Most mathematicians
learn of Cramer’s rule in either high school or in their early college years and
Jacobi’s generalization to matrix minors therefore makes for quick study. The Euler-
Maclaurin summation formula is also a quickly acquired skill by anyone who
knows integration by parts. As it happens the coordination of these techniques with
Harold’s paper resulted in calculations that grew horrendously more complicated as
the size of the matrix minor grew and the dissertation stopped with the two-by-two
case of the matrix minor, extending the measured gap of a single discontinuity only
from less than 1/2 in absolute value as found in Harold’s paper, to less than 5/2,
enough for a dissertation but nothing to shout from the rooftop of the mathematics
department.

Acquiring a PhD in December 1990 rather than in June of any year meant my
degree was in a sense out of season and I took a series of temporary jobs to pay
bills while looking for a way to improve my dissertation result and look for more
permanent work. Remembering Harold’s words about understanding the structure
of aresult as well as the details, I could hypothesize how the asymptotic formulas in
my work might extend themselves. Assuming this hypothesis I carried out a three-
by-three case of the matrix minor without resorting to the detailed calculations
of my thesis and got the result I was hoping for. Writing a paper extending the
measured gap of the discontinuity to less than 7/2 in absolute value seemed an
abuse of the “publish or perish” strategy graduate students learn about at an early
stage of their career. The temporary jobs continued their iterations while I sought to
apply Harold’s advice to a more complete solution to this problem. At some point
I realized that no matter how awful the calculations were, the choices as to what
constituted each next step were only three in number, and each of the three added
a term to the asymptotic expansion consistent with my hypothesis. By induction
I therefore had a general theorem at hand and could apply it to the n-by-n case
of the matrix minor. One brute force calculation remained evaluating an n-by-n
determinant composed of entries having the demonstrated expansion and the result
that came out fit like a jigsaw piece into the earlier results. The limitation on the size
of the discontinuous gap was now removed.!

I shared these results with Harold and had the good fortune to be doing this work
ahead of the conference organized in 1992 in honor of his 60th birthday. Harold’s
feedback was that he was convinced I was right, but if I was going to present these
results at the conference, convincing the audience was going to be my job. By this
time I was working in a bank solving operating errors and they consented to my
taking time off to attend the conference and present these final results.

I saw Harold quite a few times in the years immediately following the PhD. His
advisor Irving Kaplansky was still the head of MSRI and I attended a dinner with

1 The expansion has a pattern that depends on the size of the discontinuous gap and the brute force
calculation will in general not work in the case of two or more discontinuities with different sized

gaps.
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him and Harold in Berkeley where I could see how they shared the same spark for
mathematical discovery. It was around this time my work in banking resulted in
being offered a somewhat senior role in quantitative risk analysis that I could not
turn down. My search for an academic role had coincided with the collapse of the
Soviet Union and mathematics jobs were suddenly and then stubbornly hard to find.
I saw less of Harold during my later banking years but the almost unreasonable
effectiveness of all that he taught me was put to good use nonetheless.

Three ingredients in Harold’s work that have had significant impact on my work
in quantitative risk analysis are, first, linear operator theory, second, the use of
projection operators and, third, the use of asymptotic methods where advantageous
or appropriate. A portfolio of financial assets changes value over time in a process
modeled approximately in terms of relative Brownian motion of incremental asset
returns. A covariance matrix of asset return volatilities measures the uncertainty
of the portfolio’s value in the future. That the uncertainty is proportional to the
square root of time under the Brownian motion model can be easily derived using
multiple convolutions of the probability density with itself when time is considered
in discrete intervals. The risk profile of a portfolio has an almost natural expression
in terms of linear operators applied first to a Dirac distribution at time zero, the
time at which the portfolio value is known in compete certainty, and then later to
successive iterations. Projection operators appear in the analysis of optionality. We
cut off any probability density via a projection operator in any part of the domain
which results in the option expiring without value and these truncated probability
densities may be included in the iterated convolutions already mentioned.

The value of knowing Harold’s work in asymptotic analysis had a somewhat
late appearance in my career, in the determining of the regulatory capital a bank
needs to hold against its own operating errors, a capital requirement all banks have
faced since the mid 2000s.2 Quantitative finance has a certain love for Monte Carlo
analysis, which works well modeling assets assumed to have reasonably stochastic
returns, but which works poorly when modeling extreme events like tsunamis,
earthquakes and the occasional upheaval in financial markets. I had made extensive
use of Monte Carlo techniques in the first decade and a half of my banking career,
but it was clearly a poor fit for modeling extreme events like large potential operating
errors. Econometric modeling of the bank’s operating error history suggested a
“power law” distribution, such as a Pareto distribution having finite mean but
infinite variance. Modeling the individual operational errors was straightforward but
regulations required this analysis be done for cumulative errors over a year. With
some digging a result by the statistician William Feller identified an asymptotic
formula for the n-fold convolution of Pareto distributions, where n would be taken
as the mean number of operating errors in a year. An analysis was now possible
in the form of a spreadsheet instead of a massive computing exercise requiring
technology consulting at considerable expense. Acquiring a PhD under Harold once
again showed its value.

2 The so-called “Basel Capital Accord,” see www.bis.org for its history.
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While the timing of my PhD coincided rather badly with a downturn in the
academic job market I was offered not terribly long ago a temporary adjunct position
substituting for a friend taking a yearlong sabbatical, teaching a masters level course
in econometrics to two different batches of financial analysts in training. Being
Harold’s student gave me a model for how to lecture, how to hold the students’
attention and how to scale the course content to the needs and abilities of my
students. The only improvement possible was technological, with more slides and
less chalk dust.

As I approach a traditional retirement age I have stepped up my involvement
in both my undergraduate and graduate alumni associations and have targeted my
support to things students need, in the spirit of the quality Harold consistently
delivered when I was a student. In the world of banking, fewer financial meltdowns
would have been the result of better technical training among risk managers, who as
arule know a bit of statistics and how to run an operations department, but not much
on how often stochastic methods do not picture reality all that well. If Harold had
opted for my line of work rather than academic research I have no doubt he would
have been the terror of foolish optimists and practitioners of financial hubris. In the
late 2010s I would occasionally visit the Santa Cruz campus on projects related to
support for undergraduate education but Harold’s health matters prevented spending
time together. We did exchange emails on a number of things, including our joint
admiration for the ragtime music of William Bolcom.

Harold lived a long and full life that nonetheless was cut short too early. He will
be missed, but, more importantly, he will be remembered for the richness he brought
to his students, to his family and to the mathematical community at large.
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Abstract This essay contains a collection of memories of Harold Widom from
the author’s perspective as his Ph.D. student at UCSC and the years beyond. It
shares a sketch of stories from a personal background and friendship, and covers
a memorable view of Harold’s life and work over a period of 25 year. Harold simply
radiated boundless enthusiasm and respect for mathematics that has influenced
many of his students and colleagues
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1 The Unforgettable 1992

It was in Santa Cruz, in the mid-September of 1992, that I became a student of
Harold Widom. It was also the time and place that a special conference on Toeplitz
and Wiener-Hopf operators was held in celebration of his 60th birthday. Many active
and prominent mathematicians worldwide were present, and the research presenters
were full of praise for Harold’s contributions to the mathematical community.
Harold had kindly convinced me to attend this conference as it could be beneficial
to developing my thesis work. To show my support I gladly volunteered to arrange
for the conference refreshments. Throughout the 3-day conference, it was an eye-
opening experience to hear the level of stimulating conversations by a host of
world class mathematicians. Indeed, like all participants, I felt excitement from the
celebration of Harold’s mathematical accomplishments. There were several very
famous figures in the field of operator theory attending this meeting. During the
coffee breaks, Harold introduced me to his dissertation advisor, Irving Kaplansky,—
“your (academic) grandpa”, as he kindly put it. Irving was the director of MSRI
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(Berkeley) at the time. He proudly spoke about the career of Harold’s early research
since the “Stone Age” at the University of Chicago.

2 UC Santa Cruz (1992-1994)

About a year prior to the 1992 Conference and after coming to Santa Cruz, I already
knew that Harold was a world-class mathematician. He was also an erudite and
cultivated person, who liked to read, listen to and play music and hike. Harold’s
musical talent was well known and I knew he had performed in chamber and music
groups and orchestras at Cornell and UC Santa Cruz. A brilliant man of mathematics
always attracts students’ interest in the subject. Harold was one of a few professors
for whom I had great admiration since the beginning of my student years at UCSC.

At the time when I took a course on functional analysis taught by Harold, I was
deeply impressed by his style of lecturing, which frequently gave a vivid account
of making a seemingly difficult concept abundantly clear with minimal wording.
Written notes on less than a quarter page is all he needed to expand upon throughout
the lecture time. His crafted board-work and articulate lectures have always been
inspiring and influential on my academic career.

As a student, I benefitted from the extraordinary learning experience by Harold’s
art of lecturing and from his original approachability in mathematics teaching. His
penetrating capacity in research and his ability to cast problems in a different light
have always been a source of inspiration in my research activity. His insightful and
constructive suggestions were invaluable and instrumental for the completion of my
thesis work and stirred up my passion for mathematical research.

Despite his tight daily work schedule, Harold actively kept a close interaction
with his students for their dissertation progress in all aspects. He used his coffee
break to share ideas of doing mathematics. My favorite story was once asking for
the motivation of his special proof for the connectedness of the spectra of Toeplitz
operators, which he patiently gave me in bits of crucial ideas using the chalkboard
in my compartment next to the coffee room across his office. That is certainly one
of the most memorable and pleasant moments of mine at UCSC.

Going over the history of email correspondence with Harold, I recall that he made
sure that I was financially secure during my thesis years. On several occasions,
he wanted to know whether I had plans for improving myself over the summer.
When he learned that I was attempting to study several topics on pseudo-differential
operators and read various research papers to get ideas for my thesis, Harold
managed to find some funds through a NSF grant to support my research in progress.
That was a great help and lasted three summers, for which I have been eternally
grateful. Another incidence is that he asked me to send a copy of my thesis to Persi
Diaconis at Stanford and I did accordingly. He was so apologetic by not making it
clear to let the department handle this outgoing mail, after he found out that I did
it with a certified mail on my own. He insisted on covering the postage as he was
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trying to find out how much I paid for it. Harold always treated his students with
generosity and thoughtfulness.

In the summer 1993 I actually got some results for my thesis using Harold’s
technique of localization for the asymptotics of trace class operators. Upon reading
it, he confirmed that my result was correct and recognized my effort of making
progress. I could not be more excited after receiving his encouraging comments. Of
course having his assurance was such great news and he certainly sensed my joy.
However, he kindly encouraged me to build confidence by performing a self-check
for work in the future. Indeed, over the years I was always very appreciative of his
encouragement.

3 Friendship

Harold and I remained in contact after completing my PhD under his supervision.
He suggested several problems that I could work on, sending me a number of
research papers. I felt very privileged to be treated as his colleague by his humble
way of communicating through emails and postal mails. He was always precise and
effective when it came to scholarly communications, which I deeply appreciated. In
my heart he is always my beloved professor and a faithful friend. He encouraged me
to attend research conferences while sharing his conference experience in Eastern
Europe. For example, when he learned that I had trepidation to attend an invited
conference in Bulgaria in 1999, he convinced me not to miss the opportunity. I
ended up going there without regrets by the support of Santa Clara University and
the work I presented also resulted in publication.

In the year of 2002, he was very pleased to see my presence, together with a group
of prominent mathematicians as well as Harold’s family members, celebrating his
70th birthday at UC Berkeley. I told him that I just attended ICM, Beijing, and
presented a paper (accepted by IEOT) on the singular values of variable-coefficient
Toeplitz matrices, extending one of his results in the Toeplitz case. I also told
him that I attended the plenary lecture by Craig A. Tracy, who had been long
collaborating with him, on their joint work on distribution functions for the largest
eigenvalues of random matrices. This stimulated a memorable conversation which
we enjoyed very much. During the celebration of Harold’s 70th birthday, I got the
message that everyone continued to be amazed and dazzled by the fact that Harold
was still producing elegant theorems. The prediction was that he would continue
to be doing so for at least another decade. This became undoubtedly true as can
be seen from the records of his achievements in later years. I recall sending him a
warm note of congratulation and a good wishes on his 80th birthday in 2012, which
he incidentally spent at a conference at Banff, and he, of course, was very happy to
hear from me in reply.
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Celebration of Harold Widom’s 70’s birthday with his family, UC Berkeley.

4 Closing

Harold Widom could look back over the achievements of the past seven decades
and find satisfaction in the acknowledged superiority of his methods in teaching and
the extraordinary ability as a world-class research mathematician. I find myself very
fortunate and feel honored to be his student. His quickness of casting a mathematical
problem in a different light has been illuminating and inspiring. As one of the
great heroes of the mathematical frontiers, Harold rightfully belongs to the world’s
greatest contributors to the progress in mathematics. Mathematics has lost one of
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its most articulate, original, and insightful minds. His kind, “Widom style”, does
not come along often and will be dearly missed. His departure is a great loss for
the mathematics community and his footprints will forever be seen in the world of
mathematics.

Credits The two pictures of Harold Widom in 2002 are the courtesy of the author.
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Abstract In the prequel to this paper, we proved that for a SU (2, C) valued loop
having the critical degree of smoothness (one half of a derivative in the L> Sobolev
sense), the following statements are equivalent: (1) the Toeplitz and shifted Toeplitz
operators associated to the loop are invertible, (2) the loop has a unique triangular
factorization, and (3) the loop has a unique root subgroup factorization. These
equivalences hinge on factorization formulas for determinants of Toeplitz operators.
The main point of this sequel is to discuss generalizations to measurable loops, in
particular loops of vanishing mean oscillation. The VMO generalization hinges on
an operator-theoretic factorization for Toeplitz operators, in lieu of factorization for
determinants.
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1 Introduction

This paper concerns the Polish topological groups of maps W!/2(S!', SU(2)),
VMO(S!, SU(2)), and Meas(S', SU(2)) (equivalence classes of SU (2, C) valued
loops which have one half of a derivative in the L? Sobolev sense, are of
vanishing mean oscillation, and are Lebesgue measurable, respectively; the basic
background—such as the Polish topologies of these groups—is recalled in Sect. 2).
In an attempt to motivate the subject matter, we first consider a broader perspective.
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Suppose that K is a compact Lie group. The equatorial inclusions
Sfcstcs?csc.. (1)

induce (down arrow) inclusions and (left to right arrow) trace homomorphisms of
groups

> C®(S3,K) > C®(S2,K) —» C®(SLK) — €29, K)

) ) \

o> WIS K) > WI(SZ K) — WIS K)

) ) \ ) - @
... > VMO(S3, K) — VMO(S?, K) — VMO(S!, K)

\: \: \ \

Meas(S3, K)  Meas(S%, K)  Meas(S!, K)

The groups of smooth maps are Frechet Lie groups (see Sect. 3.2 of [10]), hence
it is known what they look like locally, and their global topology can be analyzed
using conventional methods of algebraic topology.

For the groups wd/2(sd Ky ¢ VMO(S4, K) C Meas(89, K), generic group
elements are not continuous mappings (Recall that s = d/2 is the critical L?
exponent: the Sobolev embedding WS’LZ(S“') — C98%) holds for s > d/2 and
marginally fails for s = d/2). The usual approach to understanding the local struc-
ture of continuous mapping groups is to fix a proper open coordinate neighborhood
of 1 € K (homeomorphic to R”, say) and consider the set of maps with image
in this neighborhood. This fails in our context because generic group elements in
this set are locally unbounded, and hence this set is not an open neighborhood of
1 € W42(8¢, K) (or VMO, or Meas). For similar reasons conventional methods
of algebraic topology do not apply to understand the global topology. This is
problematic, because it is important to understand the local and global topology
of these (Polish) mapping groups; see [4], [5], [3], and references, for foundational
work in this direction and further motivation. The simplest hypothesis—this is pure
speculation—is that for all d > 1, wd/ 2(Sd, K) and VMO(Sd , K) are topological
manifolds (they are definitely not smooth Lie groups as Polish topological groups),
and the inclusions

Cc®($4, K) - w84, K) - VMO(S9, K) (3)

are homotopy equivalences. This is exemplified by the existence of trace maps for
VMO (see [5], and note we are considering an equatorial trace) and the nonexistence
of trace maps for measurable maps in the above diagram. More directly relevant to
this paper, in the elemental case d = 1, the global topology for the smooth loop
space is intimately related to the map

C>®(S', K) — Fred(Hy) : g — A(g) @)
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where A(g) is the Toeplitz operator with symbol g (see Chap. 6 of [10]); the point is
that VMO(S!, K) is the natural domain (see Proposition 1 below for a more precise
statement).

Remark 1 Meas(S?, K) is an outlier in this topological digression. Since its
definition depends only upon the Lebesgue measure class of S¢, it is isomorphic
to Meas([0, 1], K), and it is contractible.

In this paper d = 1, unless noted otherwise. In this case the claim about the
homotopy equivalences basically follows from the Grassmannian model approach
in Chap. 8 of [10] (with modifications). We are mainly interested in technology
which is useful in understanding the local structure. We will focus on K = SU(2)
(see [9] for the general Lie theoretic framework). In the prequel to this paper, we
showed that for g € W!/2(S!, SU(2)), the following statements are equivalent: (1)
the Toeplitz and shifted Toeplitz operators associated to g are invertible, (2) g has
a unique triangular factorization, and (3) g has a unique root subgroup factorization
(we will review this in Sect. 3). This is a statement about the (open) top stratum
of the W!/2 loop group, and there is a generalization to the finite codimensional
lower strata. The key to the equivalence of (1)—(3), and in truth the more interesting
point, is that there exists an explicit factorization for det(A(g)A(g™")), akin to the
Plancherel formula in linear Fourier analysis (see (32)). A corollary of this is that
wl/2(s', SU(2)) is a nonsmooth topological manifold modeled on [2, and it is
homotopy equivalent to the smooth loop group.

Remark 2 The scalar det(A(g)A(g~")) appears prominently in Harold Widom’s
landmark paper [12], as the constant term in the expansion of determinants of block
Toeplitz matrices for symbols that are bounded and in W!/2. This paper not only
gave the asymptotics in the block case, but paved the way for operator theory
and Banach algebra approaches for the asymptotic expansions for determinants of
structured operators. This constant is related to quantities that appear in the theory of
tau-functions, dimer-models, random matrix theory, and other areas of mathematical
physics and is now commonly called Widom’s constant.

The main point of this paper is to investigate extensions of this theory to VMO
(and more general Besov spaces which interpolate between W!/? and VMO), and
some qualified extensions to the measurable (or L?) context. In the VMO context,
the Toeplitz operator A(g) is Fredholm, the determinant det(A(g)) makes sense as a
section of a determinant line bundle, but the scalar expression det(A(g)A(g_l))
is identically zero in the complement of W!/2(S!, SU(2)). Roughly speaking
the theory extends because, as we essentially observed in [1] (we will need a
refinement), there is actually a factorization of A(g), as an operator, in root subgroup
coordinates.
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1.1 Plan of the Paper

In Sect. 2 we establish basic notation and recall some background results, especially
the operator theoretic realization of the topologies for the various spaces of loops.

In the first part of Sect. 3 we succinctly outline the main results from [8] for loops
into SU (2) := SU (2, C) with critical degree of smoothness in the L? Sobolev sense
(the W1/2 theory).

In Sect. 4 we consider measurable maps, which we refer to as the L? theory. Here
we are probing the edge of deterministic results. For a measurable map into SU (2),
the Toeplitz operator is not in general Fredholm. Uniqueness in root subgroup
factorization is lost because of the existence of singular inner functions.

In Sect. 5 we consider maps of vanishing mean oscillation, and more generally
maps satisfying a Besov condition B ,1,/ P (which interpolates between W'/? and
VMO).

For a more detailed version of this paper, see [2].

2 Notation and Background

If f(z) =) fuz", then we will write
f=r+h+r+ (5)

where f_(2) = ), o fuz" and f4(2) = 3,0 fa2"s f-0 = f= + fo, for =
fo+ fi,and f*(2) = D_(fon)*Z", where w* = w is the complex conjugate of the
complex number w. If the Fourier series is convergent at a point z € S', then f*(2)
is the conjugate of the complex number f(z). If f € HO(A), then f* € HO(A¥),
where A is the open unit disk, A* is the open unit disk at co, and H%(U) denotes
the space of holomorphic functions for a domain U C C.

We let W!/2(S!,C) denote the Hilbert space of (equivalence classes of
Lebesgue) measurable functions f(z) which have half a derivative in the L? Sobolev
sense; the precise form of the norm is not important, but one possibility is

00 1/2
| flwin = ( Y a +n2)1/2|f(n>|2> 6)

n=—00

where fdenotes the Fourier transform. Similarly VMO(S!) denotes the Banach
space of (equivalence classes of Lebesgue) measurable functions which are of
vanishing mean oscillation, or equivalently the closure of the subspace of con-
tinuous functions in BMO; again, the precise form of the norm is not important.
Meas(S!, C) denotes equivalence classes of Lebesgue measurable functions with
the topology corresponding to convergence in (Lebesgue) measure; this is induced
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by a complete separable metric, see below. Besov spaces B,l,/ P which interpolate
between W1/2 and VMO for 2 < p < oo will be used below and in Sect. 5 (see
Chap. 6 and Appendix 2 of [7]). On the Fourier series side, w'/? denotes the Hilbert
space of complex sequences ¢ such that ) oo k|gk|? < oo.

We let L SU2) (LanSL(2, C)) denote the group consisting of functions
S! - SUQ) (SL(2,C), respectively) having finite Fourier series, with pointwise
multiplication. For example, for ¢ € C and n € Z, the function

S' 5 SUQ) 1z — a(¢) < r gzn), (7
- 1

where a(¢) = (1 + 2|2, isin LaaSU (2).
As in the introduction, consider the groups

wi2(s¢, SU(2)) € VMO(S?, SU(2)) C Meas(S¢, SU(2)). (8)

In this paper we will always view these as topological groups with the complete
separable (Polish) topologies induced by W¢/2, VMO, and convergence in measure,
respectively. For measurable maps there is a well-known way to represent the
topology using operator methods: the bijection

Meas(Sd , U(2)) — {unitary multiplication operators on L2(Sd , (Cz)} ®

is a homeomorphism with respect to the convergence in measure topology and the
strong (or weak) topology for unitary multiplication operators (see Sect. 2 of [6]).
For the other mapping groups, following [10], we will substitute restricted unitary
groups (see below).

Now suppose that d = 1. In this setup the inclusions

LanSU((2) C C®(SY, SU2)) ¢ W2t sU2)) c VMO(S!L, sU2))  (10)

C Meas(S!, SU(2)) are dense. The first three inclusions are homotopy equivalences
(see subsection 2.2 of [2] for details which we are omitting in this paper). The fourth
is a map into a contractible space.

Suppose that ¢ € L'(S',SL(2,C)). A triangular factorization of g is a
factorization of the form

g =1(g)m(ga(g)u(g). Y
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where

I = (Z“ 112) e HO(A*, SL(2,C)), I(c0) = ( ! 0),

b1 I Ir1(0) 1

[ has a L? radial limit, m = ("Z)o mol),mo € Sl,a(g) = <ag) a01>,a0 > 0,
0 0

u= (”“ ”12> e H'(A, SL(2,0)), u(0) = <1 ”12(0)>,

Ul U 0 1

and u has a L? radial limit. Note that (11) is an equality of measurable functions on
st
As in [10], consider the polarized Hilbert space

H:=L*S'C>=H,®H_, (12)

where H; = P, H consists of L2-boundary values of functions holomorphic in A.
If g € L®(S!, SL(2, C)), we write the bounded multiplication operator defined by
gon H as

M, = (A(g) B(g)> (13)
C(g) D(g)

where A(g) = Py M, Py is the (block) Toeplitz operator associated to g and so on.
a, by

If g has the Fourier expansion g = Zgnz", gn = (
cn dy

), then relative to the
basis for H

~1 ~1
...€1Z, €22, €1,€2,€12 , €2 ... (14)

where {€], €3} is the standard basis for C2, the matrix of M, ¢ 18 block periodic of the
form

.ap by ar by |

.co do c1 di |

..a_1b_y ap by | a1 by ..
| e di .. . (15)

.. c_1d-1 ¢ do

..a-a2b_p2a_1b_1 | ag by ..
..cpdyc_1d_y | codp ..
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From this matrix form, it is clear that, up to equivalence, M, has just two types
of ‘principal minors’, the matrix representing A(g), and the matrix representing
the shifted Toeplitz operator A1(g), the compression of M, to the closed subspace
spanned by {€;z/ :i =1,2,j > 0} U {e1}.

Given the polarization H = H; @ H_ and a symmetrically normed ideal 7 C
L(H), there is an associated Banach x-algebra, L( Iy which consists of bounded
operators on H, represented as two by two matrices as in (13) such that B, C € T

with the norm
o)l (7))
+ (16)
K D)ig N\C iy

and the usual *-operation. The corresponding unitary group is
Uy =UH) N Ly; (17)

it is referred to as a restricted unitary group in [10]. There are two standard
topologies on U st The first is the induced Banach topology, and in this topology
Ur has the additional structure of a Banach Lie group. The second topology, the
one we will always use, is the Polish topology for which convergence means that
forg,, g € Ugry & — & if and only if g, — g strongly and

(Cn B”) N <C B) in T. (18)

In the following proposition £, refers to the Schatten ideal.
Proposition 1
(a) For the polarization (12) and g € L>®(S', L(C?)), g € L(Lp) iff g belongs to
the Besov space Bll,/p for p < 0o and VMO for p = oo.
(b) For p < oo, B,l,/p(Sl, K) —> U(-Cp)(HJ’_ @ H_) is a homeomorphism onto its
image; in particular
(b’) Wi/2(s', K) — U(Lz)(H“‘ ® H_) is a homeomorphism onto its image.
(c) VMO(S!, K) — U(.Coo)(H+ @ H_) is a homeomorphism onto its image.
(d) U(-Eoo)(H+ ® H_) — Fred(H,) is a homotopy equivalence.

Most of this is standard. For part (d) see Proposition 6.2.4 of [10].

Given a countably infinite dimensional Hilbert space such as H,, Quillen
constructed a holomorphic determinant line bundle Det — Fred(H;+) and a
canonical holomorphic section det which vanishes on the complement of invertible
operators. This induces a determinant bundle

A*Det — VMO(S!, SU(2)) (19)
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(There is a discussion of this, and references, at the end of Sect. 7.7 of [10]). This
is an elegant way to think about the following corollary, but there is also a simple
proof using the operator-theoretic realization of the VMO topology.

Corollary 1 For VMO(S', SU(2)) the set of loops with invertible Toeplitz opera-
tors is defined by the equation det(A(g)) # 0, hence is open. The same applies for
the shifted Toeplitz operator.

Proof Suppose that g, € VMO(S!, SU(2)) converges in VMO to g and A(g) is
invertible. We must show that A(g,) is invertible for large n.

Algn)A(g,H) =1 - B(g)C(g; ") =1 — B(g)B(gn)* (20)

By part (c) of the preceding proposition, this converges uniformly to A(g)A(g~!) =
A(g)A(g)* = 1 — B(g)B(g)*, which is invertible. This implies that A(gn)A(gn_l)
is invertible for large n, hence A(g,) is invertible for large n. O

Remark 3 For Meas(S!, SU(2)), or for its diagonal subgroup {(AE)Z) )\( (;_1> },
z

the set of loops with invertible Toeplitz operators is NOT open. To see this let A,, =
exp(f,) : S — S be a continuous loop which rapidly winds once around the circle
in the interval [0, 1/n], and equals 1 otherwise (this is called a blip). This has degree
one, hence the Toeplitz operator A(A) has Fredholm index —1 and is not invertible
for all n. Nonetheless A,, — 1 in measure.

This line of argument does not apply to VMO(S', 1), because degree is well-
defined, continuous and separates the group into path connected components - this
is the main point of [4].

3 The W!/2 Theory

The first part of this section is a succinct review of relevant results from [8]. The
subsequent subsections describe some consequences.

Theorem 1 Suppose thatky : S' — SU(2) is Lebesgue measurable. The following
are equivalent:

(L1) ki € WY2(S', SU(2)) and is of the form

_( a@ b 1
ki(z) = (—b*(z) a*(z)) , z€S8, 21

where a,b € H(A), a(0) > 0, and a and b do not simultaneously vanish at
a point in A.
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(1.2) ki has a (root subgroup) factorization, in the sense that

. 1 —n,7" 1 —7
ki@ = tim am) (") ame (T (22)
n—00 Nz 1 no 1
for a.e. 7z € S', where (n;) € W'/ and the limit is understood in the W'/?
sense.
(1.3) ki has triangular factorization of the form

( *1 0) (31 01> (061(2) ,31(2))’ (23)
y*(z) 1)\ 0 a] v1(2) 81(2)

wherea; > 0, y = Z?io yiz) and a1 (2), Bi(z) € W1/2.

Suppose that ky : S — SU(2) is Lebesgue measurable. The following are
equivalent:

(IL1) ky € W/2(S', SU(2)) and is of the form

ka2 (2) = (dc((zz)) _;(Z()Z)) , zeSh, (24)

where c,d € HO(A), ¢(0) =0, d(0) > 0, and ¢ and d do not simultaneously

vanish at a point in A.
(IL.2) k> has a (root subgroup) factorization of the form

o L guz™ 1 Clz_l)
kz(Z)—nlgigoa(é“n)<_Enzn 1 )---3(51)<_51Z ) (25)

fora.e. 7 € S', where (n;) € w'/? and the limit is understood in the W'/?

sense.
(I1.3) ko has triangular factorization of the form
1 x* a 0
( x (z))< 2 1) (az(z) ,32(Z)> 26)
0 1 0 a, 12(2) 82(2)
where ay > 0, x = 2?11 xjz/, and y2(z), 82(z) € W1/2,

Outline of the Proof For k; € Lg,SU(2), these correspondences are algebraic. To
be more precise, given a sequence ¢ as in I1.2 with a finite number of nonzero terms,
there are explicit polynomial expressions for x, a2, 2, 2 and 8>, and

ad =[]a+1aP. @7

k>0
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Conversely, given k> as in II.1 or II.3, the sequence ¢ can be recovered recursively
from the Taylor expansion

(2/d2)(2) = (12/82)(2) = (¢ Dz + (—¢) A + 1D + ... (28)

The fact that these algebraic correspondences continuously extend to ana-
lytic correspondences depends on the following Plancherel-esque formulas (which
explain the interest in root subgroup coordinates). For k; as in Theorem 1,

det(A (k)" A(k1)) = det(1 — C(k1)*C (k1))

=det(1+ B0 BN = [+ >~

i>1

(29)

and

det(A (k)" A(k2)) = det(l — C(ka)*C (k)
= det(1 + B)* By~ = [ +1aP~* 30)
k>1

where in the third expressions, x and y are viewed as multiplication operators on
H = L?(S"), with Hardy space polarization. In (29), the first two terms are nonzero

iff k; € W'/2, the third is nonzero iff y € W!/2, and the third is nonzero iff 5 €
12
w .

Theorem 2 Suppose g € W1/(S', SU(2)). The following are equivalent:

(i) The (block) Toeplitz operator A(g) and shifted Toeplitz operator A1(g) are
invertible.
(ii) g has a triangular factorization g = lmau.
(iii) g has a (root subgroup) factorization of the form

x (@)
¢(@) = ki(2) (" . 8—2@) k2 (2) 31)

where ky and ko are as in Theorem 1 and y € W'/2(S',iR).

Outline of the Proof The equivalence of (i) and (ii) is standard (see also (34)
below). Suppose that g € L;,SU(2). If g has a root subgroup factorization as in
(iii), one can directly find the triangular factorization (see Proposition 3 below),
and from this explicit expression, one can see how to recover the factors 5, x, ¢
(Incidentally, n and ¢ have finitely many nonzero terms, but this is not so for yx,
hence this calculation is not purely algebraic).

As was the case for Theorem 1, the fact that these correspondences extend to
analytic correspondences depends on a number of Plancherel-esque identities. For
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g€ wl2(st, sU(2)) satisfying the conditions in Theorem 2,

det(A(2)*A(g))
Z(lj) (1+|1n,-|2>i> ﬁzj'xf (]of[ 1+|§k|2)k> (32)
det(A1(g)*A1(g))
:<ﬁ(1+ln |2)t+1> loj 2GE (,}j(1+|§1k|2)k—1)’ (33)

(where A is the shifted Toeplitz operator)

o det(A1(9)*A1(8) (13
OB = Ger(ae) Ace) —(l_[ 1+ i 2)) (H(H'{’" )) Gd

Note that because g is unitary, i.e. g ' =g*onS!, parts (i) and (ii) are obviously

inversion invariant, and this does not depend on the hypothesis that g € W1/2: if
g : S — SU(2) has the triangular factorization g = Imau, then g~! = g* has
triangular factorization g~' = u*m*al*. On the other hand part (iii), the existence
of a root subgroup factorization, is not obviously inversion invariant.

Corollary 2 Suppose g € W'/2(S', SU(2)). Then g has a root subgroup factoriza-
tion (as in (iii) of Theorem 2) if and only if g~" has a root subgroup factorization.

We have used the hypothesis that g € W!/2 so that we can use the identities (32) and
(33) to prove that the existence of a root subgroup factorization implies invertibility
of the Toeplitz determinants. A central question related to the generalizations in
the following sections is whether the hypothesis g € W!/? is crucial for inversion
invariance of root subgroup factorization.
Coordinates for W1/2(S1, SU(2))

Theorem 2 implies the following

Corollary 3 W!/2(S', SU(2)) is a topological Hilbert manifold modeled on the
root subgroup parameters {((n;)i=0, (X;j)j=1, Ck)k=1) € 12 x 1?2 x %} x {eX0 € §1}
for the open set of loops with invertible A and A;.

As we noted in the introduction, it is not possible to use this (or any) coordinate
to define a smooth structure which is translation invariant (because W'/%(S', su(2))
is not a Lie algebra).

There are other coordinates, and this will be important when we consider VMO
loops, because we will not be able to characterize VMO loops in terms of the
coordinates 7 and ¢ .
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Theorem 3

(a) The maps

o
{kiasin I.1-3 of Theorem 1 } — {y = Zynz" e W'2(sHYYy i ky —>
n=0
(35)

and

o
{koas in IL.1-3 of Theorem 1 } — {x = anz” e W2(SHY tky — x
n=1

(36)

are bijections.
(b) (v, x,x) is a topological coordinate system for the open subset of
WY2(SY, SU(2)) with invertible A and Aj.

Proof In the first part of the proof, we will prove a more general result for
measurable loops, which we will exploit in the next section.

For part (a) we will use the Grassmannian model for the measurable loop
group Meas(S', U(2)), see Proposition (8.12.4) of [10], which describes the
Meas(S!, U(2)) orbit of H, in the Grassmannian of H = L2(S!, C?) (see (12)).

Given x(z) = Zzozl xp2" € L?(SY), let W denote the smallest closed M. -invariant
%

subspace containing the vectors ((1)) and (xl ) We claim that
()W =0and | Jz™*W is dense in H. (37)
k=0 k<0

For the first condition, suppose that v is a point in the intersection. For each N > 0 it

N N * .
@ —;Z &N (@) (Z)), where fy, gy € Hy The
27 gn(2)
second component of v has to be identically zero. This implies gy has to be zero.
Now the first component of v also has to vanish. The second condition is equivalent
5(2) +1(2)x*(2)
1(z)

finite Fourier series, is dense in L2(S 1). This is obvious.

is possible to write v(z) = <

to showing that the subspace spanned by ( ), where s and ¢ are
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This implies that W is in the Grassmannian in Proposition (8.12.4) of [10], and
hence there exists ko € Meas(S!, U(2)) such that kaHy = W (k; is obtained by
taking an orthonormal basis for the two dimensional orthogonal complement of z W
inside W, a Gram-Schmidt type process). This implies that k, 'w = H,, hence

k
ky ! <(1) xl ) is holomorphic in the disk, and hence

ka(2) = 1(2) (di‘(z) —C§(Z)> _ (1 X*(z)> (az 91) (az(z) ﬁz(z)> (38)
c2(z) da(2) 0 1 0 a, v2(2) 82(2)
where ay > 0, A2 = det(kp) : st — st |cz|2 + |d2|2 = 1 on S!. From the second
row of this equality, we see that A extends to a holomorphic function in A. A cannot
vanish because y» and §, cannot simultaneously vanish. Thus X is a constant; the
normalizations in II.1-3 force A = 1.

We now consider the hypothesis in part (a) of the theorem, i.e. x € W!/2. This
implies that

det(A(kz)A(kz_l)) = det(1 — B(k2)B(k2)*) = det(1 + B(x)B(x)*)~! (39)

is positive. Therefore k; € W!/2. The claim about k; and y is similar.
Part (b) follows from (a).

The preceding proof is abstract. In the next section (see Lemma 3) we will show
how to solve for the unitary loop corresponding to a given x = Y oo, x,2" €
L?(S"). Here we will simply state the result, which has a transparent meaning when
x e W2,

Theorem 4 Given x = Y oo x,7" € W1/2(8YY, the corresponding loop ko €
WY2(SL SU(2)) is determined by the identities

2 1
= . . , 40
N 01+ BoBmH-) 0
v = —a3(l + B(x)*B(x))" ' (x*), (41)

and

8 =a3(1 + B@)Bx)" ™' (1). (42)
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4 The L? Theory

We now ask whether there are L? analogues of Theorems 1 and 2. Here is a naive
L? analogue of Theorem 1 (we consider just the second set of equivalences):

Question 1 Suppose that k; : S' — SU(2) is Lebesgue measurable. Are the
following equivalent:

(IL.1) k7 has the form

(43 (@) —CE‘(Z)) |
ka(z) = (02(1) b ) €5 (53)

where ¢»,dy € H O(A) do not simultaneously vanish, ¢(0) = 0 and d>(0) >
0.
(IL.2) There exists a unique (gx) € 12 such that

o L guz™ 1 oaz!
kz(Z)—nlglgoa@n)(_g:nzn ) )---MQ)(_EIZ 1 ) (44)

where the limit is understood in terms of convergence in measure.
(I1.3) k> has triangular factorization of the form

IDIRES I (32 0 ) <a2<z> ﬂz(z)>
(0 v ) 00, 1@ 6 )

For k; satisfying these conditions, we will see that

where a> > 0.

a=d0)?=]]ad+a® =1+  (nSh (46)
k=1
=1+ |(1+BE '0)BE ') x),0 = ! (47)

(114 B(x)B(x)")~1),2
(the meaning of the operators is explained in Lemma 3) and
joal® + 182> = ay > (1 + |x]*) (48)

on St

In the first part of this section, our goal is to explain how the various implications
have to be qualified. One complication in this general context is the existence of
singular inner functions.
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Example 1 A simple non-example to bear in mind for (II.1) is

_(45@) 0O _z—t
kr(z) = < 0 dz(z)> where d» = |tz 49)

and 0 < ¢ < 1. This does not satisfy the hypothesis that ¢; and d; are simultaneously
nonvanishing, which is critical to show that the Toeplitz operator A(ky) is injective.

A complex example for (IL1) is a kp where c2(z) = /t11Ca(2), d2(z) =
/1 D2(2), Cz and D, are inner functions which do not simultaneously vanish in
A,andt;,th > 0,11 +1 = 1.

It is obvious that (II.3) implies (II.1). The important point is that the triangular
factorization implies that ¢, and d> do not simultaneously vanish in A. For later use,
notice that (II.3) and the special unitarity of k» imply ("the unitarity equations")

amoy +x*ay 'y =ay'85, ampy+xtay s = —ayly) (50)
and
ay (i y2 + 838 = 1. (51)
These equations imply
_ -2 % —2 0% _ —2 % =2, %
ar=—a, x"yy+a,78y and Br=-—a,"x"6 —a,y,. (52)

Applying the (-)o+ projection to each of these, we obtain ap = 1 — (X*y») and
B2 = —(X*82)0+. Using (52) again, on st

jo2” + 1B21* = a5 (—x ™2 +8) (—xy3 +82) + (82 + )83 +12).  (53)
Expand this and use the obvious cancelations. Together with (51), this implies
jol? + 1B2* = a3 (1 + [x ) (54)
as claimed in the last part of Question 1.

