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Preface

Harold Widom, born on September 23, 1932, passed away on January 20, 2021.
We have lost a good friend and colleague, an inimitable teacher, and an outstanding
mathematician. Harold has enriched mathematics with his ideas and groundbreaking
work since the 1950s until the present time. His personality has left its imprint on
all those who accompanied him some period or met him only occasionally.

This volume is dedicated to his memory. It contains a biography of Harold
Widom and personal notes written by his former students or colleagues. We are
at the same time sad and proud to publish also his last paper, Domain walls in the
Heisenberg-Ising Spin- 1

2 chain, which he started jointly with Axel Saenz and one
of us but could not see it accomplished. Harold’s most famous contributions were
made to Toeplitz operators, random matrices, and the asymmetric simple exclusion
process. While his work on the last two topics is part of almost all the present-day
research activities in these fields, his work in Toeplitz operators and matrices was
done mainly before 2000, and we therefore included an article which describes his
achievements in just this area.

The volume contains several invited and refereed research and expository papers.
These present new results or new perspectives on topics related to Harold’s work.
We are very grateful to all the authors for their effort to make this volume a highly
deserved tribute to Harold Widom.

Palo Alto, CA, USA Estelle Basor
Chemnitz, Germany Albrecht Böttcher
Santa Cruz, CA, USA Torsten Ehrhardt
Davis, CA, USA Craig A. Tracy
July 2022
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Part I
Harold Widom’s Life, Work,

and Last Paper



Biography of Harold Widom

Estelle Basor, Albrecht Böttcher, Torsten Ehrhardt, and Craig A. Tracy

Harold Widom was born September 23, 1932, in Newark, New Jersey, during the
heart of the Depression. His parents were born in eastern Europe, and they came to
the United States in 1914, when his mother was 15 years old and his father 22. They
met in New York and were married there in 1924.

Harold was only eight when his father died. He had not seen him in the preceding
three years, since his father, a dentist who contracted tuberculosis while serving
in the US army in the First World War, had been in a tuberculosis sanitarium in
Arizona and then in Colorado. In 1939, Harold, his brother, and their mother moved
to Brooklyn.

Harold went to Stuyvesant High School in Manhattan. There he was captain of
the math team. Coincidentally, the captain of the rival team at the Bronx High School
of Science was Henry Landau, who became a long-time friend and colleague of
Harold’s. Al Kelley and Tony Tromba [1] write that the Stuyvesant team included
also “two other famous twentieth century mathematicians, Elias Stein of Princeton
and Paul Cohen of Stanford, who would all ultimately specialize in the field of
mathematical analysis. Elias was one year older than Harold, and Paul two years
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4 E. Basor et al.

younger. Paul, who would go on to win a Fields Medal in Mathematics in 1962 in
recognition of his path-breaking solution of Hilbert’s first problem, was generously
tutored by Harold for several years in high school. All three remained together to
study analysis under the guidance of Antoni Zygmund and Alberto Calderón in
graduate school at the University of Chicago. Reflecting on his life in a speech at
Stanford in 2001, Paul thanked Harold for the profound influence he had on his early
mathematical career.”

From 1949 to 1952, Harold attended the City College of New York, and in
1952 he moved to the University of Chicago, where he became a Ph.D. student
of Irving Kaplansky and defended his Ph.D. thesis, Embedding of AW∗-algebras,
in 1955. Irving Kaplansky [5] beautifully characterizes the spirit of those times and
Harold’s place in them as follows. “In 1946 Marshall Stone left Harvard to accept
the chairmanship of the Department of Mathematics at the University of Chicago.
There followed quickly a series of stellar appointments that raised the department
to a very high level. (I can say this without being self-serving; John Kelley and I
were the last appointments made before the “Stone Age”.) It was an exciting time
to be at Chicago. But it was not only the faculty that created the excitement—a
stream of superb students arrived. I was lucky enough to attract my fair share, and
that included Harold. His thesis was on AW∗-algebras . . . His bibliography shows
three fine papers on the topic and then shifts. (With the shift, his output moved to a
different part of Mathematical Reviews). I understand that the shift can be attributed
to the influence of Mark Kac at Cornell and one could not ask for a better source of
inspiration. I am proud and happy about what Harold added to the theory of AW∗-
algebras, and equally proud and happy about what he has accomplished since then.”

In 1955, Harold began his academic career as an instructor at Cornell University
where he rose through the ranks to become full professor in 1965. At Cornell,
he came under the influence of Mark Kac, who persuaded him to embark on
the asymptotic behavior of the spectra of operators, especially Toeplitz operators.
Harold then proved many of the early beautiful theorems about Toeplitz operators.
More about this can be found in the article [2]. Shortly before 1968, he spent one
year at Stanford University, and although at Cornell he had Mark Kac and his brother
Benjamin (on the Cornell faculty of chemistry) around him, he then felt, as a rumor
says, that the California weather is preferable to the Ithaca winters.

In the fall of 1968, Harold accepted an offer from University of California at
Santa Cruz to become a founding member of the Mathematics Department. He
served the department 26 years, with 3 years as the chairman, until 1994, when he
used the opportunity for early retirement. Every topic has its time. As for Toeplitz
and related operators, the late 1950s and 1960s may be regarded as the years of gold
rush. However, the period between the 1970s and the late 1990s was the true Golden
Age (or Belle Époque, as Nikolai Nikolski once called it) of research into Toeplitz
and Wiener-Hopf operators as well as into pseudodifferential operators. It was not
only fortunate conicidence that Harold’s work in Santa Cruz fell into this age. In
fact, Harold was one of the principal figures in this development, and it was just he
who made some of the brightest contributions to the blossoming of the field. We
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refer again to [2] for a more detailed description of his tremendous achievements in
this period.

Harold’s self-chosen early retirement in 1994 was truly a huge loss for the
UCSC Mathematics Department. Tony Tromba always joked that when Harold
retired, the department entered a completely new chapter, Chapter 11. However,
for Harold it was the right decision. It was the beginning of his joint and fruitful
work with the fourth of us on random matrices and asymmetric simple exclusion
processes, which had lasted 30 years until Harold’s death in 2021. The discovery
of what is now called the Tracy-Widom distribution brought him wide international
recognition. Al Kelly and Tony Tromba [1] write “The densities of the Tracy-Widom
distributions are on the cover of each issue of the journal Random Matrices: Theory
and Applications, a rare tribute to someone’s work.” We refer to [4] for a profound
exposition of Harold’s work on random matrices and on the asymptotic behavior for
the asymmetric simple exclusion process.

As of July 2022, MathSciNet lists 167 publications by Harold with about 4000
citations by nearly 1800 authors. Solely the paper Level-spacing distributions
and the Airy kernel in Comm. Math. Phys. 159, 151–174 (1994), received more
than 600 citations. Harold wrote three books: the Springer Lecture Notes volume
Asymptotic expansions for pseudodifferential operators on bounded domains, which
was published in 1985, and the two beautiful short books Lectures on Integral
Equations and Lectures on Measure and Integration for students, based on lectures
he gave at Cornell. The latter two resulted in part from notes written by David
Drazin and Anthony Tromba, both students in his classes at the time. They were
first published by Van Nostrand in 1969 and later by Dover. His probably last paper,
Domain walls in the Heisenberg-Ising Spin- 1

2 chain, jointly with Axel Saenz and
one of us, is published in this volume.

Harold received numerous awards. In 2002, he was awarded the George Pólya
Prize. In 2006, he received the Norbert Wiener Prize in Applied Mathematics
and then in 2020, the American Mathematical Society’s Steele Prize for Seminal
Research. The fourth of us has the privilege to share these three prizes with Harold.
In 2006, Harold was elected to the American Academy of Arts and Sciences.

Harold successfully guided 8 Ph.D. students:

Lidia Luquet, 1972, p-Norm inequalities for entire functions,

Estelle Basor, 1975, Asymptotic formulas for Toeplitz determinants,

Ray Roccaforte, 1982, Asymptotic expansions of traces for certain convolution
operators,

Richard Libby, 1990, Asymptotics of determinants and eigenvalue distributions
for Toeplitz matrices associated with certain discontinuous symbols,

Xiang Fu, 1991, Asymptotics of Toeplitz matrices with symbols of bounded
variations,

Shuxian Lou, 1992, The second order asymptotics of a class of integral operators
with discontinuous symbols,
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Bobette Thorsen, 1992, An asymptotic expansion for the trace of certain integral
operators,

Bin Shao, 1993, Second order asymptotics for the discrete analogue of a class of
pseudodifferential operators.

Harold had many interests outside of mathematics. He played the violin as a
child and was part of the UCSC orchestra for several years. He especially loved
hiking. Al Kelly and Tony Tromba [1] write “For over 15 years, the three of us hiked
almost every week. We thoroughly enjoyed being together and having extended
conversations on almost any topic, mathematical, political, or simply campus and
departmental issues. After some time we only hiked every other week or so, and
then finally much less often. One favorite (and most spectacular) hike was to go
from Twin Gates on Empire Grade down to Wilder Ranch.”

Harold remained mathematically active until his last months. He maintained a
blackboard both at his home and at his university office which ought not to be
erased and which captured the problems on which he was currently working. When
a colleague of ours approached us in the Fall of 2019 with an intricate asymptotic
question, it was Harold who came up with the correct answer first. Harold kept
teaching until he was 79 years old. He was known to the students to enter the
classroom with at most a tiny piece of paper and deliver his lecture easily and
elegantly on the blackboard. He seemed in good spirits on his 88th birthday in
September 2020. He had recently broken a hip but had been recovering. Sadly, he
fell seriously ill a few months later.

Harold passed away on January 20, 2021. He is survived by his wife Linda
Larkin, former wife Lois Widom, brother Benjamin Widom, daughter Barbara
Widom, daughter Jennifer Widom, son Steven Widom, and four grandchildren.
Harold’s brother Benjamin is five years older. He is the Goldwin Smith Professor
of Chemistry at Cornell University and was awarded the Boltzmann Medal in
1998 for his achievements in physical chemistry and statistical mechanics. Harold’s
daughter Barbara Widom is an endocrinologist in Fort Collins, and his daughter
Jennifer Widom is the Frederick Emmons Terman Dean of Engineering at Stanford
University. Harold’s son Steven Widom is a software engineer.

Credits The present article is in part based on [1, 3, 5, 6].
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Domain Walls in the Heisenberg-Ising
Spin-1

2 Chain

Axel Saenz, Craig A. Tracy, and Harold Widom

Abstract In this chapter we obtain formulas for the distribution of the left-most
up-spin in the Heisenberg-Ising spin-1/2 chain with anisotropy parameter Δ, also
known as the XXZ spin-1/2 chain, on the one-dimensional lattice Z with domain
wall initial conditions. We use the Bethe Ansatz to solve the Schrödinger equation
and a recent antisymmetrization identity of Cantini, Colomo, and Pronko to simplify
the marginal distribution of the left-most up-spin. In the Δ = 0 case, the distribution
F2 arises. In theΔ �= 0 case, we propose a conjectural series expansion type formula
based on a saddle point analysis. The conjectural formula turns out to be a Fredholm
series expansion in the Δ → 0 limit and recovers the result for Δ = 0.

Keywords Heisenberg-Ising Spin Chain · XXZ · Bethe Ansatz · Saddle Point
Analysis

1 Introduction

We consider the dynamics of the Heisenberg-Ising spin-1/2 chain with anisotropy
parameter Δ, also known as the XXZ spin-1/2 chain, on the one-dimensional lattice
Z with domain wall initial conditions. We start with an initial state of N up-spins at
the sites {1, 2, . . . , N} in a sea of down-spins; and by utilizing ideas from coordinate
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Bethe Ansatz [3, 13, 26, 37] to solve the Schrödinger equation, we find the quantum
state ΨN(t) at time t is

ΨN(t) =
∑

X

ψN(X, t)eX,

where the sum is over all X = {x1 < x2 < · · · < xN } and eX denotes the state
with up-spins at X. Alternatively we can view a spin up at site xj as a particle and
a spin down as an empty lattice site or hole. The “Bethe-coordinates” ψN(X, t) are
given below in Theorem 2.1 They have the interpretation that |ψN(X; t)|2 is the
probability the system is in state X at time t . Observe that the ψN(X, t) have the
standard Bethe Ansatz structure as a sum over the permutation group SN ; where
now, each term in the summand is an N-dimensional contour integral.

1.1 One-Point Functions

If X1(t) denotes the position of the left-most particle at time t , then

PN(X1(t) = x) =
∑

X,x1=x

|ψN(X, t)|2

where the sum is over all X = {x1 = x < x2 < · · · < xN }. In ASEP the
analogous quantity involves a single sum over SN where as now we have a double
sum over SN . In [29] an identity involving the sum over the permutation group2 was
used to reduce the sum to a single N-dimensional integral. Cantini, Colomo, and
Pronko [9] have generalized the single sum permutation identity to a double sum
permutation identity, which also generalize to the (spin) Hall-Littlewood functions
[20, 36]. Employing this new identity reduces the expression for PN(X1(t) = x)

to a single 2N-dimensional integral whose integrand involves the famous Izergin-
Korepin determinant [16, 18]. The resulting expression is given in Theorem 3. This
part of the paper overlaps the recent work of J. M. Stéphan [23, 25].

For the special case Δ = 0, the analysis simplifies considerably. Using Toeplitz
operators and their determinants, we show the N → ∞ limit can be taken resulting
in the representation

lim
N→∞PN(X1(t) ≥ x) = det(I − L)

1 Since the Hamiltonian HΔ of the Heisenberg-Ising model is a (non-unitary) similarity transfor-
mation of the Markov generator of the ASEP [15], the results in [29] give immediately the Bethe
coordinates of Theorem 2 once an identification of parameters is made (see Sect. 3.3).
2 See equation (1.6) in [29].
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where L is an integral operator whose kernel is the discrete Bessel kernel [4, 6,
17] (see also Chapter 8 in [2]). This makes connections to the distribution of the
length of the longest increasing subsequence in a random permutation [1, 2]. See
Theorem 4 below. From this identification it follows that

lim
t→∞ lim

N→∞PN

(
X1(t)+ 2t

t1/3 ≥ −y

)
= F2(y)

where F2 is the TW2 distribution [27, 28]. This last result appears to be well-known
in the physics literature since the case Δ = 0 is reducible to a “free fermion” model
[12, 21, 23, 34].

1.2 Contour Deformations and a Conjecture

Taking the contour integral functions for the one-point function to the infinite time
statistics is another major challenge. In the case of the ASEP, this was achieved by
Tracy-Widom [30] by deforming the contours to obtain a Fredholm determinant.
Then, in a later work by the same authors [31], the Fredholm determinant was
further analyzed by deforming the kernels to obtain the Tracy-Widom distribution.
We also deform the contour integrals for our one-point function, in Sect. 7, to obtain
a type of series expansion.

Theorem 1 Let X1(t) be the location of the left-most particle in the Heisenber-
Ising spin-1/2 chain with N particles, initial conditions Y = (y1 < y2 < · · · < yN),
and Δ ∈ R so that Δ �= 0. Then, P(X1(t) ≥ x) is equal to

N∑

n=0

∑

τ∈Tn

∮

CR
· · ·
∮

CR

∮

CR′
· · ·
∮

CR′
IN(ξ, ζ ; τ )f (ξ, ζ ; τ )

⎛

⎝
∏

j∈J
dζj

⎞

⎠ dNξ

(1)

where the integrand is given by (67), the summation is take over the set of maps Tn
given by (59), and the contours CR and CR′ are circles centered at zero with radii
R,R′ > 0 that satisfy the following inequalities max{2|Δ|−1, 2(1 + 2|Δ|)} < R <

max{4|Δ|−1, 4(1 + 2|Δ|)} < R′/2.

We expect this series expansion to to give rise to a series expansion of a Fredholm
determinant in the infinite time limit. In fact, we may deform the contours in the
previous formula to the steepest descent to contours in an effort to obtain the infinite
time limit by a saddle point analysis. The result is given by our Conjecture 1. Aside
from technical details of certain bounds and approximations, there are some terms
that we still can’t control after the saddle point analysis. Recent results [8, 10, 23,
24], based on numerical, hydrodynamic and analytical arguments are inconclusive
in the appropriate scaling, i.e. t1/2 versus t1/3, for the fluctuations of the one-point
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function in the infinite time limit. Based on our conjecture, we expect the location
of the left-most particle to be at −2t with fluctuations on the order of t1/3 but the
limiting distribution is still unclear.

2 XXZ Quantum Spin-1
2 Hamiltonian

The definition of the quantum spin chain Hamiltonian on the infinite lattice Z

requires some explanation since there is the problem of making sense of infinite
tensor products in the construction of a Hilbert space of states. The general
construction uses the Gelfand-Naimark-Segal (GNS) construction; but in the case
considered here, there is an elementary treatment [19] which we now describe.

Let H0 = C. For each positive integer N we define

XN :=
{
X = {x1, . . . , xN } ∈ Z

N : x1 < · · · < xN

}

and

HN := �2(XN).

The Hilbert space of states is

H :=
∞⊕

N=0

HN .

The normalized state Ω = 1 ∈ H0 is the ground state of all spins down. In
physicists’ notation

Ω = | · · · ↓ · · · ↓ · · · ↓ · · · 〉.

Given N ∈ Z
+ and X = {x1, . . . , xN } ∈ XN , define eX ∈ HN by

eX(Y ) = δX,Y .

The set {eX}X∈XN
defines a natural orthonormal basis of HN . The physical

interpretation of eX is the state with up spins at x1 < · · · < xN in a sea of down
spins:

eX = | · · · ↑
x1

· · · ↑
x2

· · · ↑
xN

· · · 〉.

This is a model of a quantum lattice gas (see, for example, §6.1.6 of [26]). We will
frequently use this particle interpretation.
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We introduce the Pauli operators σα
j , j ∈ Z, α = 3,±.

σ 3
j eX =

{
eX if j ∈ X = {x1, . . . , xN },

− eX otherwise.
(2)

σ+
j eX =

{
0 if j ∈ {x1, . . . , xN },
eX+ where X+ = {x1, . . . , xk, j, xk+1, . . . , xN }, xk < j < xk+1

(3)

σ−
j eX =

{
0 if j /∈ X = {x1, . . . , xN }
eX− where X− = {x1, . . . , xk−1, xk+1, . . . , xN }, j = xk

(4)

In words, σ+
j : HN → HN+1 acts as the identity except at the site j where

it takes ↓�↑ and annihilates a ↑ state. Similarly, σ−
j : HN → HN−1 acts as

the identity except at the site j where it takes ↑�↓ and annihilates a ↓ state. By
definition σ 3

j Ω = −Ω , σ−
j Ω = 0 and σ+

j Ω = e{j}. We also recall the Pauli

operators σ 1
j = σ+

j + σ−
j and σ 2

j = −iσ+
j + iσ−

j . Define

hj,j+1 = 1

2

(
σ 1
j σ

1
j+1 + σ 2

j σ
2
j+1 + Δ(σ 3

j σ
3
j − 1)

)

= σ+
j σ

−
j+1 + σ−

j σ
+
j+1 + Δ

2
(σ 3

j σ
3
j+1 − 1)

and

HXXZ =
∑

j∈Z
hj,j+1. (5)

The operator HXXZ is the Heisenberg-Ising spin- 1
2 chain Hamiltonian; or more

briefly, theXXZ spin Hamiltonian. It’s clear from the above definitions thatHXXZ :
HN → HN . Since the number of particles is conserved under the dynamics of
HXXZ, we can work in a sector HN .

A state ΨN = ΨN(t) ∈ HN can be represented by

ΨN(t) =
∑

X∈XN

ψN(X, t)eX. (6)

The initial condition is Ψ (0) = eY , Y = {y1, . . . , yN } ∈ XN , so that ψN(X; 0) =
δX,Y . The dynamics is determined by the Schrödinger equation

i
∂ΨN

∂t
= HXXZΨN. (7)
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The Hamiltonian HXXZ is self-adjoint and so by Stone’s theorem there exists a
unitary operator
U = exp(−itHXXZ) such that ΨN(t) = U(t)ΨN(0). We have

〈ΨN(t), ΨN (t)〉 =
∑

X∈XN

|ψN(X; t)|2 = 1.

The goal is to describe the dynamicsΨDW(t) starting from the domain wall (DW)
initial state

eN = | · · · ↓↓↓
0
↑
1
↑↑ · · · 〉.

One immediately sees the difficulty in that eN is not an element of HN for any N .3

If Xm(t) denotes the position of the mth particle on the left, we define

PN(Xm(t) = x) = lim
N→∞P{1,...,N}(Xm(t) = x).

3 Bethe Ansatz Solution ΨN(t)

This section closely follows [29, 37] and additional details may be found on the
arXiv version of this paper [22]. We first note that

hj,j+1|· · · ↑
j

↑
j+1

· · · 〉 = 0, (8)

hj,j+1|· · · ↓
j

↓
j+1

· · · 〉 = 0, (9)

hj,j+1|· · · ↑
j

↓
j+1

· · · 〉 = −Δ|· · · ↑
j

↓
j+1

· · · 〉 + |· · · ↓
j

↑
j+1

· · · 〉, (10)

hj,j+1|· · · ↓
j

↑
j+1

· · · 〉 = −Δ|· · · ↓
j

↑
j+1

· · · 〉 + |· · · ↑
j

↓
j+1

· · · 〉. (11)

Define [37] (the Yang-Yang S-matrix)

Sβα(ξβ , ξ1) = −1 + ξαξβ − 2Δξβ
1 + ξαξβ − 2Δξα

, (12)

for α, β = 1, . . . , N and ξα, ξβ ∈ C.

3 Presumably, one could construct a domain wall Hilbert space HDW by replacing the state Ω by
eN. Unfortunately, we do not know how to proceed with a Bethe Ansatz solution in this space.
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The generator of the finite N asymmetric simple exclusion process (ASEP) is
a similarity transformation (not a unitary transformation!) of the Heisenberg-Ising
Hamiltonian. Because of this the Schrödinger equation (7) for the quantum spin
chain is essentially identical to the master equation (Kolmogorov forward equation)
for the Markov process ASEP assuming the identification of parameters

ξi = ξ ′
i /

√
τ , τ = p

q
, 2Δ = 1√

pq
,

SXXZβα (ξβ , ξα) = SASEPβα (ξ ′
β, ξ

′
α), ε

XXZ(ξ) = 1√
pq

εASEP (ξ ′).

Thus given the ASEP result [29, 32] and the above identifications, we have

Theorem 2 For σ ∈ SN , define

Aσ (ξ) =
∏{

Sβα(ξβ , ξα) : {β, α} is an inversion in σ
}
, (13)

then the solution to (7) satisfying the initial condition ψN(X; 0) = δX,Y is

ψN(X; t) =
∑

σ∈SN

∫

Cr
· · ·
∫

Cr
Aσ (ξ)

∏

i

ξ
xi
σ (i)

∏

i

(
ξ

−yi−1
i e−itε(ξi)

)
dξ1 · · · dξN

(14)

where Cr is a circle centered at zero with radius r so small that all the poles of Aσ

lie outside of Cr .

Additionally, we have a contour integral formula with large contours instead of
small contours as above in Theorem 2. Below, we will use a combination of the
small and large contour formulas.

Theorem 2a For σ ∈ SN , define

Aσ (ξ) =
∏{

Sβα(ξβ, ξα) : {β, α} is an inversion in σ
}
,

then the solution to (7) satisfying the initial condition ψN(X; 0) = δX,Y is

ψN(X; t) =
∑

σ∈SN

∫

CR
· · ·
∫

CR
Aσ (ξ)

∏

i

ξ
xi
σ (i)

∏

i

(
ξ

−yi−1
i e−itε(ξi)

)
dξ1 · · · dξN

(15)

where CR is a circle centered at zero with radius R so large that all the poles of Aσ

lie inside of CR .

The arguments for the proof of this statement are almost verbatim to the
arguments of the proof of Theorem 1 given in [29]. In this case, one would need
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to expand contours to infinity instead of shrinking them to zero as it was done in
[29]. The arguments are then adjusted mutatis mutandis; the details may be found
in Appendix A of the arXiv version of this paper [22]. We skip the details here for
conciseness sake.

4 Probability PY (x,m; t)

If the initial state is eY ∈ HN , Y ∈ XN , then at time t the system is in state ΨN(t) =∑
X∈XN

ψN(X; t)eX where ψN(X; t) is given by (14) or (15). The quantity

|〈eX,ΨN(t)〉|2 = |ψN(X; t)|2 , X ∈ XN,

is the probability that the system is in state eX at time t .
Denote by PY (x,m; t) the probability that at time t the state has the mth particle

from the left at position x given initially the state is Y . Let X = {x1, x2, . . . , xN } ∈
XN , 1 ≤ m ≤ N , and define the projection operator

Px,meX =
{
eX if xm = x,

0 otherwise.
(16)

Then the outcome of the measurement yielding “the mth spin from the left is at
position x at time t” is that the system is now in state

ΨN(x,m; t) := Px,mΨN(t) =
∑

X∈XN
xm=x

ψN(X; t)eX.

Thus the probability of this outcome is

PY (x,m; t) := 〈ΨN(x,m; t), ΨN(x,m; t)〉 =
∑

X∈XN
xm=x

|ψN(X; t)|2 . (17)

4.1 Distribution of Left-Most Particle

We now restrict to the case m = 1, i.e. PY (x, 1; t). Let

x1 = x, x2 = x + v1, . . . , xN = x + v1 + v2 + · · · + vN−1, vi ≥ 1,

and note that ΨN(x; t) = ΨN(x; −t). Then, using (14) for Ψ (x; t) and (15) for
Ψ (x; −t)with R r < 1, followed by performing the geometric sums (sinceR r < 1,
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the summations may be brought inside)

PY (x, 1; t) =
∑

X∈XN
x1=x

ψN (X; t)ψN(X; −t)

=
∑

σ,μ∈SN

∫

CR
· · ·
∫

Cr

∑

vi≥1

(
Aσ (ξ)Aμ(ζ )

× (ξσ(2)ζμ(2))
v1(ξσ(3)ζμ(3))

v1+v2 · · · (ξσ(N)ζμ(N))
v1+···+vN−1

)

×
∏

j

(ξj ζj )
x−yj−1e−it (ε(ξj )−ε(ζj )) dζ1 · · · dζNdξ1 · · · dξN

=
∑

σ,μ∈SN

∫

CR
· · ·
∫

Cr
Aσ (ξ)Aμ(ζ )

ξσ(2)ζμ(2)ξ
2
σ(3)ζ

2
μ(3) · · · ξN−1

σ(N)ζ
N−1
μ(N)∏N

j=2

(
1 − ξσ(j)ζμ(j) · · · ξσ(N)ζμ(N)

)

×
∏

j

(ξj ζj )
x−yj−1e−it (ε(ξj )−ε(ζj )) dζ1 · · · dζNdξ1 · · · dξN

In the formulas above, we have 2N contour integrals with the contour Cr for
the first N contours and the contours CR for the following N contours. Now, at the
analogous step in ASEP, an identity4 was derived that simplified the sum over SN
resulting in a single multidimensional integral.5 Now we have a double sum over
SN and we need a new identity. Fortunately such an identity has been discovered by
Cantini, Colomo, and Pronko [9]. Let

d(x, y) := 1

(1 − x y)(x + y − 2Δx y)
and DN(ξ, ζ ) = det

(
d(ξi, ζj )|1≤i,j≤N

)
,

(18)

then

∑

σ,μ∈SN

Aσ (ξ)Aμ(ζ )
ξσ(2)ζμ(2)ξ

2
σ(3)ζ

2
μ(3) · · · ξN−1

σ(N)ζ
N−1
μ(N)∏N

j=2

(
1 − ξσ(j)ζμ(j) · · · ξσ(N)ζμ(N)

)

= (1 −∏
j ξj ζj )

∏N
i,j=1(ξi + ζj − 2Δξiζj )∏

i<j (1 + ξiξj − 2Δξi)(1 + ζiζj − 2Δζi)
DN(ξ, ζ ) (19)

4 See (1.6) in [29].
5 See Theorem 3.1 in [29].
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Remarks

• The identity (19) is Proposition 6 of [9] (with a change of notation). The identity
(19) also appears in a more general setting of (spin) Hall-Littlewood functions in
[20, 36], which specializes to the ASEP case as shown in Corollary 7.1 in [20].

• In Appendix B of [9], the authors show that (19) reduces to (1.6) of [29] in the

limit ξj →
√

q
p
ξj and ζj →

√
p
q

.

• The determinant DN(ξ, ζ ) “is nothing but the well-known Izergin-Korepin
determinant [16, 18] in disguise” [35].

We thus have

PY (x, 1; t) =
∫

CR
· · ·
∫

Cr

(1 −∏
j ξj ζj )

∏N
i,j=1(ξi + ζj − 2Δξiζj )∏

i<j (1 + ξiξj − 2Δξi)(1 + ζiζj − 2Δζi)

× DN(ξ, ζ )
∏

j

(ξj ζj )
x−yj−1e−it (ε(ξj )−ε(ζj )) dNζdNξ

(20)

The factor (1 −∏
j ξj ζj ) is eliminated if we consider

FN(x, t) := PY (X1(t) ≥ x) =
∞∑

n=x

PY (n, 1; t) (21)

From [9]

∏

1≤j,k≤N
(ξj + ζk − 2Δξjζk) · DN(ξ, ζ ) = ΔN(ξ)ΔN(ζ )∏

j,k(1 − ξj ζk)
QN(ξ, ζ ) (22)

where QN is a “polynomial of degree N − 1 in each variable, separately symmetric
under permutations of the variables within each set” [9, 35].6 Here ΔN(ξ) is the
Vandermonde product

∏
1≤j<k≤N(ξk − ξj ) (not to be confused with the constant

Δ). It’s useful to define

U(ξ, ξ ′) := 1 + ξξ ′ − 2Δξ

ξ ′ − ξ
.

6 For example

Q1(ξ, ζ ) = 1,

Q2(ξ, ζ ) = 4Δ2ζ1ζ2ξ1ξ2 − 2Δζ1ζ2ξ1 − 2Δζ1ζ2ξ2 − 2Δζ1ξ1ξ2 − 2Δζ2ξ1ξ2

+ζ1ζ2ξ1ξ2 + ζ1ζ2 + ξ1ξ2 + 1,

Q3 in expanded form has 459 terms, and Q4 has 60,820 terms.
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The identity (19) can be rewritten as

∑

σ,μ

∏

i<j

U(ξσ(i), ξσ(j))U(ζμ(i), ζμ(i))
ξσ(2)ζμ(2)ξ

2
σ(3)ζ

2
μ(3) · · · ξN−1

σ(N)ζ
N−1
μ(N)∏N

j=2

(
1 − ξσ(j)ζμ(j) · · · ξs(N)ζμ(N)

)

= 1 −∏
j ξj ζj∏

j,k(1 − ξj ζk)
QN(ξ, ζ )

(23)

The close relationship of (23) to (1.6) of [29] (see also Identity 1L in [33]) is now
clearer. We have proved

Theorem 3 FN(x, t) = PY (X1(t) ≥ x) equals

∫

CR
· · ·
∫

Cr

∏
j,k(ξj + ζk − 2Δξjζk)∏

j<k(1 + ξj ξk − 2Δξj )(1 + ζj ζk − 2Δζj)
DN(ξ, ζ )

×
∏

j

(ξj ζj )
x−yj−1e−it (ε(ξj )−ε(ζj )) dNζ dNξ (24)

=
∫

CR
· · ·
∫

Cr

ΔN(ξ)ΔN(ζ )∏
j<k(1 + ξj ξk − 2Δξj)(1 + ζj ζk − 2Δζj)

QN(ξ, ζ )∏
j,k(1 − ξj ζk)

×
∏

j

(ξj ζj )
x−yj−1e−it (ε(ξj )−ε(ζj )) dNζ dNξ (25)

where Cr (resp. CR) is a circle centered at zero with radius r (resp. R) so small
(resp. large) that all the poles of the integrand except for the the poles at the origin
(resp. infinity) lie outside Cr (resp. inside CR) and R r < 1.

5 Special Case Δ = 0

When Δ = 0, (25) reduces to

FN(x, t)
∣∣
Δ=0

=
∫

CR
· · ·
∫

Cr

ΔN(ξ)ΔN(ζ )∏
j,k(1 − ξj ζk)

∏

j

(ξj ζj )
x−yj−1e−it (ε(ξj )−ε(ζj )) dNζ dNξ (26)

=
∫

CR
· · ·
∫

Cr
det

(
1

1 − ξj ζk

)∏

j

(ξj ζj )
x−yj−1e−it (ε(ξj )−ε(ζj )) dNζ dNξ (27)
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since

lim
Δ→0

QN(ξ, ζ )∏
j<k(1 + ξj ξk − 2Δξj )(1 + ζj ζk − 2Δζj)

= 1.

and

det

(
1

1 − ξj ζk

)
= ΔN(ξ)ΔN(ζ )∏

j,k(1 − ξj ζk)
.

More directly since Aσ

∣∣
Δ=0 = sgn(σ ), we use the identity

∑

σ,μ

sgn(σ )sgn(μ)
ξσ(2)ζμ(2)ξ

2
σ(3)ζ

2
μ(3) · · · ξN−1

σ(N)ζ
N−1
μ(N)∏N

j=2

(
1 − ξσ(j)ζμ(j) · · · ξσ(N)ζμ(N)

) = det

(
1

1 − ξj ζk

)

(28)

5.1 Fredholm Determinant Representation

Define

φj (ξ) = ξx−yj−1e−itε(ξ), ψj (ζ ) = ζ x−yj−1eitε(ζ )

and

K(j, k) = φj (ξj )ψk(ζk)

1 − ξj ζk
(29)

Thus

FN(x, t)
∣∣
Δ=0 =

∫

CR
· · ·
∫

Cr
det(K) dNζ dNξ

=
∫

Cr
· · ·
∫

Cr
det(K) dNζ dNξ (30)

For the second identity, we deformed the contours from CR to Cr for all the ζ -
variables. When we deform the contours, we don’t cross any poles since the poles,
given by 1 − ξj ζk = 0, are located outside of the contour CR since we have taken
R r < 1. Additionally, note that the variable ξj appears only in row j and ζk
appears only in column k. It follows that the multiple integral is gotten by integrating



Domain Walls in the Heisenberg-Ising Spin- 1
2 Chain 21

each K(j, k) with respect to ξj , ζk . Therefore the multiple integral (30) equals the
determinant with j, k entry

KN(j, k) =
∫

Cr

∫

Cr

φj (ξ)ψk(ζ )

1 − ξζ
dζdξ

We consider step initial condition, so that yj = j . In preparation for taking the
limit as N → ∞, we make the replacements j → j + 1, k → k + 1, so that the
indicies run for 0 to N − 1 rather than 1 to N . Then, in preparation for eventual
steepest descent, we make the substitutions ξ → i ξ , ζ → ζ/i. Aside from the
factor eiπ(j−k)/2, which will not affect the determinant, the kernel becomes

LN(j, k) =
∫

Cr

∫

Cr

ξx−j−2 ζ x−k−2

1 − ξζ
et (θ(ξ)+θ(ζ )) dζdξ,

where we have set θ(ξ) = ξ − 1/ξ . We write the above as

∞∑

�=0

∫

Cr

∫

Cr
ξx−j+�−2ζ x−k+�−2 et (θ(ξ)+θ(ζ )) dζdξ.

We may take all integrations over the unit circle C1 and in the ζ -integral make
the substitution ζ → 1/ζ . We obtain

LN(j, k) =
∞∑

�=0

∫

C1

∫

C1

ξx−j+�−2ζ−x+k−� et (θ(ξ)−θ(ζ )) dζdξ.

In Toeplitz terms this is the operator

PNT (a)T (a
−1)PN,

where PN is the projection from �2(Z+)7 to �2([0, . . . , N − 1]) and where a is the
symbol

a(ξ) = ξx−1et θ(ξ).

It it known (see, e.g. §5.1 in [7]) that T (a)T (a−1) is of the form I+trace class and
so det(KN) has the limit det(T (a)T (a−1)) on �2(Z+).8

7
Z

+ denotes the set of nonnegative integers.
8 One can show that for x > 1 the determinant of the product is zero.
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By a well-known identity, T (a)T (a−1) = I−H(a)H(ã−1), whereH(a) denotes
the Hankel operator and ã(ξ) = a(ξ−1). In this case ã = a−1 and the square of
H(a) has kernel9

L(j, k) =
∞∑

�=0

∫

C1

∫

C1

ξx−j−�−3ζ x−k−�−3 et (θ(ξ)+θ(ζ )) dζdξ,

and we are interested in det(I − L). The substitutions ξ → 1/ξ , ζ → 1/ζ give

L(j, k) =
∞∑

�=0

∫

C1

∫

C1

ξ−x+j+�+1ζ−x+k+�+1 e−t (θ(ξ)+θ(ζ )) dζdξ. (31)

If we take our integrals over Cr and sum we obtain

L(j, k) =
∫

Cr

∫

Cr

ξ−x+j+1ζ−x+k+1 e−t (θ(ξ)+θ(ζ ))

1 − ξζ
dζdξ (32)

The kernel L(j, k) is known as the discrete Bessel kernel [4] (see also Chapter 8 in
[2]) due to the following representation. Using the Bessel generating function

exp(tθ(ξ)) =
∞∑

n=−∞
ξnJn(2t)

in (31) and the identity, ν �= μ,

∞∑

n=0

Jν+n(t)Jμ+n(t) = t

2(ν − μ)

[
Jν−1(t)Jμ(t) − Jν(t)Jμ−1(t)

]
(33)

we find

L(j, k) = t
Jj−x+1(2t)Jk−x+2(2t)− Jj−x+2(2t)Jk−x+1(2t)

j − k

For j = k one lets μ → ν in (33) to find

L(j, j) =
∞∑

n=0

Jν+n(2t)2

= t

[
Jν(2t)

∂Jμ

∂μ

∣∣
μ=ν−1 − Jν−1(2t)

∂Jμ

∂μ

∣∣
μ=ν−1

]
, ν = −x + j + 1.

9 Recall that the i, j -entry of H(f ) is fi+j+1 = ∫
ξ−i−j−2f (ξ) dξ .
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For x ≤ 1 and domain wall initial condition Y = N, we have the Toeplitz
representation

PN(X1(t) ≥ x)
∣∣
Δ=0 = det(I − L)�2({1−x,2−x,... })

= e−t2 det
(
Ij−k(2t)

) ∣∣∣
j,k=0,...,−x

where the last equality10 was proved in [5].
If L(t) denotes the length of the longest increasing subsequence of a random

permutation of size N where N is a Poisson random variable with parameter t2,
then [1, 2, 14]

P(L(t) ≤ n) = e−t2 det(Ij−k(2t))j,k=0,...,n−1

Theorem 4 For x ≤ 1 and domain wall initial conditions Y = N, we have

PN(X1(t) ≥ x)
∣∣
Δ=0 = P(L(t) ≤ 1 − x) (34)

where L(t) denotes the length of the longest increasing subsequence of a random
permutation of size N so that N is a Poisson random variable with parameter t2.

5.2 Asymptotics

From the classic work of Baik, Deift, and Johnasson [1] (see also Chapter 9 in [2]),
we know that the limiting distribution of L(t) is

lim
t→∞P

(L(t) − 2t

t1/3
≤ x

)
= F2(x) (35)

where F2 is the β = 2 TW distribution [27, 28]. In the present problem, Δ = 0, we
can therefore conclude that the left-most particle for domain wall initial condition
Y = N has the limiting distribution

lim
t→∞P

(
X1(t) + 2t

t1/3 ≥ −y

)
= F2(y). (36)

10 Iν(z) is the modified Bessel function of order ν.
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6 Steepest Descent Curve

6.1 Spectral Functions

We introduce a pair of functions

G(ξ) = x log ξ − it (ξ + ξ−1), H(ζ ) = −x log ζ − it (ζ + ζ−1), (37)

which we call the spectral functions. Note that the spectral functions appear in the
integrand of the formula for FN(x, t) given by (51). In particular, we have

(ξj ζj )
xe−it (ε(ξj )−ε(ζj )) = exp

{
G(ξj ) − H(ζj )

}
. (38)

In the following, we will deform the contours in the contour integral formula for
FN given by (51) so that the real part of the difference of the spectral function is
negative, Re(G−H) < 0. Thus, making FN suitable for asymptotic analysis. Some
more details for this section are given in the arXiv version of this paper [22].

6.2 Critical Points

The steepest descent contours in the contour integral formula FN given by (24) are
determined by the critical points of the spectral functions. We have

G′(ξ) = −itξ2 + xξ + it

ξ2 , H ′(ζ ) = −itζ 2 − xζ + it

ζ 2 . (39)

so that the critical points are given by

ξ = x ± √
x2 − 4t2

2it
, ζ = −x ± √

x2 − 4t2

2it
. (40)

Note that each function, G and H , has a double critical point when x = ±2t and
the critical point are

ξ0 =
{−i, x = 2t
i, x = −2t

, ζ0 =
{
i, x = 2t
−i, x = −2t

, (41)

respectively. Physically, we expect the point x = −2t to correspond to the left-edge
of the up-spins and the point x = 2t to correspond to the right-edge of the up-
spins. Thus, we restrict our attention to the critical point given by x = −2t and take
(ξ0, ζ0) = (i,−i).
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6.3 Steep Descent Curves

We introduce the steep descent contours given by three segments on three regions: in
the region near the critical points, we take straight lines emanating from the critical
point at angles ±π/6 and ±5π/6; in an intermediate region, we take horizontal lines
emanating from the end points of the straight lines in region near the critical point;
in the region far away from the critical point, we take a segment of a large circle that
connects with the horizontal lines. We use these contours so that we may explicitly
determine the location of the poles when we deform to these steep descent contours.
Although these contours don’t follow the path of steepest descent for the real part
of the spectral function, we show below that we still have the main property that
Re {G(ξ) − G(ξ0)} ≤ 0 and Re {H(ζ ) − H(ζ0)} ≥ 0 along these steep descent
contours.

We now give a precise definition for the steep descent contours. We give a piece-
wise description based on the proximity to the critical points. Let B(z, r) be a ball
centered at z ∈ C of radius r > 0 and B(z, r)c be its complement. Then, we take
the components

Γ
(1)
± = {±i + xe±πi/6 | 0 ≤ x} ∩ B(±i, 1),

Γ
(2)
± = {±i + xe±5πi/6 | 0 ≤ x} ∩ B(±i, 1)

Γ
(3)
± = {±i + e±πi/6 + x | 0 ≤ x} ∩ B(±i, 1)c ∩ B(0, R±),

Γ
(4)
± = {±i + e±5πi/6 − x | 0 ≤ x} ∩ B(±i, 1)c ∩ B(0, R±)

Γ
(5)
± = CR ∩ {z ∈ C | Im {z} ≤ (±1)Im {±i + e±πi/6}}

, (42)

with radii R± >
√

3. The bound on the radii is chosen so that the horizontal
segments of the contours are non-trivial. Then, the steep descent contours are given
by

Γk = Γ
(1)
k ∪ Γ

(2)
k ∪ Γ

(3)
k ∪ Γ

(4)
k ∪ Γ

(5)
k (43)

for k = ±. See Figs. 1 and 2.

Lemma 1 Let x = −2t and take the contours Γk , k = ±, given by (42) and (43).
Additionally, take t−α ≤ T � 1 with 1/4 < α < 1/3. Then, we have

Re {G(ξ) − G(ξ0)} ≤ 0, Re {H(ζ )− H(ζ0)} ≥ 0 (44)

if ξ ∈ Γ+ and ζ ∈ Γ−. Moreover, if ξ ∈ Γ+ ∩B(i, t−α)c and ζ ∈ Γ− ∩B(−i, t−α)c,
we have

Re {G(ξ) − G(ξ0)} < −c1(T ) t
1−3α, Re {H(ζ )− H(ζ0)} > c2(T ) t

1−3α,

(45)

for some constants c1(T ), c2(T ) > 0 that depend only on T .



26 A. Saenz et al.

Fig. 1 The components of
the Γ+ contour.

Γ +
(1)Γ +

(2)
Γ +

(3)Γ +
(4)

Γ +
(5)

1R

Fig. 2 The components of
the Γ− contour.

Γ-
(1)Γ-

(2) Γ-
(3)Γ-

(4)

Γ-
(5)

1 R'

Proof We prove the bounds by showing that derivative of the real part of the
functions are monotone along the different segments of the contours Γ± as
parameterized in (42). Since G(ξ) − G(ξ0) = 0 for ξ = ξ0 and H(ζ )− H(ζ0) = 0
for ζ = ζ0, the first bounds (44) then follow by monotonicity. Moreover, since the
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real part of the functions are monotone, we establish the bounds (45) by bounding
the real part of the functions on the boundary of the segment Γ± ∩ B(±i, t−α).

The arguments for both functions are the same, except for some negative signs
here and there. So, we focus solely on the case for the G function. Additionally, the
arguments are fairly routine and standard. So, we just sketch the main idea needed
for the bounds.

Take ξ ∈ Γ
(1)
+ ∪ Γ

(2)
+ . In this case, we have ξ = i + xeπi/6 or ξ = i + xe5πi/6,

with 0 ≤ x ≤ 1 since Γ (1)
+ ∪ Γ

(2)
+ ⊂ B(i, 1). Then, we may write the real part of

the G function explicitly and show that it is monotone by taking its derivative. For
instance, we have

d

dx
Re {G(i+xeπi/6)−G(i)} = t

2

(
1 − 2 + 4x

1 + x + x2 + 1 + 4x + x2

(1 + x + x2)2

)
. (46)

One may now check that the derivative is zero when x = 0 and negative if 0 < x <

1 + √
3. Thus, the bound (44) follows for this segment.

Take ξ ∈ Γ
(3)
+ ∪Γ (4)

+ . In this case, we have ξ = i+eπi/6+x or ξ = i+e5πi/6−x,

with x non-negative and bounded sinceΓ (3)
+ ∪Γ (4)

+ ⊂ B(0, R+). Then, we may write
the real part of the G function explicitly and show that it is monotone by taking its
derivative. For instance, we have

d

dx
Re {G(i + eπi/6 + x)− G(i)} = −t

(
1 − 3(

√
3 + 2x)

2(3 + √
3 x + x2)2

)
. (47)

Form this, one may show that the derivative is strictly negative for all x ≥ 0. The
bound (44) follows for this segment.

Take ξ ∈ Γ
(5)
+ . In this case, we have ξ = R+ eiθ , with −π/2 ≤ θ ≤ φ1 < π/2

and π/2 < φ2 ≤ θ ≤ 3π/2 for some constants φ1 and φ2 since Γ
(5)
+ ⊂ {z ∈ C |

Im {z} ≤ Im {i + eπi/6}}. In this case, we have

Re {G(ξ)− G(i)} = −2t logR+ + t (R+ + R−1+ ) sin θ. (48)

Since R+ > 1, one may then show that this function is monotone on θ for each of
the segments −π/2 ≤ θ ≤ φ1 < π/2 and π/2 < ϕ2 ≤ θ ≤ 3π/2. The bound (44)
follows for this segment.

The bound (45), now that we have established that the function is monotone
along all the segments of the contours, follows by evaluating the function on the
boundary of the segment Γ+ ∩ B(i, t−α). That is, we evaluate the function at the
points ξ = ξ0 + t−α eπ i/6 and ξ = ξ0 + t−αe5π i/6. In particular, we use the Taylor
expansion

G(ξ) − G(ξ0) = −1

3
x3t1−3α + O(t1−4α) (49)

to approximate the function at the desired points. Since t−α < T � 1, we obtain
the bound (45). ��
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7 Contour Deformations

7.1 Small to Large Contour deformations

We deform the contours in the probability function for the left-most particle given by
(24). In particular, we deform the contours Cr , for the ζ -variables, to some contour
CR′ with a large radius R′ > 0. Let

Ω(ξ) := C(0) ∪ −C(1) ∪ −C(2) ∪ · · · ∪ −C(N) (50)

be the union of (N + 1) circles so that −C(j), for j = 1, . . . , N , is a negatively
oriented circle centered at ξ−1

j with radius r ′ > 0 and C(0) is a positively oriented
circle centered at the origin with radius R′ > 0. We give precise conditions on
the radii in the statement of Lemma 2 below. Then, as we deform the Cr contour,
we will encounter poles at ζi = ξ−1

j for i, j = 1, . . . , N . As a result, we obtain
the contour Ω(ξ) when we deform the contour Cr to CR′ . This result and the proof
for the contour deformations, given by Lemma 2 below, is similar to the contour
deformation in [11].

Lemma 2 For Δ �= 0, FN(x, t) = PY (X1(t) ≥ x) equals

∫

CR
· · ·
∫

Ω(ξ)

∏
j,k(ξj + ζk − 2Δξjζk)∏

j<k(1 + ξj ξk − 2Δξj )(1 + ζj ζk − 2Δζj)
DN(ξ, ζ )

×
∏

j

(ξj ζj )
x−yj−1e−it (ε(ξj )−ε(ζj )) dNζ dNξ (51)

where the contour CR for the ξ -variables is a circle centered at zero with radiusR >

0 and the contour Ω(ξ) for the ζ -variables is given by (50) with radii R′ > 0 and
r ′ = 1/(2R), so that the radii satisfy the following inequalities max{2|Δ|−1, 2(1 +
2|Δ|)} < R < max{4|Δ|−1, 4(1 + 2|Δ|)} < R′/2.

Proof We take formula (24) with radius R as given in the conditions in the Lemma
and radius r > 0 so that max{4|Δ|−1, 4(1 + 2|Δ|)} < r−1 < R′/2. Note that
the conditions on the contours CR and Cr given in Theorem 3 (i.e. all the poles lie
inside/outside of the contours) are satisfied for our choice of radii. Then, we deform
the contour in (24) for the ζ -variables to a large radius R′ > 0, with R′ satisfying
the conditions given in the Lemma. We begin by deforming the contour for ζN , then
the contour for ζN−1, and continue successively until we deform the contour for ζ1.
When we deform the contour for the ζn variable, we encounter three types of poles

(a) 1 − ξiζn = 0; (b) 1 + ζiζn − 2Δζi = 0, i < n; (c) 1 + ζnζj − 2Δζn, n < j

(52)
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for any i, j = 1, . . . , N . The contribution for a type (a) pole is given by the contour
integral with respect to the variable ζn with contour −C(i), i.e. a negatively oriented
circle centered at ξ−1

i with radius r ′ > 0 as given in the conditions of the Lemma.
Note that the only pole, with respect to the variable ζn, inside the contour −C(i) is
given by ζn = ξ−1

i because r ′ is chosen to be small enough. The result then follows
by showing that the type (b) and (c) poles contribute no residue.

Assume we have already deformed the ζj variables for j > n so that ζi ∈ Cr for
i < n and ζj ∈ Ω(ξ) for j > n. We then deform the contour for the ζn variable.
Below, we consider the residue contribution from the type (b) and (c) poles.
Case (b). We compute the residue at

ζn = (2Δζ� − 1)/ζ� (53)

for � < n. The result is a (2N−1)-fold contour integral with the same integrand, say
IN(ξ, ζ ; t), except that the term 1 + ζ�ζn − 2Δζ� is replaced by ζ� and the variable
ζn is evaluated at (2Δζ� − 1)/ζ� for the rest of the terms.

We then compute the integral with respect to the ζ� variable for the resulting
residue term. The integral is computed by analyzing the poles and residues inside
the contour Cr for ζ�. The possible poles are given by

1 − ξkζn = 0, k = 1, . . . , N

1 + ζ�ζj − 2Δζ� = 0, � < j, ζj ∈ Ω(ξ)

1 + ζiζ� − 2Δζi = 0, i < �, ζi ∈ Cr
1 + ζiζn − 2Δζi = 0, i < n, ζi ∈ Cr
1 + ζnζj + 2Δζn = 0, n < j, ζj ∈ Ω(ξ)

ζ
x−yj−1
� ζ

x−yn−1
n = 0, j �= n.

(54)

In particular, the location of the possible poles is given by the following

ζ� = ξk

2Δξk − 1
⇒

∣∣∣∣
ξk

2Δξk − 1

∣∣∣∣ > r

ζ� = 1

2Δ − ζj
⇒ ζn = 2Δ − ζ−1

� = ζj

ζ� = 2Δ − ζ−1
i ⇒

∣∣∣2Δ − ζ−1
i

∣∣∣ > r

ζn = 2Δ − ζ−1
i ⇒ ζ� = ζi

ζ� = 2Δ − ζj

4Δ4 − 2Δζj − 1
⇒

∣∣∣∣
2Δ − ζj

4Δ2 − 2Δζj − 1

∣∣∣∣ > r

ζ
yn−y�
� ⇒ yn − y� ≥ 1.

(55)
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We use the assumptions on the radii R,R′, r ′ > 0 given in the statement of the
Lemma and the condition on the radius r > 0 fixed at the beginning of the proof
to establish the inequalities above. For the first two inequalities, it suffices to have
R, r−1 > 1 + 2|Δ|. For the third inequality, we have to consider two cases ζj ∈ C(0)
or ζj ∈ C(k) with k �= 0. In the first case when ζj ∈ C(0), we have that |ζj | = R′
and we use the bounds R′ > 16|Δ| and R′ > 8|Δ|−1 that follow from the condition
on the statement of the Lemma. In the second case when ζj ∈ C(k) with k �= 0,
we have that |ζj | ≤ (3/2)R−1 and we use the bound (3/2)R−1 < |Δ| that follows
from the statement of the Lemma. Then, in all the cases above except for the second
and fourth case, the poles lie outside the contour Cr , meaning that there is no residue
contribution. In the second and fourth cases, the determinant termDN(ξ, ζ ) vanishes
because two columns in the matrix of the determinant are equal to each other since
two ζ variables are equal to each other. In the last case, there is no pole since the
exponent is positive. Then, the pole from the denominator and the zero from the
determinant cancel out, meaning that these cases don’t produce a residue.

Therefore, by computing the integral with respect to the ζ� variable, we have that
the residues from the type (b) poles vanish.
Case (c). We compute the residue at

ζn = 1

2Δ− ζ�
(56)

with n < �. The result is a (2N − 1)-fold contour integral with the same integrand,
say IN(ξ, ζ ; t), except that the term 1 + ζnζ� − 2Δζn is replaced by 2Δ− ζ� and the
variable ζn is evaluated at 1/(2Δ − ζ�) for the rest of the terms.

In this case, we have have ζ� ∈ Ω(ξ) since � > n. Thus, we have two possibilities:
(i) ζ� ∈ C(0) = CR′ , or (ii) ζ� ∈ −C(k) for some k = 1, . . . , N (i.e. a negatively
oriented small circle of radius r ′ centered at ξ−1

k ). In the first case, we will not cross
a pole in the contour deformation and there will be no residue to consider. In the
second case, the pole will cancel out with a zero from the numerator and, again,
there will be no residue to consider. We give more details below.

In the first case, when ζ� ∈ CR′ , we have ζn = 1/(2Δ − ζ�). This pole lies inside
the contour Cr since R′ r > 2 and r < (1 + 2|Δ|)−1. Thus, we don’t cross this pole
when we deform the Cr contour to C(0) = CR′ .

In the second case, when ζ� ∈ −C(k), we first compute the residue at ζ� = ξ−1
k .

We obtain an (2N−1)-fold contour integral with the same integrand, say IN (ξ, ζ ; t),
except that the determinant DN(ξ, ζ ) is replaced the same determinant with the kth

row and the �th removed and multiplied by the factor (1 + ξ2
k − 2Δξk)−1, and the

rest of the terms are the same with the variable ζ� evaluated at ξ−1
k .

We now deform the contour for ζn to the contour C(0). After taking the ζ� = ξ−1
k

residue, it turns out that the terms giving rise to the pole ζn = 1/(2Δ− ζ�) becomes

(1 + ζnζ� − 2Δζn) = ξ−1
k (ξk + ζn − 2Δξkζn). (57)

Note that this term also appears in the numerator of the integrand, meaning that this
term cancels out and there is no residue in this case.
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Therefore, when we deform the contour for the ζn to infinity, we don’t cross any
type (c) poles. Moreover, this, along with the argument for the type (b) poles, means
that we only cross the poles due to the type (a) poles. This establishes the result.

��

7.2 Series Expansion

We write the contour formula (51) as a summation by expanding the integrals over
the contour Ω(ξ), given by (50), as a summations of N + 1 integrals. We introduce
some notation to encode the different terms in the summation.

Take the set of all maps from the index set {1, . . . , N} to the set {0, 1, . . . , N}
and denote it by

T := {τ : {1, . . . , N} → {0, 1, . . . , N}} = Hom ({1, . . . , N}, {0, 1, . . . , N}) .
(58)

In the following, a map τ ∈ T will correspond to a term with contours C(τ (k)),
given by (50), for the ζk variable and k = 1, . . . , N . Moreover, we will show that
some contour integrals will vanish for certain τ ∈ T . We consider the set of maps
that map injectively to the elements {1, . . . , N} in the and the cardinality of the
preimage σ−1(0) is fixed;

Tn := {τ ∈ T | |τ−1(0)| = n; |τ−1(k)| ≤ 1, k = 1, . . . , N}. (59)

Lemma 3 For Δ �= 0, FN(x, t) = PY (X1(t) ≥ x) equals

N∑

n=0

∑

τ∈Tn

∮

CR
· · ·
∮

CR

∮

C(τ (1))
· · ·
∮

C(τ (N))

IN (ξ, ζ ; x, t) dNζ dNξ (60)

where the integrand IN(ξ, ζ ; x, t) is the same integrand as in (51), the summation
is take over the set of maps Tn given by (59), the contour CR is a circle centered
at zero with radius R > 0, the contours C(τ (k)) are given by (50) with radii r ′ =
R−1/2, R′ > 0 so that the radii satisfy the bounds max{2|Δ|−1, 2(1 + 2|Δ|)} <

R < max{4|Δ|−1, 4(1 + 2|Δ|)} < R′/2

Proof We take the contour formula (51) from Lemma7.1. We then expand the
integrals over the contours Ω(ξ) as a sum of N + 1 integrals with contours given
by the right side of (50). The result is a summation over the set of maps T given by
(58),

FN(x, t) =
∑

τ∈T

∮

CR
· · ·
∮

CR

∮

C(τ (1))
· · ·
∮

C(τ (N))

IN (ξ, ζ ; x, t) dNζ dNξ. (61)
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The result of this lemma follows by showing that some terms vanish, i.e. if τ /∈ Tn
the corresponding contour integral will vanish. Below, we show that a term in the
summation vanishes if τ (j) = τ (k) > 0 with j �= k.

Take τ ∈ T with τ (j ′) = τ (k′) = � > 0 with n �= m and j ′, k′ = 1, . . . , N . We
show that the term in the summation (61) with this τ ∈ T vanishes by taking the
integrals with respect to the variables ζj ′ and ζk′ . We take the integral with respect
to the ζj ′ and ζk′ variables by taking the residues at the poles given by ζj ′ = ξ−1

�

and ζk′ = ξ−1
� . Note that the poles given by ζj ′ = ξ−1

� and ζk′ = ξ−1
� correspond

to the (�, j ′)-entry and the (�, k′)-entry of the matrix for the DN(ξ, ζ ) determinant.
First, we take the residue at ζj ′ = ξ−1

� , the determinant transforms as follows

DN(ξ, ζ ) = det

(
1

(1 − ξj ζk)(ξj + ζk − 2Δξjζk)

)N

j,k=1

−→ (−1)τ(j
′)−j ′−1

1 + ξ2
� − 2Δξ�

det

(
1

(1 − ξj ζk)(ξj + ζk − 2Δξjζk)

)

j �=�,k �=j ′
.