Now assume (II.1). We can determine {1, {2, ... using the Taylor series (28) for
c2/d> (note this is not identically zero, unlike the first loop in Example 1). Let

" (2) =S @)\ _ ( 1 znz—") (1 §1z_1)
(an)(z) dé")(z) = a({n) e 1 ...a(l1) Fe 1) (55
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Because the polynomials c(") (z) and dén) (z) are bounded by 1 in the disk, given any
subsequence, there exists a subsequence for which this pair will converge uniformly
on compact subsets of A. The limits, denoted ¢3(z) and cz(z), are bounded by 1,
hence will have radial boundary values. We will use the following elementary fact
repeatedly.

Lemma 1 Suppose that f, € L*H°(A) and f, converges uniformly on compact
subsets to f € LHO(A). Then there exists a subsequence f, j which converges

pointwise a.e. on S' to f.

Proof Because each f; and f are essentially bounded, each f; and f has radial
limits, on a common subset £ of SL of full Lebesgue measure. For each j there
exists nj such that | f,,;, — f| < on (1— l)S1 The subsequence fy; then converges
pointwise on E to f. O

It follows that for some subsequence,

(nj)* ("j)*
B@)(©) = lim (d @ “) (56)
=\ ") dy" ()

exists in the pointwise Lebesgue a.e. sense on the circle. Furthermore the sequence
of zetas corresponding to kz i8 £1, .... Therefore using (28) ¢z /dr = ¢3/ d2 Together
with unitarity and the simultaneous nonvamshmg condition on ¢, da, this implies
& d
A= = 67
¢ dy

is a holomorphic function in A with radial boundary values and [A| = 1 on S'. Such
a function has a unique factorization A = ApAg, where X;, is a Blaschke product and
X is a singular inner function, i.e.

_I_ezﬂ
As(z) =exp (/Sl . pdv (9)> (58)

where v is a finite positive measure which is singular with respect to Lebesgue
measure (see page 370 of [11]). The integral, as a holomorphic function of z is (up
to a constant) usually referred to as the Caratheodory function of v; because v is
singular, the Caratheodory function is not W12 hence is forced to vanish when
ky is W1/2 (or more generally VMO). The simultaneous nonvanishing condition
implies that A, = 1. Since cE(O), d>(0) > 0,1(0) = 1, and d2(0) = [[;-oa(&) =
[Tiao(1 + 18 ~1/2 > 0.1t follows that ¢ € /2. This implies the following



Loops in SU (2) and Factorization, II 133

Theorem 5 Assume (I1.1) in Question 1. Then there exists a unique (L) € 1?>and a
singular inner function A with A(0) = 1 such that

kz(z)=<k(z) 0 )

0

. 1 guz™" 1 az!
X nll{go a(;n) (_Enzn 1 ) o a(;l) (_EIZ 1 )

where the limit is understood in terms of convergence in measure.

(59)

Now assume ¢ € [2 as in (I1.2). We will show that this implies (II.1), sans
the simultaneous nonvanishing condition, and we will explain why we do not
necessarily obtain a factorization as in (II.3). Note we are free to use the unitarity
equations for sufficiently regular ¢, e.g. ¢ € w!'/2. In the course of the argument, we
will also prove (47), among other formulas.

The following is essentially Lemma 1 of [8].

Proposition 2 Suppose that ¢ = (¢,) € I2. Let kéN) be given by

dN* ey N 1 vz N 1 gzt
<c(N) d(N))'_ (nzla@")) (—ZNZN 1 >"'(—4:1z 1 ) ©0

Then ¢'™) and d'N) converge uniformly on compact subsets of A to holomorphic
Sfunctions ¢ = c(¢) and d = d(¢), respectively, as N — oo. The functions ¢ and
d have radial limits at a.e. point of S', ¢ and d are uniquely determined by these
radial limits,

d(£)*(2) —c(9)*(2)

ko(z2) = k2 () (2) = <C(§)(Z) d(¢)(z)

) € Meas(S!, SU(2, ©)). (61)

Note that if ¢ € I!, then the product actually converges absolutely around the
circle. So one subtlety here is relaxing summability to square summability. Note
also that the proof that (II.1) implies (II.2) shows that there exist convergence in
measure limit points. So the second subtlety is showing that there is a unique limit
point. We missed one simple point in Lemma 1 of [8]: kp actually has values in
SU (2). This is a consequence of Lemma 1.

We have now proven the existence of a

ka(¢) = (2 ‘d?) 62)

as in (IL.1), but we have not proven the simultaneous nonvanishing of ¢, and d5.
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We now want to investigate the existence of a triangular factorization

&
ks — <1 x ) <az 91) <a2(z) ﬁz(z)> 63)
01/\0 a; ¥2(2) 82(2)
where a; > 0. Note we have explicit formulas for ap, > and §>. But we need a
formula for x. If we can find x, then we can use (52) to find a», B>. Because of the

identity (54) it would only remain to show x is square integrable.
Recall from the appendix to [8] that x* has the form

x* :ZXT({j,§j+1,...)Z7j, (64’)
j=1
where
.XT(CI, ) = Z Cn ( l—[ (1 + |§k|2)> sn(;ﬂa §n+la En-f‘l’ “)7 (65)
n=1 k=n+1
s1 = 1 and forn > 1,
n—1 B B B

Sp = an,i’a Sn,r = Zci,j§i1§j1 §i2§j2--§ir§jr (66)

r=1

where the sum is over multiindices satisfying the constraints

jl <. = jr r
v VoY Gi—in=n—1, (67)
n<i <. i =1

The crucial point is that the ¢; ; are positive integers, although it is not known
how to explicitly compute them. In particular for each n s, contains the sub-sum

k
Zmzn é‘m{m—i-n—l'

Now suppose that all of the ¢, > 0. If the sum for x| converges, then the sum

Y oY by (68)
n=1

m>n

has to converge. But ¢ € /2 is not a sufficient condition to guarantee the convergence
of this sum. Empirically, if ¢, = n~? with p < 5/8, the sum diverges. From a
theoretical point of view, this is the convolution of three functions on Z evaluated at
zero, ¢!« ¢' % ¢, where ¢! (—m) = ¢ (m) is the adjoint; the convolution of two [(Z)
functions only has the property that it vanishes at infinity, and the convolution of an
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12(Z) function and a function that vanishes at infinity is not generally defined. This
explains why (II.2) in Question 1 does not imply (I.3).

This gap can possibly be (partially) filled by the following hybrid determinis-
tic/probabilistic

Conjecture In reference to Question 1, if ¢ € [% as in (IL.2) and the phases of
the ¢ are uniform and independent as random variables, then k; has a triangular
factorization as in (IL.3).

To get started on this, we would need to prove the almost sure existence of x
above. This has not been done. Instead we will explain the meaning of the operators
in the statement of Question 1, which should play an important role in the proof of
the conjecture.

Lemma 2 For sufficiently regular x (which we will clarify in the proof)

det(1 + B(x)B(x)*)

det(1 + B(z~'x)B(z~1x)*%) ©

2 _
32—

_ o=l N pro—1 ey —1 _ 1
=1+ &1+ B x)B@ x)") x)2= i+ B(x)B(x)*)*ll)Lz (70)

((--) is the L?* inner product), where B(x) denotes the scalar Hankel operator
corresponding to the symbol x.

Proof For the first equality see (2.13) of [8]. For the determinants in this formula to
make sense, we need ¢ € w'/2.
As a matrix (relative to the standard Fourier basis)

B)Bx)* — Bz '0)BE )" = (ux))nm=1 (71)

because the n, m entry is

D @ngixin ) = Y ConpigiXi i) = Xnkiy (72)

i>0 i>0

This is a rank one matrix.
The identity

A+HA+T) ' =14+ (T -HA+T)! (73)

implies that (1 4 B(x)Bx)*)(1 + Bz 'x)B(z 'x)*)~! equals

1+ (BoB@* - B 0B ") 0+ B 0B 00 (74)
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This is a rank one perturbation of the identity, and the determinant equals
1+ x|+ BE ')BE ') x),.. (75)

This proves the second equality. This second formula has a transparent operator-
theoretic meaning when the Hankel operator is bounded, and this is the case if x €
BMO.

For the third equality, suppose thatx =
0

n>1%nZ" € L?.Fori, j > 0, relative to

the standard Fourier basis z°, z!, ... for H, the i, Jj entry for the matrix representing

B(x)B(x)* equals
o0
D XignX iy, (76)
n=0

The matrix representing B(z"'x)B(z~'x)* (aside from indexing) is the same as the
matrix obtained by deleting the zeroth row and column of the matrix representing
B(x)B(x)*. Thus the third equality is simply Cramer’s rule for the inverse. The
use of this rule is valid provided ¢ € w!/2, which guarantees the determinants
make sense. However as a formula for ap, it has a transparent operator-theoretic
meaning when x € BMO. In the next lemma we will see the formula makes sense
for (x,) € I%.

We will now sharpen this result.
Lemma 3 Suppose that ¢ € [°.
(a) The sequence of positive operators (1 + B(x (”))B(x (”))*)_1 has a unique norm
operator limit, and it is given by the formula

(1+ BB*) ™' f = ca(c5 ot + da(d5 for (77

[x does not appear in the notation, to emphasize that we are not assuming the
existence of x |. Also

A(k2) A(k3) (2) B <(1 + Bg*)lf) ' "

Similarly the sequence of positive operators (1 + B(x™)*B(x™))~! has
a norm operator limit. This limit is unique and (by abuse of notation) denoted
(14 B*B)~L.
(b) (1+ BB*)~1(2") equals

n—1 n
az—z(y2 Z y;n_jzj +68 Z 5;’1_/1/) — az—z(zny;nq)*m + Znsénfl)*sz).
j=0 k=0

(79)
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For example
(1+ BB 7'(1) = a; 5, (80)
1+ BB ' (2) =a,° (5 172+ (831 +2)82) . (81)
(14 BB (D) =a, (V3 , + v 1O+ G5, + 8352 +29)8)  (82)
and the diagonal entries are
n
a, diag (1, Lt o P+ 1820 o 1Y (yaal® + 1824, ) . (83)
k=1

(c) Ifx is 12 andn > —1, then

1+ BB (@"x) = =y — 522" g%, (84)
in particular
1+ BB ' ') =-2""p (85)
or equivalently
(1+ B*B)~'x* = —a, 25" (86)

Remark 4 Parts (b) and (c) explicitly determine y» and &> in terms of x. This
explains the meaning of the formulas in Theorem 4.

Proof (a) Since 1 + B(x™)*B(x™) > 1, it follows that the sequence of operators
(14 Bx™)y*B(x™))~! has strong operator limits. We must prove uniqueness. For
this it will suffice to prove the exact formula for x € L?, because using this formula
we can take a limit to obtain the general formula. After discussing the calculations
in (c) and (d), we will then explain why this is actually a norm operator limit.

We need several standard facts: (1) If g = g_gog4, then Z(g) := C(g)A(g)~! =
Z(g_). (2) If g is unitary, then (1 + Z*Z)"! = A(g)A(g™"). And 3) If g_ =

1 x*
(O | ),then

1\ _ (C&xHfa
wo@)-E7)

It is straightforward to check (1). (2) follows from (1). And (3) is straightforward.
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Now suppose that g = k» and k> has a triangular factorization. By (2)

(1+272) <f2 (k2) A(k3) P
(88)

_ bil )
B (fz — (c2(c3 ) ot — (dalds ) Do+ )

Now (3) implies

(1+ BB*)™' =1 — (B(c2) B(c2)* + B(d2) B(d2)*)

(89)
= A(2)A(c2)" + A(d2) A(dr)™.

This formula does not depend on the assumption that k, has a triangular factor-
ization (hence we can apply the formula to ké") and take a limit). This formula is
equivalent to the one in the statement of part (a) of the theorem.

The calculations in (b) are straightforward, given the formula in (a). The
calculations in (c) also use the unitarity equation a%oz’zk + y,° = 82, multiplied by

7". Together with the formula in (a) this implies
(14 BB '("x) = a;z(yz(z"& - a%z”aé")*) — 8"y + a%z"ﬁé")*). (90)

This simplifies to the formula in (c).

Finally we explain why the limits in (a) are actually norm limits. Note that (1 +
BB*)~! < 1 as positive operators. The formula for the diagonal in part (b) shows
that the diagonal entries monotonely increase to 1 as n — oo. This implies uniform
convergence.

Question 2 1f ¢ € 1%, then0 < (1 + BB*)~! < 1.1s (1 + BB*)! injective? What
can we say about the spectrum of (1 + BB*)~!?If x € VMO, then the spectrum is
discrete. Does the spectrum simply become continuous on [0, 1] outside of VMO?

Here is a naive L? analogue of Theorem 2.

Question 3 Suppose that g : S ' - SU(2) is measurable. Are the following
conditions equivalent:

(i) A(g) and A(g) are invertible.
(ii) g has a triangular factorization.
(ili) g and g~! have (root subgroup) factorizations of the form

X
g =ki(m* (eo gE)X> ka(¢), (91)

/

— /N k eX 0 /
g =k (0 exr>k2(§) 92)
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where ki and kp are as in (some form of) Question 1, and exp(—yx+),
exp(—x}) € L2

Remark 5 The conditions (i) and (ii) are invariant with respect interchange of g
and g~! (This depends on A(g~!) = A(g*) = A(g)* (and similarly for A;), and
g ' =u(g)*m(g)*a(g)l(g)*. It is for this reason that we have imposed a condition

on both g and its inverse in part (iii). This was not necessary in the W!/? case.

In the remainder of the section, we will explain how these statements have to be
modified.

First, it is known that (i) is equivalent to

(ii’) g has a triangular factorization, g = /mau, and the operators

R:Clz]1®C? - Clz]1®C?: ¢y — M,—1 0 Py o My—1 (V) (93)

(where P is either the projection for the polarization (12) or the shifted polariza-
tion) extend to bounded operators.

This is a special case of Theorem 5.1 (page 109) of [7], which establishes
a criterion for invertibility of A(g) for more general essentially bounded matrix
symbols.

Theorem 6 Ifkp, k/l, ko and ké have triangular factorizations (as in (1.3) and (11.3)
of Question 1, then g has a triangular factorization (as in (ii) of Question 3)

Proof We will recall some more formulas which relate triangular and root subgroup
factorization.

Proposition 3 Suppose that 1, x, ¢ are sufficiently regular (e.g. w'/?) Then g =
kieXky has triangular factorization g = 1(g)m(g)a(g)u(g), where

=)= GG ) ()G e
= (7 2) (3. 2)-( 0 ) o
v = (1) e

_ ((1) Mf+) (e(’;* e0X+) (1 - ();2*7/2)+ —(X;‘;Sz)m) ’ 97)

Y = a%y, X = 32—2x, and M = (aOm())izeriY + 2% X
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We claim that the formulas in the Proposition yield a triangular factorization for
g. We need to show that the /(g) and u(g) factors are L. On S’

et 2+ 811> = a; and [ya]* + 182 = a5. (98)
Consequently the first column of /(g) and the second row of u(g) are L? iff
exp(Re(x—)) = exp(— Re(x+)) € L. (99)

We are assuming this in (iii), and hence the first column of /(g) and the second row
of u(g) are L2,

The second column of /(g) and the first row of u(g) appear to be hopeless.
But here is the key fact: g has a triangular factorization iff g~! has a triangular
factorization (If g = Imau, then g~' = u(g)*m(g)*a(g)l(g)*). Moreover the
problematic second column for /(g) is the adjoint of the second row of u(g™'),
and similarly the problematic first row of u(g) is the adjoint of the first column
of I(g~1). It is not a priori clear (and it is undoubtedly not true) that for a general
measurable g : S' — SU(2), g has a root subgroup factorization iff g~! has a root
subgroup factorization. But we do not have a concrete example to offer. In (iii), we
are assuming both g and g~! have root subgroup factorizations. Consequently the
second column of /(g) and the first row of u(g) are also L Thus g has a triangular
factorization as in (ii). |

Theorem 7 Assume that g has a triangular factorization. Then g (and g~") have
root subgroup factorizations as in (iii), where we now mean in the sense of (1.1) and
(I1.1) of Question 1.

Proof Although somewhat longwinded, it is straightforward to use the formulas in
Proposition 3 to find candidates for the factors k1, x and k3, see (3.4)—(3.19) of [8]
(when consulting these formulas, note that the x4 of this paper is denoted by yx in
[8]). We will now list these formulas, explain why they make sense, and note their
significance. To begin

1
a1=exp<— f 10g(|111|2+|121|2)d9> (100)
47'[ Sl
and

1
ay = exp ( i /S log(uz* + |M22|2)d9)- (101)



Loops in SU (2) and Factorization, II 141
We claim these are finite positive numbers. By assumption /, u are square integrable

around S!, and 0 < a = aja, < co. This implies a; and a, are nonzero. Jensen’s
inequality implies

a; < fsl (u21 | + luxl?) ;ﬁ < o0. (102)
Thus a; and a; are finite. This proves the claim. On § 1

11 + 121” = a; exp(=2Re(x+)) (103)
and

luz1|? + |uzo|* = a3exp(—2Re(x+)). (104)

These formulas imply exp(—x+) € L2, as in (iii).

I =ajexp(x-), [l = Blexp(x-). (105)
uzp = y2exp(—x+), u2 = &exp(—x+) (106)

and on S!,
ot >+ |B11* = a > and |8 + |y2]* = a3. (107)

These formulas enable us to recover measurable loops k1, k2 : S I sUu 2),

ar B —1(% v
k1 = aj ( ) and kz =a ( 2 2. (108)
—Bi of *\n &

Because [* is invertible at all points of A, (105) implies that the entries a; and by of
k1 do not simultaneously vanish, and similarly, because u is invertible, the entries ¢
and d; do not simultaneously vanish. Using Theorem 1 we can obtain 5 and { from
the Taylor series expansions of B2/ and /8, and n and ¢ are in [> because of
the finiteness of a; and aj. a

One of several shortcomings of this theorem is that we have assumed that both
g and g~! have root subgroup factorizations. This is undesirable because there are
(hopelessly) complicated compatibility relations involving the pairs of parameters
n. ¢, x and ', x', ¢', for g and g~ !, respectively.



142 E. Basor and D. Pickrell

Example 2 Suppose that g = ko(¢), i.e.  and y are zero. In this case g~! has the
triangular decomposition

s (5@ J/z*(Z)> (az 0 ) (1 0)
$ 78T (ﬂ;‘(z) &/ \oay' ) \x1 (109)
Therefore
v2(g™") 1
= 110
52(g,1)(2) x1(f1, 0z + (110)

implying &,(¢~") = x,(g) and in particular
—a(g") =x7(¢1, ) (111)

The formula for x| is discussed in the appendix in [8]—suffice it to say, it is
complicated. O

S The VMO Theory

In this section we will consider VMO loops and compact operators. Everything we
say can be generalized to Besov class B ,1,/ P Joops and Schatten p-class operators.
For simplicity of exposition we will focus on the maximal class, VMO.

We begin by recalling basic facts about the abelian case, VMO(S', S). The
notion of degree (or winding number) can be extended from C 0 to VMO(S!, s1)
(see Sect. 3 of [3] for an amazing variety of formulas, and further references, or
pages 98-100 of [7]). Also given A € VMO(S!, §1), we view A as a multiplication
operator on H = L2(SY), with the Hardy polarization. We write A(A) for the
Toeplitz operator, and so on (with the dot), to avoid confusion with the matrix case.

Lemma 4 There is an exact sequence of topological groups

egree

d
0 — 27iZ — VMO(S!, iR) 2 vmo(s!, s ‘Bz - o. (112)

Moreover degree(A) = —index(A(A)).

This is implicit on pages 100-101 of [7]. The important point is that a VMO
function cannot have jump discontinuities. This implies that the kernel of exp is
2miZ. Thus the sequence in the statement of the Lemma is continuous and exact.
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Remark 6 This should be contrasted with the measurable case. The short exact
sequence 0 - Z — R — T — 0 induces a short exact sequence of Polish
topological groups

0 — Meas([0, 1], Z) — Meas([0, 1], R) - Meas([0, 1], T) — 0 (113)

(see Sect. 2, especially Proposition 9, of [6]). However Meas([0, 1], Z) is not
discrete, and (just as the unitary group of an infinite dimensional Hilbert space
is contractible—in either the strong operator or norm topology) Meas([0, 1], T) is
contractible.

Our aim now is to specialize Theorems 1 and 2 to VMO loops. It seems unlikely
that one can characterize the sequences n and ¢ that will correspond to VMO loops
ki, ko : 1 — SU (2), respectively, as in Theorem 1. For this reason we will use
vy, x € VMOA := VMOy as parameters.

Proposition 4 Suppose ky : S' — SU(2). The following two conditions are
equivalent:

(II.1) ko € VMO is of the form

_ (d*(2) —c*(2) 1
kz(Z)—(C(Z) 42 ) ze S, (114)

where ¢,d € HY(A), ¢(0) = 0, d(0) > 0, ¢ and d do not simultaneously
vanish at a point in A.
(I1.3) ko has triangular factorization of the form

1Y% iz <az 0 )(az@ ﬁ2<2>> (115)
0 1 0 a,') \1n(2) &(2)

where ay > 0 and y», 6, € VMO.
There is a similar equivalence for k.

Proof The equivalence of I1.1 and II.3 is proven exactly as in the W!/? case (taking
into account the VMO condition of y» and §; in I1.3). This uses the invertibility of
A(kp). For the injectivity of A(ky), see Lemma 6 below (which is more general).
The follows since the VMO condition implies that A(kp) is Fredholm of index
zero. O
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Theorem 8

(a) For kj in the preceding proposition, x € rmVMO A (i.e. VMO and holomor-
phic in the disk).
(b) The map ko — x induces a bijection

{ky : 1.1 and I1.3 hold } <> VMOA : ky < x. (116)

(c) In terms of the root subgroup factorization in Theorem 5, the singular inner
function . = 1.

There is a similar statement for k.

Proof (a) The operator (1 + BB )~lis essentially the product A(k2) A(k, 1), which
is of the form I+compact operator. Thus the inverse 1 + B(x)B(x)* is also a
compact perturbation of the identity. This is equivalent to x € VMOA. This proves
part (a).

To prove part (b), we simply run the argument the opposite direction: if x €
VMOA, then (1 + BB*)_I, hence also A(kz)A(kz_l), is a compact perturbation of
the identity. This implies k3 is VMO.

(c) For the Caratheodory function in (58) to be VMO, v has to be absolutely
continuous with respect to Lebesgue measure. Hence A = 1.

Theorem 9 Suppose that g € VMO(S!, SU(2)). Assume that Lemma 7 below
holds. Then the following are equivalent:

(a) A(g) and A1(g) are invertible.
(b) g has a triangular factorization.
(c) g has a (root subgroup) factorization of the form

X
g =ki(m* <e0 60X> k2(¢) (117)

where ki and ky are as in Theorem 8, x € VMO(S!; iR) and exp(—x+) €
L2(Sh.

Proof The equivalence of (a) and (b) is true more generally for g €
QC(S', SL(2, ©)).
To see that (a) and (b) are equivalent to (c), we will need some lemmas. To

simplify the notation, let h; = ((1) 01>.
Lemma 5 With appropriate domains

Akfe M ky) = A(kFeX="1) A (X011 y). (118)
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The same is true for Ay in place of A. Similarly
D(kfe " k) = D(k}eX="1)D(eX0+"ky) (119)

and the same is true for D1 in place of D. O

Proof The first statement is equivalent to showing that B(kTeX*hl)C (eX0+h1fy)

vanishes. Applied to (?) € Hy, this equals
2

eX—at —e X-by eXtdr —e X+ck f
B 1 C 2 2 120
((exbi‘ e *ay )) ((6“02 e *tdy )) (fz (120

| (eal —eTX by ((eX+dS fr — e XS fo) -
- |:<6be e X—ay ) ( 0 n (121)
e’-aj(eX+d; fi —e "t cs fr)-
= =0. 122
|:<exb’1k(ex+d§f1 —e ey f-/1, 0 (122

This proves the first statement.

For the second statement involving A, we are considering a polarization for H
where H, now has orthonormal basis {€;z/ : i = 1,2, j > 0} U {e1} (see (14)). We
let By, C1 denote the Hankel operators relative to this shifted polarization. We must
show Bj (ki‘eX*hl )C1(eX0+ ky) vanishes. The calculation is basically the same, but

it depends on our normalizations in a subtle way. Applied to (?) € H,, thisequals
2
eX—af —e X-by eX+d¥ —e Xtk fi
B 1 C 2 2 123
(G si)e (i) () o
ef-af —e X-b| (eX+dy fi — e Xtk o)
=B ! 2 2 124
! ((exb”lk e X~ay )) ( 0 (124)

where the vanishing of the second entry uses the fact that c(0) = 0. This now
equals

[eX-a*(eX+dy fi — eX+c§f2)—]0+> -0 125
<[ebe<ex+d;f1 —err ) ) T )

This proves the second statement.
The third statement is equivalent to C (k’feX*hl)B(eXMhlkz) = 0. This is a
similar calculation. |
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Lemma 6 A(k’feXJ”) and A(eX+"ky) are injective on their domains, and simi-
larly for A;. O

Proof The four statements are all proved in the same way. We consider the second
assertion concerning A. Suppose that

eX‘Fd* _efx+c* fl
A <<6X+C22 gx+d22>> (fZ) =0 (126)

[eX+ (d} fi — C§f2)1+> —0 127
( e Xt (c2f1 +daf2) ) 2

This implies

The second component implies ¢ f1 + d2 f> = 0, and this implies

Sy _ dy
(fz) -8 (-Q) (128)

where g is holomorphic in the disk. Plug this into the first component to obtain
[+ g(dads + c2¢$)]4 = [e*+gls = 0 (129)

which implies g = 0. Thus f = 0.

Now assume that (c) of Theorem 9 holds. The lemmas imply that the Toeplitz
operator A(g) and the shifted Toeplitz operator A;(g) are injective. Since these
operators are Fredholm, they are invertible. Hence (c) implies (a) and (b).

Now assume (a) and (b). We define k1, k2 and x using the explicit formulas in the
proof of Theorem 7. Note it is essential that we use these explicit formulas, because
(as we saw in the last section) the existence of singular inner functions implies that
root subgroup factorization is not unique in general - we have to choose x wisely!
The formula (103) immediately implies that exp(— ) € L. The crux of the matter
is to show that if g € VMO (or more generally B 117/ P, then the factors have the same
smoothness property.

Suppose first that x = 0. In this case

A(Q)A(R)" = Ak A(k2)A(k2)" A(k1) (130)

=1— B(ki)B(k1)" — A(k}) B(k2) B(k2)* A(k1). (131)
This implies the following sum is a positive compact operator:

B(k1)B(k1)" + A(k}) B(k2) B(k2)* A (k). (132)
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Does this imply that the two summands have to be compact?

Proposition 5 Assume A and B are positive operators on a Hilbert space H.

(a) If A + B is finite rank, then A and B are finite rank.
(b) If A+ B is compact (or Schatten p-class), the A and B are compact (Schatten

p-class, respectively).

Proof

(a)

(b)

For x € ker(A + B),
(Ax,x)+ (Bx,x) =0 (133)

together with polarization, this implies that (Ax, y) = 0 for x, y € ker(A + B).
ker(A + B)™ is finite dimensional. So the range of A is contained in the finite
dimensional subspace

ker(A + B)* + A(ker(A + B)1) (134)

and similarly for B. This proves A and B are finite rank.

Given n, let K, (P,) denote the closed subspace (and the corresponding
orthogonal projection) spanned by eigenvectors corresponding to eigenvalues
A for A+ B with A < 1/n. K, is A + B invariant and |A 4+ Blg, < 1/n.
The orthogonal complement of K, is finite dimensional. Because (Ax, x) <
((A+ B)x,x) for x € K, and A is positive, the norm for |P,AP,| < 1/n.
Define A, = A — P, AP,. This is a finite rank operator (its range is contained
in Knl + AK,f-) and |A, — A| = |P,AP,| < 1/n. This shows that A is a norm
limit of finite rank operators. Hence A is compact.

The Schatten p-class claim is done in the same way, using the Schatten p-norm.

Thus if x = 0, then g € VMO implies that k1, ko, € VMO.
Now consider the general case,

(135)

TeXd) —bie™Xcy —afeXcy —bre™*d
a e e c a,erc e
g—ki‘e"’“kz—< 1674y — 21 27470 70 2).

bieXd; +aje Xcy —bjeXcs +aje *dy

The following is a basic gap in this section, and we will simply assume its truth.

Lemma 7 (Conjectural) There exists a deformation x; : S' — iR with x|,—0 = X,

Xt

€ VMO fort > 0, and g, := k}e* Wk, € VMO(S!, SU(2)). O
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Lemma 5 and some algebraic manipulations imply the following lemma.

Lemma 8 A(g;) equals the sum of four terms

AKD)A(eX") A(k) + B(kT)C(eX") A(ky) (136)
+ Ak B(eXM)C (k) + B(F)C(X") A(e™ 1) B(eX M) C (k). (137)
The last three terms are compact fort > Q. O

This implies that A(gt)A(gfl) will be the sum of 16 terms. For ¢t > 0 all of the
terms, with one exception, are trace class, because eX' is smooth. The exceptional
term is A(ki‘)A(ethl )A(kz)A(k;‘)A(e_thl )A(k1). This can be rewritten as

A A1) (1 — B(ka) Blka)*) A(e XM A(ky) = (138)
A1 — B(eX ™M B(eXt1y*) A(ky)
(139)
— A(KD)A(eX ") B(ka) B(ka)* A(e XY A(ky).
This equals the identity minus
B(k})B(D)* + A(K})B(eX™ B(eX"1)*) A(ky) (140)
+ AP A(X M) B(ka) B(ka)* Ae™ ¥ ") A(ky). (141)

This operator is positive because B(g;) B(g;)* is positive. Proposition 5 now implies

that B(k1) and B(k;) are compact, hence k1 and kp are VMO. This now implies that

eX is VMO. Lemma 4 implies that x is VMO. This completes the proof of the

theorem. O
Theorem 9 implies the following

Corollary 4 VMO(S', SU(2)) is a topological manifold, where (v, x,x) is a
topological coordinate system for the open set of loops in VMO(S!, SU(2)) with
invertible A and Aj.
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Abstract Consider the general complex polynomial external field
kool
z tjz
V(z)zk—l—Z:l IR tjeC, keN.
=

Fix an equivalence class J of admissible contours whose members approach co
in two different directions and consider the associated max-min energy problem
[14]. When k = 2p, p € N, and J contains the real axis, we show that the set of
parameters t1, - - - , 12,1 which gives rise to a regular g-cut max-min (equilibrium)
measure, 1 < g < 2p — 1, is an open set in C2P~1, We use the implicit
function theorem to prove that the endpoint equations are solvable in a small enough
neighborhood of a regular g-cut point. We also establish the real-analyticity of the
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real and imaginary parts of the end-points for all g-cut regimes, 1 < g < 2p — 1,
with respect to the real and imaginary parts of the complex parameters in the external
field. Our choice of even k and the equivalence class 7 > R of admissible contours
is only for the simplicity of exposition and our proof extends to all possible choices
in an analogous way.

Keywords Equilibrium measure - Orthogonal polynomials - Asymptotic
analysis - Phase transition - Random matrices

Mathematics Subject Classification (2020) 42C05, 31A99

1 Introduction and Main Results

The present paper is part of an ongoing project whose main objective is the
investigation of the phase diagram and phases of the unitary ensemble of random
matrices with a general complex potential

2[7 21)71

rigd
V(z;t)=Z2p+Z ’;, tjeC, peN, 1)
=1

in the complex space of the vector of the parameters
t=(t1, -, tp1) € CP

The unitary ensemble under consideration is defined as the complex measure on the
space of n x n Hermitian random matrices,

~1 e_nTrV(M;t)dM, (2)

n

where
zn(t) — /gg e*}’lTrV(M;t)dM (3)

is the partition function. As well known (see, e.g., [4]), the ensemble of eigenvalues
of M,

Mey = zrey, k=1,...,n,
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is given by the probability distribution

1 n
2@ 11 G—w?[Tew[-nv@nlda . dz. “)
" 1<j<k<n j=1
where
o0 o0 n
Zn(t)=/ / l_[ (Zj—Zk)2l—[eXp[—nV(Zj;t)]d21'-'dZna 5)
-0 ~®1<j<k<n j=1

is the eigenvalue partition function. The partition functions Z, and Z, are related
by the formula,

Zn (1) 1 "

- = | |k!. (6)
nn—1)/2

Zo(ty wrmDRL

Formulae (5), (6) are well known for real polynomial potentials V (z) of even degree
(see, e.g., [4]), and their proof for a complex V (z) goes through without any change.

By Heine’s formula (see e.g. [23]) the multiple integral in (5) is, up to a multi-
plicative constant, the determinant of the Hankel matrix H,[w] := {w it }k, j=0,....n
where w(x; t) = exp[—nV (x; £)] and wy is the £-th moment of the weight w(x; ¢).
Correspondingly, one can also consider the system of monic orthogonal polynomials
{Pu(z; t)}nEZzo satisfying

/P,,(z;t)zkw(z;t)dzzo, for k=0,1,...,n—1, 7)
r

where the infinite contour I' is in some equivalence class of addmissible contours
(see below and Sect. 2.2 for more details). The connection of this system of
orthogonal polynomials and the partition function (5) can be seen as follows: the
orthogonal polynomial of degree n exists and is unique if the partition function
Z, (1), or the n x n Hankel determinant det H,[w], is nonzero. Indeed, the existence
follows from the explicit formula

wo wip -t Wp—1 Wp
| wp w2 - Wy Wpil
P,(z;t) = P,(2) = det : Do : : , 8
W@ =P = g A ®)
Wp—1 Wy - -+ W2p—-2 W2p—1
1 z .- Zn—l "
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and the uniqueness follows from the fact that the linear system to find the
coefficients of P,(z;¢t) = 7" + Zj;(l) aj(t)zj, is of the form H,[w]a = b, and
thus can be inverted if the Hankel determinant is nonzero.

It is well known that the normalized counting measure for the zeros of these
orthogonal polynomials weakly converges to the associated equilibrium measure veq
(See e.g. [10] and references therein). For a review of the definitions and properties
of the equilibrium measure in the cases where the external field is real and complex
see Sects. 2.1 and 2.2.

The properties of the equilibrium measure when the external field is real have
been studied extensively over the last two decades or so (see e.g. [7, 13, 19] and
references therein), and we briefly review these properties in Sect. 2.1. In the real
case, the contour of orthogonality for the orthogonal polynomials with respect to
eV ¢ € R?P~1 s the real line and the equilibrium measure is supported on
finitely many closed real intervals. One does not need to deal with the problem of
choosing the contour of integration for orthogonal polynomials in the case where
the external field is real, as the solution of the associated extremal problem for the
equilibrium measure automatically ensures that the real line is the correct contour
of integration.

In this work we are considering polynomials defined by a “‘complex orthogonality
condition”, of the form (7). It is easy to see that the polynomials, when they are
uniquely determined by the above orthogonality condition, are independent of the
choice of contour, within some equivalence class of contours. Moreover, for a
given weight function w(z; t) = e V&9 there are multiple possible choices of
equivalence classes of contours (see for instance [2, 3, 14]), and each equivalence
class yields a different sequence of orthogonal polynomials.

Even though for each choice of the equivalence class of contours, our method
would work, for the sake of simplicity of exposition, we will restrict ourselves as
follows: We will assume that the external field is a polynomial of degree 2p (see
(1)), and we will choose the class of contours of integration that are all in the same
equivalence class as the real axis (also see Sect. 6).

As opposed to the case of a real measure on the real axis defining more classical
polynomials all of whose zeros are real, the case of complex orthogonality produces
polynomials whose zeros exhibit more complicated behavior. In fact, as the degree
of the polynomials tends to infinity, the zeros accumulate on nontrivial curves in the
complex plane.

In order to carry out an asymptotic analysis of the orthogonal polynomials with
complex weights, a new problem arises which is the effective selection of a contour
of integration for which subsequent analysis is possible. It turns out that the effective
selection of the contour of integration determines within it the accumulation set of
the zeros of the orthogonal polynomials, which is the support of the equilibrium
measure (suitably generalized to the complex case).

The problem of determining this important set in the plane, which is later used
as a portion of the contour of integration, is actually connected to a classical energy
problem dating back at least to Gauss—the energy of a continuum of particles in
the presence of an external field that experiences a repelling force whose potential
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is logarithmic. The set is determined by considering, for each member I' of the class
of admissible contours J, the energy minimization problem on I, and then selecting
a contour ['g € 7 that maximizes this minimum energy. In other words, I'g solves
the following max-min problem:

1
max min /f log dv(z)dv(s) —l—/ RV (s)dv(s) . 9
redJ | supp(v)cr |z — | r

v(C)=1 r'xT

The admissible sectors (in which the admissible equivalence classes of contours
could approach oco) are those in which the requirement

lim |V — +o0 (10)

>0

holds, which allows one to associate the Euler-Lagrange characterization of the
equilibrium measure[19]

1
U'(x)+  RV() =L, zesuppv,

2

1 (11
U (2) + 5 MNV(z)>+L, zeT \suppy,

where
1
U'(2) =/10g dv(s) (12)
rlz—sl

is the logarithmic potential of the measure v [19]. There is quite a history of reseach
centering on this variational problem in approximation theory and potential theory.
See, for example [11, 14-16, 18, 20, 21] and references therein.

In [14] the authors prove the quite general result that for an allowable! equiva-
lence class J of contours, the solution I'y to the above extremal problem exists, the
equilibrium measure and, thus, its support J are unique, and the support J C T’y
of the equilibrium measure is a finite union of disjoint analytic arcs. Moreover, they
show that the support J of the equilibrium measure is part of the critical graph of
the quadratic differential 0(z)dz2, that is the totality of solutions to

%([Z \/Q(s)ds> =0, (13)
b

! Characterized by a notion of non-crossing partitions of {1, ---, N}, where N is the number of
sectors in which (10) holds, see [14].
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(see Sect. 2.5 for some background on quadratic differentials and the paragraph
that follows Definition 3.1 for details on the connection of this requirement with
the Euler-Lagrange characterization of the equilibrium measure). In (13) Q is the
polynomial (see Proposition 3.7 of [14])

V/(Z) 2
Q) = (—w(Z)+ ) ) ) (14)
in which o is the resolvent of the equilibrium measure
dveq (x
w(z):/ eq(), ze€C\ J. (15)
J =X

Summarizing, we will consider the above max-min variational problem which
is associated to the orthogonal polynomials with respect to e V@0 ¢ e C?P~1,
in which the contour I'; in the complex z-plane, being the solution of the max-
min problem, is chosen from the members of the equivalence class of contours J
(defined in Sect. 2.2 below - each member being a simply connected curve that tends
to oo in two different directions, in sectors surrounding the positive and negative
real axis). For a “generic” choice of ¢ € C?P~!, the support J; of the equilibrium
measure is a finite union of disjoint analytic arcs (which are also referred to as
cuts), at each endpoint the density of the equilibrium measure vanishes like a square
root dvy (s; £) = (2mi)~'h(s; t) (VR(s; t))Jr ds, where h(s; t) and R(s;t) are
polynomials in s, and R has the property that its only zeros are simple zeros at
the endpoints of the cuts. Moreover, for a generic ¢ the zeros of A (s; ¢) do not lie on
J¢ and one can find a complementary set to J; to build the desired infinite contour I';
so that the requirement outside the support in (11) is satisfied. In fact, for a generic
t these complementary contours can all be chosen to satisfy the strict inequality in
(11), or equivalently chosen so that they all lie in the so-called #-stable lands:

{z:9ng(z:0) <0}, (16)
where
1g (25 1) :=—/ h(s; £)y/R(s; )ds, (17)
by(0)

and b, (¢) is the rightmost endpoint (for more details see Definition (3.1) and the
paragraph that follows it).
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However, we may expect that the above regularity properties” do not hold for
certain choices of ¢. For example, for some values of ¢ it could happen that

(a) one or more zeros of (s; ¢) coincide with the endpoints and thus alter the square
root vanishing of the density at one or more endpoints,

(b) one or more zeros of i (s; t) may hit the support J; of the equilibrium measure,
or

(c) it may not be possible to choose the complementary contours to entirely lie in
the ¢-stable lands.

Such values of ¢ at which the aforementioned regularity properties fail, also form
boundaries in the phase space C2?~!, across which the number of support cuts of
the equilibrium measure changes.

Let us highlight these irregularity properties at non-generic parameter values
using the complex quartic external field:

Z4 Zz
V(Z;U)E4+O'2, o eC,

for which one has (regular) one-cut, two-cut, and three-cut regions in the complex o -
plane which are denoted by ©1, ©O;, and O3 respectively. In [2] the phase diagrams
for a variety of choices of integration contours for this model have been presented.
In [6] the particular case of admissible contours that approach co along the real axis
was considered and the phase diagram (as shown in Fig. 1) was proven. Using the
explicit formulae for the end-points of J, and zeros of 4(z; o) in the one-cut case,
one can easily find that the non-generic parameter values corresponding to case (a)
above are only 0 = +i+/12, for which the points Fz¢ (zeros of h(z; o)) coincide
with the endpoints +b1 [2, 6]. The non-generic points on the boundaries labeled
by y1 and y; represent the o values for which the zeros of &(z; o) hit the support
of the equilibrium measure (see Fig. 2). Figure 3 corresponds to item (c) above, in
which the regions in light blue represent the o -stable lands. Figures 3a—f show the
contour I'; for six choices of parameters o € ©p, while Fig. 3g corresponds to a
non-generic value of o € y3 (see Fig. 1) where the complementary part I'; \ Js
(the orange dashed line in Fig. 3g) can not avoid going through at least one point
which does not belong to the o-stable lands (see item (c) above). Finally Fig. 3h
corresponds to 0 = —1.35 + 4i which is clearly not a one-cut parameter as there
is no connection from the endpoint b1 to co in the sector originally chosen for the
orthogonal polynomials, however, it turns out that it is a regular three-cut parameter
[6].

It should also be mentioned that transitions through these boundaries correspond
qualitatively to phase transitions in the asymptotic behavior of the orthogonal
polynomials. For example, in the simpler case of real potentials, if there is one

2 For a precise definition of regularity see Sects. 2.4, 3 and Definition 3.1.
3 Figures 1, 2, and 3 are taken from [6].
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Re(o)

Fig. 1 The phase diagram of the complex quartic random matrix model in the o -plane.

contour comprising the support, the oscillatory behavior of the polynomails is
expressed via trigonometric functions [8], while if there are several intervals, then
the oscillatory behavior is descirbed by a Jacobi theta function associated to the
Riemann surface of R(z; t) [9].

The main purpose of this work is to present a brief self-contained proof of the fact
that if for some ¢* € C>?~! the corresponding equilibrium measure is g-cut regular,
then there exists a small enough neighborhood D, (¢*) of ¢* so that forall ¢ € D, (t*)
the associated equilibrium measures are also g-cut regular. Lemma 4.2 of [3] gives
another proof of the openness of regular set of parameters using the determinantal
form of the function 7, and uses arguments from [24, 25]. The proof that we present
here avoids computations of the Jacobian determinant, but rather has the flavor of a
vanishing lemma from the theory of Riemann-Hilbert problems, which permits us to
arrive at a contradiction if the Jacobian determinant should vanish at a regular point.
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Raz

(a) (b) (©

Fig. 2 Snapshots of the continuous deformation (see Theorem 1.3) of the critical graph /051). (a)

The critical graph /él) of the one-cut quadratic differential for the complex quartic model at a

o € Op. At this value of ¢ all regularity properties are satisfied. (b) The critical graph /;1) ata

critical value o € y) (see Fig. 1). The zeros of h(z; o) at this value hit J,, and thus o ¢ Oy. (c)
The critical graph /;1) ata o ¢ ©Op. It turns out that this value of o actually is a regular three-cut

value as shown in [6].

(e) ) (2 (@

Fig. 3 This sequence of figures shows allowable regions in light blue through which the contour
of integration (for the orthogonal polynomials) must pass, for a varying collection of values of
o. Regions in light blue are the o-stable lands where %i[n;(z; 0)] < 0 and the regions in white
are the o -unstable lands where i[n;(z; 0)] > 0 (see (16) and (17)). Notice that the sigma values
associated with (g) and (h) do not belong to O1.0 = 1+ie€ O.(b)o =14 3.8i € Oy. (¢)
0 =1439%2i € O.do=1+4iec0O1.(e)c =4ic O. o =—-1+4i € O.(g)
ocr ~ —1.154+4i. (h)o = —1.35 + 4i.
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Some of these arguments use ideas based on Riemann surface theory contained in
[1] in which Lemma 4.1 provides a proof. Indeed, in Sect. 5 we prove:

Theorem 1.1 The regular q-cut regime is open.

The proof of Theorem 1.1 relies upon showing that the underlying equations for
finding the endpoints are solvable for every ¢ € D (¢*). To this end in § 4 we
formulate the end-point equations in the g-cut case and prove the following result:

Theorem 1.2 The equations which determine the 2q endpoints of the regular q-cut
regime are solvable for all t in a small enough neighborhood of a regular q-cut
point t*, all endpoints aj(t), bj(t) are distinct, and Ra;(t), Ja;(t), 1 < j < q are
real-analytic functions of Nty, Sty, | <k <2p — 1.

Another important ingredient in the proof of Theorem 1.1, mainly useful for
establishing that the regularity properties are preserved for every ¢t € D.(t*), is
the continuity of the critical graph of the associated quadratic differential which,
in particular, has within itself the g-cut support of the equilibrium measure. Apart
from the continuity of the support J;, knowing the continuity of the complementary
part of the critical graph, i.e. #; \ J;, is also very important. This is because
the "closure of a strait" (recall, for example, the passage from 0 = —1 + 4i to
ocr =~ —1.15 4 4i depicted in Fig. 3f and g) is directly tied to the behavior of the
complementary part _#; \ J; of the critical graph, which leads to the impossibility
of having complementary contours I'; \ J; to lie entirely in the ¢-stable lands (see
the orange dashed line in Fig. 3g). To that end, in § 5, for the entirety of the critical

graph _#; we prove:
Theorem 1.3 The critical graph _#; of the quadratic differential

Teme A\ 2
0(z; 1)dz* = (—w(z; )+ v (; t)) dz2.

and thus the support J; of the equilibrium measure, deform continuously with
respect to t.

2 Equilibrium Measure and Quadratic Differentials

2.1 Egquilibrium Measure for Orthogonal Polynomials
Associated with Real External Fields

Let
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be any polynomial of even degree with real coefficients. Now consider the following
energy functional which is defined on the space of probability measures on R:

Iy (v) := //log ! dv(x)dv(y)—i—/ V(x)dv(x). (18)
) % lx — yl R

The equilibrium measure, veq, is a probability measure on R which achieves the
infimum of the above functional:

inf [ =1 , 19
g v(v) = Iy (veq) 19)

where

//ll(R):z{v:vzo, /dv:l}.
R

For this extremal problem, it is known that (see, e.g., [4, 7, 9])

1.

The equilibrium measure exists and is unique.

2. The equilibrium measure is absolutely continuous with respect to the Lebesgue

measure,

dveq(z) = pv (2) dz.

. The support of veq consists of finitely many closed intervals,

q
J = suppveq = U[ak, bil,
k=1
where ¢ < p. The intervals {[ak, br], k = 1, ..., g} of the support of veq are

called the cuts. We may assume thata; < by <az <by < ... <ay < by.

. The density of the equilibrium measure on the support J can be written in the
form,
1 1/2 1
pr) = R0, R =[] —an e —bo, (20)

k=1

where A (x) is a polynomial, such that ~2(x) > 0 for all x € J, and R'2(x) is the
branch on the complex plane of the square root of R(x), with cuts on J, which
is positive for large positive x. Respectively, Ri/ 2()c) is the value of R'/?(x) on
the upper part of the cut.
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V/
5. Finally, the polynomial £ (x) is the polynomial part of the function Rl/g)(c )) at
X
infinity, i.e.,
V'(x) -1
RI2(x) ~ h(x) +Ox™). 21

This determines 4 (x) and hence the equilibrium measure veq uniquely, as long as
we know the end-points a1, by, ..., aq, by.

An important property of this minimization problem (19) is that the minimizer
Veq 1s uniquely determined by the Euler-Lagrange variational conditions:

2/ log|x — y|dvy (y) — V(x) =1, for xelJ, (22)
R

2/ log|x — yldvy (y) — V(x) <1, for xeR\J, (23)
R

for some real constant Lagrange multiplier [, which is the same for all cuts [ay, bi].
From this we conclude that

Akt 12 3 B
h(x)R/“(x)dx =0, k=1,...,q—1. 24)
by

Therefore the polynomial /(x) has a zero on every interval [b, ai1], which means
thatdegh > g — 1.
We also consider the resolvent of the equilibrium measure defined as

w(z)z/ dv@® e (25)
J Z—X

This function, which is very useful to construct the density of the equilibrium
measure, has the following analytical and asymptotic properties:

1. w(z) is analytic on the set C \ J.
2. On J, the equilibrium condition (34) implies that

w01 (X) + 0 (x) = V'(x), (26)
and the Plemelj—Sokhotski formula implies
0y (x) — o (x) = =2mipy (x). 27)
Combining these equations with formula (20) for py (x), we obtain that

_ V'@ _h@R@)

5 ) (28)

w(z)
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3. As 7z — 00,

1
w(z) = . —1—’:121 +..., mk=/xkﬂv(x)dx- 29)
J

2.2 Equilibrium Measure for Orthogonal Polynomials
Associated with Complex External Fields

In this section we follow the work of Kuijlaars and Silva [14] (See also [1, 15, 18]).
Let us consider the general complex external field of even degree

2P 2[)—1

tjz!
V(z)zzz +3Y 9T jec,  j=12p-1 (30)
P

For 0 < ¢ < m/4p, consider the sectors

T T
St = e(C‘ar < —¢ey, ST = e(C‘ar —7| < —ey.
A {z | gZI_M7 } A {z |argz ﬂl_4p
(31)
Observe that in these sectors we particularly have,
lim MRV (z) = oo. (32)
77— 0
By a contour we mean a continuous curve z = z(t), —00 < t < 0o, without self-

intersections, and we say that a contour I is admissible if

1. The contour I is a finite union of C' Jordan arcs.
2. There exists ¢ > 0 and ro > 0, such that I" goes from S to S in the sense that
Vr > rg, 319 < 11 such that

2(t)eS; \D, Vt<ty;, z(t)eSI\D, Vt>1,

where D, is the disk centered at the origin with radius r. We will assume that the
contour I" is oriented from (—o0) to (400), where (—oo) lies in the sector S
and (+00) in the sector Sj . The orientation defines an order on the contour I'.

An example of an admissible contour is the real line. We denote the collection of all
admissible contours by 7.
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For I' € J, let (") be the space of probability measures v on I', satisfying

/mw(s)l dv(s) < oo. (33)
r

Consider the following real-valued energy functional on P(I"):

Iy r(v) = // log . ! " dv(z)dv(s)—l—/ RV (s) dv(s). (34)
- r

'xD

Then there exists a unique minimizer vy r of this functional (see [19]) so that

min Iy r(v) = Iy r(vyr). (35)
vePT)

The minimizing probability measure vy r is referred to as the equilibrium
measure of the functional Iy r(v), and its support is a compact set Jyr C T,
and is uniquely determined by the Euler—Lagrange variational conditions. Namely,
vy, r is the unique probability measure v on I" such that there exists a constant /, the
Lagrange multiplier, such that

1
U'(2)+ . RV(z) =4, z€suppv,

2

1 (36)
U (2) + 5 MNV(z)>+L, zeT \suppy,

where
1
U'(z) = / log dv(s) (37)
r |z — s]

is the logarithmic potential of the measure v [19].

Now we maximize the minimized energy functional /y (vy, ) over all admissible
contours I' € 7. In [14], the authors prove that the maximizing contour I'y € Jexists,
and the equilibrium measure

Veq = VV,F;
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is supported by a set J; C I'y which is a finite union of analytic arcs I'¢[ay, by] C
Ft14k: 1,...,q,

q
Je = Telax, bl
k=1

that are critical trajectories of a quadratic differential® Q(z) dz2, where Q(z) is a
polynomial of degree

deg O(z) = 2degV(z) —2 = 4p — 2. (38)

Moreover, in [14] it is proven that the polynomial Q(z) is equal to

V/(Z) 2
0(z) = (—w(Z) + ) ) ; (39)
where
dveq (s
w(z) = f () (40)
J TS
is the resolvent of the measure veq. From
bt + g + i +
z—s z 2 377
we obtain that w(z) = O(z~!) as 7z — oo:
1 mi . k
w(z) = + , e with my = 5" dveq (s). 41)
Z Z J

Additionally, the equilibrium measure veq is absolutely continuous with respect
to the arc length. More precisely we have

dveq(s) = ;i 0.4 (s)/2ds, (42)

where Q. (s)1/2 is the limiting value of the function

0 = _/ dveq(s) N V/(z)’ 43)
Ji

z—3S 2

4 Given two points 51, 50 € CU {00} on I'¢, by I't(s1, s2) and It [s1, s2] we respectively denote
the open and closed “intervals” on I'; starting at 51 and ending at s5.

3 See Sect. 2.5 for a review of definitions and basic facts about quadratic differentials.
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as z — s € J; from the left-hand side of J; with respect to the orientation
of the contour I'y from (—o0) to co. A very important result in [14] is that the
equilibrium measure veq is unique as the max-min measure which immediately gives
the uniqueness of the set J;. On the other hand, the infinite contour I'; is not unique
because it can be deformed outside of the support J; of veq, as long as I'y \ Jy lies
in the ¢-stable lands. To summarize, one can choose the contour I'; to be the union

I, =J,UT,UTY,

where T is a (non-unique) set consisting of ¢ — 1 finite arcs in the £-stable lands
so that J; U Iy is connected and I'; consists of two (non-unique) infinite arcs in the
t-stable lands one connecting —oo to a1 (¢) and the other connecting b, () to +oo.

2.3 The g-Function
As usual we define the “g-function” as
g&)=/1bﬂz—®d%d®, (44)
Ji

where for a fixed s € Js, we consider a cut of log(z — s) to be I';(—o0, s]. Notice
that by (40) we have

g() = /J Peas) _ o, (45)

Moreover, from (37), the logarithmic potential U4(z) can be written as
v 1 ,
U™(z) = [ log dveg(s) = —Ng(2), (46)
Jt |Z - |
and therefore the Euler-Lagrange variational conditions (36) can be expressed as

—Ng)+ _RNV() =L, zel,

(47)

—Ng@)+ NV(@) =L, zel¢\ ;.

N =N =
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2.4 Regular and Singular Equilibrium Measures

An equilibrium measure vegq is called regular® if the following three conditions hold:

1. The arcs I'¢[ax, br], k =1, ..., g, of the support of veq are disjoint.
2. The end-points {ax, by, k =1, ..., g} are simple zeros of the polynomial Q(s).
3. There is a contour I'y containing the support J; of veq such that

1
U@+ , RV (@) > £, e\ s, (48)

An equilibrium measure veq is called singular (or critical) if it is not regular.

2.4.1 Regular Equilibrium Measures

Assume that the equilibrium measure veq is regular. Because the resolvent

() = f @Veq (5) 49)

Jo £
is analytic on C \ J;, one can see from equation (39) that all the zeros of the

polynomial Q(z) different from the end-points {ax, by, k = 1,...,q} must be
of even degree, and thus Q(z) can be expressed as

1
0@ =, h(z)*R(z), (50)

where /(z) is some polynomial,

-
h(z) =[] -z. (51)
j=1
having zeros z1, . .., z which are distinct from the 2¢ end-points {ay, bk}Zzl, and
q
R(2) =[] —an)(z—bo). (52)
k=1

6 The set of regular g-cut parameters giving rise to regular g-cut equilibrium measures is defined
in Definition 3.1.



168 M. Bertola et al.

Therefore,
00 = | h*RG) = | f[(z - z))? ﬁ(z — ap)(z — by) (53)
4 4j=1 ! k=1 .

In (51), and (53) if r = 0, it is understood that 4(z) = 1. By taking the square root
with the plus sign, we obtain that

172
1 1 1

0" = h@R@' = [ -2 |:l—[(z —ap)(z — bk)] . (54
j=1 =

Correspondingly, equation (42) can be rewritten as

, 1/2
1 1 1
dveq(z) = o h(z)Ry(2)"/?dz = - jl:[l(z —2Zj) |:]£[1(Z —ap)(z — bk):|+ dz.

(35)

From (39), (45), and (54) we can write

V) + 691 L@

g(z; 1) ) 5,

7z € C\ T¢(—00, by(t)], (56)

where
1/2

q
ng(z: 1) == — A l_[(S—Ze(t)) ]"[s—a,(t) —bj®) | ds, (57

q(8) p—1 j=1

z € C\ I't(—00,by(t)], in which the path of integration does not cross

[t (=00, by (1,7 and Eiq)(t) is chosen such that g(z; t) asymptotically behaves
like logz as z — 00.8 Also from (39) and (54) we have

q
i@ +g (zt)y=V'(z), ze i = U Ti(a;(t), bj(1)). (58)
j=1

7 See the paragraph following (43) regarding the choice of I', and for the notation I'y (—00, b, (¢)]
see footnote 4.

8 For the quartic potential discussed in the introduction the explicit formulae for ¢ iq) (¢) are derived
forq =1and g =2 in [6].
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We use (45) and (50) to rewrite (39) as:

¢t = ; [V’(z; ) — h(z: )RV (z: t)]. (59)

2.5 Quadratic Differentials

In this subsection we briefly remind some definitions and basic facts about quadratic
differentials from [22]. The zeros and poles of Q(z) are referred to as the critical
points of the quadratic differential Q(z)dz>, and all other points are called regular
points of Q(z)dzz. For some fixed value 6 € [0, 27), the smooth curve Ly along
which

arg Q(z)dz* = 0,

is defined as the 6-arc of the quadratic differential 0(z)dz2, and a maximal #-arc
is called a O-trajectory. The above equation implies that a #-arc can only contain
regular points of Q, because at the critical points arg Q(z) is not defined. For a
meromorphic quadratic differential, there is only one 6-arc passing through each
regular point.

We will refer to a w-trajectory ( resp. O-trajectory) which is incident with a critical
point as a critical trajectory (resp. critical orthogonal trajectory). If b is a critical
point of Q(z)dz?, then the totality of the solutions to

R <[Z \/Q(s)ds> =0,
b

is referred to as the critical graph of [,’ / Q(s)ds which is referred to as the namural
parameter of the quadratic differential Q(z)dz2 (see §5 of [22]). A Jordan curve X
composed of open -arcs and their endpoints, with respect to some meromorphic
quadratic differential Q(z)dz?, is a simple closed geodesic polygon (also referred to
as a Q-polygon). The endpoints may be regular or critical points of Q(z)dz?, which
form the vertices of the Q-polygon. ¥ is called a singular geodesic polygon, if at
least one of its end points is a singular point.

Now we can state the Teichmiiller’s lemma: for a meromorphic quadratic differ-
ential Q(z)dz?, assume that ¥ is a Q-polygon, and let Vs and Int ¥ respectively
denote its set of vertices and interior. Then

#Vg—2= ) (ord(z)+2) 92(;) + ) ord(), (60)

z€Vy zeIntX

where 6 (z) denotes the interior angle of ¥ at z, and ord(z) is the order of the point
z with respect to the quadratic differential. That is, ord(z) = O for a regular point,
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ord(z) = n if zis a zero of order n € N, and ord(z) = —n if z is a pole of order
n € N of the quadratic differential. We use the Teichmiiller’s lemma in the proof of
Theorem 1.1 in Sect. 5.

3 Endpoint Equations and the Regular ¢g-Cut Regime

Notice that from (58) we have

R (g ()= —R™* () (V'(2) — ¢-(2)) = RZV*(2)¢"(2) — RZV* () V' (2)

Therefore by Plemelj-Sokhotskii we have

) RY2(z) [ V'(s) ds RV2(2) X Ty
$EO=" oni Vs 2= amis 2o gt 1)
T RY7(s) < ¢t
where
V/
n:/ 1/§S) stds ¢ e NU{0). (62)
7 RY%(s)

From (61) and the requirement that g’(z) = z~' + O(z2) as z — 00, we obtain
the following g + 1 equations:

T, =0, €=0,1,....g—1, and T,=-1. (63)

We have g — 1 gaps, and thus g — 1 gap conditions:
aj+1
m/ h(s)R'?(s)ds =0, j=1,...,q—1. (64)
bj

Since the equilibrium measure is positive along the support, we immediately find
the following ¢ — 1 real conditions

h.
m/’h(s)R}/z(s)ds=o, i=1,....q—1. (65)
a

J

Notice that the condition on the last cut

b
%[ " h(s)RY(s)ds = 0,
a

q



Openness of Regular Regimes of Complex Random Matrix Models 171

is a consequence of the ¢ — 1 conditions in (65) and should not be considered as an
extra requirement.

Being in the g-cut case, we have to determine 2¢ endpoints and thus 4¢ real
unknowns Ray, Jay, Raz, Saz, --- Rby, Ib,. These unknowns are determined by
the 4g real conditions given by (63), (64), and (65).

Let .% be the vector-valued function, whose 4¢ entries are defined as

Fop = RTy +8¢q,  Foe41 = Ty, £=0,...,q, (66)
b 12 .
Fogi1+) =m/ h(s)RY " (s)ds, j=1,...,q—1, (67)
aj
aj+1
Fgtj =§R/ h(s)R'Y?(s)ds, j=1,...,9—-1. (68)
bj

We express the equations (63), (64), and (65) for determining the branch points as
F =0. (69)
From the requirement (41), and equation (59), in particular, we know that

deg R

degV — 1 =degh + 5 (70)
therefore, recalling (30), (51), and (52) we obtain
r=2p—1-—gq. (71)
Since & is a polynomial, we obtain the following bound on the number of cuts
g<2p-1L (72)

Definition 3.1 The regular g-cut regime which is denoted by O, is a subset in the
phase space C2P~! which is defined as the collection of all ¢ = (ty, -, ap—1) €
C2r—1 guch that the points a; (t),b; (¢t), with j =1, --- , g as solutions of (69) are
all distinct and

1. The set /t(q) of all points z satisfying
9 [ng(z; )] =0,

contains a single Jordan arc connecting a;(¢) to b;(¢), foreach j =1,--- ,q.
2. The points z¢(¢t) , £ = 1,---,2p — 1 — g, do not lie on Jt(q) =
Uj=i Tefa; 0,05 0].
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3. There exists a complementary arc I's(by (£) , +00) which lies entirely in the
component of the set

{z:%[ng(z: 0] <0},

which encompasses (M (¢) , +00) for some M; () > 0.
4. There exists a complementary arc I's(—o0, a;j (¢)) which lies entirely in the
component of the set

{z:%[ng(z: 0] <0},

which encompasses (—oo, —M> (¢)) for some M, (¢) > 0.
5. There exists a complementary arc I'; (bj ®),aj+1 (t)), foreachj=1,---,q—
1 which lies entirely in the component of the set

{z:%[ng(z: )] <0}.

Let us now briefly discuss the significance of equation (13) and the requirement
(16) in relation to the above definition. Taking real parts from both sides of (56) we
obtain

1 1
- zﬁ)inq(z; t) =-Ngzt) + 29%V(z; t)— ¢, (73)

where ¢ denotes — éf}i&(kq)(t). So for a fixed ¢, comparing with (47), the support of
the equilibrium measure, is the collection of g arcs as solutions to 3in,(z; ¢) = 0
(same as (13)) connecting a;(¢) to b;(¢), j = 1,---, q. For the regular case one
also needs to ensure that (48) is also satisfied. In view of (73), this explains why we
require that I'; \ J; must lie in the so-called ¢-stable lands as defined by (16).

3.1 Structure of the Critical Graph

(q)

In this subsection we show basic structural facts about the critical graph _#,* for a
regular g-cut ¢. Recalling (57) we notice that as z — oo we have
Zrth1+1 | Z2p
) =— 1+o0eh)==" (1+0c™), 74
n@o=-"  (1+oeh)==3 (1+oc™ (74)

where we have used (71). Therefore the components of ¢, t(q)

the 4 p distinct angles 6

near co must approach

0= + 5 k=0517“'54p_17 (75)
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satisfying cos(2pf) = 0, where we have parameterized z in the polar form Re'”.
Moreover, at each endpoint there are three critical trajectories of the quadratic
differential Q(z)dz> making angles of 27r/3 at the critical point. To see this, let

a denote eitheraj orbj, j =1,---,q. We have
[0 Zz
1g(2) = —/ h(s)\/R(s)ds—/ h(s)/R(s)ds.
by o

Notice the first term on the right hand side is an imaginary number, which can
be seen if we break it up into integrals over cuts and gaps and using the endpoint
conditions (64) and (65). The integrand of the second integral on the right hand side
is O ((s — @)!/?), and thus

SWI(Z):O((Z—a)_?/Z)’ as 7 — a, L=1,---,q.

This ensures that there are 3 local trajectories emanating from « € {a;, b j}3: 1
as solutions of M7 (z) = 0. Out of these 3 x 2¢ local critical trajectories, 2g of them
make the g cuts, and thus we need to determine the destinations of the remaining 4¢
local critical trajectories. Having solutions in the 4 p directions given in (75) near
infinity guides us to investigate if all or some of the 4¢ local critical trajectories
can terminate at infinity along one of the 4p angles in (75). We define a hump
to be a part of /t(q) which a) does not hit any critical points of Q(z)dzz, and b)
starts and ends at oo at two of the angles in (75).” Notice that there are no singular
finite geodesic polygons with one or two vertices associated to the g-cut quadratic
differential Q(z)dz2 given by (53). This is implied by the Teichmiiller’s lemma (60)
and the fact that Q is a polynomial [6].

Let us first assume that that none of zy,---,z, lies on /t(q) \ Js. By the
discussion in the previous paragraph the two local trajectories emanating from one
end point (among the 4 remaining local trajectories, see the beginning of the
previous paragraph) can not connect to one another to form a geodesic polygon with
one vertex. Therefore the 4¢g local trajectories have no destiny other than forming
some connections among themselves or to terminate at oo (see (75)). Now consider
the following three cases

1. p > q. This means that the remaining 4¢q local trajectories are not enough to
exhaust all 4 p angles given in (75) and thus /t(q) must also be constituted from
2(p — q) humps to correspond to the unoccupied 4(p — q) directions at infinity.

2. p = q.1in this case /t(q) does not have any humps, since the remaining 4¢ local
trajectories are enough to exhaust all 4p angles given in (75).

3. p < gq. This means that there are not enough destinations for 4(¢ — p) of the
remaining 4q local trajectories, and thus the only possibility is that we have 2(g —

% See, e.g. Figs. 2a and 3 except for 3¢ and 3g.
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p) connections among the 4(g — p) local trajectories as described in the previous
paragraph.

Notice that one can arrive at the above characterization without the assumption
that none of zy, --- , z, lies on /t(q) \ J¢, due to the continuous deformations of
/t(q) (see Theorem 1.3).

Remark 3.2 1t is clear that all three cases above are realizable for the quartic
potential (p = 2) considered in [6], when we can have ¢ = 1, 2, and 3.

Remark 3.3 1If there are m < r points {zx,, - - , 2k, } C {21, -, z-} which belong
to an unbounded geodesic polygon K with the finite vertex at an endpoint (and the
other “vertex” is at infinity), then the separation of the angles between the two edges
at oo is

2m+ D 2m+
900 = = s
q+r+1 2p

and therefore K hosts m humps, which is a consequence of the Teichmiiller’s lemma
applied to the polygon K.

4 Solvability of End Point Equations in a Neighborhood
of a Regular ¢-Cut Point: Proof of Theorem 1.2

In this section we want to prove that the equations uniquely determining the end-
points are solvable in a neighborhood of a regular g-cut point. In this section we
denote
t= (9{1‘1, Sty -, Nop-1, *3[2,,_1) ,

and

x = (Ray, Jay, ..., Ray, Jag, Rby, by, ..., Nby, Iby) .
However when we refer to Definition 3.1, by ¢ we denote the complex vector
(t1, - p-1) € C2r—1 We can think of .% as a function of 4q real variables
in the space
X :={(Nay, 3ay, ..., Nag., Sag, Rby,Iby, ..., Rby,Ibg) : aj,b;j €C, j=1,...q},

and parameters in the space

V:={(mt1,3t1,~-~ ,mt2p71,3t2p,1) ¥ eC, j=1,~-~2p—1} ,
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recalling (30)'°. That is
F:XxV—>RY, (76)
or

FRYMAP2 L RY (77)
: : A+ 1/2 bi 1/2
Notice that the objects T, fhm h(s)RY?%(s)ds, and fa,- h(s)R,"(s)ds are
complex-analytic with respect to a;, b;, and #, for0 < r < g,1 <m < qg — 1,
1<i<gqg,1<j<gqg,and1 <k < 2p — 1. Here we have used the fact that
we know the explicit dependence of A (s; £) on aj, b, and f; which can be seen as
follows: recall from (59) that

h(z;t) = (Vi@ —2¢'(z;0)). (78)

1
R2(z; 1)

Combining this with (61) we obtain

1 V'(s;t) ds V'(z; 1)
h(zit) = — / 2 R )" (79)
IR (si0)s —2 (z; )
and thus,
1 V'(s;t) ds
hiz;t) = — , 80
@O == 75 RV2(s:t)s —z2 (80)

where y* is a negatively oriented contour which encircles both the support set J
and the point z.

This means that the functions %y, 1 < £ < 4q are all real-analytic functions of
Raj, Jaj, Nbj,Ibj, Ny, Sty for 1 < j < g,and 1 < k < 2p — 1. This allows us
to use the real-analytic implicit function theorem.'!

We show that if we are in the regular situation, then the Jacobian of the mapping
& with respect to the parameters in X is nonzero. So, if for some (x*,t*) € X x V,
we have % (x*, t*) = 0 and if

3T 0F | 0F AT
Mar  Ia Nby 93bg

det : Lo : #0, (81)
8,974(] 394,] 394,] 394,]
Mar 3Ja; T Nby by (c*,6%)

10 Notice that the integrand h(s)Rl/ 2 (s) only depends on vectors in X x V due to (59), (61), and
(62).

1 For the real-analytic version of the implicit function theorem see, e.g. Theorem 2.3.5 of [12],
and for the uniqueness of the map ¢, see e.g. Theorem 9.2 of [17].
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then the real-analytic implicit function theorem ensures that there exists a neighbor-
hood 2 of

t' = (S}tt;‘, Sty Ry, m;p_l) e R¥72,
a neighborhood 2 of

X = (ma;‘, Saf,..., Rk, Sak, oY, ], ..., RBE, 31;*) e RY,
and a unique real-analytic mapping ¢ : Q; — € such that ¢(t*) = x*, and
F(p(t),t) =0forallt € Q.

Due to the continuity of ¢, and the fact that #* is a regular g-cut point (so all
aj(t*), b;(t*) are distinct) we can find a possibly smaller neighborhood 9 C €4
so that for each ¢ € Qq all end-points a;(¢), b;(t), j = 1,--- , g, are distinct.

So it only remains to prove that the Jacobian is nonzero at a regular g-cut point.
We assume the Jacobian is zero at such a point, and aim for a contradiction. Starting
with this assumption, we know that there is 0 # X € X in the nullspace of the
Jacobian matrix. Using x* and ¥ we define the following 1-parameter family

x(1) i =x"+1X%, TeR. (82)

We obviously have

dx(r) =x#0. (83)
dr =0

For non-zero values of 7, x(7) may not satisfy the end-point equations (69), but
we can still think of the entries of x(7) as defining “end-points”. More precisely,
we define the points a;(t) and b;(7), as Ra;(r) = x2;_1(7), Ja;(r) = x2;(1),
Rbj(t) = x2442j-1(7), Ibj(T) = X2942j(7), j = 1,---,q. Now, using a;(7)
and b (1) as defined above, we define the T-dependent objects R(z; 7), ¢'(z; 7) and
T¢(7) using (52), (61) and (62). Now (59) gives an expression for 4(z; T)+/R(z; 7).
We emphasize that for non-zero 7, these objects may not correspond to an
equilibrium measure for some potential V (7).

Below, we drop the dependence on 7 in the notations to simplify our presentation.
Notice that

g )
Z (da/ (r) 9 dbj (r) 0 > T, . (84)
i dr Ba/ dr 0b;
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and

d bj 1/2
N h(s)R, " (s)ds
drt J,

J

_ b daj(r) &  dbj(x) @ 12
=N Z( dr 8a/+ dr 3b,~> h(s)R, " (s)ds , (85)

d aj+1
ﬂt/’ h(s)R'?(s)ds
dr

bj

aj+1 daj(l') d db](‘[) 9 12
_%/ Z( dr Ba] dr abj) h(s)R'/*(s)ds . (86)

We let o represent an arbitrary branch point a; or b;. From (62) we have the identity
V/
Ty —aTi— = / (s) s s —a)ds {eN. 87

Differentiating with respect to « yields

3 3 —1 [ V) —1
Ty — Te—1 —Tr—1 = ds = Te—1, 88
gg L=y T =T = / 1/2(s) s= 5 T (88)
which implies
a ad 1
Te — Te-1= _Te—1. 89
gg L6y, Temr =, Tem (89)

In view of (63) for 1 < ¢ < g, when 7 = 0 we actually have

9 i) , 0
Ty = Tr—1 = To . 90
gy e=0y Tr=c", To (90)
Lemma 4.1 We have
3, —R'2(z) @
= To . 91
20 9T 2nic —a) 92 ©h
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Proof Let us rewrite (61) as

, R2(z) [ V'(s)(s — ) ds
g = ) /

RV (s) G-26-w
_ RV(») Vis) o RP@ [ VE6 -0 ds
2mi(z =) Jy RY*(s) miz—e) Jy RYs) sz

_ R'2(») V/(s)(s — ) ds
T 27mi(z — @) <_T0+f] 1/2(5) s—z]°

The advantage of this formula is that the differentiation with respect to « can
be pushed through the integral, as the integrand vanishes at «. After taking the
derivative with respect to « and straight-forward simplifications we obtain (91)

92)

Returning to (84)—(86), when T = 0 we have

d 1. /da;(t) aTy dbi(v) 8Ty
T = I ¢ J bt , 0=0,...q, 93
dr '’ ;( a0, YT dr ob; 1 )

and

d
%[ h(s)RY (s)ds
dr J,

J

:ml /b,i: daj(t) 9Ty 1 +db/~(r)8To 1 (1/2( ))
i J,. *# dt da;s —aj dt 0b;js—bj
ioj=1 J J J

j
(94)

d

‘R/j h(s)RY? (s)ds
dt” Jy,

ajt1 " daj(t) 8Ty 1 dbj(r) 8Ty 1
_5 // Cl](l')a 0 4 j(‘lf)a 0 (Rl/z(s)>ds
dr aajs—aj dr abjs—bj

95)
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where in deriving the last two equations we have used (59) and (91). Consider the
2g-vector

dTp day
da; dr

9Ty dag
. da, dt

W= | & (96)

by dr

9Ty dbg
dbg dr =0

that, in view of (93), satisfies the g + 1 equations

1.1 1---1
ay---ag by -+ b
. ! “lw=o, 97)
a‘li...a{‘ilb‘ll...bg

where a;, bj, j = 1,---,q are all evaluated at T = 0, in other words they are the
actual endpoints corresponding to the solution (x*, v*). Furthermore, the integrand
in (94) and (95) can be described as follows. We first define

s—aj
|
pis)y = | 5 | 98)
s—b
|
squ
and then
1
B = (W p@) R's) (99)
w1l

Where (-)7 denotes the transpose and all objects are evaluated at 7 = 0. In other
words,

1 & (daj(t) 0Ty 1 dbi(t) 9Ty 1
B(s) = J / R'2(s). (100
(s) ni;( dr Bajs—aj+ dr abjs—bj) (s). (100)
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This function, in view of (94) and (95) satisfies

bj
m/ Bi(s)ds=0, j=1,....q—1, (101)
a

j

aj+1

m/ B(s)ds=0, j=1,....,q—1. (102)
bj

Now, using (100) and expanding (s — ) ! for large s and switching the order of
summations we obtain

B(s) 1

RV2(s)  mis

bﬂg

S

22(@Aﬂ8% @¥%ﬂﬂ3%bg (103)

: dr  da; 4 dr  db; /

Il
o

So, because of (97), and recalling (52) we observe that the behavior of B(s) for s

large is given by
1
B(s) =0 ( 2) . (104)
S

Therefore B can be expressed as
(105)

where Q is a polynomial of degree at most g — 2.
Next, we show that B is identically zero. To prove this, we show that the
following integral is 0.

/ / B(:)B(z)dA . (106)
C

Lemma 4.2 Let C be a positively oriented, piecewise smooth, simple closed curve
in the plane, and let D be the region bounded by C. Let f(x +iy) = u(x,y) +
iv(x, y) be analytic in D. We have

/ / O fyaa=" f F)dz | (107)
D aZ 2 C

where Integration with respect to dz means: parametrize the contour of integration
via 7 = z(t), then

n
/f(Z) dz = / Fz@)Z/ () dt .
]
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Proof We have

//a()dA—//la ,8)( ) +iv(x, y)) dA
Dazfz = D2<8x_18y (u(x,y) +1iv(x, y))
:;//D((ux—i-vy)—i-i(vx—uy)) dA . (108)

Now we apply the Green’s theorem for the vector fields Fi(x,y) =
(—v(x,y),u(x,y)), and Fa(x,y) = (u(x,y),v(x,y)). So this integral equals

1 i / 1 / /
) ygc(—v(x, y),ulx, y)-(x'(2), y (1)) dt+2 fc(u(x, y), v(x, y))-(x'(2), y (1)) dt,
where (x(t), y(¢)) is the parametrization of the curve C. We therefore have
0 1
ff 3 f)dA = ?g (x/(t)[—v(x, ) Fiulx, »1+y' Olu(x, y) +iv(x, y)]) dz,
p 0z 2 Je

=;f(wnw+wmw)Wm—w%»m
C

i
zzﬁf@@. (109)
Defining
Z
u(z) = / B(s)ds , (110)
“+o00
we have
3
B@BE) =, (u(z)B(z)) , (111)

since aaz B(z) = 0. Now, in order to apply Stokes’ theorem to the integral (106),
we have to apply it in two regions, one above the contour of integration I", and one
below the contour of integration I'.