(62)

For the rest of the factors in the integrand, one evaluates ζj ′ = ξ−1
� when we take

the residue at ζj ′ = ξ−1
� . One may check that this doesn’t introduce any poles with

respect to the ζj ′ variable inside the C(�) contour. Then, the residue at ζj ′ = ξ−1
�

doesn’t have a pole at ζk′ = ξ−1
� since the pole at ζk′ = ξ−1

� is removed when
we take the residue and no other pole is introduced. Thus, by taking the residue at
ζk′ = ξ−1

� after taking the residue at ζj ′ = ξ−1
� , we have that the term vanishes. That

is,

∮

CR
· · ·
∮

CR

∮

C(τ (1))
· · ·
∮

C(τ (N))

IN (ξ, ζ ; x, t) dNζ dNξ = 0 (63)

if τ (n) = τ (m) = � > 0 with n �= m and n,m = 1, . . . , N .
The result of the lemma then follows by taking the summation representation

given by (61) and noting that the terms with τ /∈ Tn for some n = 0, 1, . . . , N
vanish due to the identities (63). ��

7.3 Residue Computations

We compute the contour integrals with respect to the ζk variables with τ (k) �= 0 for
each of the terms in the series expansion given by (60). First, we introduce some
notation to represent the resulting integrand after the residue computations.
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Fix τ ∈ TN−M with 0 ≤ M ≤ N and TN−M given by (59). Then, define the
following sets

K1 := τ−1(0) = {k1 < · · · < kN−M },
K2 := Kc

1 = {k1 < · · · < kM},
J2 := τ (K2) = {τ1 = τ (k1), . . . , τM = τ (kM)},
J1 := J c

2 = {j1 < · · · < jN−M }.

(64)

We let π : TN−M ↪−→ SN be an injection given by

π(τ) =
{
km �→ τm, m = 1, . . . ,M

kn �→ jn, n = 1, . . . , N − M
. (65)

Also, we take the set of permutations that fix every element of the set J2, denoted as
follows

SN(J2) := {σ ∈ SN | σ(j) = j, j ∈ J2}. (66)

Lastly, we introduce the following functions

IN(ξ, ζ ; τ ) =
∏

j∈J1,k∈K1
(ξj + ζk − 2Δξjζk)DN(ξ, ζ ; τ )

∏
j<k

j,k∈J1

(1 + ξj ξk − 2Δξj )
∏

j<k
j,k∈K1

(1 + ζjζk − 2Δζj)

×
∏

j∈J1

ξ
x−yj−1
j e−itε(ξj )

∏

k∈K1

ζ
x−yk−1
k eitε(ζk)

DN(ξ, ζ ; τ ) = (−1)|π(τ)| det
(
d(ξj , ζk)

)
j∈J1,k∈K1

= (−1)|π(τ)|
∑

γ∈SN(J2)

(−1)|γ | ∏

k∈K1

d(ξγ (k), ζk) (67)

f (ξ, ζ ; τ ) =
M∏

�=1

( ∏

τ�<k
k �=τ�+1,...,τM

(
1 + ξτ�ξk − 2Δξk
1 + ξτ� ξk − 2Δξτ�

)

×
∏

k�<k
k �=k�+1,...,kM

(
ξτ� + ζk − 2Δξτ�ζk
ξτ� + ζk − 2Δ

)) M∏

�=1

ξ
yk�−yτ�−1
τ�

where the function d(ξ, ζ ) is given by (18), (−1)|σ | denotes the signature of a
permutation for any σ ∈ SN , and the sets K1, J1 are given by (64) and M =
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N − |τ−1(0)|. Note that IN(ξ, ζ ; τ ) is equal to the integrand of contour integrals
(24), (51) and (60) if |τ−1(0)| = N .

Lemma 4 Fix τ ∈ TN−M , with 0 ≤ M ≤ N , and take the notation from (64). Then,
for Δ �= 0, we have

∮

CR
· · ·
∮

CR

∮

Cτ (1)
· · ·
∮

Cτ (N)

IN (ξ, ζ )d
NζdNξ

=
∮

CR
· · ·
∮

CR

∮

CR′
· · ·
∮

CR′
IN (ξ, ζ ; τ )f (ξ, ζ ; τ )

⎛

⎝
∏

k∈K1

dζj

⎞

⎠ dNξ

(68)

where the integral on the left side is a 2N-fold contour intergal and the integral on
the right side is a (N + |K1|)-fold contour integral, the integrand on the left side is
equal to the integrand in (51) and the integrand on the right side is given by (67),
and the contours are the same as in the statement of Lemma 3 so that the ζ variables
are integrated with respect to CR′ contours.

Proof We obtain the identity in this lemma by computing the integrals with respect
to the ζk� variables with k� ∈ K2. In particular, the contours are given by −C(τ�),
which are negatively oriented circles of radius r ′ = 1/(2R) and centered at ξ−1

τ�
, for

the integrals with respect to ζk� and k� ∈ K2. Then, we compute the integrals by
taking the residues at ζk� = ξ−1

τ�
. We start by taking the residue at ζkM = ξ−1

τM
and

continue successively until we take the residue at ζk1 = ξ−1
τ1

.
Let’s take the residue with respect to ζkM = ξ−1

τM
. Note that the pole correspond-

ing to this residue comes from the (τM, kM)-entry of the matrix of the DN(ξ, ζ )

determinant. Then, when we take the residue, the determinant is replaced by a
determinant of the same matrix with the τM -row and kM -column removed and a
prefactor (−1)τM−kM (1 + ξ2

τM
− 2ΔξτM )

−1. That is,

det

(
1

(1 − ξiζj )(ξi + ζj − 2Δξiζj )

)N

i,j=1

−→ (−1)τM−kM−1

1 + ξ2
τM

− 2ΔξτM
det

(
1

(1 − ξiζj )(ξi + ζj − 2Δξiζj )

)

i �=τM ,j �=kM

.

(69)

The other terms of the integrand, when we compute the residue, transform by
evaluating ζkM = ξ−1

τM
. Then, the result after taking the residue is
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∏
j �=τM,k �=kM

(ξj + ζk − 2Δξjζk)∏
j<k

j,k �=τM

(1 + ξj ξk − 2Δξj )
∏

j<k
j,k �=kM

(1 + ζj ζk − 2Δζj)

×
∏

j �=τM

ξ
x−yj−1
j e−itε(ξj )

∏

k �=kM

ζ
x−yk−1
k eitε(ζk)

×(−1)τM−kM det

(
1

(1 − ξj ζk)(ξj + ζk − 2Δξjζk)

)

j �=τM ,k �=kM

×ξ
ykM −yτM−1
τM

∏

τM<k

(
1 + ξτ�ξk − 2Δξk
1 + ξτ�ξk − 2Δξ�

) ∏

kM<k

(
ξ + ζk − 2Δξ�ζk
ξ� + ζk − 2Δ

)

. (70)

The sign infront of the determinant changed by negative one since we are taking the
integral over a negatively oriented circle.

We continue taking the integrals with respect to the variables ζk� , successively
with � decreasing, and evaluating the residues at ζk� = ξ−1

τ�
. The computations are

similar to the base case ζkM = ξ−1
τM

. In particular, the pole giving rise to residue
comes from the (τ�, k�)-entry of the determinant. Then, when we take the residue,
the determinant transforms by removing the τ�-row and the k�-column and adding a
prefactor. The other terms in the integrand transform by evaluating ζk� = ξ−1

τ�
. We

skip the details here since the computations are very similar to the base case. The
result follows by computing all the integrals with respect to the ζk� variable with
k� ∈ K . ��

Theorem 5 For Δ �= 0, FN(x, t) = PY (X1(t) ≥ x) equals

N∑

n=0

∑

τ∈Tn

∮

CR
· · ·
∮

CR

∮

CR′
· · ·
∮

CR′
IN (ξ, ζ ; τ )f (ξ, ζ ; τ )

⎛

⎝
∏

k∈K1

dζk

⎞

⎠ dNξ

(71)

where the integrand is given by (67), the summation is take over the set of maps Tn
given by (59), and the contours CR and CR′ are circles centered at zero with radii
R,R′ > 0 so that max{2|Δ|−1, 2(1 + 2|Δ|)} < R < max{4|Δ|−1, 4(1 + 2|Δ|)} <
R′/2.

Proof The result is a direct consequence of Lemmas 3 and 4. ��

7.4 Deformation to Steep Descent Contours

We take the series expansion formula (71) and deform the contours to the steep
descent contours given by (43).
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Fig. 3 The contour Γ̂ .

Let Γ̂ be a positive oriented rectangle centered at zero, with length equal to
2L = 2

√
R2 − 1 and height equal to 2, and two half-circle bumps as indicated on

Fig. 3. The bump centered at i has radius ε1 and the bump centered at i + 2Δ has
radius ε2 so that 0 < ε2 � ε1 � 1.

Lemma 5 Fix τ ∈ TN−M , with 0 ≤ M ≤ N , take the notation from (64). Then, for
Δ �= 0, we have

∮

CR
· · ·
∮

CR

∮

CR′
· · ·
∮

CR′
IN (ξ, ζ ; τ )f (ξ, ζ ; τ ) dJ ζ dNξ

=
∮

Γ+
· · ·
∮

Γ−
IN(ξ, ζ ; τ )

(∮

Γ̂

· · ·
∮

Γ̂

f (ξ, ζ ; τ )dJ2ξ

)
dK1ζ dJ1ξ

(72)

where the integrand is given by (67), the differentials dSξ or dSζ are |S|-fold
differential over the variables ξs or ζs with s ∈ S, the contours Γ± are given by
(43) with R+ = R and R− = R′ so that ξj ∈ Γ+ and ζk ∈ Γ− for j ∈ J1 and
k ∈ K1, the contour Γ̂ is given by Fig. 3, the contours CR and CR′ are circles
centered at zero with radii R,R′ > 0 so that max{2|Δ|−1, 2(1 + 2|Δ|)} < R <

max{4|Δ|−1, 4(1 + 2|Δ|)} < R′/2.

Proof We obtain the result by deforming the contours and showing that we don’t
cross any poles. We begin by deforming the contour, for the ξj variables with j ∈ J2,
from CR to Γ̂ . Then, for the ξj variables with j ∈ J1, we deform the contours CR
to the contours Γ+. Finally, for the ζk variables, we deform the contours CR′ to the
contours Γ−.
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Consider the integral with respect to ξ� ∈ CR and � ∈ J2. We deform the
contour CR to the contour Γ̂ . Note that the factor IN(ξ, ζ ; τ ) is independent of
the ξ� variable. Then, the only possible poles are given by

1 + ξ�ξk − 2Δξ� = 0, ξ� + ζk − 2Δ = 0. (73)

In the first case of (73), the location of the pole is given by (2Δ − ξk)
−1 with

ξk ∈ CR or ξk ∈ Γ̂ , depending on the index and if the contour for the variable has
been deformed. If ξk ∈ CR , the location of the pole (2Δ − ξk)

−1 clearly lies inside
the unit circle since R > 1 + 2|Δ|. In particular, we don’t cross this pole when
we deform from the contour CR to the contour Γ̂ , since the contour Γ̂ lies outside
the unit circle. If ξk ∈ Γ̂ , we note that the location of the pole (2Δ − ξk)

−1 also
lies inside the unit circle except for the region with the small half-circle bump of
radius ε2. We then consider ξk lying on the small half-circle bump of Γ̂ and we
write ξk = i + 2Δ + ε2 e

iφ . Then, the location of the pole is given by

(2Δ − ξk)
−1 = (−i − ε2 e

iφ)−1 = i − ε2 e
iφ + O(ε2

2 ), (74)

where the last equality follows from 0 < ε2 � 1. Moreover, since ε2 � ε1, we have
that the location of the pole (2Δ − ξk)

−1 lies inside the large bump of the contour
Γ̂ , when ξk lies on the small bump. Then, we have that the pole (2Δ − ξk)

−1 lies
inside the unit circle if ξk doesn’t lie on the small bump, and the pole lies inside the
large bump if ξk lies on the small bump. In particular, if ξk ∈ CR ∪ Γ̂ , the location
of the pole lies inside the contour Γ̂ and we don’t cross any poles, given by the first
case of (73), when we deform form the contour CR to the contour Γ̂ .

In the second case of (73), the location of the pole is given by 2Δ − ζk .
Additionally, we have that ζk ∈ CR′ . Given the conditions on the radii R,R′ > 0,
it follows that R < R′ − 2|Δ|. Then, the pole given by 2Δ − ζk lies outside the
contour CR. In particular, we don’t cross the pole when we deform the contour form
CR to Γ̂ . Thus, we don’t cross any poles, given by the second case of (73), when we
deform the contours from CR to Γ̂ .

Consider now the integral with respect to ξ� ∈ CR with � ∈ J1. We deform the
contour CR to the contour Γ+ with ξj ∈ Γ̂ for j ∈ J2. The location of the possible
poles are given by

(2Δ − ξj )
−1, 2Δ − ξ−1

j , ζ−1
k . (75)

In the first case of (75), the variable ξj may lie on the the contours Γ+ or CR ,
depending on the index. In particular, if ξj ∈ Γ̂ , then j = τk for some k, see (64).
Moreover, IN(ξ, ζ ; τ ) is independent of ξj = ξτk and the pole due to the f (ξ, ζ ; τ )
function is of the form (2Δ− ξτk )

−1; see (67). Thus, for the first case, ξj will never
lie on the contour Γ̂ and only lie on the contours CR or Γ+. If ξj ∈ CR, the location
of the pole (2Δ − ξj )

−1 clearly lies inside the unit circle since R − 2|Δ| > 1.
In particular, we don’t cross this pole when we deform from the contour CR to the
contourΓ+, since the contourΓ+ lies outside the unit circle. If ξj ∈ Γ+, the location
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of the pole (2Δ − ξj )
−1 will also lie outside the unit circle. This due to the fact the

Δ is a real number and R− 2|Δ| > 1. In particular, if ξj ∈ CR ∪Γ+, we don’t cross
a pole, given by the first case of (75) when we deform from the contour CR to the
contour Γ+.

In the second case of (75), the variable ξj may lie on the the contours Γ+, CR ,
or Γ̂ , depending on the index. In all three cases, we have that the −ξ−1

j point lies
inside the unit circle since the contours lie outside the unit circle. Then, the pole
2Δ − ξ−1

j will lie inside Γ+ since Δ is a real number and 2(1 + 2|Δ|) < R. In

particular, if ξj ∈ CR ∪ Γ+ ∪ Γ̂ , we don’t cross a pole, given by the second case of
(75), when we deform from the contour CR to the contour Γ+.

In the third case of (75), we have ζk ∈ CR′ . Then, the location of the pole ζ−1
k

lies completely inside the unit circle. Then, since Γ+ lies outside the unit circle, we
don’t cross a pole when we deform the contour CR to the contour Γ+.

Lastly, consider the integral with respect to ζ� ∈ CR′ with � ∈ K1. We deform
the contour CR′ to the contour Γ−. The location of the possible poles is given by

(2Δ − ζj )
−1, 2Δ − ζ−1

j , 2Δ − ξk, ξ−1
k (76)

where the variables may lie on different contours depending on the indexes.
In the first case of (76), the variable ζj may lie on the contour CR′ or on the

contour Γ−. In either case, the location of the pole lies completely inside the unit
circle. When ζj ∈ CR′ , this follows from the boundR > 2(1+2|Δ|). When ζj ∈ Γ−,
in addition the boundR > 2(1+2|Δ|), we also need the fact that Δ is a real number,
which means that (2Δ − ζj ) lies outside the unit circle for ζj ∈ Γ−. Then, we have
that the location of the pole (2Δ − ζj )

−1 lies completely inside the unit circle and
we don’t cross any poles when we deform the contour CR′ to the contour Γ−.

In the second case of (76), the variable ζj may lie on the contour CR′ or on the
contour Γ−. In either case, we know that ζ−1

j lies inside the unit circle since CR′ and
Γ− lie outside the unit circle. Then, since Δ is a real number and 4(1 + 2|Δ|) < R′
, we have that the location of the pole 2Δ − ζ−1

j lies completely inside the contour
Γ−. Thus, we don’t cross any poles when we deform the contour CR′ to the contour
Γ−.

In the third case of (76), the variable ξk may lie on Γ̂ since this pole is due to
the f (ξ, ζ ; τ ) factor in the integrand; see (67). In this case, the location of the pole
2Δ − ξk lies completely inside the contour Γ− due to the bumps of the contour
Γ̂ . Since 0 < ε � 1, the large bump of the contour Γ̂ lies completely above the
horizontal section of the contour Γ−. Since the small bump in the contour Γ̂ lies
inside the rectangle, the small bump will also lie completely above the V-section of
the Γ− contour. Additionally, since R+2|Δ| < R′, the rest of the contour Γ̂ will lie
completely inside the contour Γ−. Then, we don’t cross any poles when we deform
the contour CR′ to the contour Γ−.

In the fourth case of (76), we have ξk ∈ Γ+. Then, the location of the pole
ξ−1
k lies completely inside the unit circle, since the contour Γ+ lies outside the unit

circle. Then, since Γ− lies outside the unit circle, we don’t cross a pole when we
deform the contour CR′ to the contour Γ−.
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We have now shown that we don’t cross any poles in any case when we deform
the contours. Thus, the result follows.

��

Proposition 1 For Δ �= 0, FN(x, t) = PY (X1(t) ≥ x) equals

N∑

n=0

∑

τ∈Tn

∮

Γ+
· · ·
∮

Γ−
IN (ξ, ζ ; τ )

(∮

Γ̂

· · ·
∮

Γ̂

f (ξ, ζ ; τ )dJ2ξ

)
dK1ζ dJ1ξ

(77)

where the integrand is given by (67), the sets J1, J2,K1,K2 are given by (64), the
summation is take over the set of maps Tn given by (59), and the contours Γ± and
Γ̂ are given by (50) and Fig. 3 with R+ = R,R− = R′ so that max{2|Δ|−1, 2(1 +
2|Δ|)} < R < max{4|Δ|−1, 4(1 + 2|Δ|)} < R′/2.

Proof The result is a direct consequence of Proposition 7.4 and Lemma 5. ��

8 Asymptotic Analysis, a Conjecture

We believe that the formula for the probability of the left-most particle given by
(71) in Theorem 7.6 may be suitable for asymptotic analysis when t � N →
∞. Note that we have decomposed the integrand into two factors, IN(ξ, ζ ; τ ) and
f (ξ, ζ ; τ ). In particular, note that that the factor f (ξ, ζ ; τ ) is independent of time
t . Additionally, for the variables of the term IN(ξ, ζ ; τ ), we have deformed the
contours to steepest descent paths. Thus, in the asymptotic limit, we expect the
main contribution for the IN (ξ, ζ ; τ ) term to come from the saddle point (ξ0, ζ0) =
(i,−i). Moreover, we expect the asymptotic limit of IN(ξ, ζ ; τ ) to be given by the
Airy kernel. We give some details of the computation below but, unfortunately, we
don’t give all the technical details here. The arguments below need more careful
consideration.

Fix τ ∈ Tn and let’s consider the contribution of the contour integrals near the
saddle point. We use the following notation for the index sets:

K1 := τ−1(0), K2 := (K1)
c, J1 := τ (K2)

c, J2 := τ (K2) (78)

The sets K1 and K2 will be used to index the ζ -variables and the sets J1 and J2 will
be used to index the ξ -variables. In particular, variables with index from the sets K1
and J1 will lie on the contours Γ±, respectively, and the variables with index from
the set J2 will lie on the contour Γ̂ . There are no variables with index from the set
K2 because these variable have been integrated out, but nonetheless, this index set
will appear in our formulas. Note K1 ∪ K2 = J1 ∪ J2 = {1, . . . , N}.
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Recall that the spectral functions G and H , given in (37), have a double critical
point at ξ = i and ζ = −i, respectively, when x = −2t . Let B(z, r) be an open ball
centered at z ∈ C of radius r > 0 and B(z, r)c be its complement. Then, we take
the following scaling

x = −2t − st1/3, ξ = i + i ξ̃ t−1/3, ζ = −i + i ζ̃ t−1/3, yj + 1 = vj t
1/3

(79)

if ξ ∈ B(i, t−α) and ζ ∈ B(−i, t−α) with 1/4 < α < 1/3.
We also have that the integrand IN (ξ, ζ ; τ ) is exponentially small if ξj ∈

B(i, t−α)c, for j ∈ J1, or ζj ∈ B(−i, t−α)c, for j ∈ K1. This follows
from Lemma 1. Additionally, we may uniformly bound the factor f (ξ, ζ ; τ ),
independently of t , on all the ξ and ζ variables. Then, we may restrict the contourss
Γ± to the a neighborhood around the saddle points and only lose an exponentially
small term. That is,

∮

Γ+
· · ·
∮

Γ−
IN(ξ, ζ ; τ )

(∮

Γ̂

· · ·
∮

Γ̂

f (ξ, ζ ; τ )dJ2ξ

)
dK1ζ dJ1ξ =

∮

Γ+∩B(i,t−α)

· · ·
∮

Γ−∩B(−i,t−α)

IN (ξ, ζ ; τ )
(∮

Γ̂

· · ·
∮

Γ̂

f (ξ, ζ ; τ )dJ2ξ

)
dK1ζ dJ1ξ

+ O(e−Ct1−3α
)

(80)

for some positive constant C > 0, based on Lemma 1, and 1/4 < α < 1/3.
Let us now approximate the integrands IN(ξ, ζ ; τ ) and f (ξ, ζ ; τ ) when ξj ∈

Γ+ ∩ B(i, t−α), for j ∈ J1, and ζk ∈ Γ− ∩ B(−i, t−α), for k ∈ K1. In particular,
we take the scaling (79) for the variables with indexes in the sets J1 and K1, for the
ξ -variables and ζ -variables respectively.

Note that IN(ξ, ζ ; τ ) only depends on the variables with indexes from the sets
K1 and J1. Then, we have

IN (ξ, ζ ; τ ) = (−1)|J1|+|π(τ)| ∑

γ∈SN(J2)

(−1)|γ | ∏

k∈Z1

(
(−i)yγ (k)−yk

× g(ξ̃γ (k), ζ̃k; vγ (k), vk) tn/3
)

+ O(t(n−1)/3)

g(ξ, ζ ; x, z) =
exp

(
1
3ξ

3 − 1
3ζ

3 − (s + x) ξ + (s + z) ζ
)

(ξ − ζ )
,

(81)



Domain Walls in the Heisenberg-Ising Spin- 1
2 Chain 41

where π : Tn ↪−→ SN is given by (65) and SN(J2) is given by (66). This
approximation is obtained by expanding the determinant in the term IN(ξ, ζ ; τ ),
given by (67) and taking the scaling (79). More details regarding this approximation
are given in Appendix B of the arXiv version of this paper [22].

Now, consider the approximation of the term f (ξ, ζ ; τ ) when ξj ∈ Γ+ ∩
B(i, t−α), for j ∈ J1, and ζk ∈ Γ− ∩ B(−i, t−α), for k ∈ K1. We introduce the
following function

B(ξ; τ ) =
∏

j<k,j,k∈K2
τ (k)<τ(j)

(
1 + ξτ(k)ξτ(j) − 2Δξτ(j)
1 + ξτ(k)ξτ(j) − 2Δξτ(k)

)
, (82)

with the indexes j, k ∈ K2 and τ (k), τ (j) ∈ J2. Also, let us denote the number of
inversions of the τ map as follows,

ν1(j ; τ ) := #{j ′ ∈ K2 | j ′ < j, τ(j ′) > τ(j) }
ν2(j ; τ ) := #{j ′ ∈ K2 | j < j ′, τ (j) > τ(j ′) }
ν(j ; τ ) := j − τ (j)+ ν2(j ; τ )− ν1(j ; τ )

. (83)

Note that, in the case K2 = {1, 2, . . . , N}, we have ν(j ; τ ) = 0 for j = 1, . . . , N .
Then, by taking the scaling (79), we obtain

f (ξ, ζ ; τ )

= B(ξ; τ )
∏

j∈K2

(
ξτ(j) − (2Δ + i)

(2iΔ + 1)ξτ(j) − i

)ν(j ;τ ) ∏

j∈K2

ξ
yj−yτ(j)−1
τ (j) + O(t−1/3).

(84)

This approximation is obtained by applying the scaling (79) and taking the leading
term in the t−1/3 expansion of the f (ξ, ζ ; τ ) function. More details regarding this
approximation are given in Appendix B of the arXiv version of this paper [22].

We now combine the approximations (80), (81) and (84), given above. Note that
the leading term of the approximation (84) is independent of the ξ̃ and ζ̃ variables.
We then introduce the term

F(τ) = (−i)|K2|
∮

Γ̂

· · ·
∮

Γ̂

B(ξ; τ )
∏

j∈K2

(
ξτ(j) − (2Δ+ i)

(2iΔ + 1)ξτ(j) − i

)ν(j ;τ )

×
∏

j∈K2

(−i ξτ(j))
yj−yτ(j)−1dJ2ξ,

(85)
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where we have taken the leading term of the f (ξ, ζ ; τ ) function and also incor-
porated the (i)yγ (k)−yk term from the approximation of IN(ξ, ζ ; τ ) given by (81),
noting that

∑
k∈K1

yγ (k) − yk +∑
k∈K2

yτ(k) − yk = 0. Then, for fixed τ ∈ Tn, we
obtain the following approximation near the saddle point

∮

Γ+
· · ·
∮

Γ−
IN(ξ, ζ ; τ )

(∮

Γ̂

· · ·
∮

Γ̂

f (ξ, ζ ; τ )dJ2ξ

)
dK1ζ dJ1ξ

= t−n/3(−1)|J1|+|π(τ)| ∑

γ∈SN(J2)

(
F(τ)(−1)|γ | ∏

k∈K1

KAi

(
s + vγ (k), s + vk

) )

+ O(t(1−n)/3)+ O(e−Ct1−3α
).

(86)

The t−n/3 term and the Airy kernel KAi are obtained by taking the change of
variables (79) and the following expression for the Airy kernel

KAi(x, z) =
∫ ∞ e2π i/3

∞ e−2π i/3

∫ ∞ eπ i/3

∞ e−π i/3

exp
(

1
3ξ

3 − 1
3ζ

3 − x ξ + z ζ
)

ξ − ζ
dξ dζ, (87)

where the contours for the ξ (resp. ζ ) variable starts at ∞ e−πi/3 (resp. ∞ e−2πi/3)
goes through the origin and ends at ∞ eπi/3 (resp. ∞ e2πi/3).

Let’s now consider the formula (77) and, in particular, the summation over Tn and
n. We substitute the term in the summation by the right side of the approximation
(86). The result is a summation over Tn, n, and injective maps γ : K1 → J1. More
precisely, the summation is over a pair of bijective maps

τ : K2 → J2, γ : K1 → J1, (88)

where K1 ∪ K2 = J1 ∪ J2 = {1, 2, . . . , N}. This means that we may write the
summation, over Tn, n and the injective maps γ : K1 → J1 and τ : K2 → J2, as
the summation over permutations of the set [N] = {1, 2, . . . , N}. In particular, we
may uniquely identify a pair of bijective maps (τ, γ ) with a permutation σ ∈ SN and
a subset S ⊂ [N] so that (τ, γ ) = (σ |Sc , σ |S), where the right side are restrictions
of the permutation to the indicated sets. Then, under this identification, we rewrite
some the notation introduced earlier. For (σ, S) with σ |Sc = τ , we have

B(ξ; σ, S) = B(ξ; τ ) =
∏

j,k∈Sc,j<k
σ(j)>σ(k)

(
1 + ξσ(k)ξσ(j) − 2Δξσ(j)
1 + ξσ(k)ξσ(j) − 2Δξσ(k)

)
. (89)
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Additionally, for (σ, S) with σ |Sc = τ , we write the inversion sets as follows,

ν1(j ; σ, S) = ν1(j ; τ ) = #{j ′ ∈ Sc | j ′ < j, σ(j ′) > σ(j) }
ν2(j ; σ, S) = ν2(j ; τ ) = #{j ′ ∈ Sc | j < j ′, σ (j) > σ(j ′) }
ν(j ; σ, S) = ν(j ; τ ) = j − σ(j) + ν2(j ; σ, S)− ν1(j ; σ, S).

. (90)

Lastly, for (σ, S) with σ |Sc = τ , we write

F(σ, S) = F(τ)

= (−i)|Sc|
∮

Γ̂

· · ·
∮

Γ̂

B(ξ; σ, S)
∏

j∈Sc

(
ξτ(j) − (2Δ + i)

(2iΔ + 1)ξτ(j) − i

)ν(j ;σ,S)

×
∏

j∈Sc
(−i ξτ(j))

yj−yτ(j)−1dσ(S
c)ξ.

(91)

Then, under the identification of the pair of injective maps and the permutations, we
have

N∑

n=0

∑

τ∈Tn

∮

Γ+
· · ·
∮

Γ−
IN (ξ, ζ ; τ )

(∮

Γ̂

· · ·
∮

Γ̂

f (ξ, ζ ; τ )dJ2ξ

)
dK1ζ dJ1ξ

=
∑

σ∈SN

(−1)σ
∑

S⊂[N]
(−1)|S|t−|S|/3

(
F(σ, S)

×
∏

k∈S
KAi

(
s + yσ(k) + 1

t1/3 , s + yk + 1

t1/3

)
+ O

(
t−1/3

)
+ O

(
e−Ct1−3α

))

.

(92)

Assuming that the error terms don’t contribute in the limit, we have the following
conjecture.

Conjecture 1 As t � N → ∞, FN(x, t) = PY (X1(t) ≥ x), with x = −2t −
s t−1/3 and yj + 1 = vj t

1/3, is equal to the limit of

∑

σ∈SN

(−1)σ
∑

S⊂[N]
(−1)|S|t−|S|/3F(σ, S)

∏

k∈S
KAi

(
s + vσ(k), s + vk

)
(93)

where F is given by (85) and the Airy kernel KAi is given by (87).
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At the moment, we are not able to control the limit of (93) when t � N → ∞.
The main obstacle is the term F(σ, S) on (93). However, under some assumptions,
we may simplify (93) as a determinant of the difference of two kernels. For instance,
assume

F(σ, S) =
∏

j∈Sc
Q(σ (j), j) (94)

for some kernel Q on the set {1, . . . , N}. Then, we have

∑

σ∈SN

(−1)σ
∑

S⊂[N]
(−1)|S|t−|S|/3F(σ, S)

∏

k∈S
KAi

(
s + yσ(k) + 1

t1/3
, s + yk + 1

t1/3

)

=
∑

σ∈SN

(−1)σ
∑

S⊂[N]
(−1)|S|t−|S|/3

∏

j∈Sc
Q(σ (j), j)

×
∏

k∈S
KAi

(
s + yσ(k) + 1

t1/3
, s + yk + 1

t1/3

)

=
∑

σ∈SN

(−1)σ
N∏

k=1

(
Q(σ (k), k) − t−1/3 KAi

(
s + yσ(k) + 1

t1/3
, s + yk + 1

t1/3

))

= det

(
Q(j, k) − t−1/3KAi

(
s + yj + 1

t1/3 , s + yk + 1

t1/3

))N

j,k=1
,

(95)

given the assumption (94). In fact, when Δ = 0, one may check the assumption to
be true and we have

F(σ, S) = 1 (σ |Sc = IdSc ) =
∏

j∈Sc
1(σ (j) = j), (96)

where the functions with 1 are indicator functions. This identity is easy to check
since the first two terms in the intergand for F(σ, S), given by (85), are identically
equal to one when Δ = 0. Then, we have

det

(
Id(j, k) − t−1/3KAi

(
s + yj + 1

t1/3 , s + yk + 1

t1/3

))N

j,k=1

=
∑

σ∈SN

(−1)σ
∑

S⊂[N]

(
(−1)|S|t−|S|/3F(σ, S)

×
∏

k∈S
KAi

(
s + yσ(k) + 1

t1/3
, s + yk + 1

t1/3

))

(97)
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when Δ = 0. This means that Conjecture 1 is true when Δ = 0. Moreover, if
Δ = 0 and yj = j , we may take the limit t � N → ∞. The right side becomes
a sum of Riemann integrals, corresponding to the series expansion of a Fredholm
determinant. Then, we have

lim
N→∞PY

(
X1(t) + 2t

t1/3 ≥ −s

)

= lim
t�N→∞

∑

σ∈SN

∑

S⊂[N]
t−|S|/3 det

(
KAi

(
s + j + 1

t1/3
, s + k + 1

t1/3

))

j,k∈S

= det (Id − KAi)L2(s,∞)

= F2(s).

(98)

This matches the earlier result (36) for Δ = 0.
We also may compute the terms in (93) when S = ∅ and Sc = {1, . . . , N} = [N].

In that case, the formula for F(σ, ∅) simplifies as follows

F(σ, ∅) =
∮

Γ̂

· · ·
∮

Γ̂

∏

j<k
σ(k)<σ(j)

(
1 + ξτ(k)ξτ(j) − 2Δξτ(j)
1 + ξτ(k)ξτ(j) − 2Δξτ(k)

) N∏

j=1

ξ
yj−yτ(j)−1
τ(j)

dNξ,

(99)

where i, j = 1, 2, . . . , N on the first product of the integrand. Additionally, we
may deform the contours Γ̂ to arbitrarily large circles centered at the origin. Note
that (−1)σ F(σ, ∅) is equal to the integral inside the sum of (15) with xi = yi , for
i = 1, . . . , N , and t = 0. Then, by Theorem 2a, we have

∑

σ∈SN

(−1)σ F(σ, ∅) = 1 (100)

for any N > 0.
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Harold Widom’s Contributions
to the Spectral Theory and Asymptotics
of Toeplitz Operators and Matrices

Estelle Basor, Albrecht Böttcher, and Torsten Ehrhardt

Abstract This is a survey of Harold Widom’s work in the spectral theory of
Toeplitz and Wiener-Hopf operators and on asymptotic problems for truncations
of these operators as the truncation parameter goes to infinity. The asymptotic
problems include Toeplitz and Wiener-Hopf determinants, extreme eigenvalues,
and collective eigenvalue distribution. Harold Widom has made groundbreaking
contributions to all these topics.

Keywords Toeplitz operators · Toeplitz matrices · Wiener-Hopf operators

1 Toeplitz Matrices and Operators

An n× n Toeplitz matrix is an n× n matrix that is constant along its diagonals, that
is, a matrix of the form

(aj−k)
n
j,k=1 =

⎛

⎜⎜⎜⎜⎜⎝

a0 a−1 a−2 . . . a−(n−1)

a1 a0 a−1 . . . a−(n−2)

a2 a1 a0 . . . a−(n−3)
...

. . .
. . .

. . .
...

an−1 an−2 an−3 . . . a0

⎞

⎟⎟⎟⎟⎟⎠

n×n

.
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The entries are complex numbers. If the entries are N × N matrices, and hence
the matrix actually has dimension nN , one speaks of block Toeplitz matrices. An
infinite Toeplitz matrix is a matrix of the form

(aj−k)
∞
j,k=1 =

⎛

⎜⎜⎜⎝

a0 a−1 a−2 . . .

a1 a0 a−1 . . .

a2 a1 a0 . . .
...

. . .
. . .

. . .

⎞

⎟⎟⎟⎠ .

We may think of the infinite matrix as a linear operator acting on �2 := �2(N), and
the first question that arises is to characterize the sequences {ak}k∈Z for which this
operator is bounded. This question was answered by Otto Toeplitz in (a footnote
of) his 1911 paper [43]. He showed that the infinite matrix induces a bounded linear
operator on �2 if and only if the numbers ak are the Fourier coefficients of a function
a ∈ L∞ on the complex unit circle T:

ak = 1

2π

∫ 2π

0
a(eiθ )e−ikθ dθ (k ∈ Z).

If such a function a exists, it is unique. We denote the infinite matrix as well as the
bounded linear operator it induces on �2 by T (a) and the finite matrix, which may
be regarded as the principal n × n truncation of the infinite matrix, by Tn(a). The
function a is in this context referred to as the symbol. Clearly, we may even chose a
from L1 on the unit circle, take the Fourier coefficients, and built the matrices Tn(a)
and T (a), but in that case T (a) need not generate a bounded operator.

The next question to ask after boundedness is about the spectrum of the operator
T (a). Since

T (a)− λI = T (a − λ),

this question essentially amounts to finding invertibility criteria for Toeplitz opera-
tors. A simpler problem is to study invertibility modulo compact operators, which
is the task of Fredholm theory for Toeplitz operators. These topics have been
investigated for a century, and the seminal contributions made to them by Harold
Widom will be the subject of this paper.

Questions about explicitly given finite Toeplitz matrices Tn(a) may nowadays
quickly be answered by the computer if n is of moderate size. Things become
mathematically interesting if the matrix dimension n is large or unspecified or if the
matrix involves parameters. It was only a few years after Toeplitz when Gábor Szegő
came across the problem of describing the asymptotic behavior of the determinants
of Tn(a) as n goes to infinity. Further questions have led into the study of the
behavior of inverses and of the eigenvalues of Tn(a) for large n or for n tending
to infinity. It was again Harold Widom who brought us fundamental insights and
results in this connection. These will be described in the following pages.
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The present paper is in part based on our article [2].

2 Toeplitz Operators with Continuous Symbols

As for invertibility and Fredholmness, it was not primarily Toeplitz operators but
rather their relatives that were studied in the first half of the previous century. The
main relatives are the operators coming from the Riemann-Hilbert boundary value
problem, singular integral operators, and Wiener-Hopf integral operators. Many
mathematicians, including F. Noether, J. Plemelj, S. G. Mikhlin, G. Fichera, and
T. Carleman, studied singular integral operators with continuous coefficients. Stated
in terms of the Toeplitz operator T (a), their results say that if a is a continuous
function on T, then for for T (a) to be Fredholm it is sufficient that a have no zeros
on T and for T (a) to be invertible it is sufficient that a have no zeros on T and that
the winding number of a about the origin be zero. Only in 1952, Israel Gohberg, by
an ingenious application of Gelfand theory of Banach algebras, was able to prove
that these sufficient conditions are also necessary.

Inversion of Toeplitz operators or the description of the kernel and co-kernel
in the case where the operator is not invertible were then mainly tackled by
versions of what is now called Wiener-Hopf factorization. The first variant of
such a factorization appeared in a 1931 paper by Norbert Wiener and Eberhard
Hopf. A complete understanding of that method was gained only in the works of
F. D. Gakhov in 1949 and I. Gohberg and Mark Krein in the 1950s. In the language
of Toeplitz operators, this factorization amounts to factoring

a(t) = a−(t)tκa+(t) (t ∈ T)

with invertible analytic and anti-analytic factors a+ and a− and with κ ∈ Z. This
gives the representation

T (a) = T (a−)T (tκ )T (a+)

with the upper triangular Toeplitz matrix T (a−), the lower triangular Toeplitz
matrix T (a+), and a “middle factor” T (tκ ), which is the Toeplitz matrix whose
κ th diagonal consists of ones and the remaining diagonals of which are zero. The
matrix T (a) generates an invertible operator if and only if κ = 0, that is, if and only
if the middle factor is absent. In that case the inverse T −1(a) := [T (a)]−1 is given
by T −1(a) = T (a−1+ )T (a−1− ).

Harold Widom entered the Toeplitz operators scene with his 1959 paper [20],
jointly with Alberto Calderón and Frank Spitzer. This paper deals with Toeplitz
operators T (a) generated by symbols a in the Wiener algebra, that is, by symbols a
satisfying

∑ |ak| < ∞. Clearly, such symbols are continuous. The point is that for
functions in Wiener algebra one can write down explicit formulas for the Wiener-
Hopf factors. Namely, if a has no zeros on T and κ ∈ Z is the winding number about
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the origin, then a(t)t−κ = eb(t) with a function b in the Wiener algebra, which gives
a(t) = a−(t)tκ a+(t) with

a−(t) = exp
∑

k<0

bkt
k, a+(t) = exp

∑

k≥0

bkt
k.

Using this factorization, Calderón, Spitzer, and Widom considered T (a) as an
operator on �∞ and on �2, and they show that in both contexts T (a) is invertible
if and only if a has no zeros on T and winding number zero about the origin. The
paper was submitted in May 1958, and in a note added in proof, the authors remark
that a substantial part of their results are also in a 1958 paper by M. Krein.

3 Toeplitz Operators with L∞ Symbols

Fortunately, one theorem of [20] was not in Krein’s paper: it replaces the condition∑ |ak| < ∞ by the sole requirement that a ∈ L∞(T) and says that for T (a) to be
invertible on �2 it is sufficient that a is invertible in L∞(T) and a/|a| = exp(i ṽ)
with a real-valued v ∈ L∞(T) and with ṽ denoting the conjugate function of v.
What a great first step into the depth of L∞! For example, if ω is a conformal map
of the open unit disk onto the region {x + iy : y > | tan x|,−π/2 < x < π/2},
then, considering the boundary values of ω, the real part v = Reω is in L∞ while
the imaginary part ṽ = Imω is unbounded, so that T (ei ṽ) is an invertible operator
with a heavily oscillating symbol.

In August 1958, Widom submitted his 1960 paper [45], which laid the foun-
dations for the invertibility theory of Toeplitz operators on �2. The paper has four
theorems. In Theorems II and III, unaware of previous work by A. Wintner (1929)
and P. Hartman and A. Wintner (1954), he rediscovered their invertibility criteria for
triangular and Hermitian Toeplitz matrices. Theorem I was a real breakthrough. It
states that for T (a) to be invertible it is necessary and sufficient that a = a−a+ with
a±1− ∈ L2−(T), a±1+ ∈ L2+(T) such that the operator f �→ a−1+ Pa−1− f is bounded on
L2(T). HereL2±(T) are the usual Hardy spaces and P is the orthogonal projection of
L2(T) ontoL2+(T). Note that P = (I+S)/2 where S is the Cauchy singular integral
operator. He understood that this is a question about the weights w for which S is
bounded on Lp(T, w). It was a lucky tie of events that just at that time, in 1960,
H. Helson and G. Szegő were able to characterize these weights. Combining his
Theorem I and the Helson-Szegő theorem, Widom arrived at the conclusion that
T (a) is invertible if and only if a is invertible in L∞ and

a/|a| = exp(i(c + u+ ṽ)),

where c is a real constant, u and v are two real-valued functions in L∞(T), and
‖u‖∞ < π/2. This beautiful result, which was published in 1960 by Widom in
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[46] and was rediscovered by Allen Devinatz in 1964, entered the text books as the
Widom-Devinatz theorem.

We should mention that an essential generalization of Widom’s Theorem I,
namely, its extension to Toeplitz operators with matrix-valued symbols on the Hardy
spaces Lp

+(T) was independently discovered by Igor Simonenko in 1961. In fact
several basic results on Toeplitz operators which nowadays appear on the first pages
of the textbooks were established just around 1960 and tracing back to the sources
of these results is a subtle matter. Those years were turbulent times. For example,
the Brown-Halmos theorem, according to which the spectrum of T (a) is a subset
of the convex hull of the essential range of a, though explicitly published for the
first time by P. Halmos and A. Brown in 1963, was known to at least Widom and
Igor Simonenko already in 1960. As for Widom, the theorem is in his article [51],
which is based on lectures at the IAS in 1960. We also remark that in the very
early 1960s, Simonenko [41, 42] already had the results of [26] on locally sectorial
symbols and the theorem that a Toeplitz operator is invertible if and only if it is
Fredholm of index zero, which was published by Lewis Coburn in 1967 and is
known as Coburn’s lemma since then.

4 Toeplitz Operators with Piecewise Continuous Symbols

Bounded piecewise continuous functions are in L∞ and hence covered by the
previous section. So why a new section about them? The point is that we were
cheating in Sect. 1 when saying that due to the equality T (a) − λI = T (a − λ),
the description of the spectrum of T (a) essentially amounts to finding invertibility
criteria for Toeplitz operators. The results of Sect. 3 solve the invertibility problem
for Toeplitz operators with arbitrary L∞ symbols completely but in analytical
language. In contrast to this, the nice index zero condition quoted in Sect. 2 gives
an answer not only to invertibility but also a description of the spectrum in purely
geometric language: if a is continuous, then the spectrum of T (a) is the union of
the curve a(T) and of all points in the plane that are encircled by this curve with
nonzero winding number.

Let’s come back to Widom’s paper [45]. Theorem IV in it concerns the case
where a ∈ L∞ is piecewise continuous with at most finitely many jumps. Consider
the continuous and naturally oriented curve in the plane that arises from the essential
range of a by filling in line segments between the endpoints a(t−0) and a(t+0) of
each jump. Widom proved that T (a) is invertible on �2 if and only if this curve does
not contain the origin and has winding number zero about the origin. This delivers a
geometrical description of the spectrum of T (a) analogous to the case of continuous
symbols, the only difference being that instead of the curve a(T) one has to take the
curve that arises from the essential range after filling in line segment between the
endpoints of the jumps. How beautiful!

In fact, Theorem IV of [45] was the very beginning of a long and fascinating
story. The first chapter of this story was written by none other than Widom himself
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in [47]. The space �2 may be naturally identified with the Hardy space H 2 = L2+
of the unit circle (equivalently, of the unit disk). Consequently, the �2 theory of
Toeplitz operators bifurcates into the �p and Lp theories for 1 < p < ∞. The
latter two theories are based on completely different techniques although, and this
is something of a mystery, in the case of piecewise continuous symbols the final
results are almost identical. In [47], Widom studied Toeplitz operators T (a) with
piecewise continuous symbols a on the Hardy space Lp

+(R) of the upper half-plane.
These operators are defined by f �→ P(af ) where P = (I + S)/2 and S is the
Cauchy singular integral operator on Lp(R). (One could equally well work on the
Hardy space Hp = L

p
+(T), the differences being only technical and psychological.)

Widom again arrived at the boundedness of f �→ a−1+ Pa−1− f on L
p
+(R). This time

it is the question about the weights w for which S is bounded on Lp(R, w). He
showed that S is bounded if w(x) = (1 + |x|)α∏m

k=1 |x − xk|αk with

−1/p < αk < 1/q and − 1/p < α +
m∑

k=1

αk < 1/q,

where 1/p+1/q = 1. Using this insight, he was able to prove that T (a) is invertible
on Lp

+(R) if and only if a certain curve does not contain the origin and has winding
number zero about the origin. This curve results from the essential range of a by
filling in certain circular arcs Ap(a(x − 0), a(x + 0)) depending on p between the
endpoints of the jumps at x ∈ R and the arc Aq (a(+∞), a(−∞)) for the jump at
infinity. Here, for two distinct points α, β ∈ C and a number r ∈ (1,∞), we denote
by Ar (α, β) the circular arc at the points of which the line segment [α, β] is seen
at the angle 2π/max{r, s}, where 1/r + 1/s = 1, and which lies on the right (resp.
left) of the oriented line passing first α and then β if 1 < r < 2 (resp. 2 < r < ∞).
For r = 2, Ar (α, β) is simply the line segment [α, β]. In formulas,

Ar (α, β) = {α, β} ∪
{
z �= α, β : 1

2π
arg

z − a

z − b
∈ 1

r
+ Z

}
.

A parametric representation of Ar (α, β) is

z(μ) = α + σr(μ)(β − α), 0 ≤ μ ≤ 1,

where σr(μ) = μ for r = 2 and

σr(μ) = sin(θμ) exp(iθμ)

sin(θ) exp(iθ)
with θ = π

(
1

r
− 1

s

)

for r �= 2. For example, if a(x) = sign x, then we have two circular arcs Ap(−1, 1)
and Aq(1,−1), and since Aq(1,−1) = Ap(−1, 1), it follows that T (sign) is
invertible if and only if p �= 2. Widom also computed the kernel and co-kernel
dimensions of the operators if the curve has nonzero winding number. Overall,
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paper [47] contained the full Fredholm theory of Toeplitz operators with piecewise
continuous symbols on Lp

+(R), including an index formula.
In different language, particular cases of the Fredholm results of [47] were

already evident in papers by B. V. Hvedelidze since 1947. The characterization of
the weights w for which S is bounded on Lp(Γ,w) has a long history, starting
with G. H. Hardy and J. E. Littlewood and culminating with work by R. Hunt,
B. Muckenhoupt, R. Wheeden (1973), A. Calderón (1977), G. David (1984). In
the late 1960s and the 1970s, I. Gohberg and N. Krupnik introduced their local
principle by means of which they could not only give a simpler proof of Widom’s
result but also consider Lyapunov curves Γ with power weights w, the case of
matrix-valued symbols, and Banach algebras generated by Toeplitz operators with
piecewise continuous symbols. In 1972, R. Duduchava settled matters for Toeplitz
operators on �p. The theory reached a certain final stage only in the 1990s by work
of I. Spitkovsky (general weights w) and Yu. I. Karlovich and the second author
(general curves Γ and general weights w). In these more general situations, Harold
Widom’s circular arcs undergo a metamorphosis into horns, logarithmic double-
spirals, spiralic horns, and eventually into leaves with a halo. See the book [11].

The results on Toeplitz operators with continuous or piecewise continuous
symbols we have cited imply that their spectrum and essential spectrum are
connected sets. (The essential spectrum of an operator T is the set of all complex λ
for which T −λI is not Fredholm, that is, not invertible modulo compact operators.
In the case of a continuous symbol a, the essential spectrum of T (a) is simply
the curve a(T), and for a piecewise continuous symbol, it is the essential range
with connected sets filled in between the endpoints of the jumps.) In 1963, Paul
Halmos posed the question whether the spectrum of T (a) is connected for every
a ∈ L∞(T). In [50], submitted in April 1963, Widom proved that the answer is
Yes for the spectrum of Toeplitz operators on �2, and in his paper [52] of 1966, he
performed the same feat for Toeplitz operators on Lp

+(T). In 1972, Ronald Douglas
established the connectedness of the essential spectrum of Toeplitz operators on
�2, and only in 2009, A. Yu. Karlovich and I. Spitkovsky [35] were able to prove
that both the spectrum and the essential spectrum of Toeplitz operators are always
connected on L

p
+(Γ,w) for 1 < p < ∞ and general curves Γ and weights w.

In Fig. 1 we see some of the mathematicians whose names we encountered above.
Figs. 2, 3, 4, scattered over the rest of this paper, show Harold Widom in the years
1969, 1985, 2002.

5 Asymptotics of Extreme Eigenvalues

Extreme eigenvalues of Hermitian Toeplitz matrices have been studied at least
since Kac, Murdock, and Szegő’s work in the 1950s. In the 1960s, Seymor Parter
undertook the matter a thorough analysis and established a series of deep results. As
Harold told us, there was an agreement between Parter and him that Parter should
focus on the Toeplitz case while he would embark on integral operators, that is, on
the Wiener-Hopf case.
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Fig. 1 Joint German-Israeli workshop “Linear and one-dimensional singular integral equations”
in Tel Aviv in March 1995. From the left to the right: Bernd Silbermann, Harold Widom, Joe Ball,
Amelia Ball, Ludmilla Meister, Erhard Meister, Asya Moiseyevna Vishik, Albrecht Böttcher, Mark
Vishik, Lothar von Wolfersdorf, unknown, Yuri Karlovich, Luise Blank, Uri Toeplitz (a son of Otto
Toeplitz), Naum Krupnik, Elias Wegert, Victor Katsnelson, Steffen Roch, Israel Gohberg, Rien
Kaashoek, Efim Spigel, Asher Ben-Artzi, Israel Feldman, Ilya Spitkovsky, Yan Zucker, Johannes
Elschner, Victor Vinnikov, Vladimir A. Marchenko.

Consider the integral operators Wτ given by

(Wτ f )(x) =
∫ τ

0
k(x − y)f (y) dy, x ∈ (0, τ ),

onL2(0, τ ). These operators are the continuous analogue of finite Toeplitz matrices.
We may think of Wτ as the compression to L2(0, τ ) of the Wiener-Hopf integral
operator defined by

(Wf )(x) =
∫ ∞

0
k(x − y)f (y) dy, x ∈ (0,∞),

on L2(0,∞). Clearly, W is the continuous analogue of an infinite Toeplitz matrix.
The symbol of the operators at hand is the Fourier transform of the function k,

k̂(ξ) :=
∫ ∞

−∞
k(x)eiξx dx, ξ ∈ R.
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Of interest is the case in which the function k is real-valued and even and in L1(R).
In that case Wτ is a compact Hermitian operator and we may label the upper
eigenvalues as λ1(Wτ ) ≥ λ2(Wτ ) ≥ . . . . As predicted by Kac, Murdock, Szegő,
and Parter in the discrete case, the asymptotic behavior of λj (Wτ ) for fixed j and
for τ going to infinity depends heavily on the behavior of the symbol k̂ near its
maximum. Suppose that the maximal value is 1 and that it is attained at ξ = 0 and
only there. Under the assumption that

k̂(ξ) = 1 − c|ξ |α + o(|ξ |α) as ξ → 0

and that some more minor technical conditions are satisfied, Widom proved that

λj (Wτ ) = 1 − c

μj,α

1

τα
+ o

(
1

τα

)
as τ → ∞,

where the μj,α are certain constants. For α = 2, this was done in his 1958
paper [44], where he even improved the o(1/τ 2) to νj,α/τ

3 + o(1/τ 3). Papers [48]
and [49] of 1961 are for general α ∈ (0,∞). The constants μj,α are shown to
be the eigenvalues of a certain positive definite integral operator with some kernel
Kα(x, y) on L2(−1, 1). If α = 2k is an even natural number, then Kα(x, y) is
Green’s function of the differential operator u �→ (−1)ku(2k) on (−1, 1) with the
boundary conditions u(�)(−1) = u(�)(1) = 0 for 0 ≤ � ≤ k − 1.

To prove these results, Widom derives a formula for the determinants of banded
Toeplitz matrices and some kind of an analogue of this formula for integral
operators. Subtracting λI and putting the resulting determinants zero, he gets the
eigenvalues, and a clever approximation argument then yields the desired result.

Widom’s formula for the determinants of banded Toeplitz matrices is of interest
by itself. So let us cite the formula here in the form presented by Schmidt and Spitzer
in [38]. The formula along with a full proof is also contained as Theorem 2.8 in the
book [10]. Let

a(t) =
s∑

j=−r

aj t
j (t ∈ T)

with r ≥ 1, s ≥ 1, a−r �= 0, as �= 0, and let z1, . . . , zr+s be the zeros of the
polynomial zra(z) = a−r + a−r+1z + · · · + asz

r+s . If these zeros are pairwise
distinct, then

det Tn(a) =
∑

M

CMwn
M
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Fig. 2 Harold Widom in 1969. (Photo by Paul Halmos.).

for every n ≥ 1, where the sum is taken over all
(
r+s
s

)
subsets M ⊂ {1, 2, . . . , r+s}

of cardinality |M| = s and

wM = (−1)sas
∏

j∈M
zj , CM =

∏

j∈M
zrj

∏

j∈M,k/∈M
(zj − zk)

−1.

This formula came to full effect in Schmidt and Spitzer’s paper [38]. We here
confine ourselves to a nice application of the formula in connection with a
periodicity phenomenon for Toeplitz determinants. Consider the Toeplitz matrices
with the symbol

a(t) =
s∑

k=−r

tk = t−r t
r+s+1 − 1

t − 1
.

For sufficiently large n, Tn(a) has r + 1 ones followed by zeros in the first row and
s + 1 ones followed by zeros in the first column. Since zn+r+s+1

j = znj for the roots
of the polynomial zra(z), Widom’s formula immediately yields

det Tn+r+s+1(a) = (−1)s(r+s+1) detTn(a) = (−1)rs det Tn(a).

It follows that detTn(a) has the period r + s + 1 if r or s is even and that the period
is 2(r + s + 1) if r and s are odd (with merely a sign change after r + s + 1 steps
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in the latter case). This is an explanation for the period 4 detected in [1] in the case
r = 1, s = 2.

6 Asymptotics for Collective Eigenvalue Distribution

In 1915, Gábor Szegő established his celebrated first limit theorem, which states
that if a is positive on T, then the quotient detTn(a)/ detTn−1(a) converges to

G(a) := exp

(
1

2π

∫ 2π

0
log a(eiθ ) dθ

)

as n → ∞. This theorem implies that if a is real-valued, in which case the matrices
Tn(a) are all Hermitian, and if we denote by λ1(Tn(a)) ≤ . . . ≤ λn(Tn(a)) the
eigenvalues of Tn(a), then

lim
n→∞

1

n

n∑

j=1

ϕ(λj (Tn(a))) = 1

2π

∫ 2π

0
ϕ(a(eiθ )) dθ

for every “test function” ϕ ∈ C(R). This is a first order asymptotic result for
the collective eigenvalue distribution of Toeplitz matrices. In 1952, eventually
motivated by Lars Onsager’s formula for the spontaneous magnetization of the two-
dimensional Ising model, Szegő improved the result to a second order asymptotic
formula, which is now called Szegő’s strong limit theorem. We refer to the article
[23] for an exhaustive treatment of this story.

Widom made several fundamental contributions to the collective eigenvalue dis-
tribution of truncated Toeplitz and Wiener-Hopf operators and their generalizations,
such as pseudodifferential operators. In this section, we focus our attention on two
of his papers on this topic.

In his 1980 paper [36] with Henry Landau, he investigated the positive definite
operator given on L2(−τ, τ ) by

(Cτ f )(x) = γ

2πi

∫ τ

−τ

e−iα(x−y) − e−iβ(x−y)

x − y
f (y) dy, x ∈ (−τ, τ ).

This operator is of crucial interest in random matrix theory and in laser theory. For
example, as observed by H. Brunner, A. Iserles, and S. Nørsett [19], if γ = π ,
α = −2, β = 2, in which case the operator is convolution by sin(2t)/t , the
eigenvalues of Cτ are the singular values of the famous Fox-Li operator. After
changing integration over (−τ, τ ) to integration over (0, 2τ ), the operator Cτ

becomes a Wiener-Hopf integral operator with the symbol γχ(α,β), which has two
jumps. No general result of the type of Szegő’s strong limit theorem delivered a
second order trace formula in this situation. By an extremely ingenious argument,



60 E. Basor et al.

Fig. 3 Harold Widom in 1985. (Photo by Paul Halmos.).

Landau and Widom nevertheless succeeded in establishing a second order result for
the eigenvalues, which confirmed a conjecture by D. Slepian of 1965. The result
says that if ϕ is in C∞(R) and ϕ(0) = 0, then

∞∑

j=1

ϕ(λj (Cτ )) = τ
ϕ(γ )(β − α)

π
+ log(2τ )

π2

∫ γ

0

γ ϕ(x)− xϕ(γ )

x(γ − x)
dx + O(1).

The other paper we want to emphasize here is [62] of 1990. One is tempted to
think that the eigenvalues of the n× n Toeplitz matrices Tn(a) somehow mimic the
spectrum of the infinite Toeplitz matrix T (a) as n → ∞. This is indeed the case
if a is real-valued, but already in 1960, P. Schmidt and F. Spitzer [38] showed that
this is in general no longer true if a is a Laurent polynomial (⇔ T (a) is banded).
On the other hand, it was known that if a is piecewise continuous with exactly one
jump and this jump is not too large, then the spectrum of Tn(a) converges to the
essential range of a. So what could the overall picture be? In [62], Widom raised
the brave conjecture that except in rare cases, the eigenvalues of Tn(a) are, in a
sense, asymptotically distributed as the values of a. Such a rare case takes place,
for instance, if a extends analytically a little into the interior or the exterior of T,
which happens in particular if a is a Laurent polynomial. And Widom proved this
conjecture for various classes of symbols. One of the results of [62] says that if a is
continuous, the range a(T) is a Jordan curve, a is C1 with nonvanishing derivative
on T\{1} but not in C1 on all of T, then the eigenvalues asymptotically cluster along
a(T). The proof is based on a thorough analysis of the determinants det(Tn(a)−λI).
In the case at hand, the function a − λ is nonvanishing but has nonzero winding
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number about the origin, and getting asymptotic formulas for such determinants is
one of the most difficult problems in the Toeplitz determinants business.