182 M. Bertola et al.

Let D, be a disk of radius r centered at the origin. The max-min contour I' € T

(see Sect. 2.2) divides D, into two parts: Dfr) above I', and Dﬁf) below I"'. We can
write

9 . 9
/ fc B(2)B(z)dA = f f ) (u(z)B(z)) dA = lim / / e (u(z)B(z)) dA
Tim. / / u(z)B(z) dA+rhm / / u(z)B(z)) dA

i i
= _lim % u(z)B(z) dz+ _ lim ?g u(z)B(z) dz ,
£+) 2 r—oo BD'(—)

2 r—o0 Jyp

(112)

where both 3D£+) and 8D§_) are positively oriented. Therefore, due to (104), we

find
_Zi// B(2)B(2) dAZ/ {[u(z)B(z)] — [u(z)B(z)] }dz. (113)
C r + _

The contour I'" is comprised of bands I'[a;, b1, gaps I'(b;, a 1), and the two semi-
infinite contours (I'(—00, a;) from —oo to aj and I'(b,, 00) from b, to +00). First
observe that

o u(2)B)| —|u(@B()| (dz=0, (114)
by + -

since by definition # and B are continuous across the contour from b, to +o0.
Second, note that for z in the contour from —o0 to aj, B(z) is continuous across
I', and so is u(z), since

q b;
us@ —u-@ =) | (Be(s) = B-(5))ds

j=174j

q
= Zyg B(s)ds = y{ B(s)ds =0,
J=17Yi y*

(115)

due to (104), where y; is a clockwise contour encircling the cut I'[a, b;], and y*
is a clockwise contour encircling all cuts. Therefore we also know that

/al {[u(z)B(z)L - [u(z)B(z)]} dz=0. (116)

—00
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So we must consider
bq
/ {[u(z)B(z)]+ - [u(z)B(z)]_} dz . (117)
ay

There are two types of integrals: those across bands and those across gaps.
For z in a band, say I'(a;, b;), the quantity B(z) has a jump discontinuity across
the contour: B4 (z) = —B_(z). So we have

bj bj
/ {[M(Z)B(Z)L—[M(Z)B(z)]i}dz=/ Bi() W@ +u-()dz,  (118)

j j
and u4 4 u_ is the following constant:
9=l g +00
up () +u_(z) = —ZZ/ B(s)ds — 2/ B(s)ds, ze€l(a;,by), (119)
k=j by by

and so we find

/:j {[u(Z)B(Z)]Jr - [u(z)B(Z)]} dz —

1 (120)
q Aj+1 +00 bj
—22[ B(s)ds —2/ B(s)ds / B, (z)dz.
k=j by by aj
Note that
bj bj bj
f Bi(z) dz = / Bi(2)dz = —/ By (z)dz, (121)
aj aj aj
where the last equality follows from (101). Therefore
bj
/ {[M(Z)B(z)] - [u(z)B(z)] }dz =
aj + -
(122)

Aag+1 +00 bj
B(s)ds + 2/ B(s)ds / B (z)dz .
b a

k q J

q—1
23
k=j b
For zina gap,say I'(b;, a 1), the quantity B(z) is continuous across the contour
I', therefore
aj+

f:m {[M(Z)B(Z)L - [“(Z)B(Z)]—] = fh

J

BG) (ua@) —u_(2)dz.  (123)
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and u4 (z) — u—_(z) is the constant:
up(z) —u_(z) = =2 Z f B (s)ds, forallz e T(bj,ajy1) . (124)
k=j+1

We have

/bjj“ {[u(z)B(z)]+ - [u(z)B(z)]_} dz =
- (125)
(—2 Z / B+(s)ds)/" B(z) dz .

k=j+1 bj

Note that from (102) we have

/ " B de = — / " Bz (126)
b b

J J

therefore

/bjj“ {[u(z)B(z)]+ - [u(z)B(z)]} dz =
- (127)
( Z/ B+(s)ds)/" B(z)dz .

k=j+1 bj

Using (122) and (127), we have

by
f {[u(z)B(z)]+—[u(z)B(z)] }dz: (128)
a

q q pt] bj Jj+1
2(22/ B(s)ds)/ B+(z)dz+2( Z/ B+(v)dv)/ B(2)dz .
J=1 \ k=j bk aj k=j+1 j

Note that in (128), a;41 = +00. Reversing orders of summation in the first term on
the r.h.s. of (128), we have

/abq Hu(z)B(z)L - [u(z)B(z)]_} dz = (129)

9 pagy k i+
22/ ‘ lB(s)dsZ/ B+(z)dz+2( Z / B+(s)ds)/ B(z)dz .
k=1" bk j=1"4 j

j=1 k=j+1
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Exchanging indices of summation in the first term on the r.h.s. of (129), we find

/abq {[M(Z)B(Z)L — [u(z)B(z)]} dz =

1

9 pajy J i1
22[ 1B(s)dsZ/ B(z)dz—l—Z( Z / B(s)ds)/ B(z)dz =
j=1"bi k=1 '

k=j+1

=T pajyp 9. rh +00
2y [ / B(s)ds (Z / B(z)dz)] + / B(s)ds (Z / B(z)dz)
j=1L7bj k=1 "% b

q

(130)
So we have proven that
//(C B(z)B(z)dA = 0. (131)
This of course implies that B = 0, and hence by (99) we conclude that
W=0. (132)

Lemma4.3 Leta €{a;,bj, j=1, --- q}, and Ty given by (62). It holds that

Ty

by 20 (133)

Proof We have

V'(z)

—27iy(z) = —h(2)RY*(2) = £'(2) — g (134)

and our assumptions imply that this quantity vanishes like a square root at each
branchpoint «. So we know that

. 1 , V'(z)
zh—I}}x R1/2(Z) (g (Z) - 2 ) #0 . (135)

Using (61) we can write

1 / Vi) 1 V'(s) ds
R12(2) <g ©- 2 ) ~ 4mi fé/* R12(s)ys—z° (136)
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where y* is a negatively oriented contour which encircles both the support set J
and the point z. Taking the limit as z — «, and recalling (135) we find

1 V'(s) ds
0. 137
4mi _(é* RV2(s) s —a 7 (137
Recalling the definition (62) we can write
V'(s) 1 V'(s)
Ty = / 12 ds = ‘(f 12 ds . (138)
J RY7(s) 2 Jyx RYZ(s)

Differentiating with respect to the branchpoint o, we find

T 1 74 d
0 _ 7{ (s) ds ’ (139)
oo 4 J R1/2(s)s —«a
which is nonzero because of (137).
Recalling (96), the above lemma together with (132) imply that
daj dbj .
= =0, forall j=1,2,...,q. (140)
dc =0 de =0
‘We have thus shown that
x(7) =0, (141)
dz =0

which contradicts (83). This proves that the Jacobian (81) is indeed non-zero. We
have thus concluded the proof of Theorem 1.2.

S Openness of the Regular ¢-Cut Regime

5.1 Proof of Theorem 1.3

The end-points a;(t), b;(t) € ft(q) deform continuously with respect to ¢ as shown
in Theorem 1.2, due to nonsingularity of the Jacobian matrix at a regular g-cut point.
Notice that the critical graph of the quadratic differential Q(z; ¢)dz? is intrinsic
to the polynomial Q and does not depend on the particular branch chosen for its
natural parameter 1, (z; t), for example the one chosen in (57). For the purposes of

this proof, for each fixed ¢, unlike our choice in (57), we choose the branch 7, (z; ¢)

(q)

whose branch cut has no intersections with the critical graph ¢#,*’ and we can
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characterize the critical graph of Q(z; ¢)dz? as the totality of solutions to
Nng(z;8) =0. (142)
Recalling (57) with the choice of branch discussed above, notice that

1/2
P

By q
anq(z*;t*)=—n(z*—ze(t l_[ = a;(t) (z* — b)) #0,

0z 1
(143)

where z* € /t(q) {a; (), b;(")}_, does not lie on the branch cut chosen to

define 7. Since z* is not on the branch cut, there is a small neighborhood of z* in

which 7, (z, t*) is analytic. By Cauchy-Riemann equations, from (143) we conclude
a0,

o AN . .
that at least one of the quantities a‘;" (z*; t*) or (z*; t*) isnon zero, z = x+iy.

3
Without loss of generality, let us assume that g
Ny
) (1) £ 0. (144)
X

Now, think of the left hand side of (142) as a map
Rig x,w) :Rx W - R, (145)

where z = x + iy, and an element w € W ~ R*~! represents the variable y and
the real and imaginary parts of the parameters in the external field:

T
w=(y, R, 3, 11, , Rigp_1, Stp—1)

Now, by the real-analytic Implicit Function Theorem [12], we know that there exists
a neighborhood U of

= (y Ry, S 17, R,y Stikpfl)
and a real-analyticmap ¥ : U — R, with
W (w*) = x*
and

Rijy (¥ (w), w) = 0.
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That is to say that for any y in a small enough neighborhood of y* and for any
t= R, 30,00, Rigpo, Stzp,l)T in a small enough neighborhood of ¢*, there
is an x = x(y, t) such that z = x 4 iy lies on the critical graph ft(q). The real-
analyticity of W, in particular, ensures that ft(q)
to ¢. This finishes the proof of Theorem 1.3.

deforms continuously with respect

5.2 Proof of Theorem 1.1

Let us start with the following two lemmas.
Lemma 5.1 The points z;(t), j =1,--- ,r, depend continuously on t.

Proof The right hand side of (80) clearly depends continuously on ¢ (since the ¢-
dependence in R is through the end-points which do depend continuously on ¢). So
the zeros of h(z; t), being z¢(¢) , £ =1, --- , r, depend continuously on £. |

Lemma 5.2 There are no singular finite geodesic polygons with one or two vertices
associated with the quadratic differential Q(z)dz* given by (53).

Proof The proof follows immediately from the Teichmiiller’s lemma and the fact
that Q is a polynomial. O

Now we prove Theorem 1.1. Let £* be a regular g-cut point. We show that
there exists a small enough neighborhood of #* in which all the requirements of
Definition 3.1 hold simultaneously. We prove this in the following two mutually
exclusive cases:

(a) when none of the points z¢(¢*) lie on /t(*q) \ Jt(*q ), and

(b) when one or more of the points z¢(¢*) lie on /t(*q) \ Jt(f ),

Let us first consider the case (a) above. So we are at a regular g-cut point ¢*
where we know that

Ag(t*) #£0, £=1,---,r, (146)
where
Ag(t) :=Nny (ze(8); 1) . (147)
For ¢ > 0, let D, (¢*) denote the open set of all points ¢ such that
R —Nef| <e, and I — S| < &, for k=1,---,2p—1.

Since the functions A, (¢) are continuous functions of ¢, foreach ¢ =1, --- ,r
there exists ¢ > 0 such that for all # € D, (¢*) the inequalities A, (¢) # 0 hold for
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eachf =1,---,r.Lete := min g¢. The claim is that forall t € Q =: QoN D, (t*)

1<t<r
(see the proof of Theorem 1.2 to recall the open set o) all requirements of
Definition 3.1 hold. It is obvious that the second requirement of Definition 3.1
holds by the choice of . Suppose that condition (3) of Definition 3.1 does not
hold for some f € Q. Let K(t*) denote the infinite geodesic polygon which
hosts the complementary contour I'y (b, (¢), +00) as required by condition (3) of
Definition 3.1. Due to Theorem 1.3 this is only possible if

. . . b b . . .
(a-1) one or more points on the boundaries 6(2 *) and Eg *) of the infinite geodesic

polygon K (¢*) continuously deform (as ¢* deforms to 7) to coalesce together
and block the access of a complementary contour from b, to +00, or

(a-ii) if there are one or more humps in K (see Remark 3.3), one or more points
. b b P .

on the boundaries Eg 9 or Eg 9 of the infinite geodesic polygon K (¢*)

continuously deform (as ¢* deforms to #) to coalesce with the hump(s) and

block the access of a complementary contour from b, to +oo. This case

necessitates p > ¢ which ensures the existence of humps as parts of the

critical graph.

Notice that if there are no humps in K, in particular when p = g or p < g which
means there are no humps at all, then the only possibility to block the access from b,
to 400 is what mentioned above in case (a-i). We observe that the case (a-i) above
is actually impossible by Lemma 5.2 as it necessitates a geodesic polygon with two
vertices.

So we just investigate the case (a-ii). Consider a point of coalescence z. Notice
that Z can not be b, itself because for all £ € ¢ there are only three emanating
critical trajectories from b,. At such a point we would have four emanating local
trajectories from z (or a higher even number of emanating local trajectories from
z if more than just two points come together at z) which is an indication that 7
is a critical point of the quadratic differential. This is a contradiction, since z; @),
£ =1,---,r, do not lie on the critical trajectories by the choice of ¢ and hence
Z # z¢4(f). Moreover the quadratic differential 0(z)dz> given by (53) does not have
any critical points other than a;(f), bj(f) and z¢(f), j = 1,--- ,q, £ = 1,--- ,r.
This finishes the proof that condition (3) of Definition 3.1 holds for all £ € Q.
Similar arguments show that the conditions (4) and (5) of Definition 3.1 must also
hold for all £ € €.

Now it only remains to consider the first requirement of Definition 3.1. Assume,
for the sake of arriving at a contradiction that for some ¢ €  there is at least one
index j; = 1, - - - , g for which the first requirement fails. Notice that there could not
be more than one connection by Lemma 5.2. So the only possibility to consider is
that there is no connection between a j, (f) and b i (£). So the three local trajectories
emanating from aj, (f) and b;, (f) must end up at co and can not encounter z¢ (%),
£ =0, ---,r by the choice of . However this is impossible since there are at least
4(g — 1) + 6 rays emanating from the end points and approaching infinity. There are
already 4(p — g) rays ending up at oo from the 2(p — ¢) existing humps. This in
total gives at least4(qg — 1) + 6 +4(p —q) = 4p + 2 directions at co. Recall that we
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can have only 4 p solutions at co. This means we have at least 2 more solutions at co
than what is allowed. This means that at least 2 rays emanating from the endpoints
must connect to one or more humps. But this means we have at least two extra
critical points other than a; (), bj(f) and z¢(f), j = 1,--+ ,q, £ =1, -+, r, which
is a contradiction. This finishes the proof that the first requirement of Definition 3.1
holds for all ¢ € Q. Therefore, for case (a) we have shown that all the requirements
of Definition 3.1 hold simultaneously.

Notice that the proof of case (b) above (when ¢* is a regular g —cut point and
one or more of the points z,(¢*) lie on /t(f) \ Jt(f )) is very similar. To that end, let
1 <m < r — 1 be such that for all indices

{el’...’ﬁm}c{l’...’r}

the points z¢, (t*), 1 < k < m, do not lie on /t(ﬁ) \ Jt(f). For these indices we define
&¢, as above using the functions Ay, in (147).
Now let us consider the rest of the indices

{Em-'rla“'aer}c{la“'ar}

for which the points z¢; ), m+1<j <r,dolieon /t(*q) \ Jt(f). We claim that
there is an ge; > 0, foreachm 4+ 1 < j < r, such that for all ¢ € DSzj (t*), the

point 20 (t) does not lie on J,(q). Indeed, since for each ¢ the set J,(q) is compact,
the distance function

d;(t) = dist (zgj t), J;‘”) = min (12, (1) - z1)

zed!

is well-defined and is a continuous function of # due to Theorem 1.3 and Lemma 5.1.
For the ¢* under consideration we know that d;(¢*) > 0, and by the continuity of
d;, thereis an &, such that for all # in an &¢; -neighborhood of #* we have d;(t) > 0.

Again let ¢ := 1rnein &¢. The claim then is that for all ¢ € 2 all requirements of
=t=r

Definition 3.1 hold. It is obvious that the second requirement of Definition 3.1 holds
by the choice of ¢, and if any other requirement of Definition 3.1 does not hold for
some ¢ € 2, analogous reasoning as provided in case (a) above shows that one gets
a contradiction.

6 Conclusion

In this article we have provided a simple and yet self-contained proof of the open-
ness of the regular g-cut regime when the external field is a complex polynomial
of even degree. We have also proven that the solvability of the g-cut end-point
equations persists in a small enough neighborhood of a regular g-cut point in the
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parameter space. In addition, we have shown that the real and imaginary parts
of the endpoints are real analytic with respect to the real and imaginary parts of
the parameters of the external field, and that the critical graph of the underlying
quadratic differential depends continuously on .

As discussed in the introduction, we could have considered other classes of
admissible contours different from the one associated with the real axis, for the
even degree polynomial (1). Yet, multiple other cases would have arised if one
started with an odd-degree polynomial external field, then considered its classes of
admissible sectors and contours, and finally solved the max-min variational problem
for the collection of contours from that class.!?> However, to that end, even though
we have made the simplifying assumption on fixing the degree of external field to
be even, and our fixed choice of admissible contours, we would like to emphasize
that our arguments presented in this paper still work in the other cases as long as
one considers a single curve going to infinity inside any two admissible sectors.
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Abstract We consider the focusing integrable nonlocal nonlinear Schrodinger
equation

g0 (x, 1) + qxx (v, 1) + 267 (x, DG (=%, 1) = 0

with asymmetric nonzero boundary conditions: g(x,?) — LA A4 g5 x
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the asymptotics of the solution of the initial value problem for this equation as
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1 Introduction

In the present paper we consider the initial value problem for the focusing nonlocal
nonlinear Schrodinger (NNLS) equation (we denote the complex conjugate of g by

)
igr(x, 1) + qux (x, ) +2¢°(x, )G (—x,0) =0, xeR, teR, (1a)
q(x,0) = go(x), x €R, (1b)

with asymmetric nonzero boundary conditions:
—2iA%t
q(x,t) —> *Ae , x — *oo, teR, (Ic)

for some A > 0.

The NNLS Equation

The integrable NNLS equation was obtained by M. Ablowitz and Z. Musslimani as
a nonlocal reduction of the Ablowitz-Kaup-Newell-Segur system [2]. This equation
satisfies the 2.7 -symmetric condition [4], i.e., g(x,t) and g(—x, —t) are its
solutions simultaneously. Thus the NNLS equation is related to the non-Hermitian
quantum mechanics [3, 16]. Also this equation has connections with the theory of
magnetism, because it is gauge equivalent to the complex Landau-Lifshitz equation
[19, 31]. Finally, the NNLS equation is an example of a two-place (Alice-Bob)
system [27, 28], which involves the values of the solution at not neighboring points,
x and —x.

The NNLS equation admits exact solutions with distinctive properties. It has
both bright and dark soliton solutions [36], in contrast to its local counterpart,
the classical nonlinear Schrodinger (NLS) equation. The simplest one-soliton
solution of (la) on zero background has, in general, periodic (in time) point
singularities [2], so the solution becomes unbounded at these points. Different
types of exact solutions with various backgrounds can have such isolated blow-up
points in the (x, ¢) plane. For example, solitons with nonzero boundary conditions
[1, 17,21, 22, 26, 33], rogue waves [39] and breathers [35]. Other important exact
solutions of the NNLS equation are given in, e.g., [29, 30, 38].

Initial Value Problems

The initial value problem (1a)—(1b) with nonzero background ¢ (x, t) — Ael?+(® ag
x — =00 was firstly considered in [1]. It was shown that el?=() remains bounded
as |t| — oo only in two cases: 64(t) — 6_(t) = 0 or 64 (t) — 6_(¢t) = m. Thus

bounded (with respect to #) boundary conditions can be either g (x, t) — Ae?AM g

A2 . .
x| > ocoorg(x,t) — +AeHAY 35 x — +00. The inverse scattering transform
method for problems with these two boundary values was developed in [1], where
it was shown that the two problems have different continuous spectra. Namely, if
2iA%t

q(x,t) - Ae as |x| — oo, the continuous spectrum consists of the real line
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and a vertical band (—iA, 1A), which is reminiscent of the problem for the classical
(local) focusing NLS equation on a symmetric [6] or step-like [8] background. For
q(x,t) — :I:Ae_ZiAzt , X — =00, the continuous spectrum lies on the real line
and has a gap (—A, A), as in the problem for the defocusing NLS equation with
symmetric nonzero boundary conditions [14, 24, 40]. Another interesting feature
of problem (1) is that the boundary functions +Ae~24" are not exact solutions of
the NNLS equation. It is in sharp contrast with the local problems, where for the
well-posedness it is necessary that the boundary conditions satisfy the equation.

Long-Time Asymptotics

The long-time asymptotics for the defocusing NLS equation with nonzero boundary
conditions manifests important nonlinear phenomena, including solitons [9, 37, 40],
rarefaction waves, shock waves, and various plane wave type regions [5, 15, 18, 23,
25]. These developments motivate us to study the asymptotics of problem (1) and
to highlight its qualitative differences with that for the defocusing NLS equation on
a nonzero background, which has a similar spectral picture. We also compare the
long-time asymptotic behavior of (1) to that for the Cauchy problem for (1a) with

boundary conditions g (x, t) — AeziAz’ as x — *o00, which is considered in [32].

Methods

The main technical tool used in this paper is the inverse scattering transform method,
which allows us to express the solution of (1) in terms of the solution of an
associated Riemann—Hilbert problem. The jump matrix of this problem depends
on the parameters (x, t) only via oscillating exponents, so we can apply the Deift
and Zhou nonlinear steepest descent method [10, 13] (see also [11, 12] for its
extensions) to get the asymptotics of the Riemann—Hilbert problem and, therefore,
of the solution g (x, t) of (1).

Organization of the Paper

The article is organized as follows. In Sect. 2 we develop the inverse scattering
transform method for (1) and formulate the basic Riemann—Hilbert problem. We
also get the one-soliton solution by using the Riemann—Hilbert approach. Section
3 contains our main results, Theorems 3.2 and 3.4, on the long-time asymptotic
behavior of g (x, t). More precisely, we present the asymptotics in the “modulated
regions” (|x/4t| > A/2) in Theorem 3.2, and in the central “unmodulated region”
(0 < |x/4t| < A/2) in Theorem 3.4. Finally, we discuss the transition inside the
unmodulated region as £ — 0. Theorem 3.9 presents the large time asymptotics
with x fixed # 0, in which case £ — 0.
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2 Inverse Scattering Transform Method

The inverse scattering transform formalism for problem (1) was first developed in
[1]. Here we perform the direct and inverse analysis in a different way, in particular
we define the inverse transform in terms of an associated Riemann—Hilbert problem
formulated in the complex plane of the spectral parameter k entering the standard
Lax pair equations for the NNLS equation (1a).

2.1 Direct Scattering

The NNLS equation (1a) is the compatibility condition of the following system of
linear equations [2] (the “Lax pair™)

D, +iko3d = U, (2a)

@, +2ik’03d = VO, (2b)

where 03 = ((1) _01) is the third Pauli matrix, ®(x, ¢, k) is a 2 x 2 matrix-valued

function, k € C is the spectral parameter, and U (x, t) and V (x, t, k) are given in
terms of g (x, ¢) as follows:

. 0 q(x,1) o Viix,t) Vip(x,t, k)
U””)_<—a—mn 0 )’ V“”j)‘(wmank)vbux)>’
3)

where Vi1 = —Va = ig(x,)q(—x,1), Via = 2kq(x, 1) +igx(x,1), and Vo1 =
_Zké(_-xv t) + iéx(_xs t)
Assuming that

0 . 0 .
f lg (x, t)+Ae_21A2’| dx < oo and f lg(x,t) — Ae_21A2’|dx < ooforall r >0,
0

—00

we introduce the 2 x 2 matrix-valued functions ¥ (x, ¢, k), j = 1, 2 as the solutions
of the following linear Volterra integral equations (j = 1, 2) where k € R\[—A, A]:

Wi 1, k) = e A0 E (k)
X
+ / Gx,y, 1, YUy, 1) = U)W (y, 1, k)el = B gy,

(-D)ioo

“
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Here U1 () and U;(¢) are the limits of U (x, t) as x — Foo:

Ux,t) — Uj(t), x— (—1)/oo, (5)
where
0 _ Aef2iA2t 0 A672iA2t
Ui =1\ _ A2iA 0 and Ux(t) = A2 . (6

Thekernels Gj(x, y,t, k), j = 1, 2 are defined in terms of functions £; (k), j = 1,2
and f (k) as follows:

Gj(x,y,1,k) = e_iA2m35j (k)e_i(x_y)f(kmgj.’l(k)eiAz"’3, 7)
where
(D7 <w(k) - w<1k>> Wl + 4 ®)
w=(20)"
and
) = (2 =AYz, ©)

Here, the functions f (k) and w(k) are defined for k € C\ [—A, A] as the branches
fixed by the large k asymptotics:

fk)=k+O*™" and wk)=1+0k""), k— oco. (10

We denote by f4 (k) and w (k) the limiting values of the corresponding function
as k approaches (—A, A) (oriented from —A to A) from the left/right side (and
similarly for £;1(k)). In particular, f (k) = ivVA2Z — k2 fork € (—A, A), with
VA2 — k2 > 0. Observe that G(x, y, t, k) is entire with respect to k for all x, y,
and .

Since f(k) is real for k € R\ [—A, A], the integral in (4) converges for such
k. Let QU denote the i-th column of a matrix Q, ct = {k € C| £Imk > 0},
and C* := {k € C | £Imk > 0}. Then we can define ¥/ /(x, 7, k), j = 1,2, and

llll[z] (x,1,k), lllz[l](x, t, k) on the cut (—A, A) as the limiting values from C* and
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C™, respectively (in the following three equations k € (—A, A)):

1 A% ol
Wl 1 k) = e Mgl
X

+ f GG,y . OW(y. 1) — U)W (y, 1, kpe D Mm@ gy

(—=Dioo
(11)
and
WP, 1, k) = e WPk
X
+ / Gi(x, y. 1. YU (v, 1) — U ()W (3, 1, kye 1076 gy,
—00
(12a)
Wil 1k = e el
X
+ / o, y. 1, YU (v 1) — Ua ()WL (3, 1, k)l G50 gy,
+00
(12b)

Moreover, when the solution ¢ (x, r) converges exponentially fast to its boundary
values, we can define \IIL.JJ(x, t,k), j = 1,2, and \Ilﬁg(x, t, k), lllgg(x, t, k) for
k € (—A, A) by integral equations similar to (11) and (12), respectively.

Proposition 2.1 (Properties of W;) Wi (x,t, k) and V2(x, t, k) have the following
properties.

(1) The columns \IJ{”()C, t, k) and \IJ£2] (x,t,k) are analytic for k € CT and
continuous for k € C* \ {£A}, where lIJ][/]()C, t, k) is identified with \Il][.ﬁ(x, t, k),
j=12fork € (—A, A).

\I'{“(x, t, k) and \I'g](x, t, k) have the following behaviors at k = oo and k =
+A:

1

\II{I](X, t, k)= e 1A% <0

) +0k™), k— o0, kecCT,

wlx, 1, k) = A (?) +0*k™Y, k— o0, keCT,

Wil 1, k) = O((k  A)~4), k— +A, keC

W (x,1,k) = O((k F A)74), k— +A, keCT.
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(i1) The columns llJizl(x, t, k) and lIJéll()c, t, k) are analytic for k € C~ and
continuous for k € C~ \ {£A}, where \11{2](x, t, k) and \I'y](x, t, k) are identified
with Wi (x, 1, k) and Wi (x, 1, k) fork € (—A, A).

\11{2] (x,t,k) and \Ilél](x, t, k) have the following behaviors at k = oo and k =
+A:

wlx, 1, k) = A (?) +0*k™Y, k— o0, keC,

will(x, 1, k) = e 4% ((1)) +0*k™"), k— o0, keC,
W 1 k) = O((k £ A)~4), k— +A, keC,
Wil 1, k) = O((k  A)~4), k— +A, keC .

(iii) The functions ®j(x,t, k), j = 1,2 defined by
Dj(x, 1, k) = Wj(x, 1, k)e” WTARIBos - p e R\ [—A, A (13)
are the (Jost) solutions of the Lax pair (2) satisfying the boundary conditions
®(x,1,k) = d¥C(x,1.k) >0, x— (=1)Joo, keR\[-4,A]l, (14
where ®BC (x, 1, k) := e 1AM g (ke (r+2irk) f|)os,

(iv)detW;(x,t,k) = 1fork e R\ [-A, A].
(v) The following symmetry relations hold:

oW (—x, 1, —k) = w(x,1,k), keCh\[-A, A]

oW (—x, 1, k) =Wl (x, 1, k), ke (—A, A),

(15a)
oW (—x, 1, k) = Wil(x, 1,k), keCm\[-A, Al
W (—x, 1, —k) =Wl x, 1, k), ke (-4, A),
and
Wil k) =~ 1, k), ke (-4, A4,
(15b)

W,k = el k), ke (A, A),

where o1 = ((1) (1)) is the first Pauli matrix.
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Moreover, when \Ilyj (x,t, k), j=1,2and lIJEE(x, t, k), \Ilgﬂ(x, t, k) exist (e.g.,
when q(x, t) converges exponentially fast to its boundary values), they satisfy the

following conditions:

Ui e k) = 0Pk, ke (A, A),
(16)

WP k) =Wl k), ke (A, A).
Proof Items (i)—(iii) follow directly from the integral equations (4). Since the matrix
U(x,t) is traceless and det £ (k) = 1, j = 1,2, we get item (iv). Finally, (15a) in

item (v) follows from the symmetries

orU(—x, t)al_1 =-U(x,1t),

a7)
01G1(—x, =y, t,—k)a; ' = Ga(x, y, 1, k), keC,
whereas (15b) and (16) follow from the symmetries
Eiv(k) = (—1)j+115j,(k)02, Jj=12, ke(-A,A), (18)
where 03 = (9 ') is the second Pauli matrix. o

2.2 Spectral Functions

The Jost solutions @1 (x, #, k) and ®»(x, t, k) of the Lax pair (2) are related by a
matrix independent of x and ¢, which allows us to introduce the scattering matrix
S (k) as follows:
Di(x,1,k) = Po(x,1,k)S(k), keR\[-A,A] (19)
or,interms of W;(x,, k), j =1,2,and fork e R\ [-A, A]:
\Ill(.x, t, k) — lllz(x, t, k)ef(ix+2il‘k)f(k)(73S(k)e(ix+2itk)f(k)(73‘ (20)

From the symmetry relations (15a) it follows that S(k) can be written as

_ (a1k) —b(~k) ~
Sk) = (b(k) w0 ) , keR\[-A,A] 21

Note that due to the Schwarz symmetry breaking for the solutions W¥;(x,t, k),
j = 1,2, see (15a), the values of a1 (k) for k € CT and a(k) for k € C™ are, in
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general, not related. In particular, this implies that a1 (k) and a» (k) can have different
numbers of zeros in the corresponding complex half-planes.

Relation (20) implies that aj(k), a2(k), and b(k) can be found in terms of the
initial data alone via the following determinants:

ar(k) = det(w1'0,0,0), ¥170,0,%)),  keCt\[-A4,A], (22a)
ax(k) = det(W1'(0,0,0), ¥170,0,%)),  keC\[-A4,A], (22b)
bk) = det(w}(0,0,0), ¥l'(0,0,k),  keR\[-A4,Al (22¢)

From (22) and Proposition 2.1 (i) and (ii) we conclude that a;(k), j = 1, 2, and
b(k) have the following large k behaviors:

aitk)=140G(™"), keCt, k— oo,
wmk)=1+0G(™"), keC, k— oo,
bk) = Ok, keR, k— oo.

Defining a4 (k) and ay_(k) for k € (—A, A) as the limits of a1 (k) and az(k)
from CT and C™, respectively, we have

a4 (k) = det(w}!)(0,0. 6, (0,0, 0). ke (-A, A,
(23)

ar— (k) = det(Wh1(0,0, 6), w71(0,0,6))., ke (=A, A).

Moreover, when the initial data go(x) converges exponentially fast to its boundary
values, we can define aj_(k), axy(k), and b4 (k) for k € (—A, A) by taking the
corresponding limits in (22):

a1 (k) = det(w{1(0, 0, k), W}1(0.0. b)), ke (-4, 4), (24a)
ar (k) = det(W51)0,0, k), w17(0,0, k), ke (—A, A), (24b)
by (k) = det(w1 (0,0, k), w1 0,0,0), ke (-4, A). (24c¢)

The symmetry relations (15) yield the following symmetries of the spectral func-
tions:

ai(—k) = ai(k), keCr\[-A, Al
i (25)
ar(—k) = ax(k), k€ C™\[-A, Al
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whereas (16) implies that
ars(k) = —ars(k) and bi(k) = —bx(—k), ke (A, A). (26)

From Proposition 2.1 (iv), (13), and (19) it follows that a; (k), a2(k), and b (k) satisfy
the determinant relations:

ai(k)ax(k) + b(k)b(—k) =1, k e R\ [-A, A],
(27)
ai+(k)ax+ (k) + b+ (k)b+(—k) =1, k € (=A, A).
Finally, we point out that a; (k), a2(k), and b(k) are O((k F A)_é) ask —> +A.
Proposition 2.2 (Pure Step Initial Data) Consider problem (1) with initial data

A, x > R,
qo(x) = qo,r(x) = (28)
—A, x <R,
for some A > 0 and R € R. Introduce
hk) = (K2 + A%)2, (29)

which is defined in C\ [—iA, iA] and is fixed by the asymptotics h(k) = k+O(k~")
as k — oo. Define

A =i(f() + (=) hk)), j=1,2. (30)

Then the spectral functions associated with this problem have the following form,
according to the sign of R € R:

(i) For R > 0,
_ 1 2R 42 | 20 (R (42 4
al(k)_zf(k)h(k)(e HOR (A% +ikay (k) — 2O (A% + ikn (K))),
(31a)
_ 1 20 ()R 42 _ : 20 OR (42 -
a(k) = 2 F ) (e 2 OR(A% — ik (k) — e M BIR(A% —ikaz(K))),
(31b)
b= (" OR (h(k) + k) + e " OR (k) — k)). Gle)

2f (k)h(k)
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(ii) For R =0,
(k) (k) ) b(k) 4 (32)
a =a = s = .
P (k)
(iii) For R < O,
_ 1 20 (k)R (42 _ 20 (R (A2
ai(k) = 2 FOhK) (e 2 (A 1kA1(k)) e M (A 1kk2(k))),
(33a)
_ 2MUOR (42 o _ A20(R (42 4 -
ar(k) = 2 £ ) (eMOR(A% +ikaz (k) — e 2R (A% + ik (K))),
(33b)
_ A 2ih(k)R —2ih(k)R _
bk) = 2 F ) (e (h(k) + k) +e (h(k) — k). (33c)
Proof See section “Appendix: Proof of Proposition 2.2” in Appendix. O

Remark 2.3 Note that for any R € R, a(k), ax(k), and b(k) have no jump across
[—1A,iA]. Also, if we take the limits R — =0 in the expressions of the spectral
functions for R > 0 and R < 0, we arrive at (32).

Remark 2.4 The NNLS equation is not translation invariant. Therefore, shifting the
initial data by a constant value can drastically affect the behavior of the solution
[34]. Formulas (31)—(33) illustrate this in terms of the spectral functions in the case
of pure step initial data (28).

The scattering map associates to go(x)

(i) the spectral functions b(k) and a;(k), j =1, 2,
(ii) the discrete data, which are the zeros of a;(k), j = 1,2 and the associated
norming constants.

In studying initial value problems for integrable nonlinear PDEs, the assumptions
about these zeros usually rely on properties of the discrete spectrum associated with
step-like initial data involving prescribed boundary values, like (1c) (see, e.g., [7, 8,
23, 25, 34]). Alternatively, the discrete spectrum can be added to the formulation of
the associated Riemann—Hilbert problem for studying the evolution of more general
initial data, which includes solitons [9, 37, 40].

In the present paper we consider initial data which are characterized in spectral
terms and which are motivated by the pure step initial data with R = 0. Namely, we
make the following assumptions.
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Assumptions 2.5 (On the Zeros of the Spectral Functions ¢ (k) and a>(k)) We
assume that

(A1) ai(k) and ax(k) do not have zeros in CT \ (—A, A) and C~ \ (—A, A),
respectively;
(A2) fork € (—A, A), both aj4 (k) and ap_ (k) have a simple zero at k = 0, i.e.,

a4 (k) = aiok + O(k»), k— 0, aip#0,

(34)
ar— (k) = axok + O(k*), k — 0, ax #0.
Then from (26) and (25) it follows that
ayp) = —ajo and Re ajp = 0. (35)

2.3 Riemann—Hilbert Problem

Taking into account the analytical properties of the columns of the matrices
W;(x,1,k), j =1,2 (see Proposition 2.1(i) and (ii)), we define the 2 x 2 sectionally
holomorphic matrix M (x, ¢, k) as follows:

. \I—’[” k
elA2t173( 1 (.1, )7 lllgz](x, t, k)), k e C-l-,

ay (k)
Wi ,k)
aa (k)

M(x,t, k) = (36)

eiAzms(wg“(x, 1 k), ) keC.
By Assumptions 2.5, a1 (k) and az (k) have no zeros in the corresponding half-planes
and thus the matrix M (x, ¢, k) does not have poles in C \ R. From the scattering
relation (20), the symmetries (15b), and the relations (26) it follows that M (x, ¢, k)
satisfies a multiplicative jump condition:

Mi(x,t,k)=M_(x,t,k)J(x,t, k), keR. (37a)

Here and below My (-, -,k) and M_(-, -, k) denote the nontangental limits of
M(-, -, k) as k approaches the contour from the left and right sides, respectively
(here, the real line R is oriented from —oo to +00). The jump matrix J(x, ¢, k) has
the following form:

JGx,t, k) =

1+ rik)r (k) rz(k)ef(2ix+4itk) (k)
(37b)

r (k)e(Zix+4itk)f(k) 1

), ke R\[-A, A],

—ioy, ke (—A, A),
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with the reflection coefficients

_ O ra(k) = b(=k)

k) : —
= e a k)’

keR\[—A, Al (37¢)

Remark 2.6 If b(k) can be analytically continued into a band containing R, we can
also define r;(k), j = 1,2 in this band. Then in view of (26), r1+ (k) = r2x(k) and
therefore 1+-r1 (k)r2 (k) does not have a jump across (—A, A). From the determinant
relation (27) it follows that 1 + rq(k)ry (k) = al_l(k)az_l(k), so 1 4+ ri(k)ra(k) can
have simple zeros at k = +A. This takes place, e.g., for pure step initial data (28)
(see [25, Section 3)).

In view of Proposition 2.1 (i) and (ii), and Assumptions 2.5, M (x, ¢, k) has weak
singularities at k = +A:

M(x,t,k) =O((k + A)"4), k — FA. (38)
Also it has the normalization condition for large k:
M, t,k)=1+0G( ", k— oo, (39)

where [ is the identity matrix. Finally, M (x, ¢, k) satisfies the following conditions
atk =0:

lim kMU, 1 k) = 7T e 2 P x 1, 0), (40a)
k=0, aio

keC*

lim kM e 1,0 = 7 e mlix, 1,0, (40b)
k—0, ango

keC™

where a0 and aso were introduced in (34), and y+ are defined as follows:
oM, 1,00 = 300 (x, 1,00 and @ (x,7,0) = y_ @} (x,1,0).

From (15b) and (15a) one concludes that yy = y_ and |y4+| = 1.

Remark 2.7 1f b(k) can be analytically continued into a band, the norming constants
y+ can be found in terms of b(k) as follows: y1 = b4 (0) and y— = —b_(0).

Thus we arrive at the following basic Riemann—Hilbert (RH) problem:
Basic RH problem Find a sectionally analytic 2 x 2 matrix M (x, ¢, k), which

(i) satisfies the jump condition (37) across the real axis,
(i1) has weak singularities (38) at k = A,
(iii) converges to the identity matrix as k — oo,
(iv) and satisfies the singularity conditions (40) at k = 0.



206 A. Boutet de Monvel et al.

Using standard arguments based on Liouville’s theorem, it can be shown that the
solution of this RH problem is unique, if it exists.

The solution g (x, t) of the initial value problem (1) can be found from the large
k expansion of the solution M (x, ¢, k) of the basic RH problem (follows from (2a)):

g(x, 1) = 2ie 2% lim KMoy 1. ),
* (41)

g(—x,1) = —2ie 24 lim kMa (x, 1, k).
k—o00
Thus both g (x, ¢) and g (—x, ) can be found from M (x, ¢, k) evaluated for x > 0.

Remark 2.8 Since the jump matrix J(x, t, k) satisfies the condition

o1J (—x,t,—k)o; ' = (“Zék) ? )J(x,t,k) (‘“(()k) ? ) keR\ {+A},
as (k) ay (k)

(42)

the solution M (x, t, k) of the basic RH problem satisfies the following symmetry
conditions (see [33, (2.55)]):

1
- 0
o M(—x,t, —k)ol_l (‘“(k) ) , keCT,

M(x, 1, k) = O(k)al(()k) (43)
o M(—x,t, —Ig)ofl <a2 1 ) , keC .
az (k)

2.4 One-Soliton Solution

The one-soliton solution of the focusing NNLS equation satisfying boundary
conditions (1c) was obtained in [22, Section 4], by using the Darboux transformation
and in [1, Section 3] via the inverse scattering transform method. Here we rederive
this soliton solution using the Riemann—Hilbert approach. Consider the basic RH
problem in the reflectionless case, i.e., with r1 (k) = r2(k) = 0:

M (x, 1, k) = =M (x, 1, K)oz, k € (A, A), (442)
M501(x, t k) =1+ O(kfl)’ k — o0, (44b)

sol _ -1
M (x,1,k) = O((k F A)~4), k — +A, (44c)
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and with conditions at k = 0 of type (40):

khn(} k(MSOl)[l](.x, t, k) — d() e—ZAX(MSOI)E](x’ t, 0)’ (453)
kec¥
Jim kMBI, 1K) = —do e A () (x, 1,0, (45b)
keC™

for some dyp = th), with |y4| = 1.

In the reflectionless case, the spectral functions a (k) and ax(k) are as follows
(see the trace formula in [1, Section 3]):

k k) —iA k k) +iA
ay = FTIO T ey = F T (46)
k+ f(k) +iA k+ f(k)—iA
From (46) we have a1 = — ;A (see (34)), which implies that
do = 2Ae'®  with some ¢ € R. (47)

The jump and singularity conditions (44a) and (45) imply that the solution of the
RH problem above can be written in the form

M (x, 1, k) = N(x,1,k)E(k), k eC\{£A,0}, (48)

where & (k) is defined in (8) and N (x, ¢, k) = I+ ™! (kx’t) with some matrix Ny (x, ).
On the other hand, conditions (45) imply that M (x, t, k) can be written as follows:

My(x,t,k) =
a(x,t) 0 doe™24% 1 >\ (1/k 0
( 0 ﬁ(x,t)) ((derAx 1) + P(x,t)k + O(k )> < 0 1) , k—0,
(49)

with some scalars «(x, t), B(x, t), and a matrix-valued function P (x, t). Then, using
the relation N (x, t, k) = M\ (x, 1, k)c‘:z_l(k) and

U BV I ik (—11 >
e 0= ) (—1 1)+2~/2A (—1—1>+O(k bkl C0

we conclude that o, 8, and N; are independent of . Moreover,

Ni(x) = doe 24 (28 8) £, (0)

V2A
DA +idge2Ax"

(51)
with a(x) = —8(x) =



208 A. Boutet de Monvel et al.

Thus M*°!(x, 1, k) is independent of ¢ and has the form

M\, 1 k) = (1 n “]({x) (‘11 _11)) & (k) (52)

with u(x) = ) /?ff;;f; A - Finally, using (41) and the notation ¢ from (47), we
obtain the exact one-soliton solution as follows (see [1, (3.106)] and [22, (17)]):

) 2je—2Ax+igo
g(x, 1) = Ae~2iA% <1 - e )

1+ ie—2Ax+igo

= Ae 24 tanh(Ax — ido/2 — int/4). (53)

3 Long-Time Asymptotic Analysis

3.1 Signature Table
Introduce the phase function 6 (k, &) as follows:

O(k,&) =4&f (k) +2kf(k), &= :t' 54)
As noticed above, we can consider £ > 0 only. In terms of 0 (k, &), the exponentials
in (37b) have the form g2itf(k.8) o e~ 2it0(k.8) and the following transformations of
the basic RH problem are guided by the signature structure of Im 6 (k, £).
Since 0(k, &) = 2k*> + 4&k + O(1) as k — oo, the large k behavior of the
signature table for Im 6 (k, £) is the same as for Im(4&k +2k2). Though the equation
di@(k, &) = 0 has two zeros for all £ > 0:

1 1
ki@ =-, (S+\/52+2A2> and  ka(§) = —, (E—\/$2~|—2A2>,
(55)

the signature table of Im 6 (k, &) involves k1 (&) only, see Figs. 1 and 2. Namely, one
can distinguish two cases:

(1) & € (A/2,+00). In this case, the signature table of Im6(k, &) is as in Fig. 1.
The curves separating the domains where Im6(k,§) > 0 and ImO(k,&) < O
intersect at k = k1 (§).

(2) &€ € (0,A/2). In this case, the signature table of Im6(k, §) is as in Fig.2.
The curves separating the domains where Im0(k,§) > 0 and Im0(k,&) < O
intersect at k = —2&. This is because of

ImOy(k, &) = £2(28 + k)VE2 — A2, ke (—A, A). (56)
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Imb <0 : Im6 > 0
—4 Q . R

k1 = ks

Imé@ >0 Im# <0

Fig. 1 Signature table of Im 6 (k, &) in the modulated wave region & > A/2.

Im6@ <0 Imé& >0
A4 ¢ 0 . 4 R
k1 = )
Im6 >0 ImfO <0

Fig. 2 Signature table of Im 6 (k, &) in the central region 0 < & < A/2.
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3.2 Modulated Regions |&| € (A/2, o0)

Taking into account the signature structure of Im0(k, &) for —§ € (—oo0, —A/2)
(see Fig. 1), we will use two different triangular factorizations of the jump matrix
J(x,t,k)fork e R\ [-A, A] (cf. [10, 25, 32]):

1 0 ro(k)e—2it6
Jx, 1, k) =, kedie T+ ri®r ) (1) 1 Itri(k)rak) ] |
1 1 0 1+r (k 0 1
+r1(k)ra(k) +ri(k)ra(k)

k € (—o0, k1),
(57a)

and

—2it6
TGt k) = ((1) r2(k)1e ) (rl(k)lezitg ?) , ke(k,—A)U(A, 00). (57b)

For getting rid of the diagonal factor in (57a), we introduce the scalar function
8(k, k1) as the solution of the following RH problem:
8y (k, k1) =68 (k, ki)(1 +ri(k)ra(k)), k€ (=00, k1),

(58)
Sk, ki) = 1, k — oo.

The jump function 1 + r1(k)rp(k) in (58) is, in general, complex-valued for k €
(—o00, k1), which is an important difference comparing with the problems for the
local equations, where it is real [7, 8, 13, 25]. The nonzero imaginary part of 1 4
r1(k)ra(k) is responsible for the singularity (or zero, depending on the sign) of § at
the endpoint k = k1, which follows from the integral representation for § (k, k1) (cf.
[32]):

k
8(k,k1)=exp{21,/l In(1 + r1(£)r2(¢)) d;}. (59)
i J o ¢ —k

Integrating by parts one concludes that
8k, k1) = (k — kM ex ), (60)

where

1 [k
x(k, k) = —2711/ In(k — &)dIn(l +r1(r2(£)), (61)

1
v(ky) = o In(1 + 1 (k1)r2(k1))
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| .
=~ Infl+rik)rk)| - U AGk). (62)
T 27
ki
Atky) = / darg(1 + r1()ra(0)). (63)

To obtain the asymptotics in the modulated regions (see Theorem 3.2 below) we
need an additional assumption on the spectral functions (cf. [32]):

Assumption 3.1 (On the Spectral Functions r; and r,)

k
/ darg(l +r1($)r2(¢)) € (—m, ), forall ke (—oo0, —A). (64)

This implies that [Imv(ky)| < é and, consequently, §°3(k, k1) has a square
integrable singularity at k = k.
3.2.1 1st Transformation
Using the function §(k, k1) we make the following transformation of M (x, ¢, k):
MY (x,t, k)= M(x,t,k)8 " (k, k1), keC\R. (65)

Then M (x, t, k) solves the following RH problem:

MO, =MD, kIO, k), ke R\ {£A), (66a)

MO (x,t,k)y=1+0k™), k — oo, (66b)
(1) _ -

M (x,t,k)_O((k:I:A) 4), k— TA, (66¢)

(k — k)P (k — k)™

(Y] =
M (x,1,k) = O <(/< — k)P (k —kp)~P

) . k> ki, pe(=1/2,1)2),
(66d)
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where the jump matrix J((x, ¢, k) has the form

J —
2
1 0 1 rz(k)5+(k,k1)efzit9
141 (k)ra (k) _
082k k1) e | (() r| rzl , k € (—o0, ky),
171 (kyra (k) ©
1 ra(k)82(k, ky)e 210 1 0
r2(k)5°(k. kn)e ) ket —A) U (A, ),
0 1 r1 (k)8 2(k, kp)e?? 1
0 —82(k, k
(k. k) ke (A, A).
8§ 2(k, k1) 0
(67)
Moreover, M m(x, t, k) satisfies singularity conditions at k = 0:
lim k(M(l))m(x tkhy= Ut e2Ax (M(l))m (x.1.0) (682)
k—0, T a1082(0,k1) + T
keCt
2] _82(0, k (1
lim k(M<”) ot dy = 7O OKD aax (M<1>) (x,1,0). (68b)
k—0, ano -
keC™

3.2.2 2nd Transformation

Now we are able to get off the real axis and to obtain a RH problem which can be
approximated, as t — +00, by an exactly solvable problem. We assume that the
reflection coefficients r;(k), j = 1,2 can be continued into a band containing the
real axis (this takes place, for example, when go(x) converges exponentially fast to

its boundary values).

Define M@ (x, t, k) as follows (compare with M® in [32] and M in [25]):

1 28k k) o —2ir6
Itr1(k)ra(k) , ke Qi
0 1
1 0 R
, k€S
—r1 (k)82 (k, ke 1
M(z) — M(l) X 1 k 82 k. k —2it6 R
ra(k)8=(k, k1)e ke On
0 1
! 0 k e Sus
s 2kkn 26 |0 €
L+ri(K)ra (k) R
1, k € Qo,
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Fig. 3 Modulated wave region: contour = 91 U---U yy and domains 9 o J=0,..., 4.

where f2j, j =0,...,4 are displayed in Fig. 3. Let I = U‘}zl)?j be the contour
also shown in Fig. 3. Then M (x, t, k) solves the following RH problem:

MP @, 1,0 = MP (1, k)P (x,1,k), kel U(-A4,A), (69a)
MP(x,t,k)y=1+0k™"), k — oo, (69b)
M@ (x, 1, k) =o((kiA)—i), k— TA, (69¢)

(k — k)P (k — k)~

(2) =
M1k =0 (<k — k) (k= k)P

) . k> ki, pe(=1/2,1)2),
(69d)

where, using the relations rj4 (k) = rp5(k) and 0 (k) = —0_(k) fork € (—A, A),
one finds that

( 0 —8%(k k)

), k € (—A, A);
872 (k, k1) 0

1+r1(k)r2(k) k€

0

JO — ( O) ke (70)

rz(k)5 (k,ky) —21t0>

ri(k)8~ 2(k kp)e?? 1
1 —ra (k)82 (k, kl)e2"9>
0 9

0 "
(rl(k)5 2(k k1) 2ir6 1) ke s

L+r(k)ra(k)

k € p3;
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Using the equalities 1 (k) = ** 4+ 0(1) as k — O withk € CT, 6,(0, ) = iA*,

ayok
and y4 = by (0) (see Remark 2.7), direct calculations show that M Q(x,t, k) =
O(l)ask — 0,k € Q. Similarly, it can be shown that M® (x, 1, k) = O(1) as
k— 0,k € 523. Thus the RH problem for M @ in contrast to that for M), does
not involve any singularity conditions at k = 0.

In view of the signature table of Im6&(k, &) (see Fig.1), the jump matrix
JP(x,t, k) decays to the identity matrix for k € r, uniformly outside any
neighborhood of the stationary phase point kK = k;. Arguing as, e.g., in [32, Section
3.2], we eliminate é(k, &) in the jump for k € (—A, A) by introducing the scalar
function

f(k)/ Iné(Z, k1) }
F(k, ki) = d k —A, Al 71
(k, ki) = eXP{ W O — ) ¢r, keC\[-A, A] (71

This function F (k, k1) satisfies the jump condition
Fy(k ki)F-(k, ki) = 8*(k, k1), k€ (—A, A), (72)

and is bounded at k = +A. In order to recover ¢ (x, t) from the solution of the RH
problem, we need the large k asymptotics of F(k, k):

F(k, k) = e™>®) L o), &k — oo,

1[4 I8, k1) (73)
Foo(ky) = — de.
ky=-_ [A o ©

Substituting (59) into Fi, (k1), we have that

1 A 1 Ko |1 + ri(s)ra(s)]
ReFoo(kl)z—znz/A\/Az (/ -t s)d;, (74a)

mmFaty=— L [* ! TAG 4 74b

where A(s) is given by (63) and \/A2 — ¢2 > 0.

3.2.3 3rd Transformation
Using F(k, k1), we define M3 (x, 1, k) as follows:

M (x, 1, k) = e FoolkDos pr @ (x ¢ )VFO3 (k, k1), k € C\{I"U[-A, A]}.
(75)
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Then M@ satisfies the following RH problem with constant jump across (—A, A):

MOt k)= MO, 1, 0T P, 1, k), ke PU(=A4, A), (76a)
M (x,t,k)y=1+0k", k — oo, (76b)
M (x, 1, k) =0((kiA)—i), k — FA, (76¢)

(k — k)P (k —k))=?

©) =
MY (x,t,k)=0 <(k — k)P (k—k)~?

), k— ki, pe(=1/2,1/2),
(76d)

with

_10—27 k € (_AaA)’

. 17
F=o(k, ki))J P (x, 1, k)Fo (k, k1), kel.

I, 1, k) = {

Since F(k, k1) is bounded at k = 0, we have M® (x, 7, k) = O(1) as k — 0. Thus,
similarly to the RH problem for M®, the RH problem for M does not involve
any singularity conditions at k = 0.

The solution g (x, t) of the Cauchy problem (1) can be expressed in terms of
M(3)(x, t, k) as follows:

q(x, 1) = 2ie” 2AH2AFlk) Jim kD x, 1, k), x>0, (78a)
k—00
q(x,t) = _2je—AAM+2iFso(ki) klim kMS)(—x, t,k), x<0. (78b)
—00

3.2.4 Model RH Problem

Arguing as in [32], the RH problem for M can be approximated by a model RH
problem whose contour is (—A, A) and whose jump matrix is constant. Using (78),
we are able to obtain an asymptotics of g (x, ¢) including at least the first decaying
term [32]. For the sake of brevity, we present here, in Theorem 3.2 below, the leading
(non-decaying) terms only.

Theorem 3.2 (Modulated Regions |£| > A/2) Assume that the initial data qo(x)
approaches its boundary values (1c) exponentially fast and that the associated
spectral functions aj(k) and rj(k), j = 1,2 satisfy Assumptions 2.5 and 3.1,
respectively.
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Then the solution q(x, t) of problem (1) has the following long-time asymptotics
along the rays & = |, = const, uniformly in any compact subset of {§¢ € R : |§| €
(A/2, +00)}:

Ae—21m Faolki (§1)e21(A% —Re Fos 1 (ED) 4 E(x, 1), & > A/2,

1) =
GO0 =4 ol Fag k1 (D) g~ 20(A%—Re P (€1)) L E(D), E<—A)2,

(79)

where k1 and Fx (k1) are defined by (55) and (74), respectively, and with error
terms E(x, 1) = O(¢— 2~ mv®i(ED) 4 ;=3 +m vk (D))

Remark 3.3 In contrast to the plane wave regions for problems for the defocusing
NLS equation [5, 15, 23, 25], the modulus of the main term in (79) depends on the
direction &. Notice that the absolute value of the main term of the asymptotics in the
plane wave regions [32] and the so-called “modulated constant” regions [33, 34] in
problems for the NNLS equation with nonzero symmetric and step-like boundary
conditions also depends on the direction &.

3.3 Central Region (1&] € (0, A/2))

For this region, in contrast to the modulated regions (see Sect. 3.2), the sign-
changing critical point k = —2£ lies on the cut (—A, A) (see Fig.2). Since
ImO(k, &) does not vanish on the cut (£Im6,(k,&) < O for k € (—A, =2§)
and £Im64(k,&) > 0 for k € (—2&, A)), we are able to obtain the asymptotics
with exponential precision (see [23] and [25, Section 5.5]). Moreover, no additional
conditions on the winding of the argument are needed, because in the central region
there is no need to deal with a model problem on the cross.

3.3.1 1st Transformation

The first transformation is similar to that in the modulated region, but with § (k, —A)
instead of §(k, k1) (cf. (65)):

MWD (x,1,k) = M(x,1,k)§ %k, —A), keC\R. (80)

Then M m(x, t, k) solves a RH problem similar to that in the modulated regions,
but with, in general, a strong singularity at k = —A. The form of this singularity
depends on whether the quantity 1 + rj(—A)ra(—A) is equal to zero or not
(see Remark 2.6). Here we only consider the most complicated case, when 1 +
ri(—A)r(—A) =0.
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Using the results of [20, Sections 8.1 and 8.5] about the behavior of Cauchy-type
integrals at the end points and the relation In(—A) = In A + iw, we have that

1 AmeH 1 1
f de=_ InA-Ink+A)+  In*(k4+A)+D_sk), (81)
271 J_ oo ¢ — K 2mi 4mi

where ®_ 4 (k) is analytic in a neighborhood of k = —A. Since

—_A —A A
f darg<1+r1<;)rz(z>)=f dargflr (14 1))

—0o0 —0o0

and In?(k + A) = In? |k + A| +arg?(k + A) + 2iarg(k + A) - In(k + A), we obtain
the following behavior of §(k, —A) atk = —A:

S(k, —A) = (k + A)2x ACA+agkt sy, (82)

where A(—A) is given by (63) and §_4 (k) is bounded at k = —A. Then MV has
the following behavior at k = —A:

k= —A.  (83)

(k—i—A)‘zln (A(—A)+arg(k+A))—j (k+A)2ln (A(=A)+arg(k+A))—

4;._. A

(e8] _
M"Y (x,t,k) _O((k+A) (A=A targ(k+A)) - (k+A)2n(A( A)+arg(k+A))—

3.3.2 2nd Transformation

Further, we define M@ (x, t, k) as in Sect. 3.2.2 for the modulated wave case, but
with domains € j»J = 0,...,4 displayed in Fig. 4. In that case (see Fig.4) the
points of intersection k1 and k2 of the real axis with p; and y4, then with p, and 3
are simply chosen such that —A < k1 < =2 < kz < 0. Since 1 + r1(k)r2(k) has a
simple zero at k = —A, choosing arg(k + A) € (2r, 37) for k € CT in the second
column of MV as k — —A and arg(k + A) € (=3, —2x) for k € C~ in the first
column of MV as k — —A (see (83)) we obtain the behavior (83) for M® with
arg(k + A) € (— T, 7). Moreover, similarly to Sect. 3.2, k = 0 lies on the boundary
of the domains Qz and S23 and thus M® (x,t, k) turns to be bounded at k = 0 as
well.
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Fig. 4 Central region: contour /" = P, U - - - U 34 and domains ij, j=0,..., 4.

3.3.3 3rd Transformation

We define M (x, ¢, k) as in Sect. 3.2.3, but with F(k, —A) instead of F(k, k;).
From (82) and [20, Section 8.6] we conclude that F(k, —A) behaves at k = —A as
follows:

Fk, —A) = (k + Ay Attt By, (84)

where F_4 (k) is bounded at k = — A. Therefore, M (x, ¢, k) = O((k + A)*zlt) as
k — —A. The jump matrix J® associated with M® is defined similarly to (77),
with F(k, k1) replaced by F(k, —A) and with the contour I" displayed in Fig. 4.

3.3.4 Model RH Problem

Taking into account that J® (x, ¢, k), k € I (see Fig. 4) approaches exponentially
fast the identity matrix (as ¢+ — +00), uniformly with respect to k € I", we arrive at
the following asymptotics for g (£x, ¢):

q(x,t) = 2je2iA%+2iFoo(—A) klim kMﬁOd(k) +0@e™ ), x>0,t— +oo,
— 00
(85a)

G(—x, 1) = —2ie HA%H2iF(=4) klim kM (k) +0(e™ ), x>0, t —> 400,
—00

(85b)
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with some ¢ > 0, and where Mm"d(k) is analytic in C \ [—A, A] and solves the
following RH problem with constant jump matrix across the contour (—A, A):

MTk) = —iM™(K)or, k€ (—A, A), (86a)
M™%k =1 +0k™"), k — o0, (86b)
M™4 (k) = 0 ((k + A)—i> . k> TFA. (86¢)

From (18) it follows that M™4(k) = & (k). Combining this with (85), we arrive at

Theorem 3.4 (Unmodulated Regions 0 < |£] < A/2) Assume that the initial
data qo(x) approaches exponentially fast its boundary values (1c) and that the
associated spectral functions a;(k), j = 1, 2 satisfy Assumptions 2.5.

Then the solution q(x, t) of problem (1) has the following long-time asymptotics
along the rays & =, = const, uniformly in any compact subset of {§¢ € R : |§| €
0, A/2):

AefZImFoo(fA)efZi(AztfReFoo(fA))_i_o(efct)’ 0<&<A/2,
_AeZImFOO(fA)efﬁ(AztfRe Foo(=A)) 4 O™, —A/2<E <0,
(87

q(x,t) =

with some ¢ > 0 independent of §. Here Foo(—A) is given by (74) with k1 = —A.

Remark 3.5 The asymptotics in the central (unmodulated) regions is established
without additional restrictions on the winding of the argument of the spectral data
(cf. Theorem 3.2 and, e.g., [32, 34]). To the best of our knowledge, it is the first
discovered zone for nonlocal integrable equations where the asymptotics of the
solution does not depend on the behavior of the argument of a dedicated spectral
function.

Remark 3.6 The asymptotics of g(x, ) for £ € (—A/2,0) and & € (0, A/2) does
not depend on the direction £. However, both |g (x, #)| and arg ¢ (x, ¢) depend on the
initial data through Foo (—A).

The central region can be compared with the central plateau zone for the
defocusing NLS equation, where the asymptotics is also obtained with exponential
precision, but the modulus of the solution does not depend on the initial data
[5, 15,23, 25].

Remark 3.7 Since kl(‘g) = —A, the main terms in the unmodulated regions, see
(87), match those in the modulated regions (see (79)) at £ = £ /;‘.
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Remark 3.8 The asymptotic formulas (87) do not match as & — +0. However, in
the central region, the solution g (x, #) can approach a tanh-like function as t — 400
(see Theorem 3.9 below).

3.4 Transitionaté =0

In this section we analyse the asymptotics of the solution as £ — 0. For this, we
consider (x, t) with x = xo > 0 fixed and t — 400.

3.4.1 First Transformations

We perform three transformations of the basic RH problem similar to those made in
Sect. 3.3. However, since £ — +0, we choose the contour r (see Fig. 5) such that its
points of intersection /21 and 122 with the real axis satisfy —A < /21 <0< /22 < A.

In contrast to the cases presented in Sects. 3.2 and 3.3, now the point £k = 0 lies
on the boundary of on. It follows that the RH problems for both M @ (x,t,k) and
M® (x,t, k) involve singularity conditions at k = 0; particularly, these conditions
for M@ read as follows:

_n 0Ny,

. 31\ [1] 3 [2]
khﬁn&k(M( ) (x,t,k)_amSz(O,_A)e (M ), (x,1,0), (88a)
keCt

_ 520, —A
lim k(M) k) = 7 ( )e*2AX(M<3>)E'(x,t,0). (88b)
/'ETcO’ ax F2(0, —A)
0
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3.4.2 Model RH Problem

The solution M P (x, ¢, k) of the RH problem relative to the contour ru (—A,A)
(see Fig.5) can be approximated by the solution M™(x, k) of a model problem,
which is as follows (cf. (44) and (45)):

MY x, k) = —iM™(x, k)oa, k € (—A, A), (89a)
M™(x k) =1+ 0k, k — oo, (89b)
M™(x, k) = O((k + A)"4),  k — FA, (89¢)

with singularity conditions at k = 0:

. v+ F2(0,—A) _
fim kMM b = 0, M0, o0
keCt
2
lim kM™2(x k) = y-9°0,=4) e~ 24x pymoditl s ) (90b)
k—0, ’ ano FE 0,—-A) B T
keC™
Indeed, writing
M (x, 1, k) = M (x, 1, )M™ (x, k), 1)

M°®™ satisfies the following RH problem on the contour I:

M (x, 1, k) = M (x, 1, k)T (x, 1, k), kel (92a)
M (x, k) = I + O™, k — oo, (92b)
M (x, k) =0((kiA)—5>, k— TA, (92¢)

where J*"(x,t,k), k € [ can be uniformly estimated with exponentially small
error for large ¢:

T (x, 1, k) = M™x, k)(I + O™ ) (M™ Y~ (x, k), t— +oo, (93)

with some ¢ > 0 which does not depend on x. It follows that for all x such that
2A +id(A)e 4% £ 0 (see (52)),

O(efcl‘)

= 9 t 9
2A +id(A)e24x T T

(94)

M{™(x, ) = klirgo k(M (x,t,k) — 1)
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where O(e™“") is independent of x and

v+ F1(0,—A)

A = 0520, —A)°

95)
with §(k, —A) and F(k, —A) given by (59) and (71), respectively. From (89) and
(94) we conclude that g (x, ) and g(—x, t) can be found in terms of the solution

M™% k) as follows:

g(x, 1) = 2ie 2AMH2iFoc(=A) Jlim kMia(x, k) + 0™, x>0, t — +oo,
—00

(96a)

G(—x,1) = —2ie A% +2iFoe(=4) Jlim kMai(x, k) + O ™), x>0, t — +00.
— 00

(96b)

Then, arguing as in Sect. 2.4, we can explicitly solve the RH problem for M™¢(x, k)
and thus arrive at

Theorem 3.9 (Transition at £ = 0) Assume that the initial data qo(x) approaches
exponentially fast its boundary values (1c) and that the associated spectral functions
aj(k), j = 1,2 satisfy Assumptions 2.5.

Then the solution q(x,t) of problem (1) has the following asymptotics as t —

+00 along the rays x = const, excluding x = 0 and also x = x' == 21A In 7%11&‘4) if

/. .. Y/ | id(A) 1 P
x" is real and positive, and x = x" = —,, In ;"7 if x" is real and negative:

q(x, 1) =

—21m Foo(—A) o —2i(A2 —Re Foo (—A)) | 2A—id(A)e™>4 —ct
Ae e 2A+i%A)e,2Ax + O0(e™),
_ Ae2Im Foo(—A) g —2i(A%1—Re Foo(—A)) | 2Ae™>4 +id (A) —ct

Ae ¢ 246245 _id(A) +06E™),

x >0,

x <0,
7

with some ¢ > 0 independent of x. Here Fso(—A) and d(A) are given by (74) and
(95), respectively.

Remark 3.10 As x — £00, the main terms in (97) match those in (87).

Remark 3.11 The main term of the asymptotics in (97) is continuous at x = 0 only
if d(A) and Im F (—A) satisfies one of the two conditions:

e ImFy(—A)=0and |d(A)| = 2A with d(A) # 2iA,
* d(A) = —2iA (without condition on Im Fyo (—A)).
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Appendix: Proof of Proposition 2.2

Proof of item (ii) Substituting go g(x) with R = 0 (see (28)) to (4), we obtain that
W;(0,0,k) = &j(k), j = 1,2. Using (20), we have S(k) = 5{1(k)51(k), which
implies (32) in view of (21).

Proof of item (i) For the initial data go g(x) with R > 0, from the integral
representations (4) we have that

W (R, 0,k) = & (k) (A.1)

and that the (11) and (12) entries of Wi(x, 0, k) satisfy the following integral
equations for x € [—R, R]:

(YD1 (x,0,k) =
1) + 2461 (Vea) [ XR (1= ®) @ne, 0.0y, (A2
(W12(x,0,k) =
— ex(k) — 2Aeq(k)ea (k) /xR (1 - e—Zif(k)(X—y)) ()12(y, 0, k) dy,
(A.2b)

where

1 1 i 1
erh) =, (w(k) + w(k)> Cea(k) = ; <w(k) _ w(k)> , (A3)

with w(k) given in (8). The entries (W1)21(x,0, k) and (W1)22(x,0, k) can be
expressed in terms of (Wq)11(x,0,k) and (W1)12(x,0, k) as follows (for x €

(¥1)21(x,0.k) = ez (k) +24 / (B0 + 0 ) Wi (3, 0.k dy,
—R
(A.4a)

(W2 (x, 0, k) = er (k) + 24 / (00 + e P (W) 1(y, 0, b dy.
-R
(A.4b)

In order to find W;(R, 0, k), we first solve the integral equations (A.2) and then
substitute the solutions into (A.4) with x = R. Using the equality e (k)ex(k) =

—2;./?]{), equation (A.2a) can be reduced to the following Cauchy problem for a
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linear ordinary differential equation (where x € [—R, R]):

d(fz (WD 1 (x, 0,k) = 2if (k) &, (WD 11(x, 0, k) +24%(¥1)11(x, 0,k) =0,

(W11 (=R, 0,k) = ei(k), DD 11(—R,0,k) =0.
(A.5)

The solution of (A.5) has the form (for x € [—R, R]):

ieg (k)Az (k) e)“l(k)(-x—"_R) _ iey (k)A1 (k) e)‘Z(k)(x"—R)

YD11(x,0,k) = 2h(k) 2h(k)

(A.6)

where h(k) and A;(k), j = 1,2 are given by (29) and (30), respectively. Then,

Mk fRRGHEE Ak _

substituting (A.6) into (A.4a) and using the relations k) = A2 Sk =

f(k)h(lzc)sz k) (k+f(k))>

A »and Ak T A2

, we obtain:

(W1)21(R, 0, k)

_ . el(k)e%(k) Ao (k) 221 (k)R A (k) 222k R
=ae®+id (M(k) (e l _1)_)\2(k) (e ’ _1))

3
n iAel(k) (ezxz(k)R _ ele(k)R)

h(k)
_ Aa® [ onwr (2E) _G® ) pr (MK el
2f(k)h(k) Mk e3(k) k) e3(k)
k
_ ;;21((1()) (e%(")R (2k — irg (k) — 22 OR Q) _ i)\z(k))) . (A7)

Similarly, from the integral equation (A.2b) we deduce that, for x € [—R, R],

iex (kYA (k) o2 E+R) _ iez (k) A2 (k) oMK E+R)

(WD12(x,0,k) = (k) h(k)

(A.8)

Sk (flo—k?,

and, therefore, from (A.4b) we get, using that 2 = A2
1

(¥1)22(R, 0, k)

2
_ . el(k)eZ(k) A (k) (o (R _ _Al(k) —20(K)R _ >
=@ <M(k)(e 1) = ()
&5 (k)

+iA (e—ZAz(k)R _ e—le(k)R)
h(k)
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Aley (k) <e—2w>R (Az(k) ~ e%(k)) Y (M(k) ~ e%(k)))

210 R o® b
k
= ;z((k)) (efzxz(km(ZkJriM(k)) _ef2ll(k)R(2k+iM(k)))‘ (A9)

Finally, substituting (A.1) and (A.6)—(A.9) into
S(k) = RO G (R0, k)W (R, 0, k)e R/ K)o (A.10)

and using the relations e% k) = J;(}‘)(]:r)k and e% (k) = J;(ﬁ]:)k , we arrive at (31).

Proof of item (iii) Let the entries of the 2 x 2 matrix \ifl (x, k) satisfy (A.2) and (A.4)
for x € [R, —R] (recall that here R < 0). Then from the integral representation for
Uy (x, 0, k), see (4), we conclude that the entries of W, (x, 0, k) can be found via
\ifl(x, k) as follows:

(W) 11(x,0,k) = (T 11(x, k), (¥)12(x,0,k) = —(I)12(x, k),

K X (A.11)
(W2)21(x,0, k) = —(W21(x, k), (P2)22(x,0,k) = (W1)2n(x, k).

Therefore, using the expressions for the entries of the matrix \ill (R, k) obtained in
the proof of item (i), we obtain W» (R, 0, k). Since W (R, 0, k) = &1 (k), from (A.10)
and (A.11) we have (33).
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1 Introduction

Our contribution to this volume bears a connection with a phenomenon uncovered
by Craig Tracy and Harold Widom [38] in their work on level spacing in Random
Matrix Theory. For a double scaling limit at the “edge of the spectrum” they
observed that the resulting integral operator with the Airy kernel acting on an
appropriate interval admits a commuting second order differential operator. This
highly exceptional fact is put to good use in section IV of their paper where a number
of asymptotic results for several quantities of interest are given.

In the context of Random Matrix Theory the existence of such a commuting pair
of operators had been exploited earlier, for instance in work by M. Mehta [29] and
W. Fuchs [14]. In this case one is interested in the “bulk of the spectrum” and the
role of the Airy kernel is taken up by the more familiar sinc kernel. Both of these
situations deal with the Gaussian Unitary Ensemble.

The consideration of either the Laguerre or the Jacobi ensembles at the “edge of
the spectrum” gives rise to the Bessel kernel. This case, as well as the corresponding
commuting pair of integral-differential operators is considered by C. Tracy and H.
Widom in [37]. There, once again, this exceptional fact is exploited in section III to
derive a number of important asymptotic results.

In this paper we concentrate on the “exceptional fact” mentioned above in three
different situations relevant to Random Matrix theory. This fact had emerged in
other areas of mathematics. In a ground-breaking collection of papers by D. Slepian,
H. Landau and H. Pollak done at Bell labs in the 1960’s [27, 28, 32-36] instances of
this phenomenon were discovered and used in a key way in communication-signal
processing theory. In fact, some precedents can be traced further back, see [4, 22].
For an up-to-date treatment of the numerical issues involving the prolate spheroidal
function, one can see [30].

Incidentally in the case of the Bessel kernel the existence of a commuting
operator was already proved by D. Slepian, while the situation of the Airy kernel
appears for the first time in C. Tracy and H. Widom’s paper mentioned above. The
so called “prolate spheroidal wave functions,” which arise in the case of the sinc
kernel and their corresponding integral-differential pair of operators, have played
an important role in areas far removed from signal processing that motivated the
research of Slepian and collaborators. We give only two instances of this, but we are
sure that other people can provide other examples: the paper by J. Kiukas and R.
Werner [24] in connection with Bell’s inequalities, and the program by A. Connes
in connection with the Riemann hypothesis with C. Consani, M. Marcolli and H.
Moscovici [10-12].

One should also mention that the Airy function itself and variants of it have
played an important role in other very active areas of current research, such as
quantum gravity and intersection theory on moduli space of curves, see [25, 41].
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In all the three instances discussed above (namely the sinc, Bessel and Airy
kernels), the commuting differential operator has been found by a direct compu-
tation that relies heavily on integration by parts. The interest in understanding and
extending this exceptional phenomenon in a variety of other situations has produced
some few more examples, see [5, 9, 15-17, 19, 20].

The bispectral problem formulated 1986 in [13] aimed at a conceptual under-
standing of the phenomenon of integral operators admitting a commuting differ-
ential operator. The idea is that all known kernels with this property are built
from bispectral functions, that is functions in two complex variables that are
eigenfunctions of differential operators in each of them. There has been a substantial
amount of research on this problem [18, 21], which started with the classification
of all bispectral differential operators of second order [13] and culminated in
the classification of bipectral functions of rank 1 in [39] and the construction
of bispectral functions of arbitrary rank via Darboux transformations [2, 23] and
automorphisms of the first Weyl algebra [1, 3].

Since the mid 80s, the belief that the two problems, bispectrality and the
existence of a commuting pair made up of a differential and an integral operator
were closely connected has been driving research on both fronts. However, for a long
time there no general argument proving that bispectral functions give rise to kernels
of integral operators with the commutativity property. This was finally settled in [8]
where it was proved to be the case for self-adjoint bispectral functions of rank 1
and 2.

More recently we proved in [6, 7] that all bispectral functions of rank 1 give rise
to integral operators that reflect a differential operator rather than plain commute
with it.

All of the previous results on integral operators address the construction of a
single differential operator commuting with it. The purpose of this paper is to initiate
the systematic study of the algebras of differential operators that commute with a
given integral operator. We start with the Airy example considered by C. Tracy and
H. Widom and consider all self-adjoint bispectral Darboux transformations. This is
an infinite dimensional manifold which sits canonically in the infinite dimensional
Grassmannian of all Darboux transformation from the Airy function, obtained from
factorizations of polynomials of the Airy operator

L(x,d) = 9> — x. (1)

We give a conceptual classification of the former manifold as the fixed point
set of a Lagrangian Grassmannian with respect to the canonical action of the
associated differential Galois group. The Lagrangian Grassmannian in question is
the sub-Grassmannian with respect to a canonical symplectic form. We consider the
first two instances of self-adjoint bispectral Darboux transformations coming from
factorizations of

(L—1)%> and (L—1)*
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of the form P*P for a differential operator P(x, d,) with rational coefficients.
The corresponding bispectral functions, referred to here as level one and level
two bispectral functions, are significantly more complicated than the bispectral
Airy function Ai(x + z). The integral operators that they give rise to depend
on parameters classifying different factorizations. For each integral operator, we
compute explicitly the differential operators of the lowest two orders and prove that
they are algebraically dependent. In the level one situation, the commuting operators
have order 4 and 6. They generate the algebra of all differential operators commuting
with the integral operator and satisfy an algebraic relation which happens to be an
elliptic curve. In the level two situation, the lowest two commuting operators have
order 10 and 12. However, we are also able to find commuting operators of order
14, 16, and 18 and to prove that these differential operators commute with each
other. In a future publication, we will return to the problem of studying algebras
of differential operators commuting with a fixed integral operator and will present
general structural results for the algebra of differential operator commuting with all
integral operators which are built from bispectral functions, and which are motivated
by the examples in this paper.

This paper is written as a small token of admiration and gratitude to the amazing
mathematical work of Harold Widom. Widom started mathematical life as an
algebraist working with Irving Kaplansky at Chicago, before becoming mainly an
analyst through the influence of Mark Kac at Cornell. This paper uses tools from
both analysis and algebra, uniting Widom’s dual mathematical history. His influence
will be a lasting one, and we will miss him badly.

2 Bispectral Functions, Fourier Algebras and Prolate
Spheroidal Type Commutativity

2.1 Bispectrality and Fourier Algebras

For an open subset U € C, denote by ©(U) the algebra of differential operators on
U with meromorphic coefficients.

Definition 1 ([13]) Let U and V be two domains in C. A nonconstant meromorphic
function ¥ (x,z) defined on U x V C C2? is called bispectral if there exist
differential operators B(x, d;) € ®(U) and D(z, 9;) € D(V) such that

B(x, 0)¥ (x,2) = g()¥ (x, 2),

D(z,0)¥ (x,2) = f(X)¥(x,2)

for some nonconstant functions f(x) and g(z) meromorphic on U and V, respec-
tively.
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Denote by Ai(x) the classical Airy function. The function
Pai(x, 2) == Ai(x + 2)
is bispectral because
L(x, 0x)Wai(x, 2) = 2Wai(x,z) and L(z, 9;)Wai(x, 2) = xWai(x, 2), 2)

where L(x, dy) is the Airy operator (1). The differential equations satisfied by a
bispectral function are captured by the following definition.

Definition 2 ([1]) Let ¥ (x, z) be a bispectral meromorphic function defined on
U x V C C2. Define the left and right Fourier algebras of differential operators for
¥ by

Sx(¥) = {R(x, dx) € D(U) : there exists a differential operator S(z, 9;) € D (V)
satisfying R(x, 9)¥ (x, 2) = S(z, 0)¥ (x, 2)}

and

$.(¥) ={S(z, 3;) € (V) :there exists a differential operator R(x, d,) € D(U)
satisfying R(x, 0,)¥ (x, z) = S(z, 9;)¥ (x, 2)}.

By [8, Proposition 2.4], for every bispectral meromorphic function¥ : U xV —
C, there exists a canonical anti-isomorphism

by : §x(¥) — F.(¥),
given by by (R(x, 9)) = S(z, 9;) if
R(x,0)¥(x,z) = S(z,0,)¥(x, 2).

We call this the generalized Fourier map associated to ¥ (x, z). Define the co-order
of an element R(x, dy) € §x(¥) by

cordR := ordby (R).

Analogously, we define the co-order of S(z, 9;) € §,(¥) by cordS := ordb;,l(S).
The Fourier algebras of ¥ (x, z) have natural N x N-filtrations:

&C(lI/)K”" ={R(x,0y) € §x(¥) : ordR < £, cordR < m},
SZ(LI/)’”’Z = {S(z,9;) € §,(¥) : ordS < m, cordS < ¢},
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where N = {0, 1, ...} and by (§, (¥)t™) = S ()™t The commutative algebras

B(¥) =T and B.W) = F.@)""

£>0 m=>0

are precisely the algebras of differential operators in x and z, respectively, for which
V¥ (x, z) is a eigenfunction.

Example 1 The Airy bispectral function Wa;(x, z) satisfies

L(x, 0x)Wai(x, z) = z%Wai(x, 2),
0 Wai(x, 2) = 9:¥ai(x, 2),
XWai(x, 2) = L(z, 3;)¥ai(x, 2).
The Fourier algebras §, (¥ai) and §,(¥a;) coincide with the first Weyl algebra in

the variables x and z, respectively, and the generalized Fourier map by,; is the anti-
isomorphism from the first Weyl algebra in x to the first Weyl algebra in z given by

by (x) = 32 — 2, by, (8y) = 9.
Furthermore,
dim § (Pa)* 2" = tm + L +m +1,

see [8, Sect. 3.1 and Lemma 5.5]. On the level of Wilson’s adelic Grassmannian,
the anti-isomorphism by, is equivalent to Wilson’s bispectral involution [39]. More
generally, every anti-automorphism of the first Weyl algebra determines a bispectral
function as proved in [3]. (I

Definition 3 A rational Darboux transformation from the bispectral Airy function
Wai(x, z) is a function of the form

P(x, 9:)Wailx, 2)

¥Y(x,z):= 3
2 () p(x) ©)
such that
(II )
Uni(r, 2) = O(x, 8y) - 9 )
7(2)Px)

for some differential operators P and Q with polynomial coefficients and polyno-
mials p(x), p(x), g(z) and g(z) with coefficients in C. We define the bidegree of
such a transformation to be the pair (ord P, cord P).
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In this setting we have Q, P € F.(Wa), P(x), p(x) € Fr(¥aD>" and §(x), ¢(x) €
SZ(lI/Ai)O’Z for some £, m € N. Furthermore, Eqgs. (3)-(4) imply that

1
O(x, dx) ~ P(x, 00)¥ai(x, 2) = §(2)q (2)¥ai(x, 2),
px)p(x)

and thus by Example 1,

1 ~
O(x, 0x) P(x,0x) = q(L(x, 9x))g(L(x, dx)). &)
P(x)p(x)

Theorem 1 [1, 3, 23] All rational Darboux transformations of the bispectral Airy
function Wai(x, z) are bispectral functions. More precisely, if W (x,z) is as in
Definition 3, then it satisfies the spectral equations

1 1 ~
P(x,ax)Q(x,ax)N W(X,Z)ZQ(Z)Q(Z)W(va),
px) p(x)
1 1 ~
by (P)(z, 0:)bwy; (S)(2,07) ., W (x,2) = p(xX)p(x)¥(x, 2).
q(2) q(2)

2.2 Prolate Spheroidal Type Commutativity

A rational Darboux transformation ¥ (x, z) of the bispectral Airy function of
bidegree (d1, d2) is called self-adjoint if it has a presentation as in Definition 3
such that

O(x, dy) = P*(x, dy)

and p(x) = p(x),q(z) = q(z). Here P — P* denotes the formal adjoint. It follows
from (5) that P has even order. A rational Darboux transformation ¥ (x, z) of the
Airy bispectral function Wa;(x, z) is self-adjoint if and only if the spectral algebras
B, (W) and B,(¥) are preserved under the formal adjoint, and this condition
is satisfied if and only if ¥ (x, z) is an eigenfunction of nonconstant, formally
symmetric differential operators in x and z (i.e., operators that are fixed by the
formal adjoint), see [8, Remark 3.17 and Proposition 3.18].