Widom’s paper [62] already contained aspects of the idea to tackle eigenvalue
distribution via potential theory. This idea has subsequently led to enormous success
in understanding the collective asymptotics of eigenvalues. See [24, 25, 27]. And for
another topic, we refer to [9, 22] for recent developments concerning the asymptotic
behavior of individual eigenvalues in the bulk of the spectrum of large Toeplitz
matrices.

7 Szegő-Widom

The revolutionary contributions of Widom to Toeplitz determinants with “regular”
symbols are in his papers [54], [55], [56], which appeared from 1974 to 1976.
Szegő’s strong limit theorem says that, under certain assumptions,

detTn(a)/G(a)n

converges to a nonzero limit E(a) as n → ∞. The original positivity assumption
needed by Szegő was over the years relaxed by many mathematicians, including
G. Baxter, I. I. Hirshman, Jr., A. Devinatz, to the requirement that a satisfies some
mild smoothness condition, has no zeros on T and has winding number zero about
the origin. The constants G(a) and E(a) are then given by

G(a) = exp(log a)0,

E(a) = exp
∞∑

k=1

k(log a)k(log a)−k,

where (log a)j denotes the j th Fourier coefficient of any continuous logarithm of a.
Widom did two important things. First, he extended the theorem to block Toeplitz
matrices, and secondly, he found a remarkably elegant operator theoretic proof with
immense impact on subsequent research into the asymptotics of Toeplitz matrices.
Due to these achievements, Szegő’s theorem for block Toeplitz matrices is now
usually referred to as the Szegő-Widom theorem.

In the block case, a is a function of T into CN×N , the Fourier coefficients aj
are N ×N matrices, and Tn(a) is accordingly a matrix of order nN . Given a matrix
function a on the unit circle T, we define, following Widom [56], the matrix function
ã by ã(t) = a(1/t) for t ∈ T. This matrix function associated with a plays an
important role in the block case. Note that in the scalar case (N = 1) the matrix
T (̃a) is simply the transpose of T (a). This is in general not true in the block case.
We also note that in the following the tilde always has the meaning just introduced
and no longer stands for the conjugate function we encountered in Sect. 3.
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In addition to the block Toeplitz operator T (a), we need the block Hankel
operator H(a) defined by the infinite block Hankel matrix

H(a) = (aj+k−1)
∞
j,k=1 =

⎛

⎜⎜⎝

a1 a2 a3 . . .

a2 a3 . . .

a3 . . .

. . .

⎞

⎟⎟⎠

on the CN -valued �2. Widom’s paper [56] contains the two beautiful identities

T (ab) = T (a)T (b)+ H(a)H (̃b),

H(ab) = T (a)H(b)+ H(a)T (̃b).

These identities had been known and used for a long time, for example in the form

PabP = PaPbP + PaQbP,

PabQ = PaPbQ + PaQbQ,

but writing them in the above form, with the Hankel operators, was one of Widom’s
strokes of genius.

Widom’s smoothness assumption was that

‖a‖K := ‖a‖∞ +
( ∞∑

j=−∞
|j | ‖aj‖2

)1/2
< ∞,

where ‖ · ‖ is the spectral norm on CN×N . In 1966, Mark Krein showed that such
matrix functions form a Banach algebra. They key observation of Krein was that
H(a) is Hilbert-Schmidt if and only if

∑∞
j=0 j ‖aj‖2 < ∞. Consequently, if

‖a‖K < ∞ and ‖b‖K < ∞, then T (a) and T (̃b) are bounded while H(a) and
H(b) are Hilbert-Schmidt. The identity H(ab) = T (a)H(b) + H(a)T (̃b) and its
analogue for H(̃ab̃) therefore immediately imply that ‖ab‖K < ∞, too.

The Szegő-Widom theorem is the theorem established in [55] and [56]. It states
that if a satisfies the above smoothness condition and T (a) and T (̃a) are Fredholm
operators of index zero, then T (a)T (a−1)− I is a trace class operator and

lim
n→∞

detTn(a)

G(a)n
= E(a)

where

G(a) = exp(log det a)0, E(a) = det T (a)T (a−1).
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Here det T (a)T (a−1) is an operator determinant. If K is a trace class operator and
{λj } denotes the collection of its eigenvalues counted with algebraic multiplicity,
then the operator determinant det(I + K) is defined as

∏
j (1 + λj ). That in the

concrete case at hand T (a)T (a−1) − I is a trace class operator follows from the
identity

T (a)T (a−1) − I = T (a)T (a−1)− T (aa−1) = H(a)H (̃a−1)

and the fact that the two Hankel operators are Hilbert-Schmnidt.
But why is detT (a)T (a−1) equal to Szegő’s original constant in the scalar case?

Widom observed that this follows from another remarkable identity, namely, the
formula

det(eAeBe−Ae−B) = etr (AB−BA),

which holds wheneverA,B are bounded Hilbert space operators such that AB−BA

is of trace class. This formula was established independently by J. D. Pincus in 1972
and J. W. Helton and R. E. Howe in 1973, and a simple proof was given by the third
author [29] in 2003. Widom had to struggle with several subtle complications, and
we here confine ourselves to citing his argument in the simple case where a has a
Wiener-Hopf factorization a = a−a+. Then

detT (a)T (a−1) = detT (a−)T (a+)T (a−1+ )T (a−1− )

= det eT (loga−)eT (loga+)e−T (loga+)e−T (loga−)

= etr [T (loga−)T (loga+)−T (loga+)T (loga−)]

= etr [T (loga− loga+)−T (loga+)T (loga−)]

= etrH(loga+)H((loga−)∼)

and since

trH(c)H (̃b ) = tr

⎛
⎜⎜⎝

c1 c2 c3 . . .

c2 c3 . . .

c3 . . .

. . .

⎞
⎟⎟⎠

⎛
⎜⎜⎝

b−1 b−2 b−3 . . .

b−2 b−3 . . .

b−3 . . .

. . .

⎞
⎟⎟⎠ =

∞∑

k=1

kckb−k,
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it follows that

trH(log a+)H((log a−)∼) =
∞∑

k=1

k(log a+)k(log a−)−k

=
∞∑

k=1

k(log a)k(log a)−k,

which gives Szegő’s scalar case formula for the constant E(a).
Thus, we know that Widom’s constant detT (a)T (a−1) coincides with Szegő’s

constant in the scalar case. But where does the detT (a)T (a−1) come from? We
first of all want to remark that all previous proofs of the Szegő strong limit theorem
were very complicated and rather indirect and did not convincingly reveal the actual
origin of the constant E(a). This changed with Widom’s operator theoretic proof.
However, instead of embarking on this proof here, we go some 25 years ahead. In
2000, Alexei Borodin and Andrei Okounkov [7] established a formula which, in
notation subsequently suggested by no-one but Widom, reads

det Tn(a)

G(a)n
= det(I − QnH(b)H (̃c)Qn)

det(I − H(b)H (̃c))
.

Here Qn is projection onto the coordinates indexed by n+1, n+2, . . ., a is assumed
to have the Wiener-Hopf factorizations a = u−u+ = v+v− (note that in the matrix
case one has to distinguish between “left” and “right” Wiener-Hopf factorizations),
and b, c are defined by b = v−u−1+ , c = u−1− v+. Obviously, bc = I . Since Qn → 0
strongly andH(b)H (̃c) is of trace class, it follows that the right-hand side converges
to 1/ det(I − H(b)H (̃c)), and since

1/ det(I−H(b)H (̃c)) = 1/ detT (b)T (c)

= 1/ detT (v−)T (u−1+ )T (u−1− )T (v+)

= detT (v−1+ )T (u−)T (u+)T (v−1− )

= detT (u−)T (u+)T (v−1− )T (v−1+ )

= detT (u−u+)T (v−1− v−1+ ) = detT (a)T (a−1),

we arrive at Szegő-Widom.
Something like the Borodin-Okounkov formula was asked for by P. Deift and

A. Its in 1999, and later it turned out that J. Geronimo and K. Case [31] had a similar
formula proved earlier in 1979. Borodin and Okounov’s proof of their formula was
very intricate. Simple operator theoretic proofs were subsequently given by Widom
and two of the authors in [5], [18]. The simplest of these proofs is based on Jacobi’s
formula, which says that if K is a trace class operator on the CN -valued �2(Z+)
such that I − K is invertible, Pn denotes the canonical projection onto the first n



Harold Widom’s contributions to Toeplitz Operators and Matrices 65

coordinates, and Qn = I − Pn is as above, then

detPn(I − K)−1Pn = det(I − QnKQn)

det(I − K)

for all n ≥ 1. Letting K = H(b)H (̃c) we have the right-hand side of Borodin-
Okounkov, and taking into account that

Pn(I − H(b)H (̃c))−1Pn = PnT
−1(c)T −1(b)Pn

= PnT (v
−1+ )T (u−)T (u+)T (v−1− )Pn = Tn(v

−1+ )Tn(a)Tn(v
−1− )

and detTn(v
−1+ )Tn(a)Tn(v

−1− ) = G(a)−n detTn(a), we get the left-hand side. We
refer to the monograph [40] for an exhaustive presentation of the topics touched in
this section and for nearly everything around Szegő’s strong limit theorem.

To mention at least one impact of Widom’s proof in [56] on the research in the
years to follow, we note that in [56] we also see the beautiful identity

Tn(a)Tn(b) = Tn(ab)− PnH(a)H (̃b)Pn − WnH (̃a)H(b)Wn

for the product of two finite Toeplitz matrices. As above, Pn is projection onto the
first n coordinates. The operator Wn is Pn followed by reversal of the coordinates.
We remark that Widom himself wrote Qn instead of Wn. The Wn was introduced
in [12] (which was written before [39] but appeared only after that paper), not only
because Qn is there used for I − Pn but mainly to give merit to Widom. It was
this eye-catching identity along with the observation that the products of the Hankel
operators are compact if a or b is continuous which inspired Bernd Silbermann in
1980 to study the stability of the sequence {Tn(a)}∞n=1 by embedding it into a Banach
algebra of sequences in which sequences of the form

{PnKPn + WnLWn + Cn}∞n=1

with compact K,L and ‖Cn‖ → 0 form a closed two-sided ideal [39] and
by subsequently applying a so-called local principle. (Stability of the sequence
{Tn(a)}∞n=1 means that the inverses [Tn(a)]−1 exist and have uniformly bounded
norms for all sufficiently large n.) Harold told us that, although his command of
German language is very limited, he had read Silbermann’s paper [39] with great
enthusiasm. Since the early 1980s, Silbermann’s idea has led to enormous progress
in the foundation of plenty of approximation methods and numerical algorithms;
see, e.g., [13, 33, 34, 37]. The article [8] contains a photo showing Widom’s
paper [56].
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8 Fisher-Hartwig

Symbols with discontinuities, zeros, poles, or nonzero winding number are referred
to as singular symbols. If one of these four evils happens, Szegő’s limit theorem
breaks down. The 1968 paper [30] by Michael Fisher and Robert Hartwig set a big
ball rolling. They introduced the class of singular symbols given by

a(eiθ ) = b(eiθ )

R∏

r=1

|eiθ − eiθr |2αr ϕβr ,θr (eiθ )

where b is a nice function (smooth, nonvanishing on T, and with winding number
zero about the origin), eiθ1, . . . , eiθR are distinct points on T, and the functions ϕβr,θr
are defined by

ϕβr,θr (e
iθ ) = exp(iβrarg(−ei(θ−θr )))

with the argument taken in (−π, π]. The function ϕβr,θr satisfies

ϕβr,θr (e
i(θr+0)) = e−πiβr , ϕβr ,θr (e

i(θr−0)) = eπiβr ,

and it is continuous on T\{eiθr }. Such symbols a may have zeros (Reαr > 0), poles
(Reαr < 0), oscillating discontinuities ( Re αr = 0), jumps (βr /∈ Z), and nonzero
winding numbers (βr ∈ Z).

Hartwig and Fisher raised the conjecture that

det Tn(a)/G(a)n ∼ C(a) n
∑
(α2

r−β2
r )

with some nonzero constant

C(a) = C(b, θ1, . . . , θR, α1, . . . , αR, β1, . . . , βR),

where xn ∼ yn means that xn/yn → 1 as n → ∞. It is required that Reαr > −1/2
for all r , which guarantees that a is in L1(0, 2π) and hence has well-defined Fourier
coefficients. The assumption that |Reβr | < 1/2 for all r is a basic case of the
conjecture. It avoids certain unpleasant ambiguities caused by larger exponents βr ,
in particular by the situation where some of the numbers αr ± βr are integers.

In special cases, the conjecture was confirmed by A. Lenard and by Fisher and
Hartwig themselves. With his 1973 paper [53], Widom was the first to provide a
rigorous proof of the conjecture in a sufficiently general case: he proved it under the
assumption that βr = 0 for all r , and this proof is a gigantic piece of mathematical
analysis. Hirschman writes in his review MR0331107 (48#9441) “The present paper
represents a jump of several quanta in depth and sophistication in an area which is
not only of great interest to mathematicians, but to theoretical physicists as well.”
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Widom also proved the conjecture for R = 1, α1 > −1/2, −1/2 < β1 < 1/2,
however, without determining the constant C(a) in this case.

The conjecture of Fisher and Hartwig was subsequently confirmed by the first
author under the assumption that Reβr = 0 for all r (1978) or that αr = 0 and
|Re βr | < 1/2 for all r (1979), by B. Silbermann and the second author in the case
where |Reαr | < 1/2 and |Reβr | < 1/2 for all r (1985), and by B. Silbermann and
the third author for R = 1, Reα1 > −1/2, β1 ∈ C arbitrary (1996). In each case,
the constant C(a) was completely identified. If |Reαr | < 1/2 and |Re βr | < 1/2
and b is in the Wiener algebra, the constant is

C(a) = E(b)

R∏

r=1

[
Gγr ,δr b−(tr )−γr b+(tr )−δr

] ∏

1≤r �=s≤tr

(
1 − tr

ts

)−δr γs

where tr = eiθr , γr = αr + βr , δr = αr − βr ,

Gγ,δ = G(1 + γ )G(1 + δ)

G(1 + γ + δ)

with Barnes’ double Gamma function G(z),

b−(t) = exp
∑

k<0

(log b)kt
k, b+(t) = exp

∑

k>0

(log b)kt
k,

and E(b) = exp
∑∞

k=1 k(log b)k(log b)−k.
It was observed by several authors, for example by Silbermann and the second

author already in 1981, that the conjecture is in general no longer true if αr ± βr
may assume values in Z \ {0}. A new conjecture, which covers all possible cases,
was formulated by Craig Tracy and the first author [3] in 1991. This new conjecture
was proved by the third author [28] in 1997 in all cases in which it coincides with
the original conjecture and by Percy Deift, Alexander Its, and Igor Krasovsky [21]
in 2009 in full generality. The entire development from Fisher and Hartwig’s 1968
paper up to the present has both demanded and produced great progress in operator
theory for Toeplitz and related matrices.

The Fisher-Hartwig conjecture has a continuous analogue for Wiener-Hopf deter-
minants. In the 1983 paper [4] by Widom and the first author, this conjecture was
proved for piecewise continuous symbols with a continuous argument, that is, for the
case where αr = 0 and Re βr = 0 for all r . The idea of the proof is that Wiener-Hopf
determinants when discretized become Toeplitz determinants. Unfortunately, one is
led to determinants of the form det Tn(a(n)) in this way. Thus, not only the order
of the determinant but also the symbol depend on n. However, sufficiently precise
asymptotic results for Toeplitz matrices and determinants eliminate this obstacle.

For general piecewise symbols, the continuous analogue of the Fisher-Hartwig
conjecture was settled in 1994 in the papers [15] and [16] by Widom, Silbermann,
and the second author. These papers are based on another idea. This time it is
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that Wiener-Hopf operators may be regarded as Toeplitz matrices with operator-
valued entries by thinking of L2(0,∞) as �2-space with values in L2(0, 1) and
thus interpreting a convolution integral operator on L2(0,∞) as a Toeplitz matrix
whose entries are integral operators on L2(0, 1). This idea was motivated by
papers [14, 32].

We consider Wiener-Hopf operators whose symbol σ is a (complex-valued)
function in L∞(R) such that σ − 1 ∈ L2(R). The corresponding Wiener-Hopf
operator on L2(0,∞) is defined by

(W(σ)f )(x) = f (x)+
∫ ∞

0
k(x − t)f (t) dt, 0 < x < ∞,

where

k(x) = 1

2π

∫ ∞

−∞
(σ (ξ) − 1)e−iξx dξ

is the inverse Fourier-Plancherel tranform of σ − 1. For τ > 0, let, as in Section 5,
Wτ(σ) denote the compression of W(σ) to L2(0, τ ). The assumption that σ − 1
be in L2(R) implies that so also is k, and hence Wτ (σ) is of the form I plus
Hilbert-Schmidt operator for every (finite) τ > 0. If even σ − 1 ∈ L1(R), then
k is continuous and therefore Wτ (σ) is of the form I plus trace class operator. In
the latter case the determinant detWτ (σ) is well-defined, in the former case we may
consider the so-called second regularized determinant det2 Wτ (σ):

detWτ(σ) =
∏

j

(1 + λj ), det2Wτ(σ) =
∏

(1 + λj )e
−λj ,

where λ1, λ2, . . . are the eigenvalues of Wτ (σ) − I (counted up to algebraic
multiplicity).

Suppose now that σ ∈ L∞(R) is a piecewise smooth function with jumps at the
points ω1, . . . , ωr ∈ R. There are uniquely defined complex numbers βj such that

e2πiβj = σ(ωj + 0)

σ (ωj − 0)
, −1/2 < Re βj ≤ 1/2.

Note that βj is purely imaginary or real, respectively, if and only if σ has a
continuous argument or a continuous modulus at ωj . In [15], it was proved that
if

σ − 1 ∈ L1(R)
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and some index zero condition is satisfied (which is equivalent to the invertibility of
W(σ) and includes that −1/2 < Re βj < 1/2 for all j ), then

detWτ (σ) ∼ G(σ)τ τ−(β2
1+···+β2

r )E(σ )g(β1) · · · g(βr)

as τ → ∞, where G(σ),E(σ) are explicitly given constants, and

g(β) = e(1+γ )β2
∞∏

n=1

(1 + β2/n2)ne−β2/n = G(1 + β)G(1 − β)

with Euler’s constant γ and Barnes’ double Gamma function G(z). In the case of
continuous arguments, that is, if Reβj = 0 for all j , this result had been established
in [4] ten years before.

The requirement that σ − 1 be in L1(R) ruled out many standard piecewise
continuous symbols. In particular, if σ is the “canonical” piecewise continuous
function given by

σ(ξ) =
(
ξ − i

ξ + i

)β
(ξ ∈ R)

(with an appropriate branch of zβ ), then σ − 1 is in L2(R) but not in L1(R). In [16],
this final hurdle was taken. It was shown that if

σ − 1 ∈ L2(R)

and the index zero condition is satisfied, then

det2Wτ (σ) ∼ G2(σ )
τ τ−(β2

1+···+β2
r )E(σ )g(β1) · · ·g(βr)

with some new constant G2(σ ) and with E(σ) as before. In the case of the
“canonical” symbol one gets

det2

(
Wτ

(
ξ − i

ξ + i

)β)
∼ h(β)τ

(τ
2

)−β2

g(β)

with

h(β) = exp

(
2

π

∫ π/2

0

(
sin βy

sin y

)2

dy

)

−1/2 < Re β < 1/2.
Over the years it has become clear that the asymptotic behavior of Toeplitz

and Wiener-Hopf determinants with several Fisher-Hartwig singularities can be
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Fig. 4 Harold Widom at his
70th birthday in 2002.

determined by employing localization techniques provided one knows the asymp-
totics for at least one symbol with a single Fisher-Hartwig singularity. In the Toeplitz
case, such a symbol is (1− t)γ (1−1/t)δ (t ∈ T) because we have the factorizations

|t − 1|2α = (1 − t)α(1 − 1/t)α,

ϕβ,0(t) = exp(iβarg(−t)) = (1 − t)β(1 − 1/t)−β,

which gives (1 − t)γ (1 − 1/t)δ with γ = α + β and δ = α − β. Both exact
and asymptotic formulas for the corresponding Toeplitz determinants were found
in 1985 by Silbermann and the second author, and two elementary derivations of
these formulas are also in the 2005 paper [17]. We remark in this connection that
the symbols in the Fisher-Hartwig class may also be written in the form

a(t) = c(t)

R∏

r=1

(
1 − t

tr

)γr (
1 − tr

t

)δr
(t ∈ T),

where c is a nice function and t1, . . . , tR are points on T. In that case the exponent∑
(α2

r − β2
r ) becomes

∑
γrδr .
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In the Wiener-Hopf case, things are dramatically more complicated. Only in
2004, in [6], Widom and the first author were able to prove the predicted asymptotic
behavior for the Wiener-Hopf determinants with the symbol

(
ξ + 0i

ξ + i

)γ (ξ − 0i

ξ − i

)δ
(ξ ∈ R),

still requiring that γ = α + β and δ = α − β with the real parts of α, β

in (−1/2, 1/2). The proof is highly sophisticated. Roughly speaking, it is based
on introducing a parameter to regularize the symbol, on applying the Wiener-
Hopf analogue of the Borodin-Okounkov formula, which was established in 2003
by Y. Chen and the first author, on considering the quotient of the Wiener-Hopf
determinant over (0, R) and an appropriate n × n Toeplitz determinant, on taking
the limit n,R → ∞ with n/R → 1, and on finally returning to the original symbol
by passing to the limit that makes the regularization parameter disappear.

In his journey from eigenvalue distribution problems to Szegő’s theorem and
generalizations for singular symbols, Widom sometimes did an excursion into other
more general classes of operators. In a series of papers in the late 1970s, [57–60],
he proved a far-reaching extension of the classical Szegő theorem by developing a
symbolic calculus for pseudodifferential operators. The context was general enough
to include extensions with variable convolutions, higher dimensions, and general
Riemannian manifolds. The applications ranged from the classical theorems in the
Toeplitz case to heat expansions for Laplace-Beltrami operators. Many of these
results entered his book [61].

Credits The two photos of Harold Widom in 1969 and 1985 are courtesy of the
Paul R. Halmos Photograph Collection, The Dolph Briscoe Center for American
History, The University of Texas at Austin. The photo of the German-Israeli
workshop is the conference photo, and the photo of Harold Widom in 2002 is
courtesy of the authors.

References
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Visualizations of Two Functions
Emerging in Connection with Toeplitz
Determinants

Elias Wegert

Abstract In this note we visualize the Barnes G-function and some related
functions emerging in formulas for Toeplitz determinants, and discuss some of their
properties using phase plots.

Keywords Toeplitz determinants · Barnes’ double-Gamma function ·
Fisher-Hartwig conjecture · Phase plot

As shown in the two papers [1, 2] in this volume, the Barnes function G(z) is
currently emerging in formulas for Toeplitz determinants. Albrecht Böttcher asked
me to make a short contribution to this volume with visualizations of the related
functions.

The pure Fisher-Hartwig determinant is the determinant of the n × n Toeplitz
matrix

Tn(a) = (aj−k)
n
j,k=1

generated by the Fourier coefficients of the function

a(eiθ ) = (1 − e−iθ )γ (1 − eiθ )δ.

The formula for the determinant given in [2] is

detTn(a) = G(n+ 1)
G(γ + δ + n + 1)

G(γ + δ + 1)

G(γ + 1)

G(γ + n + 1)

G(δ + 1)

G(δ + n+ 1)
, (1)
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Fig. 1 Phase plot of the Barnes function G(z) in the domain −4 < Re z < 6, |Im z| < 5.

where G(z) is the Barnes function.1 A phase plot of this function in the domain
−4 < Re z < 6, |Im z| < 5 is shown in Fig. 1.

The points where all colors meet are zeros of G(z) (located at the points
0,−1,−2, . . .), their orders 1, 2, 3, . . . correspond to the numbers of isochromatic
lines (of one specific color) ending at these points. The isochromatic lines run in
the direction of the gradient of the modulus of the function. The function grows (or
decays) the faster the higher the density of the isochromatic lines is; parallel lines
correspond to exponential growth. The “converging” lines towards the left upper
and lower corners as well as in the direction of the positive real line indicate that
|G(z)| grows even faster than exponential. On the other hand, the function decays
quickly in the direction of the other two “red arms”. For further information how to
read phase plots we refer to [4] and the book [3].

1 The function was introduced by Ernest Barnes (1874–1953) in a series of papers around 1900. In
1906, Barnes became John Littlewood’s thesis advisor. Littlewood quickly solved the first problem
Barnes gave him; the second problem posed by Barnes was the Riemann hypothesis. In 1915
Barnes left his job as a professional mathematician, and in 1924 he became Bishop of Birmingham.
See [5].
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Fig. 2 Truncated analytic landscape of the Barnes function G(z) with −2 < Re z < 6, |Im z| < 4.

The enormous growth of the Barnes function along the positive real line can also
be seen from the functional equations G(z + 1) = Γ (z)G(z), Γ (z + 1) = z Γ (z),

involving G(z) and the Euler Gamma functionΓ (z). The colored analytic landscape
of G(z) depicted in Fig. 2 illustrates the behavior described above, though it is
truncated at height 6.

The choices (γ, δ) = (α, α) and (γ, δ) = (−β, β) in formula (1) yield the pure
modulus singularity

ωα(e
iθ ) = (1 − e−iθ )α(1 − eiθ )α = |eiθ − 1|2α

and the canonical jump function

ϕβ(e
iθ ) = (1 − e−iθ )−β(1 − eiθ )β = (−eiθ )β .

Note that, in general, both functions are complex-valued. Their singularities are
located at eiθ = 1. At this point, the modulus |ωα(eiθ )| has a zero if Reα > 0 and
a pole if Reα < 0, and the argument argωα(eiθ ) has a logarithmic singularity if
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Fig. 3 Modulus (red) and argument (blue) of ωα(eiθ ) (left window) and φβ(e
iθ ) (right window)

for α = β = 1 + i/2.

Fig. 4 Left picture: the function G(1 + α)2/G(1 + 2α) for −2 < Reα < 6 and |Im α| < 4.
Right picture: the function G(1 + β)G(1 − β) for |Reβ| < 4, |Im β| < 4.

Imα �= 0. For the function ϕβ(eiθ ) jump singularities of modulus and argument are
typical; see Fig. 3 for an illustration.

Combining formula (1) for the corresponding Toeplitz determinants with known
asymptotic formulas for the Barnes function, one obtains the asymptotic formulas

detTn(ωα) ∼ G(1 + α)2

G(1 + 2α)
nα

2
(Reα > −1/2), (2)

detTn(ϕβ) ∼ G(1 + β)G(1 − β) n−β2
(β /∈ Z), (3)

which have actually been known for decades.
Phase plots of the coefficients in (2) and (3) as functions of α and β are shown

in Fig. 4. The saturated subdomain corresponds to Reα > −1/2 in which the
asymptotic formula is valid. The function has poles at α = −1/2,−3/2, . . ., the
white dots are two of them. Note that zeros and poles can be distinguished by the
different orientations of colors in their neighborhood.
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Fig. 5 The function G(1 + β)G(1 − β) along the lines Im β = 0.01, 0.1, 0.2, 0.5, 1, 2: logarithm
of modulus on the left and argument on the right.

Fig. 6 The function G(1 +β)G(1 −β) along the lines Reβ = 0, 0.6, 1.4, 2.2, 2.9, 3.7: logarithm
of modulus on the left and argument on the right.

On the left of Fig. 5 the modulus of G(1 + β)G(1 − β) along some horizontal
lines in the β-plane is depicted using a logarithmic scale. The image on the right
shows a continuous branch of the argument of these functions. The lines are
Imβ = 0, 0.1, 0.2, 0.5, 1, 2. Figure 6 shows the corresponding functions along
the vertical lines given by Reβ = 0, 0.6, 1.4, 2.2, 2.9, 3.7. For both figures the
associated colors of the graphs are in this order: green, yellow, red, magenta, violet,
and blue.
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Part II
Personal Notes



A Remarkable Advisor, Mentor,
and Friend

Estelle Basor

Abstract This article contains some personal reflections of Harold Widom as my
remarkable advisor, mentor, and friend.

Keywords Harold Widom · Personal history · Toeplitz · Determinants

In the Fall of 1968 I was a senior at the University of California, Santa Cruz (UCSC)
and taking for the first time serious courses in mathematics. I was not by any means
precocious as a mathematics student. I had started college thinking that I might go
into social work, but mathematics seemed to be the only thing I was reasonably good
at. I had had courses in calculus, linear algebra, differential equations, set theory, and
combinatorics, but had little idea of what was to follow. When I look back at that
year, I realize how lucky I had been to have had a course in abstract algebra taught
by Nick Burgoyne, one of the pioneers in the simple group classification project, a
functional analysis course taught by Robert Bonic, and the most influential for me,
the undergraduate analysis course taught by Harold.

As other students will attest, Harold’s lectures were captivating. He came to class
with only a small piece of paper and with it produced exquisite lectures that revealed
the deep inner core of analysis. His lectures were heuristic in a sense. He would
motivate and outline steps and then fill in details, but always with a natural flow and
often engaging the students to help.

The analysis sequence spanned two quarter terms and near the end of the second
quarter, Harold approached me about staying at Santa Cruz for graduate school. The
campus was only four years old at this time and many of the departments were just
starting programs. I did not hesitate to agree. Thus I began graduate school in the
Fall of 1969. The academic year 1969–1970 was a turbulent time for American
universities and Santa Cruz was no exception. By the time Spring quarter had
come around, most students were not attending class and protesting the American

E. Basor (�)
American Institute of Mathematics, San Jose, CA, USA
e-mail: ebasor@aimath.org

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
E. Basor et al. (eds.), Toeplitz Operators and Random Matrices, Operator Theory:
Advances and Applications 289, https://doi.org/10.1007/978-3-031-13851-5_5

83

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13851-5_5&domain=pdf

 66 4263
a 66 4263 a
 
mailto:ebasor@aimath.org

 782 4612 a 782 4612 a
 
https://doi.org/10.1007/978-3-031-13851-5_5


84 E. Basor

involvement in the Vietnam war. I was a teaching assistant and only meeting with
students informally. Harold was chair of the department and this must have been an
especially trying time for him.

Things settled down in the following years. Harold agreed to be my thesis
advisor as I had hoped and my first task was to read his landmark paper, “Toeplitz
determinants with singular generating functions.” I spent the better part of a year
trying to understand the paper, which confirmed the determinant conjecture of
Fisher and Hartwig in the first general cases.

In June of 1972 I attended my first ever mathematics conference at the University
of Georgia. It was not the custom then for graduate students to go to conferences
unless they were held nearby. The conference featured a series of talks by Ron
Douglas on index theory for Toeplitz operators and there I also met Al Devinatz and
Bill Helton. My trip was funded by Harold’s grant and we flew together to Atlanta.
On the way, he suggested that we have martinis. (Dinner was offered free-of-charge
on planes back then.) I had never had gin before, but it was not hard to appreciate.
Over the years, Harold and I, along with Linda, his wife, and Kent, my husband,
had many dinners together always starting with a gin martini.

By the summer of 1972, I had understood the singular determinant paper well
enough so that Harold thought I might start working on a different, but related
problem. The goal was to do something with singular symbols for Hankel matrices,
relating them back to the techniques he had used. One minor hitch in the plan was
that he was planning to spend the following year in France. There was no email
then, no Skype, no Zoom and so if I made any progress I wrote a letter and he
replied back. The truth was that everything I tried did not work and I was fairly
discouraged by my lack of progress.

On a side note, just before the Widom family left for France, Kent and I were
married with the Widom family at our wedding. After they arrived in France, they
sent us a beautiful hand-painted souffle dish that I cherish.

When Harold came back from France, we worked through everything I had tried
and finally both agreed the problem was not something that could be done—at least
at that time. But one good thing that came out of my frustrating year is that I had
learned a good many analysis techniques and I thought that perhaps I could push
the Fisher-Hartwig results even further. And that was what became the main topic
of my thesis.

After I graduated and started working at Cal Poly in San Luis Obispo I read
with great care another one of his landmark papers, “Asymptotic behavior of
block Toeplitz matrices and determinants,” which appeared in the Advances in
Mathematics in 1975. I thought that perhaps some of the Fisher-Hartwig results
could be redone using the operator theory methods. Of course the first person I told
about this idea was Harold.

In the Fall of 1978, right around the November 11th Veterans Day holiday, Harold
came to Cal Poly to give a colloquium. The next year (since that was always a day
I did not teach) I visited him in Santa Cruz. So we made it a tradition for several
years to always meet on the 11th, talk about mathematics and go out to lunch.
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Over the years we often ended up at the same meetings and conferences. In
1985, we both attended the International Conference in Operator theory that was
held in Bucharest, Romania. This was of course when the President of Romania
was Ceausescu. The western mathematicians were housed in one hotel and ones
from the east in another. The conference spanned two weeks and the organizers
planned a non-optional bus tour for the participants for the weekend. On Saturday
morning we went first to a very old orthodox monastery. Then we were taken to
a hotel and then up to a dinner at an experimental farm that had been converted
from a private estate. I actually have no idea where we really were, but when we
arrived folk dancers greeted us. They attempted to get everyone to dance—all the
mathematicians. Harold had a very funny look on his face. I knew he was not going
to do this. One of the dancers grabbed my arm and I began to dance. Harold was left
holding my purse. The next day we toured Dracula’s castle in Transylvania.

The last meeting we attended together was an AIM workshop, Fisher-Hartwig
asymptotics, Szegö expansions, and applications to statistical physics, held in March
of 2017. Harold’s talk was the highlight of the week.

It seems to me that when I look back, almost all the mathematics I know I learned
from Harold. He was a master of analysis. He could change variables, integrate by
parts, and in a flash transform something that could not be done into something
doable. He was always rigorous, but his analysis was never tedious or dull. Working
with him was just plain fun. I cherish every moment that I did and I miss him terribly.

Credits The photo in Fig. 1 is courtesy of the author, the photo in Fig. 2 is courtesy
of Wolfgang Spitzer.

Fig. 1 Harold in Romania holding my purse.
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Fig. 2 Harold, Craig Tracy and myself at the 2017 AIM workshop.



My Encounters with Harold Widom

Albrecht Böttcher

Abstract This is an essay containing personal reminiscences, including some
photos, and describing a few selected topics of joint mathematical work of the author
and Harold Widom.

Keywords Toeplitz operators · Toeplitz matrices · Wiener-Hopf operators

Let’s begin with some prehistory. In the second half of the 1970s, I was a student of
mathematics in Chemnitz, and in the second or third year I decided to go to Bernd
Silbermann. I had attended his lecture courses Analysis I to III in the first three terms
and felt that he was the right man under the guidance of whom I should continue the
advanced terms of my study. Silbermann was a student of Siegfried Prössdorf, who
left Chemnitz for Berlin in the mid of the 1970s, and when I approached Silbermann,
he was still Dr. Silbermann. Only in 1979 he was appointed full professor.

Under the influence of Prössdorf, Silbermann had entered singular integral
operators with so-called degenerate symbols. It had been known for a long time that
certain operators are Fredholm if and only if a function associated with them, the so-
called symbol, has no zeros. Degenerate symbols are those which have zeros, and in
those years it was some kind of a business to understand what in the degenerate case
happens. Prössdorf and Silbermann studied in particular projection methods for the
solution of equations with degenerate symbols. In the course of these investigations
large matrices emerge, their invertibility is one of the crucial questions, and hence
it is no surprise that Silbermann came across theorems on Toeplitz determinants, in
particular Widom’s two papers [24, 25]. As a result, Silbermann made two major
contributions to the topic [21].
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First, the assumption of Szegő’s theorem is that the symbol is sufficiently smooth,
has no zeros, and has winding number zero. Silbermann established asymptotic
formulas for the Toeplitz determinants generated by symbols of the form

a(t) = b(t)

r∏

j=1

(t − tj )
δj (t ∈ T),

where b(t) satisfies the assumptions of Szegő’s theorem, t1, . . . , tr are points on the
complex unit circle T, and δ1, . . . , δr are positive numbers. The points t1, . . . , tr are
zeros and so a(t) does not satisfy the assumptions of Szegő. I should notice that all
these zeros are of “analytic” type, which simplifies things (from the perspective of
today!). The actual challenge is symbols of the form

a(t) = b(t)

r∏

j=1

(
1 − tj

t

)γj
(t − tj )

δj (t ∈ T),

where the zeros appear in both the “analytic” and the “anti-analytic” types. The
famous Fisher-Hartwig conjecture of 1968 concerns the Toeplitz determinants
generated by symbols of the latter form where, in addition, b(t) is not assumed
to be smooth but is allowed to make jumps (even at just the points tj ).

The second major contribution of Silbermann addressed the smoothness condi-
tion needed in Szegő’s strong limit theorem. To state things in an easy case, Szegő’s
strong limit theorem holds if

∞∑

n=−∞
|n|1/2|an| < ∞,

where {an} is the sequence of the Fourier coefficients of a(t). Silbermann observed
that one can relax the requirement on one half of the coefficients if at the same time
the conditions on the other half is strengthened. For example, he proved Szegő under
the assumption that

−1∑

n=−∞
|n|α|an| +

∞∑

n=1

nβ |an| < ∞ with α > 0, β > 0, α + β ≥ 1.

In the late 1970s, Silbermann posed me the extension to block Toeplitz matrices
of the latter result as the topic of my diploma paper. He gave me a photocopy of a
paper on block Toeplitz matrices, and at this point Harold Widom stepped into my
life. The paper was Widom’s article [25]. I have kept it until now. Figure 1 shows
my well thumbed copy. What resulted was my very first publication, [12], joint
with Silbermann. One section of that paper has the title “An extension of Widom’s
arguments.”
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Fig. 1 My copy of paper [25]. I read it more than 40 years ago and have kept it since then.

In the 1980s, I embarked on several topics in Toeplitz operators and matrices.
As for Toeplitz determinants, the Fisher-Hartwig conjecture was in the focus of
my joint research with Silbermann. We read in particular with great admiration the
papers by Estelle Basor [3, 4] and Harold Widom [24] and were eventually able to
prove the Fisher-Hartwig conjecture in a basic case [13]. For more on this subject,
I refer to [6, 14] and for the continuation in the 1990s to [19] (which is essentially
Torsten Ehrhardt’s dissertation, written under the guidance of Silbermann).

It was only in 1989 that I met Harold for the first time in person. At that
time I knew many mathematicians by their name only, but things changed with
the fall of the Iron Curtain. In 1989, Israel Gohberg, Rien Kaashoek, and Erhard
Meister organized the (by now at least in our community legendary) Oberwolfach
conference “Toeplitzoperatoren, Wiener-Hopf-Probleme und deren Anwendungen.”
There I made personal acquaintance with various of my mathematical heroes,
including Israel Gohberg and, as said, Harold Widom. I received a true abundance
of unforgettable impressions from this conference, meeting Harold being one of the
highlights.

My second meeting with Harold was in 1992. I was invited to participate in
the conference “Toeplitz and Wiener-Hopf Operators in Honor of Harold Widom,”
which was dedicated to Harold on his 60th birthday and took place in Santa Cruz.
What an event! It was my very first trip across the Atlantic Ocean, the organizers
had booked a rental car for me, and I experienced the joy of power steering and
automatic transmission for the first time in my life. At the conference, I met in
person many of my other mathematical heroes, including Estelle Basor, Ronald
Douglas, and Donald Sarason. We all had lots of inspiring talks and discussions, an
amazing birthday reception, and a wonderful dinner in Harold’s house. Harold also
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Fig. 2 Break at the conference in honor of Harold Widom on his 60th birthday in Santa Cruz in
1992. On the front table from the left to the right: Lidia Luquet, Cora Sadosky, Richard Libby, I,
Israel Gohberg, Donald Sarason, Richard Rochberg, Ronald Douglas.

took me with his car on a half-day trip to Carmel Bay in the south of Santa Cruz.
Figures 2, 3, and 4 are photos taken in those days of 1992. As I had a few more
days after the conference, I made it with my rental car also to Yosemite and Lake
Tahoe. Moreover, Estelle Basor invited me to a talk at the California Polytechnic
State University in San Luis Obispo. So I enjoyed travelling on Highway 1 from
Santa Cruz to San Luis Obispo. I remember with great pleasure the warm hospitality
of Estelle and her husband Kent Morrison in their house and devouring the sunset
behind the rock in Morro Bay with them.

After the reunion of Germany all professors of eastern universities lost their posts
and had to apply anew. I remember that I took leave from Harold in Santa Cruz with
the words that on my return in Germany I will find a letter on my desk beginning
either with “We regret to inform you” or with “We are pleased to inform you”.
Fortunately the latter happened and my professional life went into stable tracks.
This enabled me to invite Harold to a visit in Germany, which he accepted in 1993.

We both liked everything connected with asymptotic eigenvalue distributions,
and a fresh conjecture in those days was one raised by Anselone and Sloan [1].
They considered the truncated Wiener-Hopf integral operator given by

(Wτ f )(x) = 2
∫ x

0
et−xf (t) dt +

∫ τ

x

ex−t f (t) dt, 0 < x < τ,



My Encounters with Harold Widom 91

Fig. 3 Harold Widom and
Estelle Basor at the birthday
reception in Santa Cruz.

on the space L2(0, τ ) and conjectured on the basis of numerical computations that
the spectrum of Wτ converges in the Hausdorff metric to the union of the circle
{λ ∈ C : |λ − 1/12| = 1/12} and the line segment [3/2 − √

2, 3/2 + √
2] as

τ → ∞. During Harold’s visit in Chemnitz in 1993, we understood that the symbol
of Wτ is a rational function, Wτ = Wτ(a) with

a(ξ) =
∫ 0

−∞
eteiξ t dt +

∫ ∞

0
2e−t eiξ t dt = 3 + iξ

1 + ξ2
,

and that hence Anselone and Sloan’s question is a particular case of the more
general problem of establishing a Wiener-Hopf analogue of the famous results by
P. Schmidt, F. Spitzer, and K. M. Day on the asymptotic eigenvalue distribution
of large Toeplitz matrices with rational symbols. We were indeed able to solve the
problem and so wrote [15]. The general result of this paper applied to the concrete
situation at hand says that a nonzero point λ ∈ C is in the limiting set of the spectra
if and only if the two zeros ξ1(λ) and ξ2(λ) in

1 − 1

λ
a(ξ) = 1 − 1

λ

3 + iξ

1 + ξ2 = (ξ − ξ1(λ))(ξ − ξ2(λ))

(ξ + i)(ξ − i)
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Fig. 4 With Harold at Point Lobos in the Carmel Bay in the south of Santa Cruz.

have equal imaginary parts. Since

ξ1/2(λ) = i

2λ
± 1

2λ

√
−4λ2 + 12λ− 1,

we obtain

Im ξ1(λ) = Im ξ2(λ) ⇐⇒ ξ1(λ) − ξ2(λ) is real

⇐⇒ (ξ1(λ) − ξ2(λ))
2 ≥ 0 ⇐⇒ −4 + 12(1/λ)− 1/λ2 =: δ ≥ 0

⇐⇒ λ = 1/(6 + √
32 − δ) or λ = 1/(6 − √

32 − δ) with δ ≥ 0.

The parameters δ ∈ [0, 32] give the two line segments

3/2 − √
2 ≤ λ ≤ 1/6 and 1/6 ≤ λ ≤ 3/2 + √

2,

while δ = 32 + γ 2 with γ ≥ 0 yields λ = 1/(6 ± iγ ), which is readily seen to be a
parametrization of the circle |λ−1/12| = 1/12, exactly as conjectured by Anselone
and Sloan.

Of course, when Harold visited me, we did not only mathematics. Some morning
Harold came into my office and proudly reported “Yesterday I was in seven churches
of Chemnitz!” And clearly, we also travelled with my car (without power steering
and with gear shift) around Saxony, in part together with my family. Figure 5 is a
remembrance of one of the short trips.
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Fig. 5 In 1993, with Harold and my two children, Eva and Igor, on the Fichtelberg in the Ore
Mountains, the highest summit in the eastern part of Germany.

In the years that followed, I met Harold on several occasions and we had of
course been in permanent email contact. In 2000, Borodin and Okounkov published
a formula that expresses Toeplitz determinants in a form that was asked for earlier
by Deift and Its. See [8] and the article [6] in this volume. Basor and Widom [7]
found a new proof of this formula, and the two papers [7, 8] landed on my desk
from the Mathematical Reviews with the request to write a combined review. When
reading them, I discovered still another way of proving the formula. I included my
proof into the review (MR1780118 and MR1780119). I also communicated it to
a few colleagues involved in business. Harold’s wonderful reply was “So you can
add yourself to the list of people who can kick themselves for not having found the
formula when they were so close.” Percy Deift wrote back that he had just finished
a joint paper with Jinho Baik and Eric Rains, [2], and asked me whether I could also
give proofs in my style for the determinant formulas found there. Fortunately, I was
able to manage this.

This was around Christmas of 2000, and I enjoyed myself with the idea to
post my proofs in the arXiv and to receive the arXiv identifier 0101001 for the
first preprint of the new millennium. Thus, in the early morning of January 1,
2001, I got into my car, drove to my university office, and submitted the preprint
(nowadays I could have done this from my computer at home). I was a little too
late: the preprint, [9], received the identifier 0101008. The winners with 0101001
were Jinqiao Duan and Bjorn Schmalfuss.



94 A. Böttcher

Jacobi’s formula says that if K is a trace class operator on �2(Z+) such that
I −K is invertible, Pn denotes the canonical projection onto the first n coordinates,
and Qn = I − Pn, then

detPn(I − K)−1Pn = det(I − QnKQn)

det(I − K)

for all n ≥ 1. It became clear quite quickly that this formula is at the heart of the
Borodin-Okounkov formula. This is implicitly in [7] and explicitly in [9]. More
about this can be found in the article [6] in this volume. A question of those
days was whether one can also derive other results on Toeplitz determinants from
Jacobi’s formula, for example, results in the case where the underlying Toeplitz
operator has nonzero Fredholm index. Opinions differed. In 2006, Harold and I
felt we should save Jacobi and wrote our paper [17]. Its intention was to show
that Jacobi’s theorem on the minors of the inverse matrix remains one of the most
comfortable tools for tackling the matter. We repeated my proof of the Borodin-
Okounkov formula and thus of the strong Szegő limit theorem that is based on
Jacobi’s theorem. We then used Jacobi’s theorem to derive exact and asymptotic
formulas for Toeplitz determinants generated by functions with nonzero winding
number. The latter derivation was new and completely elementary.

In 2002, I participated in the MSRI workshop on random matrix theory in
Berkeley which was dedicated to Harold on his 70th birthday. As in 1992, I
was overwhelmed by meeting in person so many mathematicians I had until that
time known by their names only, for example, Alexei Borodin, Persi Diaconis,
Freeman Dyson, Alice Guionnet, Kurt Johansson, Andrei Okounkov, Craig Tracy
(in alphabetical order). I myself have always resisted the temptation to try my hands
in random matrices, and in the course of this workshop I realized that indeed I had
never reached the level of all these mathematical giants and that hence my resistance
was very reasonable. So I left Berkeley with a good feeling.

Harold had multifarious mathematical interests, but Toeplitz determinants have
never left him. Some day in 2003, I received a manuscript by him which contained
an elementary proof of the pure Fisher-Hartwig determinant. This is the determinant
of the n × n Toeplitz matrix

Tn(a) = (aj−k)
n
j,k=1

generated by the Fourier coefficients of the function

a(eiθ ) = (1 − e−iθ )γ (1 − eiθ )δ.

Note that the kth Fourier coefficient of a equals

(−1)k
Γ (γ + δ + 1)

Γ (γ + 1 + k)Γ (δ + 1 − k)
(k ∈ Z).
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The formula for the determinant is

detTn(a) = G(n+ 1)
G(γ + δ + n + 1)

G(γ + δ + 1)

G(γ + 1)

G(γ + n + 1)

G(δ + 1)

G(δ + n+ 1)
,

where G(z) is the Barnes function. In our 1985 paper [13], Silbermann and I
derived this formula from a factorization of the Toeplitz matrix Tn(a) due to Roland
Duduchava and Steffen Roch. Harold’s proof was analogous to the usual derivation
of the Cauchy determinant, and its philosophy was that the most elegant way to
determine a rational function is to find its zeros and poles. It was self-contained and
occupied nearly two pages. I wrote him that I have a proof of less than one page
that is based on mere elementary row and column operations. I don’t remember the
exact wording of Harold’s reply, but it was something like “Now that you say this,
I remember that I also had such a proof, even before Silbermann and you. I have
simply forgotten it. However, as I have never published that proof, this does not
count.” He invited me to record our two proofs in a short joint paper, and this led to
the 4-pager [16]. I hope the reader will also enjoy [22].

Another of my mathematical adventures connected with Harold is described in
my contribution to [5]. Our paper [18] is a continuation of the story told in [5]. Let
α be a natural number and consider the eigenvalue problem

(−1)αu(α)(x) = λu(x) for x ∈ [0, 1],
u(0) = u′(0) = . . . = u(α−1)(0) = 0, u(1) = u′(1) = . . . = u(α−1)(1) = 0.

This problem has countably many eigenvalues, which are all positive and converge
to infinity. Let λmin,α denote the smallest of them. In an earlier paper we proved that

λmin,α = √
8πα

(
4α

e

)2α (
1 + O

(
1√
α

))
as α → ∞.

For α = 3, the minimal eigenvalue λmin,3 is exactly equal to (2π)6. We wanted
to understand whether this coincidence is an accident or not. Paper [18] gives an
answer. In the case α = 3, it is convenient to start indexing the eigenvalues with
n = 2, that is, to denote the eigenvalues by

λ2 (= λmin,3 ), λ3, λ4, . . . .

We proved that λn = (nπ)6 if n is even and that λn = (nπ + δn)
6 if n is odd, where

the δn’s are nonzero numbers satisfying

δn ∼ 8(−1)[n/2]+1e−(π
√

3/2)n as n → ∞;

here [n/2] is the integral part of n/2. Yes, Harold loved asymptotics! Let us write
λn = μ6

n. Mark Embree computed the first five μn up to ten correct digits after the
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comma. The following list shows the values of the first five μn and of the first five
Δn := 8(−1)[n/2]+1e−(π

√
3/2)n.

μ3 = 9.4270555708 = 3π + 0.0022776101 Δ3 = +0.0022821082

μ5 = 15.7079533785 = 5π − 0.0000098894 Δ5 = −0.0000098893

μ7 = 21.9911486179 = 7π + 0.0000000428 Δ7 = +0.0000000428

μ9 = 28.2743338821 = 9π − 0.0000000002 Δ9 = −0.0000000002

μ11 = 34.5575191894 = 11π + 0.0000000000 Δ11 = +0.0000000000.

I met Harold for the last time in Edinburgh in 2007. However, our correspondence
remained alive over the years. Let me finish with the last joint mathematical
adventure with him.

In 2008, I received a (beautifully handwritten) letter from Peter Dörfler with the
question whether I could help with the large n behavior of the maximal singular
value (= spectral norm) of the (n + 1)× (n+ 1) triangular Toeplitz matrices

Tn = (−1)ν

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
( 0
ν−1

) ( 1
ν−1

)
. . .

(
n−1
ν−1

)

0
( 0
ν−1

)
. . .

(
n−2
ν−1

)

. . .
...

( 0
ν−1

)

0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

composed of binomial coefficients with an integer ν ≥ 1. The matrix Tn is
the representation of the operator taking the νth derivative, f �→ Dνf , in the
orthonormal basis of Laguerre polynomials in the space Pn of algebraic polynomials
of degree at most n with the Laguerre norm given by ‖f ‖2 = ∫∞

0 |f (x)|2e−x dx.
Thus, the norm ‖Tn‖ is just the best constant for which the so-called Markov-type
inequality ‖Dνf ‖ ≤ M‖f ‖ holds for all f ∈ Pn.

This question reminded me of an ingenious trick used in Harold’s 1966 paper
[23] (and employed independently also by Lawrence Shampine in [20]). Given an
n × n matrix An = (ajk)

n−1
j,k=0, denote by Hn the integral operator on L2(0, 1) with

the piecewise constant kernel hn(x, y) = a[nx],[ny], where [·] stands for the integral
part. Widom and Shampine proved that ‖An‖ = n‖Hn‖. Thus, instead with having
the matrices An on the sequence {Cn} of increasing spaces, we so can work with
a sequence {Hn} of operators in one and the same space L2(0, 1). The goal is to
show that after appropriate scaling the operators Hn converge in the operator norm
to some nonzero operator H , that is, n−μHn → H in norm. This would imply that
n−μ‖Hn‖ → ‖H‖ and hence ‖An‖ ∼ ‖H‖nμ+1.

To compute ‖Tn‖, we may ignore the factor (−1)ν and the diagonal of zeros. In
the resulting n× n matrix, the j, k entry is equal to

(
k−j
ν−1

)
for j < k. Thus, if x < y
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then the kernel of the scaled integral operator n−(ν−1)Hn is

1

nν−1 a[nx],[ny] = 1

nν−1

([ny] − [nx]
ν − 1

)

= 1

(ν − 1)!
[ny] − [nx]

n

[ny] − [nx] − 1

n
· · · [ny] − [nx] − ν + 2

n
,

and this converges uniformly to (y − x)ν−1/(ν − 1)! as n → ∞. In the end we
obtain the asymptotics ‖Tn‖ = ‖Lν‖nν(1 + o(1)) where Lν is the Volterra integral
operator on L2(0, 1) given by

(Lνf )(x) = 1

(ν − 1)!
∫ 1

x

(y − x)ν−1f (y) dy.

Clearly, Lν = Lν
1 (= νth power of L1) and ‖Lν‖ = ‖L∗

ν‖ with

(L∗
νf )(x) = 1

(ν − 1)!
∫ x

0
(x − y)ν−1f (y) dy.

Note that it is well-known that ‖L1‖ = 2/π . I refer to paper [10] for more on
the subject and in particular for more about pieces of the amazing story around the
norms of the Volterra operators Lν .

After 2012, Holger Langenau was a PhD student (a Doktorand in German) of
mine. He worked on best constants in Markov-type inequalities between spaces
with different weights. In a large range of more general cases, things are not as
simple as in the preceding paragraph, but we still encounter constants involving the
operator norm of certain Volterra integral operators and the proofs can be based
on the happy circumstance that these operators are Hilbert-Schmidt. The conjecture
was and still is that in the remaining cases the same operators occur. A proof is
outstanding. One (but not the only) step towards a proof is to show that certain
operators are compact. Holger Langenau and I were able to prove the compactness
of these operators, even their membership in certain Schatten classes, but for one of
them the proof was extremely intricate and occupied many pages. We submitted the
paper to Birkhäuser’s OT volume containing the proceedings of the IWOTA 2014 in
Amsterdam. As usual with the IWOTA proceedings, the submissions were strongly
refereed. The report we received on our submission was positive but also contained
an elegant argument that reduced the many pages we needed for the compactness
of the one operator to about a single page. We asked the handling editor to ask the
referee whether he or she would be willing to release anonymity and to join us as
co-author. The referee agreed to the proposal and—you guess it—the referee was
none other than Harold Widom. The 2016 paper [11] was the result of our joint
effort. Holger Langenau was a great admirer of Harold Widom and was therefore
full of joy and pride for having made it to a joint publication with him.
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I am really glad and thankful for having had Harold as a partner and friend for
decades. He is in the top of the many colleagues who have strongly influenced my
interests and my way of doing mathematics. Now he has left us, but as the story
with Holger Langenau reveals, I am sure that his name and achievements will live
on and inspire future generations.

Credits The photos are courtesy of the author.
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Memories of Harold Widom

Richard A. Libby

Abstract This tribute shares personal memories of Harold Widom during the
author’s years in and after graduate school. These memories reflect on Harold’s
skills as a teacher and mathematician, but also on how his insights proved valuable
in applications of mathematics in the author’s professional work.

Keywords Harold Widom · UC Santa Cruz · Toeplitz operator

To begin a memorial tribute it is best to begin at the beginning. An invisible hand in
this story is that of my grandfather, who gave me a large dose of academic career
advice shortly before he passed away. He asserted that it was a mistake to get one’s
PhD from the same university as one’s undergraduate degree. I was in my first
year of a PhD program at UC San Diego, which had conferred my BA degree in
mathematics the previous June. My father’s father was a retired statistics professor
from USC who had climbed his own career ladder into a successful administrative
role and therefore probably knew the value of his advice, which I took, along with an
MA in mathematics soon thereafter. (Among Harold’s eight students Estelle Basor
is a notable counterexample to my grandfather’s advice.)

UC Santa Cruz as the choice for my eventual PhD came down to two ingredients:
first, a known tenure dispute at the time in the Berkeley math department seemed too
similar to my grandfather’s stories of academic politics and so the second ingredient
became a side trip to the UC Santa Cruz admissions office, where I received a very
impressive brochure covering the accomplishments of its own faculty, including
Harold’s by then successful research in Toeplitz and Wiener-Hopf operators. I was
duly admitted in the Fall of 1984.

My first interaction with Harold was in his core graduate analysis course using his
lecture “Notes on Measure and Integration” as written up by David Drasin and Tony
Tromba. As I write this memorial article I thumb through the pages of these notes
conveniently bound with the back of each page left blank for the copious scribbled
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notes of additional course materials, often proofs of results using techniques of
obvious general utility. Harold’s lecturing style was quick and precise, interspersed
with occasional comments more about style or strategy of proof than the specific
content of the theorem at hand. I later took Harold’s Functional Analysis course,
which increased the quantity and latitude of good ideas worth copying onto the
blank backs of pages in the bound lecture notes as well as the soul of wit evidenced
in the brevity of Harold’s lecturing style. In this course Harold would entertain
speculative disruptions from some of the students as to the importance of various
mathematicians or the sophistication of their techniques, but if a student asserted
anything false in the way of mathematical content, Harold would pounce and rebut
with solid and efficient reasoning. Out of respect for Harold I generally kept quiet
during these side discussions except for one time when Harold wondered out loud,
while lecturing on Cesàro summation and the Fejér kernel, where the accent went
in spelling Lipót Fejér’s last name. I offered a response based on my knowledge of
French pronunciation while foolishly assuming Fejér was French and that we were
pronouncing it as such. Harold gave me a funny look and I took it as a stroke of good
luck on such a small matter, to only jump into these things in the future when I had
as solid an understanding as Harold evidenced each day, and when I was positive I
would be wasting no one’s time in doing so. With this course I decided I would be
even more foolish to not ask Harold to be my thesis advisor, given the quality of his
work and what seemed my own mathematical predisposition to functional analysis
and operator theory.