For self-adjoint rational Darboux transformations ¥ (x, z) of Wai(x, z), both
Fourier algebras §, (¥) and §,(¥) are preserved under the formal adjoint and

(by(R))* = by(R*) forall R € F(¥), (6)



236 W. R. Casper et al.

see [8, Proposition 3.24 and 3.25]. Define
Tesym(¥) = (R € F(¥) : R* = R).
By (6) for all R € §x sym(¥),

by (R))* = by R.

Example 2 ([8, Lemma 5.5]) Forall €,m € N, §2';2% (W) has a basis given by

sym
{(L(x, 3/ xF 4 x*L(x,8,)7 :0<j <1, 0<k <m},

and in particular, 3727 (Wai) = (€ + 1)(m + 1). O

For € > 0 consider the sector
T={ré? eC:r>0,0| <7/6 — €}

The Airy function Ai(x) of the first kind is holomorphic on this domain and has the
asymptotic expansion

(0.¢]
Ai(x) = e~ 3% ( 3 ij_//4>
j=1
for some ¢; € R where x!/4 is interpreted as the principal 4th root of x.
Furthermore, any rational Darboux transformation of Wa;(x, z) equals ¥ (x, z) =
p(x)lq @ P(x, 0x)Wai(x, z) for some polynomials p(x), g(z) and a differential oper-
ator P(x,d,) with polynomial coefficients. Thus, for any bispectral Darboux
transformation of Wx;(x, z) we have the asymptotic estimate

j _2 3/2 .
lof ok w (x, )| = e O((1x| + |2 U TR

on X, for some integer m. The transformation z — (2/ 3)z3/% sends X, to the sector
{reie eC:r >0, |0| <mw/4—3€/2}. Thereforeif I'l, I’ C X, are smooth, semi-
infinite curves inside this domain with parametrizations y; () : [0, c0o) — C then
the real part of —2(y;(¢) + y2(5))3/2 /3 will goto —ooast — oo ors — 00. The
above asymptotic estimate now shows that ¥ (x, z) satisfies

X290 05w (x, 2)|dx € L(I») and [ [x™Z"0) 05w (x, 2)|dz € L),
I I

for every pair of smooth, semi-infinite curves 17, I € Y.
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Recall that the bilinear concomitant of a differential operator
m .
R(x,0) =Y dj(x)3y.
j=0

is the bilinear form Cgr (—, —; p) defined on pairs of functions f(x), g(x), which are
analytic at p € C by

m j—1
Cr(figip) =Y > (=DFfI P jx)g(x) P =y
j=1k=0
m Ik 4
= Z Z (E)(—l)kf(]1k)(x)dj(x)(k‘)g(x)(’f)|x:p.
j=1 k=0 ¢=0

See for example [22, Chapter 5, Section 3].

Theorem 2 ([8]) Let ¥ (x, z) be a self-adjoint bispectral Darboux transformation
of the Airy bispectral function Wai(x, z) of bidegree (d,d>) and let Iy and I
be two semi-infinite, smooth curves in X, for some € > 0, whose finite endpoints
are t1 and tp, respectively. Assume moreover that W (x, z) is holomorphic in a
neighborhood of It x I and that the operators in Fx(W) and F,(¥) have
holomorphic coefficients in a neighborhood of I't and I, respectively. Then the
following hold:

1 dim 32" W)y > L+ DH(m+ 1) + 1 — dido.

Xx,sym

2. If a differential operator $(z, 9;) € § sym(¥) satisfies
CS(_a_;tl) =0 and Cb‘;l(s)(_a_;IZ) EO,

then it commutes with the integral operator

T:f(z)r—>/ Kz, w)f(w)ydw with K(z,w) /lI/(x,z)lII(x,w)dx.
I I

3. If dim§2%28 > e + 1) + 2, in particular if £ = dyd», then there exists

z,sym =
a differential operator S(z,9;) € gﬁ’f},m
assumption and conclusion in part (2).

(W) of positive order satisfying the

As a special case of this theorem, we are able to recover the commuting integral and
differential operators studied by Tracy and Widom in [38]. In particular, if we take
U = Y,; in the theorem, then it guarantees the existence of a differential operator
of order 2 commuting with the integral operator

TAif(Z)'_)/ Kai(z, w) f(w)dw,
n
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with kernel

o0

Kai(z, w) = / Ai(x + 2)Ai(x + w)dx
5]

_ Al'(tr + DAL + w) — Ai(tr + 2)A (1 + w)
zZ—w '

Solving the associated system of linear equations for the vanishing concomitant, we
discover that the differential operator

Sai(z, 8;) = 8,(t1 — 2)8; + (12 — 1)z + 2°

satisfies the condition that Cs,; (f, g; t1) = O for all functions f, g analytic at #;. Its
preimage under the generalized Fourier map

by (Sai(z, 8;)) = 8y (12 — X)dy + (11 — R)x + x°

also satisfies the condition Cbk;l Sai (f, g; ) = 0 for all functions f, g analytic at ;.

Therefore the differential operator Sai(z, 9;) commutes with Ta;. This is precisely
the differential operator discovered by Tracy and Widom in [38].

3 Classification of Self-adjoint Rational Darboux
Transformations of the Bispectral Airy Function

In this section, we will classify the self-adjoint rational Darboux transformations of
the bispectral Airy function by leveraging two tools: (1) the technology of differen-
tial Galois theory, and (2) the classification of self-adjoint Darboux transformations
in terms of Lagrangian subspaces of symplectic vector spaces found in [8]. A similar
classification is performed in [2] using the entirely different technique of performing
an explicit asymptotic analysis of Wronskians associated to subspaces of the kernel.
More explicity, in this section we wish to classify factorizations of the form

1
P(x, dx)"
p

(o P00 =g (LG, 9:))* (7

where here p and g are polynomials and P(x, d,) is a differential operator with
polynomial coefficients. Without loss of generality, we take g (z) to be monic so that
p(x) is the leading coefficient of the operator P (x, dx). The associated self-adjoint
rational Darboux transformation of the bispectral function Ai(x + z) is then defined
by

1 .
¥U(x,z)= (04 () P(x,0y) - Ai(x + 2).
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3.1 Lagrangian Subspaces and Concomitant

We begin by recalling the classification of self-adjoint factorizations of self-adjoint
differential operators found in [8]. To begin, let A(x, d,) be a differential operator
and recall the standard fact that the concomitant C4 (f, g; x) is independent of x for
all f € ker(A) and g € ker(A™).

Lemma 1 ([40], Section 3) Letr A(x, dy) be a linear differential operator. Then the
concomitant of A defines a canonical nondegenerate pairing

ker(A) x ker(A*) — C, (f,g) — Ca(f, ).

Combining this with the identity Co(f,g) = —Cax(g, f), we see that the
concomitant restricts to a symplectic bilinear form on ker(A) when A(x, dy) is
formally symmetric.

We will also rely on the following formula for concomitants of differential
operator products.

Lemma 2 ([40], Lemma 3.6) Ler A(x, 0y) = A1(x, 0x)A2(x, 0y). Then

Ca(f, g x) =Ca,(A2f, g; x) + Ca,(f, ATg; X).

From this, we see that if A = A*, then ker(A;) C ker(A) and ker(A}) < ker(A)
are orthogonal under the pairing defined by the concomitant of A(x, dy).

As is well-known in the theory of factorizations of linear differential operators, a
factorization of a differential operator

A(x, dx) = A1 (x, 0x)Az(x, 0x)

corresponds to a choice of a subspace V' C ker(A). The subspace V corresponds
to the kernel of A>(x, d,) and determines the value of the operator A, (x, d;) up to
a left multiple by a function of x. As is readily seen from the previous lemma, the
kernel of Aj(x, dy)* is completely determined by V and given by the orthogonal
complement

VLt ={g eker(A*) : Ca(f,g) =0V f € V}.

Thus to obtain factorizations of the form (7), we search in particular for subspaces
V C ker(g(L)?) satisfying V- = V. In other words, we search for Lagrangian
subspaces of the symplectic vector space ker(g(L)?). To summarize, we have the
following proposition.

Proposition 1 Factorizations of the form (7) with p(x) and the coefficients of
P(x, 0y) not necessarily rational functions, correspond precisely to Lagrangian
subspaces of the symplectic vector space ker(q(L)?) whose symplectic form is
defined by the concomitant of q(L)>.
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3.2 Differential Galois Theory

Our next task is to determine the symmetric factorizations obtained in the previous
section which are rational. For the convenience of the reader, we briefly outline
the requisite basics of Picard-Vessiot extensions and the Fudamental Theorem of
Differential Galois Theory. We direct the interested reader to [31] for a more
thorough treatment.

Definition 4 Let (K, d) be a differential field and let A € K[d] be a linear
differential operator with coefficients in K. The Picard-Vessiot extension of K
associated with A(x, d,) is a differential field extension (F, d) of K whose constants
all belong to K and which is generated by the solutions of the homogeneous
equation Ag = 0.

Picard-Vessiot extensions of a differential field play precisely the role of Galois
extensions in field theory. Likewise, the usual Galois group is replaced by a similar
object consisting of field automorphisms respecting differentiation.

Definition 5 The differential Galois group DGal(F/K) consists of all K-linear
field automorphisms o : F — F of F satisfyingo(d-a) =90 -o(a) foralla € F.

Analogous to the case of Galois extensions of fields, we have the following
theorem relating differential subextensions and Zariski-closed subgroups of the
differential Galois group (see [31, Proposition 1.34]).

Theorem 3 (Fundamental Theorem of Differential Galois Theory) Ler (K, d)
be a differential field whose subfield of constants is algebraically closed and let
(F, 0) be a Picard-Vessiot extension of K. Then there is a bijective correspondence
between differential subfields K C F' C F and Zariski-closed subgroups G’ C
DGal(F/K) given by

G CDGal(K/F)+ K% ={a e K :0(a) = a, Yo € G'},

K C F' C F > DGal(F'/K) = {0 € DGal(F/K) : o(a) = a, Ya € F'}.

Furthermore, this correspondence restricts to a correspondence between Picard-
Vessiot subextensions of F'/K and normal subgroups of DGal(F/K).

We will not rely on the full force of this correspondence, and therefore will not
have to recall the precise nature of the topological structure of DGal(F/K) as a
group subscheme of a general linear group. Instead, we will use only the immediate
fact that

K={aeF:0(a)=a, Yo € DGal(F/K)}. ®)
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Since differential operators are determined (up to a multiple) by their kernels,
rationality of a differential operator may be characterized by differential Galois
invariance of the associated kernel.

Theorem 4 Let A(x, dx) be a differential operator with rational coefficients and
let F be the Picard-Vessiot extension of C(x) for A. Consider a factorization
A(x, 0y) = A1(x, 0y)Az(x, 0y) with Ay monic. Then A{(x, dy) and Ay(x, 0x) have
rational coefficients if and only if ker(Az) C ker(A) is invariant under the action of
DGal(F/C(x)).

Proof For o € DGal(F/C(x)), let 6(A;) := o(A;)(x, dy) denote the operator
obtained by applying the automorphism to the coefficients. Since the automorphism
preserves differentiation, we know that

0(Aj)(x,0y)-0(a) =0(Aj(x,0x)-a), Yae F.

If Ay(x, dx) and A2 (x, d;) have rational coefficients, then clearly o (A;) = A; and
therefore ker(o (A ;)) = ker(A ). Thus the kernel of A (x, ;) is invariant under the
action of DGal(F/C(x)).

Conversely, suppose that ker(A;) < ker(A) is invariant under the action of the
differential Galois group, ie. o (ker(A2)) = ker(Az) Then 0(A3) - o(a) = o(Ay -
a) = 0(0) = 0 for all a € ker(A) and therefore ker(A;) C ker(o(A3)). Since
the order of A, and the order of o (A;) are the same, their kernels will have the
same dimension. Therefore ker(o (A;)) = ker(A;) and consequently 0 (A2) = bA>
for some b € F. Since A has leading coefficient 1, it follows that » = 1. Hence
o(Az) = Aj and from the Fundamental Theorem of Differential Galois Theory,
the coefficients of A, must all be rational functions. Lastly, since A and A; have
rational coefficients, it follows that A has rational coefficients.

Corollary 1 Let A(x,dy) be a self-adjoint differential operator with rational
coefficients and let F be the Picard-Vessiot extension for A. Then the self-adjoint,
rational factorization of A(x, dx) correspond precisely with the DGal(F/C(x))-
invariant Lagrangian subspaces of ker(A).

Proof This follows immediately from the theorem and the results of the previous
subsection.

3.3 The Classification

Now let ay, ..., a, € C be the distinct roots of ¢ (z) and write

q@) =@z —an? ... (z—a)"
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for some positive integers di, ..., d, and distinct ay, ...,a, € C. The kernel of
q(L)? for L(x, d,) = 83 — x the Airy operator is given by the following lemma.

Lemma 3 The kernel of g(L)? has basis given by
(A (x +a), BiV (x +a) : 1 <k <7, 0 < j < 2dy)

where here Ai(x) and Bi(x) are the Airy functions of the first and second kind,
respectively.

Proof To prove this, we will rely on the fundamental relation
L(x,0y)0y = 0xL(x,0dy) + 1,

which implies that
mAn m n! ) ]
(L(x,0) —ap)" ) = ) ( ) LA (L(x, 8y) —ap™
o N/ =t
Thus forall 0 < n < 2d; — 1, we have

(L(x, 8y) — ax)® ¥ Ai™ (x + ay)

) U .
=Z( c-lk> T (L 00 — T Al + ag) = 0.
o\ =)

Hence Ai™ (x 4 ax) € ker((L(x, dx) — ax)>%) C ker(g(L)?) forall 0 < n < 2dj.
The same calculation shows that Bi(”)(x + ax) € ker(q (L)?) forall 0 < n < 2dy.

Thus the Picard-Vessiot extension of the differential field (C(x), dx) corre-
sponding to the linear differential operator g (L (x, 8,))? is finitely generated by 4r
elements

F9 = C(x)(Ai(x + ar), Ai'(x +ar), Bi(x +ar), Bi'(x +ar) : 1 <k <r).
Using this, we see that the differential Galois group of F is isomorphic to r copies
of SL(C).

Lemma 4 The differential Galois group consists of all differential C(x)-linear

morphisms

Ai(x + ag) — arAi(x + ax) + BrBi(x + ax)

. . . Vi<k=r,
Bi(x + ax) — yrAi(x + ag) + §Bi(x + ax)

o:F1 - F1, {

where here ay, By, Yk, 8k € C with aydx — Bryx = 1.
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Proof The fact that

Ai(x 4 ar) — aAi(x + ar) + BBi(x + ay) [a B

Bi(x 4+ ax) — yAi(x +ax) +8Bix +ar)” |y 8 } € SL2(0),

is a differential automorphism is standard. See for example [31, Example 8.15].
Therefore, we need only show that this accounts for all differential automorphisms.
If o : F4 — F1 is a differential automorphism fixing C(x), then

o (Ai(x +ar))” ” <Ai”(x + ay)

o (Ai(x + ay)) - Aix + az) ) =o(x +ay) =x+a.

Thus o (Ai(x + ax)) must be a solution of the differential equation y” = (x + ax)y,
and therefore a linear combination of Ai(x + ax) and Bi(x + ax) for all k. A similar
statement holds for o (Bi(x + ag)) so that

. { Ai(x 4+ ar) — apAi(x + ax) + BkBi(x + ag) Vl<k<r

Bi(x + ax) — yrAi(x + ag) + S Bi(x + ax)

for some ai, Bk, yk, Ok € C. Lastly, the Wronskian identity implies

1
W(Ai(x +ag), Bi(x +ax)) = A’ (x +ax)Bi(x +ai) — Ai(x +ap)Bi' (x +ax) =
i

Since the Wronskian is skew-symmetric, we can conclude that

711 = o (W(Ai(x + ai), Bi(x + ax)))

= W(o (Ai(x + ax)), o (Bi(x + ax)))
= (a8 — By)W(Ai(x + ax), Bi(x + ar)) = (ad — By)/m.

Hence ad — By = 1.

Using this, we can obtain the following characterization of the Galois-invariant
subspaces of ker(g (L)?).

Lemma 5 Suppose that V C ker(q(L)?) is a subspace. Then V is invariant under
the action of the differential Galois group if and only if V is spanned by pairs of
elements of the form

2d—1 2di—1

Z ki ALY (x + ay), Z aiji(j)(x + ai).
j=0 j=0
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Proof Clearly any subspace spanned by pairs of elements of this form is invariant
under the action of the Galois group, since the the action restricts to an action
sending each of the functions in the pair to a linear combination of the functions
in the pair. Thus it suffices to show the converse.

Let f(x) be a nonzero element of V. Then

r 2dp—1

F) =" A (x + ap) + BijBiY (x + ).

k=1 j=0

Consider the differential automorphisms oy and 7 which fix Ai(x +a;) and Bi(x +
aj) and satisfy

oy : Ai(x + ag) — —Bi(x 4+ ag), Bi(x + ag) — Ai(x + ax),

Tt Ai(x + ag) — Ai(x + ar) + Bi(x + ag), Bi(x + ar) — Bi(x + ag).

We see that

2dr—1

(f0)) = f) =Y axBiVx+a)eV.

j=0
Following up by applying oy, we see that

2di—1

ok (f(0)) — f) = Y ajAi (x +ax) € V.
j=0
Likewise, one may show Zde_l B AiY (x + ap) ZZd"_l BiiBiV(x +ay) eV
s j=0 kj k) j=0 kj k
and since k was arbitrary, the statement of the Lemma follows immediately.

Our explicit description of the kernel of ¢(L)? allows us to give a concrete
formula for the symplectic form on ker(g (L)?) defined by the bilinear concomitant.
We start with a combinatorial Lemma.

Lemma 6 Leta, b, m be integers. Then

2 ()6 )

Proof We use the binomial series expansion on the identity

(1 _ Z)—a—l(l _ Z)b — (1 _ Z)h_a_l
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to find

= —a—1 b _1\Jj+k '+k_oo b—1—a _1ym.m
T R

m=0

Now comparing coefficients of z":

é(—ak— 1)<mlik)(_l)j+k _ (b—;—a).

Noting that (~%") = (=1)*(*1), the statement of the lemma follows immediately.

Proposition2 Let f(x), g(x) € {Ai(x), Bi(x)} and choose 0 < m < 2d; and
0 <n < 2dy. Then

Con(f™(x +aj). ™ (x + ar))

s m!n!'W(f, g) mAn—2de+1
J (m+n—2d+ 1) *

. ( q(2)? )
z=ay. (z — ak)zdk

for all nonnegative integers m, n withm +n > 2dy — 1 and is zero otherwise.

Proof For simplicity of notation, we will let 2(z) = ¢(z)? and write f and g
in place of f(x + ax) and g(x + by), respectively. First note that if j # &k
then f™ € ker((L — a;)*%) and g™ € ker(h(L)(L — a;)~2%), which is the
orthogonal complement of the subspace ker((L — a j)2‘1.f) of ker(h(L)). Hence
Ch(L)(fj’”), ¢™) = 0. Thus it suffices to consider the case when j = k.

Let h(z) = h(z)/(z — ax)*%*. Applying Lemma 2 and the fundamental relation
Loy = 0, L + 1 we see that

Chery (F™, ™) = Chyon (f. ™)

= Chewy(t—apieap (F- 8™)
m
m\  (2dy)!
= C~ m—s —(f, () .
;(S)(de_s)! HLya" (L—ap—s (f, 8")

Now using the fact that the concomitant of L is the Wronskian and again applying
Lemma 2 and the more general relation

m

R(LGx, 0.0)00 =) (T)aﬁ”ﬁ‘%(x, 3:))
s=0
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we see that

Crery (f ™™, g™)

2dy —

(1m0 (2d)! s
()h (ak>Z< )(de_ oD

=0

Z() MWL — Rl g
s=0

W(f, (L — ak)zdkfsfla;ﬂrmfsft . g)‘

From this it is clear that if n + m < 2d; — 1 then the concomitant is zero. Thus
without loss of generality we take m +n > 2dy — 1. Then for £ = n+m — 2d; + 1

Crery (F ™, &™)

N ) Qdo! s
—E}()” (“)Z< )(2d =D

W(f, (L _ ak)defsfla;H»mfsft A g)

nAl
(2dp)! _(m+n—s5s—1)
) _1\ym—s
Z( )h mk)Z( )<2d b (€1

t=0
W(f 0" 9
nnAl m
_ n\ > m!(n —t)! 2diy\ fm+n—s—t s
B (t)h @ (¢~ 1y s me—s )V
=0 s=0
W9 ).

Now reindexing the sum and applying the previous lemma, we obtain

Chery (£, ™)

m

2L\ ~ mi(n — 1)! 2di \(s+n—t
— E @) E “D'W -t
B (f)h () -0 = (m —s)( s >( DW6 )

L\~ mln — ) (2dy — 1 —n+1
_ () =t
= o<t)h @)y ( . )W(f,ax 2).
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The binomial coefficient in the last sum is nonzero if and only if £ < ¢. Since the
sum is taken between t = 0 and r = ¢, the only nonzero term comes from when
t = £. Thus

m!n!

ntm—der it @)

Chry(f™, g™ =

The rational Darboux transformations of Ai(x 4 z) come directly from factoriza-
tions of the form (7) with P(x, d,) having rational coefficients. As we have outlined
above, these correspond precisely to the Galois-invariant Lagrangian subspaces of
ker(g (L)?). This characterization is made explicit in the next theorem.

Theorem 5 (Classification Theorem) Ler f,,, g € ker(q(L)?) for 1 <m < d be
2d linearly independent functions of the form

2dgl.—1 2dgl.—1
i) =" aimAi™(x+ay), gGx)= Y @Bi™x+a)
m=0 n=0

satisfying the condition that

2 —1 . )
5wy, (1)
mjn _ ' 7 _ -~ 2d —
m4n>2d;—1 (m +n —2d +1)! 7=ax (z — ag)>%

for all k and for all i, j with £; = £; = k. Then the differential operator P(x, d;)
of order 2d defined in terms of a Wronskian by

P(x,00) - f:=W(f1, for.-., fa. 81,82, ---. 84, )

has rational coefficients and satisfies

Pt | o P(x, 92) = q(L(x, 8:))°
p

(x)

for some rational function p(x). Furthermore every self-adjoint rational factoriza-
tion of q(L(x, 8y))? is of this form.

Proof This follows directly from our direct calculation of the concomitant along
with our characterization of the Galois-invariant subspaces of the kernel.

This result is particularly nice in the situation that g(z) = (z — s1)4, so that the
concomitant has the simple form

", f =Ail, g =Bi, m+n=2d—1
Conp (S ™ +51), " (x+51)) = | 2 f =Bi, g = Al m+n=2d~1
0, otherwise.
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The payout of our dive through all the differential Galois theory and symplectic
geometry above is that we immediately provide explicit factorizations of (L(x, 0;)—
s1)* and (L(x, 8x) — s1)*.

Corollary 2 Let s € C. Then up to a function multiple, the only self-adjoint
rational factorizations of (L(x, dy) — s1)? are the trivial one and

Pi(x, 8,)* Pi(x, dy) = (L(x, 8y) — 51)*

(x +51)?

Pi(x, 8x) = (x + 5187 — 8x — (x + 5D,
Proof From the previous Theorem, we know we must choose functions
fi(x) = an1Ai(x +s1) +anAi'(x +51),  g1(x) = o1 Bi(x +51) +a2Bi’ (x +51)

satisfying 2o11121!1!/mr = 0. Thus either o;; = 0 or a2 = 0 and without loss
of generality we may take the remaining coefficient to be . In the first case, the
operator P(x, dy) is

P(x,8,)- f = WA (x+s1), Bi' (x+51), ) = c+s1) f/(0) = f/(x) = (x +51)* .
In the second case, the operator P (x, dy) is
P(x,0:) - f = W(Ai(x +51), Bi(x + 1), f) = f"(x) — (x +51) f-

Thus in this second case P (x, dy) = L(x, dx) — 1, giving us the trivial factorization
of (L(x, 0x) — s1)%.

Corollary 3 Let s1 € C. Then up to a function multiple, the self-adjoint rational
factorizations of (L(x, 8y) — s1)* are of the form

Py(x, 8,)* Py(x, 8x) = (L(x, 3;) — s1)*

(x +51)?

PZ(xs 8)6) : f = W(flv f27 81, 82, f)s

where here

3

3
@) =Y e AP (x +51), gr(x) =) oBiY (x + 51)
j=0 j=0
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for some constants oy satisfying the three relations
603050 + 201002 + 20m200,1 + 60,300 =0, 1 <m <n < 2.

Proof This follows immediately from the Classification Theorem.

The operator P»(x, d,) in this latter situation is more complicated. First of
all, it features the factorizations from the previous corollary, as may be obtained

from taking @13 = ap3 = 0. Thus to get new factorizations, we can without
loss of generality take @13 = ap3 = 1. Then the three relations simplify to
Um0 = —m1m2/3 for m = 1,2 plus a choice of either a1; = a21 or @12 = a22.

For sake of concreteness, we choose aj1 = a»; and take app = 1, a2 = 0, and
s1 = 0. This determines all parameters, except for «1; and the associated operator
P(x, 9y) is explicitly computed to be

10 4 1
Py(x,dy) = <x4 — 4t 4+ x%ad; + (Sa?l +4) X+ oy = 8«111) oy

20 4
+ (—4x3 + 12x2a11 3 ozlzlx — 30[?1 —4) dg

20 8 2 10
+ (—2x5 + 8x*a — 3 a%1x3 - (30{?1 +2) x2 = (90(?1 —40(11) x + 3 0‘%1) 8? 9

4 2
+ (2x4 —4x3a11 — 3xotf’1 —16 — 0“111 + 360(11) Oy

9

10 4 1 16
+x8 —dxday; + 3 x4a%l + (304?1 + 8) X+ (90/1‘1 - 220411> X2+ 3 xozlz1

+ 203, + 16.

4 Commuting Differential Operators for the Level One
Kernels

In this section, we explore the commuting differential operators for integral opera-
tors with level one Airy kernels, ie. those defined by bispectral functions ¥ obtained
from self-adjoint rational Darboux transformations of (L (x, dy)— s1)2. There is only
one such bispectral function, determined by the factorization of (L (x, dy) — s1)? in
Corollary 2. Using the operator P; (x, d;) described in this Corollary, the associated
bispectral function is

W (x, z) ! Pi(x,dy) - Wai(x,2) = Ai(x + 2) Al +2)
X, == X, 0x) " ilX, = X - N
12 (x +51)(z —51) ! Al ¢ (x +s1)(z —s1)
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Let 131 (z,07) = by,;(P1(x,0y)), p1(x) = x + s1 and g1(z) = z — s1. For every
R(x, 0y) € §x(¥ai) and S(z, 9;) = by, (R(x, 0x)), we have the identities

1 " Yi(x, 2)
Pi(x, 0x)"R(x, 0x) P1(x, dx) = (q1(2))$(z, 3;)(q1(2)) - ¥1(x, 2),
p1(x) p1(x)
1 oy * oy Wl (-xa Z)
Pi(z,0,)"S(z, 9;) P1(z, 97) = (p1(xX)R(x, ) (p1(x)) - ¥1(x, 2),
q1(2) q1(2)

and the more complicated identity

1 1
( Pi(x, ) R(x, 3) p(x) + p(x)R(x, 3)* Py (x, 9x)* ) “¥i(x, 2)
p1(x) p1(x)
(10)
1 ~ ~ 1
= < Pi(z,9;)S(z,3,)q(z) + q(2)S(z, 8;)* P1(z, 8)" ) ¥ (x, 2).
q1(2) q1(z)

20,2m

Comparing the orders of these operators, we see that § Sym

sum

(Y1) contains the direct

1 1
20,2m *20—4,2m
X Y1) D Pi(x,0 : Yai)P1(x, 0
gx,sym( 1) = 1( ) 1( x) gx,sym ( Al) 1( x) 1(x)

® P1)T o (YA p1(x) @ ES T

for all £,m > 2, where here & is a set of additional operators stemming from
Eq. (10)

Qf:{ ! Pi(x,30)R(x, 3x) p(x) + p(x)R(x, 8)* P1(x, d,)* :
p1(x) p1(x)

R(x,dy) € &LlwAi)}.

Explicit calculation shows that € is two dimensional. Consequently the dimension
of 32 oom(W1) is atleast (€ — 1)(m+ 1) +2m — 1) +2+1= €+ Dim+1)— 1.
One can show that this is precisely the dimension for all m,n > 1 and that both
$(¥) and §, () are equal to algebras of differential operators on a rational curve
with a cuspidal singularity of degree 2 at the origin.

Let 77 be the integral operator

o0

T1:f(z)r—>/ Ki(z, w) f(w)dw, Kl(st)Z/ Yi(x, )W (x, w)dx.
1 5]
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The specific value of the kernel K;(z, w) is determined via integration by parts to
be

_qw) _ .
Ki(z,w) = P Kai(z, w) + Cp, (Yai(x, 2), Y1 (x, w)/p1(x); 12).

From the previous estimate of the dimension of Siﬁ%‘l(%), we see that 77 will

commute with a differential operator S;(z, d;) in S?f?ym(wl)-

The values of the commuting integral and differential operators will in general
depend on s1, albeit predictably. If we make the si-dependence of ¥ (x,z) =
U(x, z; s1) explicit, we see ¥ (x, z; 51) = ¥ (x + 51, 2 — 51; 0) and consequently
the differential operator S;(z, d;) commuting with 7} for arbitrary s is the same as
in the case s1 = 0, but with z replaced by z — s; and #, replaced by t» + s1. Thus
without loss of generality we will take s; = 0.

Explicitly computing the condition of the vanishing of the concomitant and
solving the resulting linear system of equations yields the operator of order 4

1 (< 1
Si(z.90) = _ (Z *ar(2)(z - tl)kaz") .

k=0

where here

a(z) = 22,
a1(z) = =2(* + (2 — 11)2® = 311),

ao(z) = 222 + 2 — 12 + (. — 1)z — 8) + (11 + 1)Z%/3.

The dimension estimates also imply the existence of a commuting differential
operator of order 6, which we find to be

3
~ 1 - 1
Si(z, 00 = _ (Z 0ka (2)(z — n)"a§> .

k=0

where here

a3(z) =27,

() = =3+ (h — 1)2° — 4n),

a1(2) =30 + 200 — 1) + (1 — 11)?2* — 1023 + (511 — 40) 2% — 311 (12 — 11)2),
Go(2)= — 28 =3t —11)7 —=3(tr — 11)%2° — (1 — 11)° — 32)2°

+ (426 — 6311)2* + (3617 — 481113 + 1263)2° + tiia (1) + 1) 2% + 122 — 6111,



252 W. R. Casper et al.

The operators S;(z, d;) and §1 (z, 9;) commute and thus satisfy an algebraic relation.
The relation is

2 2

< 1y —tir+1t (n —20)2t1 — )1 + 12)
2 3_4 2

The discriminant of the polynomial on the right hand side is

16
A=—, (26010 — 780171, — 6271115 + 25541713 — 6271115 — 7801115 + 26015),

so for generic values of #1 and f;, the associated algebraic variety is an elliptic curve.

5 Commuting Differential Operators for the Level Two
Kernels

In this section, we explore the commuting differential operators for integral opera-
tors with level two Airy kernels, ie. those defined by bispectral functions ¥ obtained
from self-adjoint rational Darboux transformations of (L (x, dy) — sD2(L(x, 8y) —
sz)z. We will focus on the particular case when s1 = 7, leaving the other situation to
a future publication. Note also that due to the nice translation behavior of ¥a;(x, z),
we can easily rederive the formula for general values of s; from the case when
s1 = 0. So for sake of simplicity, we will take s; = 0.

There are many bispectral functions in the level two case, all of which are
determined by the factorizations of L(x, 8x)4 in Corollary 3, which in turn are
determined by a choice of o for j = 1,2 and 0 < k < 3 satisfying the constraints
of the Corollary. The precise value P>(x, d,) and the commuting operator is very
complicated in general. To facilitate our computations, and the inclusion of exact
formulas in our paper, we will take @31 = 32 = 1, @11 = @21 and take ap2 = 1,
a12 = 0, so that P>(x, dy) is given by (9). Additionally we will take 11 = 0 so that
P>(x, 0x) has the simplified formula

Py(x, 8,) =x (3443 —4(x3+1)02 —2x2 (63 +1)02 4 2x (13— 8) 8, +x°+-8x3 + 16.

Let ¢2(z) = z% and pa(x) = x (x> +4). The corresponding bispectral function is
defined by

1
12 ) = P, 5 ax ' i )
2(x,2) P2 @) 2(x, Ox) - Wailx, 2)

3 2 3
Al o) 4 6(x° +x Z+2)Ai(x o 4(x°w + 3x + w)Ai/(x L.
Pp2(x)q2(2) P2(x)q2(2)
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The Fourier algebras for ¥;(x, z) are given by algebras of differential operators
on some rank 1, torsion-free modules over certain rational curves with cuspidal
singularities. Specifically, let 7, = {f(x) € C[x]: p(x)|f’(x)} be the coordinate
ring of a singular rational curve X with cusps of order 2 at the roots of p(x). Then

Sx(¥2) ={D(x, dx) : D(x, 0x) - ey S oy}

is the algebra of differential operators on X. Likewise, let 7, = C[z* z°] be
the affine coordinate ring of a rational curve Z with a higher-order cusp at 0 and
consider the torsion-free rank 1 @7-module .Z;, = Span(c{z_z, 7~ 1}®72C[z]. Then

$:(¥2) ={D(z,9;) : D(z, ;) - My S M}

is the algebra of differential operators on the line bundle £ over Z associated to ..
The generalized Fourier map by may be described in terms of by,; by

1 1
by (A(x, dy)) = by, [Pz(x, 9x)*
q2(2) p

1
A(x, 0y
2(x) x )Pz

(.X) P2(-x7 ax):|

@)
Let 7> be the integral operator

o0

: f(2)— / Kor(z, w) f(w)dw, Kr(z,w) =/ U (x, 2)¥(x, w)dx.
141 n

The specific value of the kernel K»(z, w) is determined via integration by parts to
be

_ q2(w)

Bw= o

Kai(z, w) + Cp, (Wai(x, 2), Y2 (x, w)/p2(x); t2).

Computer calculation finds dim g){?;;gl(%) = 32, and therefore 7> will commute
with a differential operator S>(z, 9;) in § ;’Os’ylfr)l(%).

Taking 1 = #» = 1, and solving the linear system describing the vanishing
of the concomitants, we find differential operators of order 10, 12, 14, 16, and 18
commuting with 7. The operators S>(z, ;) and §2 (z, 0;) of order 10 and 12 are
given by

5
1 1
$2(2,0) = (Z o1 — z)"ak(zmﬁ) 2

k=0

ao(z) = z2'* — 200z'" + 170z'° + 564078 — 736077 + 2160z° — 115207°
— 2880z + 4320,



254 W. R. Casper et al.

a1(z) = 5z'2 — 580z7° + 380z% + 6240z° — 3700z° — 96022 — 9600z + 4800,
ar(z) = 10z'% — 560z + 180z° + 960z* + 1800z> + 30022,

a3(z) = 10z% — 180z° — 100z* — 4207 + 1260,

as(z) = 57% — 7022,

as(z) = 7%

6
~ 1 - 1
$z.8) = (§ (1 —z)kak(z>a§> 2
“ o <

do(z) = 710 — 3402"3 + 50422 + 210402'° — 522007 + 288127°

— 192000z + 490464z° — 3283207 — 201600z + 130464,
d1(z) = 6(z'* — 220z +3002'° 4+ 70008 — 1421277 + 514825

— 16800z° + 13568z% + 135682° + 2368z% — 6240z 4 12480,
@ (z) = 3(52' — 6407° + 7602% + 78002° — 87927 — 29967* — 312022

— 36000z + 50400,

@3(z) = 422(5z% — 3102 + 270z* + 600z + 15667 — 2268),
G3(z) = 3(5z% — 100z — 2247 + 784),
d5(2) = 6(z — )22z + 2)(2> + 4.
ds(z) = z*.

From Burchnall-Chaundy Theory and its extensions (see for example [26]), we
know that each pair of operators must satisfy a polynomial relation. Together, the
algebra they generate is the coordinate ring of an affine curve. However, the precise
relations that are satisfied are sufficiently complicated so as to be omitted from the

paper.
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A Random Walk on the Rado Graph m)

Check for
updates

Sourav Chatterjee, Persi Diaconis, and Laurent Miclo

Dedicated to our friend and coauthor Harold Widom.

Abstract The Rado graph, also known as the random graph G (oo, p), is a classical
limit object for finite graphs. We study natural ball walks as a way of understanding
the geometry of this graph. For the walk started at i, we show that order log} i steps
are sufficient, and for infinitely many i, necessary for convergence to stationarity.
The proof involves an application of Hardy’s inequality for trees.

Keywords Rado graph - Random graph - Random walk - Mixing speed -
Cheeger’s inequality - Hardy’s inequality
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1 Introduction

The Rado graph R is a natural limit of the set of all finite graphs (Fraissé limit, see
Sect. 2.1). In Rado’s construction, the vertex set is N = {0, 1, 2, ...}. There is an
undirected edge from i to j if i < j and the ;" binary digit of j is a one (where the
0™ digit is the first digit from the right). Thus, 0 is connected to all odd numbers,
1 is connected to 0 and all j which are 2 or 3 (mod 4) and so on. There are many
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alternative constructions. For p € (0, 1), connecting i and j with probability p gives
the Erd6s—Rényi graph G (oo, p), which is (almost surely) isomorphic to R. Further
constructions are in Sect. 2.1.

Let (Q(j))ogj<oo be a positive probability on N (so, Q(j) > 0 for all j, and
Z?‘;o 0(j) = 1). We study a ‘ball walk’ on R generated by Q: from i € N, pick
Jj € N (i) with probability proportional to Q(j), where N(i) = {j : j ~ i} is the
set of neighbors of i in R. Thus, the probability of moving from i to j in one step is

K, j) = Q) /QNG)) ifi~j, )
’ 0 otherwise.

As explained below, this walk is connected, aperiodic and reversible, with stationary
distribution

_ COHOWNGE)

(i) ,

2
where Z is the normalizing constant.

It is natural to study the mixing time—the rate of convergence to stationarity. The
following result shows that convergence is extremely rapid. Starting at i € N, order
log3 i steps suffice, and for infinitely many i, are needed.

Theorem 1 Let Q(j) = 27UtV 0 < j < oo. For K(i, j) and m defined at (1)
and (2) on the Rado graph R,

1. Foruniversal A, B > 0, we have foralli e N, £ > 1,

..
IKf — | < Aelo&2ieBE,

2

2. For universal C > 0, if 20 = 22 s the tower of 2’s of height k,
1Ky — 7l = C

forall £ < k. Here ||Kf —7| = ; Z?io |Kt(i, j) — (j)| is the total variation
distance and log} i is the number of times log, needs to be applied, starting from
i, to get a result < 1.

The proofs allow for some variation in the measure Q. They also work for the
G (00, p) model of R, though some modification is needed since then K and =
are random.

Theorem 1 answers a question in Diaconis and Malliaris [8], who proved the
lower bound. Most Markov chains on countable graphs restrict attention to locally
finite graphs [25]. For Cayley graphs, Bendikov and Saloff-Coste [1] begin the study
of more general transitions and point out how few tools are available. See also [12,
20]. Studying the geometry of a space (here R) by studying the properties of the



A Random Walk on the Rado Graph 259

Laplacian (here I — K) is a classical pursuit (““Can you hear the shape of a drum?”’)—
see [16].