In all the courses and seminars where Harold either lectured or took part
he always commanded a vast breadth of knowledge and could ask penetrating
questions, the value of which I would sometimes only discover much later in life.
When lecturing he would occasionally hit a snag of some kind, saying, “Hold on
. . . hold on!” as he studied the blackboard intently before delivering the missing
detail or shifting direction slightly in the argument at hand. I must admit I acquired
this technique and have discovered its principal value is in preserving the audience’s
attention across the pause in the stream of ideas, the momentum of which is a truly
valuable commodity in the hands of any lecturer. I have made good use of another
quote of Harold’s showing his appreciation for self-referential paradox: “One thinks
about mathematics to figure out why one does not need to think about mathematics.”
On another occasion in one seminar the presenter made use of the heat kernel,
prompting Harold to ask a pair of rhetorical questions about the heat equation: was
it not true the equation presumes information travels infinitely far in an infinitesimal
amount of time? How would we modify it knowing nothing travels faster than the
speed of light? Later in life I borrowed Harold’s line of questioning for use against
a different parabolic PDE used in finance, the Black-Scholes equation, which since
its discovery has led to a number of financial losses for those who think of it as an
exact answer rather than as an approximation.

One-on-one discussions with Harold during my later years in graduate school
were a good way to polish one’s argumentation style. The department had at the
time the number theorist Sol Friedberg who introduced a few of us to the Circle
Problem: how many integer lattice points are found inside a circle of radius R
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centered at the origin? I poked at it a bit and came up with the estimate πR2 with an
errorO(R), basically duplicating the result Gauss found back in the early nineteenth
century by putting the lattice points inside unit squares and then bounding the area
above by a larger circle and bounding below by another, smaller one. The problem
is of interest in part because the actual error seems to be quite smaller, perhaps
o(R1/2+ε), an open problem. One day Harold brought up the Circle Problem on
his own and asked me what the estimate should be. I said, “πR2” and Harold
immediately asked, “Why?” Now, Gauss’ (and my) methods are true, but rather
dull. Harold appeared more interested in why the intuition should be correct, so I
gave him a different proof. I swapped the circle of radius R for one of unit radius
and made the lattice points take integer values divided by R and sit within squares
having side length 1/R. I said, “Now, organize those little squares into columns
and you have a picture you could show to undergraduate students demonstrating
Riemann sums. The estimate holds because those little squares each have area 1/R2

and because, as we all know, Riemann integration works!” Harold said, “Right!”
The Circle Problem led to my learning of Harold’s deep suspicion of all results

computer generated. The Problem’s conjectured error term was easily supported
by computer evidence obtained in the department’s computer lab, but Harold had no
interest in seeing it. He did, however, ask me to calculate finite Toeplitz determinants
for a symbol of interest to him. When I showed him the result, he was clearly
pleased but absolutely did not want any more computer time spent on it. Around this
time Harold received a batch of computer generated plots of eigenvalues for finite
Toeplitz symbols related to the Fisher-Hartwig conjecture. He showed me one that
was consistent with the conjecture and when I showed enthusiasm for the result he
immediately showed me a second one that was not consistent. I knew enough about
“machine arithmetic” to understand that potential rounding errors in the calculations
showed the limitations of this kind of research.

Outside of the lectures, seminars and my one-on-one discussions with Harold of
a mathematical nature, I had the opportunity to see Harold as Department Chair for
several years. I succeeded another graduate student who, having taken the PhD,
was no longer the student representative at faculty meetings and, with no other
volunteers stepping forward, I took over the role. I found myself occasionally caught
between a student’s complaint about faculty decisions and the faculty who made
them. I learned quickly how to represent a student without implying I was taking
sides and found Harold was quite fluent in this valuable skill. Harold had a very
precise sensibility about the importance of rules of order in meetings and would
never tolerate the breaking of rules around confidentiality of certain information
and similar items. With Harold running them, I found myself entering and exiting
ongoing meetings based on what was about to be discussed.

It was during this time that the department received one of its periodic visits from
the accreditation committee, who asked to interview a graduate student as part of the
process. I found myself on a team of four students who spoke with the committee.
Later on, Harold passed me a copy of the draft accreditation report that covered
many topics and gave both compliments and criticisms. The report also contained a
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somewhat withering comment, “The graduate students seem to be a happy lot.” My
sense is that we were simply charmed by the attention from a distinguished group of
outside professors. Along with Harold’s occasional comments on how one conducts
one’s research with the goal of attaining tenure, I found the report’s materials as
efficient and precise an academic career guide as Harold’s coaching and teaching of
mathematics.

It was also during this time that I fell in with a number of musicians and theater
people, my amateur talents as a pianist having found a bit of a home among
them. During a 1987 summer stock production of “Tomfoolery,” a London West
End musical revue based on the comedy songs of Tom Lehrer, Harold took in a
performance and gave me a great deal of encouragement afterwards. As it happened
Tom Lehrer appeared on campus each spring to teach a theater arts course and a
liberal arts introductory math course. Tom called the latter course “Math for Ribbon
Clerks” and for one term I was his teaching assistant. In retrospect I appreciate
Harold’s and the department’s tolerance for my side excursions into music, which
preserved some of my sanity as the pressure to finish the PhD within a reasonable
time naturally grew more urgent.

Graduate school is likely impossible without some form of setback. In my case
my first attempt at an oral candidacy exam went awry over a rules challenge.
A major theme of the 1980s was the cross fertilization of different areas of
mathematics and I got the idea I should reflect this trend strategically by doing
a candidacy exam on the Atiyah-Singer Index Theorem, an idea I succeeded
in convincing a committee to undertake. Before the exam one professor bowed
out and the replacement immediately objected on the grounds that the exam is
supposed to be about a field of mathematics, not a theorem. As the committee
chair Harold pointed out that the exam covered two fields, analysis and topology,
but could not convince the new committee member to change his mind. After
a few minutes of this impasse I could see in Harold’s eyes an idea had formed
and he quickly and quietly brought about agreement we would cancel the exam.
Shortly afterwards Harold shared his idea, that instead of the theorem I could do
an exam on pseudodifferential operators and not only satisfy the rule but also cut
the material needed to demonstrate mastery exactly in half. Unfortunately, Harold
also mentioned he would soon be taking a year’s sabbatical, so instead of taking his
suggestion, and in the interest of time, I reformed the committee on the more general
topic of partial differential equations. In retrospect this setback was very fortunate
for my later career in banking when doing battle with abuses of the Black-Scholes
equation. I take the true lesson learned from the experience was that navigating
graduate school should have been more tactical and less strategic.

In comparing stories with Harold’s other PhD students I have since discovered I
was not the only one to tackle one thesis problem before switching to another. My
first choice was to derive a Szegő theorem for spherical harmonics, a task that soon
ended in a sea of Clebsch-Gordan coefficients having no discernible pattern. At this
point the switch to a special case of the Fisher-Hartwig conjecture seemed a good
choice given that I had an inkling as to how to do it. In writing this memorial I have
Harold’s 1973 paper “Toeplitz Determinants with Singular Generating Functions”
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next to me as a reminder of which techniques were Harold’s and where mine
began. Fewer dissertation topics could have been a better fit. Most mathematicians
learn of Cramer’s rule in either high school or in their early college years and
Jacobi’s generalization to matrix minors therefore makes for quick study. The Euler-
Maclaurin summation formula is also a quickly acquired skill by anyone who
knows integration by parts. As it happens the coordination of these techniques with
Harold’s paper resulted in calculations that grew horrendously more complicated as
the size of the matrix minor grew and the dissertation stopped with the two-by-two
case of the matrix minor, extending the measured gap of a single discontinuity only
from less than 1/2 in absolute value as found in Harold’s paper, to less than 5/2,
enough for a dissertation but nothing to shout from the rooftop of the mathematics
department.

Acquiring a PhD in December 1990 rather than in June of any year meant my
degree was in a sense out of season and I took a series of temporary jobs to pay
bills while looking for a way to improve my dissertation result and look for more
permanent work. Remembering Harold’s words about understanding the structure
of a result as well as the details, I could hypothesize how the asymptotic formulas in
my work might extend themselves. Assuming this hypothesis I carried out a three-
by-three case of the matrix minor without resorting to the detailed calculations
of my thesis and got the result I was hoping for. Writing a paper extending the
measured gap of the discontinuity to less than 7/2 in absolute value seemed an
abuse of the “publish or perish” strategy graduate students learn about at an early
stage of their career. The temporary jobs continued their iterations while I sought to
apply Harold’s advice to a more complete solution to this problem. At some point
I realized that no matter how awful the calculations were, the choices as to what
constituted each next step were only three in number, and each of the three added
a term to the asymptotic expansion consistent with my hypothesis. By induction
I therefore had a general theorem at hand and could apply it to the n-by-n case
of the matrix minor. One brute force calculation remained evaluating an n-by-n
determinant composed of entries having the demonstrated expansion and the result
that came out fit like a jigsaw piece into the earlier results. The limitation on the size
of the discontinuous gap was now removed.1

I shared these results with Harold and had the good fortune to be doing this work
ahead of the conference organized in 1992 in honor of his 60th birthday. Harold’s
feedback was that he was convinced I was right, but if I was going to present these
results at the conference, convincing the audience was going to be my job. By this
time I was working in a bank solving operating errors and they consented to my
taking time off to attend the conference and present these final results.

I saw Harold quite a few times in the years immediately following the PhD. His
advisor Irving Kaplansky was still the head of MSRI and I attended a dinner with

1 The expansion has a pattern that depends on the size of the discontinuous gap and the brute force
calculation will in general not work in the case of two or more discontinuities with different sized
gaps.
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him and Harold in Berkeley where I could see how they shared the same spark for
mathematical discovery. It was around this time my work in banking resulted in
being offered a somewhat senior role in quantitative risk analysis that I could not
turn down. My search for an academic role had coincided with the collapse of the
Soviet Union and mathematics jobs were suddenly and then stubbornly hard to find.
I saw less of Harold during my later banking years but the almost unreasonable
effectiveness of all that he taught me was put to good use nonetheless.

Three ingredients in Harold’s work that have had significant impact on my work
in quantitative risk analysis are, first, linear operator theory, second, the use of
projection operators and, third, the use of asymptotic methods where advantageous
or appropriate. A portfolio of financial assets changes value over time in a process
modeled approximately in terms of relative Brownian motion of incremental asset
returns. A covariance matrix of asset return volatilities measures the uncertainty
of the portfolio’s value in the future. That the uncertainty is proportional to the
square root of time under the Brownian motion model can be easily derived using
multiple convolutions of the probability density with itself when time is considered
in discrete intervals. The risk profile of a portfolio has an almost natural expression
in terms of linear operators applied first to a Dirac distribution at time zero, the
time at which the portfolio value is known in compete certainty, and then later to
successive iterations. Projection operators appear in the analysis of optionality. We
cut off any probability density via a projection operator in any part of the domain
which results in the option expiring without value and these truncated probability
densities may be included in the iterated convolutions already mentioned.

The value of knowing Harold’s work in asymptotic analysis had a somewhat
late appearance in my career, in the determining of the regulatory capital a bank
needs to hold against its own operating errors, a capital requirement all banks have
faced since the mid 2000s.2 Quantitative finance has a certain love for Monte Carlo
analysis, which works well modeling assets assumed to have reasonably stochastic
returns, but which works poorly when modeling extreme events like tsunamis,
earthquakes and the occasional upheaval in financial markets. I had made extensive
use of Monte Carlo techniques in the first decade and a half of my banking career,
but it was clearly a poor fit for modeling extreme events like large potential operating
errors. Econometric modeling of the bank’s operating error history suggested a
“power law” distribution, such as a Pareto distribution having finite mean but
infinite variance. Modeling the individual operational errors was straightforward but
regulations required this analysis be done for cumulative errors over a year. With
some digging a result by the statistician William Feller identified an asymptotic
formula for the n-fold convolution of Pareto distributions, where n would be taken
as the mean number of operating errors in a year. An analysis was now possible
in the form of a spreadsheet instead of a massive computing exercise requiring
technology consulting at considerable expense. Acquiring a PhD under Harold once
again showed its value.

2 The so-called “Basel Capital Accord,” see www.bis.org for its history.
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While the timing of my PhD coincided rather badly with a downturn in the
academic job market I was offered not terribly long ago a temporary adjunct position
substituting for a friend taking a yearlong sabbatical, teaching a masters level course
in econometrics to two different batches of financial analysts in training. Being
Harold’s student gave me a model for how to lecture, how to hold the students’
attention and how to scale the course content to the needs and abilities of my
students. The only improvement possible was technological, with more slides and
less chalk dust.

As I approach a traditional retirement age I have stepped up my involvement
in both my undergraduate and graduate alumni associations and have targeted my
support to things students need, in the spirit of the quality Harold consistently
delivered when I was a student. In the world of banking, fewer financial meltdowns
would have been the result of better technical training among risk managers, who as
a rule know a bit of statistics and how to run an operations department, but not much
on how often stochastic methods do not picture reality all that well. If Harold had
opted for my line of work rather than academic research I have no doubt he would
have been the terror of foolish optimists and practitioners of financial hubris. In the
late 2010s I would occasionally visit the Santa Cruz campus on projects related to
support for undergraduate education but Harold’s health matters prevented spending
time together. We did exchange emails on a number of things, including our joint
admiration for the ragtime music of William Bolcom.

Harold lived a long and full life that nonetheless was cut short too early. He will
be missed, but, more importantly, he will be remembered for the richness he brought
to his students, to his family and to the mathematical community at large.



Personal Reflection on Harold Widom

Bin Shao

Abstract This essay contains a collection of memories of Harold Widom from
the author’s perspective as his Ph.D. student at UCSC and the years beyond. It
shares a sketch of stories from a personal background and friendship, and covers
a memorable view of Harold’s life and work over a period of 25 year. Harold simply
radiated boundless enthusiasm and respect for mathematics that has influenced
many of his students and colleagues

Keywords Harold Widom · UC Santa Cruz · Toeplitz matrix · Random matrix ·
Wiener-Hopf operator · Pseudodifferential operator

1 The Unforgettable 1992

It was in Santa Cruz, in the mid-September of 1992, that I became a student of
Harold Widom. It was also the time and place that a special conference on Toeplitz
and Wiener-Hopf operators was held in celebration of his 60th birthday. Many active
and prominent mathematicians worldwide were present, and the research presenters
were full of praise for Harold’s contributions to the mathematical community.

Harold had kindly convinced me to attend this conference as it could be beneficial
to developing my thesis work. To show my support I gladly volunteered to arrange
for the conference refreshments. Throughout the 3-day conference, it was an eye-
opening experience to hear the level of stimulating conversations by a host of
world class mathematicians. Indeed, like all participants, I felt excitement from the
celebration of Harold’s mathematical accomplishments. There were several very
famous figures in the field of operator theory attending this meeting. During the
coffee breaks, Harold introduced me to his dissertation advisor, Irving Kaplansky,—
“your (academic) grandpa”, as he kindly put it. Irving was the director of MSRI
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(Berkeley) at the time. He proudly spoke about the career of Harold’s early research
since the “Stone Age” at the University of Chicago.

2 UC Santa Cruz (1992–1994)

About a year prior to the 1992 Conference and after coming to Santa Cruz, I already
knew that Harold was a world-class mathematician. He was also an erudite and
cultivated person, who liked to read, listen to and play music and hike. Harold’s
musical talent was well known and I knew he had performed in chamber and music
groups and orchestras at Cornell and UC Santa Cruz. A brilliant man of mathematics
always attracts students’ interest in the subject. Harold was one of a few professors
for whom I had great admiration since the beginning of my student years at UCSC.

At the time when I took a course on functional analysis taught by Harold, I was
deeply impressed by his style of lecturing, which frequently gave a vivid account
of making a seemingly difficult concept abundantly clear with minimal wording.
Written notes on less than a quarter page is all he needed to expand upon throughout
the lecture time. His crafted board-work and articulate lectures have always been
inspiring and influential on my academic career.

As a student, I benefitted from the extraordinary learning experience by Harold’s
art of lecturing and from his original approachability in mathematics teaching. His
penetrating capacity in research and his ability to cast problems in a different light
have always been a source of inspiration in my research activity. His insightful and
constructive suggestions were invaluable and instrumental for the completion of my
thesis work and stirred up my passion for mathematical research.

Despite his tight daily work schedule, Harold actively kept a close interaction
with his students for their dissertation progress in all aspects. He used his coffee
break to share ideas of doing mathematics. My favorite story was once asking for
the motivation of his special proof for the connectedness of the spectra of Toeplitz
operators, which he patiently gave me in bits of crucial ideas using the chalkboard
in my compartment next to the coffee room across his office. That is certainly one
of the most memorable and pleasant moments of mine at UCSC.

Going over the history of email correspondence with Harold, I recall that he made
sure that I was financially secure during my thesis years. On several occasions,
he wanted to know whether I had plans for improving myself over the summer.
When he learned that I was attempting to study several topics on pseudo-differential
operators and read various research papers to get ideas for my thesis, Harold
managed to find some funds through a NSF grant to support my research in progress.
That was a great help and lasted three summers, for which I have been eternally
grateful. Another incidence is that he asked me to send a copy of my thesis to Persi
Diaconis at Stanford and I did accordingly. He was so apologetic by not making it
clear to let the department handle this outgoing mail, after he found out that I did
it with a certified mail on my own. He insisted on covering the postage as he was
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trying to find out how much I paid for it. Harold always treated his students with
generosity and thoughtfulness.

In the summer 1993 I actually got some results for my thesis using Harold’s
technique of localization for the asymptotics of trace class operators. Upon reading
it, he confirmed that my result was correct and recognized my effort of making
progress. I could not be more excited after receiving his encouraging comments. Of
course having his assurance was such great news and he certainly sensed my joy.
However, he kindly encouraged me to build confidence by performing a self-check
for work in the future. Indeed, over the years I was always very appreciative of his
encouragement.

3 Friendship

Harold and I remained in contact after completing my PhD under his supervision.
He suggested several problems that I could work on, sending me a number of
research papers. I felt very privileged to be treated as his colleague by his humble
way of communicating through emails and postal mails. He was always precise and
effective when it came to scholarly communications, which I deeply appreciated. In
my heart he is always my beloved professor and a faithful friend. He encouraged me
to attend research conferences while sharing his conference experience in Eastern
Europe. For example, when he learned that I had trepidation to attend an invited
conference in Bulgaria in 1999, he convinced me not to miss the opportunity. I
ended up going there without regrets by the support of Santa Clara University and
the work I presented also resulted in publication.

In the year of 2002, he was very pleased to see my presence, together with a group
of prominent mathematicians as well as Harold’s family members, celebrating his
70th birthday at UC Berkeley. I told him that I just attended ICM, Beijing, and
presented a paper (accepted by IEOT) on the singular values of variable-coefficient
Toeplitz matrices, extending one of his results in the Toeplitz case. I also told
him that I attended the plenary lecture by Craig A. Tracy, who had been long
collaborating with him, on their joint work on distribution functions for the largest
eigenvalues of random matrices. This stimulated a memorable conversation which
we enjoyed very much. During the celebration of Harold’s 70th birthday, I got the
message that everyone continued to be amazed and dazzled by the fact that Harold
was still producing elegant theorems. The prediction was that he would continue
to be doing so for at least another decade. This became undoubtedly true as can
be seen from the records of his achievements in later years. I recall sending him a
warm note of congratulation and a good wishes on his 80th birthday in 2012, which
he incidentally spent at a conference at Banff, and he, of course, was very happy to
hear from me in reply.
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Celebration of Harold Widom’s 70’s birthday with his family, UC Berkeley.

4 Closing

Harold Widom could look back over the achievements of the past seven decades
and find satisfaction in the acknowledged superiority of his methods in teaching and
the extraordinary ability as a world-class research mathematician. I find myself very
fortunate and feel honored to be his student. His quickness of casting a mathematical
problem in a different light has been illuminating and inspiring. As one of the
great heroes of the mathematical frontiers, Harold rightfully belongs to the world’s
greatest contributors to the progress in mathematics. Mathematics has lost one of
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its most articulate, original, and insightful minds. His kind, “Widom style”, does
not come along often and will be dearly missed. His departure is a great loss for
the mathematics community and his footprints will forever be seen in the world of
mathematics.

Credits The two pictures of Harold Widom in 2002 are the courtesy of the author.
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Loops in SU(2) and Factorization, II

Estelle Basor and Doug Pickrell

Abstract In the prequel to this paper, we proved that for a SU(2,C) valued loop
having the critical degree of smoothness (one half of a derivative in the L2 Sobolev
sense), the following statements are equivalent: (1) the Toeplitz and shifted Toeplitz
operators associated to the loop are invertible, (2) the loop has a unique triangular
factorization, and (3) the loop has a unique root subgroup factorization. These
equivalences hinge on factorization formulas for determinants of Toeplitz operators.
The main point of this sequel is to discuss generalizations to measurable loops, in
particular loops of vanishing mean oscillation. The VMO generalization hinges on
an operator-theoretic factorization for Toeplitz operators, in lieu of factorization for
determinants.

Keywords Toeplitz · Hankel · Vanishing mean oscillation · Factorization
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32C36, 47A68, 47B35)

1 Introduction

This paper concerns the Polish topological groups of maps W 1/2(S1, SU(2)),
VMO(S1, SU(2)), and Meas(S1, SU(2)) (equivalence classes of SU(2,C) valued
loops which have one half of a derivative in the L2 Sobolev sense, are of
vanishing mean oscillation, and are Lebesgue measurable, respectively; the basic
background—such as the Polish topologies of these groups—is recalled in Sect. 2).
In an attempt to motivate the subject matter, we first consider a broader perspective.
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Suppose that K is a compact Lie group. The equatorial inclusions

S0 ⊂ S1 ⊂ S2 ⊂ S3 ⊂ ... (1)

induce (down arrow) inclusions and (left to right arrow) trace homomorphisms of
groups

... → C∞(S3,K) → C∞(S2,K) → C∞(S1,K) → C∞(S0,K)

↓ ↓ ↓ ↓
... → W 3/2(S3,K) → W 1(S2,K) → W 1/2(S1,K)

↓ ↓ ↓ ↓
... → VMO(S3,K) → VMO(S2,K) → VMO(S1,K)

↓ ↓ ↓ ↓
... Meas(S3,K) Meas(S2,K) Meas(S1,K)

. (2)

The groups of smooth maps are Frechet Lie groups (see Sect. 3.2 of [10]), hence
it is known what they look like locally, and their global topology can be analyzed
using conventional methods of algebraic topology.

For the groups Wd/2(Sd,K) ⊂ VMO(Sd ,K) ⊂ Meas(Sd ,K), generic group
elements are not continuous mappings (Recall that s = d/2 is the critical L2

exponent: the Sobolev embedding Ws,L2
(Sd) → C0(Sd) holds for s > d/2 and

marginally fails for s = d/2). The usual approach to understanding the local struc-
ture of continuous mapping groups is to fix a proper open coordinate neighborhood
of 1 ∈ K (homeomorphic to R

n, say) and consider the set of maps with image
in this neighborhood. This fails in our context because generic group elements in
this set are locally unbounded, and hence this set is not an open neighborhood of
1 ∈ Wd/2(Sd ,K) (or VMO, or Meas). For similar reasons conventional methods
of algebraic topology do not apply to understand the global topology. This is
problematic, because it is important to understand the local and global topology
of these (Polish) mapping groups; see [4], [5], [3], and references, for foundational
work in this direction and further motivation. The simplest hypothesis—this is pure
speculation—is that for all d ≥ 1, Wd/2(Sd ,K) and VMO(Sd,K) are topological
manifolds (they are definitely not smooth Lie groups as Polish topological groups),
and the inclusions

C∞(Sd ,K) → Wd/2(Sd,K) → VMO(Sd,K) (3)

are homotopy equivalences. This is exemplified by the existence of trace maps for
VMO (see [5], and note we are considering an equatorial trace) and the nonexistence
of trace maps for measurable maps in the above diagram. More directly relevant to
this paper, in the elemental case d = 1, the global topology for the smooth loop
space is intimately related to the map

C∞(S1,K) → Fred(H+) : g → A(g) (4)
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where A(g) is the Toeplitz operator with symbol g (see Chap. 6 of [10]); the point is
that VMO(S1,K) is the natural domain (see Proposition 1 below for a more precise
statement).

Remark 1 Meas(Sd ,K) is an outlier in this topological digression. Since its
definition depends only upon the Lebesgue measure class of Sd , it is isomorphic
to Meas([0, 1],K), and it is contractible.

In this paper d = 1, unless noted otherwise. In this case the claim about the
homotopy equivalences basically follows from the Grassmannian model approach
in Chap. 8 of [10] (with modifications). We are mainly interested in technology
which is useful in understanding the local structure. We will focus on K = SU(2)
(see [9] for the general Lie theoretic framework). In the prequel to this paper, we
showed that for g ∈ W 1/2(S1, SU(2)), the following statements are equivalent: (1)
the Toeplitz and shifted Toeplitz operators associated to g are invertible, (2) g has
a unique triangular factorization, and (3) g has a unique root subgroup factorization
(we will review this in Sect. 3). This is a statement about the (open) top stratum
of the W 1/2 loop group, and there is a generalization to the finite codimensional
lower strata. The key to the equivalence of (1)–(3), and in truth the more interesting
point, is that there exists an explicit factorization for det(A(g)A(g−1)), akin to the
Plancherel formula in linear Fourier analysis (see (32)). A corollary of this is that
W 1/2(S1, SU(2)) is a nonsmooth topological manifold modeled on l2, and it is
homotopy equivalent to the smooth loop group.

Remark 2 The scalar det(A(g)A(g−1)) appears prominently in Harold Widom’s
landmark paper [12], as the constant term in the expansion of determinants of block
Toeplitz matrices for symbols that are bounded and in W 1/2. This paper not only
gave the asymptotics in the block case, but paved the way for operator theory
and Banach algebra approaches for the asymptotic expansions for determinants of
structured operators. This constant is related to quantities that appear in the theory of
tau-functions, dimer-models, random matrix theory, and other areas of mathematical
physics and is now commonly called Widom’s constant.

The main point of this paper is to investigate extensions of this theory to VMO
(and more general Besov spaces which interpolate between W 1/2 and VMO), and
some qualified extensions to the measurable (or L2) context. In the VMO context,
the Toeplitz operatorA(g) is Fredholm, the determinant det(A(g)) makes sense as a
section of a determinant line bundle, but the scalar expression det(A(g)A(g−1))

is identically zero in the complement of W 1/2(S1, SU(2)). Roughly speaking
the theory extends because, as we essentially observed in [1] (we will need a
refinement), there is actually a factorization of A(g), as an operator, in root subgroup
coordinates.
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1.1 Plan of the Paper

In Sect. 2 we establish basic notation and recall some background results, especially
the operator theoretic realization of the topologies for the various spaces of loops.

In the first part of Sect. 3 we succinctly outline the main results from [8] for loops
into SU(2) := SU(2,C) with critical degree of smoothness in the L2 Sobolev sense
(the W 1/2 theory).

In Sect. 4 we consider measurable maps, which we refer to as the L2 theory. Here
we are probing the edge of deterministic results. For a measurable map into SU(2),
the Toeplitz operator is not in general Fredholm. Uniqueness in root subgroup
factorization is lost because of the existence of singular inner functions.

In Sect. 5 we consider maps of vanishing mean oscillation, and more generally
maps satisfying a Besov condition B

1/p
p (which interpolates between W 1/2 and

VMO).
For a more detailed version of this paper, see [2].

2 Notation and Background

If f (z) = ∑
fnz

n, then we will write

f = f− + f0 + f+ (5)

where f−(z) = ∑
n<0 fnz

n and f+(z) = ∑
n>0 fnz

n, f−0 = f− + f0, f0+ =
f0 + f+, and f ∗(z) = ∑

(f−n)
∗zn, where w∗ = w̄ is the complex conjugate of the

complex number w. If the Fourier series is convergent at a point z ∈ S1, then f ∗(z)
is the conjugate of the complex number f (z). If f ∈ H 0(�), then f ∗ ∈ H 0(�∗),
where � is the open unit disk, �∗ is the open unit disk at ∞, and H 0(U) denotes
the space of holomorphic functions for a domain U ⊂ C.

We let W 1/2(S1,C) denote the Hilbert space of (equivalence classes of
Lebesgue) measurable functions f (z)which have half a derivative in theL2 Sobolev
sense; the precise form of the norm is not important, but one possibility is

|f |W 1/2 =
( ∞∑

n=−∞
(1 + n2)1/2|f̂ (n)|2

)1/2

(6)

where f̂ denotes the Fourier transform. Similarly VMO(S1) denotes the Banach
space of (equivalence classes of Lebesgue) measurable functions which are of
vanishing mean oscillation, or equivalently the closure of the subspace of con-
tinuous functions in BMO; again, the precise form of the norm is not important.
Meas(S1,C) denotes equivalence classes of Lebesgue measurable functions with
the topology corresponding to convergence in (Lebesgue) measure; this is induced



Loops in SU(2) and Factorization, II 121

by a complete separable metric, see below. Besov spaces B1/p
p which interpolate

between W 1/2 and VMO for 2 ≤ p ≤ ∞ will be used below and in Sect. 5 (see
Chap. 6 and Appendix 2 of [7]). On the Fourier series side, w1/2 denotes the Hilbert
space of complex sequences ζ such that

∑∞
k=1 k|ζk|2 < ∞.

We let LfinSU(2) (LfinSL(2,C)) denote the group consisting of functions
S1 → SU(2) (SL(2,C), respectively) having finite Fourier series, with pointwise
multiplication. For example, for ζ ∈ C and n ∈ Z, the function

S1 → SU(2) : z → a(ζ )
(

1 ζ z−n

−ζ̄ zn 1

)
, (7)

where a(ζ ) = (1 + |ζ |2)−1/2, is in LfinSU(2).
As in the introduction, consider the groups

Wd/2(Sd , SU(2)) ⊂ VMO(Sd , SU(2)) ⊂ Meas(Sd , SU(2)). (8)

In this paper we will always view these as topological groups with the complete
separable (Polish) topologies induced by Wd/2, VMO, and convergence in measure,
respectively. For measurable maps there is a well-known way to represent the
topology using operator methods: the bijection

Meas(Sd , U(2)) → {unitary multiplication operators on L2(Sd ,C2)} (9)

is a homeomorphism with respect to the convergence in measure topology and the
strong (or weak) topology for unitary multiplication operators (see Sect. 2 of [6]).
For the other mapping groups, following [10], we will substitute restricted unitary
groups (see below).

Now suppose that d = 1. In this setup the inclusions

LfinSU(2) ⊂ C∞(S1, SU(2)) ⊂ W 1/2(S1, SU(2)) ⊂ VMO(S1, SU(2)) (10)

⊂ Meas(S1, SU(2)) are dense. The first three inclusions are homotopy equivalences
(see subsection 2.2 of [2] for details which we are omitting in this paper). The fourth
is a map into a contractible space.

Suppose that g ∈ L1(S1, SL(2,C)). A triangular factorization of g is a
factorization of the form

g = l(g)m(g)a(g)u(g), (11)
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where

l =
(
l11 l12

l21 l22

)
∈ H 0(�∗, SL(2,C)), l(∞) =

(
1 0

l21(∞) 1

)
,

l has a L2 radial limit, m =
(
m0 0
0 m−1

0

)
, m0 ∈ S1, a(g) =

(
a0 0
0 a−1

0

)
, a0 > 0,

u =
(
u11 u12

u21 u22

)
∈ H 0(�, SL(2,C)), u(0) =

(
1 u12(0)
0 1

)
,

and u has a L2 radial limit. Note that (11) is an equality of measurable functions on
S1.

As in [10], consider the polarized Hilbert space

H := L2(S1, C2) = H+ ⊕ H−, (12)

where H+ = P+H consists of L2-boundary values of functions holomorphic in �.
If g ∈ L∞(S1, SL(2,C)), we write the bounded multiplication operator defined by
g on H as

Mg =
(
A(g) B(g)

C(g) D(g)

)
(13)

where A(g) = P+MgP+ is the (block) Toeplitz operator associated to g and so on.

If g has the Fourier expansion g = ∑
gnz

n, gn =
(
an bn

cn dn

)
, then relative to the

basis for H

...ε1z, ε2z, ε1, ε2, ε1z
−1, ε2z

−1, ... (14)

where {ε1, ε2} is the standard basis for C2, the matrix of Mg is block periodic of the
form

. . . . . . .

.. a0 b0 a1 b1 | a2 b2 ..

.. c0 d0 c1 d1 | c2 d2 ..

.. a−1 b−1 a0 b0 | a1 b1 ..

.. c−1 d−1 c0 d0 | c1 d1 ..

− − − − − − − − −
.. a−2 b−2 a−1 b−1 | a0 b0 ..

.. c−2 d−2 c−1 d−1 | c0 d0 ..

. . . . . . .

. (15)
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From this matrix form, it is clear that, up to equivalence, Mg has just two types
of ‘principal minors’, the matrix representing A(g), and the matrix representing
the shifted Toeplitz operator A1(g), the compression of Mg to the closed subspace
spanned by {εizj : i = 1, 2, j > 0} ∪ {ε1}.

Given the polarization H = H+ ⊕ H− and a symmetrically normed ideal I ⊂
L(H), there is an associated Banach ∗-algebra, L(I), which consists of bounded
operators on H , represented as two by two matrices as in (13) such that B,C ∈ I
with the norm

∣∣∣∣

(
A

D

)∣∣∣∣
L

+
∣∣∣∣

(
B

C

)∣∣∣∣
I

(16)

and the usual ∗-operation. The corresponding unitary group is

U(I) = U(H) ∩ L(I); (17)

it is referred to as a restricted unitary group in [10]. There are two standard
topologies on U(I). The first is the induced Banach topology, and in this topology
U(I) has the additional structure of a Banach Lie group. The second topology, the
one we will always use, is the Polish topology for which convergence means that
for gn, g ∈ U(I), gn → g if and only if gn → g strongly and

(
Bn

Cn

)
→
(

B

C

)
in I. (18)

In the following proposition Lp refers to the Schatten ideal.

Proposition 1

(a) For the polarization (12) and g ∈ L∞(S1,L(C2)), g ∈ L(Lp)
iff g belongs to

the Besov space B1/p
p for p < ∞ and VMO for p = ∞.

(b) For p < ∞, B1/p
p (S1,K) → U(Lp)

(H+ ⊕ H−) is a homeomorphism onto its
image; in particular

(b’) W 1/2(S1,K) → U(L2)
(H+ ⊕ H−) is a homeomorphism onto its image.

(c) VMO(S1,K) → U(L∞)(H+ ⊕ H−) is a homeomorphism onto its image.
(d) U(L∞)(H+ ⊕H−) → Fred(H+) is a homotopy equivalence.

Most of this is standard. For part (d) see Proposition 6.2.4 of [10].
Given a countably infinite dimensional Hilbert space such as H+, Quillen

constructed a holomorphic determinant line bundle Det → Fred(H+) and a
canonical holomorphic section det which vanishes on the complement of invertible
operators. This induces a determinant bundle

A∗Det → VMO(S1, SU(2)) (19)



124 E. Basor and D. Pickrell

(There is a discussion of this, and references, at the end of Sect. 7.7 of [10]). This
is an elegant way to think about the following corollary, but there is also a simple
proof using the operator-theoretic realization of the VMO topology.

Corollary 1 For VMO(S1, SU(2)) the set of loops with invertible Toeplitz opera-
tors is defined by the equation det(A(g)) �= 0, hence is open. The same applies for
the shifted Toeplitz operator.

Proof Suppose that gn ∈ VMO(S1, SU(2)) converges in VMO to g and A(g) is
invertible. We must show that A(gn) is invertible for large n.

A(gn)A(g
−1
n ) = 1 − B(gn)C(g

−1
n ) = 1 − B(gn)B(gn)

∗ . (20)

By part (c) of the preceding proposition, this converges uniformly to A(g)A(g−1) =
A(g)A(g)∗ = 1 − B(g)B(g)∗, which is invertible. This implies that A(gn)A(g−1

n )

is invertible for large n, hence A(gn) is invertible for large n. ��

Remark 3 For Meas(S1, SU(2)), or for its diagonal subgroup

{(
λ(z) 0

0 λ(z)−1

)}
,

the set of loops with invertible Toeplitz operators is NOT open. To see this let λn =
exp(fn) : S1 → S1 be a continuous loop which rapidly winds once around the circle
in the interval [0, 1/n], and equals 1 otherwise (this is called a blip). This has degree
one, hence the Toeplitz operator Ȧ(λ) has Fredholm index −1 and is not invertible
for all n. Nonetheless λn → 1 in measure.

This line of argument does not apply to VMO(S1, S1), because degree is well-
defined, continuous and separates the group into path connected components - this
is the main point of [4].

3 The W 1/2 Theory

The first part of this section is a succinct review of relevant results from [8]. The
subsequent subsections describe some consequences.

Theorem 1 Suppose that k1 : S1 → SU(2) is Lebesgue measurable. The following
are equivalent:

(I.1) k1 ∈ W 1/2(S1, SU(2)) and is of the form

k1(z) =
(

a(z) b(z)

−b∗(z) a∗(z)

)
, z ∈ S1, (21)

where a, b ∈ H 0(�), a(0) > 0, and a and b do not simultaneously vanish at
a point in �.
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(I.2) k1 has a (root subgroup) factorization, in the sense that

k1(z) = lim
n→∞ a(ηn)

(
1 −η̄nz

n

ηnz
−n 1

)
... a(η0)

(
1 −η̄0

η0 1

)
(22)

for a.e. z ∈ S1, where (ηi) ∈ w1/2 and the limit is understood in the W 1/2

sense.
(I.3) k1 has triangular factorization of the form

(
1 0

y∗(z) 1

)(
a1 0
0 a−1

1

)(
α1(z) β1(z)

γ1(z) δ1(z)

)
, (23)

where a1 > 0, y = ∑∞
j=0 yj z

j and α1(z), β1(z) ∈ W 1/2.

Suppose that k2 : S1 → SU(2) is Lebesgue measurable. The following are
equivalent:

(II.1) k2 ∈ W 1/2(S1, SU(2)) and is of the form

k2(z) =
(
d∗(z) −c∗(z)
c(z) d(z)

)
, z ∈ S1, (24)

where c, d ∈ H 0(�), c(0) = 0, d(0) > 0, and c and d do not simultaneously
vanish at a point in �.

(II.2) k2 has a (root subgroup) factorization of the form

k2(z) = lim
n→∞ a(ζn)

(
1 ζnz

−n

−ζ̄nz
n 1

)
... a(ζ1)

(
1 ζ1z

−1

−ζ̄1z 1

)
(25)

for a.e. z ∈ S1, where (ηi) ∈ w1/2 and the limit is understood in the W 1/2

sense.
(II.3) k2 has triangular factorization of the form

(
1 x∗(z)
0 1

)(
a2 0
0 a−1

2

)(
α2(z) β2(z)

γ2(z) δ2(z)

)
(26)

where a2 > 0, x = ∑∞
j=1 xj z

j , and γ2(z), δ2(z) ∈ W 1/2.

Outline of the Proof For k2 ∈ LfinSU(2), these correspondences are algebraic. To
be more precise, given a sequence ζ as in II.2 with a finite number of nonzero terms,
there are explicit polynomial expressions for x, α2, β2, γ2 and δ2, and

a2
2 =

∏

k>0

(1 + |ζk|2). (27)
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Conversely, given k2 as in II.1 or II.3, the sequence ζ can be recovered recursively
from the Taylor expansion

(c2/d2)(z) = (γ2/δ2)(z) = (−ζ 1)z + (−ζ 2)(1 + |ζ1|2)z2 + ... . (28)

The fact that these algebraic correspondences continuously extend to ana-
lytic correspondences depends on the following Plancherel-esque formulas (which
explain the interest in root subgroup coordinates). For ki as in Theorem 1,

det(A(k1)
∗A(k1)) = det(1 − C(k1)

∗C(k1))

= det(1 + Ḃ(y)∗Ḃ(y))−1 =
∏

i≥1

(1 + |ηi |2)−i (29)

and

det(A(k2)
∗A(k2)) = det(1 − C(k2)

∗C(k2))

= det(1 + Ḃ(x)∗Ḃ(x))−1 =
∏

k≥1

(1 + |ζk|2)−k (30)

where in the third expressions, x and y are viewed as multiplication operators on
H = L2(S1), with Hardy space polarization. In (29), the first two terms are nonzero
iff k1 ∈ W 1/2, the third is nonzero iff y ∈ W 1/2, and the third is nonzero iff η ∈
w1/2.

Theorem 2 Suppose g ∈ W 1/2(S1, SU(2)). The following are equivalent:

(i) The (block) Toeplitz operator A(g) and shifted Toeplitz operator A1(g) are
invertible.

(ii) g has a triangular factorization g = lmau.
(iii) g has a (root subgroup) factorization of the form

g(z) = k∗
1(z)

(
eχ(z) 0

0 e−χ(z)

)
k2(z) (31)

where k1 and k2 are as in Theorem 1 and χ ∈ W 1/2(S1, iR).

Outline of the Proof The equivalence of (i) and (ii) is standard (see also (34)
below). Suppose that g ∈ LfinSU(2). If g has a root subgroup factorization as in
(iii), one can directly find the triangular factorization (see Proposition 3 below),
and from this explicit expression, one can see how to recover the factors η, χ, ζ

(Incidentally, η and ζ have finitely many nonzero terms, but this is not so for χ ,
hence this calculation is not purely algebraic).

As was the case for Theorem 1, the fact that these correspondences extend to
analytic correspondences depends on a number of Plancherel-esque identities. For
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g ∈ W 1/2(S1, SU(2)) satisfying the conditions in Theorem 2,

det(A(g)∗A(g))

=
( ∞∏

i=0

1

(1 + |ηi |2)i
)⎛

⎝
∞∏

j=1

e−2j |χj |2
⎞

⎠
( ∞∏

k=1

1

(1 + |ζk|2)k
)
,

(32)

det(A1(g)
∗A1(g))

=
( ∞∏

i=0

1

(1 + |ηi |2)i+1

)⎛

⎝
∞∏

j=1

e−2j |χj |2
⎞

⎠
( ∞∏

k=1

1

(1 + |ζk|2)k−1

)
,

(33)

(where A1 is the shifted Toeplitz operator)

a0(g)
2 = det(A1(g)

∗A1(g))

det(A(g)∗A(g))
=
( ∞∏

i=0

1

(1 + |ηi |2)

)
×
( ∞∏

k=1

(1 + |ζk|2)
)
. (34)

Note that because g is unitary, i.e. g−1 = g∗ on S1, parts (i) and (ii) are obviously
inversion invariant, and this does not depend on the hypothesis that g ∈ W 1/2: if
g : S1 → SU(2) has the triangular factorization g = lmau, then g−1 = g∗ has
triangular factorization g−1 = u∗m∗al∗. On the other hand part (iii), the existence
of a root subgroup factorization, is not obviously inversion invariant.

Corollary 2 Suppose g ∈ W 1/2(S1, SU(2)). Then g has a root subgroup factoriza-
tion (as in (iii) of Theorem 2) if and only if g−1 has a root subgroup factorization.

We have used the hypothesis that g ∈ W 1/2 so that we can use the identities (32) and
(33) to prove that the existence of a root subgroup factorization implies invertibility
of the Toeplitz determinants. A central question related to the generalizations in
the following sections is whether the hypothesis g ∈ W 1/2 is crucial for inversion
invariance of root subgroup factorization.
Coordinates for W 1/2(S1, SU(2))

Theorem 2 implies the following

Corollary 3 W 1/2(S1, SU(2)) is a topological Hilbert manifold modeled on the
root subgroup parameters {((ηi)i≥0, (χj )j≥1, (ζk)k≥1) ∈ l2 × l2 × l2} × {eχ0 ∈ S1}
for the open set of loops with invertible A and A1.

As we noted in the introduction, it is not possible to use this (or any) coordinate
to define a smooth structure which is translation invariant (because W 1/2(S1, su(2))
is not a Lie algebra).

There are other coordinates, and this will be important when we consider VMO
loops, because we will not be able to characterize VMO loops in terms of the
coordinates η and ζ .
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Theorem 3

(a) The maps

{k1as in I.1-3 of Theorem 1 } → {y =
∞∑

n=0

ynz
n ∈ W 1/2(S1)} : k1 → y

(35)

and

{k2as in II.1-3 of Theorem 1 } → {x =
∞∑

n=1

xnz
n ∈ W 1/2(S1)} : k2 → x

(36)

are bijections.
(b) (y, χ, x) is a topological coordinate system for the open subset of

W 1/2(S1, SU(2)) with invertible A and A1.

Proof In the first part of the proof, we will prove a more general result for
measurable loops, which we will exploit in the next section.

For part (a) we will use the Grassmannian model for the measurable loop
group Meas(S1, U(2)), see Proposition (8.12.4) of [10], which describes the
Meas(S1, U(2)) orbit of H+ in the Grassmannian of H = L2(S1,C2) (see (12)).
Given x(z) = ∑∞

n=1 xnz
n ∈ L2(S1), let W denote the smallest closed Mz-invariant

subspace containing the vectors

(
1
0

)
and

(
x∗
1

)
. We claim that

⋂

k≥0

zkW = 0 and
⋃

k≤0

z−kW is dense in H. (37)

For the first condition, suppose that v is a point in the intersection. For each N > 0 it

is possible to write v(z) =
(
zNfN(z)+ zNgN(z)x

∗(z)
zNgN(z)

)
, where fN , gN ∈ Ḣ+ The

second component of v has to be identically zero. This implies gN has to be zero.
Now the first component of v also has to vanish. The second condition is equivalent

to showing that the subspace spanned by

(
s(z) + t (z)x∗(z)

t (z)

)
, where s and t are

finite Fourier series, is dense in L2(S1). This is obvious.
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This implies that W is in the Grassmannian in Proposition (8.12.4) of [10], and
hence there exists k2 ∈ Meas(S1, U(2)) such that k2H+ = W (k2 is obtained by
taking an orthonormal basis for the two dimensional orthogonal complement of zW
inside W , a Gram-Schmidt type process). This implies that k−1

2 W = H+, hence

k−1
2

(
1 x∗
0 1

)
is holomorphic in the disk, and hence

k2(z) = λ(z)

(
d∗

2 (z) −c∗
2(z)

c2(z) d2(z)

)
=
(

1 x∗(z)
0 1

)(
a2 0
0 a−1

2

)(
α2(z) β2(z)

γ2(z) δ2(z)

)
(38)

where a2 > 0, λ2 = det(k2) : S1 → S1, |c2|2 + |d2|2 = 1 on S1. From the second
row of this equality, we see that λ extends to a holomorphic function in �. λ cannot
vanish because γ2 and δ2 cannot simultaneously vanish. Thus λ is a constant; the
normalizations in II.1-3 force λ = 1.

We now consider the hypothesis in part (a) of the theorem, i.e. x ∈ W 1/2. This
implies that

det(A(k2)A(k
−1
2 )) = det(1 − B(k2)B(k2)

∗) = det(1 + Ḃ(x)Ḃ(x)∗)−1 (39)

is positive. Therefore k2 ∈ W 1/2. The claim about k1 and y is similar.
Part (b) follows from (a).

The preceding proof is abstract. In the next section (see Lemma 3) we will show
how to solve for the unitary loop corresponding to a given x = ∑∞

n=1 xnz
n ∈

L2(S1). Here we will simply state the result, which has a transparent meaning when
x ∈ W 1/2.

Theorem 4 Given x = ∑∞
n=1 xnz

n ∈ W 1/2(S1), the corresponding loop k2 ∈
W 1/2(S1, SU(2)) is determined by the identities

a2
2 = 1

〈1|(1 + Ḃ(x)Ḃ(x)∗)−1|1〉 , (40)

γ ∗
2 = −a2

2(1 + Ḃ(x)∗Ḃ(x))−1(x∗), (41)

and

δ2 = a2
2(1 + Ḃ(x)Ḃ(x)∗)−1(1). (42)
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4 The L2 Theory

We now ask whether there are L2 analogues of Theorems 1 and 2. Here is a naive
L2 analogue of Theorem 1 (we consider just the second set of equivalences):

Question 1 Suppose that k2 : S1 → SU(2) is Lebesgue measurable. Are the
following equivalent:

(II.1) k2 has the form

k2(z) =
(
d∗

2 (z) −c∗
2(z)

c2(z) d2(z)

)
, z ∈ S1, (43)

where c2, d2 ∈ H 0(�) do not simultaneously vanish, c2(0) = 0 and d2(0) >
0.

(II.2) There exists a unique (ζk) ∈ l2 such that

k2(z) = lim
n→∞ a(ζn)

(
1 ζnz

−n

−ζ̄nz
n 1

)
...a(ζ1)

(
1 ζ1z

−1

−ζ̄1z 1

)
(44)

where the limit is understood in terms of convergence in measure.
(II.3) k2 has triangular factorization of the form

(
1
∑∞

j=1 x
∗
j z

−j

0 1

)(
a2 0
0 a−1

2

)(
α2(z) β2(z)

γ2(z) δ2(z)

)
(45)

where a2 > 0.

For k2 satisfying these conditions, we will see that

a2
2 = d2(0)

−2 =
∞∏

k=1

(1 + |ζk|2) = |γ2|2 + |δ2|2 (on S1) (46)

= 1 + 〈x|(1 + B(z−1x)B(z−1x)∗)−1x〉L2 = 1

〈1|(1 + Ḃ(x)Ḃ(x)∗)−11〉L2
(47)

(the meaning of the operators is explained in Lemma 3) and

|α2|2 + |β2|2 = a−2
2 (1 + |x|2) (48)

on S1.

In the first part of this section, our goal is to explain how the various implications
have to be qualified. One complication in this general context is the existence of
singular inner functions.
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Example 1 A simple non-example to bear in mind for (II.1) is

k2(z) =
(
d∗

2 (z) 0
0 d2(z)

)
where d2 = z − t

1 − tz
(49)

and 0 < t < 1. This does not satisfy the hypothesis that c2 and d2 are simultaneously
nonvanishing, which is critical to show that the Toeplitz operator A(k2) is injective.

A complex example for (II.1) is a k2 where c2(z) = √
t1C2(z), d2(z) =√

t2D2(z), C2 and D2 are inner functions which do not simultaneously vanish in
�, and t1, t2 > 0, t1 + t2 = 1.

It is obvious that (II.3) implies (II.1). The important point is that the triangular
factorization implies that c2 and d2 do not simultaneously vanish in �. For later use,
notice that (II.3) and the special unitarity of k2 imply ("the unitarity equations")

a2α2 + x∗a−1
2 γ2 = a−1

2 δ∗
2 , a2β2 + x∗a−1

2 δ2 = −a−1
2 γ ∗

2 (50)

and

a−2
2 (γ ∗

2 γ2 + δ∗
2δ2) = 1. (51)

These equations imply

α2 = −a−2
2 x∗γ2 + a−2

2 δ∗
2 and β2 = −a−2

2 x∗δ2 − a−2
2 γ ∗

2 . (52)

Applying the (·)0+ projection to each of these, we obtain α2 = 1 − (X∗γ2)+ and
β2 = −(X∗δ2)0+. Using (52) again, on S1

|α2|2 +|β2|2 = a−4
2 ((−x∗γ2 + δ∗

2)(−xγ ∗
2 + δ2)+ (x∗δ2 +γ ∗

2 )(xδ
∗
2 +γ2)). (53)

Expand this and use the obvious cancelations. Together with (51), this implies

|α2|2 + |β2|2 = a−2
2 (1 + |x|2) (54)

as claimed in the last part of Question 1.
Now assume (II.1). We can determine ζ1, ζ2, ... using the Taylor series (28) for

c2/d2 (note this is not identically zero, unlike the first loop in Example 1). Let

(
d
(n)∗
2 (z) −c

(n)∗
2 (z)

c
(n)
2 (z) d

(n)
2 (z)

)
= a(ζn)

(
1 ζnz

−n

−ζ̄nz
n 1

)
...a(ζ1)

(
1 ζ1z

−1

−ζ̄1z 1

)
. (55)
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Because the polynomials c(n)2 (z) and d(n)2 (z) are bounded by 1 in the disk, given any
subsequence, there exists a subsequence for which this pair will converge uniformly
on compact subsets of �. The limits, denoted c̃2(z) and d̃2(z), are bounded by 1,
hence will have radial boundary values. We will use the following elementary fact
repeatedly.

Lemma 1 Suppose that fn ∈ L∞H 0(�) and fn converges uniformly on compact
subsets to f ∈ L∞H 0(�). Then there exists a subsequence fnj which converges
pointwise a.e. on S1 to f .

Proof Because each fj and f are essentially bounded, each fj and f has radial
limits, on a common subset E of S1 of full Lebesgue measure. For each j there
exists nj such that |fnj −f | < 1

j
on (1− 1

j
)S1. The subsequence fnj then converges

pointwise on E to f . ��
It follows that for some subsequence,

k̃2(ζ )(z) := lim
j→∞

(
d
(nj )∗
2 (z) −c

(nj )∗
2 (z)

c
(nj )

2 (z) d
(nj )

2 (z)

)
(56)

exists in the pointwise Lebesgue a.e. sense on the circle. Furthermore the sequence
of zetas corresponding to k̃2 is ζ1, .... Therefore using (28) c2/d2 = c̃2/d̃2. Together
with unitarity and the simultaneous nonvanishing condition on c2, d2, this implies

λ := c̃2

c2
= d̃2

d2
(57)

is a holomorphic function in � with radial boundary values and |λ| = 1 on S1. Such
a function has a unique factorization λ = λbλs , where λb is a Blaschke product and
λs is a singular inner function, i.e.

λs(z) = exp

(∫

S1

z + eiθ

z − eiθ
dν(θ)

)
(58)

where ν is a finite positive measure which is singular with respect to Lebesgue
measure (see page 370 of [11]). The integral, as a holomorphic function of z is (up
to a constant) usually referred to as the Caratheodory function of ν; because ν is
singular, the Caratheodory function is not W 1/2, hence is forced to vanish when
k2 is W 1/2 (or more generally VMO). The simultaneous nonvanishing condition
implies that λb = 1. Since d̃2(0), d2(0) > 0, λ(0) = 1, and d2(0) = ∏

k>0 a(ζk) =∏
k>0(1 + |ζk|2)−1/2 > 0. It follows that ζ ∈ l2. This implies the following
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Theorem 5 Assume (II.1) in Question 1. Then there exists a unique (ζk) ∈ l2 and a
singular inner function λ with λ(0) = 1 such that

k2(z) =
(
λ(z) 0

0 λ−1(z)

)

× lim
n→∞ a(ζn)

(
1 ζnz

−n

−ζ̄nz
n 1

)
. . . a(ζ1)

(
1 ζ1z

−1

−ζ̄1z 1

) (59)

where the limit is understood in terms of convergence in measure.

Now assume ζ ∈ l2 as in (II.2). We will show that this implies (II.1), sans
the simultaneous nonvanishing condition, and we will explain why we do not
necessarily obtain a factorization as in (II.3). Note we are free to use the unitarity
equations for sufficiently regular ζ , e.g. ζ ∈ w1/2. In the course of the argument, we
will also prove (47), among other formulas.

The following is essentially Lemma 1 of [8].

Proposition 2 Suppose that ζ = (ζn) ∈ l2. Let k(N)
2 be given by

(
d(N)∗ −c(N)∗
c(N) d(N)

)
:=
(

N∏

n=1

a(ζn)

)(
1 ζNz

−N

−ζ̄Nz
N 1

)
...

(
1 ζ1z

−1

−ζ̄1z 1

)
. (60)

Then c(N) and d(N) converge uniformly on compact subsets of � to holomorphic
functions c = c(ζ ) and d = d(ζ ), respectively, as N → ∞. The functions c and
d have radial limits at a.e. point of S1, c and d are uniquely determined by these
radial limits,

k2(z) = k2(ζ )(z) :=
(
d(ζ )∗(z) −c(ζ )∗(z)
c(ζ )(z) d(ζ )(z)

)
∈ Meas(S1, SU(2,C)). (61)

Note that if ζ ∈ l1, then the product actually converges absolutely around the
circle. So one subtlety here is relaxing summability to square summability. Note
also that the proof that (II.1) implies (II.2) shows that there exist convergence in
measure limit points. So the second subtlety is showing that there is a unique limit
point. We missed one simple point in Lemma 1 of [8]: k2 actually has values in
SU(2). This is a consequence of Lemma 1.

We have now proven the existence of a

k2(ζ ) =
(
d∗

2 −c∗
2

c2 d2

)
(62)

as in (II.1), but we have not proven the simultaneous nonvanishing of c2 and d2.
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We now want to investigate the existence of a triangular factorization

k2 =
(

1 x∗
0 1

)(
a2 0
0 a−1

2

)(
α2(z) β2(z)

γ2(z) δ2(z)

)
(63)

where a2 > 0. Note we have explicit formulas for a2, γ2 and δ2. But we need a
formula for x. If we can find x, then we can use (52) to find α2, β2. Because of the
identity (54) it would only remain to show x is square integrable.

Recall from the appendix to [8] that x∗ has the form

x∗ =
∞∑

j=1

x∗
1 (ζj , ζj+1, ...)z

−j , (64)

where

x∗
1 (ζ1, ...) =

∞∑

n=1

ζn

( ∞∏

k=n+1

(1 + |ζk|2)
)
sn(ζn, ζn+1, ζ̄n+1, ..), (65)

s1 = 1 and for n > 1,

sn =
n−1∑

r=1

sn,r , sn,r =
∑

ci,j ζi1 ζ̄j1ζi2 ζ̄j2 ..ζir ζ̄jr (66)

where the sum is over multiindices satisfying the constraints

j1 ≤ .. ≤ jr

∨ ∨
n ≤ i1 ≤ .. ir

,

r∑

l=1

(jl − il) = n − 1, (67)

The crucial point is that the ci,j are positive integers, although it is not known
how to explicitly compute them. In particular for each n sn contains the sub-sum∑

m≥n ζmζ ∗
m+n−1.

Now suppose that all of the ζn ≥ 0. If the sum for x∗
1 converges, then the sum

∞∑

n=1

ζn
∑

m≥n
ζmζ

∗
m+n−1 (68)

has to converge. But ζ ∈ l2 is not a sufficient condition to guarantee the convergence
of this sum. Empirically, if ζn = n−p with p < 5/8, the sum diverges. From a
theoretical point of view, this is the convolution of three functions on Z evaluated at
zero, ζ t ∗ ζ t ∗ ζ , where ζ t (−m) = ζ(m) is the adjoint; the convolution of two l2(Z)
functions only has the property that it vanishes at infinity, and the convolution of an
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l2(Z) function and a function that vanishes at infinity is not generally defined. This
explains why (II.2) in Question 1 does not imply (II.3).

This gap can possibly be (partially) filled by the following hybrid determinis-
tic/probabilistic

Conjecture In reference to Question 1, if ζ ∈ l2 as in (II.2) and the phases of
the ζk are uniform and independent as random variables, then k2 has a triangular
factorization as in (II.3).

To get started on this, we would need to prove the almost sure existence of x1
above. This has not been done. Instead we will explain the meaning of the operators
in the statement of Question 1, which should play an important role in the proof of
the conjecture.

Lemma 2 For sufficiently regular x (which we will clarify in the proof)

a2
2 = det(1 + Ḃ(x)Ḃ(x)∗)

det(1 + Ḃ(z−1x)Ḃ(z−1x)∗)
(69)

= 1 + 〈x|(1 + Ḃ(z−1x)Ḃ(z−1x)∗)−1x〉L2 = 1

〈1|(1 + Ḃ(x)Ḃ(x)∗)−11〉L2
(70)

(〈··〉 is the L2 inner product), where Ḃ(x) denotes the scalar Hankel operator
corresponding to the symbol x.

Proof For the first equality see (2.13) of [8]. For the determinants in this formula to
make sense, we need ζ ∈ w1/2.

As a matrix (relative to the standard Fourier basis)

Ḃ(x)Ḃ(x)∗ − Ḃ(z−1x)Ḃ(z−1x)∗ = (xnx
∗
m)n,m≥1 (71)

because the n,m entry is

∑

i≥0

(xn+ix
∗
m+i ) −

∑

i≥0

(xn+1+ix
∗
m+1+i ) = xnx

∗
m (72)

This is a rank one matrix.
The identity

(1 + S)(1 + T )−1 = 1 + (T − S)(1 + T )−1 (73)

implies that (1 + Ḃ(x)Ḃ(x)∗)(1 + Ḃ(z−1x)Ḃ(z−1x)∗)−1 equals

1 +
(
Ḃ(x)Ḃ(x)∗ − Ḃ(z−1x)Ḃ(z−1x)∗

)
(1 + Ḃ(z−1x)Ḃ(z−1x)∗)−1. (74)
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This is a rank one perturbation of the identity, and the determinant equals

1 + 〈x|(1 + Ḃ(z−1x)Ḃ(z−1x)∗)−1x〉L2 . (75)

This proves the second equality. This second formula has a transparent operator-
theoretic meaning when the Hankel operator is bounded, and this is the case if x ∈
BMO.

For the third equality, suppose that x = ∑
n≥1 xnz

n ∈ L2. For i, j ≥ 0, relative to
the standard Fourier basis z0, z1, ... for Ḣ+, the i, j entry for the matrix representing
Ḃ(x)Ḃ(x)∗ equals

∞∑

n=0

xi+nx
∗
j+n. (76)

The matrix representing Ḃ(z−1x)Ḃ(z−1x)∗ (aside from indexing) is the same as the
matrix obtained by deleting the zeroth row and column of the matrix representing
Ḃ(x)Ḃ(x)∗. Thus the third equality is simply Cramer’s rule for the inverse. The
use of this rule is valid provided ζ ∈ w1/2, which guarantees the determinants
make sense. However as a formula for a2, it has a transparent operator-theoretic
meaning when x ∈ BMO. In the next lemma we will see the formula makes sense
for (xn) ∈ l2.

We will now sharpen this result.

Lemma 3 Suppose that ζ ∈ l2.

(a) The sequence of positive operators (1+ Ḃ(x(n))Ḃ(x(n))∗)−1 has a unique norm
operator limit, and it is given by the formula

(1 + ḂḂ∗)−1f = c2(c
∗
2f )0+ + d2(d

∗
2f )0+ (77)

[x does not appear in the notation, to emphasize that we are not assuming the
existence of x]. Also

A(k2)A(k
∗
2)

(
f1

f2

)
=
(

f1

(1 + ḂḂ∗)−1f2

)
. (78)

Similarly the sequence of positive operators (1 + Ḃ(x(n))∗Ḃ(x(n)))−1 has
a norm operator limit. This limit is unique and (by abuse of notation) denoted
(1 + Ḃ∗Ḃ)−1.

(b) (1 + ḂḂ∗)−1(zn) equals

a−2
2 (γ2

n−1∑

j=0

γ ∗
2,n−j z

j + δ2

n∑

k=0

δ∗
2,n−j z

j ) = a−2
2 (znγ

(n−1)∗
2 γ2 + znδ

(n−1)∗
2 δ2).

(79)
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For example

(1 + ḂḂ∗)−1(1) = a−2
2 δ2 , (80)

(1 + ḂḂ∗)−1(z) = a−2
2 (γ ∗

2,1γ2 + (δ∗
2,1 + z)δ2) , (81)

(1 + ḂḂ∗)−1(z2) = a−2
2 ((γ ∗

2,2 + γ ∗
2,1z)γ2 + (δ∗

2,2 + δ∗
2,1z + z2)δ2) (82)

and the diagonal entries are

a−2
2 diag

(
1, 1 + |γ2,1|2 + |δ2,1|2, ..., 1 +

n∑

k=1

(|γ2,k|2 + |δ2,k|2), ...
)
. (83)

(c) If x is l2 and n ≥ −1, then

(1 + ḂḂ∗)−1(znx) = −γ2z
nα

(n)∗
2 − δ2z

nβ
(n)∗
2 , (84)

in particular

(1 + ḂḂ∗)−1(z−1x) = −z−1γ2 (85)

or equivalently

(1 + Ḃ∗Ḃ)−1x∗ = −a−2
2 γ ∗

2 . (86)

Remark 4 Parts (b) and (c) explicitly determine γ2 and δ2 in terms of x. This
explains the meaning of the formulas in Theorem 4.

Proof (a) Since 1 + Ḃ(x(n))∗Ḃ(x(n)) ≥ 1, it follows that the sequence of operators
(1 + Ḃ(x(n))∗Ḃ(x(n)))−1 has strong operator limits. We must prove uniqueness. For
this it will suffice to prove the exact formula for x ∈ L2, because using this formula
we can take a limit to obtain the general formula. After discussing the calculations
in (c) and (d), we will then explain why this is actually a norm operator limit.

We need several standard facts: (1) If g = g−g0g+, thenZ(g) := C(g)A(g)−1 =
Z(g−). (2) If g is unitary, then (1 + Z∗Z)−1 = A(g)A(g−1). And (3) If g− =(

1 x∗
0 1

)
, then

Z(g−)
(
f1

f2

)
=
(
C(x∗)f2

0

)
. (87)

It is straightforward to check (1). (2) follows from (1). And (3) is straightforward.
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Now suppose that g = k2 and k2 has a triangular factorization. By (2)

(1 + Z∗Z)−1
(
f1

f2

)
= A(k2)A(k

∗
2)

(
f1

f2

)

=
(

f1

f2 − (c2(c
∗
2f2)−)0+ − (d2(d

∗
2f2)−)0+

)
.

(88)

Now (3) implies

(1 + ḂḂ∗)−1 = 1 − (B(c2)B(c2)
∗ + B(d2)B(d2)

∗)

= A(c2)A(c2)
∗ + A(d2)A(d2)

∗.
(89)

This formula does not depend on the assumption that k2 has a triangular factor-
ization (hence we can apply the formula to k

(n)
2 and take a limit). This formula is

equivalent to the one in the statement of part (a) of the theorem.
The calculations in (b) are straightforward, given the formula in (a). The

calculations in (c) also use the unitarity equation a2
2α

∗
2 + γ ∗

2 = δ2, multiplied by
zn. Together with the formula in (a) this implies

(1 + ḂḂ∗)−1(znx) = a−2
2 (γ2(z

nδ2 − a2
2z

nα
(n)∗
2 ) − δ2(z

nγ2 + a2
2z

nβ
(n)∗
2 ). (90)

This simplifies to the formula in (c).
Finally we explain why the limits in (a) are actually norm limits. Note that (1 +

ḂḂ∗)−1 ≤ 1 as positive operators. The formula for the diagonal in part (b) shows
that the diagonal entries monotonely increase to 1 as n → ∞. This implies uniform
convergence.

Question 2 If ζ ∈ l2, then 0 ≤ (1 + ḂḂ∗)−1 ≤ 1. Is (1 + ḂḂ∗)−1 injective? What
can we say about the spectrum of (1 + ḂḂ∗)−1? If x ∈ VMO, then the spectrum is
discrete. Does the spectrum simply become continuous on [0, 1] outside of VMO?

Here is a naive L2 analogue of Theorem 2.

Question 3 Suppose that g : S1 → SU(2) is measurable. Are the following
conditions equivalent:

(i) A(g) and A1(g) are invertible.
(ii) g has a triangular factorization.

(iii) g and g−1 have (root subgroup) factorizations of the form

g = k1(η)
∗
(
eχ 0
0 e−χ

)
k2(ζ ) , (91)

g−1 = k1(η
′)∗
(
eχ

′
0

0 e−χ ′

)
k2(ζ

′) (92)
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where k1 and k2 are as in (some form of) Question 1, and exp(−χ+),
exp(−χ ′+) ∈ L2.

Remark 5 The conditions (i) and (ii) are invariant with respect interchange of g
and g−1 (This depends on A(g−1) = A(g∗) = A(g)∗ (and similarly for A1), and
g−1 = u(g)∗m(g)∗a(g)l(g)∗. It is for this reason that we have imposed a condition
on both g and its inverse in part (iii). This was not necessary in the W 1/2 case.

In the remainder of the section, we will explain how these statements have to be
modified.

First, it is known that (i) is equivalent to
(ii’) g has a triangular factorization, g = lmau, and the operators

R : C[z] ⊗ C
2 → C[z] ⊗ C

2 : ψ+ → Mu−1 ◦ P+ ◦ Ml−1(ψ+) (93)

(where P+ is either the projection for the polarization (12) or the shifted polariza-
tion) extend to bounded operators.

This is a special case of Theorem 5.1 (page 109) of [7], which establishes
a criterion for invertibility of A(g) for more general essentially bounded matrix
symbols.

Theorem 6 If k1, k
′
1, k2 and k′

2 have triangular factorizations (as in (I.3) and (II.3)
of Question 1, then g has a triangular factorization (as in (ii) of Question 3)

Proof We will recall some more formulas which relate triangular and root subgroup
factorization.

Proposition 3 Suppose that η, χ, ζ are sufficiently regular (e.g. w1/2) Then g =
k∗

1e
χk2 has triangular factorization g = l(g)m(g)a(g)u(g), where

l(g) =
(
l11 l12

l21 l22

)
=
(
α∗

1 −(Y ∗α1)−
β∗

1 1 − (Y ∗β1)−

)(
e−χ∗+ 0

0 eχ
∗+

)(
1 M−
0 1

)
, (94)

m(g) =
(
eχ0 0
0 e−χ0

)
, a(g) =

(
a0 0
0 a−1

0

)
=
(
a1a2 0

0 (a1a2)
−1

)
, (95)

u(g) =
(
u11 u12

u21 u22

)
(96)

=
(

1 M0+
0 1

)(
eχ+ 0
0 e−χ+

)(
1 − (X∗γ2)+ −(X∗δ2)0+

γ2 δ2

)
, (97)

Y = a2
1y, X = a−2

2 x, and M = (a0m0)
−2e2χ∗+Y + e2χ+X∗.
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We claim that the formulas in the Proposition yield a triangular factorization for
g. We need to show that the l(g) and u(g) factors are L2. On S1

|α1|2 + |β1|2 = a−2
1 and |γ2|2 + |δ2|2 = a2

2 . (98)

Consequently the first column of l(g) and the second row of u(g) are L2 iff

exp(Re(χ−)) = exp(− Re(χ+)) ∈ L2. (99)

We are assuming this in (iii), and hence the first column of l(g) and the second row
of u(g) are L2.

The second column of l(g) and the first row of u(g) appear to be hopeless.
But here is the key fact: g has a triangular factorization iff g−1 has a triangular
factorization (If g = lmau, then g−1 = u(g)∗m(g)∗a(g)l(g)∗). Moreover the
problematic second column for l(g) is the adjoint of the second row of u(g−1),
and similarly the problematic first row of u(g) is the adjoint of the first column
of l(g−1). It is not a priori clear (and it is undoubtedly not true) that for a general
measurable g : S1 → SU(2), g has a root subgroup factorization iff g−1 has a root
subgroup factorization. But we do not have a concrete example to offer. In (iii), we
are assuming both g and g−1 have root subgroup factorizations. Consequently the
second column of l(g) and the first row of u(g) are also L2 Thus g has a triangular
factorization as in (ii). ��

Theorem 7 Assume that g has a triangular factorization. Then g (and g−1) have
root subgroup factorizations as in (iii), where we now mean in the sense of (I.1) and
(II.1) of Question 1.

Proof Although somewhat longwinded, it is straightforward to use the formulas in
Proposition 3 to find candidates for the factors k1, χ and k2, see (3.4)–(3.19) of [8]
(when consulting these formulas, note that the χ+ of this paper is denoted by χ in
[8]). We will now list these formulas, explain why they make sense, and note their
significance. To begin

a1 = exp

(
− 1

4π

∫

S1
log(|l11|2 + |l21|2)dθ

)
(100)

and

a2 = exp

(
1

4π

∫

S1
log(|u21|2 + |u22|2)dθ

)
. (101)
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We claim these are finite positive numbers. By assumption l, u are square integrable
around S1, and 0 < a = a1a2 < ∞. This implies a1 and a2 are nonzero. Jensen’s
inequality implies

a2
2 ≤

∫

S1
(|u21|2 + |u22|2) dθ

2π
< ∞. (102)

Thus a1 and a2 are finite. This proves the claim. On S1,

|l11|2 + |l21|2 = a−2
1 exp(−2Re(χ+)) (103)

and

|u21|2 + |u22|2 = a2
2exp(−2Re(χ+)). (104)

These formulas imply exp(−χ+) ∈ L2, as in (iii).

l11 = α∗
1 exp(χ−), l21 = β∗

1 exp(χ−), (105)

u21 = γ2exp(−χ+), u22 = δ2exp(−χ+) (106)

and on S1,

|α1|2 + |β1|2 = a−2
1 and |δ2|2 + |γ2|2 = a2

2. (107)

These formulas enable us to recover measurable loops k1, k2 : S1 → SU(2),

k1 = a1

(
α1 β1

−β∗
1 α∗

1

)
and k2 = a−1

2

(
δ∗

2 −γ ∗
2

γ2 δ2

)
. (108)

Because l∗ is invertible at all points of �, (105) implies that the entries a1 and b1 of
k1 do not simultaneously vanish, and similarly, because u is invertible, the entries c2
and d2 do not simultaneously vanish. Using Theorem 1 we can obtain η and ζ from
the Taylor series expansions of β2/α2 and γ2/δ2, and η and ζ are in l2 because of
the finiteness of a1 and a2. ��

One of several shortcomings of this theorem is that we have assumed that both
g and g−1 have root subgroup factorizations. This is undesirable because there are
(hopelessly) complicated compatibility relations involving the pairs of parameters
η, ζ, χ and η′, χ ′, ζ ′, for g and g−1, respectively.
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Example 2 Suppose that g = k2(ζ ), i.e. η and χ are zero. In this case g−1 has the
triangular decomposition

g−1 = g∗ =
(
α∗

2 (z) γ
∗
2 (z)

β∗
2 (z) δ

∗
2(z)

)(
a2 0
0 a−1

2

)(
1 0
x 1

)
(109)

Therefore

γ2(g
−1)

δ2(g−1)
(z) = x1(ζ1, ...)z

1 + ... (110)

implying ξn(g−1) = xn(g) and in particular

− ζ1(g
∗) = x∗

1 (ζ1, ...) (111)

The formula for x∗
1 is discussed in the appendix in [8]—suffice it to say, it is

complicated. ��

5 The VMO Theory

In this section we will consider VMO loops and compact operators. Everything we
say can be generalized to Besov class B1/p

p loops and Schatten p-class operators.
For simplicity of exposition we will focus on the maximal class, VMO.

We begin by recalling basic facts about the abelian case, VMO(S1, S1). The
notion of degree (or winding number) can be extended from C0 to VMO(S1, S1)

(see Sect. 3 of [3] for an amazing variety of formulas, and further references, or
pages 98-100 of [7]). Also given λ ∈ VMO(S1, S1), we view λ as a multiplication
operator on H = L2(S1), with the Hardy polarization. We write Ȧ(λ) for the
Toeplitz operator, and so on (with the dot), to avoid confusion with the matrix case.

Lemma 4 There is an exact sequence of topological groups

0 → 2πiZ → VMO(S1, iR)
exp→ VMO(S1, S1)

degree→ Z → 0. (112)

Moreover degree(λ) = −index(A(λ)).

This is implicit on pages 100–101 of [7]. The important point is that a VMO
function cannot have jump discontinuities. This implies that the kernel of exp is
2πiZ. Thus the sequence in the statement of the Lemma is continuous and exact.
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Remark 6 This should be contrasted with the measurable case. The short exact
sequence 0 → Z → R → T → 0 induces a short exact sequence of Polish
topological groups

0 → Meas([0, 1],Z) → Meas([0, 1],R) → Meas([0, 1],T) → 0 (113)

(see Sect. 2, especially Proposition 9, of [6]). However Meas([0, 1],Z) is not
discrete, and (just as the unitary group of an infinite dimensional Hilbert space
is contractible—in either the strong operator or norm topology) Meas([0, 1],T) is
contractible.

Our aim now is to specialize Theorems 1 and 2 to VMO loops. It seems unlikely
that one can characterize the sequences η and ζ that will correspond to VMO loops
k1, k2 : S1 → SU(2), respectively, as in Theorem 1. For this reason we will use
y, x ∈ VMOA := VMO0+ as parameters.

Proposition 4 Suppose k2 : S1 → SU(2). The following two conditions are
equivalent:

(II.1) k2 ∈ VMO is of the form

k2(z) =
(
d∗(z) −c∗(z)
c(z) d(z)

)
, z ∈ S1, (114)

where c, d ∈ H 0(�), c(0) = 0, d(0) > 0, c and d do not simultaneously
vanish at a point in �.

(II.3) k2 has triangular factorization of the form

(
1
∑∞

j=1 x
∗
j z

−j

0 1

)(
a2 0
0 a−1

2

)(
α2(z) β2(z)

γ2(z) δ2(z)

)
(115)

where a2 > 0 and γ2, δ2 ∈ VMO.

There is a similar equivalence for k1.

Proof The equivalence of II.1 and II.3 is proven exactly as in the W 1/2 case (taking
into account the VMO condition of γ2 and δ2 in II.3). This uses the invertibility of
A(k2). For the injectivity of A(k2), see Lemma 6 below (which is more general).
The follows since the VMO condition implies that A(k2) is Fredholm of index
zero. ��
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Theorem 8

(a) For k2 in the preceding proposition, x ∈ rmVMOA (i.e. VMO and holomor-
phic in the disk).

(b) The map k2 → x induces a bijection

{k2 : II.1 and II.3 hold } ↔ VMOA : k2 ↔ x. (116)

(c) In terms of the root subgroup factorization in Theorem 5, the singular inner
function λ = 1.

There is a similar statement for k1.

Proof (a) The operator (1+ ḂḂ∗)−1 is essentially the productA(k2)A(k
−1
2 ), which

is of the form 1+compact operator. Thus the inverse 1 + Ḃ(x)Ḃ(x)∗ is also a
compact perturbation of the identity. This is equivalent to x ∈ VMOA. This proves
part (a).

To prove part (b), we simply run the argument the opposite direction: if x ∈
VMOA, then (1 + ḂḂ∗)−1, hence also A(k2)A(k

−1
2 ), is a compact perturbation of

the identity. This implies k2 is VMO.
(c) For the Caratheodory function in (58) to be VMO, ν has to be absolutely

continuous with respect to Lebesgue measure. Hence λ = 1.

Theorem 9 Suppose that g ∈ VMO(S1, SU(2)). Assume that Lemma 7 below
holds. Then the following are equivalent:

(a) A(g) and A1(g) are invertible.
(b) g has a triangular factorization.
(c) g has a (root subgroup) factorization of the form

g = k1(η)
∗
(
eχ 0
0 e−χ

)
k2(ζ ) (117)

where k1 and k2 are as in Theorem 8, χ ∈ VMO(S1; iR) and exp(−χ+) ∈
L2(S1).

Proof The equivalence of (a) and (b) is true more generally for g ∈
QC(S1, SL(2,C)).

To see that (a) and (b) are equivalent to (c), we will need some lemmas. To

simplify the notation, let h1 =
(

1 0
0 −1

)
.

Lemma 5 With appropriate domains

A(k∗
1e

χh1k2) = A(k∗
1e

χ−h1)A(eχ0+h1k2). (118)
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The same is true for A1 in place of A. Similarly

D(k∗
1e

χh1k2) = D(k∗
1e

χ−h1)D(eχ0+h1k2) (119)

and the same is true for D1 in place of D. ��
Proof The first statement is equivalent to showing that B(k∗

1e
χ−h1)C(eχ0+h1k2)

vanishes. Applied to

(
f1

f2

)
∈ H+, this equals

B

((
eχ−a∗

1 −e−χ−b1

eχ−b∗
1 e−χ−a1

))
C

((
eχ+d∗

2 −e−χ+c∗
2

e−χ+c2 e−χ+d2

))(
f1

f2

)
(120)

=
[(

eχ−a∗
1 −e−χ−b1

eχ−b∗
1 e−χ−a1

)(
(eχ+d∗

2f1 − e−χ+c∗
2f2)−

0

)]

+
(121)

=
[(

eχ−a∗
1(e

χ+d∗
2f1 − e−χ+c∗

2f2)−
eχ−b∗

1(e
χ+d∗

2f1 − e−χ+c∗
2f2)−

)]

+
= 0. (122)

This proves the first statement.
For the second statement involving A1, we are considering a polarization for H

where H+ now has orthonormal basis {εizj : i = 1, 2, j > 0} ∪ {ε1} (see (14)). We
let B1, C1 denote the Hankel operators relative to this shifted polarization. We must
show B1(k

∗
1e

χ−h1)C1(e
χ0+h1k2) vanishes. The calculation is basically the same, but

it depends on our normalizations in a subtle way. Applied to

(
f1

f2

)
∈ H+, this equals

B1

((
eχ−a∗

1 −e−χ−b1

eχ−b∗
1 e−χ−a1

))
C1

((
eχ+d∗

2 −e−χ+c∗
2

e−χ+c2 e−χ+d2

))(
f1

f2

)
(123)

= B1

((
eχ−a∗

1 −e−χ−b1

eχ−b∗
1 e−χ−a1

))(
(eχ+d∗

2f1 − e−χ+c∗
2f2)−

0

)
(124)

where the vanishing of the second entry uses the fact that c2(0) = 0. This now
equals

([eχ−a∗
1(e

χ+d∗
2f1 − e−χ+c∗

2f2)−]0+
[eχ−b∗

1(e
χ+d∗

2f1 − e−χ+c∗
2f2)−]+

)
= 0. (125)

This proves the second statement.
The third statement is equivalent to C(k∗

1e
χ−h1)B(eχ0+h1k2) = 0. This is a

similar calculation. ��
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Lemma 6 A(k∗
1e

χ−h1) and A(eχ0+h1k2) are injective on their domains, and simi-
larly for A1. ��
Proof The four statements are all proved in the same way. We consider the second
assertion concerning A. Suppose that

A

((
eχ+d∗

2 −e−χ+c∗
2

e−χ+c2 e−χ+d2

))(
f1

f2

)
= 0 (126)

This implies

([eχ+(d∗
2f1 − c∗

2f2)]+
e−χ+(c2f1 + d2f2)

)
) = 0 (127)

The second component implies c2f1 + d2f2 = 0, and this implies

(
f1

f2

)
= g

(
d2

−c2

)
(128)

where g is holomorphic in the disk. Plug this into the first component to obtain

[eχ+g(d2d
∗
2 + c2c

∗
2)]+ = [eχ+g]+ = 0 (129)

which implies g = 0. Thus f = 0.

Now assume that (c) of Theorem 9 holds. The lemmas imply that the Toeplitz
operator A(g) and the shifted Toeplitz operator A1(g) are injective. Since these
operators are Fredholm, they are invertible. Hence (c) implies (a) and (b).

Now assume (a) and (b). We define k1, k2 and χ using the explicit formulas in the
proof of Theorem 7. Note it is essential that we use these explicit formulas, because
(as we saw in the last section) the existence of singular inner functions implies that
root subgroup factorization is not unique in general - we have to choose χ wisely!
The formula (103) immediately implies that exp(−χ+) ∈ L2. The crux of the matter
is to show that if g ∈ VMO (or more generallyB1/p

p ), then the factors have the same
smoothness property.

Suppose first that χ = 0. In this case

A(g)A(g)∗ = A(k∗
1)A(k2)A(k2)

∗A(k1) (130)

= 1 − B(k1)B(k1)
∗ − A(k∗

1)B(k2)B(k2)
∗A(k1). (131)

This implies the following sum is a positive compact operator:

B(k1)B(k1)
∗ + A(k∗

1)B(k2)B(k2)
∗A(k1). (132)
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Does this imply that the two summands have to be compact?

Proposition 5 Assume A and B are positive operators on a Hilbert space H .

(a) If A + B is finite rank, then A and B are finite rank.
(b) If A + B is compact (or Schatten p-class), the A and B are compact (Schatten

p-class, respectively).

��
Proof

(a) For x ∈ ker(A + B),

〈Ax, x〉 + 〈Bx, x〉 = 0 (133)

together with polarization, this implies that 〈Ax, y〉 = 0 for x, y ∈ ker(A+B).
ker(A + B)⊥ is finite dimensional. So the range of A is contained in the finite
dimensional subspace

ker(A + B)⊥ + A(ker(A + B)⊥) (134)

and similarly for B. This proves A and B are finite rank.
(b) Given n, let Kn (Pn) denote the closed subspace (and the corresponding

orthogonal projection) spanned by eigenvectors corresponding to eigenvalues
λ for A + B with λ < 1/n. Kn is A + B invariant and |A + B|Kn < 1/n.
The orthogonal complement of Kn is finite dimensional. Because 〈Ax, x〉 ≤
〈(A + B)x, x〉 for x ∈ Kn and A is positive, the norm for |PnAPn| < 1/n.
Define An = A − PnAPn. This is a finite rank operator (its range is contained
in K⊥

n + AK⊥
n ) and |An − A| = |PnAPn| < 1/n. This shows that A is a norm

limit of finite rank operators. Hence A is compact.

The Schatten p-class claim is done in the same way, using the Schatten p-norm.

Thus if χ = 0, then g ∈ VMO implies that k1, k2 ∈ VMO.
Now consider the general case,

g = k∗
1e

χh1k2 =
(
a∗

1e
χd∗

2 − b1e
−χc2 −a∗

1e
χc∗

2 − b1e
−χd2

b∗
1e

χd∗
2 + a1e

−χc2 −b∗
1e

χc∗
2 + a1e

−χd2

)
. (135)

The following is a basic gap in this section, and we will simply assume its truth.

Lemma 7 (Conjectural) There exists a deformation χt : S1 → iR with χ |t=0 = χ ,
χt ∈ VMO for t > 0, and gt := k∗

1e
χ(t)h1k2 ∈ VMO(S1, SU(2)). ��
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Lemma 5 and some algebraic manipulations imply the following lemma.

Lemma 8 A(gt ) equals the sum of four terms

A(k∗
1)A(e

χth1)A(k2) + B(k∗
1 )C(e

χth1)A(k2) (136)

+ A(k∗
1)B(e

χt h1)C(k2)+ B(k∗
1 )C(e

χt h1)A(e−χth1)B(eχt h1)C(k2). (137)

The last three terms are compact for t > 0. ��
This implies that A(gt )A(g

−1
t ) will be the sum of 16 terms. For t > 0 all of the

terms, with one exception, are trace class, because eχt is smooth. The exceptional
term is A(k∗

1)A(e
χth1)A(k2)A(k

∗
2)A(e

−χth1)A(k1). This can be rewritten as

A(k∗
1)A(e

χth1)(1 − B(k2)B(k2)
∗)A(e−χth1)A(k1) = (138)

A(k∗
1)(1 − B(eχth1B(eχth1)∗)A(k1)

− A(k∗
1)A(e

χth1)B(k2)B(k2)
∗A(e−χth1)A(k1).

(139)

This equals the identity minus

B(k∗
1)B(k

∗
1 )

∗ + A(k∗
1)B(e

χt h1B(eχth1)∗)A(k1) (140)

+ A(k∗
1)A(e

χth1)B(k2)B(k2)
∗A(e−χth1)A(k1). (141)

This operator is positive becauseB(gt )B(gt )∗ is positive. Proposition 5 now implies
that B(k1) and B(k2) are compact, hence k1 and k2 are VMO. This now implies that
eχ is VMO. Lemma 4 implies that χ is VMO. This completes the proof of the
theorem. ��

Theorem 9 implies the following

Corollary 4 VMO(S1, SU(2)) is a topological manifold, where (y, χ, x) is a
topological coordinate system for the open set of loops in VMO(S1, SU(2)) with
invertible A and A1.

Acknowledgments The first author was supported in part by the American Institute of Mathemat-
ics and the NSF grant DMS-1929334.



Loops in SU(2) and Factorization, II 149

References

1. E. Basor, D. Pickrell, Loops in SL(2,C) and root subgroup factorization. Random Matrices
Appl. 7(3), 26 pp. (2018)

2. E. Basor, D. Pickrell, Loops in SU(2,C) and factorization, II (Long Version) (2022).
arXiv:2009.14267

3. H. Brezis, New questions related to the topological degree, in The Unity of Mathematics, in
Honor of the Ninetieth Birthday of I.M. Gelfand, Birkhauser (2006) 137–154

4. H. Brezis, L. Nirenberg, Degree theory and BMO, Part I: compact manifolds without
boundaries. Selecta Math. 1, 197–263 (1995)

5. H. Brezis, L. Nirenberg, Degree theory and BMO, Part II: Compact manifolds with boundaries.
Selecta Math. New Series 2(3), 309-368 (1996)

6. C. C. Moore, Group extensions and cohomology for locally compact groups, III. Trans. Am.
Math. Soc. 221(1), 1–33 (1976)

7. V. Peller, Hankel Operators and Their Applications. Springer Monographs in Mathematics
(Springer, New York, 2003)

8. D. Pickrell, Loops in SU(2,C) and factorization. J. Funct. Anal. 260, 2191–2221 (2011)
9. D. Pickrell, B. Pittmann-Polletta, Unitary loop groups and factorization. J. Lie Th. 20(1), 93–

112 (2010)
10. A. Pressley, G. Segal, Loop Groups. Oxford Mathematical Monographs (Oxford Science

Publications, Oxford University Press, New York, 1986)
11. W. Rudin, Real and Complex Analysis, 2nd edn. (McGraw-Hill, New York, 1974)
12. H. Widom, Asymptotic behavior of block Toeplitz matrices and determinants, II. Adv. Math.

21, 1–29 (1976)



Openness of Regular Regimes of
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Dedicated to the memory of Harold Widom

Abstract Consider the general complex polynomial external field

V (z) = zk

k
+

k−1∑

j=1

tj z
j

j
, tj ∈ C, k ∈ N.

Fix an equivalence class Tof admissible contours whose members approach ∞
in two different directions and consider the associated max-min energy problem
[14]. When k = 2p, p ∈ N, and Tcontains the real axis, we show that the set of
parameters t1, · · · , t2p−1 which gives rise to a regular q-cut max-min (equilibrium)
measure, 1 ≤ q ≤ 2p − 1, is an open set in C

2p−1. We use the implicit
function theorem to prove that the endpoint equations are solvable in a small enough
neighborhood of a regular q-cut point. We also establish the real-analyticity of the
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real and imaginary parts of the end-points for all q-cut regimes, 1 ≤ q ≤ 2p − 1,
with respect to the real and imaginary parts of the complex parameters in the external
field. Our choice of even k and the equivalence class T' R of admissible contours
is only for the simplicity of exposition and our proof extends to all possible choices
in an analogous way.

Keywords Equilibrium measure · Orthogonal polynomials · Asymptotic
analysis · Phase transition · Random matrices

Mathematics Subject Classification (2020) 42C05, 31A99

1 Introduction and Main Results

The present paper is part of an ongoing project whose main objective is the
investigation of the phase diagram and phases of the unitary ensemble of random
matrices with a general complex potential

V (z; t) = z2p

2p
+

2p−1∑

j=1

tj z
j

j
, tj ∈ C, p ∈ N, (1)

in the complex space of the vector of the parameters

t = (t1, · · · , t2p−1) ∈ C
2p−1.

The unitary ensemble under consideration is defined as the complex measure on the
space of n × n Hermitian random matrices,

1

Z̃n

e−nTrV (M;t)dM, (2)

where

Z̃n(t) =
∫

Hn

e−nTrV (M;t)dM (3)

is the partition function. As well known (see, e.g., [4]), the ensemble of eigenvalues
of M ,

Mek = zkek, k = 1, . . . , n,
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is given by the probability distribution

1

Zn(t)

∏

1≤j<k≤n
(zj − zk)

2
n∏

j=1

exp
[−nV (zj ; t)

]
dz1 · · · dzn, (4)

where

Zn(t) =
∫ ∞

−∞
· · ·
∫ ∞

−∞

∏

1≤j<k≤n
(zj −zk)

2
n∏

j=1

exp
[−nV (zj ; t)

]
dz1 · · · dzn, (5)

is the eigenvalue partition function. The partition functions Zn and Z̃n are related
by the formula,

Zn(t)

Z̃n(t)
= 1

πn(n−1)/2

n∏

k=1

k!. (6)

Formulae (5), (6) are well known for real polynomial potentials V (z) of even degree
(see, e.g., [4]), and their proof for a complex V (z) goes through without any change.

By Heine’s formula (see e.g. [23]) the multiple integral in (5) is, up to a multi-
plicative constant, the determinant of the Hankel matrix Hn[w] := {wj+k}k,j=0,...,n,
where w(x; t) ≡ exp[−nV (x; t)] and w� is the �-th moment of the weight w(x; t).
Correspondingly, one can also consider the system of monic orthogonal polynomials
{Pn(z; t)}n∈Z≥0 satisfying

∫

�

Pn(z; t)zkw(z; t)dz = 0 , for k = 0, 1, . . . , n − 1, (7)

where the infinite contour � is in some equivalence class of addmissible contours
(see below and Sect. 2.2 for more details). The connection of this system of
orthogonal polynomials and the partition function (5) can be seen as follows: the
orthogonal polynomial of degree n exists and is unique if the partition function
Zn(t), or the n×n Hankel determinant detHn[w], is nonzero. Indeed, the existence
follows from the explicit formula

Pn(z; t) ≡ Pn(z) = 1

detHn[w] det

⎛

⎜⎜⎜⎜⎜⎝

w0 w1 · · · wn−1 wn

w1 w2 · · · wn wn+1
...

...
...

...
...

wn−1 wn · · · w2n−2 w2n−1

1 z · · · zn−1 zn

⎞

⎟⎟⎟⎟⎟⎠
, (8)
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and the uniqueness follows from the fact that the linear system to find the
coefficients of Pn(z; t) ≡ zn + ∑n−1

j=0 aj (t)z
j , is of the form Hn[w]a = b, and

thus can be inverted if the Hankel determinant is nonzero.
It is well known that the normalized counting measure for the zeros of these

orthogonal polynomials weakly converges to the associated equilibrium measure νeq
(See e.g. [10] and references therein). For a review of the definitions and properties
of the equilibrium measure in the cases where the external field is real and complex
see Sects. 2.1 and 2.2.

The properties of the equilibrium measure when the external field is real have
been studied extensively over the last two decades or so (see e.g. [7, 13, 19] and
references therein), and we briefly review these properties in Sect. 2.1. In the real
case, the contour of orthogonality for the orthogonal polynomials with respect to
e−nV (x;t), t ∈ R

2p−1, is the real line and the equilibrium measure is supported on
finitely many closed real intervals. One does not need to deal with the problem of
choosing the contour of integration for orthogonal polynomials in the case where
the external field is real, as the solution of the associated extremal problem for the
equilibrium measure automatically ensures that the real line is the correct contour
of integration.

In this work we are considering polynomials defined by a “complex orthogonality
condition”, of the form (7). It is easy to see that the polynomials, when they are
uniquely determined by the above orthogonality condition, are independent of the
choice of contour, within some equivalence class of contours. Moreover, for a
given weight function w(z; t) ≡ e−nV (z;t), there are multiple possible choices of
equivalence classes of contours (see for instance [2, 3, 14]), and each equivalence
class yields a different sequence of orthogonal polynomials.

Even though for each choice of the equivalence class of contours, our method
would work, for the sake of simplicity of exposition, we will restrict ourselves as
follows: We will assume that the external field is a polynomial of degree 2p (see
(1)), and we will choose the class of contours of integration that are all in the same
equivalence class as the real axis (also see Sect. 6).

As opposed to the case of a real measure on the real axis defining more classical
polynomials all of whose zeros are real, the case of complex orthogonality produces
polynomials whose zeros exhibit more complicated behavior. In fact, as the degree
of the polynomials tends to infinity, the zeros accumulate on nontrivial curves in the
complex plane.

In order to carry out an asymptotic analysis of the orthogonal polynomials with
complex weights, a new problem arises which is the effective selection of a contour
of integration for which subsequent analysis is possible. It turns out that the effective
selection of the contour of integration determines within it the accumulation set of
the zeros of the orthogonal polynomials, which is the support of the equilibrium
measure (suitably generalized to the complex case).

The problem of determining this important set in the plane, which is later used
as a portion of the contour of integration, is actually connected to a classical energy
problem dating back at least to Gauss—the energy of a continuum of particles in
the presence of an external field that experiences a repelling force whose potential



Openness of Regular Regimes of Complex Random Matrix Models 155

is logarithmic. The set is determined by considering, for each member � of the class
of admissible contours T, the energy minimization problem on �, and then selecting
a contour �0 ∈ Tthat maximizes this minimum energy. In other words, �0 solves
the following max-min problem:

max
�∈T

⎧
⎨

⎩ min
supp (ν)⊂�
ν(C)=1

⎧
⎨

⎩

∫∫

�×�

log
1

|z − s| dν(z)dν(s) +
∫

�

)V (s) dν(s)

⎫
⎬

⎭

⎫
⎬

⎭ . (9)

The admissible sectors (in which the admissible equivalence classes of contours
could approach ∞) are those in which the requirement

lim
z→∞ )V → +∞ (10)

holds, which allows one to associate the Euler-Lagrange characterization of the
equilibrium measure[19]

Uν(z)+ 1

2
)V (z) = �, z ∈ supp ν,

Uν(z)+ 1

2
)V (z) ≥ �, z ∈ � \ supp ν,

(11)

where

Uν(z) =
∫

�

log
1

|z − s| dν(s) (12)

is the logarithmic potential of the measure ν [19]. There is quite a history of reseach
centering on this variational problem in approximation theory and potential theory.
See, for example [11, 14–16, 18, 20, 21] and references therein.

In [14] the authors prove the quite general result that for an allowable1 equiva-
lence class Tof contours, the solution �0 to the above extremal problem exists, the
equilibrium measure and, thus, its support J are unique, and the support J ⊂ �0
of the equilibrium measure is a finite union of disjoint analytic arcs. Moreover, they
show that the support J of the equilibrium measure is part of the critical graph of
the quadratic differential Q(z)dz2, that is the totality of solutions to

)
(∫ z

b

√
Q(s)ds

)
= 0, (13)

1 Characterized by a notion of non-crossing partitions of {1, · · · , N}, where N is the number of
sectors in which (10) holds, see [14].
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(see Sect. 2.5 for some background on quadratic differentials and the paragraph
that follows Definition 3.1 for details on the connection of this requirement with
the Euler-Lagrange characterization of the equilibrium measure). In (13) Q is the
polynomial (see Proposition 3.7 of [14])

Q(z) =
(

−ω(z) + V ′(z)
2

)2

, (14)

in which ω is the resolvent of the equilibrium measure

ω(z) =
∫

J

dνeq(x)

z − x
, z ∈ C \ J. (15)

Summarizing, we will consider the above max-min variational problem which
is associated to the orthogonal polynomials with respect to e−nV (z;t), t ∈ C

2p−1,
in which the contour �t in the complex z-plane, being the solution of the max-
min problem, is chosen from the members of the equivalence class of contours T

(defined in Sect. 2.2 below - each member being a simply connected curve that tends
to ∞ in two different directions, in sectors surrounding the positive and negative
real axis). For a “generic” choice of t ∈ C

2p−1, the support Jt of the equilibrium
measure is a finite union of disjoint analytic arcs (which are also referred to as
cuts), at each endpoint the density of the equilibrium measure vanishes like a square
root dνV (s; t) = (2π i)−1h(s; t)

(√
R(s; t)

)
+ ds, where h(s; t) and R(s; t) are

polynomials in s, and R has the property that its only zeros are simple zeros at
the endpoints of the cuts. Moreover, for a generic t the zeros of h(s; t) do not lie on
Jt and one can find a complementary set to Jt to build the desired infinite contour�t

so that the requirement outside the support in (11) is satisfied. In fact, for a generic
t these complementary contours can all be chosen to satisfy the strict inequality in
(11), or equivalently chosen so that they all lie in the so-called t-stable lands:

{
z : )ηq(z; t) < 0

}
, (16)

where

ηq(z; t) := −
∫ z

bq(t)

h(s; t)
√
R(s; t)ds, (17)

and bq(t) is the rightmost endpoint (for more details see Definition (3.1) and the
paragraph that follows it).
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However, we may expect that the above regularity properties2 do not hold for
certain choices of t . For example, for some values of t it could happen that

(a) one or more zeros of h(s; t) coincide with the endpoints and thus alter the square
root vanishing of the density at one or more endpoints,

(b) one or more zeros of h(s; t) may hit the support Jt of the equilibrium measure,
or

(c) it may not be possible to choose the complementary contours to entirely lie in
the t-stable lands.

Such values of t at which the aforementioned regularity properties fail, also form
boundaries in the phase space C

2p−1, across which the number of support cuts of
the equilibrium measure changes.

Let us highlight these irregularity properties at non-generic parameter values
using the complex quartic external field:

V (z; σ) ≡ z4

4
+ σ

z2

2
, σ ∈ C,

for which one has (regular) one-cut, two-cut, and three-cut regions in the complex σ -
plane which are denoted by O1,O2, and O3 respectively. In [2] the phase diagrams
for a variety of choices of integration contours for this model have been presented.
In [6] the particular case of admissible contours that approach ∞ along the real axis
was considered and the phase diagram (as shown in Fig. 13) was proven. Using the
explicit formulae for the end-points of Jσ and zeros of h(z; σ) in the one-cut case,
one can easily find that the non-generic parameter values corresponding to case (a)
above are only σ = ±i

√
12, for which the points ∓z0 (zeros of h(z; σ)) coincide

with the endpoints ±b1 [2, 6]. The non-generic points on the boundaries labeled
by γ1 and γ2 represent the σ values for which the zeros of h(z; σ) hit the support
of the equilibrium measure (see Fig. 2). Figure 3 corresponds to item (c) above, in
which the regions in light blue represent the σ -stable lands. Figures 3a–f show the
contour �σ for six choices of parameters σ ∈ O1, while Fig. 3g corresponds to a
non-generic value of σ ∈ γ3 (see Fig. 1) where the complementary part �σ \ Jσ
(the orange dashed line in Fig. 3g) can not avoid going through at least one point
which does not belong to the σ -stable lands (see item (c) above). Finally Fig. 3h
corresponds to σ = −1.35 + 4i which is clearly not a one-cut parameter as there
is no connection from the endpoint b1 to ∞ in the sector originally chosen for the
orthogonal polynomials, however, it turns out that it is a regular three-cut parameter
[6].

It should also be mentioned that transitions through these boundaries correspond
qualitatively to phase transitions in the asymptotic behavior of the orthogonal
polynomials. For example, in the simpler case of real potentials, if there is one

2 For a precise definition of regularity see Sects. 2.4, 3 and Definition 3.1.
3 Figures 1, 2, and 3 are taken from [6].



158 M. Bertola et al.

VII
VI

VIIIIX

XII

II

XI

K1

K3

K2

γ5

- 2

- 5.0 - 2.5 0 2.5 5.0

0

2.5

5.0

- 5.0

- 2.5

Im
(σ

)

Three - cut region

Three - cut region

Re(σ)

Two - cut region One - cut region

γ3

γ1

γ2

γ4

γ6 - i 12

i 12

Fig. 1 The phase diagram of the complex quartic random matrix model in the σ -plane.

contour comprising the support, the oscillatory behavior of the polynomails is
expressed via trigonometric functions [8], while if there are several intervals, then
the oscillatory behavior is descirbed by a Jacobi theta function associated to the
Riemann surface of R(z; t) [9].

The main purpose of this work is to present a brief self-contained proof of the fact
that if for some t∗ ∈ C

2p−1 the corresponding equilibrium measure is q-cut regular,
then there exists a small enough neighborhoodDε(t

∗) of t∗ so that for all t ∈ Dε(t
∗)

the associated equilibrium measures are also q-cut regular. Lemma 4.2 of [3] gives
another proof of the openness of regular set of parameters using the determinantal
form of the function ηq , and uses arguments from [24, 25]. The proof that we present
here avoids computations of the Jacobian determinant, but rather has the flavor of a
vanishing lemma from the theory of Riemann-Hilbert problems, which permits us to
arrive at a contradiction if the Jacobian determinant should vanish at a regular point.
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Fig. 2 Snapshots of the continuous deformation (see Theorem 1.3) of the critical graph J
(1)
σ . (a)

The critical graph J
(1)
σ of the one-cut quadratic differential for the complex quartic model at a

σ ∈ O1. At this value of σ all regularity properties are satisfied. (b) The critical graph J
(1)
σ at a

critical value σ ∈ γ1 (see Fig. 1). The zeros of h(z; σ) at this value hit Jσ , and thus σ /∈ O1. (c)
The critical graph J

(1)
σ at a σ /∈ O1. It turns out that this value of σ actually is a regular three-cut

value as shown in [6].
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Fig. 3 This sequence of figures shows allowable regions in light blue through which the contour
of integration (for the orthogonal polynomials) must pass, for a varying collection of values of
σ . Regions in light blue are the σ -stable lands where )[η1(z; σ)] < 0 and the regions in white
are the σ -unstable lands where )[η1(z; σ)] > 0 (see (16) and (17)). Notice that the sigma values
associated with (g) and (h) do not belong to O1. σ = 1 + i ∈ O1. (b) σ = 1 + 3.8i ∈ O1. (c)
σ = 1 + 3.92i ∈ O1. (d) σ = 1 + 4i ∈ O1. (e) σ = 4i ∈ O1. (f) σ = −1 + 4i ∈ O1. (g)
σcr , −1.15 + 4i. (h) σ = −1.35 + 4i.
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Some of these arguments use ideas based on Riemann surface theory contained in
[1] in which Lemma 4.1 provides a proof. Indeed, in Sect. 5 we prove:

Theorem 1.1 The regular q-cut regime is open.

The proof of Theorem 1.1 relies upon showing that the underlying equations for
finding the endpoints are solvable for every t ∈ Dε(t

∗). To this end in § 4 we
formulate the end-point equations in the q-cut case and prove the following result:

Theorem 1.2 The equations which determine the 2q endpoints of the regular q-cut
regime are solvable for all t in a small enough neighborhood of a regular q-cut
point t∗, all endpoints aj (t), bj (t) are distinct, and )aj (t), -aj (t), 1 ≤ j ≤ q are
real-analytic functions of )tk , -tk , 1 ≤ k ≤ 2p − 1.

Another important ingredient in the proof of Theorem 1.1, mainly useful for
establishing that the regularity properties are preserved for every t ∈ Dε(t

∗), is
the continuity of the critical graph of the associated quadratic differential which,
in particular, has within itself the q-cut support of the equilibrium measure. Apart
from the continuity of the support Jt , knowing the continuity of the complementary
part of the critical graph, i.e. Jt \ Jt , is also very important. This is because
the "closure of a strait" (recall, for example, the passage from σ = −1 + 4i to
σcr , −1.15 + 4i depicted in Fig. 3f and g) is directly tied to the behavior of the
complementary part Jt \ Jt of the critical graph, which leads to the impossibility
of having complementary contours �t \ Jt to lie entirely in the t-stable lands (see
the orange dashed line in Fig. 3g). To that end, in § 5, for the entirety of the critical
graph Jt we prove:

Theorem 1.3 The critical graph Jt of the quadratic differential

Q(z; t)dz2 ≡
(

−ω(z; t)+ V ′(z; t)

2

)2

dz2,

and thus the support Jt of the equilibrium measure, deform continuously with
respect to t .

2 Equilibrium Measure and Quadratic Differentials

2.1 Equilibrium Measure for Orthogonal Polynomials
Associated with Real External Fields

Let

V (x; t) = x2p

2p
+

2p−1∑

j=1

tj z
j

j
,
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be any polynomial of even degree with real coefficients. Now consider the following
energy functional which is defined on the space of probability measures on R:

IV (ν) :=
∫

R

∫

R

log
1

|x − y|dν(x)dν(y)+
∫

R

V (x)dν(x). (18)

The equilibrium measure, νeq, is a probability measure on R which achieves the
infimum of the above functional:

inf
M1(R)

IV (ν) = IV (νeq), (19)

where

M1(R) :=
{
ν : ν ≥ 0,

∫

R

dν = 1

}
.

For this extremal problem, it is known that (see, e.g., [4, 7, 9])

1. The equilibrium measure exists and is unique.
2. The equilibrium measure is absolutely continuous with respect to the Lebesgue

measure,

dνeq(z) = ρV (z) dz.

3. The support of νeq consists of finitely many closed intervals,

J = supp νeq =
q⋃

k=1

[ak, bk],

where q ≤ p. The intervals {[ak, bk], k = 1, . . . , q} of the support of νeq are
called the cuts. We may assume that a1 < b1 < a2 < b2 < . . . < aq < bq .

4. The density of the equilibrium measure on the support J can be written in the
form,

ρV (x) = 1

2π i
h(x)R

1/2
+ (x), R(x) =

q∏

k=1

(x − ak)(x − bk), (20)

where h(x) is a polynomial, such that h(x) ≥ 0 for all x ∈ J , and R1/2(x) is the
branch on the complex plane of the square root of R(x), with cuts on J , which
is positive for large positive x. Respectively, R1/2

+ (x) is the value of R1/2(x) on
the upper part of the cut.
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5. Finally, the polynomial h(x) is the polynomial part of the function
V ′(x)
R1/2(x)

at

infinity, i.e.,

V ′(x)
R1/2(x)

= h(x)+ O(x−1). (21)

This determines h(x) and hence the equilibrium measure νeq uniquely, as long as
we know the end-points a1, b1, . . . , aq, bq .

An important property of this minimization problem (19) is that the minimizer
νeq is uniquely determined by the Euler–Lagrange variational conditions:

2
∫

R

log |x − y| dνV (y)− V (x) = l, for x ∈ J, (22)

2
∫

R

log |x − y| dνV (y)− V (x) ≤ l, for x ∈ R \ J, (23)

for some real constant Lagrange multiplier l, which is the same for all cuts [ak, bk].
From this we conclude that

∫ ak+1

bk

h(x)R1/2(x) dx = 0, k = 1, . . . , q − 1. (24)

Therefore the polynomial h(x) has a zero on every interval [bk, ak+1], which means
that degh ≥ q − 1.

We also consider the resolvent of the equilibrium measure defined as

ω(z) =
∫

J

dνV (x)

z − x
, z ∈ C \ J. (25)

This function, which is very useful to construct the density of the equilibrium
measure, has the following analytical and asymptotic properties:

1. ω(z) is analytic on the set C \ J .
2. On J , the equilibrium condition (34) implies that

ω+(x)+ ω−(x) = V ′(x), (26)

and the Plemelj–Sokhotski formula implies

ω+(x)− ω−(x) = −2πiρV (x). (27)

Combining these equations with formula (20) for ρV (x), we obtain that

ω(z) = V ′(z)
2

− h(z)R1/2(z)

2
. (28)
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3. As z → ∞,

ω(z) = 1

z
+ m1

z2 + . . . , mk =
∫

J

xkρV (x) dx. (29)

2.2 Equilibrium Measure for Orthogonal Polynomials
Associated with Complex External Fields

In this section we follow the work of Kuijlaars and Silva [14] (See also [1, 15, 18]).
Let us consider the general complex external field of even degree

V (z) = z2p

2p
+

2p−1∑

j=1

tj z
j

j
, tj ∈ C, j = 1, · · · , 2p − 1. (30)

For 0 < ε < π/4p, consider the sectors

S+
ε =

{
z ∈ C

∣∣∣ | arg z| ≤ π

4p
− ε

}
, S−

ε =
{
z ∈ C

∣∣∣ | arg z − π | ≤ π

4p
− ε

}
.

(31)

Observe that in these sectors we particularly have,

lim
z→∞ )V (z) = ∞. (32)

By a contour we mean a continuous curve z = z(t), −∞ < t < ∞, without self-
intersections, and we say that a contour � is admissible if

1. The contour � is a finite union of C1 Jordan arcs.
2. There exists ε > 0 and r0 > 0, such that � goes from S−

ε to S+
ε in the sense that

∀ r > r0, ∃ t0 < t1 such that

z(t) ∈ S−
ε \ Dr ∀ t < t0; z(t) ∈ S+

ε \ Dr ∀ t > t1,

where Dr is the disk centered at the origin with radius r . We will assume that the
contour � is oriented from (−∞) to (+∞), where (−∞) lies in the sector S−

ε

and (+∞) in the sector S+
ε . The orientation defines an order on the contour �.

An example of an admissible contour is the real line. We denote the collection of all
admissible contours by T.
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For � ∈ T, let P(�) be the space of probability measures ν on �, satisfying

∫

�

|)V (s)| dν(s) < ∞. (33)

Consider the following real-valued energy functional on P(�):

IV,�(ν) :=
∫∫

�×�

log
1

|z − s| dν(z)dν(s) +
∫

�

)V (s) dν(s). (34)

Then there exists a unique minimizer νV,� of this functional (see [19]) so that

min
ν∈P(�)

IV ,�(ν) = IV,�(νV,�). (35)

The minimizing probability measure νV,� is referred to as the equilibrium
measure of the functional IV,�(ν), and its support is a compact set JV,� ⊂ �,
and is uniquely determined by the Euler–Lagrange variational conditions. Namely,
νV,� is the unique probability measure ν on � such that there exists a constant l, the
Lagrange multiplier, such that

Uν(z)+ 1

2
)V (z) = �, z ∈ supp ν,

Uν(z)+ 1

2
)V (z) ≥ �, z ∈ � \ supp ν,

(36)

where

Uν(z) =
∫

�

log
1

|z − s| dν(s) (37)

is the logarithmic potential of the measure ν [19].
Now we maximize the minimized energy functional IV (νV,�) over all admissible

contours� ∈ T. In [14], the authors prove that the maximizing contour�t ∈ Texists,
and the equilibrium measure

νeq ≡ νV,�t
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is supported by a set Jt ⊂ �t which is a finite union of analytic arcs �t [ak, bk] ⊂
�t ,

4 k = 1, . . . , q ,

Jt =
q⋃

k=1

�t [ak, bk],

that are critical trajectories of a quadratic differential5 Q(z) dz2, where Q(z) is a
polynomial of degree

degQ(z) = 2 degV (z)− 2 = 4p − 2. (38)

Moreover, in [14] it is proven that the polynomial Q(z) is equal to

Q(z) =
(

−ω(z) + V ′(z)
2

)2

, (39)

where

ω(z) =
∫

Jt

dνeq(s)

z − s
(40)

is the resolvent of the measure νeq. From

1

z − s
= 1

z
+ s

z2 + s2

z3 + . . . ,

we obtain that ω(z) = O(z−1) as z → ∞:

ω(z) = 1

z
+ m1

z2 + . . . , with mk =
∫

Jt

skdνeq(s). (41)

Additionally, the equilibrium measure νeq is absolutely continuous with respect
to the arc length. More precisely we have

dνeq(s) = 1

π i
Q+(s)1/2ds, (42)

where Q+(s)1/2 is the limiting value of the function

Q(z)1/2 = −
∫

Jt

dνeq(s)

z − s
+ V ′(z)

2
, (43)

4 Given two points s1, s2 ∈ C ∪ {±∞} on �t , by �t (s1, s2) and �t [s1, s2] we respectively denote
the open and closed “intervals” on �t starting at s1 and ending at s2.
5 See Sect. 2.5 for a review of definitions and basic facts about quadratic differentials.
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as z → s ∈ Jt from the left-hand side of Jt with respect to the orientation
of the contour �t from (−∞) to ∞. A very important result in [14] is that the
equilibrium measure νeq is unique as the max-min measure which immediately gives
the uniqueness of the set Jt . On the other hand, the infinite contour �t is not unique
because it can be deformed outside of the support Jt of νeq, as long as �t \ Jt lies
in the t-stable lands. To summarize, one can choose the contour �t to be the union

�t = Jt ∪ �̂t ∪
̂
�t ,

where �̂t is a (non-unique) set consisting of q − 1 finite arcs in the t-stable lands
so that Jt ∪ �̂t is connected and

̂
�t consists of two (non-unique) infinite arcs in the

t-stable lands one connecting −∞ to a1(t) and the other connecting bq(t) to +∞.

2.3 The g-Function

As usual we define the “g-function” as

g(z) =
∫

Jt

log(z − s) dνeq(s), (44)

where for a fixed s ∈ Jt , we consider a cut of log(z − s) to be �t (−∞, s]. Notice
that by (40) we have

g′(z) =
∫

Jt

dνeq(s)

z − s
= ω(z). (45)

Moreover, from (37), the logarithmic potential Uνeq(z) can be written as

Uνeq(z) =
∫

Jt

log
1

|z − s| dνeq(s) = −)g(z), (46)

and therefore the Euler-Lagrange variational conditions (36) can be expressed as

− )g(z)+ 1

2
)V (z) = �, z ∈ Jt ,

− )g(z)+ 1

2
)V (z) ≥ �, z ∈ �t \ Jt .

(47)
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2.4 Regular and Singular Equilibrium Measures

An equilibrium measure νeq is called regular6 if the following three conditions hold:

1. The arcs �t [ak, bk], k = 1, . . . , q, of the support of νeq are disjoint.
2. The end-points {ak, bk, k = 1, . . . , q} are simple zeros of the polynomial Q(s).
3. There is a contour �t containing the support Jt of νeq such that

Uνeq(z)+ 1

2
)V (z) > �, z ∈ �t \ Jt . (48)

An equilibrium measure νeq is called singular (or critical) if it is not regular.

2.4.1 Regular Equilibrium Measures

Assume that the equilibrium measure νeq is regular. Because the resolvent

ω(z) =
∫

Jt

dνeq(s)

z − s
(49)

is analytic on C \ Jt , one can see from equation (39) that all the zeros of the
polynomial Q(z) different from the end-points {ak, bk, k = 1, . . . , q} must be
of even degree, and thus Q(z) can be expressed as

Q(z) = 1

4
h(z)2R(z), (50)

where h(z) is some polynomial,

h(z) =
r∏

j=1

(z − zj ), (51)

having zeros z1, . . . , zr which are distinct from the 2q end-points {ak, bk}qk=1, and

R(z) =
q∏

k=1

(z − ak)(z − bk). (52)

6 The set of regular q-cut parameters giving rise to regular q-cut equilibrium measures is defined
in Definition 3.1.
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Therefore,

Q(z) = 1

4
h(z)2R(z) = 1

4

r∏

j=1

(z − zj )
2

q∏

k=1

(z − ak)(z − bk). (53)

In (51), and (53) if r = 0, it is understood that h(z) ≡ 1. By taking the square root
with the plus sign, we obtain that

Q(z)1/2 = 1

2
h(z)R(z)1/2 = 1

2

r∏

j=1

(z − zj )

[
q∏

k=1

(z − ak)(z − bk)

]1/2

, (54)

Correspondingly, equation (42) can be rewritten as

dνeq(z) = 1

2π i
h(z)R+(z)1/2dz = 1

2π i

r∏

j=1

(z − zj )

[
q∏

k=1

(z − ak)(z − bk)

]1/2

+
dz.