Section 2 gives background on the Rado graph, Markov chains, ball walks,
and Hardy’s inequalities. Section 3 gives preliminaries on the behavior of the
neighborhoods of the G (oo, p) model. The lower bound in Theorem 1 is proved
in Sect. 4. Both Sects. 3 and 4 give insight into the geometry of R. The upper bound
in Theorem 1 is proved by proving that the Markov chain K has a spectral gap.
Usually, a spectral gap alone does not give sharp rates of convergence. Here, for
any start i, we show the chain is in a neighborhood of 0 after order log3 i steps.
Then the spectral gap shows convergence in a bounded number of further steps.
This argument works for both models of R. It is given in Sect. 5.

The spectral gap for the G (oo, p) model is proved in Sect. 6 using a version
of Cheeger’s inequality for trees. For Rado’s binary model, the spectral gap is
proved by a novel version of Hardy’s inequality for trees in Sect. 7. This is the
first probabilistic application of this technique, which we hope will be useful more
generally. There are two appendices containing technical details for the needed
versions of Cheeger’s and Hardy’s inequalities.

2 Background on R, Markov Chains, and Hardy’s
Inequalities

2.1 The Rado Graph

A definitive survey on the Rado graph (with full proofs) is in Peter Cameron’s
fine article [6]. We have also found the Wikipedia entry on the Rado graph and
Cameron’s follow-up paper [7] useful.

In Rado’s model, the graph R has vertex set N = {0, 1, 2, ...} and an undirected
edge from i to j if i < j and the i™ digit of j is a one. There are many other
constructions. The vertex set can be taken as the prime numbers that are 1 (mod 4)
with an edge from p to ¢ if the Legendre symbol (f;) = 1. In [8], the graph appears
as an induced subgraph of the commuting graph of the group U (oo, g)—infinite
upper-triangular matrices with ones on the diagonal and entries in F,. The vertices
are points of U (0o, g). There is an edge from x to y if and only if the commutator
x~1y~lxy is zero. The infinite Erdés—Rényi graphs G (oo, p) are almost surely
isomorphicto R forall p,0 < p < 1.

The graph R has a host of fascinating properties:

» Itis stable in the sense that deleting any finite number of vertices or edges yields
an isomorphic graph. So does taking the complement.

e It contains all finite or countable graphs as induced subgraphs. Thus, the
(countable) empty graph and complete graphs both appear as induced subgraphs.

* The diameter of R is two—consider any i # j € N and let k£ be a binary number
with ones in positions i and j and zero elsewhere. Then i ~ k ~ j.



260 S. Chatterjee et al.

Each vertex is connected to “half” of the other vertices: 0 is connected to all the
odd vertices, 1 to 0 and all numbers congruent to 2 or 3 (mod 4), and so on.

R is highly symmetric: Any automorphism between two induced subgraphs can
be extended to all of R (this is called homogeneity). The automorphism group
has the cardinality of the continuum.

R is the “limit” if the collection of all finite graphs (Fraissé limit). Let us spell
this out. A relational structure is a set with a finite collection of relations (we
are working in first order logic without constants or functions). For example,
Q with x < y is a relational structure. A graph is a set with one symmetric
relation. The idea of a “relational sub-structure” clearly makes sense. A class
C of structures has the amalgamation property if for any A, By, By € C with

embeddings A g Bjand A iz) By, there exists C € C and embeddings B 8 C

and B> 8 € such that g1f1 = g f2. A countable relational structure M is
homogeneous if any isomorphism between finite substructures can be extended
to an automorphism of M. Graphs and Q are homogeneous relational structures.
A class C has the joint embedding property if for any A, B € Cthereisa C € C
so that A and B are embeddable in C.

Theorem 2 (Fraissé) Let C be a countable class of finite structures with
the joint embedding property and closed under ‘induced’ isomorphism with
amalgamation. Then there exists a unique countable homogeneous M with C
as induced substructures.

The rationals Q are the Fraissé limit of finite ordered sets. The Rado graph R is
the Fraissé limit of finite graphs. We have (several times!) been told “for a model
theorist, the Rado graph is just as interesting as the rationals”.

There are many further, fascinating properties of R; see [6].

2.2 Markov Chains

A transition matrix K(i, j),0 < i, j < oo, K(i, j) = 0, Z?io K (i, j) = 1 for all
i,0 < i < oo, generates a Markov chain through its powers

K, j) =) KG. kK" k. j).
k=0

A probability distribution 7 (i), 0 < i < 00, is reversible for K if

(K@, j)=n(j)K(j,i) forall0<i,j < oo. 3)
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Example With definitions (1), (2) on the Rado graph, if i ~ j,

N o QOOING) 03() ey . ..
n(HK@G, j) = 7z ONG) 7 =n(j)K(j,i).

(Both sides are zero if i ¢ j.)

In the above example, we think of K (i, j) as a ‘ball walk’: From i, pick a neighbor
J with probability proportional to Q(j) and move to j. We initially found the neat
reversible measure surprising. Indeed, we and a generation of others thought that
ball walks would have Q as a stationary distribution. Yuval Peres points out that,
given a probability Q(j) on the vertices, assigning symmetric weight Q (i) Q(j) to
i ~ j givesthis K for the weighted local walk. A double ball walk—*“from i, choose
a neighbor j with probability proportional to Q(j), and from j, choose a neighbor
k with probability proportional to Q(k)/Q(N (k))”’—results in a reversible Markov
chain with Q as reversing measure. Note that these double ball walks don’t require
knowledge of normalizing constants. All of this suggests ball walks as reasonable
objects to study.
Reversibility (3) shows that 7 is a stationary distribution for K :

Y o wOKG j) =) w(DKG, D) =m() ) K(,i)=m().
i=0 i=0 i=0

In our setting, since the Rado graph has diameter 2, the walk is connected. It is easy
to see that it is aperiodic. Thus, the & in (2) is the unique stationary distribution.
Now, the fundamental theorem of Markov chain theory shows, for every starting
state i, K¢(i, Jj) — m(j) as £ — oo, and indeed,

lim |Kf — x| = 0.
L—00

Reversible Markov chains have real spectrum. Say that (K, 7) has a spectral gap if
there is A > 0 such that for every f € £2(x),

ST - PP <A (FO — FOPRDK G ). @)

iJj

where f = > 2 f(i)7(i). (Then the gap is at least 1/A.) For chains with a spectral
gap, for any i,

. 5 1 1 20
4K = x| <n(l.)(1—A) : 5)
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Background on Markov chains, particularly rates of convergence, can be found
in the readable book of Levin and Peres [19]. For the analytic part of the theory,
particularly (4) and (5), and many refinements, we recommend [23].

There has been a healthy development in Markov chain circles around the theme
‘How does a Markov chain on a random graph behave?’. One motivation being,
‘What does a typical convergence rate look like?’. The graphs can be restricted in
various natural ways (Cayley graphs, regular graphs of fixed degree or fixed average
degree, etc.). A survey of by now classical work is Hildebrand’s survey of ‘random-
random walks’ [14]. Recent work by Bordenave and coauthors can be found from [4,
5]. For sparse Erd6s—Rényi graphs, there is remarkable work on the walk restricted
to the giant component. See [22], [11] and [3].

It is worth contrasting these works with the present efforts. The above results
pick a neighbor uniformly at random. In the present paper, the ball walk drives the
walk back towards zero. The papers above are all on finite graphs. The Markov
chain of Theorem | makes perfect sense on finite graphs. The statements and proofs
go through (with small changes) to show that order log3 i steps are necessary and
sufficient. (For the uniform walk on G(n, 1/2), a bounded number of steps suffice
from most initial states, but there are states from which log} n steps are needed.)

2.3 Hardy’s Inequalities

A key part of the proof of Theorem 1 applies Hardy’s inequalities for trees to prove a
Poincaré inequality (Cf. (4)) and hence a bound on the spectral gap. Despite a large
expository literature, Hardy’s inequalities remain little known among probabilists.
Our application can be read without this expository section but we hope that some
readers find it useful. Extensive further references, trying to bridge the gap between
probabilists and analysts, is in [17].

Start with a discrete form of Hardy’s original inequality [13, pp. 239-243]. This
says thatifa, > 0, A, = a1 + - -- + ay, then

© 42 o0
D <4 an
n=1 n=1

and the constant 4 is sharp. Analysts say that “the Hardy operator taking {a,} to
{A,,/n} is bounded from ¢ to £2”. Later writers showed how to put weights in. If
u(n) and v(n) are positive functions, one aims for

oo oo
DA SAY azv(n),
n=1 n=1
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for an explicit A depending on w(n) and v(n). If u(n) = l/n2 and v(n) = 1,
this gives the original Hardy inequality. To make the transition to a probabilistic
application, take a(n) = g(n) — g(n — 1) for g in £2. The inequality becomes

D e um) <A (g(n) — g — 1) v(n). (6)
n=1

n=1

Consider a ‘birth and death chain’ which transits from j to j 4 1 with probability
b(j) and from j to j — 1 with probability d(j). Suppose that this has stationary
distribution w(j) and that Zj g(Hu(j) = 0. Set v(j) = wn(j)d(j). Then (6)
becomes (following simple manipulations)

Var(g) < A Y (8()) — g()*n(HK (j, k) (N
J.k

with K (j, k) the transition matrix of the birth and death chain. This gives a Poincaré
inequality and spectral gap estimate. A crucial ingredient for applying this program
is that the constant A must be explicit and manageable. For birth-death chains, this
is indeed the case. See [21] or the applications in [9]. The transition from (6) to (7)
leans on the one-dimensional setup of birth-death chains. While there is work on
Hardy’s inequalities in higher dimensions, it is much more complex; in particular,
useful forms of good constants A seem out of reach. In [21], Miclo has shown
that for a general Markov transition matrix K (i, j), a spanning tree in the graph
underlying K can be found. There is a useful version of Hardy’s inequality for trees
due to Evans, Harris and Pick [10]. This is the approach developed in Sect. 7 below
which gives further background and details.

Is approximation by trees good enough? There is some hope that the best tree is
good enough (see [2]). In the present application, the tree chosen gives the needed
result.

2.4 The log* Function

Take any a > 1. The following is a careful definition of log’ x for x > 0. First, an
easy verification shows that the map x — (logx)/x on (0, co) is unimodal, with a
unique maximum at x = e (where its value is 1/e), and decaying to —oco asx — 0
and to 0 as x — oo. Thus, if @ > e!/¢, then for any x > 0,

log x X
log, x = < < Xx.
loga "~ eloga

Since log, is a continuous map, this shows that if we start with any x > 0,
iterative applications of log, will eventually lead to a point in (0, a) (because there
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are no fixed points of log, above that, by the above inequality), and then another
application of log, will yield a negative number. This allows us to define log} x
as the minimum number of applications of log,, starting from x, that gets us a
nonpositive result.

If a < el/e, the situation is a bit more complicated. Here, loga < 1/e, which
is the maximum value of the unimodal map x +— (logx)/x. This implies that there
exist exactly two points 0 < y, < x, that are fixed points of log, (with y, = x, if
a = el/"). Moreover, log, x < x if x ¢ [y4, X4], and log, x > x if x € [y4, x4].
Thus, the previous definition does not work. Instead, we define log) x to be the
minimum number of applications of log,, starting from x, that leads us to a result
< x4. In both cases, defining log: 0 = 0 is consistent with the conventions. Note
that log} x > 0 forall x > 0.

3 The Geometry of the Random Model

Throughout this section the graph is G (oo, 1/2) — an Erd6s—Rényi graph on N =
{0, 1,2, ...} with probability 1/2 for each possible edge. From here on, we will
use the notation N to denote the set {1, 2, ...} of strictly positive integers. Let
o) = 2=O+D for x € N. The transition matrix

o)

K= owap

YEN(x)}

and its stationary distribution 7 (x) = Z ~10(x) Q(N (x)) are thus random variables.
Note that N (x), the neighborhood of x, is random. The main result of this section
shows that this graph, with vertices weighted by Q(x), has its geometry controlled
by a tree rooted at 0. This tree will appear in both lower and upper bounds on the
mixing time for the random model.

To describe things, let p(x) = min N(x) (p is for ‘parent’, not to be confused
with the edge probability p in G (oo, p)). We need some preliminaries about p(x).

Lemma 1 Let B be the event that for all x € Ny, p(x) < x. Then we have that
P(B) > 1/4

Proof Denote E = {{x, y}: x # y € N}, and for any ¢ € E, consider B, = 1g(e),
where E is the set of edges in G (00, 1/2), so that (B),.; is a family of independent
Bernoulli variables of parameter 1/2.

For x € N, define A, the event that x is not linked in G to a smaller vertex.
Namely, we have formally

Ay = ﬂ {B{y.x) = 0},

ye[0,x—1]
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where [0, x—1] := {0, 1, ..., x —1}. Note that the family (A)ren, is independent,
and in particular, its events are pairwise independent. We are thus in position to
apply Kounias—Hunter—Worsley bounds [15, 18, 26] (see also the survey [24]), to
see that for any n € N,

P( U Ax> <min{ Z P(Ay) — P(A}) Z P(Ay),l},

xe[l,n] x€[1,n] vel2,n]

where we used that P(A1) > P(A,) > --- > P(A,), which holds because

1
VxeN,, P(Ay) = ]_[ B(Blyx)) =,

yel0,x—1]
We deduce that
. 1 1 1 1 1 1
IP’(U Ax)gmm{z o T g Z 2y,1}=2+4_2n+1,
xe[1,n] x€[1,n] ve[2.n]

Letting n tends to infinity, we get P(U reN, A x) < 3. To conclude, note that B¢ =
Ux eNp AX . O

Remark 1 Assume that instead of 1/2, the edges of E belong to E with probability
p € (0, 1) (still independently), the corresponding notions receive p in index. The
above computations show P,(8) > 1 — (2 —-3p+ p2) A1, sothat P, (B) goes to 1
as p goes to 1, but this bounds provides no information for p € (0, (3 — v/5)/2].

In fact the above observation shows that the Kounias—Hunter—Worsley bound is
not optimal, at least for small p > 0. So let us give another computation of P, (8):

Lemma 2 Consider the situation described in Remark 1, with p € (0, 1). We have

-1
P)(B) = (Z p)(1 — p)")

neN

where p(n) is the number of partitions of n. In particular P(8) > 0 for all p €
0, D.

Proof Indeed, we have 8 = )
X € N+,

-1 —
= [Ten= (11, ") =(T1Z0-07)

xeN4 xeN xeNy neN

reN, A¢$, so that by independence of the A,, for

1
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Let N 'be the set of sequences of integers (7;);en, with all but finitely many elements
equal to zero. Applying the distributive law to the above expression, we have

—1 -1
Py(B) = ( > Jla- p)’”“) = (Z pm)(1 — p)")

(nl)lEN+€NXEN+ neN

where p(n) is the number of ways to write n as erN+ xny, with (n;)jen, € N.
O

Consider the set of edges
Fo={{x,p()}:x e Ny}

and the corresponding graph 7 := (N, F). Under B, it is clear that 7 is a tree. But
this is always true:

Lemma 3 The graph T is a tree.

Proof The argument is by contradiction. Assume that 7~ contains a cycle, say
(x1)1ez, withn > 3. Let us direct the a priori unoriented edges {x;, x;+1}, for[ € Z,,
by putting an arrow from x; to x;41 (respectively from x;41 to x;) if p(x;) = x;41
(resp. p(x;+1) = x;). Note that we either have

VI€Z,, xi > xj+1, or YI €Z,, x141 = X1, (8)

because otherwise there would exist [ € Z, with two arrows exiting from x;, a
contradiction. Up to reindexing (x;);cz, as (x—;);ez,, we can assume that (8) holds.
Fix some [ € Z,. Since p(x;) = x;4+1, we have x; € N(xj4+1), SO Xj42 =
p(x1+1) < x;. Due to the fact that x; # x;42 (recall that n > 3), we get x;42 < x;.
Starting from x( and iterating this relation (in a minimal way, n/2 times if n is even,
or n times if n is odd), we obtain a contradiction: xg < xg. Thus, 7 must be a tree.
O

Let us come back to the case where p = 1/2. The following result gives an idea of
how far p(x) is from x, for x € N.

Lemma 4 Almost surely, there exist only finitely many x € Ny such that p(x) >
2logy (1 + x). In particular, a.s. there exists a (random) finite C > 2 such that

VxeN,, p(x) < Clog,y (1 + x).

Proof The first assertion follows from the Borel-Cantelli lemma, as follows. For
any x € N4, consider the event

Ay = {p(x) > 2logy(1 + x)}.
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Denoting | -] the the integer part, we compute

Z P(Ay) = Z P(Bjo.x}y = 0, B1.x) =0, ..., B{210g,(14x)].x} = 0)

XEN+ XEN+

B 1 _ 1
= 21+2logy (14x)] S > 142 ST
X

xeNy eNy

Having shown that a.s. there exists only a finite number of integers x € Ni

satisfying p(x) > 2log, (1 + x), denote these points as x1, ..., xy, with N € N. To
get the second assertion, it is sufficient to take C := max{p(x;)/log(1 +x;) : I €
[1, N}, with the convention that C =2 if N = 0. o

4 The Lower Bound

The lower bound in Theorem 1, showing that order log3 i steps are necessary for
infinitely many i is proved in [8] for the binary model of the Rado graph and we
refer there for the proof. A different argument is needed for the G (co, 1/2) model.
This section gives the details (see Theorem 3 below).

Let u be the stationary distribution of our random walk on G (oo, 1/2) (with
0(j) = 27U+ as in Theorem 1), given a realization of the graph. Note that u is
random. For each x € N, let 7, be the mixing time of the walk starting from x, that
is, the smallest n such that the law of the walk at time n, starting from x, has total
variation distance < 1/4 from w. Note that the t,’s are also random.

Theorem 3 Let t be as above. Then with probability one,

. Tx
limsup . > 1.
X—00 10g16x

Equivalently, with probability one, given any ¢ > 0, T, > (1 — &)logjcx for
infinitely many x.
We need the following lemma.

Lemma 5 With probability one, there is an infinite sequence xo < x] < x2 < --- €
N such that:

1. For each i, x;11 is connected to x; by an edge, but not connected by an edge to
any other number in {0, 1, ..., 2x; — 1}.
2. Foreachi, 23 < Xit1 < 23xi+l _
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Proof Define a sequence yo, y1, y2, - - - inductively as follows. Let yg be an arbitrary
element of N. For each i, let y;;+; be the smallest element in {23yl', 23y 4
1,..., 23t _ 1} that has an edge to y;, but to no other numberin {0, 1, ..., 2y; —
1}. If there exists no such number, then the process stops. Let A; be the event that
y; exists. Note that Ag D A1 D A D ---.

Let F(x) := 23, G(x) := 23t — 1, a9 = by = yo, and foreach i > 1, let

ai:=FoFo-oF(y). bj=GoGo-0G().

i times i times

Since 23 < yiy1 < 23%*!1 — 1 for each i, it follows by induction that a; < y; < b;
for each i (if y; exists). Now fix some i > 1. Since the event A;_; is determined

by y1, ..., yi—1, and these random variables can take only finitely many values (by
the above paragraph), we can write A;_1 as a finite union of events of the form
{y1 =Cly.--,Yi—1 = C,'_l}, where cl<cp<---<cCi—1 € N.

Now note that for any ¢y < --- < cj—1, the event A; N {y; = c1,...,Yyi—1 =
ci—1} happens if and only if {y; = ¢y, ..., yi—1 = c¢i—1} happens and there is some
y € {2351'*1 ,23¢i-1 41, .., 23+ _ 1} that has an edge to ¢;_1, but to no other
number in {0, ..., 2¢;—1 — 1}. The event {y; = c1,...,yi—1 = ¢ci—1}isin F¢,_|,
where 7, denotes the o-algebra generated by the edges between all numbers in
{0, ..., x}. On the other hand, on the event {y; = c1, ..., Yi—1 = ci—1}, it is not

hard to see that
P(A[l?dclil) =1- (1 _ 2—2@,-71)23(‘,',1 .
Thus,

P(A; N {y1 =c1,...,Yi-1 =ci—1})

X 3ci—
=P(y1 =c1, ..., yi1 = ci—1)(1 — (1 = 2726-1)2771y

>P(yi=ct,....yic1 =ci1)(1—e 27"

where in the last step we used the inequality 0 < 1 — x < e™* (which holds for
all x e [0, 1]). Note that the term inside the parentheses on the right side is an
increasing function of ¢;_1, and the maximum possible value of y;_1 is b;_1. Thus,
summing both sides over all values of ¢, ..., c;—1 such that {y; = ¢y, ..., yi—1 =
ci—1} € A1, we getP(A;)) =P(A; NA—1) 2 P(A;—1)(1 — e‘sz). Proceeding
inductively, this gives

i—1
P(AIN---NA) =[] —e ).
k=0
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Taking i — oo, we get P(B) > [[22,(1—e~2"), where B := (22, Ar. Now recall
that the event B, as well as the numbers by, b1, . . ., are dependent on our choice of
yo. To emphasize this dependence, let us write them as B(yo) and b (yo). Then by
the above inequality,

Z P(B(y0)°) < Z( H(l 200 )

Yo€EN yoeN

where B(yp)¢ denotes the complement of B(ygp). Due to the extremely rapid growth
of bx(yo) as k — o0, and the fact that byo(yg) = Yo, it is not hard to see that
the right side is finite. Therefore, by the Borel-Cantelli lemma, B(yo)¢ happens for
only finitely many yo with probability one. In particular, with probability one, B(yq)
happens for some yp. This completes the proof. O

Proof (Of Theorem 3) Fix a realization of G(oo, 1/2). Let x be so large that
n([x, 00)) < 1/10,and [T, (1 — 2~%M+1y > 9/10.

Let xo, x1, X2, . . . be a sequence having the properties listed in Lemma 5 (which
exists with probability one, by the lemma). Discarding some initial values if
necessary, let us assume that xo > x. By the listed properties, it is obvious that
x;j — oo asi — 00. Thus, to prove Theorem 3, it suffices to prove that

liminf " > 1. 9)
=00 loglﬁx,

We will now deduce this from the properties of the sequence.

Suppose that our random walk starts from x; for some i > 1. Since x; connects
to x;—1 by an edge, but not to any other number in {0, ..., 2x;_; — 1}, we see that
the probability of the walk landing up at x;_1 in the next step is at least

1 o
. Z 27/{ =1 27x,~+1.

k=2x;

Proceeding by induction, this shows that the chance that the walk lands up at x¢ at
step i is at least [T, (1 — 27%*1). Let u; be the law of walk at step i (starting
from x;, and conditional on the fixed realization of our random graph). Then by the
above deduction and the facts that xo > x and x; > ay(xg) > ar(x), we have

(. 00) > H(l 27 > [Ta —27aeh,
k=1

By our choice of x, the last expression is bounded below by 9/10. But p([x, 00)) <
1/10. Thus, the total variation distance between u; and u is at least 8/10. In
particular, 7y, > i. Now, x; < 2%+l — | < 16%-1, which shows that
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log}e xi < logjsxi—1 + 1. Proceeding inductively, we get log}, x; < i + logj, xo.
Thus, 7,; > logjs xi — log] xo. This proves (9). O

5 The Upper Bound (Assuming a Spectral Gap)

This section gives the upper bound for both the binary and random model of the

Rado graph. Indeed, the proof works for a somewhat general class of graphs and

more general base measures Q. The argument assumes that we have a spectral gap

estimate. These are proved below in Sects. 6 and 7. We give this part of the argument

first because, as with earlier sections, it gives a useful picture of the random graph.
Take any undirected graph on the nonnegative integers, with the property:

. (10)
Jj is connected to some k < Clog j.

:There exists C > 0 such that for any j > 2,
Let {X,}n>0 be the Markov chain on this graph, which, starting at state 7, jumps to
a neighbor j with probability proportional to Q(j) = 2~U*D_ The following is the
main result of this section.

Theorem 4 Let K be the transition kernel of the Markov chain defined above.
Suppose that K has a spectral gap. Let |1 be the stationary distribution of the chain,
and let a := e'/C. Then for any i € N and any £ > 1,

.
IKf — ull < Crel®®aie=C2t

where C1 and Cy are positive constants that depend only the properties of the chain
(and notoni or£).

By Lemma 4, G(oo, 1/2) satisfies the property (10) with probability one, for
some C that may depend on the realization of the graph. The Rado graph also
satisfies property (10), with K = 1/log2. Thus, the random walk starting from
Jj mixes in time log} j on the Rado graph, provided that it has a spectral gap. For
G (00, 1/2), assuming that the walk has a spectral gap, the mixing time starting from
J is log j, where a depends on the realization of the graph. The spectral gap for
G (00, 1/2) will be proved in Sect. 6, and the spectral gap for the Rado graph will
be established in Sect. 7. Therefore, this proves Theorem 1 and also the analogous
result for G (oo, 1/2).

Proof (Of Theorem 4) Note thata > 1. Let Z,, := log} X,,. We claim that there is
some jo sufficiently large, and some positive constant ¢, such that

E(e? | F) < e ¢ if Z, > jo, (11)
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where ¥, is the o-algebra generated by X, ..., X,. (The proof is given below.)
This implies that if we define the stopping time S := min{rn > 0 : X,, < jo}, then
{eZSN'*C(SA")}n)o is a supermartingale with respect to the filtration {#,},>0 (see
details below). Moreover, it is nonnegative. Thus, if we start from the deterministic
initial condition X = j, then for any n,

E(eZS/\n+C(SAVl)|XO — J) < eZS/\0+C(SAO) — elOng.

But Zsn, > 0. Thus, E(eS™")|Xo = j) < €'% /. Taking n — oo and applying
the monotone convergence theorem, we get

E(e®S|Xo = j) < el (12)

Now take any j > 1 and n > 1. Let u be the stationary distribution, and let 1 ; , be
the law of X,, when X¢ = j. Take any A C {0, 1, ...}. Then for any m < n,

wjn(A) =P(X, € AlXo = j)
m jo
=Y > P(X,€AlS=i. X; =1, Xo=j)P(S =i, X; =1|Xo = j)
i=0 [=0

+P(X, € AlS > m, Xo= j)P(S > m|Xo = j).

But
P(Xn € AIS =i, Xi =1, Xo = j) = P(X, € AIXi =1) = i (A),
and
m . jo
p(A) =D Y (AR =i, X; =1|Xo = j) + L(APB(S > m|Xo = j).
i=0 =0

Thus, |@jn(A) — n(A)| can be bounded above by

m . jo
DD a-i(A) = (AP =i, X; =1|Xo = j) +P(S > m|Xo = j).
i=0 =0

Now, if our Markov chain has a spectral gap, there exist constants C; and C3
depending only on jo and the spectral gap, such that

| n—i(A) — w(A)| < Cre=20=D < e~ C20—m)
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forall0 < i < mand 0 < I < jo. Using this bound and the bound (12) on
E(e“S|Xo = j) obtained above, we get

1.0 (A) — (A)| < Cre~C2mm) 4 plogaj—em

Taking m = [n/2], we get the desired result. O

Proof (Of inequality (11)) It suffices to take n = 0. Suppose that Xo = j for some
j = 1. By assumption, there is a neighbor k of j such that k < K logj = log, j.
Assuming that j is sufficiently large (depending on K), we have that for any / < k,

log; I < logy k < log(log, j) =log, j — 1.
Also, log} I < log j forany ! < j. Thus,

E(e?~%0|Xo = j) < e 'P(X) <k|Xo=j)+Pk < X1 < jl|Xo=J)

n Zelog;l—log:: /P(X1 =1|Xp = j).
I>j

Now for any / > k,

P(Xy =1Xo=j) 01 _ k)

P(X1 =1|Xo = j) < - B
X =1Xo=DS ooy, = kiXo = ) ~ 0K

Thus,

Zelogﬁ*logﬁ; Ipx, = I Xo = j) < Zelog,‘;l*log,ﬁjz*(l*k)’
I>j I>j

which is less than 1/4 if j is sufficiently large (since k < log} j). Next, let L be the
set of all [ > k that are connected to j. Then

P(X| > klXo=j) Y27

P(X1 > k|Xo = j) < ! = .
X1 >KX0=DS pxy > kiXo= )~ 2%+ 30, 2

Since the map x > x/(27% + x) is increasing, this shows that

2! 1
P(X) > k|Xo = j) < 212k =

27k + Zl>k 2! 2
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Combining, we get that for sufficiently large j,

1
E(e?17%0|Xy = j) < e '"P(X1 < k|Xo = j) +P(X1 > k|Xo = j) + 4

1
=f*+u—e4waq>km0=ﬂ+4

l—e ! 1 34271
+ =

< 1.
2 4 4

<e '+

Proof (Of the Supermartingale Property) Note that

E(EZSA(VH»I)"'C(S/\(""'U) |/('_-n)

n
= 3 B(eZonm A i) 4 B(eZsnonnteSAMED e
i=0

n
= > B(XF sy |F0) + BleP D g ).
i=0

The events {S = i} are ¥,,-measurable for all 0 < i < n, and sois the event {S > n}.
Moreover, Zy, ..., Z, are also F,-measurable. Thus, the above expression shows
that
E(EZSA(H+I)+C(S/\("+1))|7—'n) — 1{S<n}eZS/\n+C(S/\n)+1{S>n}E(eZn+l+C(n+l) |F).
Butif S > n, then Z,, > jo, and therefore by (11),
E(eZn+1+c-(n+1)|7_—n) < eZy,*C‘FC(}’H‘l) — eZyrFC}’l.

Thus,

E(eZSA(n+1)+C(S/\(n+1))|7_~n) < l{S<n}eZsAn+C(S/\n) + 1{S>n}ezn+cn

_ oZsmnte(SAm)

6 Spectral Gap for the Random Model

Our next goal is to show that the random reversible couple (K, 7) admits a spectral
gap. The arguments make use of the ideas and notation of Sect. 3. In particular, recall
the event B8 = {p(x) < x Vx € N} from Lemma 1 and the random tree 7 with
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edge set F from Lemma 3. The argument uses a version of Cheeger’s inequality for
trees which is further developed in Appendix 1.

Proposition 1 On B, there exists a random constant A > 0 such that
Vfel*m),  An[(f—nlfD1<E

where in the r.h.s. & is the Dirichlet form defined by

1
Viellm), &)=, Y (FO) = fOP 0Kk, y).

x,yeN

Taking into account that for any f € L?(r), the variance w[(f — n[f])z] of
f with respect to 7 is bounded above by 7[(f — f(0))?], the previous result
is an immediate consequence of the following existence of positive first Dirichlet
eigenvalue under 8.

Proposition 2 On B, there exists a random constant A > 0 such that
Vel Axl(f - f(0)*] < &) (13)

The proof of Proposition 2 is based on the pruning of G into 7~ and then resorting
to Cheeger’s inequalities for trees. More precisely, let us introduce the following
notations. Define the Markov kernel Kq-as

K(x,y) if {x, y} € F,
Vx,yeN, Kq(x,y) = 1_ZzeN\{x} Kq(x,z) ifx =y,
0 otherwise.

Note that this kernel is reversible with respect to 7. The corresponding Dirichlet
form is given, for any f € L*(), by

Ko,
ErN) =3 (fo) - fo? ™ ;ﬂx Do () - f@P @K, )

x,yeN {x,y}eF

It will be convenient to work with & := Z&T, where Z is the normalizing constant
of m, as in equation (2). Define a nonnegative measure y on N as

VxeNy, n(x) = Qx)Q(p(x)). (14)

Proposition 3 On B, there exists ). > 0 such that

VfeL’w,  iul(f — FONH < EU). (15)
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This result immediately implies Proposition 2. Indeed, due on one hand to the
inclusion N (x) C [p(x), oo[ and on the other hand to the nature of Q, we have

VxeNy, Q(p(x)) < Q(N(x)) < 20(px)). (16)

Thus for any f € L%(u),

A
M = FOP] = Y (F() = f0)’ Q) QN ()

XEN+

2\
S 2 () = 70 20)Q(p(x))

XEN+

2% 2~
= M = FO)T < 8(f) =287(f) < 26(f),

N

and thus, Proposition 2 holds with A := 1/2.

The proof of Proposition 3 is based on a Dirichlet-variant of the Cheeger
inequality (which is in fact slightly simpler than the classical one, see Appendix 1).
For any A C N4, define 0A = {{x,y} : x € A,y &€ A} C E. Endow E with the
measure v induced by, for any {x, y} € E,

v({x,y)) = Zn ) Kg(x, y) = { Q()Q(y) if {x.y} € F,

0 otherwise.
Define the Dirichlet—-Cheeger constant
0A
c= it YO S
AcA n(A)

where A = {A C Ny : A # (J}. The proof of the traditional Markovian Cheeger’s
inequality given in the lectures by Saloff-Coste [23] implies directly that the best
constant A in Proposition 3 satisfies 1 > 2 /2. Thus it remains to check:

Proposition 4 On B, we have 1 > 1/2 and in particular ¢ > 0.

Proof Take any nonempty A € A and decompose it into its connected components
with respect to 72 A = || el A;, where the index set 7 is at most denumerable.
Note that

w(A) = u(A), v(A) =) v(A)),
iel iel

where the second identity holds because there are no edges in F' connecting two
different A;’s. Thus, it follows that t = iane?( v(0A)/u(A), where A is the set of
subsets of A which are 7-connected.
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Consider A € A, it has a smallest element a € N4 (since 0 ¢ A). Let T, be the
subtree of descendants of A in 7 (i.e., the set of vertices from N whose non-self-
intersecting path to 0 passes through a). We have A C 7, and A D {a, p(a)} =
dT,, and it follows that v(0A)/u(A) = v(9T,)/u(T,). We deduce that

v(Ty) . . Q(a)Q(p(a))
t > inf = inf .
aeNy pu(Ty)  aeNy  u(Ty)

On B, we have for any a € N, on the one hand

Vx el p(x) = p(a), A7)

and on the other hand

T, C [a, oof. (18)
We get u(T,) equals
Y 0@ 0(p(x) = Q(p@) > 0(x) = Q(p@) Y Qx)=20(p(a)Q(a).

xeTy, xeT, xé€fa,o0]

It follows that ¢ > 1/2. m]

Lemma 4 can now be used to see that the ball Markov chain on the random
graph has a.s. a spectral gap. Indeed, we deduce from Lemma 4 that there exists a
(random) vertex xo € N such that for any x > xg, p(x) < x. Consider

x1 = max{p(x) : x € [, x0]}.
It follows that for any a > x1, we have, forallVx € T,, p(x) < x. (To see this, take
any path ag, ai, ... in T, starting at ag = a, so that p(a;) = a;_;1 for each i. Let
k be the first index such that ax > ay+1, assuming that there exists such a k. Then

ak+1 < X0, and so ax = p(ak+1) < x1. But this is impossible, since ap < a and
ap > x1.) In particular, we see that (17) and (18) hold fora > x;. As a consequence,

aT,) 1
g V0T S 1
a>xy pu(Ty) 2

By the finiteness of [[1, x1], we also have infy ey ¢, v(0Ta)/p(Ta) > 0. So, finally,

aT,
c= inf V0T
aeNy u(Ty)

which shows that G (oo, 1/2) has a spectral gap a.s.
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7 Spectral Gap for the Rado Graph

This section proves the needed spectral gap for the Rado graph. Here the graph has
vertex set N and an edge from i to j if i is less than j and the ith bit of j is a one. We
treat carefully the case of a more general base measure, Q(x) = (1 —§)8*. As delta
tends to 1, sampling from this Q is a better surrogate for “pick a neighboring vertex
uniformly”. Since the normalization doesn’t enter, throughout take Q(x) = 6. The
heart of the argument is a discrete version of Hardy’s inequality for trees. This is
developed below with full details in Appendix 2.

Consider the transition kernel K reversible with respect to 7 and associated to
the measure Q given by Q(x) := §* for all x € N, where § € (0, 1) (instead of
8 = 1/2 as in the introduction, up to the normalization). Recall that

_ oW
Vx,yeN, K(x,y) = Q(N(x))]lN(”(y)’
VxeN, m(x) = Z7 Q) Q(N (x)),

where N (x) is the set of neighbors of x induced by K and where Z > 0 is the
normalizing constant. Here is the equivalent of Proposition 3:

Proposition 5 We have

1-46
A .
16(2 v [log, log, (2/1ogy(1/8))1)

This bound will be proved via Hardy’s inequalities. If we resort to Dirichlet—
Cheeger, we rather get

(1-26)°

Az
2

19)

To see the advantage of Proposition 5, let § come closer and closer to 1, namely,
approach the problematic case of “pick a neighbor uniformly at random”. In this
situation, the r.h.s. of the bound of Proposition 5 is of order

1-6
167log, log,(1/(1 — 8))1
which is better than (19) as § goes to 1—.

Here we present the Hardy’s inequalities method to get Proposition 5 announced
above. Our goal is to show that K admits a positive first Dirichlet eigenvalue:

Proposition 6 There exists A > 0 depending on § € (0, 1) such that

1
VIiellm),  Arl(f—fOPI<, Y (FO) = FOPT0K k).

x,yeN
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It follows that the reversible couple (K, ) admits a spectral gap bounded below
by A given above. Indeed, it is an immediate consequence of the fact that for any
f € L*(), the variance of f with respect to 7 is bounded above by 7 [(f — f 0)2].

The proof of Proposition 6 is based on a pruning of K and Hardy’s inequalities
for trees. Consider the set of unoriented edges induced by K: E := {{x, y} e NxN :
K (x,y) > 0} (in particular, E does not contain the self-edges or singletons). For
any x € N4, let p(x) the smallest bit equal to 1 in the binary expansion of x, i.e.,

p(x) =min{y e N : K(x,y) > 0}.
Define the subset F of E by
F={{x,p(x)} € E : x e Ny}
and the function v on F via
Vi{x, p(x)} € F, v({x, p()}) = Zr(x)K (x, p(x)) = Q(x) Q(p(x)).
To any f € L?(x), associate the function (df)* on F given by
Vi{x,p(x)} € F, @f*({x, p@)) = (f(x) = f(p)))*.
Finally, consider the (non-negative) measure y defined on N, via
VxeNy, p(x) = Q(x)Q(p(x)). (20)

Then we have:

Proposition 7 There exists A > 0 depending on § € (0, 1) such that

Vel w,  apl(f — FO)1< D (@f)e)vle).

ecF

This result implies Proposition 6. Indeed, note that by the definition of Q,

1
VxeNy, Q(p(x)) < QN < | Q(p(x)). 21

Thus, for any f € L*(w),

A
Al(f = FO)’ )= D0 (f() = FOI Q@) QN X))

XEN+

A 2
S a_sz XEZfo(x) — £0)’ Q) Q(p(x))
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1

_ A _ 2
= (s ORI

a > @f)*eyvie)
ecF

! 2
<ouos) wZEN(f(y) 2K (x, y)

namely Proposition 6 holds with A := A(1 — §).

Note that N endowed with the set of non-oriented edges F has the structure of a
tree. We interpret O as its root, so that for any x € N, p(x) is the parent of x. Note
that for any x € N, the children of x are exactly the numbers y2*, where y is an odd
number. We will denote /(x) the height of x with respect to the root O (thus, the odd
numbers are exactly the elements of N whose height is equal to 1).

According to [21] (see also Evans, Harris and Pick [10]), the best constant X in
Proposition 7, say Ag, can be estimated up to a factor 16 via Hardy’s inequalities for
trees, see (23) below. To describe them we need several notations.

Let 7 the set of subsets 7" of N satisfying the following conditions

e T is non-empty and connected (with respect to F),

e T does not contain O,

e thereexists M > 1suchthat h(x) < M forallx € T,

* if x € T has achild in 7', then all children of x belong to T'.