(55)

From (39), (45), and (54) we can write

g(z; t) = V (z; t) + �
(q)∗ (t)

2
+ ηq(z; t)

2
, z ∈ C \ �t (−∞, bq(t)], (56)

where

ηq(z; t) := −
∫ z

bq(t)

r∏

�=1

(s − z�(t))

⎡

⎣
q∏

j=1

(
s − aj (t)

) (
s − bj (t)

)
⎤

⎦
1/2

ds, (57)

z ∈ C \ �t (−∞, bq(t)], in which the path of integration does not cross

�t (−∞, bq(t)],7 and �
(q)∗ (t) is chosen such that g(z; t) asymptotically behaves

like log z as z → ∞.8 Also from (39) and (54) we have

g′+(z; t)+ g′−(z; t) = V ′(z; t), z ∈ Jt =
q⋃

j=1

�t (aj (t), bj (t)). (58)

7 See the paragraph following (43) regarding the choice of �t , and for the notation �t (−∞, bq (t)]
see footnote 4.
8 For the quartic potential discussed in the introduction the explicit formulae for �(q)∗ (t) are derived
for q = 1 and q = 2 in [6].
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We use (45) and (50) to rewrite (39) as:

g′(z; t) = 1

2

[
V ′(z; t)− h(z; t)R1/2(z; t)

]
. (59)

2.5 Quadratic Differentials

In this subsection we briefly remind some definitions and basic facts about quadratic
differentials from [22]. The zeros and poles of Q(z) are referred to as the critical
points of the quadratic differential Q(z)dz2, and all other points are called regular
points of Q(z)dz2. For some fixed value θ ∈ [0, 2π), the smooth curve Lθ along
which

argQ(z)dz2 = θ,

is defined as the θ -arc of the quadratic differential Q(z)dz2, and a maximal θ -arc
is called a θ -trajectory. The above equation implies that a θ -arc can only contain
regular points of Q, because at the critical points argQ(z) is not defined. For a
meromorphic quadratic differential, there is only one θ -arc passing through each
regular point.

We will refer to a π-trajectory ( resp. 0-trajectory) which is incident with a critical
point as a critical trajectory (resp. critical orthogonal trajectory). If b is a critical
point of Q(z)dz2, then the totality of the solutions to

)
(∫ z

b

√
Q(s)ds

)
= 0,

is referred to as the critical graph of
∫ z
b

√
Q(s)ds which is referred to as the natural

parameter of the quadratic differential Q(z)dz2 (see §5 of [22]). A Jordan curve !
composed of open θ -arcs and their endpoints, with respect to some meromorphic
quadratic differential Q(z)dz2, is a simple closed geodesic polygon (also referred to
as a Q-polygon). The endpoints may be regular or critical points of Q(z)dz2, which
form the vertices of the Q-polygon. ! is called a singular geodesic polygon, if at
least one of its end points is a singular point.

Now we can state the Teichmüller’s lemma: for a meromorphic quadratic differ-
ential Q(z)dz2, assume that ! is a Q-polygon, and let V! and Int! respectively
denote its set of vertices and interior. Then

#V! − 2 =
∑

z∈V!
(ord(z)+ 2)

θ(z)

2π
+

∑

z∈Int!
ord(z), (60)

where θ(z) denotes the interior angle of ! at z, and ord(z) is the order of the point
z with respect to the quadratic differential. That is, ord(z) = 0 for a regular point,
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ord(z) = n if z is a zero of order n ∈ N, and ord(z) = −n if z is a pole of order
n ∈ N of the quadratic differential. We use the Teichmüller’s lemma in the proof of
Theorem 1.1 in Sect. 5.

3 Endpoint Equations and the Regular q-Cut Regime

Notice that from (58) we have

R
−1/2
+ (z)g′+(z) = −R

−1/2
− (z)

(
V ′(z)− g′−(z)

) = R
−1/2
− (z)g′−(z) − R

−1/2
− (z)V ′(z)

Therefore by Plemelj-Sokhotskii we have

g′(z) = R1/2(z)

2π i

∫

J

V ′(s)
R

1/2
+ (s)

ds

s − z
= −R1/2(z)

2π iz

∞∑

�=0

T�

z�
(61)

where

T� =
∫

J

V ′(s)
R

1/2
+ (s)

s�ds , � ∈ N ∪ {0}. (62)

From (61) and the requirement that g′(z) = z−1 +O(z−2) as z → ∞, we obtain
the following q + 1 equations:

T� = 0 , � = 0, 1, . . . , q − 1 , and Tq = −1 . (63)

We have q − 1 gaps, and thus q − 1 gap conditions:

)
∫ aj+1

bj

h(s)R1/2(s)ds = 0 , j = 1, . . . , q − 1 . (64)

Since the equilibrium measure is positive along the support, we immediately find
the following q − 1 real conditions

)
∫ bj

aj

h(s)R
1/2
+ (s)ds = 0 , j = 1, . . . , q − 1 . (65)

Notice that the condition on the last cut

)
∫ bq

aq

h(s)R
1/2
+ (s)ds = 0 ,
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is a consequence of the q − 1 conditions in (65) and should not be considered as an
extra requirement.

Being in the q-cut case, we have to determine 2q endpoints and thus 4q real
unknowns )a1,-a1, )a2,-a2, · · · )bq,-bq . These unknowns are determined by
the 4q real conditions given by (63), (64), and (65).

Let F be the vector-valued function, whose 4q entries are defined as

F2� = )T� + δ�q, F2�+1 = -T�, � = 0, . . . , q , (66)

F2q+1+j = )
∫ bj

aj

h(s)R
1/2
+ (s)ds, j = 1, . . . , q − 1 , (67)

F3q+j = )
∫ aj+1

bj

h(s)R1/2(s)ds, j = 1, . . . , q − 1 . (68)

We express the equations (63), (64), and (65) for determining the branch points as

F = 0. (69)

From the requirement (41), and equation (59), in particular, we know that

degV − 1 = degh + degR

2
, (70)

therefore, recalling (30), (51), and (52) we obtain

r = 2p − 1 − q. (71)

Since h is a polynomial, we obtain the following bound on the number of cuts

q ≤ 2p − 1. (72)

Definition 3.1 The regular q-cut regime which is denoted by Oq is a subset in the
phase space C

2p−1 which is defined as the collection of all t ≡ (t1, · · · , t2p−1) ∈
C

2p−1 such that the points aj (t) , bj (t), with j = 1, · · · , q as solutions of (69) are
all distinct and

1. The set J (q)
t of all points z satisfying

) [ηq(z; t)
] = 0,

contains a single Jordan arc connecting aj (t) to bj (t), for each j = 1, · · · , q .

2. The points z� (t) , � = 1, · · · , 2p − 1 − q , do not lie on J
(q)
t :=⋃q

j=1 �t

[
aj (t) , bj (t)

]
.
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3. There exists a complementary arc �t (bq (t) ,+∞) which lies entirely in the
component of the set

{
z : ) [ηq(z; t)

]
< 0

}
,

which encompasses (M1 (t) ,+∞) for some M1 (t) > 0.
4. There exists a complementary arc �t (−∞, a1 (t)) which lies entirely in the

component of the set

{
z : ) [ηq(z; t)

]
< 0

}
,

which encompasses (−∞,−M2 (t)) for some M2 (t) > 0.
5. There exists a complementary arc �t

(
bj (t) , aj+1 (t)

)
, for each j = 1, · · · , q −

1 which lies entirely in the component of the set

{
z : ) [ηq(z; t)

]
< 0

}
.

Let us now briefly discuss the significance of equation (13) and the requirement
(16) in relation to the above definition. Taking real parts from both sides of (56) we
obtain

− 1

2
)ηq(z; t) = −)g(z; t) + 1

2
)V (z; t) − �, (73)

where � denotes − 1
2)�(q)∗ (t). So for a fixed t , comparing with (47), the support of

the equilibrium measure, is the collection of q arcs as solutions to )ηq(z; t) = 0
(same as (13)) connecting aj (t) to bj (t), j = 1, · · · , q . For the regular case one
also needs to ensure that (48) is also satisfied. In view of (73), this explains why we
require that �t \ Jt must lie in the so-called t-stable lands as defined by (16).

3.1 Structure of the Critical Graph

In this subsection we show basic structural facts about the critical graph J
(q)
t for a

regular q-cut t . Recalling (57) we notice that as z → ∞ we have

ηq(z; t) = − zr+q+1

r + q + 1

(
1 + O(z−1)

)
= −z2p

2p

(
1 + O(z−1)

)
, (74)

where we have used (71). Therefore the components of J (q)
t near ∞ must approach

the 4p distinct angles θ

θ = π

4p
+ kπ

2p
, k = 0, 1, · · · , 4p − 1, (75)
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satisfying cos(2pθ) = 0, where we have parameterized z in the polar form Reiθ .
Moreover, at each endpoint there are three critical trajectories of the quadratic
differential Q(z)dz2 making angles of 2π/3 at the critical point. To see this, let
α denote either aj or bj , j = 1, · · · , q . We have

ηq(z) = −
∫ α

bq

h(s)
√
R(s)ds −

∫ z

α

h(s)
√
R(s)ds.

Notice the first term on the right hand side is an imaginary number, which can
be seen if we break it up into integrals over cuts and gaps and using the endpoint
conditions (64) and (65). The integrand of the second integral on the right hand side
is O

(
(s − α)1/2

)
, and thus

)η(z) = O
(
(z − α)3/2

)
, as z → α, � = 1, · · · , q.

This ensures that there are 3 local trajectories emanating from α ∈ {aj , bj }qj=1
as solutions of )η(z) = 0. Out of these 3 × 2q local critical trajectories, 2q of them
make the q cuts, and thus we need to determine the destinations of the remaining 4q
local critical trajectories. Having solutions in the 4p directions given in (75) near
infinity guides us to investigate if all or some of the 4q local critical trajectories
can terminate at infinity along one of the 4p angles in (75). We define a hump
to be a part of J (q)

t which a) does not hit any critical points of Q(z)dz2, and b)
starts and ends at ∞ at two of the angles in (75).9 Notice that there are no singular
finite geodesic polygons with one or two vertices associated to the q-cut quadratic
differential Q(z)dz2 given by (53). This is implied by the Teichmüller’s lemma (60)
and the fact that Q is a polynomial [6].

Let us first assume that that none of z1, · · · , zr lies on J
(q)
t \ Jt . By the

discussion in the previous paragraph the two local trajectories emanating from one
end point (among the 4q remaining local trajectories, see the beginning of the
previous paragraph) can not connect to one another to form a geodesic polygon with
one vertex. Therefore the 4q local trajectories have no destiny other than forming
some connections among themselves or to terminate at ∞ (see (75)). Now consider
the following three cases

1. p > q . This means that the remaining 4q local trajectories are not enough to
exhaust all 4p angles given in (75) and thus J (q)

t must also be constituted from
2(p − q) humps to correspond to the unoccupied 4(p − q) directions at infinity.

2. p = q . in this case J (q)
t does not have any humps, since the remaining 4q local

trajectories are enough to exhaust all 4p angles given in (75).
3. p < q . This means that there are not enough destinations for 4(q − p) of the

remaining 4q local trajectories, and thus the only possibility is that we have 2(q−

9 See, e.g. Figs. 2a and 3 except for 3c and 3g.
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p) connections among the 4(q−p) local trajectories as described in the previous
paragraph.

Notice that one can arrive at the above characterization without the assumption
that none of z1, · · · , zr lies on J

(q)
t \ Jt , due to the continuous deformations of

J
(q)
t (see Theorem 1.3).

Remark 3.2 It is clear that all three cases above are realizable for the quartic
potential (p = 2) considered in [6], when we can have q = 1, 2, and 3.

Remark 3.3 If there are m ≤ r points {zk1, · · · , zkm} ⊂ {z1, · · · , zr } which belong
to an unbounded geodesic polygon K with the finite vertex at an endpoint (and the
other “vertex” is at infinity), then the separation of the angles between the two edges
at ∞ is

θ∞ = (2m+ 1)π

q + r + 1
= (2m+ 1)π

2p
,

and thereforeK hosts m humps, which is a consequence of the Teichmüller’s lemma
applied to the polygon K .

4 Solvability of End Point Equations in a Neighborhood
of a Regular q-Cut Point: Proof of Theorem 1.2

In this section we want to prove that the equations uniquely determining the end-
points are solvable in a neighborhood of a regular q-cut point. In this section we
denote

t ≡ ()t1,-t1, · · · ,)t2p−1,-t2p−1
)
,

and

x ≡ ()a1,-a1, . . . ,)aq,-aq,)b1,-b1, . . . ,)bq,-bq
)
.

However when we refer to Definition 3.1, by t we denote the complex vector
(t1, · · · , t2p−1) ∈ C

2p−1. We can think of F as a function of 4q real variables
in the space

X := {()a1,-a1, . . . ,)aq,-aq ,)b1,-b1, . . . ,)bq,-bq
) : aj , bj ∈ C, j = 1, . . . q

}
,

and parameters in the space

V := {()t1,-t1, · · · ,)t2p−1,-t2p−1
) : tj ∈ C, j = 1, · · · 2p − 1

}
,
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recalling (30)10. That is

F : X × V → R
4q , (76)

or

F : R4q+4p−2 → R
4q . (77)

Notice that the objects Tr ,
∫ am+1
bm

h(s)R1/2(s)ds, and
∫ bi
ai
h(s)R

1/2
+ (s)ds are

complex-analytic with respect to aj , bj , and tk , for 0 ≤ r ≤ q , 1 ≤ m ≤ q − 1,
1 ≤ i ≤ q , 1 ≤ j ≤ q , and 1 ≤ k ≤ 2p − 1. Here we have used the fact that
we know the explicit dependence of h(s; t) on aj , bj , and tk which can be seen as
follows: recall from (59) that

h(z; t) = 1

R1/2(z; t)

(
V ′(z; t)− 2g′(z; t)

)
. (78)

Combining this with (61) we obtain

h(z; t) = − 1

π i

∫

J

V ′(s; t)

R
1/2
+ (s; t)

ds

s − z
+ V ′(z; t)

R1/2(z; t)
, (79)

and thus,

h(z; t) = − 1

2π i

∮

γ ∗
V ′(s; t)

R1/2(s; t)

ds

s − z
, (80)

where γ ∗ is a negatively oriented contour which encircles both the support set J
and the point z.

This means that the functions F�, 1 ≤ � ≤ 4q are all real-analytic functions of
)aj ,-aj ,)bj ,-bj ,)tk,-tk for 1 ≤ j ≤ q , and 1 ≤ k ≤ 2p − 1. This allows us
to use the real-analytic implicit function theorem.11

We show that if we are in the regular situation, then the Jacobian of the mapping
F with respect to the parameters in X is nonzero. So, if for some (x∗, t∗) ∈ X×V ,
we have F (x∗, t∗) = 0 and if

det

⎛
⎜⎜⎝

∂F1
∂)a1

∂F1
∂-a1

· · · ∂F1
∂)bq

∂F1
∂-bq

...
... · · · ...

...
∂F4q
∂)a1

∂F4q
∂-a1

· · · ∂F4q
∂)bq

∂F4q
∂-bq

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣
(x∗,t∗)

�= 0 , (81)

10 Notice that the integrand h(s)R1/2(s) only depends on vectors in X × V due to (59), (61), and
(62).
11 For the real-analytic version of the implicit function theorem see, e.g. Theorem 2.3.5 of [12],
and for the uniqueness of the map φ, see e.g. Theorem 9.2 of [17].
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then the real-analytic implicit function theorem ensures that there exists a neighbor-
hood "1 of

t∗ ≡
(
)t∗1 ,-t∗1 , · · · ,)t∗2p−1,-t∗2p−1

)
∈ R

4p−2,

a neighborhood "2 of

x∗ ≡
(
)a∗

1 ,-a∗
1 , . . . ,)a∗

q ,-a∗
q,)b∗

1,-b∗
1, . . . ,)b∗

q,-b∗
q

)
∈ R

4q,

and a unique real-analytic mapping ϕ : "1 → "2 such that ϕ(t∗) = x∗, and
F (ϕ(t), t) = 0 for all t ∈ "1.

Due to the continuity of ϕ, and the fact that t∗ is a regular q-cut point (so all
aj (t

∗), bj (t∗) are distinct) we can find a possibly smaller neighborhood "0 ⊂ "1
so that for each t ∈ "0 all end-points aj (t), bj (t), j = 1, · · · , q , are distinct.

So it only remains to prove that the Jacobian is nonzero at a regular q-cut point.
We assume the Jacobian is zero at such a point, and aim for a contradiction. Starting
with this assumption, we know that there is 0 �= x̃ ∈ X in the nullspace of the
Jacobian matrix. Using x∗ and x̃ we define the following 1-parameter family

x(τ ) := x∗ + τ x̃ , τ ∈ R . (82)

We obviously have

d

dτ
x(τ )

∣∣∣∣
τ=0

= x̃ �= 0 . (83)

For non-zero values of τ , x(τ ) may not satisfy the end-point equations (69), but
we can still think of the entries of x(τ ) as defining “end-points”. More precisely,
we define the points aj (τ ) and bj (τ ), as )aj (τ ) = x2j−1(τ ), -aj (τ ) = x2j (τ ),
)bj (τ ) = x2q+2j−1(τ ), -bj (τ ) = x2q+2j (τ ), j = 1, · · · , q . Now, using aj (τ )

and bj (τ ) as defined above, we define the τ -dependent objects R(z; τ ), g′(z; τ ) and
T�(τ ) using (52), (61) and (62). Now (59) gives an expression for h(z; τ )√R(z; τ ).
We emphasize that for non-zero τ , these objects may not correspond to an
equilibrium measure for some potential V (τ).

Below, we drop the dependence on τ in the notations to simplify our presentation.
Notice that

d

dτ
T� =

q∑

j=1

(
daj (τ )

dτ

∂

∂aj
+ dbj (τ )

dτ

∂

∂bj

)
T� , (84)
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and

d

dτ
)
∫ bj

aj

h(s)R
1/2
+ (s)ds

= )
∫ bj

aj

q∑

j=1

(
daj (τ )

dτ

∂

∂aj
+ dbj (τ )

dτ

∂

∂bj

)
h(s)R

1/2
+ (s)ds , (85)

d

dτ
)
∫ aj+1

bj

h(s)R1/2(s)ds

= )
∫ aj+1

bj

q∑

j=1

(
daj (τ )

dτ

∂

∂aj
+ dbj (τ )

dτ

∂

∂bj

)
h(s)R1/2(s)ds . (86)

We let α represent an arbitrary branch point aj or bj . From (62) we have the identity

T� − αT�−1 =
∫

J

V ′(s)
R

1/2
+ (s)

s�−1(s − α)ds , � ∈ N . (87)

Differentiating with respect to α yields

∂

∂α
T� − α

∂

∂α
T�−1 − T�−1 = −1

2

∫

J

V ′(s)
R

1/2
+ (s)

s�−1ds = −1

2
T�−1 , (88)

which implies

∂

∂α
T� − α

∂

∂α
T�−1 = 1

2
T�−1 . (89)

In view of (63) for 1 ≤ � ≤ q , when τ = 0 we actually have

∂

∂α
T� = α

∂

∂α
T�−1 = α�

∂

∂α
T0 . (90)

Lemma 4.1 We have

∂

∂α
g′(z) = −R1/2(z)

2πi(z− α)

∂

∂α
T0 . (91)
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Proof Let us rewrite (61) as

g′(z) = R1/2(z)

2πi

∫

J

V ′(s)(s − α)

R
1/2
+ (s)

ds

(s − z)(s − α)

= − R1/2(z)

2πi(z− α)

∫

J

V ′(s)
R

1/2
+ (s)

ds + R1/2(z)

2πi(z− α)

∫

J

V ′(s)(s − α)

R
1/2
+ (s)

ds

s − z

= R1/2(z)

2πi(z− α)

(
−T0 +

∫

J

V ′(s)(s − α)

R
1/2
+ (s)

ds

s − z

)
.

(92)

The advantage of this formula is that the differentiation with respect to α can
be pushed through the integral, as the integrand vanishes at α. After taking the
derivative with respect to α and straight-forward simplifications we obtain (91)

Returning to (84)–(86), when τ = 0 we have

d

dτ
T� =

q∑

j=1

(
daj (τ )

dτ

∂T0

∂aj
a�j + dbj (τ )

dτ

∂T0

∂bj
b�j

)
, � = 0, . . . q , (93)

and

d

dτ
)
∫ bj

aj

h(s)R
1/2
+ (s)ds

= ) 1

π i

∫ bj

aj

q∑

j=1

(
daj (τ )

dτ

∂T0

∂aj

1

s − aj
+ dbj (τ )

dτ

∂T0

∂bj

1

s − bj

)(
R

1/2
+ (s)

)
ds,

(94)

d

dτ
)
∫ aj+1

bj

h(s)R
1/2
+ (s)ds

= ) 1

π i

∫ aj+1

bj

q∑

j=1

(
daj (τ )

dτ

∂T0

∂aj

1

s − aj
+ dbj (τ )

dτ

∂T0

∂bj

1

s − bj

)(
R1/2(s)

)
ds,

(95)
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where in deriving the last two equations we have used (59) and (91). Consider the
2q-vector

W :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂T0
∂a1

da1
dτ
...

∂T0
∂aq

daq
dτ

∂T0
∂b1

db1
dτ
...

∂T0
∂bq

dbq
dτ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
τ=0

(96)

that, in view of (93), satisfies the q + 1 equations

⎛

⎜⎜⎜⎝

1 · · · 1 1 · · · 1
a1 · · · aq b1 · · · bq
...
. . .

...
...
. . .

...

a
q
1 · · · aqq b

q
1 · · · bqq

⎞

⎟⎟⎟⎠W = 0 , (97)

where aj , bj , j = 1, · · · , q are all evaluated at τ = 0, in other words they are the
actual endpoints corresponding to the solution (x∗, v∗). Furthermore, the integrand
in (94) and (95) can be described as follows. We first define

ρ(s) :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
s−a1
...
1

s−aq
1

s−b1
...
1

s−bq

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (98)

and then

B(s) := 1

π i

(
WT ρ(s)

)
R1/2(s) , (99)

Where (·)T denotes the transpose and all objects are evaluated at τ = 0. In other
words,

B(s) = 1

π i

q∑

j=1

(
daj (τ )

dτ

∂T0

∂aj

1

s − aj
+ dbj (τ )

dτ

∂T0

∂bj

1

s − bj

)
R1/2(s) . (100)



180 M. Bertola et al.

This function, in view of (94) and (95) satisfies

)
∫ bj

aj

B+(s)ds = 0 , j = 1, . . . , q − 1 , (101)

)
∫ aj+1

bj

B(s)ds = 0 , j = 1, . . . , q − 1 . (102)

Now, using (100) and expanding (s −α)−1 for large s and switching the order of
summations we obtain

B(s)

R1/2(s)
= 1

π is

∞∑

�=0

1

s�

q∑

j=1

(
daj (τ )

dτ

∂T0

∂aj
a�j + dbj (τ )

dτ

∂T0

∂bj
b�j

)
. (103)

So, because of (97), and recalling (52) we observe that the behavior of B(s) for s
large is given by

B(s) = O

(
1

s2

)
. (104)

Therefore B can be expressed as

B(s) = Q(s)

R1/2(s)
, (105)

where Q is a polynomial of degree at most q − 2.
Next, we show that B is identically zero. To prove this, we show that the

following integral is 0.

∫∫

C

B(z)B(z)dA . (106)

Lemma 4.2 Let C be a positively oriented, piecewise smooth, simple closed curve
in the plane, and let D be the region bounded by C. Let f (x + iy) ≡ u(x, y) +
iv(x, y) be analytic in D. We have

∫∫

D

∂

∂z
f (z) dA = i

2

∮

C

f (z)dz , (107)

where Integration with respect to dz means: parametrize the contour of integration
via z = z(t), then

∫
f (z) dz =

∫ t1

t0

f (z(t))z′(t) dt .
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Proof We have

∫∫

D

∂

∂z
f (z) dA =

∫∫

D

1

2

(
∂

∂x
− i

∂

∂y

)
(u(x, y)+ iv(x, y)) dA

= 1

2

∫∫

D

(
(ux + vy) + i(vx − uy)

)
dA . (108)

Now we apply the Green’s theorem for the vector fields F 1(x, y) =
(−v(x, y), u(x, y)), and F 2(x, y) = (u(x, y), v(x, y)). So this integral equals

1

2

∮

C

(−v(x, y), u(x, y))·(x ′(t), y ′(t)) dt+ i

2

∮

C

(u(x, y), v(x, y))·(x ′(t), y ′(t)) dt,

where (x(t), y(t)) is the parametrization of the curve C. We therefore have

∫∫

D

∂

∂z
f (z) dA = 1

2

∮

C

(
x ′(t)[−v(x, y) + iu(x, y)] + y ′(t)[u(x, y)+ iv(x, y)]

)
dt,

= i

2

∮

C

(
u(x, y)+ iv(x, y)

) (
x ′(t) − iy ′(t)

)
dt,

= i

2

∮

C

f (z)dz. (109)

Defining

u(z) =
∫ z

+∞
B(s)ds , (110)

we have

B(z)B(z) = ∂

∂z

(
u(z)B(z)

)
, (111)

since ∂
∂z
B(z) = 0. Now, in order to apply Stokes’ theorem to the integral (106),

we have to apply it in two regions, one above the contour of integration �, and one
below the contour of integration �.
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Let Dr be a disk of radius r centered at the origin. The max-min contour � ∈ T

(see Sect. 2.2) divides Dr into two parts: D(+)
r above �, and D(−)

r below �. We can
write
∫∫

C

B(z)B(z)dA =
∫∫

C

∂

∂z

(
u(z)B(z)

)
dA = lim

r→∞

∫∫

Dr

∂

∂z

(
u(z)B(z)

)
dA

= lim
r→∞

∫∫

D
(+)
r

∂

∂z

(
u(z)B(z)

)
dA + lim

r→∞

∫∫

D
(−)
r

∂

∂z

(
u(z)B(z)

)
dA

= i

2
lim
r→∞

∮

∂D
(+)
r

u(z)B(z) dz + i

2
lim
r→∞

∮

∂D
(−)
r

u(z)B(z) dz ,

(112)

where both ∂D
(+)
r and ∂D

(−)
r are positively oriented. Therefore, due to (104), we

find

− 2i
∫∫

C

B(z)B(z) dA =
∫

�

{[
u(z)B(z)

]

+ −
[
u(z)B(z)

]

−

}
dz . (113)

The contour� is comprised of bands�[aj , bj ], gaps�(bj , aj+1), and the two semi-
infinite contours (�(−∞, a1) from −∞ to a1 and �(bq,∞) from bq to +∞). First
observe that

∫ +∞

bq

{[
u(z)B(z)

]

+ −
[
u(z)B(z)

]

−

}
dz = 0 , (114)

since by definition u and B are continuous across the contour from bq to +∞.
Second, note that for z in the contour from −∞ to a1, B(z) is continuous across

�, and so is u(z), since

u+(z)− u−(z) =
q∑

j=1

∫ bj

aj

(B+(s)− B−(s)) ds

=
q∑

j=1

∮

γj

B(s)ds =
∮

γ ∗
B(s)ds = 0 ,

(115)

due to (104), where γj is a clockwise contour encircling the cut �[aj , bj ], and γ ∗
is a clockwise contour encircling all cuts. Therefore we also know that

∫ a1

−∞

{[
u(z)B(z)

]

+ −
[
u(z)B(z)

]

−

}
dz = 0 . (116)
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So we must consider

∫ bq

a1

{[
u(z)B(z)

]

+ −
[
u(z)B(z)

]

−

}
dz . (117)

There are two types of integrals: those across bands and those across gaps.
For z in a band, say �(aj , bj ), the quantity B(z) has a jump discontinuity across

the contour: B+(z) = −B−(z). So we have

∫ bj

aj

{[
u(z)B(z)

]

+ −
[
u(z)B(z)

]

−

}
dz =

∫ bj

aj

B+(z) (u+(z)+ u−(z)) dz , (118)

and u+ + u− is the following constant:

u+(z) + u−(z) = −2
q−1∑

k=j

∫ ak+1

bk

B(s)ds − 2
∫ +∞

bq

B(s)ds, z ∈ �(aj , bj ) , (119)

and so we find

∫ bj

aj

{[
u(z)B(z)

]

+ −
[
u(z)B(z)

]

−

}
dz =

⎛

⎝−2
q−1∑

k=j

∫ ak+1

bk

B(s)ds − 2
∫ +∞

bq

B(s)ds

⎞

⎠
∫ bj

aj

B+(z) dz .

(120)

Note that

∫ bj

aj

B+(z) dz =
∫ bj

aj

B+(z)dz = −
∫ bj

aj

B+(z)dz , (121)

where the last equality follows from (101). Therefore

∫ bj

aj

{[
u(z)B(z)

]

+ −
[
u(z)B(z)

]

−

}
dz =

⎛

⎝2
q−1∑

k=j

∫ ak+1

bk

B(s)ds + 2
∫ +∞

bq

B(s)ds

⎞

⎠
∫ bj

aj

B+(z)dz .
(122)

For z in a gap, say�(bj , aj+1), the quantityB(z) is continuous across the contour
�, therefore

∫ aj+1

bj

{[
u(z)B(z)

]

+ −
[
u(z)B(z)

]

−

}
dz =

∫ aj+1

bj

B(z) (u+(z) − u−(z)) dz , (123)
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and u+(z)− u−(z) is the constant:

u+(z) − u−(z) = −2
q∑

k=j+1

∫ bk

ak

B+(s)ds, for all z ∈ �(bj , aj+1) . (124)

We have

∫ aj+1

bj

{[
u(z)B(z)

]

+ −
[
u(z)B(z)

]

−

}
dz =

⎛

⎝−2
q∑

k=j+1

∫ bk

ak

B+(s)ds

⎞

⎠
∫ aj+1

bj

B(z) dz .

(125)

Note that from (102) we have

∫ aj+1

bj

B(z) dz = −
∫ aj+1

bj

B(z)dz , (126)

therefore

∫ aj+1

bj

{[
u(z)B(z)

]

+ −
[
u(z)B(z)

]

−

}
dz =

⎛

⎝2
q∑

k=j+1

∫ bk

ak

B+(s)ds

⎞

⎠
∫ aj+1

bj

B(z)dz .

(127)

Using (122) and (127), we have

∫ bq

a1

{[
u(z)B(z)

]

+ −
[
u(z)B(z)

]

−

}
dz = (128)

q∑

j=1

⎛

⎝2
q∑

k=j

∫ ak+1

bk

B(s)ds

⎞

⎠
∫ bj

aj

B+(z)dz +
q−1∑

j=1

⎛

⎝2
q∑

k=j+1

∫ bk

ak

B+(s)ds

⎞

⎠
∫ aj+1

bj

B(z)dz .

Note that in (128), aq+1 = +∞. Reversing orders of summation in the first term on
the r.h.s. of (128), we have

∫ bq

a1

{[
u(z)B(z)

]

+ −
[
u(z)B(z)

]

−

}
dz = (129)

2
q∑

k=1

∫ ak+1

bk

B(s)ds
k∑

j=1

∫ bj

aj

B+(z)dz +
q−1∑

j=1

⎛

⎝2
q∑

k=j+1

∫ bk

ak

B+(s)ds

⎞

⎠
∫ aj+1

bj

B(z)dz .
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Exchanging indices of summation in the first term on the r.h.s. of (129), we find

∫ bq

a1

{[
u(z)B(z)

]

+ −
[
u(z)B(z)

]

−

}
dz =

2
q∑

j=1

∫ aj+1

bj

B(s)ds
j∑

k=1

∫ bk

ak

B(z)dz +
q−1∑

j=1

⎛

⎝2
q∑

k=j+1

∫ bk

ak

B(s)ds

⎞

⎠
∫ aj+1

bj

B(z)dz =

2
q−1∑

j=1

[∫ aj+1

bj

B(s)ds

(
q∑

k=1

∫ bk

ak

B(z)dz

)]
+
∫ +∞

bq

B(s)ds

(
q∑

k=1

∫ bk

ak

B(z)dz

)
= 0 .

(130)

So we have proven that

∫∫

C

B(z)B(z)dA = 0 . (131)

This of course implies that B ≡ 0, and hence by (99) we conclude that

W ≡ 0 . (132)

Lemma 4.3 Let α ∈ {aj , bj , j = 1, · · · q}, and T0 given by (62). It holds that

∂T0

∂α
�= 0 . (133)

Proof We have

− 2πiψ(z) = −h(z)R
1/2
+ (z) = g′(z)− V ′(z)

2
, (134)

and our assumptions imply that this quantity vanishes like a square root at each
branchpoint α. So we know that

lim
z→α

1

R1/2(z)

(
g′(z)− V ′(z)

2

)
�= 0 . (135)

Using (61) we can write

1

R1/2(z)

(
g′(z)− V ′(z)

2

)
= 1

4π i

∮

γ ∗
V ′(s)
R1/2(s)

ds

s − z
, (136)
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where γ ∗ is a negatively oriented contour which encircles both the support set J
and the point z. Taking the limit as z → α, and recalling (135) we find

1

4π i

∮

γ ∗
V ′(s)
R1/2(s)

ds

s − α
�= 0 . (137)

Recalling the definition (62) we can write

T0 =
∫

J

V ′(s)
R

1/2
+ (s)

ds = 1

2

∮

γ ∗
V ′(s)
R1/2(s)

ds . (138)

Differentiating with respect to the branchpoint α, we find

∂T0

∂α
= 1

4

∮

γ ∗
V ′(s)
R1/2(s)

ds

s − α
, (139)

which is nonzero because of (137).

Recalling (96), the above lemma together with (132) imply that

daj
dτ

∣∣∣∣
τ=0

= dbj
dτ

∣∣∣∣
τ=0

= 0 , for all j = 1, 2, . . . , q. (140)

We have thus shown that

d

dτ
x(τ )

∣∣∣∣
τ=0

= 0 , (141)

which contradicts (83). This proves that the Jacobian (81) is indeed non-zero. We
have thus concluded the proof of Theorem 1.2.

5 Openness of the Regular q-Cut Regime

5.1 Proof of Theorem 1.3

The end-points aj (t), bj (t) ∈ J
(q)
t deform continuously with respect to t as shown

in Theorem 1.2, due to nonsingularity of the Jacobian matrix at a regular q-cut point.
Notice that the critical graph of the quadratic differential Q(z; t)dz2 is intrinsic
to the polynomial Q and does not depend on the particular branch chosen for its
natural parameter ηq(z; t), for example the one chosen in (57). For the purposes of
this proof, for each fixed t , unlike our choice in (57), we choose the branch η̃q(z; t)

whose branch cut has no intersections with the critical graph J
(q)
t and we can
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characterize the critical graph of Q(z; t)dz2 as the totality of solutions to

)η̃q(z; t) = 0. (142)

Recalling (57) with the choice of branch discussed above, notice that

∂η̃q

∂z
(z∗; t∗) = −

r∏

�=1

(
z∗ − z�(t

∗)
)
⎡

⎣
q∏

j=1

(
z∗ − aj (t

∗)
) (
z∗ − bj (t

∗)
)
⎤

⎦
1/2

�= 0,

(143)

where z∗ ∈ J
(q)
t∗ \ {aj (t∗), bj (t∗)

}q
j=1 does not lie on the branch cut chosen to

define η̃q . Since z∗ is not on the branch cut, there is a small neighborhood of z∗ in
which η̃q(z, t∗) is analytic. By Cauchy-Riemann equations, from (143) we conclude

that at least one of the quantities ∂)η̃q
∂x

(z∗; t∗) or ∂)η̃q
∂y

(z∗; t∗) is non zero, z = x+iy.
Without loss of generality, let us assume that

∂)η̃q
∂x

(z∗; t∗) �= 0. (144)

Now, think of the left hand side of (142) as a map

)η̃q (x,w) : R ×W → R, (145)

where z = x + iy, and an element w ∈ W , R
4p−1 represents the variable y and

the real and imaginary parts of the parameters in the external field:

w = (
y,)t1,-, t1, · · · ,)t2p−1,-t2p−1

)T
.

Now, by the real-analytic Implicit Function Theorem [12], we know that there exists
a neighborhood U of

w∗ ≡
(
y∗,)t∗1 ,-, t∗1 , · · · ,)t∗2p−1,-t∗2p−1

)

and a real-analytic map # : U → R, with

#
(
w∗) = x∗

and

)η̃q(#(w),w) = 0.
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That is to say that for any y in a small enough neighborhood of y∗ and for any
t ≡ ()t1,-, t1, · · · ,)t2p−1,-t2p−1

)T in a small enough neighborhood of t∗, there

is an x ≡ x(y, t) such that z = x + iy lies on the critical graph J
(q)
t . The real-

analyticity of # , in particular, ensures that J (q)
t deforms continuously with respect

to t . This finishes the proof of Theorem 1.3.

5.2 Proof of Theorem 1.1

Let us start with the following two lemmas.

Lemma 5.1 The points zj (t) , j = 1, · · · , r , depend continuously on t .

Proof The right hand side of (80) clearly depends continuously on t (since the t-
dependence in R is through the end-points which do depend continuously on t). So
the zeros of h(z; t), being z�(t) , � = 1, · · · , r , depend continuously on t . ��

Lemma 5.2 There are no singular finite geodesic polygons with one or two vertices
associated with the quadratic differential Q(z)dz2 given by (53).

Proof The proof follows immediately from the Teichmüller’s lemma and the fact
that Q is a polynomial. ��

Now we prove Theorem 1.1. Let t∗ be a regular q-cut point. We show that
there exists a small enough neighborhood of t∗ in which all the requirements of
Definition 3.1 hold simultaneously. We prove this in the following two mutually
exclusive cases:

(a) when none of the points z�(t∗) lie on J
(q)
t∗ \ J (q)

t∗ , and

(b) when one or more of the points z�(t∗) lie on J
(q)
t∗ \ J (q)

t∗ .

Let us first consider the case (a) above. So we are at a regular q-cut point t∗
where we know that

A�(t
∗) �= 0, � = 1, · · · , r, (146)

where

A�(t) := )ηq (z�(t); t) . (147)

For ε > 0, let Dε(t
∗) denote the open set of all points t such that

|)tk − )t∗k | < ε, and |-tk − -t∗k | < ε, for k = 1, · · · , 2p − 1.

Since the functions A�(t) are continuous functions of t , for each � = 1, · · · , r
there exists ε� > 0 such that for all t ∈ Dε�(t

∗) the inequalities A�(t) �= 0 hold for
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each � = 1, · · · , r . Let ε := min
1≤�≤rε�. The claim is that for all t ∈ " =: "0 ∩Dε(t

∗)
(see the proof of Theorem 1.2 to recall the open set "0) all requirements of
Definition 3.1 hold. It is obvious that the second requirement of Definition 3.1
holds by the choice of ε. Suppose that condition (3) of Definition 3.1 does not
hold for some t̃ ∈ ". Let K(t∗) denote the infinite geodesic polygon which
hosts the complementary contour �t (bq(t),+∞) as required by condition (3) of
Definition 3.1. Due to Theorem 1.3 this is only possible if

(a-i) one or more points on the boundaries �
(bq)

2 and �
(bq)

3 of the infinite geodesic
polygon K(t∗) continuously deform (as t∗ deforms to t̃) to coalesce together
and block the access of a complementary contour from bq to +∞, or

(a-ii) if there are one or more humps in K (see Remark 3.3), one or more points

on the boundaries �
(bq)

2 or �
(bq)

3 of the infinite geodesic polygon K(t∗)
continuously deform (as t∗ deforms to t̃) to coalesce with the hump(s) and
block the access of a complementary contour from bq to +∞. This case
necessitates p > q which ensures the existence of humps as parts of the
critical graph.

Notice that if there are no humps in K , in particular when p = q or p < q which
means there are no humps at all, then the only possibility to block the access from bq
to +∞ is what mentioned above in case (a-i). We observe that the case (a-i) above
is actually impossible by Lemma 5.2 as it necessitates a geodesic polygon with two
vertices.

So we just investigate the case (a-ii). Consider a point of coalescence z̃. Notice
that z̃ can not be bq itself because for all t ∈ "0 there are only three emanating
critical trajectories from bq . At such a point we would have four emanating local
trajectories from z̃ (or a higher even number of emanating local trajectories from
z̃ if more than just two points come together at z̃) which is an indication that z̃
is a critical point of the quadratic differential. This is a contradiction, since z�(t̃),
� = 1, · · · , r , do not lie on the critical trajectories by the choice of ε and hence
z̃ �= z�(t̃). Moreover the quadratic differential Q(z)dz2 given by (53) does not have
any critical points other than aj (t̃), bj (t̃) and z�(t̃), j = 1, · · · , q , � = 1, · · · , r .
This finishes the proof that condition (3) of Definition 3.1 holds for all t ∈ ".
Similar arguments show that the conditions (4) and (5) of Definition 3.1 must also
hold for all t ∈ ".

Now it only remains to consider the first requirement of Definition 3.1. Assume,
for the sake of arriving at a contradiction that for some t̃ ∈ " there is at least one
index j1 = 1, · · · , q for which the first requirement fails. Notice that there could not
be more than one connection by Lemma 5.2. So the only possibility to consider is
that there is no connection between aj1(t̃) and bj1(t̃). So the three local trajectories
emanating from aj1(t̃) and bj1(t̃) must end up at ∞ and can not encounter z�(t̃),
� = 0, · · · , r by the choice of ε. However this is impossible since there are at least
4(q−1)+6 rays emanating from the end points and approaching infinity. There are
already 4(p − q) rays ending up at ∞ from the 2(p − q) existing humps. This in
total gives at least 4(q−1)+6+4(p−q) = 4p+2 directions at ∞. Recall that we
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can have only 4p solutions at ∞. This means we have at least 2 more solutions at ∞
than what is allowed. This means that at least 2 rays emanating from the endpoints
must connect to one or more humps. But this means we have at least two extra
critical points other than aj (t̃), bj (t̃) and z�(t̃), j = 1, · · · , q , � = 1, · · · , r , which
is a contradiction. This finishes the proof that the first requirement of Definition 3.1
holds for all t ∈ ". Therefore, for case (a) we have shown that all the requirements
of Definition 3.1 hold simultaneously.

Notice that the proof of case (b) above (when t∗ is a regular q−cut point and
one or more of the points z�(t∗) lie on J

(q)
t∗ \ J (q)

t∗ ) is very similar. To that end, let
1 ≤ m ≤ r − 1 be such that for all indices

{�1, · · · , �m} ⊂ {1, · · · , r}

the points z�k (t
∗), 1 ≤ k ≤ m, do not lie on J

(q)
t∗ \J (q)

t∗ . For these indices we define
ε�k as above using the functions A�k in (147).

Now let us consider the rest of the indices

{�m+1, · · · , �r } ⊂ {1, · · · , r}

for which the points z�j (t
∗), m + 1 ≤ j ≤ r , do lie on J

(q)
t∗ \ J (q)

t∗ . We claim that
there is an ε�j > 0, for each m + 1 ≤ j ≤ r , such that for all t ∈ Dε�j

(t∗), the

point z�j (t) does not lie on J
(q)
t . Indeed, since for each t the set J (q)

t is compact,
the distance function

dj (t) := dist
(
z�j (t), J

(q)
t

)
≡ min

z∈J (q)t

{|z�j (t) − z|}

is well-defined and is a continuous function of t due to Theorem 1.3 and Lemma 5.1.
For the t∗ under consideration we know that dj (t∗) > 0, and by the continuity of
dj , there is an ε�j such that for all t in an ε�j -neighborhood of t∗ we have dj (t) > 0.

Again let ε := min
1≤�≤rε�. The claim then is that for all t ∈ " all requirements of

Definition 3.1 hold. It is obvious that the second requirement of Definition 3.1 holds
by the choice of ε, and if any other requirement of Definition 3.1 does not hold for
some t ∈ " , analogous reasoning as provided in case (a) above shows that one gets
a contradiction.

6 Conclusion

In this article we have provided a simple and yet self-contained proof of the open-
ness of the regular q-cut regime when the external field is a complex polynomial
of even degree. We have also proven that the solvability of the q-cut end-point
equations persists in a small enough neighborhood of a regular q-cut point in the
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parameter space. In addition, we have shown that the real and imaginary parts
of the endpoints are real analytic with respect to the real and imaginary parts of
the parameters of the external field, and that the critical graph of the underlying
quadratic differential depends continuously on t .

As discussed in the introduction, we could have considered other classes of
admissible contours different from the one associated with the real axis, for the
even degree polynomial (1). Yet, multiple other cases would have arised if one
started with an odd-degree polynomial external field, then considered its classes of
admissible sectors and contours, and finally solved the max-min variational problem
for the collection of contours from that class.12 However, to that end, even though
we have made the simplifying assumption on fixing the degree of external field to
be even, and our fixed choice of admissible contours, we would like to emphasize
that our arguments presented in this paper still work in the other cases as long as
one considers a single curve going to infinity inside any two admissible sectors.
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1 Introduction

In the present paper we consider the initial value problem for the focusing nonlocal
nonlinear Schrödinger (NNLS) equation (we denote the complex conjugate of q by
q̄)

iqt (x, t)+ qxx(x, t) + 2q2(x, t)q̄(−x, t) = 0, x ∈ R, t ∈ R, (1a)

q(x, 0) = q0(x), x ∈ R, (1b)

with asymmetric nonzero boundary conditions:

q(x, t) → ±Ae−2iA2t , x → ±∞, t ∈ R, (1c)

for some A > 0.

The NNLS Equation
The integrable NNLS equation was obtained by M. Ablowitz and Z. Musslimani as
a nonlocal reduction of the Ablowitz-Kaup-Newell-Segur system [2]. This equation
satisfies the PT -symmetric condition [4], i.e., q(x, t) and q(−x,−t) are its
solutions simultaneously. Thus the NNLS equation is related to the non-Hermitian
quantum mechanics [3, 16]. Also this equation has connections with the theory of
magnetism, because it is gauge equivalent to the complex Landau-Lifshitz equation
[19, 31]. Finally, the NNLS equation is an example of a two-place (Alice-Bob)
system [27, 28], which involves the values of the solution at not neighboring points,
x and −x.

The NNLS equation admits exact solutions with distinctive properties. It has
both bright and dark soliton solutions [36], in contrast to its local counterpart,
the classical nonlinear Schrödinger (NLS) equation. The simplest one-soliton
solution of (1a) on zero background has, in general, periodic (in time) point
singularities [2], so the solution becomes unbounded at these points. Different
types of exact solutions with various backgrounds can have such isolated blow-up
points in the (x, t) plane. For example, solitons with nonzero boundary conditions
[1, 17, 21, 22, 26, 33], rogue waves [39] and breathers [35]. Other important exact
solutions of the NNLS equation are given in, e.g., [29, 30, 38].

Initial Value Problems
The initial value problem (1a)–(1b) with nonzero background q(x, t) → Aeiθ±(t), as
x → ±∞ was firstly considered in [1]. It was shown that eiθ±(t) remains bounded
as |t| → ∞ only in two cases: θ+(t) − θ−(t) = 0 or θ+(t) − θ−(t) = π . Thus
bounded (with respect to t) boundary conditions can be either q(x, t) → Ae2iA2t as
|x| → ∞ or q(x, t) → ±Ae−2iA2t as x → ±∞. The inverse scattering transform
method for problems with these two boundary values was developed in [1], where
it was shown that the two problems have different continuous spectra. Namely, if
q(x, t) → Ae2iA2t as |x| → ∞, the continuous spectrum consists of the real line
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and a vertical band (−iA, iA), which is reminiscent of the problem for the classical
(local) focusing NLS equation on a symmetric [6] or step-like [8] background. For
q(x, t) → ±Ae−2iA2t , x → ±∞, the continuous spectrum lies on the real line
and has a gap (−A,A), as in the problem for the defocusing NLS equation with
symmetric nonzero boundary conditions [14, 24, 40]. Another interesting feature
of problem (1) is that the boundary functions ±Ae−2iA2t are not exact solutions of
the NNLS equation. It is in sharp contrast with the local problems, where for the
well-posedness it is necessary that the boundary conditions satisfy the equation.

Long-Time Asymptotics
The long-time asymptotics for the defocusing NLS equation with nonzero boundary
conditions manifests important nonlinear phenomena, including solitons [9, 37, 40],
rarefaction waves, shock waves, and various plane wave type regions [5, 15, 18, 23,
25]. These developments motivate us to study the asymptotics of problem (1) and
to highlight its qualitative differences with that for the defocusing NLS equation on
a nonzero background, which has a similar spectral picture. We also compare the
long-time asymptotic behavior of (1) to that for the Cauchy problem for (1a) with
boundary conditions q(x, t) → Ae2iA2t as x → ±∞, which is considered in [32].

Methods
The main technical tool used in this paper is the inverse scattering transform method,
which allows us to express the solution of (1) in terms of the solution of an
associated Riemann–Hilbert problem. The jump matrix of this problem depends
on the parameters (x, t) only via oscillating exponents, so we can apply the Deift
and Zhou nonlinear steepest descent method [10, 13] (see also [11, 12] for its
extensions) to get the asymptotics of the Riemann–Hilbert problem and, therefore,
of the solution q(x, t) of (1).

Organization of the Paper
The article is organized as follows. In Sect. 2 we develop the inverse scattering
transform method for (1) and formulate the basic Riemann–Hilbert problem. We
also get the one-soliton solution by using the Riemann–Hilbert approach. Section
3 contains our main results, Theorems 3.2 and 3.4, on the long-time asymptotic
behavior of q(x, t). More precisely, we present the asymptotics in the “modulated
regions” (|x/4t| > A/2) in Theorem 3.2, and in the central “unmodulated region”
(0 < |x/4t| < A/2) in Theorem 3.4. Finally, we discuss the transition inside the
unmodulated region as ξ → 0. Theorem 3.9 presents the large time asymptotics
with x fixed �= 0, in which case ξ → 0.
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2 Inverse Scattering Transform Method

The inverse scattering transform formalism for problem (1) was first developed in
[1]. Here we perform the direct and inverse analysis in a different way, in particular
we define the inverse transform in terms of an associated Riemann–Hilbert problem
formulated in the complex plane of the spectral parameter k entering the standard
Lax pair equations for the NNLS equation (1a).

2.1 Direct Scattering

The NNLS equation (1a) is the compatibility condition of the following system of
linear equations [2] (the “Lax pair”)

$x + ikσ3$ = U$, (2a)

$t + 2ik2σ3$ = V$, (2b)

where σ3 = (
1 0
0 −1

)
is the third Pauli matrix, $(x, t, k) is a 2 × 2 matrix-valued

function, k ∈ C is the spectral parameter, and U(x, t) and V (x, t, k) are given in
terms of q(x, t) as follows:

U(x, t) =
(

0 q(x, t)

−q̄(−x, t) 0

)
, V (x, t, k) =

(
V11(x, t) V12(x, t, k)

V21(x, t, k) V22(x, t)

)
,

(3)

where V11 = −V22 = iq(x, t)q̄(−x, t), V12 = 2kq(x, t) + iqx(x, t), and V21 =
−2kq̄(−x, t) + iq̄x(−x, t).

Assuming that

∫ 0

−∞
|q(x, t)+Ae−2iA2t | dx < ∞ and

∫ ∞

0
|q(x, t)−Ae−2iA2t | dx < ∞ for all t ≥ 0,

we introduce the 2×2 matrix-valued functionsΨj(x, t, k), j = 1, 2 as the solutions
of the following linear Volterra integral equations (j = 1, 2) where k ∈ R\[−A,A]:

Ψj(x, t, k) = e−iA2tσ3Ej (k)

+
x∫

(−1)j∞
Gj(x, y, t, k)(U(y, t)− Uj(t))Ψj (y, t, k)ei(x−y)f (k)σ3 dy.

(4)
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Here U1(t) and U2(t) are the limits of U(x, t) as x → ∓∞:

U(x, t) → Uj(t), x → (−1)j∞, (5)

where

U1(t) =
(

0 −Ae−2iA2t

−Ae2iA2t 0

)
and U2(t) =

(
0 Ae−2iA2t

Ae2iA2t 0

)
. (6)

The kernelsGj(x, y, t, k), j = 1, 2 are defined in terms of functions Ej (k), j = 1, 2
and f (k) as follows:

Gj(x, y, t, k) := e−iA2tσ3Ej (k)e−i(x−y)f (k)σ3E−1
j (k)eiA2tσ3, (7)

where

Ej (k) := 1

2

⎛

⎝ w(k) + 1
w(k)

(−1)j i
(
w(k) − 1

w(k)

)

(−1)j+1 i
(
w(k) − 1

w(k)

)
w(k) + 1

w(k)

⎞

⎠ ,

w(k) :=
(
k − A

k + A

) 1
4

,

(8)

and

f (k) := (k2 − A2)
1
2 . (9)

Here, the functions f (k) and w(k) are defined for k ∈ C \ [−A,A] as the branches
fixed by the large k asymptotics:

f (k) = k + O(k−1) and w(k) = 1 + O(k−1), k → ∞. (10)

We denote by f±(k) andw±(k) the limiting values of the corresponding function
as k approaches (−A,A) (oriented from −A to A) from the left/right side (and
similarly for Ej±(k)). In particular, f+(k) = i

√
A2 − k2 for k ∈ (−A,A), with√

A2 − k2 > 0. Observe that G(x, y, t, k) is entire with respect to k for all x, y,
and t .

Since f (k) is real for k ∈ R \ [−A,A], the integral in (4) converges for such
k. Let Q[i] denote the i-th column of a matrix Q, C± := {k ∈ C | ± Im k > 0},
and C

± := {k ∈ C | ± Im k ≥ 0}. Then we can define Ψ [j ]
j (x, t, k), j = 1, 2, and

Ψ
[2]
1 (x, t, k), Ψ [1]

2 (x, t, k) on the cut (−A,A) as the limiting values from C
+ and
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C
−, respectively (in the following three equations k ∈ (−A,A)):

#
[j ]
j+(x, t, k) = e−iA2tσ3E [j ]

j+(k)

+
x∫

(−1)j∞
Gj(x, y, t, k)(U(y, t)− Uj(t))#

[j ]
j+(y, t, k)e

(−1)j+1i(x−y)f+(k) dy,

(11)

and

#
[2]
1−(x, t, k) = e−iA2tσ3E [2]

1−(k)

+
x∫

−∞
G1(x, y, t, k)(U(y, t)− U1(t))#

[2]
1−(y, t, k)e

−i(x−y)f−(k) dy,

(12a)

#
[1]
2−(x, t, k) = e−iA2tσ3E [1]

2−(k)

+
x∫

+∞
G2(x, y, t, k)(U(y, t)− U2(t))#

[1]
2−(y, t, k)e

i(x−y)f−(k) dy.

(12b)

Moreover, when the solution q(x, t) converges exponentially fast to its boundary
values, we can define #

[j ]
j−(x, t, k), j = 1, 2, and #

[2]
1+(x, t, k), #

[1]
2+(x, t, k) for

k ∈ (−A,A) by integral equations similar to (11) and (12), respectively.

Proposition 2.1 (Properties of #j ) #1(x, t, k) and #2(x, t, k) have the following
properties.

(i) The columns #
[1]
1 (x, t, k) and #

[2]
2 (x, t, k) are analytic for k ∈ C

+ and

continuous for k ∈ C
+ \ {±A}, where #

[j ]
j (x, t, k) is identified with #

[j ]
j+(x, t, k),

j = 1, 2 for k ∈ (−A,A).
#

[1]
1 (x, t, k) and #

[2]
2 (x, t, k) have the following behaviors at k = ∞ and k =

±A:

#
[1]
1 (x, t, k) = e−iA2t

(
1
0

)
+ O(k−1), k → ∞, k ∈ C

+,

#
[2]
2 (x, t, k) = eiA2t

(
0
1

)
+ O(k−1), k → ∞, k ∈ C

+,

#
[1]
1 (x, t, k) = O

(
(k ∓ A)−

1
4
)
, k → ±A, k ∈ C

+,

#
[2]
2 (x, t, k) = O

(
(k ∓ A)−

1
4
)
, k → ±A, k ∈ C

+.
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(ii) The columns #
[2]
1 (x, t, k) and #

[1]
2 (x, t, k) are analytic for k ∈ C

− and

continuous for k ∈ C
− \ {±A}, where # [2]

1 (x, t, k) and #
[1]
2 (x, t, k) are identified

with #
[2]
1−(x, t, k) and # [1]

2−(x, t, k) for k ∈ (−A,A).

#
[2]
1 (x, t, k) and #

[1]
2 (x, t, k) have the following behaviors at k = ∞ and k =

±A:

#
[2]
1 (x, t, k) = eiA2t

(
0
1

)
+ O(k−1), k → ∞, k ∈ C

−,

#
[1]
2 (x, t, k) = e−iA2t

(
1
0

)
+ O(k−1), k → ∞, k ∈ C

−,

#
[2]
1 (x, t, k) = O

(
(k ∓ A)−

1
4
)
, k → ±A, k ∈ C

−,

#
[1]
2 (x, t, k) = O

(
(k ∓ A)−

1
4
)
, k → ±A, k ∈ C

−.

(iii) The functions $j(x, t, k), j = 1, 2 defined by

$j(x, t, k) := #j(x, t, k)e
−(ix+2itk)f(k)σ3, k ∈ R \ [−A,A], (13)

are the (Jost) solutions of the Lax pair (2) satisfying the boundary conditions

$j(x, t, k)− $BC
j (x, t, k) → 0, x → (−1)j∞, k ∈ R \ [−A,A], (14)

where $BC
j (x, t, k) := e−iA2tσ3Ej (k)e−(ix+2itk)f(k)σ3 .

(iv) det#j(x, t, k) ≡ 1 for k ∈ R \ [−A,A].
(v) The following symmetry relations hold:

σ1#
[1]
1 (−x, t,−k̄) = #

[2]
2 (x, t, k), k ∈ C

+ \ [−A,A],
σ1#

[1]
1+(−x, t,−k) = #

[2]
2+(x, t, k), k ∈ (−A,A),

σ1#
[2]
1 (−x, t,−k̄) = #

[1]
2 (x, t, k), k ∈ C

− \ [−A,A],
σ1#

[2]
1−(−x, t,−k) = #

[1]
2−(x, t, k), k ∈ (−A,A),

(15a)

and

#
[1]
1+(x, t, k) = −#

[2]
1−(x, t, k), k ∈ (−A,A),

#
[2]
2+(x, t, k) = −#

[1]
2−(x, t, k), k ∈ (−A,A),

(15b)

where σ1 = (
0 1
1 0

)
is the first Pauli matrix.
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Moreover, when # [j ]
j−(x, t, k), j = 1, 2 and # [2]

1+(x, t, k), #
[1]
2+(x, t, k) exist (e.g.,

when q(x, t) converges exponentially fast to its boundary values), they satisfy the
following conditions:

#
[1]
1−(x, t, k) = #

[2]
1+(x, t, k), k ∈ (−A,A),

#
[2]
2−(x, t, k) = #

[1]
2+(x, t, k), k ∈ (−A,A).