Note thatany 7 € 7 admits a closest element to 0, call it m(T"). Note that m(T") # 0.
When T is not reduced to the singleton {m(T)}, then T \ {m(T)} has a denumerable
infinity of connected components which are indexed by the children of m (7). Since
these children are exactly the y2m(T), where y € 7, the set of odd numbers, call
T, the connected component of T\ {m(T)} associated to y2™T)  Note that

y

Tyzm(T) € 7. We extend v as a functional on 77, via the iteration

e when T is the singleton {m(T)}, we take v(T') := v({m(T), p(m(T))}),
e when T is not a singleton, decompose T as {m(T)} U Llye[ Tyzmm, then v is
defined as
b ! + ! (22)
v(T)  v({m(DY) X er V(Tyymm)

For x € N4, let Sy be the set of vertices y € N1 whose path to 0 passes through x.
For any T € 7 we associate the subset

T* == (S \T) L L(T)

where L(T) is the set of leaves of T, namely the x € T having no children in 7.
Equivalently, 7* is the set of all descendants of the leaves of T', themselves included.
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Consider S C 7 the set of T € 7 which are such that m(T') is an odd number.
Finally, define

We are interested in this quantity because of the Hardy inequalities:

1
A < < 16A, (23)
AQ

where recall that Ag is the best constant in Proposition 7. (In [21], only finite trees
were considered, the extension to infinite trees is given in Appendix 2). So, to prove
Proposition 7, it is sufficient to show that A is finite. To investigate A, we need some
further definitions. For any x € N, let

2)C
b(x) = 2(2") .
0(p(x))
A finite path from 0 in the direction to infinity is a finite sequence z = (2x),¢[o,n]

of elements of N such that zo = 0 and p(z,) = z,— forany n € [1, N]. On such
a path z, we define the quantity

B():= Y b
ne[1,N]
The following technical result is crucial for our purpose of showing that A is finite.
Lemma 6 For any finite path from 0 in the direction to infinity z := (zn)efo,N]> We
!
have B(z) < C, where C =) 82 -1 < 4o

Proof Note that for any n € [1, N], h(z,) = n. Furthermore, for any x € N, we
have i(x) < x and we get h(p(z,)) = h(zy) — 1 =n — 1, so that p(z,) > n — 1.
Writing z, = y,27 @) for some odd number Vn, it follows that

7n217(2n) n ) (zn .
b(zn) = QQ(?( ))) — 52" =) < 527" —p < 8% a1
P(Zn
The desired result follows at once. m]

We need two ingredients about ratios w(7*)/v(T). Here is the first one.

1

Lemma 7 For any T € T which is a singleton, we have ’f)((TT*)) < | ls

Proof When T is the singleton {m(T)}, on the one hand we have

v(T) = v({p(m(T)), m(T)}) = u(m(T)).
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On the other hand, T* is the subtree growing from m(7T), namely the subtree
containing all the descendants of m (7). Note two properties of T*:

T*C{yeNy:y>2m(D} and Yy e T* p(y) = pm(T)),  (24)

and we further have p(y) > m(T) forany y € T* \ {m(T)}. It follows that

w(T =>"0(0MO(pP()) < Qpm(T))) > () = Q(p(m(T))) Y _ &

yeT* yzm(T) yzm(T)
T 1
= Q(p(m(T))) Q(’"( 5)) | ghm(D)). (25)
Thus, we get u(T*)/v(T) < 115. O

For the second ingredient, we need some further definitions. The length ¢(T") of
T € 7 is given by £(T) = maxyer h(x) — min,er h(x), and for any / € N, we
define

T1={TeT:4T)<1}

Lemma 8 Foranyl € N, we have supy - v((TT*))

< +o00.
Proof We will prove the finiteness by induction over/ € N. First, note that 7 is the
set of singletons, and so Lemma 7 implies that sup; g (T)) < - 5 Next, assume
that the supremum is finite for some / € N and let us show that it is also finite for
[+ 1.

Consider T € 741, with £(T) = [ + 1; in particular, T is not a singleton.
Decompose T as {m(T)} L |_|yE] Tyzmm and recall the relation (22). Since T* =

L vel Ty*zmm’ it follows that

u(T*) 1
v(T) Z“( yzm(T))< ({m(T)}) Zyej V(Tyzmm))

Zye] M(Tyzm(T)) Zye] I'L(T;kzm(T))

v({m(T)}) Zyef v(Tyom)
u _7T* T .o

< n( yel tyom( ) “w e 2 ()) 7 26)
w(m(T)) v(Tyomry)

Consider the first term on the right. Given y € 7, the smallest possible element of

T* ) is y2"")and we have for any x € T* yam(T)>

p(x) = p(2" D) = m(T).
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Thus we have the equivalent of (24):

T Cly €Nyt y>2"D) Ve || Thum, p) >mT). @27
yel yel

Following the computation (25), we get

1
w| L T | < _ s@0n(m)QQ™™),
vel

where the inequality is strict, because in (27) we cannot have equality for all x €
L vel Ty*Zm(T)' It follows that

Yyer HTGum) 1 Qm(T)Q@" ™) bm(T)) _ C

< = < (28)
p(m(T)) 1 =48 Qm(T))Q(p(m(T))) =4 =4

where C is the constant introduced in Lemma 6. Since for any y € 7, we have
Tyzmm € 71, we deduce the desired result from the induction hypothesis. m]
We are now ready to prove Proposition 7.

Proof (Of Proposition 7) Fix some T € S, we are going to show that
w(T*)/v(T) < 1+ C/(1 —38), where C is the constant introduced in Lemma 6.
Due to Lemma 7, this bound is clear if T is a singleton. When 7 is not the singleton
{m(T)}, decompose T as {m(T)} U Llye] T, omcr) and let us come back to (26).
Denote z1 := m(T) and

€ = b(z1) _ Zyéf /’L(Ty*zm(r))
IR pw(m(T))

which is positive according to (28). Coming back to (26), we have shown

w(T* _ b w3
vw(T) ~1-8 w(Ty)

where 75 € {y2™T) : y e I} is such that

Sup M(T;,kzm(T)) . < ,LL(T;;)
v(Tymn) T u(Ty)

To get the existence of zp, we used that the supremum is finite, as ensured by
Lemma 8.
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By iterating this procedure, define a finite path from O in the direction to infinity
2 1= (2n)pefo,N]» Such that for any n € [1, N — 1],

'U“(th < b(zn) ’LL(T;:Hrl)
wW(T,) 1=8 (T,

and Ty, is a singleton. We have N < max{h(x) : x € T}. We deduce that

u(T*) . B® w(T;}) _C+1
w(T) ~1-8 w(Ty) 1-68

as desired. |
To get an explicit bound in terms of §, it remains to investigate the quantity C.

Lemma 9 We have

_ 2 if'8 € (0,1//2],
S 1+ [toga108s (10,21 ) | 8 € /2, .

!
Proof Consider lp := min(/ € N} : §27 -1 < 1/2). Elementary computations show
that

viz1, 22" 112207 -,

so we get

! 1 1
PIIGRED SIS SRS

1=l n=0 n=1

Since we have for any / € N, 221 — 1 >0, we deduce

A
c<i+ Y <140,
1€[0.10—1]

)
172 , so that

It is not difficult to check that for any / > 1, P Z,

lo=min{l € N, : 2% —1 > 1/log,(1/8)} < min{l € N4 : 2% > 2/log,(1/8)}
=1V [log, log,(2/1og,(1/6))].
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The announced result follows from the fact

1
log, log,(2/1log,(1/8)) > 1 & & > .
V2
O

The following observations show that QO needs to be at least decaying exponen-
tially for the Hardy inequality approach to work.

Remark 2

(a) In view of the expression of , it is natural to try to replace (20) by

VxeNy, p(x) = Zm(x) = Q(x) Q(N (x)).

But then in Lemma 7, where we want the ratios u(7*)/v(T) to be bounded
above for singletons 7', we end up with the fact that

QINm(T)) _ w(T) _ pu(T)
Q(p(m(T)) — w(T) ~ w(T)

must be bounded above for singletons 7. Namely an extension of (21) must
hold: there exists a constant ¢ > 0 such that

VxeNy, Q(N(x)) < cQ(p(x)). (29)

Writing x = y2?, with y € 7 and p € N, we must have Q(N(y2?)) < cQ(p).
Take y = 1 +2+4+~--+21,thenwegetthatp,p+ 1,..., p+1all belong
to Q(N(y2P)),sothat Q({p,p+1,..., p+1}) < cQ(p), and letting [ go to
infinity, it follows that Q([p, oo[) < ¢Q(p), namely, O has exponential tails.

(b) Other subtrees of the graph generated by K could have been considered. It
amounts to choose the parent of any x € N_. But among all possible choices of
such a neighbor, the one with most weight is p(x), at least if Q is decreasing.
In view of the requirement (29), it looks like the best possible choice.

(c) If one is only interested in Proposition 7 with u defined by (20), then many
more probability measures Q can be considered, in particular any polynomial
probability of the form Q(x) = for any x € N, where ¢ is the
Riemann function and / > 1.

1
D+
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Appendix 1: Dirichlet-Cheeger Inequalities

We begin by showing the Dirichlet—Cheeger inequality that we have been using in
the previous sections. It is a direct extension (even simplification) of the proof of
the Cheeger inequality given in Saloff-Coste [23]. We end this appendix by proving
that it is in general not possible to compare linearly the Dirichlet—-Cheeger constant
of an absorbed Markov chain with the largest Dirichlet—Cheeger constant induced
on a spanning subtree.

Let us work in continuous time. Consider L a sub-Markovian generator on a finite
set V. Namely, L = (L(x, y))x,yev, whose off-diagonal entries are non-negative
and whose row sums are non-positive. Assume that L is irreducible and reversible
with respect to a probability 7 on V.

Let A(L) be the smallest eigenvalue of — L (often called the Dirichlet eigenvalue).
The variational formula for eigenvalues shows that

—7LfLLA

A(L) =
&) ferV oy 7[f?]

(30)

The Dirichlet—Cheeger constant (L) is defined similarly, except that only indicator
functions are considered in the minimum:

—m[14L[1
(L)= min "LEALMAll G1)
ACV, A#D w[A]
Here is the Dirichlet—Cheeger inequality:
Theorem 5 Assuming L # 0, we have
u(L? ML) < (L)
X X L
20(L)

where £(L) := max{|L(x,x)| : x € V} > 0.

When L is Markovian, the above inequalities are trivial and reduce to (L) =
A(L) = 0. Indeed, it is sufficient to consider f = 1 and A = V respectively in
the r.h.s. of (30) and (31). Thus there is no harm in supposing furthermore that L
is strictly sub-Markovian: at least one of the row sums is negative. To bring this
situation back to a Markovian setting, it is usual to extend V into V = V u {0}
where 0 ¢ V is a new point. Then one introduces the extended Markov generator L
on V via

L(x,y) ifx,yeV,
Vx,yeV, L(x,y) = _ZzeV L(x,z)if y =0,
0 otherwise.
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Note that the point O is absorbing for the Markov processes associated to L.
It is convenient to give another expression for ¢((L). Consider the set of edges
E ={{x,y} : x #y € V}. We define a measure ; on E:

m(x)L(x,y)ifx,y eV,
Ve:={x,y} € E, u(e) =1 w(x)L(x,0) if y =0,
7 (y)L(y,0) if x =0.

(Note that the reversibility assumption was used to ensure that the first line is well-
defined.) Extend any f € RY into the function f on V by making it vanish at 0 and
define

Ve={x,y}€E, ldfl(e) = 1f(y) — f)l.

With these definitions we can check that

VieRY,  —xlfLIfI =) ldfI*(e)ue).
ecE
These notations enable to see (31) as a L version of (30):

Proposition 8 We have

(L) = min Yeck |df|(€)lt(e).
ferRV\(0) 7l f1]

Proof Restricting the minimum in the r.h.s. to indicator functions, we recover the
r.h.s. of (31). It is thus sufficient to show that for any given f € RV \ {0},

Yecr ldfl()nle)

> (D). 32
llf 1] () G2

Note that |d f|(e) = |d| f||(e) for any e € E, so without lost of generality, we can
assume f > 0. For any ¢+ > 0, consider the set F; and its indicator function given
by

Fo={f>t} = {f >t} and f; =1F,.

Note that

+00
VxeV, fx) = fi()dt,
0
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so that by integration,

+oo
[ f] 2/0 w[F]dt.

Furthermore, we have
)
dldflene = Y (fO—fu@= Y. f p(e)dt
ccE e={y): )= () e=tey): f)>fn T

+00 o0
-/ > wedi= [ uer),
0 0

e={x.y}: f(y)>12f(x)

where for any A C V, we define
0A ={{x,y}e E:xecAandy ¢ A}.

Note that for any such A, we have w(dA) = —mw[14L[14]], so that

+00 +00
Zldfl(e)u(e)=—/0 n[ﬁL[ﬁ]Jdr>L(L>/0 n[Fldt = (L)x[f],

ecE

showing (32). |

Proof (Of Theorem 5) Given g € RY, let f = g*. By Proposition 8, we compute

(D1 ) ldflne =Y 1g°(y) — g (e

eeE e=:{x,y}eE
= D 180 —gmllgky) + g)lu(e)
e={x,y}eE

<D @ =g [ Y (@) + gx)ule)

e={x,y}eE e={x,y}eE

<V-mlgLigh 20 )" (@2 () +g*())nle)

e={x,y}eE

=/-mlgLigll [4 > g2x)ule)

e={x,y}eE

= J/—nlgLIgll \/2Zg2<x)n(x> S Ly

xev yeV\{x}



288 S. Chatterjee et al.

=/-nlgLIgl] \/2 > 2)m)|L(x, x))|

xeV

< V20(L)y ~lgLIgll 7182 = V26(L)y —~xlgLIgl/7 L f1.
Thus, we have

((L)?

21« _
ZE(L)T[[g]< wlgLlgll,

which gives the desired lower bound for A(L). The upper bound is immediate. O

The unoriented graph associated to L is G = (V, Er) where E; = {e € E :
n(e) > 0}. Consider T, the set of all subtrees of G, and for any 7' € T, consider the
sub-Markovian generator L7 on V associated to T via

L(x,y) if {x, y} € E(T),

Lr(e.y) = — ZzeV\{x} L7(x,z) %fx =yand {x,0} & E(T),
— ZzeV\{x} L7(x,z) — L(x,0) if x = y and {x, 0} € E(T),
0 otherwise,

where x, y € V and E(T) is the set of (unoriented) edges of T'.

Note that L7 is also reversible with respect to m (it is irreducible if and only if
0 belongs to a unique edge of E(T)). Denote ur the corresponding measure on E.
It is clear that u7 < u, so we get «(L7) < ¢(L). In the spirit of Benjamini and
Schramm [2], we may wonder if conversely, ¢(L) could be bounded above in terms
of maxrer t(L7). A linear comparison is not possible:

Proposition 9 [t does not exist a universal constant x > 0 such that for any L as
above, xi(L) < maxrert(LT).

Proof Let us construct a family (L), ey . of sub-Markovian generators such that

(n)
ma L
jm maxTertLr) (33)
n—00 t(LM)
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For any n € N, the state space V™ of L™ is [n] x {0, 1} (more generally, all
notions associated to L™ will marked by the exponent (n)). Denote VO(") = [n] x
{0} and V" := [n] x {1}. We take

€ ifxe V™, yev™ withi € {0, 1),
ne+lifx=ye VO("),
ne  ifx=yev",

0 otherwise,

L™ (x,y) =

where x, y € V("), and € > 0, that will depend on =, is such that ne < 1/2.
Recall that 0 is the cemetery point added to V™, we have

: (n)
veev®,  LPao={lTrEY
Oifx € V™.

Note that 77 ™ is the uniform probability on V. Let us show that
(L™ = ne. (34)

Consider any ) £ A C V™ and decompose A = Ag LI A1, with Ag .= AN VO(”)
and A; = AN Vl("). Denote ag := |Ap| and a; := |A1|. We have that d A is given by

{lx,y)ix € A, y € VN Andix, y) i x € VI \ Ao, v € Ay U {{x, 0} & x € A},
and thus u™ (9 A) = 5, (€(ao(n — a1) + a1 (n — ao)) + ao). It follows that

™ (DA) ao(1 — 2eay)
= ne€ .
TM(A) ap + ay

Taking into account that 1 — 2ea; > 0, the r.h.s. is minimized with respect to ag €
[0, n] when ap = 0 and we then get (independently of a;), ™ (3 A) /7™ (A) = ne.
We deduce (34).

Consider any 7 € T and let us check that

(L) < e (35)

Observe there exists x € Vl(”) such that there is a unique y € VO(") with {x, y} being
an edge of T'. Indeed, put on the edges of T the orientation toward the root 0. Thus
from any vertex x € Vl(") there is a unique exiting edge (but it is possible there are

several incoming edges). Necessarily, there is a vertex in VO(”) whose edge exits to 0.

So there are at most n — 1 vertices from VO(”) whose exit edge points toward Vl(”). In

particular, there is at least one vertex from Vl(") which is not pointed out by a vertex



290 S. Chatterjee et al.

from VO("). We can take x to be this vertex from Vl(”) and y € VO(") is the vertex
pointed out by the oriented edge exiting from x.
Considering the singleton {x}, we get

1
PO = prxyh) = and 70 =
implying (35) (a little more work would prove that an equality holds there). As a
consequence, we see that max; ) L(L(T")) < €. Taking for instance € := 1/(4n) to

aXp cp(n) L(L(T”))

fulfill the condition ne < 1/2, we obtain ™ "</

< !, and (33) follows. O

Appendix 2: Hardy’s Inequalities

Our goal here is to extend the validity of Hardy’s inequalities on finite trees to
general denumerable trees, without assumption of local finiteness. We begin by
recalling the Hardy’s inequalities on finite trees. Consider 7 = (V, E, 0) a finite
tree rooted in 0, whose vertex and (undirected) edge sets are V and E. Denote
V = V \ {0}, for each x € V, the parent p(x) of x is the neighbor of x in the
direction of 0. The other neighbors of x are called the children of x and their set is
written C(x). For x = 0, by convention C(0) is the set of neighbors of 0. Let be
given two positive measures i, v defined on V. Consider c(u, v) the best constant
¢ 2 01in the inequality

VIeR .,  ulf1<ce) (f(p(x) — f(x) () (36)

xeV

where f was extended to 0 via f(0) = 0.

According to [21] (see also Evans, Harris and Pick [10]), c(u, v) can be
estimated up to a factor 16 via Hardy’s inequalities for trees, see (39) below. To
describe them we need several notations.

Let T the set of subsets T of V satisfying the following conditions

e T is non-empty and connected (in 7),
e T does not contain O,
* if x € T has achild in 7', then all children of x belong to T'.

Note that any 7 € T admits a closest element to O, call it m(T), we have m(T) #
0. When T is not reduced to the singleton {m(7")}, the connected components of
T \ {m(T)} are indexed by the set of the children of m(T), namely C (m(T)). For
y € C(m(T)), denote by Ty the connected component of T\ {m(7)} containing y.
Note that Ty € T.

We extend v as a functional on T, via the iteration
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* when T is the singleton {m(T)}, we take v(T') := v(m(T)),
* when T is not a singleton, decompose 7' as {m(T)} U ||, ccon(ry) Ty- then v
satisfies

1 1 1

— i 37
V() " TN Y ey VT Gy

For x € V, let Sy be the set of vertices y € V whose path to 0 pass through x. For
any T € T we associate the subset

T* == (S \T) L L(T)

where L(T) is the set of leaves of T, namely the x € T having no children in 7.
Equivalently, T* is the set of all descendants of the leaves of T, themselves included.

Consider S C T, the set of T € T which are such that m(T) is a child of 0.
Finally, define

u(T*)
b(u,v) = . 38
(e, v) max ) (38)
We are interested in this quantity because of the Hardy inequality:
b(u,v) < c(u,v) < 16b(u,v). (39

Our goal here is to extend this inequality to the situation where V is denumerable
and where u and v are two positive measures on V, with ), u(x) < +o0.

Remark 3 Without lost of generality, we can assume O has only one child, because
what happens on different S, and S, where both x and y are children of 0, can be
treated separately.

More precisely, while V' is now (denumerable) infinite, we first assume that the
height of 7 := (V, E, 0) is finite (implying that 7" cannot be locally finite). Recall
that the height 4(x) of a vertex x € V is the smallest number of edges linking x to
0. The assumption that sup, ., A(x) < +00 has the advantage that the iteration (37)
enables us to compute v on T, starting from the highest vertices from an element of
T. Then b(t, v) is defined exactly as in (38), except the maximum has to be replaced
by a supremum. Extend c(u, v) as the minimal constant ¢ > 0 such that (36) is
satisfied, with the possibility that c(t, v) = +00 when there is no such c. Note that
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in (36), the space RV can be reduced and replaced by B(V), the space of bounded
mappings on V:

Lemma 10 We have

vy = sup nlf?]
’ fEB(V)\{O} erv(f(P(x)) - f(x))zv(x).

Proof Denote ¢(j1, v) the above r.h.s. A priori we have ¢(u, v) > ¢(u, v). To prove
the reverse bound, consider any f € RY and consider for M > 0, fy == (f AM)V
(—M). Note that

D () = fu ) () < Y (f(p(x) = FE) ().

xeV xeV

(This a general property of Dirichlet forms and comes from the 1-Lipschitzianity of
the mappingR > r — (r A M) Vv (—M).) Since fyr € B(V), we have

wLf] <SG v) Y (fu(p()) = fu () v(x)

xeVv

<&, ) Y (f(p) = f) V().

xeV

Letting M go to infinity, we get at the limit by monotonous convergence

RLF < T, ) Y (f(p()) = f) ().

xeV

Since this is true for all f € RY, we deduce that ¢(u, v) < (i, v). |

Consider (x,)nen, an exhaustive sequence of V, with xg = 0 and such that for
any n € N1, V,, = {x0, x1, ..., x,} is connected. We denote 7, the tree rooted on
0 induced by 7 on V, and as above, V,, := V,\ {0} = {x1, ..., x,}. Foranyn € N
and x € V,,, introduce the set

R =1{x} | ] S

yeC)\Va

In words, this is the set of elements of V whose path to O first enters V,, at x.
From now on, we assume that 0 has only one child, taking into account Remark 3.
It follows that

V= |_| Ry (x). (40)

xeVy,
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Let u, and v, be the measures defined on V,, via

Mn(x) = w(Ry(x)),

VX { Ve (x) = v(x).

The advantage of the p, and v, is that they brought us back to the finite situation
while enabling to approximate c(u, v):

Proposition 10 We have lim;,—, oo c(itn, Vi) = c(u, v).

Proof We first check that the limit exists. For n € N, consider the sigma-field 7,
generated by the partition (40). To each F,,-measurable function f, associate the
function f, defined on V,, by

VxeV,,  fulx) = fx).

This function determines f, since forany x € V,, andany y € R, (x), f(y) = fu(x).
Furthermore, we have:

w21 = pal £
D PG = FENE) = Y (fu(p() = fu()) v (x).

xeV xXeVy

It follows that

nlf2
c(tn, vp) = sup ) ’
FeBFN0) 2ovev ([ (P()) = f))?v(x)

where B(F,) is the set of F,,-measurable functions, which are necessarily bounded,
i.e., belong to B(V). Since for any n € N we have 7, C F,+1, we get that the
sequence (¢(in, Vn))nen, is non-decreasing and, taking into account Lemma 10,
that

lim c(un, vo) < c(u, v).
n—0o0

To get the reverse bound, first assume that c(u, v) < +oo. For given € > 0, find a
function f € B(V) with

wlf?]

> c(p, v) — €.
erv(f(p(x)) — f(x))2v(x) c(u,v) —e€

Consider 7 the normalization of w into a probability measure and let f, be the
conditional expectation of f with respect to 7 and to the sigma-field ¥,. Note
that the f;, are uniformly bounded by || f||,,. Thus by the bounded martingale
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convergence theorem and since 7 gives a positive weight to any point of V, we
have

VxeV, lim f,(x) = f(x).
n—>oo
From Fatou’s lemma, we deduce

liminf Y~ (fu(p()) = fu()2va(@) = liminf >~ (fu(p(0) = fu(6)Pv(@)

xeV, XEVy
> Y liminf{(fu(p()) = fa()) Ly, ()]1v@) = D (F (p()) = f () v(x).
xeV xeV

By another application of the bounded martingale convergence theorem, we get
: 21_ 1 27 _ 2
lim o, [f1= lim plf7]= ulf7],
n—oo n—oo
so that

i pnl £7] Ve
im sup = .
n—o0 Drey(fn(P()) = fu(x))?v(x) ~ X,y (f(p(¥) = f(x)v(x)

It follows that lim,,— o c(tn, vy) = c(u,v) — €, and since € > 0 can be chosen
arbitrary small,

hm C(an Vn) 2 C(Mv V).
n—o0

It remains to deal with the case where c(u, v) = 400. Then for any M > 0, we can
find a function f € B(V) with

nlf2
> M
Y ey (f(p(x) = f(x))?v(x)

By the above arguments, we end up with lim,,—, oo c(iy, v,) = M, and since M can
be arbitrary large, lim,— oo c(itn, V) = +00 = c(u, v). |

Our next goal is to show the same result holds for b(u, v). We need some additional
notations. The integer n € Ny being fixed, denote T, and S, the sets T and
S associated to 7. The functional v, is extended to T, via the iteration (37)
understood in 7,. To any T € T, associate T, the minimal element of T containing
T. It is obtained in the following way: to any x € T, if x has a child in T, then add
all the children of x in V, and otherwise do not add any other points.
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Lemma 11 We have the comparisons
vu(T) = v(Ty) and pn(T*) < u(T,)),

where T* is understood in T, (and T, in T).
Proof The first bound is proven by iteration on the height of 7' € T,,.

 If this height is zero, then T is a singleton and 7}, is the same singleton, so that
vp(T) = v(Ty).
e If the height 1(T) of T is at least equal to 1, decompose

T={m(Tu || Ty

YECH(my(T))

where m,(-), C,(-) and T, . are the notions corresponding to m(-), C(-) and 7. in
T
Note that 7 and T,, have the same height and decompose

T,=im@T)u || T

zeC(m(Tw))

On the one hand, we have m(T,,) = m,(T) and C,,(m,(T)) C C(m,(T)) and on
the other hand, we have for any y € C,,(m,(T)), vu(Ty) = v((Ty)n) = v(Tn,y),
due to the iteration assumption and to the fact that the common height of 7, and
(Ty)n is at most equal to A(T) — 1. The equality (Ty), = T,y is due to the fact
that 73, , is obtained by the same completion of 7, as the one presented for T just
above the statement of Lemma 11, and thus coincides with (T}),. It follows that

1 1 1

= +
v (T) vy (my (T)) ZyeCn(m,,(T)) Vn(Ty)
1 1 1 1
= + =< +
v(m(Ty)) ZyeC,,(mn(T)) Vn(Ty) v(m(Ty)) ZyeCn(m,,(T)) V(Tn,y)
1 1 1

< + = .
v(m(Ty,)) ZyeC(m(Tn)) V(Tn,y) v(Ty)

establishing the wanted bound v,(T) > v(7,). We now come to the second
bound of the above lemma. By definition, we have

T* = UxeL,(T)Sn,ys

where L, (T) is the set of leaves of T'in 7, and S,y is the subtree rooted in y in
T
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Note that L, (T) C L(T,) and by definition of u,, we have

Vy e Ly(T), Pn(Sn,y) = w(Sy).

It follows that

T = D wnSay) = Y wS)< Yo uSy) = ul).

xeL,(T) xeL,(T) xeL(Ty)
O

Let §,Lbe the image of S,, under the mapping S, 5 T +— T, € S. Since S, 5 T
T, € S, is a bijection, we get from Lemma 11,

T* T*
b(fin, V) = max Ha{l") < max () <b(u,v),
TeS, vu(T) T,eSy v(Ty)

so that

lim sup b (sn, va) < b(1, v). 1)

n—oo

Let us show more precisely:
Proposition 11 We have limy,—, 00 b(ty, vi) = b(i, v).

Proof According to (41), it remains to show that

liminfb(wy, va) = b(u, v). (42)
n—>oo

Consider T € S such that the ration w(7*)/v(T) serves to approximate b(i, v),
namely up to an arbitrary small € > 0 if b(u, v) < 400 or is an arbitrary large
quantity if b(w, v) = 400. Define

VneNy, T =T NV,.

Arguing as at the end of the proof of Proposition 10, we will deduce (42) from

ta(T™)*) (T
noo v, (TW)  — w(T)

where (T ™)* is understood in 77,. This convergence will be the consequence of
lim 1, (T")*) = w(T%), (43)
n—o00

lim v (T = v(T). (44)
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For (43), note that

(T =Y sy,

xeL(T)

and as we have seen at the end of the proof of Lemma 11,

wTH =y sy

x€L,(T™)
Thus (43) follows by dominated convergence (since u(V) < +00), from

Vxe T, nll)n(;lo ]an(T(n))(x) = ]lL(T)(.x).

To show the latter convergences, consider two cases:

e Ifx € L(T), then we will have x € L,,(T™) as soon as x € V.
e Ifx € T\ L(T), then we will have x ¢ L,(T™) as soon as V, contains one of
the children of x in T'.

We now come to (44), and more generally let us prove by iteration over their
height, that forany 7 € Tand T C T, we have

lim v (T N V) = w(D), (45)

i.e., the limit is non-decreasing. Indeed, if T has height 0, it is a singleton {x}, we
have vn(f NV, = v(f) as soon as x belongs to V,,, insuring (45).

Assume that 7 has height a & > 1 and that (45) holds for any T whose height is
at most equal to & — 1. Write as usual

1 1 1

" = ~ + ~ 46
v(T)  vm(T) X yecumd) v(Ty) .

Assume that n is large enough so that C (m(T)) N V,, # @ and in particular m(T) €
V,, and m,,(T NV, = m(T) Thus we also have

1 1 1

~ = ~ + ~
V(T N Vi) Vp(my (T N'Vy)) ZyeCn(mn(TﬂVn)) v (T N Vn)y)
1 1

= ~ 4+ ~ . (47
v(m(T)) ZyeCn(m(f)) Vn(Ty N Vy) )
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On the one hand, the set C,, (m(f)) is non-decreasing and its limit is C (m(T))Land
on the other hand, due to the induction hypothesis, we have for any y € C(m(T)),

lim 1 v, (Ty N V) = v(Ty).
n—>oo
By monotone convergence, we get

Tim 1 Yooow@nvy= Y u(dy,

yeCu(m(T)) yeCm(T))

which leads to (45), via (46) and (47). This ends the proof of (42). |

The conjunction of Propositions 10 and 11 leads to the validity of (39), when V is
denumerable with 7 of finite height.

Let us now remove the assumption of finite height. The arguments are very
similar to the previous one, except that the definition of b(u, v) has to be modified
(n and v are still positive measures on V, with p of finite total mass). More
precisely, for any M € Ny, consider Vi = {x € V : h(x) < M}. Define on
Vu the measure vy as the restriction to Vs of v and s via

_ ) ith(x) <M,
VxeVy, m (x) = {M(Sx) if h(x) =M.

By definition, we take
b(u,v) = lim b(um, vm).
M—o00

This limit exists and the convergence is monotone, since he have for any M € N,
b(pm, viy) = maxres,, ’f)((];)),where Sy ={T €S : T C Vy}. Note that a direct
definition of b(u, v) via the iteration (37) is not possible: we could not start from
leaves that are singletons.

By definition, c(u, v) is the best constant in (36). It also satisfies c(u, v) :=
limpys— o0 c(epr, Var), as can be seen by adapting the proof of Proposition 10. We

conclude that (39) holds by passing at the limit in

VM eN,, b(pum, vm) < c(pum, vm) < 16b(um, vu).
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Abstract We survey results on Chebyshev polynomials centered around the work
of H. Widom. In particular, we discuss asymptotics of the polynomials and their
norms and general upper and lower bounds for the norms. Several open problems
are also presented.
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1 Introduction

Let ¢ C C be a compact, not finite set and denote by

[flle := sup|f(2)]

zee

the supremum norm of a continuous, complex-valued function f on e. A classical
problem in approximation theory is, for every n > 1, to find the unique monic degree
n polynomial, 7;,, which minimizes || P||. among all monic degree n polynomials,
P. The resulting sequence is called the Chebyshev polynomials of e.

By the maximum principle, we may assume that ¢ is polynomially convex. This
means that Q := (C U {oo}) \ ¢ is connected so that ¢ has no inner boundary.

It is only in the case of ¢ being a (possibly elliptical) disk or a line segment that
explicit formulas for all 7;,’s are available. The Chebyshev polynomials of the unit
disk are simply 7, (z) = 7", while the ones for the interval [—1, 1] (or any ellipse
with foci at £1) are given by

T, (x) = 27" cos(nb),

where x = cos6.

In addition to this, there are certain sets generated by polynomials (such as
lemniscates and Julia sets) for which a subsequence of 7, can be written in
closed form. For general ¢, however, the best one can hope for is to determine the
asymptotic behavior of 7j,. In this article we seek to present what is known about
the asymptotics of Chebyshev polynomials. Had it not been for Widom’s landmark
paper [49], there probably wouldn’t be much to say.

To get started, we briefly introduce some notions from potential theory (see, e.g.,
[8,27-29, 33] for more details). Let C(¢) denote the logarithmic capacity of e. When
¢ is non-polar (i.e., C(¢) > 0), we denote by dp. the equilibrium measure of ¢ and
by G := G, the Green’s function of ¢. These are closely linked by the relation

G2 = ~log[Cw] + [ toglz ~ xldpr). ()

For subsets § C ¢, we shall also refer to p. (f) as the harmonic measure of f. The set
¢ is called regular if G vanishes at all points of ¢ (equivalently, G is continuous on
all of C).

The general results for Chebyshev polynomials are few, but important. Szegd
[40] showed that

ITalle = C(e)". 2

This applies to all compact sets ¢ C C and is optimal since equality occurs for all
n when ¢ is a disk. When ¢ C R, Schiefermayr [37] improved upon (2) by showing
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that
[Tulle =2C(&)", n=>1, 3)

which is again optimal (take e to be an interval). Szegd [40], using prior results of
Faber [21] and Fekete [22], also proved the following asymptotic result:

lim [|T,]¢/" = C(e). )
n—oo

This certainly puts a growth restriction on || 7, ]|, but is not strong enough to force
IT,1le/ C(e)" to be bounded. We shall discuss which extra assumptions on ¢ may
imply this in Sects. 2 and 3.

The polynomials themselves also obey nth root asymptotics. For a non-polar
compact set e C C, we have that

1 Tu(2)|"" — C(e) exp[G(2)] (5)

uniformly on any closed set disjoint from cvh(e), the convex hull of ¢. This result
is implicitly in Widom [48], where he shows that all zeros of 7;,, must lie in cvh(e)
before proceeding to the asymptotics. See also Ullman [46] and Saff-Totik [36,
Chap. I11].

“All asymptotic formulas have refinements,” quoting the introduction of [49].
And this is precisely what we aim at, just as Widom did. As (2)—(5) suggest, it is
natural to scale 7, by a factor of C(¢)"*. We shall study the limiting behavior of the
so-called Widom factors

Wa(e) == NITulle/ C(e)". (6)

If this scaled version of the norms does not have a limit, can we then at least
single out the possible limit points? Regarding the polynomials 7;,, we aim at strong
asymptotics or what we shall refer to as Szegd—Widom asymptotics.

The first result in this direction goes back to Faber [21]. When ¢ is a closed Jordan
region, there is a Riemann map of €2 onto the unit disk, D. We uniquely fix this map,
B, by requiring that

B(x) = Cie) +0(1/2%) A

near co. Assuming that de is analytic, Faber showed that W,(¢) — 1 and, more
importantly, that

T,(2)B(2)" 1 ®)
C(e)”

uniformly for z in a neighborhood of €2.
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The picture changes completely when ¢ consists of more than one component.
In his work on Chebyshev polynomials of two intervals, Akhiezer [1, 2] proved that
either W, (¢) is asymptotically periodic or else the set of limit points of W, (e) fills
up an entire interval. But it was only Widom [49] who lifted the theory to ¢ being
a union of disjoint compact subsets of C and developed a framework to distinguish
between periodicity and almost periodicity.

In replacement of the Riemann map, we introduce (on €2) a multivalued analytic
function B := B, which is determined by

|B(2)| = exp[~G(2)] )

and (7) near co. One can construct this B using the fact that —G is locally the real
part of an analytic function whose exponential (=B) can be continued along any
curve in 2. By the monodromy theorem, the continuation is the same for homotopic
curves and, due to (9), going around a closed curve y can only change B by a phase
factor. Hence there is a character x. of the fundamental group 71 (£2) so that going
around y changes B by x.([y]). More explicitly, if y winds around a subset f C ¢
and around no other points of ¢, then the multiplicative change of phase of B around
y is given by

exp[—27ipe(f)]. (10)

In line with Faber and (8), Widom looked at 7;,(z) B(z)" /C(e)" for the “new” B
and noted that its character x! only has a limit when . is trivial (i.e.,  is simply
connected). So there is no hope of finding a pointwise limit except when e just
has one component. Widom’s stroke of genius was to find a good candidate for the
asymptotics when ¢ has several components. For every character x in 771 (£2)* there
exists a so-called Widom minimizer which we shall denote by F,, . This is the unique
element of H*° (L2, yx) (i.e., the set of bounded analytic x -automorphic functions on
Q) with F (00) = 1 and for which

I Fylloo = inf{|[hloc : h € H®(, x), h(c0) = 1}. (11)
Writing F;, as shorthand notation for Fy», the Widom surmise is the notion that

T, (2)B(2)"
Ceor F,(z) — 0. (12)

When it holds uniformly on compact subsets of the universal cover of €2, we say
that ¢ has Szeg6—Widom asymptotics.

Widom [49] proved that one has this type of asymptotics when ¢ is a finite union
of disjoint Jordan regions with smooth boundaries and conjectured that this should
also hold for finite gap sets (in R). A main result of [13] was to settle this conjecture.
By streamlining the method of proof, this was then extended to a large class of
infinite gap sets in [14] (see Sect. 2 for further details).
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The framework of characters is also useful when describing the fluctuation of
W, (e). In [49], Widom proved that

Wa (/[ Fallc = 1 13)

for finite unions of disjoint Jordan regions and established the counterpart (with 1
replaced by 2 on the right-hand side) for finite gap sets. The behavior of || Fy |0
very much depends on the character .. If x! = 1 for some #n, then the sequence
is periodic (with period at most n) and otherwise it is merely almost periodic. This
is precisely the pattern that Akhiezer discovered for two intervals. We shall discuss
the possible limit points in more detail in Sect. 2.

The paper is organized as follows. In Sect. 2 we discuss bounds and asymptotics
for Chebyshev polynomials of compact subsets of the real line. Then in Sect.3
we survey similar results for Chebyshev and weighted Chebyshev polynomials of
subsets of the complex plane, including results on the asymptotic distribution of
zeros. Open problems are formulated along the way.

We would be remiss if not mentioning related problems, such as the Ahlfors
problem [19], and similar classes of polynomials or functions, for instance, residual
polynomials [17, 54] and rational Chebyshev functions [20]. But to consider the
subject in more depth, we decided to merely focus on the Chebyshev problem.

2 Real Chebyshev Polynomials

As we shall see, there is a rather complete theory for Chebyshev polynomials of
compact sets ¢ C R. This is in part due to what is called Chebyshev alternation.
We say that P,, areal degree n polynomial, has an alternating set in ¢ if there exists
n + 1 points in e, say xop < X1 < ... < Xy, so that

Pu(xj) = (=1)" || Pyle. (14)

The alternation theorem gives the following characterization of the nth Chebyshev
polynomial of e: T, always has an alternating set in ¢ and, conversely, any monic
degree n polynomial with an alternating set in ¢ must be equal to T, .

This result, in turn, has consequences for the zeros of 7},. Not only do all of them
lie in cvh(e), but any gap of ¢ (i.e., a bounded component of R \ ¢) contains at most
one zero of T;,. The alternating set need not be unique and usually isn’t. However, it
always contains the endpoints of cvh(e). See, e.g., [13] for proofs and more details.

We now turn the attention to the Widom factors which were introduced in (6). By
[37] we always have W, (¢) > 2 and, as proven in [15], equality occurs for n = km
(with m > 1) precisely when

e= P '([-2,2]) (15)
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for some degree k polynomial, P(z) = cz¥ + lower order terms. In that case, T, is
nothing but the mth Chebyshev polynomial of [-2, 2] composed with P and divided
by ¢™. It also follows that equality holds for all n if and only if ¢ is an interval. A
stronger and related result of Totik [42] states that if lim,— o W, (¢) = 2, then ¢
must be an interval.

Interestingly, the sets that appear in (15) are not only of interest for the lower
bound; they play a key role in the theory. For ¢ C R, we introduce the so-called
period-n sets, ¢, (aka n-regular sets [39]) by

en =T, (= Tulle, I Tnll]). (16)

Clearly, T, is also the Chebyshev polynomial of ¢, D ¢ and furthermore we have
that

ITalle = 2Cen)". 7)

Due to alternation we can write any period-n set