(16)

Proof Items (i)–(iii) follow directly from the integral equations (4). Since the matrix
U(x, t) is traceless and detEj (k) = 1, j = 1, 2, we get item (iv). Finally, (15a) in
item (v) follows from the symmetries

σ1U(−x, t)σ−1
1 = −U(x, t),

σ1G1(−x,−y, t,−k̄)σ−1
1 = G2(x, y, t, k), k ∈ C,

(17)

whereas (15b) and (16) follow from the symmetries

Ej+(k) = (−1)j+1 i Ej−(k)σ2, j = 1, 2, k ∈ (−A,A), (18)

where σ2 = (
0 −i
i 0

)
is the second Pauli matrix. ��

2.2 Spectral Functions

The Jost solutions $1(x, t, k) and $2(x, t, k) of the Lax pair (2) are related by a
matrix independent of x and t , which allows us to introduce the scattering matrix
S(k) as follows:

$1(x, t, k) = $2(x, t, k)S(k), k ∈ R \ [−A,A], (19)

or, in terms of #j(x, t, k), j = 1, 2, and for k ∈ R \ [−A,A]:

#1(x, t, k) = #2(x, t, k)e−(ix+2itk)f(k)σ3S(k)e(ix+2itk)f(k)σ3 . (20)

From the symmetry relations (15a) it follows that S(k) can be written as

S(k) =
(
a1(k) −b(−k)

b(k) a2(k)

)
, k ∈ R \ [−A,A]. (21)

Note that due to the Schwarz symmetry breaking for the solutions #j(x, t, k),
j = 1, 2, see (15a), the values of a1(k) for k ∈ C

+ and a2(k) for k ∈ C
− are, in
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general, not related. In particular, this implies that a1(k) and a2(k) can have different
numbers of zeros in the corresponding complex half-planes.

Relation (20) implies that a1(k), a2(k), and b(k) can be found in terms of the
initial data alone via the following determinants:

a1(k) = det
(
#

[1]
1 (0, 0, k),# [2]

2 (0, 0, k)
)
, k ∈ C

+ \ [−A,A], (22a)

a2(k) = det
(
#

[1]
2 (0, 0, k),# [2]

1 (0, 0, k)
)
, k ∈ C

− \ [−A,A], (22b)

b(k) = det
(
#

[1]
2 (0, 0, k),# [1]

1 (0, 0, k)
)
, k ∈ R \ [−A,A]. (22c)

From (22) and Proposition 2.1 (i) and (ii) we conclude that aj (k), j = 1, 2, and
b(k) have the following large k behaviors:

a1(k) = 1 + O(k−1), k ∈ C
+, k → ∞,

a2(k) = 1 + O(k−1), k ∈ C
−, k → ∞,

b(k) = O(k−1), k ∈ R, k → ∞.

Defining a1+(k) and a2−(k) for k ∈ (−A,A) as the limits of a1(k) and a2(k)

from C
+ and C

−, respectively, we have

a1+(k) = det
(
#

[1]
1+(0, 0, k),# [2]

2+(0, 0, k)
)
, k ∈ (−A,A),

a2−(k) = det
(
#

[1]
2−(0, 0, k),# [2]

1−(0, 0, k)
)
, k ∈ (−A,A).

(23)

Moreover, when the initial data q0(x) converges exponentially fast to its boundary
values, we can define a1−(k), a2+(k), and b±(k) for k ∈ (−A,A) by taking the
corresponding limits in (22):

a1−(k) = det
(
#

[1]
1−(0, 0, k),# [2]

2−(0, 0, k)
)
, k ∈ (−A,A), (24a)

a2+(k) = det
(
#

[1]
2+(0, 0, k),# [2]

1+(0, 0, k)
)
, k ∈ (−A,A), (24b)

b±(k) = det
(
#

[1]
2±(0, 0, k),# [1]

1±(0, 0, k)
)
, k ∈ (−A,A). (24c)

The symmetry relations (15) yield the following symmetries of the spectral func-
tions:

a1(−k̄) = a1(k), k ∈ C
+ \ [−A,A],

a2(−k̄) = a2(k), k ∈ C
− \ [−A,A],

(25)
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whereas (16) implies that

a1±(k) = −a2∓(k) and b±(k) = −b∓(−k), k ∈ (−A,A). (26)

From Proposition 2.1 (iv), (13), and (19) it follows that a1(k), a2(k), and b(k) satisfy
the determinant relations:

a1(k)a2(k)+ b(k)b(−k) = 1, k ∈ R \ [−A,A],
a1±(k)a2±(k)+ b±(k)b±(−k) = 1, k ∈ (−A,A).

(27)

Finally, we point out that a1(k), a2(k), and b(k) are O
(
(k ∓ A)− 1

2
)

as k → ±A.

Proposition 2.2 (Pure Step Initial Data) Consider problem (1) with initial data

q0(x) = q0,R(x) =
{
A, x > R,

−A, x < R,
(28)

for some A > 0 and R ∈ R. Introduce

h(k) := (k2 + A2)
1
2 , (29)

which is defined in C \ [−iA, iA] and is fixed by the asymptotics h(k) = k+ O(k−1)

as k → ∞. Define

λj (k) := i(f (k) + (−1)j+1h(k)), j = 1, 2. (30)

Then the spectral functions associated with this problem have the following form,
according to the sign of R ∈ R:

(i) For R > 0,

a1(k) = 1

2f (k)h(k)

(
e2λ1(k)R

(
A2 + ikλ2(k)

)− e2λ2(k)R
(
A2 + ikλ1(k)

))
,

(31a)

a2(k) = 1

2f (k)h(k)

(
e−2λ2(k)R

(
A2 − ikλ1(k)

)− e−2λ1(k)R
(
A2 − ikλ2(k)

))
,

(31b)

b(k) = −iA

2f (k)h(k)

(
e2ih(k)R(h(k)+ k

)+ e−2ih(k)R(h(k)− k
))
. (31c)
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(ii) For R = 0,

a1(k) = a2(k) = k

f (k)
, b(k) = −iA

f (k)
. (32)

(iii) For R < 0,

a1(k) = 1

2f (k)h(k)

(
e−2λ2(k)R

(
A2 − ikλ1(k)

)− e−2λ1(k)R
(
A2 − ikλ2(k)

))
,

(33a)

a2(k) = 1

2f (k)h(k)

(
e2λ1(k)R

(
A2 + ikλ2(k)

)− e2λ2(k)R
(
A2 + ikλ1(k)

))
,

(33b)

b(k) = −iA

2f (k)h(k)

(
e2ih(k)R(h(k)+ k

)+ e−2ih(k)R(h(k)− k
))
. (33c)

Proof See section “Appendix: Proof of Proposition 2.2” in Appendix. ��

Remark 2.3 Note that for any R ∈ R, a1(k), a2(k), and b(k) have no jump across
[−iA, iA]. Also, if we take the limits R → ±0 in the expressions of the spectral
functions for R > 0 and R < 0, we arrive at (32).

Remark 2.4 The NNLS equation is not translation invariant. Therefore, shifting the
initial data by a constant value can drastically affect the behavior of the solution
[34]. Formulas (31)–(33) illustrate this in terms of the spectral functions in the case
of pure step initial data (28).

The scattering map associates to q0(x)

(i) the spectral functions b(k) and aj (k), j = 1, 2,
(ii) the discrete data, which are the zeros of aj (k), j = 1, 2 and the associated

norming constants.

In studying initial value problems for integrable nonlinear PDEs, the assumptions
about these zeros usually rely on properties of the discrete spectrum associated with
step-like initial data involving prescribed boundary values, like (1c) (see, e.g., [7, 8,
23, 25, 34]). Alternatively, the discrete spectrum can be added to the formulation of
the associated Riemann–Hilbert problem for studying the evolution of more general
initial data, which includes solitons [9, 37, 40].

In the present paper we consider initial data which are characterized in spectral
terms and which are motivated by the pure step initial data with R = 0. Namely, we
make the following assumptions.
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Assumptions 2.5 (On the Zeros of the Spectral Functions a1(k) and a2(k)) We
assume that

(A1) a1(k) and a2(k) do not have zeros in C
+ \ (−A,A) and C

− \ (−A,A),
respectively;

(A2) for k ∈ (−A,A), both a1+(k) and a2−(k) have a simple zero at k = 0, i.e.,

a1+(k) = a10k + O(k2), k → 0, a10 �= 0,

a2−(k) = a20k + O(k2), k → 0, a20 �= 0.
(34)

Then from (26) and (25) it follows that

a20 = −a10 and Re a10 = 0. (35)

2.3 Riemann–Hilbert Problem

Taking into account the analytical properties of the columns of the matrices
#j(x, t, k), j = 1, 2 (see Proposition 2.1(i) and (ii)), we define the 2×2 sectionally
holomorphic matrix M(x, t, k) as follows:

M(x, t, k) =

⎧
⎪⎨

⎪⎩

eiA2tσ3

(
#

[1]
1 (x,t,k)

a1(k)
, #

[2]
2 (x, t, k)

)
, k ∈ C

+,

eiA2tσ3

(
#

[1]
2 (x, t, k),

#
[2]
1 (x,t,k)

a2(k)

)
, k ∈ C

−.
(36)

By Assumptions 2.5, a1(k) and a2(k) have no zeros in the corresponding half-planes
and thus the matrix M(x, t, k) does not have poles in C \ R. From the scattering
relation (20), the symmetries (15b), and the relations (26) it follows that M(x, t, k)

satisfies a multiplicative jump condition:

M+(x, t, k) = M−(x, t, k)J (x, t, k), k ∈ R. (37a)

Here and below M+( · , · , k) and M−( · , · , k) denote the nontangental limits of
M( · , · , k) as k approaches the contour from the left and right sides, respectively
(here, the real line R is oriented from −∞ to +∞). The jump matrix J (x, t, k) has
the following form:

J (x, t, k) =
⎧
⎪⎪⎨

⎪⎪⎩

(
1 + r1(k)r2(k) r2(k)e−(2ix+4itk)f(k)

r1(k)e(2ix+4itk)f(k) 1

)
, k ∈ R \ [−A,A],

−iσ2, k ∈ (−A,A),

(37b)
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with the reflection coefficients

r1(k) := b(k)

a1(k)
and r2(k) := b(−k)

a2(k)
, k ∈ R \ [−A,A]. (37c)

Remark 2.6 If b(k) can be analytically continued into a band containing R, we can
also define rj (k), j = 1, 2 in this band. Then in view of (26), r1±(k) = r2∓(k) and
therefore 1+r1(k)r2(k) does not have a jump across (−A,A). From the determinant
relation (27) it follows that 1 + r1(k)r2(k) = a−1

1 (k)a−1
2 (k), so 1 + r1(k)r2(k) can

have simple zeros at k = ±A. This takes place, e.g., for pure step initial data (28)
(see [25, Section 3]).

In view of Proposition 2.1 (i) and (ii), and Assumptions 2.5, M(x, t, k) has weak
singularities at k = ±A:

M(x, t, k) = O
(
(k ± A)−

1
4
)
, k → ∓A. (38)

Also it has the normalization condition for large k:

M(x, t, k) = I + O(k−1), k → ∞, (39)

where I is the identity matrix. Finally, M(x, t, k) satisfies the following conditions
at k = 0:

lim
k→0,
k∈C+

kM [1](x, t, k) = γ+
a10

e−2AxM
[2]
+ (x, t, 0), (40a)

lim
k→0,
k∈C−

kM [2](x, t, k) = γ−
a20

e−2AxM
[1]
− (x, t, 0), (40b)

where a10 and a20 were introduced in (34), and γ± are defined as follows:

$
[1]
1+(x, t, 0) = γ+$[2]

2+(x, t, 0) and $
[2]
1−(x, t, 0) = γ−$[1]

2−(x, t, 0).

From (15b) and (15a) one concludes that γ+ = γ− and |γ+| = 1.

Remark 2.7 If b(k) can be analytically continued into a band, the norming constants
γ± can be found in terms of b(k) as follows: γ+ = b+(0) and γ− = −b−(0).

Thus we arrive at the following basic Riemann–Hilbert (RH) problem:

Basic RH problem Find a sectionally analytic 2 × 2 matrix M(x, t, k), which

(i) satisfies the jump condition (37) across the real axis,
(ii) has weak singularities (38) at k = ±A,

(iii) converges to the identity matrix as k → ∞,
(iv) and satisfies the singularity conditions (40) at k = 0.
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Using standard arguments based on Liouville’s theorem, it can be shown that the
solution of this RH problem is unique, if it exists.

The solution q(x, t) of the initial value problem (1) can be found from the large
k expansion of the solution M(x, t, k) of the basic RH problem (follows from (2a)):

q(x, t) = 2ie−2iA2t lim
k→∞ kM12(x, t, k),

q(−x, t) = −2ie−2iA2t lim
k→∞ kM21(x, t, k).

(41)

Thus both q(x, t) and q(−x, t) can be found from M(x, t, k) evaluated for x ≥ 0.

Remark 2.8 Since the jump matrix J (x, t, k) satisfies the condition

σ1J (−x, t,−k)σ−1
1 =

(
a2(k) 0

0 1
a2(k)

)
J (x, t, k)

(
a1(k) 0

0 1
a1(k)

)
, k ∈ R \ {±A},

(42)

the solution M(x, t, k) of the basic RH problem satisfies the following symmetry
conditions (see [33, (2.55)]):

M(x, t, k) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

σ1M(−x, t,−k̄)σ−1
1

(
1

a1(k)
0

0 a1(k)

)
, k ∈ C

+,

σ1M(−x, t,−k̄)σ−1
1

(
a2(k) 0

0 1
a2(k)

)
, k ∈ C

−.
(43)

2.4 One-Soliton Solution

The one-soliton solution of the focusing NNLS equation satisfying boundary
conditions (1c) was obtained in [22, Section 4], by using the Darboux transformation
and in [1, Section 3] via the inverse scattering transform method. Here we rederive
this soliton solution using the Riemann–Hilbert approach. Consider the basic RH
problem in the reflectionless case, i.e., with r1(k) ≡ r2(k) ≡ 0:

Msol+ (x, t, k) = −iMsol− (x, t, k)σ2, k ∈ (−A,A), (44a)

Msol(x, t, k) = I + O(k−1), k → ∞, (44b)

Msol(x, t, k) = O
(
(k ∓ A)−

1
4
)
, k → ±A, (44c)
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and with conditions at k = 0 of type (40):

lim
k→0,
k∈C+

k(Msol)[1](x, t, k) = d0 e−2Ax(Msol)
[2]
+ (x, t, 0), (45a)

lim
k→0,
k∈C−

k(Msol)[2](x, t, k) = −d0 e−2Ax(Msol)
[1]
− (x, t, 0), (45b)

for some d0 = γ+
a10

, with |γ+| = 1.
In the reflectionless case, the spectral functions a1(k) and a2(k) are as follows

(see the trace formula in [1, Section 3]):

a1(k) = k + f (k)− iA

k + f (k)+ iA
and a2(k) = k + f (k)+ iA

k + f (k)− iA
. (46)

From (46) we have a10 = − i
2A (see (34)), which implies that

d0 = 2Aeiφ0 with some φ0 ∈ R. (47)

The jump and singularity conditions (44a) and (45) imply that the solution of the
RH problem above can be written in the form

Msol(x, t, k) = N(x, t, k)E2(k), k ∈ C \ {±A, 0}, (48)

where E2(k) is defined in (8) andN(x, t, k) = I+N1(x,t)
k

with some matrixN1(x, t).
On the other hand, conditions (45) imply that M+(x, t, k) can be written as follows:

M+(x, t, k) =
(
α(x, t) 0

0 β(x, t)

)((
d0e−2Ax 1
d0e−2Ax 1

)
+ P(x, t)k + O(k2)

)(
1/k 0

0 1

)
, k → 0,

(49)

with some scalars α(x, t), β(x, t), and a matrix-valued functionP(x, t). Then, using
the relation N(x, t, k) = Msol(x, t, k)E−1

2 (k) and

E−1
2+ (k) = 1√

2

(
1 1

−1 1

)
+ ik

2
√

2A

(−1 1
−1 −1

)
+ O(k2), k → 0, (50)

we conclude that α, β, and N1 are independent of t . Moreover,

N1(x) = d0e−2Ax
(
α(x) 0
β(x) 0

)
E−1

2+ (0)

with α(x) = −β(x) = −
√

2A

2A+ id0e−2Ax .

(51)
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Thus Msol(x, t, k) is independent of t and has the form

Msol(x, t, k) =
(
I + μ(x)

k

(−1 −1
1 1

))
E2(k) (52)

with μ(x) = Ad0e−2Ax

2A+id0e−2Ax . Finally, using (41) and the notation φ0 from (47), we
obtain the exact one-soliton solution as follows (see [1, (3.106)] and [22, (17)]):

q(x, t) = Ae−2iA2t

(
1 − 2ie−2Ax+iφ0

1 + ie−2Ax+iφ0

)

≡ Ae−2iA2t tanh(Ax − iφ0/2 − iπ/4). (53)

3 Long-Time Asymptotic Analysis

3.1 Signature Table

Introduce the phase function θ(k, ξ) as follows:

θ(k, ξ) := 4ξf (k)+ 2kf (k), ξ := x

4t
. (54)

As noticed above, we can consider ξ ≥ 0 only. In terms of θ(k, ξ), the exponentials
in (37b) have the form e2itθ(k,ξ) or e−2itθ(k,ξ), and the following transformations of
the basic RH problem are guided by the signature structure of Im θ(k, ξ).

Since θ(k, ξ) = 2k2 + 4ξk + O(1) as k → ∞, the large k behavior of the
signature table for Im θ(k, ξ) is the same as for Im(4ξk+2k2). Though the equation
d

dk θ(k, ξ) = 0 has two zeros for all ξ > 0:

k1(ξ) = −1

2

(
ξ +

√
ξ2 + 2A2

)
and k2(ξ) = −1

2

(
ξ −

√
ξ2 + 2A2

)
,

(55)

the signature table of Im θ(k, ξ) involves k1(ξ) only, see Figs. 1 and 2. Namely, one
can distinguish two cases:

(1) ξ ∈ (A/2,+∞). In this case, the signature table of Im θ(k, ξ) is as in Fig. 1.
The curves separating the domains where Im θ(k, ξ) > 0 and Im θ(k, ξ) < 0
intersect at k = k1(ξ).

(2) ξ ∈ (0, A/2). In this case, the signature table of Im θ(k, ξ) is as in Fig. 2.
The curves separating the domains where Im θ(k, ξ) > 0 and Im θ(k, ξ) < 0
intersect at k = −2ξ . This is because of

Im θ±(k, ξ) = ±2(2ξ + k)
√
k2 − A2, k ∈ (−A,A). (56)
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• • • • • •

Im θ < 0

Im θ > mI0 θ < 0

Im θ > 0

−ξ

−A

k1 k2

0 A R

Fig. 1 Signature table of Im θ(k, ξ) in the modulated wave region ξ > A/2.

••••• ••

Im θ < 0

Im θ > mI0 θ < 0

Im θ > 0

−2ξ

−ξ

−A

k1 k2

0 A R

Fig. 2 Signature table of Im θ(k, ξ) in the central region 0 < ξ < A/2.
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3.2 Modulated Regions |ξ | ∈ (A/2,∞)

Taking into account the signature structure of Im θ(k, ξ) for −ξ ∈ (−∞,−A/2)
(see Fig. 1), we will use two different triangular factorizations of the jump matrix
J (x, t, k) for k ∈ R \ [−A,A] (cf. [10, 25, 32]):

J (x, t, k) =
(

1 0
r1(k)e2itθ

1+r1(k)r2(k)
1

)(
1 + r1(k)r2(k) 0

0 1
1+r1(k)r2(k)

)(
1 r2(k)e−2itθ

1+r1(k)r2(k)

0 1

)
,

k ∈ (−∞, k1),

(57a)

and

J (x, t, k) =
(

1 r2(k)e−2itθ

0 1

)(
1 0

r1(k)e2itθ 1

)
, k ∈ (k1,−A)∪ (A,∞). (57b)

For getting rid of the diagonal factor in (57a), we introduce the scalar function
δ(k, k1) as the solution of the following RH problem:

δ+(k, k1) = δ−(k, k1)(1 + r1(k)r2(k)), k ∈ (−∞, k1),

δ(k, k1) → 1, k → ∞.
(58)

The jump function 1 + r1(k)r2(k) in (58) is, in general, complex-valued for k ∈
(−∞, k1), which is an important difference comparing with the problems for the
local equations, where it is real [7, 8, 13, 25]. The nonzero imaginary part of 1 +
r1(k)r2(k) is responsible for the singularity (or zero, depending on the sign) of δ at
the endpoint k = k1, which follows from the integral representation for δ(k, k1) (cf.
[32]):

δ(k, k1) = exp

{
1

2π i

∫ k1

−∞
ln(1 + r1(ζ )r2(ζ ))

ζ − k
dζ

}
. (59)

Integrating by parts one concludes that

δ(k, k1) = (k − k1)
iν(k1)eχ(k,k1), (60)

where

χ(k, k1) := − 1

2π i

∫ k1

−∞
ln(k − ζ )d ln(1 + r1(ζ )r2(ζ )), (61)

ν(k1) := − 1

2π
ln(1 + r1(k1)r2(k1))
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= − 1

2π
ln |1 + r1(k1)r2(k1)| − i

2π
�(k1), (62)

�(k1) :=
∫ k1

−∞
d arg(1 + r1(ζ )r2(ζ )). (63)

To obtain the asymptotics in the modulated regions (see Theorem 3.2 below) we
need an additional assumption on the spectral functions (cf. [32]):

Assumption 3.1 (On the Spectral Functions r1 and r2)

∫ k

−∞
d arg(1 + r1(ζ )r2(ζ )) ∈ (−π, π), for all k ∈ (−∞,−A). (64)

This implies that |Im ν(k1)| < 1
2 and, consequently, δσ3(k, k1) has a square

integrable singularity at k = k1.

3.2.1 1st Transformation

Using the function δ(k, k1) we make the following transformation of M(x, t, k):

M(1)(x, t, k) = M(x, t, k)δ−σ3(k, k1), k ∈ C \ R. (65)

Then M(1)(x, t, k) solves the following RH problem:

M
(1)
+ (x, t, k) = M

(1)
− (x, t, k)J (1)(x, t, k), k ∈ R \ {±A}, (66a)

M(1)(x, t, k) = I + O(k−1), k → ∞, (66b)

M(1)(x, t, k) = O
(
(k ± A)−

1
4

)
, k → ∓A, (66c)

M(1)(x, t, k) = O

(
(k − k1)

p (k − k1)
−p

(k − k1)
p (k − k1)

−p

)
, k → k1, p ∈ (−1/2, 1/2),

(66d)
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where the jump matrix J (1)(x, t, k) has the form

J (1) =
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎝ 1 0
r1(k)δ

−2− (k,k1)

1+r1(k)r2(k)
e2itθ 1

⎞

⎠
(

1
r2(k)δ

2+(k,k1)

1+r1(k)r2(k)
e−2itθ

0 1

)
, k ∈ (−∞, k1),

(
1 r2(k)δ

2(k, k1)e−2itθ

0 1

)(
1 0

r1(k)δ
−2(k, k1)e2itθ 1

)
, k ∈ (k1,−A) ∪ (A,∞),

(
0 −δ2(k, k1)

δ−2(k, k1) 0

)
, k ∈ (−A,A).

(67)

Moreover, M(1)(x, t, k) satisfies singularity conditions at k = 0:

lim
k→0,
k∈C+

k
(
M(1)

)[1]
(x, t, k) = γ+

a10 δ2(0, k1)
e−2Ax

(
M(1)

)[2]
+ (x, t, 0), (68a)

lim
k→0,
k∈C−

k
(
M(1)

)[2]
(x, t, k) = γ− δ2(0, k1)

a20
e−2Ax

(
M(1)

)[1]
− (x, t, 0). (68b)

3.2.2 2nd Transformation

Now we are able to get off the real axis and to obtain a RH problem which can be
approximated, as t → +∞, by an exactly solvable problem. We assume that the
reflection coefficients rj (k), j = 1, 2 can be continued into a band containing the
real axis (this takes place, for example, when q0(x) converges exponentially fast to
its boundary values).

Define M(2)(x, t, k) as follows (compare with M(2) in [32] and M in [25]):

M(2) = M(1) ×

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 −r2(k)δ

2(k,k1)
1+r1(k)r2(k)

e−2itθ

0 1

)
, k ∈ "̂1;

(
1 0

−r1(k)δ
−2(k, k1)e2itθ 1

)
, k ∈ "̂2;

(
1 r2(k)δ

2(k, k1)e−2itθ

0 1

)
, k ∈ "̂3;

(
1 0

r1(k)δ
−2(k,k1)

1+r1(k)r2(k)
e2itθ 1

)
, k ∈ "̂4;

I, k ∈ "̂0,
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• • •

Ω̂0

Ω̂0

Ω̂1 Ω̂2

Ω̂4 Ω̂3

γ̂1 γ̂2

γ̂4 γ̂3

−Ak1 A R

Fig. 3 Modulated wave region: contour Γ̂ = γ̂1 ∪ · · · ∪ γ̂4 and domains "̂j , j = 0, . . . , 4.

where "̂j , j = 0, . . . , 4 are displayed in Fig. 3. Let Γ̂ = ∪4
j=1γ̂j be the contour

also shown in Fig. 3. Then M(2)(x, t, k) solves the following RH problem:

M
(2)
+ (x, t, k) = M

(2)
− (x, t, k)J (2)(x, t, k), k ∈ Γ̂ ∪ (−A,A), (69a)

M(2)(x, t, k) = I + O(k−1), k → ∞, (69b)

M(2)(x, t, k) = O
(
(k ± A)−

1
4

)
, k → ∓A, (69c)

M(2)(x, t, k) = O

(
(k − k1)

p (k − k1)
−p

(k − k1)
p (k − k1)

−p

)
, k → k1, p ∈ (−1/2, 1/2),

(69d)

where, using the relations r1±(k) = r2∓(k) and θ+(k) = −θ−(k) for k ∈ (−A,A),
one finds that

J (2) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
0 −δ2(k, k1)

δ−2(k, k1) 0

)
, k ∈ (−A,A);

(
1 r2(k)δ

2(k,k1)
1+r1(k)r2(k)

e−2itθ

0 1

)
, k ∈ γ̂1;

(
1 0

r1(k)δ
−2(k, k1)e2itθ 1

)
, k ∈ γ̂2;

(
1 −r2(k)δ

2(k, k1)e−2itθ

0 1

)
, k ∈ γ̂3;

(
1 0

−r1(k)δ
−2(k,k1)

1+r1(k)r2(k)
e2itθ 1

)
, k ∈ γ̂4.

(70)
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Using the equalities r1(k) = b+(0)
a10k

+ O(1) as k → 0 with k ∈ C
+, θ+(0, ξ) = iAx

t
,

and γ+ = b+(0) (see Remark 2.7), direct calculations show that M(2)(x, t, k) =
O(1) as k → 0, k ∈ "̂2. Similarly, it can be shown that M(2)(x, t, k) = O(1) as
k → 0, k ∈ "̂3. Thus the RH problem for M(2), in contrast to that for M(1), does
not involve any singularity conditions at k = 0.

In view of the signature table of Im θ(k, ξ) (see Fig. 1), the jump matrix
J (2)(x, t, k) decays to the identity matrix for k ∈ Γ̂ , uniformly outside any
neighborhood of the stationary phase point k = k1. Arguing as, e.g., in [32, Section
3.2], we eliminate δ(k, ξ) in the jump for k ∈ (−A,A) by introducing the scalar
function

F(k, k1) := exp

{
−f (k)

π i

∫ A

−A

ln δ(ζ, k1)

f−(ζ )(ζ − k)
dζ

}
, k ∈ C \ [−A,A]. (71)

This function F(k, k1) satisfies the jump condition

F+(k, k1)F−(k, k1) = δ2(k, k1), k ∈ (−A,A), (72)

and is bounded at k = ±A. In order to recover q(x, t) from the solution of the RH
problem, we need the large k asymptotics of F(k, k1):

F(k, k1) = eiF∞(k1) + O(k−1), k → ∞,

F∞(k1) := − 1

π

∫ A

−A

ln δ(ζ, k1)

f−(ζ )
dζ.

(73)

Substituting (59) into F∞(k1), we have that

ReF∞(k1) = − 1

2π2

∫ A

−A

1√
A2 − ζ 2

(∫ k1

−∞
ln |1 + r1(s)r2(s)|

s − ζ
ds

)
dζ, (74a)

ImF∞(k1) = − 1

2π2

∫ A

−A

1√
A2 − ζ 2

(∫ k1

−∞
�(s)

s − ζ
ds

)
dζ, (74b)

where �(s) is given by (63) and
√
A2 − ζ 2 > 0.

3.2.3 3rd Transformation

Using F(k, k1), we define M(3)(x, t, k) as follows:

M(3)(x, t, k) = e−iF∞(k1)σ3M(2)(x, t, k)F σ3(k, k1), k ∈ C \ {Γ̂ ∪ [−A,A]}.
(75)



Focusing NNLS Equation with Asymmetric Boundary Conditions 215

Then M(3) satisfies the following RH problem with constant jump across (−A,A):

M
(3)
+ (x, t, k) = M

(3)
− (x, t, k)J (3)(x, t, k), k ∈ Γ̂ ∪ (−A,A), (76a)

M(3)(x, t, k) = I + O(k−1), k → ∞, (76b)

M(3)(x, t, k) = O
(
(k ± A)−

1
4

)
, k → ∓A, (76c)

M(3)(x, t, k) = O

(
(k − k1)

p (k − k1)
−p

(k − k1)
p (k − k1)

−p

)
, k → k1, p ∈ (−1/2, 1/2),

(76d)

with

J (3)(x, t, k) =
{

−iσ2, k ∈ (−A,A),

F−σ3(k, k1)J
(2)(x, t, k)F σ3(k, k1), k ∈ Γ̂ .

(77)

Since F(k, k1) is bounded at k = 0, we have M(3)(x, t, k) = O(1) as k → 0. Thus,
similarly to the RH problem for M(2), the RH problem for M(3) does not involve
any singularity conditions at k = 0.

The solution q(x, t) of the Cauchy problem (1) can be expressed in terms of
M(3)(x, t, k) as follows:

q(x, t) = 2ie−2iA2t+2iF∞(k1) lim
k→∞ kM

(3)
12 (x, t, k), x > 0, (78a)

q(x, t) = −2ie−2iA2t+2iF∞(k1) lim
k→∞ kM

(3)
21 (−x, t, k), x < 0. (78b)

3.2.4 Model RH Problem

Arguing as in [32], the RH problem for M(3) can be approximated by a model RH
problem whose contour is (−A,A) and whose jump matrix is constant. Using (78),
we are able to obtain an asymptotics of q(x, t) including at least the first decaying
term [32]. For the sake of brevity, we present here, in Theorem 3.2 below, the leading
(non-decaying) terms only.

Theorem 3.2 (Modulated Regions |ξ | > A/2) Assume that the initial data q0(x)

approaches its boundary values (1c) exponentially fast and that the associated
spectral functions aj (k) and rj (k), j = 1, 2 satisfy Assumptions 2.5 and 3.1,
respectively.



216 A. Boutet de Monvel et al.

Then the solution q(x, t) of problem (1) has the following long-time asymptotics
along the rays ξ ≡ x

4t = const, uniformly in any compact subset of {ξ ∈ R : |ξ | ∈
(A/2,+∞)}:

q(x, t) =
{
Ae−2 ImF∞(k1(|ξ |))e−2i(A2t−ReF∞(k1(|ξ |))) + E(x, t), ξ > A/2,

−Ae2 ImF∞(k1(|ξ |))e−2i(A2t−ReF∞(k1(|ξ |))) + E(x, t), ξ < −A/2,
(79)

where k1 and F∞(k1) are defined by (55) and (74), respectively, and with error

terms E(x, t) = O(t− 1
2 −Im ν(k1(|ξ |)) + t− 1

2 +Im ν(k1(|ξ |))).

Remark 3.3 In contrast to the plane wave regions for problems for the defocusing
NLS equation [5, 15, 23, 25], the modulus of the main term in (79) depends on the
direction ξ . Notice that the absolute value of the main term of the asymptotics in the
plane wave regions [32] and the so-called “modulated constant” regions [33, 34] in
problems for the NNLS equation with nonzero symmetric and step-like boundary
conditions also depends on the direction ξ .

3.3 Central Region (|ξ | ∈ (0,A/2))

For this region, in contrast to the modulated regions (see Sect. 3.2), the sign-
changing critical point k = −2ξ lies on the cut (−A,A) (see Fig. 2). Since
Im θ(k, ξ) does not vanish on the cut (± Im θ±(k, ξ) < 0 for k ∈ (−A,−2ξ)
and ± Im θ±(k, ξ) > 0 for k ∈ (−2ξ,A)), we are able to obtain the asymptotics
with exponential precision (see [23] and [25, Section 5.5]). Moreover, no additional
conditions on the winding of the argument are needed, because in the central region
there is no need to deal with a model problem on the cross.

3.3.1 1st Transformation

The first transformation is similar to that in the modulated region, but with δ(k,−A)

instead of δ(k, k1) (cf. (65)):

M(1)(x, t, k) = M(x, t, k)δ−σ3(k,−A), k ∈ C \ R. (80)

Then M(1)(x, t, k) solves a RH problem similar to that in the modulated regions,
but with, in general, a strong singularity at k = −A. The form of this singularity
depends on whether the quantity 1 + r1(−A)r2(−A) is equal to zero or not
(see Remark 2.6). Here we only consider the most complicated case, when 1 +
r1(−A)r2(−A) = 0.
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Using the results of [20, Sections 8.1 and 8.5] about the behavior of Cauchy-type
integrals at the end points and the relation ln(−A) = lnA + iπ , we have that

1

2π i

∫ −A

−∞

ln ζ+A
ζ

ζ − k
dζ = 1

2π i
lnA · ln(k+A)+ 1

4π i
ln2(k+A)+$−A(k), (81)

where $−A(k) is analytic in a neighborhood of k = −A. Since

∫ −A

−∞
d arg(1 + r1(ζ )r2(ζ )) =

∫ −A

−∞
d arg

ζ + A

ζ
(1 + r1(ζ )r2(ζ ))

and ln2(k +A) = ln2 |k +A| + arg2(k +A)+ 2i arg(k +A) · ln(k +A), we obtain
the following behavior of δ(k,−A) at k = −A:

δ(k,−A) = (k + A)
1

2π (�(−A)+arg(k+A))δ−A(k), (82)

where �(−A) is given by (63) and δ−A(k) is bounded at k = −A. Then M(1) has
the following behavior at k = −A:

M(1)(x, t, k) = O

(
(k + A)− 1

2π (�(−A)+arg(k+A))− 1
4 (k + A)

1
2π (�(−A)+arg(k+A))− 1

4

(k + A)− 1
2π (�(−A)+arg(k+A))− 1

4 (k + A)
1

2π (�(−A)+arg(k+A))− 1
4

)
,

k → −A. (83)

3.3.2 2nd Transformation

Further, we define M(2)(x, t, k) as in Sect. 3.2.2 for the modulated wave case, but
with domains "̂j , j = 0, . . . , 4 displayed in Fig. 4. In that case (see Fig. 4) the
points of intersection k̂1 and k̂2 of the real axis with γ̂1 and γ̂4, then with γ̂2 and γ̂3
are simply chosen such that −A < k̂1 < −2ξ < k̂2 < 0. Since 1 + r1(k)r2(k) has a
simple zero at k = −A, choosing arg(k + A) ∈ (2π, 3π) for k ∈ C

+ in the second
column of M(1) as k → −A and arg(k + A) ∈ (−3π,−2π) for k ∈ C

− in the first
column of M(1) as k → −A (see (83)) we obtain the behavior (83) for M(2) with
arg(k +A) ∈ (−π, π). Moreover, similarly to Sect. 3.2, k = 0 lies on the boundary
of the domains "̂2 and "̂3 and thus M(2)(x, t, k) turns to be bounded at k = 0 as
well.
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• • • • • •

Ω̂0

Ω̂0

Ω̂1 Ω̂2

Ω̂4 Ω̂3

γ̂1 γ̂2

γ̂4 γ̂3

−A 0−2ξ

k̂1 k̂2

A R

Fig. 4 Central region: contour Γ̂ = γ̂1 ∪ · · · ∪ γ̂4 and domains "̂j , j = 0, . . . , 4.

3.3.3 3rd Transformation

We define M(3)(x, t, k) as in Sect. 3.2.3, but with F(k,−A) instead of F(k, k1).
From (82) and [20, Section 8.6] we conclude that F(k,−A) behaves at k = −A as
follows:

F(k,−A) = (k + A)
1

2π (�(−A)+arg(k+A))F−A(k), (84)

where F−A(k) is bounded at k = −A. Therefore, M(3)(x, t, k) = O
(
(k +A)− 1

4
)

as
k → −A. The jump matrix J (3) associated with M(3) is defined similarly to (77),
with F(k, k1) replaced by F(k,−A) and with the contour Γ̂ displayed in Fig. 4.

3.3.4 Model RH Problem

Taking into account that J (3)(x, t, k), k ∈ Γ̂ (see Fig. 4) approaches exponentially
fast the identity matrix (as t → +∞), uniformly with respect to k ∈ Γ̂ , we arrive at
the following asymptotics for q(±x, t):

q(x, t) = 2ie−2iA2t+2iF∞(−A) lim
k→∞ kMmod

12 (k)+ O(e−ct ), x > 0, t → +∞,

(85a)

q(−x, t) = −2ie−2iA2t+2iF∞(−A) lim
k→∞ kMmod

21 (k)+ O(e−ct ), x > 0, t → +∞,

(85b)
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with some c > 0, and where Mmod(k) is analytic in C \ [−A,A] and solves the
following RH problem with constant jump matrix across the contour (−A,A):

Mmod+ (k) = −iMmod− (k)σ2, k ∈ (−A,A), (86a)

Mmod(k) = I + O(k−1), k → ∞, (86b)

Mmod(k) = O
(
(k ± A)−

1
4

)
, k → ∓A. (86c)

From (18) it follows that Mmod(k) = E2(k). Combining this with (85), we arrive at

Theorem 3.4 (Unmodulated Regions 0 < |ξ | < A/2) Assume that the initial
data q0(x) approaches exponentially fast its boundary values (1c) and that the
associated spectral functions aj (k), j = 1, 2 satisfy Assumptions 2.5.

Then the solution q(x, t) of problem (1) has the following long-time asymptotics
along the rays ξ = x

4t = const, uniformly in any compact subset of {ξ ∈ R : |ξ | ∈
(0, A/2)}:

q(x, t) =
{
Ae−2 ImF∞(−A)e−2i(A2t−ReF∞(−A)) + O(e−ct ), 0 < ξ < A/2,

−Ae2 ImF∞(−A)e−2i(A2t−ReF∞(−A)) + O(e−ct ), −A/2 < ξ < 0,
(87)

with some c > 0 independent of ξ . Here F∞(−A) is given by (74) with k1 = −A.

Remark 3.5 The asymptotics in the central (unmodulated) regions is established
without additional restrictions on the winding of the argument of the spectral data
(cf. Theorem 3.2 and, e.g., [32, 34]). To the best of our knowledge, it is the first
discovered zone for nonlocal integrable equations where the asymptotics of the
solution does not depend on the behavior of the argument of a dedicated spectral
function.

Remark 3.6 The asymptotics of q(x, t) for ξ ∈ (−A/2, 0) and ξ ∈ (0, A/2) does
not depend on the direction ξ . However, both |q(x, t)| and arg q(x, t) depend on the
initial data through F∞(−A).

The central region can be compared with the central plateau zone for the
defocusing NLS equation, where the asymptotics is also obtained with exponential
precision, but the modulus of the solution does not depend on the initial data
[5, 15, 23, 25].

Remark 3.7 Since k1(
A
2 ) = −A, the main terms in the unmodulated regions, see

(87), match those in the modulated regions (see (79)) at ξ = ±A
2 .
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Remark 3.8 The asymptotic formulas (87) do not match as ξ → ±0. However, in
the central region, the solution q(x, t) can approach a tanh-like function as t → +∞
(see Theorem 3.9 below).

3.4 Transition at ξ = 0

In this section we analyse the asymptotics of the solution as ξ → ±0. For this, we
consider (x, t) with x = x0 > 0 fixed and t → +∞.

3.4.1 First Transformations

We perform three transformations of the basic RH problem similar to those made in
Sect. 3.3. However, since ξ → +0, we choose the contour Γ̂ (see Fig. 5) such that its
points of intersection k̂1 and k̂2 with the real axis satisfy −A < k̂1 < 0 < k̂2 < A.

In contrast to the cases presented in Sects. 3.2 and 3.3, now the point k = 0 lies
on the boundary of "̂0. It follows that the RH problems for both M(2)(x, t, k) and
M(3)(x, t, k) involve singularity conditions at k = 0; particularly, these conditions
for M(3) read as follows:

lim
k→0,
k∈C+

k
(
M(3))[1]

(x, t, k) = γ+ F 2+(0,−A)

a10 δ2(0,−A)
e−2Ax(M(3))[2]

+ (x, t, 0), (88a)

lim
k→0,
k∈C−

k
(
M(3))[2]

(x, t, k) = γ− δ2(0,−A)

a20 F
2−(0,−A)

e−2Ax(M(3))[1]
− (x, t, 0). (88b)

• • •• •

Ω̂0

Ω̂0

Ω̂1 Ω̂2

Ω̂4 Ω̂3

γ̂1 γ̂2

γ̂4 γ̂3

−A 0

k̂1 k̂2

A R

Fig. 5 Transition region: contour Γ̂ = γ̂1 ∪ · · · ∪ γ̂4 and domains "̂0, . . . , "̂4.
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3.4.2 Model RH Problem

The solution M(3)(x, t, k) of the RH problem relative to the contour Γ̂ ∪ (−A,A)

(see Fig. 5) can be approximated by the solution Mmod(x, k) of a model problem,
which is as follows (cf. (44) and (45)):

Mmod+ (x, k) = −iMmod− (x, k)σ2, k ∈ (−A,A), (89a)

Mmod(x, k) = I + O(k−1), k → ∞, (89b)

Mmod(x, k) = O
(
(k ± A)−

1
4
)
, k → ∓A, (89c)

with singularity conditions at k = 0:

lim
k→0,
k∈C+

kMmod[1](x, k) = γ+ F 2+(0,−A)

a10 δ2(0,−A)
e−2AxM

mod[2]
+ (x, 0), (90a)

lim
k→0,
k∈C−

kMmod[2](x, k) = γ− δ2(0,−A)

a20 F
2−(0,−A)

e−2AxM
mod[1]
− (x, 0). (90b)

Indeed, writing

M(3)(x, t, k) = Merr(x, t, k)Mmod(x, k), (91)

Merr satisfies the following RH problem on the contour Γ̂ :

Merr+ (x, t, k) = Merr− (x, t, k)J err(x, t, k), k ∈ Γ̂ , (92a)

Merr(x, k) = I + O(k−1), k → ∞, (92b)

Merr(x, k) = O
(
(k ± A)−

1
2

)
, k → ∓A, (92c)

where J err(x, t, k), k ∈ Γ̂ can be uniformly estimated with exponentially small
error for large t :

J err(x, t, k) = Mmod(x, k)(I + O(e−ct ))(Mmod)−1(x, k), t → +∞, (93)

with some c > 0 which does not depend on x. It follows that for all x such that
2A+ id(A)e−2Ax �= 0 (see (52)),

Merr
1 (x, t) := lim

k→∞ k
(
Merr(x, t, k)− I

) = O(e−ct )

2A + id(A)e−2Ax , t → +∞,

(94)
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where O(e−ct ) is independent of x and

d(A) := γ+ F 2+(0,−A)

a10 δ2(0,−A)
, (95)

with δ(k,−A) and F(k,−A) given by (59) and (71), respectively. From (89) and
(94) we conclude that q(x, t) and q(−x, t) can be found in terms of the solution
Mmod(x, k) as follows:

q(x, t) = 2ie−2iA2t+2iF∞(−A) lim
k→∞ kM̃12(x, k)+ O(e−ct ), x > 0, t → +∞,

(96a)

q(−x, t) = −2ie−2iA2t+2iF∞(−A) lim
k→∞ kM̃21(x, k)+ O(e−ct ), x > 0, t → +∞.

(96b)

Then, arguing as in Sect. 2.4, we can explicitly solve the RH problem forMmod(x, k)

and thus arrive at

Theorem 3.9 (Transition at ξ = 0) Assume that the initial data q0(x) approaches
exponentially fast its boundary values (1c) and that the associated spectral functions
aj (k), j = 1, 2 satisfy Assumptions 2.5.

Then the solution q(x, t) of problem (1) has the following asymptotics as t →
+∞ along the rays x = const, excluding x = 0 and also x = x ′ := 1

2A ln −id(A)
2A if

x ′ is real and positive, and x = x ′′ := − 1
2A ln id(A)

2A if x ′′ is real and negative:

q(x, t) =
⎧
⎨

⎩
Ae−2 ImF∞(−A)e−2i(A2t−ReF∞(−A)) · 2A−id(A)e−2Ax

2A+id(A)e−2Ax + O(e−ct ), x > 0,

−Ae2 ImF∞(−A)e−2i(A2t−ReF∞(−A)) · 2Ae−2Ax+id(A)
2Ae−2Ax−id(A)

+ O(e−ct ), x < 0,

(97)

with some c > 0 independent of x. Here F∞(−A) and d(A) are given by (74) and
(95), respectively.

Remark 3.10 As x → ±∞, the main terms in (97) match those in (87).

Remark 3.11 The main term of the asymptotics in (97) is continuous at x = 0 only
if d(A) and ImF∞(−A) satisfies one of the two conditions:

• ImF∞(−A) = 0 and |d(A)| = 2A with d(A) �= 2iA,
• d(A) = −2iA (without condition on ImF∞(−A)).
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Appendix: Proof of Proposition 2.2

Proof of item (ii) Substituting q0,R(x) with R = 0 (see (28)) to (4), we obtain that
#j(0, 0, k) = Ej (k), j = 1, 2. Using (20), we have S(k) = E−1

2 (k)E1(k), which
implies (32) in view of (21).

Proof of item (i) For the initial data q0,R(x) with R > 0, from the integral
representations (4) we have that

#2(R, 0, k) = E2(k) (A.1)

and that the (11) and (12) entries of #1(x, 0, k) satisfy the following integral
equations for x ∈ [−R,R]:

(#1)11(x, 0, k) =

e1(k)+ 2Ae1(k)e2(k)

∫ x

−R

(
1 − e2if (k)(x−y)

)
(#1)11(y, 0, k) dy, (A.2a)

(#1)12(x, 0, k) =

− e2(k) − 2Ae1(k)e2(k)

∫ x

−R

(
1 − e−2if (k)(x−y)

)
(#1)12(y, 0, k) dy,

(A.2b)

where

e1(k) := 1

2

(
w(k)+ 1

w(k)

)
, e2(k) := i

2

(
w(k)− 1

w(k)

)
, (A.3)

with w(k) given in (8). The entries (#1)21(x, 0, k) and (#1)22(x, 0, k) can be
expressed in terms of (#1)11(x, 0, k) and (#1)12(x, 0, k) as follows (for x ∈
[−R,R]):

(#1)21(x, 0, k) = e2(k)+ 2A
∫ x

−R

(
e2

2(k)+ e2
1(k)e

2if (k)(x−y)
)
(#1)11(y, 0, k) dy,

(A.4a)

(#1)22(x, 0, k) = e1(k)+ 2A
∫ x

−R

(
e2

1(k)+ e2
2(k)e

−2if (k)(x−y)
)
(#1)12(y, 0, k) dy.

(A.4b)

In order to find #1(R, 0, k), we first solve the integral equations (A.2) and then
substitute the solutions into (A.4) with x = R. Using the equality e1(k)e2(k) =
− iA

2f (k) , equation (A.2a) can be reduced to the following Cauchy problem for a
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linear ordinary differential equation (where x ∈ [−R,R]):
⎧
⎨

⎩

d2

dx2 (#1)11(x, 0, k)− 2if (k) d
dx (#1)11(x, 0, k)+ 2A2(#1)11(x, 0, k) = 0,

(#1)11(−R, 0, k) = e1(k),
d

dx (#1)11(−R, 0, k) = 0.

(A.5)

The solution of (A.5) has the form (for x ∈ [−R,R]):

(#1)11(x, 0, k) = ie1(k)λ2(k)

2h(k)
eλ1(k)(x+R) − ie1(k)λ1(k)

2h(k)
eλ2(k)(x+R), (A.6)

where h(k) and λj (k), j = 1, 2 are given by (29) and (30), respectively. Then,

substituting (A.6) into (A.4a) and using the relations λ1(k)
λ2(k)

= − f (k)h(k)+k2

A2 , λ2(k)
λ1(k)

=
f (k)h(k)−k2

A2 , and
e2

1(k)

e2
2(k)

= − (k+f (k))2

A2 , we obtain:

(#1)21(R, 0, k)

= e2(k)+ iA
e1(k)e

2
2(k)

h(k)

(
λ2(k)

λ1(k)

(
e2λ1(k)R − 1

)
− λ1(k)

λ2(k)

(
e2λ2(k)R − 1

))

+ iA
e3

1(k)

h(k)

(
e2λ2(k)R − e2λ1(k)R

)

= A2e2(k)

2f (k)h(k)

(
e2λ1(k)R

(
λ2(k)

λ1(k)
− e2

1(k)

e2
2(k)

)
− e2λ2(k)R

(
λ1(k)

λ2(k)
− e2

1(k)

e2
2(k)

))

= e2(k)

2h(k)

(
e2λ1(k)R(2k − iλ1(k))− e2λ2(k)R(2k − iλ2(k))

)
. (A.7)

Similarly, from the integral equation (A.2b) we deduce that, for x ∈ [−R,R],

(#1)12(x, 0, k) = ie2(k)λ1(k)

2h(k)
e−λ2(k)(x+R) − ie2(k)λ2(k)

2h(k)
e−λ1(k)(x+R), (A.8)

and, therefore, from (A.4b) we get, using that
e2

2(k)

e2
1(k)

= − (f (k)−k)2

A2 :

(#1)22(R, 0, k)

= e1(k)+ iA
e2

1(k)e2(k)

h(k)

(
λ2(k)

λ1(k)

(
e−2λ1(k)R − 1

)
− λ1(k)

λ2(k)

(
e−2λ2(k)R − 1

))

+ iA
e3

2(k)

h(k)

(
e−2λ2(k)R − e−2λ1(k)R

)
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= A2e1(k)

2f (k)h(k)

(
e−2λ1(k)R

(
λ2(k)

λ1(k)
− e2

2(k)

e2
1(k)

)
− e−2λ2(k)R

(
λ1(k)

λ2(k)
− e2

2(k)

e2
1(k)

))

= e1(k)

2h(k)

(
e−2λ2(k)R(2k + iλ2(k))− e−2λ1(k)R(2k + iλ1(k))

)
. (A.9)

Finally, substituting (A.1) and (A.6)–(A.9) into

S(k) = eiRf (k)σ3#−1
2 (R, 0, k)#1(R, 0, k)e−iRf (k)σ3 (A.10)

and using the relations e2
1(k) = f (k)+k

2f (k) and e2
2(k) = f (k)−k

2f (k) , we arrive at (31).

Proof of item (iii) Let the entries of the 2×2 matrix #̂1(x, k) satisfy (A.2) and (A.4)
for x ∈ [R,−R] (recall that here R < 0). Then from the integral representation for
#2(x, 0, k), see (4), we conclude that the entries of #2(x, 0, k) can be found via
#̂1(x, k) as follows:

(#2)11(x, 0, k) = (#̂1)11(x, k), (#2)12(x, 0, k) = −(#̂1)12(x, k),

(#2)21(x, 0, k) = −(#̂1)21(x, k), (#2)22(x, 0, k) = (#̂1)22(x, k).
(A.11)

Therefore, using the expressions for the entries of the matrix #̂1(R, k) obtained in
the proof of item (i), we obtain#2(R, 0, k). Since#1(R, 0, k) = E1(k), from (A.10)
and (A.11) we have (33).
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6. G. Biondini, G. Kovačič, Inverse scattering transform for the focusing nonlinear Schrödinger
equation with nonzero boundary conditions. J. Math. Phys. 55(3), 031506, 22 (2014)

7. G. Biondini, D. Mantzavinos, Long-time asymptotics for the focusing nonlinear Schrödinger
equation with nonzero boundary conditions at infinity and asymptotic stage of modulational
instability. Commun. Pure Appl. Math. 70(12), 2300–2365 (2017)



226 A. Boutet de Monvel et al.

8. A. Boutet de Monvel, V.P. Kotlyarov, D. Shepelsky, Focusing NLS equation: long-time
dynamics of step-like initial data. Int. Math. Res. Not. IMRN 2011(7), 1613–1653 (2011)

9. S. Cuccagna, R. Jenkins, On the asymptotic stability of N-soliton solutions of the defocusing
nonlinear Schrödinger equation. Commun. Math. Phys. 343(3), 921–969 (2016)

10. P.A. Deift, A.R. Its, X. Zhou, Long-time asymptotics for integrable nonlinear wave equa-
tions, in Important Developments in Soliton Theory. Springer Series in Nonlinear Dynamics
(Springer, Berlin, 1993), pp. 181–204

11. P. Deift, S. Venakides, X. Zhou, The collisionless shock region for the long-time behavior of
solutions of the KdV equation. Commun. Pure Appl. Math. 47(2), 199–206 (1994)

12. P. Deift, S. Venakides, X. Zhou, New results in small dispersion KdV by an extension of the
steepest descent method for Riemann–Hilbert problems. Int. Math. Res. Not. 1997(6), 286–299
(1997)

13. P. Deift, X. Zhou, A steepest descent method for oscillatory Riemann–Hilbert problems.
Asymptotics for the MKdV equation. Ann. of Math. (2) 137(2), 295–368 (1993)

14. F. Demontis, B. Prinari, C. van der Mee, F. Vitale, The inverse scattering transform for the
defocusing nonlinear Schrödinger equations with nonzero boundary conditions. Stud. Appl.
Math. 131(1), 1–40 (2013)

15. G.A. Èl′, V.V. Geogjaev, A.V. Gurevich, A.L. Krylov, Decay of an initial discontinuity in the
defocusing NLS hydrodynamics. The nonlinear Schrödinger equation (Chernogolovka, 1994).
Phys. D 87(1–4), 186–192 (1995)

16. R. El-Ganainy, K.G. Makris, M. Khajavikhan, Z.H. Musslimani, S. Rotter,
D.N. Christodoulides, Non-Hermitian physics and PT symmetry. Nat. Phys. 14, 11–19
(2018)

17. B.-F. Feng, X.-D. Luo, M.J. Ablowitz, Z.H. Musslimani, General soliton solution to a nonlocal
nonlinear Schrödinger equation with zero and nonzero boundary conditions. Nonlinearity
31(12), 5385–5409 (2018)

18. S. Fromm, J. Lenells, R. Quirchmayr, The defocusing nonlinear Schrödinger equation with
step-like oscillatory initial data (2021). https://arxiv.org/abs/2104.03714

19. T.A. Gadzhimuradov, A.M. Agalarov, Towards a gauge-equivalent magnetic structure of the
nonlocal nonlinear Schrödinger equation. Phys. Rev. A 93(6), 062124 (2016)

20. F.D. Gakhov, Boundary Value Problems (Dover Publications, Inc., New York, 1990). Trans-
lated from the Russian. Reprint of the 1966 translation

21. M. Gürses, A. Pekcan, Nonlocal nonlinear Schrödinger equations and their soliton solutions.
J. Math. Phys. 59(5), 051501, 17 (2018)

22. X. Huang, L. Ling, Soliton solutions for the nonlocal nonlinear Schrödinger equation. Eur.
Phys. J. Plus 131(5), 148 (2016)

23. A.R. Its, A.F. Ustinov, Time asymptotics of the solution of the Cauchy problem for the
nonlinear Schrödinger equation with boundary conditions of finite density type. Dokl. Akad.
Nauk SSSR 291(1), 91–95 (1986) (Russian)

24. A.R. Its, A.F. Ustinov, Formulation of the scattering theory for the NLS equation with boundary
conditions of finite density type in a soliton-free sector. Zap. Nauchn. Sem. Leningrad. Otdel.
Mat. Inst. Steklov (LOMI) 169, 60–67 (1988) [Russian]; translation in J. Soviet Math. 54,
no. 3, 900–905 (1991)

25. R. Jenkins, Regularization of a sharp shock by the defocusing nonlinear Schrödinger equation.
Nonlinearity 28(7), 2131–2180 (2015)

26. M. Li, T. Xu, Dark and antidark soliton interactions in the nonlocal nonlinear Schrödinger
equation with the self-induced parity-time-symmetric potential. Phys. Rev. E 91, 033202
(2015)
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commuting with an integral operator. We obtain explicit formulas for the two
differential operators of lowest orders that commute with the level one and two
integral operators obtained in the Darboux process. Both pairs commute with each
other and, in the level one case, are shown to satisfy an algebraic relation defining
an elliptic curve.

Keywords Commuting integral and differential operators · Bispectral functions ·
Fourier algebras · Adelic Grassmannian · Differential Galois groups

W. R. Casper
Department of Mathematics, California State University, Fullerton, Fullerton, CA, USA
e-mail: wcasper@fullerton.edu

F. A. Grünbaum (�)
Department of Mathematics, University of California, Berkeley, Berkeley, CA, USA
e-mail: grunbaum@math.berkeley.edu

M. Yakimov
Department of Mathematics, Northeastern University, Boston, MA, USA
e-mail: m.yakimov@northeastern.edu

Ignacio Zurrián
Departamento de Matemática Aplicada II, Universidad de Sevilla, Seville, Spain
e-mail: ignacio.zurrian@fulbrightmail.org

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
E. Basor et al. (eds.), Toeplitz Operators and Random Matrices, Operator Theory:
Advances and Applications 289, https://doi.org/10.1007/978-3-031-13851-5_12

229

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13851-5_12&domain=pdf

 66 3392 a 66
3392 a
 
mailto:wcasper@fullerton.edu

 66 3682 a 66 3682 a
 
mailto:grunbaum@math.berkeley.edu

 66 3973 a 66 3973 a
 
mailto:m.yakimov@northeastern.edu

 66 4263 a 66 4263 a
 
mailto:ignacio.zurrian@fulbrightmail.org

 782 4612 a 782 4612 a
 
https://doi.org/10.1007/978-3-031-13851-5_12


230 W. R. Casper et al.

Mathematics Subject Classification (2020) 47G10, 16S32, 12H05, 14H70

1 Introduction

Our contribution to this volume bears a connection with a phenomenon uncovered
by Craig Tracy and Harold Widom [38] in their work on level spacing in Random
Matrix Theory. For a double scaling limit at the “edge of the spectrum” they
observed that the resulting integral operator with the Airy kernel acting on an
appropriate interval admits a commuting second order differential operator. This
highly exceptional fact is put to good use in section IV of their paper where a number
of asymptotic results for several quantities of interest are given.

In the context of Random Matrix Theory the existence of such a commuting pair
of operators had been exploited earlier, for instance in work by M. Mehta [29] and
W. Fuchs [14]. In this case one is interested in the “bulk of the spectrum” and the
role of the Airy kernel is taken up by the more familiar sinc kernel. Both of these
situations deal with the Gaussian Unitary Ensemble.

The consideration of either the Laguerre or the Jacobi ensembles at the “edge of
the spectrum” gives rise to the Bessel kernel. This case, as well as the corresponding
commuting pair of integral-differential operators is considered by C. Tracy and H.
Widom in [37]. There, once again, this exceptional fact is exploited in section III to
derive a number of important asymptotic results.

In this paper we concentrate on the “exceptional fact” mentioned above in three
different situations relevant to Random Matrix theory. This fact had emerged in
other areas of mathematics. In a ground-breaking collection of papers by D. Slepian,
H. Landau and H. Pollak done at Bell labs in the 1960’s [27, 28, 32–36] instances of
this phenomenon were discovered and used in a key way in communication-signal
processing theory. In fact, some precedents can be traced further back, see [4, 22].
For an up-to-date treatment of the numerical issues involving the prolate spheroidal
function, one can see [30].

Incidentally in the case of the Bessel kernel the existence of a commuting
operator was already proved by D. Slepian, while the situation of the Airy kernel
appears for the first time in C. Tracy and H. Widom’s paper mentioned above. The
so called “prolate spheroidal wave functions,” which arise in the case of the sinc
kernel and their corresponding integral-differential pair of operators, have played
an important role in areas far removed from signal processing that motivated the
research of Slepian and collaborators. We give only two instances of this, but we are
sure that other people can provide other examples: the paper by J. Kiukas and R.
Werner [24] in connection with Bell’s inequalities, and the program by A. Connes
in connection with the Riemann hypothesis with C. Consani, M. Marcolli and H.
Moscovici [10–12].

One should also mention that the Airy function itself and variants of it have
played an important role in other very active areas of current research, such as
quantum gravity and intersection theory on moduli space of curves, see [25, 41].
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In all the three instances discussed above (namely the sinc, Bessel and Airy
kernels), the commuting differential operator has been found by a direct compu-
tation that relies heavily on integration by parts. The interest in understanding and
extending this exceptional phenomenon in a variety of other situations has produced
some few more examples, see [5, 9, 15–17, 19, 20].

The bispectral problem formulated 1986 in [13] aimed at a conceptual under-
standing of the phenomenon of integral operators admitting a commuting differ-
ential operator. The idea is that all known kernels with this property are built
from bispectral functions, that is functions in two complex variables that are
eigenfunctions of differential operators in each of them. There has been a substantial
amount of research on this problem [18, 21], which started with the classification
of all bispectral differential operators of second order [13] and culminated in
the classification of bipectral functions of rank 1 in [39] and the construction
of bispectral functions of arbitrary rank via Darboux transformations [2, 23] and
automorphisms of the first Weyl algebra [1, 3].

Since the mid 80s, the belief that the two problems, bispectrality and the
existence of a commuting pair made up of a differential and an integral operator
were closely connected has been driving research on both fronts. However, for a long
time there no general argument proving that bispectral functions give rise to kernels
of integral operators with the commutativity property. This was finally settled in [8]
where it was proved to be the case for self-adjoint bispectral functions of rank 1
and 2.

More recently we proved in [6, 7] that all bispectral functions of rank 1 give rise
to integral operators that reflect a differential operator rather than plain commute
with it.

All of the previous results on integral operators address the construction of a
single differential operator commuting with it. The purpose of this paper is to initiate
the systematic study of the algebras of differential operators that commute with a
given integral operator. We start with the Airy example considered by C. Tracy and
H. Widom and consider all self-adjoint bispectral Darboux transformations. This is
an infinite dimensional manifold which sits canonically in the infinite dimensional
Grassmannian of all Darboux transformation from the Airy function, obtained from
factorizations of polynomials of the Airy operator

L(x, ∂x) = ∂2 − x. (1)

We give a conceptual classification of the former manifold as the fixed point
set of a Lagrangian Grassmannian with respect to the canonical action of the
associated differential Galois group. The Lagrangian Grassmannian in question is
the sub-Grassmannian with respect to a canonical symplectic form. We consider the
first two instances of self-adjoint bispectral Darboux transformations coming from
factorizations of

(L − t1)
2 and (L− t2)

4
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of the form P ∗P for a differential operator P(x, ∂x) with rational coefficients.
The corresponding bispectral functions, referred to here as level one and level
two bispectral functions, are significantly more complicated than the bispectral
Airy function Ai(x + z). The integral operators that they give rise to depend
on parameters classifying different factorizations. For each integral operator, we
compute explicitly the differential operators of the lowest two orders and prove that
they are algebraically dependent. In the level one situation, the commuting operators
have order 4 and 6. They generate the algebra of all differential operators commuting
with the integral operator and satisfy an algebraic relation which happens to be an
elliptic curve. In the level two situation, the lowest two commuting operators have
order 10 and 12. However, we are also able to find commuting operators of order
14, 16, and 18 and to prove that these differential operators commute with each
other. In a future publication, we will return to the problem of studying algebras
of differential operators commuting with a fixed integral operator and will present
general structural results for the algebra of differential operator commuting with all
integral operators which are built from bispectral functions, and which are motivated
by the examples in this paper.

This paper is written as a small token of admiration and gratitude to the amazing
mathematical work of Harold Widom. Widom started mathematical life as an
algebraist working with Irving Kaplansky at Chicago, before becoming mainly an
analyst through the influence of Mark Kac at Cornell. This paper uses tools from
both analysis and algebra, uniting Widom’s dual mathematical history. His influence
will be a lasting one, and we will miss him badly.

2 Bispectral Functions, Fourier Algebras and Prolate
Spheroidal Type Commutativity

2.1 Bispectrality and Fourier Algebras

For an open subset U ⊆ C, denote by D(U) the algebra of differential operators on
U with meromorphic coefficients.

Definition 1 ([13]) LetU and V be two domains in C. A nonconstant meromorphic
function Ψ (x, z) defined on U × V ⊆ C

2 is called bispectral if there exist
differential operators B(x, ∂x) ∈ D(U) and D(z, ∂z) ∈ D(V ) such that

B(x, ∂x)Ψ (x, z) = g(z)Ψ (x, z),

D(z, ∂z)Ψ (x, z) = f (x)Ψ (x, z)

for some nonconstant functions f (x) and g(z) meromorphic on U and V , respec-
tively.
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Denote by Ai(x) the classical Airy function. The function

ΨAi(x, z) := Ai(x + z)

is bispectral because

L(x, ∂x)ΨAi(x, z) = zΨAi(x, z) and L(z, ∂z)ΨAi(x, z) = xΨAi(x, z), (2)

where L(x, ∂x) is the Airy operator (1). The differential equations satisfied by a
bispectral function are captured by the following definition.

Definition 2 ([1]) Let Ψ (x, z) be a bispectral meromorphic function defined on
U ×V ⊆ C

2. Define the left and right Fourier algebras of differential operators for
Ψ by

Fx(Ψ ) = {R(x, ∂x) ∈ D(U) : there exists a differential operator S(z, ∂z) ∈ D(V )

satisfying R(x, ∂x)Ψ (x, z) = S(z, ∂z)Ψ (x, z)}

and

Fz(Ψ ) = {S(z, ∂z) ∈ D(V ) : there exists a differential operator R(x, ∂x) ∈ D(U)

satisfying R(x, ∂x)Ψ (x, z) = S(z, ∂z)Ψ (x, z)}.

By [8, Proposition 2.4], for every bispectral meromorphic functionΨ : U×V →
C, there exists a canonical anti-isomorphism

bΨ : Fx(Ψ ) → Fz(Ψ ),

given by bΨ (R(x, ∂x)) = S(z, ∂z) if

R(x, ∂x)Ψ (x, z) = S(z, ∂z)Ψ (x, z).

We call this the generalized Fourier map associated to Ψ (x, z). Define the co-order
of an element R(x, ∂x) ∈ Fx(Ψ ) by

cordR := ordbΨ (R).

Analogously, we define the co-order of S(z, ∂z) ∈ Fz(Ψ ) by cordS := ordb−1
Ψ (S).

The Fourier algebras of Ψ (x, z) have natural N × N-filtrations:

Fx(Ψ )�,m = {R(x, ∂x) ∈ Fx(Ψ ) : ordR ≤ �, cordR ≤ m},
Fz(Ψ )m,� = {S(z, ∂z) ∈ Fz(Ψ ) : ordS ≤ m, cordS ≤ �},
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where N = {0, 1, . . .} and bΨ (Fx(Ψ )�,m) = Fz(Ψ )m,�. The commutative algebras

Bx(Ψ ) :=
⋃

�≥0

Fx(Ψ )�,0 and Bz(Ψ ) :=
⋃

m≥0

Fz(Ψ )0,m

are precisely the algebras of differential operators in x and z, respectively, for which
Ψ (x, z) is a eigenfunction.

Example 1 The Airy bispectral function ΨAi(x, z) satisfies

L(x, ∂x)ΨAi(x, z) = zΨAi(x, z),

∂xΨAi(x, z) = ∂zΨAi(x, z),

xΨAi(x, z) = L(z, ∂z)ΨAi(x, z).

The Fourier algebras Fx(ΨAi) and Fz(ΨAi) coincide with the first Weyl algebra in
the variables x and z, respectively, and the generalized Fourier map bΨAi is the anti-
isomorphism from the first Weyl algebra in x to the first Weyl algebra in z given by

bΨAi(x) = ∂2
z − z, bΨAi(∂x) = ∂z.

Furthermore,

dimFx(ΨAi)
2�,2m = �m+ �+ m + 1,

see [8, Sect. 3.1 and Lemma 5.5]. On the level of Wilson’s adelic Grassmannian,
the anti-isomorphism bψ is equivalent to Wilson’s bispectral involution [39]. More
generally, every anti-automorphism of the first Weyl algebra determines a bispectral
function as proved in [3]. �

Definition 3 A rational Darboux transformation from the bispectral Airy function
ΨAi(x, z) is a function of the form

Ψ (x, z) := P(x, ∂x)ΨAi(x, z)

q(z)p(x)
(3)

such that

ΨAi(x, z) = Q(x, ∂x)
Ψ (x, z)

q̃(z)p̃(x)
(4)

for some differential operators P and Q with polynomial coefficients and polyno-
mials p(x), p̃(x), q(z) and q̃(z) with coefficients in C. We define the bidegree of
such a transformation to be the pair (ordP, cordP).
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In this setting we haveQ,P ∈ Fx(ΨAi), p̃(x), p(x) ∈ Fx(ΨAi)
0,m and q̃(x), q(x) ∈

Fz(ΨAi)
0,� for some �,m ∈ N. Furthermore, Eqs. (3)–(4) imply that

Q(x, ∂x)
1

p̃(x)p(x)
P (x, ∂x)ΨAi(x, z) = q̃(z)q(z)ΨAi(x, z),

and thus by Example 1,

Q(x, ∂x)
1

p̃(x)p(x)
P (x, ∂x) = q̃(L(x, ∂x))q(L(x, ∂x)). (5)

Theorem 1 [1, 3, 23] All rational Darboux transformations of the bispectral Airy
function ΨAi(x, z) are bispectral functions. More precisely, if Ψ (x, z) is as in
Definition 3, then it satisfies the spectral equations

1

p(x)
P (x, ∂x)Q(x, ∂x)

1

p̃(x)
Ψ (x, z) = q(z)̃q(z)Ψ (x, z),

1

q(z)
bΨAi(P )(z, ∂z)bΨAi(S)(z, ∂z)

1

q̃(z)
Ψ (x, z) = p(x)p̃(x)Ψ (x, z).

2.2 Prolate Spheroidal Type Commutativity

A rational Darboux transformation Ψ (x, z) of the bispectral Airy function of
bidegree (d1, d2) is called self-adjoint if it has a presentation as in Definition 3
such that

Q(x, ∂x) = P ∗(x, ∂x)

and p̃(x) = p(x), q̃(z) = q(z). Here P �→ P ∗ denotes the formal adjoint. It follows
from (5) that P has even order. A rational Darboux transformation Ψ (x, z) of the
Airy bispectral function ΨAi(x, z) is self-adjoint if and only if the spectral algebras
Bx(Ψ ) and Bz(Ψ ) are preserved under the formal adjoint, and this condition
is satisfied if and only if Ψ (x, z) is an eigenfunction of nonconstant, formally
symmetric differential operators in x and z (i.e., operators that are fixed by the
formal adjoint), see [8, Remark 3.17 and Proposition 3.18].

For self-adjoint rational Darboux transformations Ψ (x, z) of ΨAi(x, z), both
Fourier algebras Fx(Ψ ) and Fz(Ψ ) are preserved under the formal adjoint and

(bΨ (R))
∗ = bΨ (R

∗) for all R ∈ Fx(Ψ ), (6)
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see [8, Proposition 3.24 and 3.25]. Define

Fx,sym(Ψ ) := {R ∈ Fx(Ψ ) : R∗ = R}.

By (6) for all R ∈ Fx,sym(Ψ ),

(bΨ (R))
∗ = bΨR.

Example 2 ([8, Lemma 5.5]) For all �,m ∈ N, F2�,2m
x,sym(ΨAi) has a basis given by

{L(x, ∂x)j xk + xkL(x, ∂x)
j : 0 ≤ j ≤ l, 0 ≤ k ≤ m},

and in particular, F2�,2m
x,sym(ΨAi) = (�+ 1)(m+ 1). �

For ε > 0 consider the sector

Σε = {reiθ ∈ C : r > 0, |θ | < π/6 − ε}.

The Airy function Ai(x) of the first kind is holomorphic on this domain and has the
asymptotic expansion

Ai(x) = e− 2
3 x

3/2
( ∞∑

j=1

cjx
−j/4

)

for some cj ∈ R where x1/4 is interpreted as the principal 4th root of x.
Furthermore, any rational Darboux transformation of ΨAi(x, z) equals Ψ (x, z) =

1
p(x)q(z)

P (x, ∂x)ΨAi(x, z) for some polynomials p(x), q(z) and a differential oper-
ator P(x, ∂x) with polynomial coefficients. Thus, for any bispectral Darboux
transformation of ΨAi(x, z) we have the asymptotic estimate

‖∂jx ∂kz Ψ (x, z)‖ = e− 2
3 (x+z)3/2O((|x| + |z|)(j+k)/2+m)

on Σε for some integerm. The transformation z �→ (2/3)z3/2 sends Σε to the sector
{reiθ ∈ C : r > 0, |θ | < π/4 − 3ε/2}. Therefore if Γ1, Γ2 ⊆ Σε are smooth, semi-
infinite curves inside this domain with parametrizations γi(t) : [0,∞) → C then
the real part of −2(γ1(t) + γ2(s))

3/2/3 will go to −∞ as t → ∞ or s → ∞. The
above asymptotic estimate now shows that Ψ (x, z) satisfies

∫

Γ1

|xmzn∂jx ∂kz Ψ (x, z)|dx ∈ L∞(Γ2) and
∫

Γ2

|xmzn∂jx ∂kz Ψ (x, z)|dz ∈ L∞(Γ1),

for every pair of smooth, semi-infinite curves Γ1, Γ2 ⊆ Σε .
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Recall that the bilinear concomitant of a differential operator

R(x, ∂x) =
m∑

j=0

dj (x)∂
j
x .

is the bilinear form CR(−,−;p) defined on pairs of functions f (x), g(x), which are
analytic at p ∈ C by

CR(f, g;p) =
m∑

j=1

j−1∑

k=0

(−1)kf (j−1−k)(x)(dj (x)g(x))
(k)|x=p

=
m∑

j=1

j−1∑

k=0

k∑

�=0

(
k

�

)
(−1)kf (j−1−k)(x)dj (x)

(k−�)g(x)(�)|x=p.

See for example [22, Chapter 5, Section 3].

Theorem 2 ([8]) Let Ψ (x, z) be a self-adjoint bispectral Darboux transformation
of the Airy bispectral function ΨAi(x, z) of bidegree (d1, d2) and let Γ1 and Γ2
be two semi-infinite, smooth curves in Σε for some ε > 0, whose finite endpoints
are t1 and t2, respectively. Assume moreover that Ψ (x, z) is holomorphic in a
neighborhood of Γ1 × Γ2 and that the operators in Fx(Ψ ) and Fz(Ψ ) have
holomorphic coefficients in a neighborhood of Γ1 and Γ2, respectively. Then the
following hold:

1. dimF2�,2m
x,sym(Ψ ) ≥ (�+ 1)(m+ 1)+ 1 − d1d2.

2. If a differential operator S(z, ∂z) ∈ Fz,sym(Ψ ) satisfies

CS(−,−; t1) ≡ 0 and C
b−1
Ψ (S)

(−,−; t2) ≡ 0,

then it commutes with the integral operator

T : f (z) �→
∫

Γ1

K(z,w)f (w)dw with K(z,w) =
∫

Γ2

Ψ (x, z)Ψ (x,w)dx.

3. If dimF2�,2�
z,sym ≥ �(� + 1) + 2, in particular if � = d1d2, then there exists

a differential operator S(z, ∂z) ∈ F�,�z,sym(Ψ ) of positive order satisfying the
assumption and conclusion in part (2).

As a special case of this theorem, we are able to recover the commuting integral and
differential operators studied by Tracy and Widom in [38]. In particular, if we take
Ψ = ΨAi in the theorem, then it guarantees the existence of a differential operator
of order 2 commuting with the integral operator

TAif (z) �→
∫ ∞

t1

KAi(z,w)f (w)dw,
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with kernel

KAi(z,w) =
∫ ∞

t2

Ai(x + z)Ai(x + w)dx

= Ai′(t2 + z)Ai(t2 + w) − Ai(t2 + z)Ai′(t2 + w)

z − w
.

Solving the associated system of linear equations for the vanishing concomitant, we
discover that the differential operator

SAi(z, ∂z) := ∂z(t1 − z)∂z + (t2 − t1)z + z2

satisfies the condition that CSAi(f, g; t1) = 0 for all functions f, g analytic at t1. Its
preimage under the generalized Fourier map

b−1
Ψ (SAi(z, ∂z)) = ∂x(t2 − x)∂x + (t1 − t2)x + x2

also satisfies the condition C
b−1
Ψ SAi

(f, g; t2) = 0 for all functions f, g analytic at t2.

Therefore the differential operator SAi(z, ∂z) commutes with TAi. This is precisely
the differential operator discovered by Tracy and Widom in [38].

3 Classification of Self-adjoint Rational Darboux
Transformations of the Bispectral Airy Function

In this section, we will classify the self-adjoint rational Darboux transformations of
the bispectral Airy function by leveraging two tools: (1) the technology of differen-
tial Galois theory, and (2) the classification of self-adjoint Darboux transformations
in terms of Lagrangian subspaces of symplectic vector spaces found in [8]. A similar
classification is performed in [2] using the entirely different technique of performing
an explicit asymptotic analysis of Wronskians associated to subspaces of the kernel.
More explicity, in this section we wish to classify factorizations of the form

P(x, ∂x)
∗ 1

p(x)2
P(x, ∂x) = q(L(x, ∂x))

2 (7)

where here p and q are polynomials and P(x, ∂x) is a differential operator with
polynomial coefficients. Without loss of generality, we take q(z) to be monic so that
p(x) is the leading coefficient of the operator P(x, ∂x). The associated self-adjoint
rational Darboux transformation of the bispectral function Ai(x + z) is then defined
by

Ψ (x, z) = 1

p(x)q(z)
P (x, ∂x) · Ai(x + z).
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3.1 Lagrangian Subspaces and Concomitant

We begin by recalling the classification of self-adjoint factorizations of self-adjoint
differential operators found in [8]. To begin, let A(x, ∂x) be a differential operator
and recall the standard fact that the concomitant CA(f, g; x) is independent of x for
all f ∈ ker(A) and g ∈ ker(A∗).

Lemma 1 ([40], Section 3) Let A(x, ∂x) be a linear differential operator. Then the
concomitant of A defines a canonical nondegenerate pairing

ker(A)× ker(A∗) → C, (f, g) �→ CA(f, g).

Combining this with the identity CA(f, g) = −CA∗(g, f ), we see that the
concomitant restricts to a symplectic bilinear form on ker(A) when A(x, ∂x) is
formally symmetric.

We will also rely on the following formula for concomitants of differential
operator products.

Lemma 2 ([40], Lemma 3.6) Let A(x, ∂x) = A1(x, ∂x)A2(x, ∂x). Then

CA(f, g; x) = CA1(A2f, g; x) + CA2(f,A
∗
1g; x).

From this, we see that if A = A∗, then ker(A2) ⊆ ker(A) and ker(A∗
1) ⊆ ker(A)

are orthogonal under the pairing defined by the concomitant of A(x, ∂x).
As is well-known in the theory of factorizations of linear differential operators, a

factorization of a differential operator

A(x, ∂x) = A1(x, ∂x)A2(x, ∂x)

corresponds to a choice of a subspace V ⊆ ker(A). The subspace V corresponds
to the kernel of A2(x, ∂x) and determines the value of the operator A2(x, ∂x) up to
a left multiple by a function of x. As is readily seen from the previous lemma, the
kernel of A1(x, ∂x)

∗ is completely determined by V and given by the orthogonal
complement

V ⊥ = {g ∈ ker(A∗) : CA(f, g) = 0 ∀f ∈ V }.

Thus to obtain factorizations of the form (7), we search in particular for subspaces
V ⊆ ker(q(L)2) satisfying V⊥ = V . In other words, we search for Lagrangian
subspaces of the symplectic vector space ker(q(L)2). To summarize, we have the
following proposition.

Proposition 1 Factorizations of the form (7) with p(x) and the coefficients of
P(x, ∂x) not necessarily rational functions, correspond precisely to Lagrangian
subspaces of the symplectic vector space ker(q(L)2) whose symplectic form is
defined by the concomitant of q(L)2.



240 W. R. Casper et al.

3.2 Differential Galois Theory

Our next task is to determine the symmetric factorizations obtained in the previous
section which are rational. For the convenience of the reader, we briefly outline
the requisite basics of Picard-Vessiot extensions and the Fudamental Theorem of
Differential Galois Theory. We direct the interested reader to [31] for a more
thorough treatment.

Definition 4 Let (K, ∂) be a differential field and let A ∈ K[∂] be a linear
differential operator with coefficients in K . The Picard-Vessiot extension of K

associated withA(x, ∂x) is a differential field extension (F, ∂) ofK whose constants
all belong to K and which is generated by the solutions of the homogeneous
equation Ag = 0.

Picard-Vessiot extensions of a differential field play precisely the role of Galois
extensions in field theory. Likewise, the usual Galois group is replaced by a similar
object consisting of field automorphisms respecting differentiation.

Definition 5 The differential Galois group DGal(F/K) consists of all K-linear
field automorphisms σ : F → F of F satisfying σ(∂ · a) = ∂ · σ(a) for all a ∈ F .

Analogous to the case of Galois extensions of fields, we have the following
theorem relating differential subextensions and Zariski-closed subgroups of the
differential Galois group (see [31, Proposition 1.34]).

Theorem 3 (Fundamental Theorem of Differential Galois Theory) Let (K, ∂)

be a differential field whose subfield of constants is algebraically closed and let
(F, ∂) be a Picard-Vessiot extension of K . Then there is a bijective correspondence
between differential subfields K ⊆ F ′ ⊆ F and Zariski-closed subgroups G′ ⊆
DGal(F/K) given by

G′ ⊆ DGal(K/F) �→ KG′ = {a ∈ K : σ(a) = a, ∀σ ∈ G′},

K ⊆ F ′ ⊆ F �→ DGal(F ′/K) = {σ ∈ DGal(F/K) : σ(a) = a, ∀a ∈ F ′}.

Furthermore, this correspondence restricts to a correspondence between Picard-
Vessiot subextensions of F/K and normal subgroups of DGal(F/K).

We will not rely on the full force of this correspondence, and therefore will not
have to recall the precise nature of the topological structure of DGal(F/K) as a
group subscheme of a general linear group. Instead, we will use only the immediate
fact that

K = {a ∈ F : σ(a) = a, ∀σ ∈ DGal(F/K)}. (8)
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Since differential operators are determined (up to a multiple) by their kernels,
rationality of a differential operator may be characterized by differential Galois
invariance of the associated kernel.

Theorem 4 Let A(x, ∂x) be a differential operator with rational coefficients and
let F be the Picard-Vessiot extension of C(x) for A. Consider a factorization
A(x, ∂x) = A1(x, ∂x)A2(x, ∂x) with A2 monic. Then A1(x, ∂x) and A2(x, ∂x) have
rational coefficients if and only if ker(A2) ⊆ ker(A) is invariant under the action of
DGal(F/C(x)).

Proof For σ ∈ DGal(F/C(x)), let σ(Aj ) := σ(Aj )(x, ∂x) denote the operator
obtained by applying the automorphism to the coefficients. Since the automorphism
preserves differentiation, we know that

σ(Aj )(x, ∂x) · σ(a) = σ(Aj (x, ∂x) · a), ∀a ∈ F.

If A1(x, ∂x) and A2(x, ∂x) have rational coefficients, then clearly σ(Aj ) = Aj and
therefore ker(σ (Aj )) = ker(Aj ). Thus the kernel of Aj(x, ∂x) is invariant under the
action of DGal(F/C(x)).

Conversely, suppose that ker(A2) ⊆ ker(A) is invariant under the action of the
differential Galois group, ie. σ(ker(A2)) = ker(A2) Then σ(A2) · σ(a) = σ(A2 ·
a) = σ(0) = 0 for all a ∈ ker(A) and therefore ker(A2) ⊆ ker(σ (A2)). Since
the order of A2 and the order of σ(A2) are the same, their kernels will have the
same dimension. Therefore ker(σ (A2)) = ker(A2) and consequently σ(A2) = bA2
for some b ∈ F . Since A2 has leading coefficient 1, it follows that b = 1. Hence
σ(A2) = A2 and from the Fundamental Theorem of Differential Galois Theory,
the coefficients of A2 must all be rational functions. Lastly, since A and A2 have
rational coefficients, it follows that A1 has rational coefficients.

Corollary 1 Let A(x, ∂x) be a self-adjoint differential operator with rational
coefficients and let F be the Picard-Vessiot extension for A. Then the self-adjoint,
rational factorization of A(x, ∂x) correspond precisely with the DGal(F/C(x))-
invariant Lagrangian subspaces of ker(A).

Proof This follows immediately from the theorem and the results of the previous
subsection.

3.3 The Classification

Now let a1, . . . , ar ∈ C be the distinct roots of q(z) and write

q(z) = (z − a1)
d1 . . . (z − ar)

dr
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for some positive integers d1, . . . , dr and distinct a1, . . . , ar ∈ C. The kernel of
q(L)2 for L(x, ∂x) = ∂2

x − x the Airy operator is given by the following lemma.

Lemma 3 The kernel of q(L)2 has basis given by

{Ai(j)(x + ai),Bi(j)(x + ai) : 1 ≤ k ≤ r, 0 ≤ j ≤ 2dk}

where here Ai(x) and Bi(x) are the Airy functions of the first and second kind,
respectively.

Proof To prove this, we will rely on the fundamental relation

L(x, ∂x)∂x = ∂xL(x, ∂x)+ 1,

which implies that

(L(x, ∂x) − ak)
m∂nx =

m∧n∑

j=0

(
m

j

)
n!

(n − j)!∂
n−j
x (L(x, ∂x)− ak)

m−j .

Thus for all 0 ≤ n < 2dk − 1, we have

(L(x, ∂x) − ak)
2dkAi(n)(x + ak)

=
n∑

j=0

(
2dk
j

)
n!

(n − j)!∂
n−j
x (L(x, ∂x)− ak)

2dk−jAi(x + ak) = 0.

Hence Ai(n)(x + ak) ∈ ker((L(x, ∂x) − ak)
2dk ) ⊆ ker(q(L)2) for all 0 ≤ n < 2dk.

The same calculation shows that Bi(n)(x + ak) ∈ ker(q(L)2) for all 0 ≤ n < 2dk.

Thus the Picard-Vessiot extension of the differential field (C(x), ∂x) corre-
sponding to the linear differential operator q(L(x, ∂x))2 is finitely generated by 4r
elements

Fq = C(x)(Ai(x + ak),Ai′(x + ak),Bi(x + ak),Bi′(x + ak) : 1 ≤ k ≤ r).

Using this, we see that the differential Galois group of F is isomorphic to r copies
of SL2(C).

Lemma 4 The differential Galois group consists of all differential C(x)-linear
morphisms

σ : Fq → Fq,

{
Ai(x + ak) �→ αkAi(x + ak)+ βkBi(x + ak)

Bi(x + ak) �→ γkAi(x + ak) + δkBi(x + ak)
∀1 ≤ k ≤ r,

where here αk, βk, γk, δk ∈ C with αkδk − βkγk = 1.
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Proof The fact that

Ai(x + ak) �→ αAi(x + ak)+ βBi(x + ak)

Bi(x + ak) �→ γAi(x + ak)+ δBi(x + ak)
,

[
α β

γ δ

]
∈ SL2(C),

is a differential automorphism is standard. See for example [31, Example 8.15].
Therefore, we need only show that this accounts for all differential automorphisms.

If σ : Fq → Fq is a differential automorphism fixing C(x), then

σ(Ai(x + ak))
′′

σ(Ai(x + ak))
= σ

(
Ai′′(x + ak)

Ai(x + ak)

)
= σ(x + ak) = x + ak.

Thus σ(Ai(x + ak)) must be a solution of the differential equation y ′′ = (x + ak)y,
and therefore a linear combination of Ai(x + ak) and Bi(x + ak) for all k. A similar
statement holds for σ(Bi(x + ak)) so that

σ :
{

Ai(x + ak) �→ αkAi(x + ak)+ βkBi(x + ak)

Bi(x + ak) �→ γkAi(x + ak) + δkBi(x + ak)
∀1 ≤ k ≤ r

for some αk, βk, γk, δk ∈ C. Lastly, the Wronskian identity implies

W(Ai(x+ak),Bi(x+ak)) = Ai′(x+ak)Bi(x+ak)−Ai(x+ak)Bi′(x+ak) = 1

π
·

Since the Wronskian is skew-symmetric, we can conclude that

1

π
= σ(W(Ai(x + ak),Bi(x + ak)))

= W(σ(Ai(x + ak)), σ (Bi(x + ak)))

= (αδ − βγ )W(Ai(x + ak),Bi(x + ak)) = (αδ − βγ )/π.

Hence αδ − βγ = 1.

Using this, we can obtain the following characterization of the Galois-invariant
subspaces of ker(q(L)2).

Lemma 5 Suppose that V ⊆ ker(q(L)2) is a subspace. Then V is invariant under
the action of the differential Galois group if and only if V is spanned by pairs of
elements of the form

2dk−1∑

j=0

αkjAi(j)(x + ak),

2dk−1∑

j=0

αkjBi(j)(x + ak).
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Proof Clearly any subspace spanned by pairs of elements of this form is invariant
under the action of the Galois group, since the the action restricts to an action
sending each of the functions in the pair to a linear combination of the functions
in the pair. Thus it suffices to show the converse.

Let f (x) be a nonzero element of V . Then

f (x) =
r∑

k=1

2dk−1∑

j=0

αkjAi(j)(x + ak) + βkjBi(j)(x + ak).

Consider the differential automorphisms σk and τk which fix Ai(x+aj ) and Bi(x+
aj ) and satisfy

σk : Ai(x + ak) �→ −Bi(x + ak), Bi(x + ak) �→ Ai(x + ak),

τk : Ai(x + ak) �→ Ai(x + ak) + Bi(x + ak), Bi(x + ak) �→ Bi(x + ak).

We see that

τk(f (x))− f (x) =
2dk−1∑

j=0

αkjBi(j)(x + ak) ∈ V.

Following up by applying σk , we see that

σk(τk(f (x))− f (x)) =
2dk−1∑

j=0

αkjAi(j)(x + ak) ∈ V.

Likewise, one may show
∑2dk−1

j=0 βkjAi(j)(x + ak),
∑2dk−1

j=0 βkjBi(j)(x + ak) ∈ V

and since k was arbitrary, the statement of the Lemma follows immediately.

Our explicit description of the kernel of q(L)2 allows us to give a concrete
formula for the symplectic form on ker(q(L)2) defined by the bilinear concomitant.
We start with a combinatorial Lemma.

Lemma 6 Let a, b,m be integers. Then

m∑

k=0

(−1)k
(
k + a

k

)(
b

m − k

)
=
(
b − 1 − a

m

)
.

Proof We use the binomial series expansion on the identity

(1 − z)−a−1(1 − z)b = (1 − z)b−a−1
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to find

∞∑

j,k=0

(−a − 1

k

)(
b

j

)
(−1)j+kzj+k =

∞∑

m=0

(
b − 1 − a

m

)
(−1)mzm.

Now comparing coefficients of zm:

m∑

k=0

(−a − 1

k

)(
b

m− k

)
(−1)j+k =

(
b − 1 − a

m

)
.

Noting that
(−a−1

k

) = (−1)k
(
k+a
a

)
, the statement of the lemma follows immediately.

Proposition 2 Let f (x), g(x) ∈ {Ai(x),Bi(x)} and choose 0 ≤ m < 2dj and
0 ≤ n < 2dk. Then

Cq(L)2(f (m)(x + aj ), g
(n)(x + ak))

= δjk
m!n!W(f, g)

(m+ n− 2dk + 1)! ∂
m+n−2dk+1
z

∣∣∣
z=ak

·
(

q(z)2

(z − ak)2dk

)

for all nonnegative integers m,n with m + n ≥ 2dk − 1 and is zero otherwise.

Proof For simplicity of notation, we will let h(z) = q(z)2 and write f and g

in place of f (x + ak) and g(x + bk), respectively. First note that if j �= k

then f (m) ∈ ker((L − aj )
2dj ) and g(n) ∈ ker(h(L)(L − aj )

−2dj ), which is the
orthogonal complement of the subspace ker((L − aj )

2dj ) of ker(h(L)). Hence
Ch(L)(f (m), g(n)) = 0. Thus it suffices to consider the case when j = k.

Let h̃(z) = h(z)/(z − ak)
2dk . Applying Lemma 2 and the fundamental relation

L∂x = ∂xL + 1 we see that

Ch(L)(f (m), g(n)) = Ch(L)∂mx (f, g
(n))

= Ch̃(L)(L−ak)
2dk ∂mx

(f, g(n))

=
m∑

s=0

(
m

s

)
(2dk)!

(2dk − s)!Ch̃(L)∂m−s
x (L−ak)

2dk−s (f, g(n)).

Now using the fact that the concomitant of L is the Wronskian and again applying
Lemma 2 and the more general relation

h̃(L(x, ∂x))∂
m
x =

m∑

s=0

(
m

s

)
∂m−s
x h̃(s)(L(x, ∂x))
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we see that

Ch(L)(f (m), g(n))

=
m∑

s=0

(
m

s

)
(2dk)!

(2dk − s)! (−1)m−sW(f, (L − ak)
2dk−s−1∂m−s

x h̃(L)∂nx · g)

=
n∑

t=0

(
n

t

)
h̃(t)(ak)

m∑

s=0

(
m

s

)
(2dk)!

(2dk − s)! (−1)m−s

W(f, (L − ak)
2dk−s−1∂n+m−s−t

x · g).

From this it is clear that if n + m < 2dk − 1 then the concomitant is zero. Thus
without loss of generality we take m+ n ≥ 2dk − 1. Then for � = n+m− 2dk + 1

Ch(L)(f (m), g(n))

=
n∑

t=0

(
n

t

)
h̃(t)(ak)

m∑

s=0

(
m

s

)
(2dk)!

(2dk − s)! (−1)m−s

W(f, (L − ak)
2dk−s−1∂n+m−s−t

x · g)

=
n∧�∑

t=0

(
n

t

)
h̃(t)(ak)

m∑

s=0

(
m

s

)
(2dk)!

(2dk − s)! (−1)m−s (m+ n − s − t)!
(�− t)!

W(f, ∂�−t
x · g)

=
n∧�∑

t=0

(
n

t

)
h̃(t)(ak)

m!(n− t)!
(�− t)!

m∑

s=0

(
2dk
s

)(
m+ n− s − t

m− s

)
(−1)m−s

W(f, ∂�−t
x · g).

Now reindexing the sum and applying the previous lemma, we obtain

Ch(L)(f (m), g(n))

=
n∧�∑

t=0

(
n

t

)
h̃(t)(ak)

m!(n − t)!
(�− t)!

m∑

s=0

(
2dk
m − s

)(
s + n − t

s

)
(−1)sW(f, ∂�−t

x · g)

=
n∧�∑

t=0

(
n

t

)
h̃(t)(ak)

m!(n − t)!
(�− t)!

(
2dk − 1 − n + t

m

)
W(f, ∂�−t

x · g).
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The binomial coefficient in the last sum is nonzero if and only if � ≤ t . Since the
sum is taken between t = 0 and t = �, the only nonzero term comes from when
t = �. Thus

Ch(L)(f (m), g(n)) = m!n!
(n+ m − 2dk + 1)! h̃

(n+m−2dk+1)(ak)W(f, g).

The rational Darboux transformations of Ai(x+ z) come directly from factoriza-
tions of the form (7) with P(x, ∂x) having rational coefficients. As we have outlined
above, these correspond precisely to the Galois-invariant Lagrangian subspaces of
ker(q(L)2). This characterization is made explicit in the next theorem.

Theorem 5 (Classification Theorem) Let fm, gm ∈ ker(q(L)2) for 1 ≤ m ≤ d be
2d linearly independent functions of the form

fi(x) =
2d�i−1∑

m=0

αimAi(m)(x + a�i ), gi(x) =
2d�i−1∑

n=0

αinBi(n)(x + a�i )

satisfying the condition that

2dk−1∑

m+n≥2dk−1

αimαjn
m!n!

(m+ n − 2dk + 1)! ∂
m+n−2dk+1
z

∣∣∣
z=ak

·
(

q(z)2

(z − ak)2dk

)
= 0

for all k and for all i, j with �i = �j = k. Then the differential operator P(x, ∂x)
of order 2d defined in terms of a Wronskian by

P(x, ∂x) · f := W(f1, f2, . . . , fd , g1, g2, . . . , gd , f )

has rational coefficients and satisfies

P(x, ∂x)
∗ 1

p(x)2
P(x, ∂x) = q(L(x, ∂x))

2

for some rational function p(x). Furthermore every self-adjoint rational factoriza-
tion of q(L(x, ∂x))2 is of this form.

Proof This follows directly from our direct calculation of the concomitant along
with our characterization of the Galois-invariant subspaces of the kernel.

This result is particularly nice in the situation that q(z) = (z − s1)
d , so that the

concomitant has the simple form

Cq(L)2(f (m)(x + s1), g
(n)(x + s1)) =

⎧
⎨

⎩

m!n!
π

, f = Ai, g = Bi, m+ n = 2d − 1
−m!n!
π

, f = Bi, g = Ai, m+ n = 2d − 1
0, otherwise.
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The payout of our dive through all the differential Galois theory and symplectic
geometry above is that we immediately provide explicit factorizations of (L(x, ∂x)−
s1)

2 and (L(x, ∂x) − s1)
4.

Corollary 2 Let s1 ∈ C. Then up to a function multiple, the only self-adjoint
rational factorizations of (L(x, ∂x) − s1)

2 are the trivial one and

P1(x, ∂x)
∗ 1

(x + s1)2
P1(x, ∂x) = (L(x, ∂x) − s1)

2

for

P1(x, ∂x) = (x + s1)∂
2
x − ∂x − (x + s1)

2.

Proof From the previous Theorem, we know we must choose functions

f1(x) = α11Ai(x+ s1)+α12Ai′(x+ s1), g1(x) = α11Bi(x+ s1)+α12Bi′(x+ s1)

satisfying 2α11α121!1!/π = 0. Thus either α11 = 0 or α12 = 0 and without loss
of generality we may take the remaining coefficient to be π . In the first case, the
operator P(x, ∂x) is

P(x, ∂x)·f = W(Ai′(x+s1),Bi′(x+s1), f ) = (x+s1)f
′′(x)−f ′(x)−(x+s1)

2f.

In the second case, the operator P(x, ∂x) is

P(x, ∂x) · f = W(Ai(x + s1),Bi(x + s1), f ) = f ′′(x)− (x + s1)f.

Thus in this second case P(x, ∂x) = L(x, ∂x)−s1, giving us the trivial factorization
of (L(x, ∂x) − s1)

2.

Corollary 3 Let s1 ∈ C. Then up to a function multiple, the self-adjoint rational
factorizations of (L(x, ∂x) − s1)

4 are of the form

P2(x, ∂x)
∗ 1

(x + s1)2
P2(x, ∂x) = (L(x, ∂x) − s1)

4

for

P2(x, ∂x) · f = W(f1, f2, g1, g2, f ),

where here

fk(x) =
3∑

j=0

αkjAi(j)(x + s1), gk(x) =
3∑

j=0

αkjBi(j)(x + s1)



Algebras of Commuting Differential Operators for Kernels of Airy Type 249

for some constants αkj satisfying the three relations

6αm3αn0 + 2αm1αn2 + 2αm2αn1 + 6αm3αn0 = 0, 1 ≤ m ≤ n ≤ 2.

Proof This follows immediately from the Classification Theorem.

The operator P2(x, ∂x) in this latter situation is more complicated. First of
all, it features the factorizations from the previous corollary, as may be obtained
from taking α13 = α23 = 0. Thus to get new factorizations, we can without
loss of generality take α13 = α23 = 1. Then the three relations simplify to
αm0 = −αm1αm2/3 for m = 1, 2 plus a choice of either α11 = α21 or α12 = α22.
For sake of concreteness, we choose α11 = α21 and take α22 = 1, α12 = 0, and
s1 = 0. This determines all parameters, except for α11 and the associated operator
P(x, ∂x) is explicitly computed to be

P2(x, ∂x) =
(
x4 − 4x3α11 + 10

3
x2α2

11 +
(

4

3
α3

11 + 4

)
x + 1

9
α4

11 − 8α11

)
∂4
x

+
(
−4x3 + 12x2α11 − 20

3
α2

11x − 4

3
α3

11 − 4

)
∂3
x

+
(
−2x5 + 8x4α11 − 20

3
α2

11x
3 −

(
8

3
α3

11 + 2

)
x2 −

(
2

9
α4

11 − 4α11

)
x + 10

3
α2

11

)
∂2
x (9)

+
(

2x4 − 4x3α11 − 4

3
xα3

11 − 16 − 2

9
α4

11 + 36α11

)
∂x

+ x6 − 4x5α11 + 10

3
x4α2

11 +
(

4

3
α3

11 + 8

)
x3 +

(
1

9
α4

11 − 22α11

)
x2 + 16

3
xα2

11

+ 2α3
11 + 16.

4 Commuting Differential Operators for the Level One
Kernels

In this section, we explore the commuting differential operators for integral opera-
tors with level one Airy kernels, ie. those defined by bispectral functions Ψ obtained
from self-adjoint rational Darboux transformations of (L(x, ∂x)−s1)

2. There is only
one such bispectral function, determined by the factorization of (L(x, ∂x)− s1)

2 in
Corollary 2. Using the operator P1(x, ∂x) described in this Corollary, the associated
bispectral function is

Ψ1(x, z) = 1

(x + s1)(z − s1)
P1(x, ∂x) ·ΨAi(x, z) = Ai(x + z)− Ai′(x + z)

(x + s1)(z − s1)
.
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Let P̃1(z, ∂z) = bΨAi(P1(x, ∂x)), p1(x) = x + s1 and q1(z) = z − s1. For every
R(x, ∂x) ∈ Fx(ΨAi) and S(z, ∂z) = bΨAi(R(x, ∂x)), we have the identities

1

p1(x)
P1(x, ∂x)

∗R(x, ∂x)P1(x, ∂x)
Ψ1(x, z)

p1(x)
= (q1(z))S(z, ∂z)(q1(z)) · Ψ1(x, z),

1

q1(z)
P̃1(z, ∂z)

∗S(z, ∂z)P̃1(z, ∂z)
Ψ1(x, z)

q1(z)
= (p1(x))R(x, ∂x)(p1(x)) · Ψ1(x, z),

and the more complicated identity

(
1

p1(x)
P1(x, ∂x)R(x, ∂x)p(x)+ p(x)R(x, ∂x)

∗P1(x, ∂x)
∗ 1

p1(x)

)
· Ψ1(x, z)

(10)

=
(

1

q1(z)
P̃1(z, ∂z)S(z, ∂z)q(z)+ q(z)S(z, ∂z)

∗P̃1(z, ∂z)
∗ 1

q1(z)

)
· Ψ1(x, z).

Comparing the orders of these operators, we see that F2�,2m
x,sym(Ψ1) contains the direct

sum

F2�,2m
x,sym(Ψ1) ⊇ 1

p1(x)
P1(x, ∂x)

∗F2�−4,2m
x,sym (ΨAi)P1(x, ∂x)

1

p1(x)

⊕ p1(x)F
2,2m−4
x,sym (ΨAi)p1(x)⊕ E ⊕ C

for all �,m ≥ 2, where here E is a set of additional operators stemming from
Eq. (10)

E =
{

1

p1(x)
P1(x, ∂x)R(x, ∂x)p(x) + p(x)R(x, ∂x)

∗P1(x, ∂x)
∗ 1

p1(x)
:

R(x, ∂x) ∈ F1,1
x (ΨAi)

}
.

Explicit calculation shows that E is two dimensional. Consequently the dimension
of F2�,2m

x,sym(Ψ1) is at least (�− 1)(m+ 1)+ 2(m− 1)+ 2 + 1 = (�+ 1)(m+ 1)− 1.
One can show that this is precisely the dimension for all m,n > 1 and that both
Fx(Ψ ) and Fz(ψ) are equal to algebras of differential operators on a rational curve
with a cuspidal singularity of degree 2 at the origin.

Let T1 be the integral operator

T1 : f (z) �→
∫ ∞

t1

K1(z,w)f (w)dw, K1(z,w) =
∫ ∞

t2

Ψ1(x, z)Ψ1(x,w)dx.
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The specific value of the kernel K1(z,w) is determined via integration by parts to
be

K1(z,w) = q1(w)

q1(z)
KAi(z,w) + CP1(ψAi(x, z), ψ1(x,w)/p1(x); t2).

From the previous estimate of the dimension of F2�,2m
x,sym(Ψ1), we see that T1 will

commute with a differential operator S1(z, ∂z) in F4,4
z,sym(Ψ1).

The values of the commuting integral and differential operators will in general
depend on s1, albeit predictably. If we make the s1-dependence of Ψ (x, z) =
Ψ (x, z; s1) explicit, we see Ψ (x, z; s1) = Ψ (x + s1, z − s1; 0) and consequently
the differential operator S1(z, ∂z) commuting with T1 for arbitrary s1 is the same as
in the case s1 = 0, but with z replaced by z − s1 and t2 replaced by t2 + s1. Thus
without loss of generality we will take s1 = 0.

Explicitly computing the condition of the vanishing of the concomitant and
solving the resulting linear system of equations yields the operator of order 4

S1(z, ∂z) = 1

z

(
2∑

k=0

∂kz ak(z)(z − t1)
k∂kz

)
1

z

where here

a2(z) = z2,

a1(z) = −2(z4 + (t2 − t1)z
3 − 3t1),

a0(z) = z3(z3 + 2(t2 − t1)z
2 + (t2 − t1)

2z − 8)+ (t1 + t2)z
2/3.

The dimension estimates also imply the existence of a commuting differential
operator of order 6, which we find to be

S̃1(z, ∂z) = 1

z

(
3∑

k=0

∂kz ãk(z)(z − t1)
k∂kz

)
1

z

where here

ã3(z) = z2,

ã2(z) = − 3(z4 + (t2 − t1)z
3 − 4t1),

ã1(z) = 3(z6 + 2(t2 − t1)z
5 + (t2 − t1)

2z4 − 10z3 + (5t1 − 4t2)z2 − 3t1(t2 − t1)z),

ã0(z) = − z8 − 3(t2 − t1)z
7 − 3(t2 − t1)

2z6 − ((t2 − t1)
3 − 32)z5

+ (42t2 − 63t1)z
4 + (36t21 − 48t1t2 + 12t22 )z

3 + t1t2(t1 + t2)z
2 + 12t21 − 6t1t2.
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The operators S1(z, ∂z) and S̃1(z, ∂z) commute and thus satisfy an algebraic relation.
The relation is

S̃2
1 = S3

1 − t21 − t1t2 + t22

3
S1 + (t1 − 2t2)(2t1 − t2)(t1 + t2)

33 .

The discriminant of the polynomial on the right hand side is

Δ = −16

27
(260t61 − 780t51 t2 − 627t41 t

2
2 + 2554t31 t

3
2 − 627t21 t

4
2 − 780t1t52 + 260t62 ),

so for generic values of t1 and t2, the associated algebraic variety is an elliptic curve.

5 Commuting Differential Operators for the Level Two
Kernels

In this section, we explore the commuting differential operators for integral opera-
tors with level two Airy kernels, ie. those defined by bispectral functions Ψ obtained
from self-adjoint rational Darboux transformations of (L(x, ∂x) − s1)

2(L(x, ∂x) −
s2)

2. We will focus on the particular case when s1 = s2, leaving the other situation to
a future publication. Note also that due to the nice translation behavior of ψAi(x, z),
we can easily rederive the formula for general values of s1 from the case when
s1 = 0. So for sake of simplicity, we will take s1 = 0.

There are many bispectral functions in the level two case, all of which are
determined by the factorizations of L(x, ∂x)

4 in Corollary 3, which in turn are
determined by a choice of αjk for j = 1, 2 and 0 ≤ k ≤ 3 satisfying the constraints
of the Corollary. The precise value P2(x, ∂x) and the commuting operator is very
complicated in general. To facilitate our computations, and the inclusion of exact
formulas in our paper, we will take α31 = α32 = 1, α11 = α21 and take α22 = 1,
α12 = 0, so that P2(x, ∂x) is given by (9). Additionally we will take α11 = 0 so that
P2(x, ∂x) has the simplified formula

P2(x, ∂x)=x(x3+4)∂4
x−4(x3+1)∂3

x−2x2(x3+1)∂2
x+2x(x3−8)∂x+x6+8x3+16.

Let q2(z) = z2 and p2(x) = x(x3 + 4). The corresponding bispectral function is
defined by

Ψ2(x, z) = 1

p2(x)q2(z)
P2(x, ∂x) · ΨAi(x, z)

= Ai(x + z) + 6(x3 + x2z + 2)

p2(x)q2(z)
Ai(x + z) − 4(x3w + 3x + w)

p2(x)q2(z)
Ai′(x + z).
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The Fourier algebras for Ψ2(x, z) are given by algebras of differential operators
on some rank 1, torsion-free modules over certain rational curves with cuspidal
singularities. Specifically, let Ax = {f (x) ∈ C[x] : p(x)|f ′(x)} be the coordinate
ring of a singular rational curve X with cusps of order 2 at the roots of p(x). Then

Fx(Ψ2) = {D(x, ∂x) : D(x, ∂x) · Ax ⊆ Ax}

is the algebra of differential operators on X. Likewise, let Az = C[z4, z5] be
the affine coordinate ring of a rational curve Z with a higher-order cusp at 0 and
consider the torsion-free rank 1 Az-module Mz = SpanC{z−2, z−1}⊕z2

C[z]. Then

Fz(Ψ2) = {D(z, ∂z) : D(z, ∂z) · Mz ⊆ Mz}

is the algebra of differential operators on the line bundle L overZ associated to Mz.
The generalized Fourier map bΨ may be described in terms of bΨAi by

bΨ (A(x, ∂x)) = 1

q2(z)
bΨAi

[
P2(x, ∂x)

∗ 1

p2(x)
A(x, ∂x)

1

p2(x)
P2(x, ∂x)

]
1

q2(z)
.

Let T2 be the integral operator

T2 : f (z) �→
∫ ∞

t1

K2(z,w)f (w)dw, K2(z,w) =
∫ ∞

t2

Ψ2(x, z)Ψ2(x,w)dx.

The specific value of the kernel K2(z,w) is determined via integration by parts to
be

K2(z,w) = q2(w)

q2(z)
KAi(z,w) + CP2(ψAi(x, z), ψ2(x,w)/p2(x); t2).

Computer calculation finds dimF10,10
x,sym(Ψ2) = 32, and therefore T2 will commute

with a differential operator S2(z, ∂z) in F10,10
z,sym(Ψ2).

Taking t1 = t2 = 1, and solving the linear system describing the vanishing
of the concomitants, we find differential operators of order 10, 12, 14, 16, and 18
commuting with T2. The operators S2(z, ∂z) and S̃2(z, ∂z) of order 10 and 12 are
given by

S2(z, ∂z) = 1

z2

(
5∑

k=0

∂kz (1 − z)kak(z)∂
k
z

)
1

z2 ,

a0(z) = z14 − 200z11 + 170z10 + 5640z8 − 7360z7 + 2160z6 − 11520z5

− 2880z+ 4320,
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a1(z) = 5z12 − 580z9 + 380z8 + 6240z6 − 3700z5 − 960z2 − 9600z+ 4800,

a2(z) = 10z10 − 560z7 + 180z6 + 960z4 + 1800z3 + 300z2,

a3(z) = 10z8 − 180z5 − 100z4 − 420z+ 1260,

a4(z) = 5z6 − 70z2,

a5(z) = z4;

S̃2(z, ∂z) = 1

z2

(
6∑

k=0

∂kz (1 − z)kãk(z)∂
k
z

)
1

z2 ,

ã0(z) = z16 − 340z13 + 504z12 + 21040z10 − 52200z9 + 28812z8

− 192000z7 + 490464z6 − 328320z5 − 201600z+ 130464,

ã1(z) = 6(z14 − 220z11 + 300z10 + 7000z8 − 14212z7 + 5148z6

− 16800z5 + 13568z4 + 13568z3 + 2368z2 − 6240z+ 12480,

ã2(z) = 3(5z12 − 640z9 + 760z8 + 7800z6 − 8792z5 − 2996z4 − 3120z2

− 36000z+ 50400,

ã3(z) = 4z2(5z8 − 310z5 + 270z4 + 600z2 + 1566z− 2268),

ã4(z) = 3(5z8 − 100z5 − 224z+ 784),

ã5(z) = 6(z− 2)z2(z + 2)(z2 + 4),

ã6(z) = z4.

From Burchnall-Chaundy Theory and its extensions (see for example [26]), we
know that each pair of operators must satisfy a polynomial relation. Together, the
algebra they generate is the coordinate ring of an affine curve. However, the precise
relations that are satisfied are sufficiently complicated so as to be omitted from the
paper.
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A Random Walk on the Rado Graph

Sourav Chatterjee, Persi Diaconis, and Laurent Miclo

Dedicated to our friend and coauthor Harold Widom.

Abstract The Rado graph, also known as the random graph G(∞, p), is a classical
limit object for finite graphs. We study natural ball walks as a way of understanding
the geometry of this graph. For the walk started at i, we show that order log∗

2 i steps
are sufficient, and for infinitely many i, necessary for convergence to stationarity.
The proof involves an application of Hardy’s inequality for trees.
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Cheeger’s inequality · Hardy’s inequality
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1 Introduction

The Rado graph R is a natural limit of the set of all finite graphs (Fraissé limit, see
Sect. 2.1). In Rado’s construction, the vertex set is N = {0, 1, 2, . . .}. There is an
undirected edge from i to j if i < j and the i th binary digit of j is a one (where the
0th digit is the first digit from the right). Thus, 0 is connected to all odd numbers,
1 is connected to 0 and all j which are 2 or 3 (mod 4) and so on. There are many
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alternative constructions. Forp ∈ (0, 1), connecting i and j with probabilityp gives
the Erdős–Rényi graph G(∞, p), which is (almost surely) isomorphic to R. Further
constructions are in Sect. 2.1.

Let (Q(j))0�j<∞ be a positive probability on N (so, Q(j) > 0 for all j , and∑∞
j=0 Q(j) = 1). We study a ‘ball walk’ on R generated by Q: from i ∈ N, pick

j ∈ N(i) with probability proportional to Q(j), where N(i) = {j : j ∼ i} is the
set of neighbors of i in R. Thus, the probability of moving from i to j in one step is

K(i, j) =
{
Q(j)/Q(N(i)) if i ∼ j,

0 otherwise.
(1)

As explained below, this walk is connected, aperiodic and reversible, with stationary
distribution

π(i) = Q(i)Q(N(i))

Z
, (2)

where Z is the normalizing constant.
It is natural to study the mixing time—the rate of convergence to stationarity. The

following result shows that convergence is extremely rapid. Starting at i ∈ N, order
log∗

2 i steps suffice, and for infinitely many i, are needed.

Theorem 1 Let Q(j) = 2−(j+1), 0 � j < ∞. For K(i, j) and π defined at (1)
and (2) on the Rado graph R,

1. For universal A,B > 0, we have for all i ∈ N, � � 1,

‖K�
i − π‖ � Aelog∗

2 ie−B�.

2. For universal C > 0, if 2(k) = 22···
2

is the tower of 2’s of height k,

‖K�
2(k) − π‖ � C

for all � � k. Here ‖K�
i − π‖ = 1

2

∑∞
j=0 |K�(i, j)− π(j)| is the total variation

distance and log∗
2 i is the number of times log2 needs to be applied, starting from

i, to get a result � 1.

The proofs allow for some variation in the measure Q. They also work for the
G(∞, p) model of R, though some modification is needed since then K and π

are random.
Theorem 1 answers a question in Diaconis and Malliaris [8], who proved the

lower bound. Most Markov chains on countable graphs restrict attention to locally
finite graphs [25]. For Cayley graphs, Bendikov and Saloff-Coste [1] begin the study
of more general transitions and point out how few tools are available. See also [12,
20]. Studying the geometry of a space (here R) by studying the properties of the
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Laplacian (here I−K) is a classical pursuit (“Can you hear the shape of a drum?”)—
see [16].

Section 2 gives background on the Rado graph, Markov chains, ball walks,
and Hardy’s inequalities. Section 3 gives preliminaries on the behavior of the
neighborhoods of the G(∞, p) model. The lower bound in Theorem 1 is proved
in Sect. 4. Both Sects. 3 and 4 give insight into the geometry of R. The upper bound
in Theorem 1 is proved by proving that the Markov chain K has a spectral gap.
Usually, a spectral gap alone does not give sharp rates of convergence. Here, for
any start i, we show the chain is in a neighborhood of 0 after order log∗

2 i steps.
Then the spectral gap shows convergence in a bounded number of further steps.
This argument works for both models of R. It is given in Sect. 5.

The spectral gap for the G(∞, p) model is proved in Sect. 6 using a version
of Cheeger’s inequality for trees. For Rado’s binary model, the spectral gap is
proved by a novel version of Hardy’s inequality for trees in Sect. 7. This is the
first probabilistic application of this technique, which we hope will be useful more
generally. There are two appendices containing technical details for the needed
versions of Cheeger’s and Hardy’s inequalities.

2 Background on R, Markov Chains, and Hardy’s
Inequalities

2.1 The Rado Graph

A definitive survey on the Rado graph (with full proofs) is in Peter Cameron’s
fine article [6]. We have also found the Wikipedia entry on the Rado graph and
Cameron’s follow-up paper [7] useful.

In Rado’s model, the graph R has vertex set N = {0, 1, 2, . . .} and an undirected
edge from i to j if i < j and the i th digit of j is a one. There are many other
constructions. The vertex set can be taken as the prime numbers that are 1 (mod 4)
with an edge from p to q if the Legendre symbol (p

q
) = 1. In [8], the graph appears

as an induced subgraph of the commuting graph of the group U(∞, q)—infinite
upper-triangular matrices with ones on the diagonal and entries in Fq . The vertices
are points of U(∞, q). There is an edge from x to y if and only if the commutator
x−1y−1xy is zero. The infinite Erdős–Rényi graphs G(∞, p) are almost surely
isomorphic to R for all p, 0 < p < 1.

The graph R has a host of fascinating properties:

• It is stable in the sense that deleting any finite number of vertices or edges yields
an isomorphic graph. So does taking the complement.

• It contains all finite or countable graphs as induced subgraphs. Thus, the
(countable) empty graph and complete graphs both appear as induced subgraphs.

• The diameter of R is two—consider any i �= j ∈ N and let k be a binary number
with ones in positions i and j and zero elsewhere. Then i ∼ k ∼ j .
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• Each vertex is connected to “half” of the other vertices: 0 is connected to all the
odd vertices, 1 to 0 and all numbers congruent to 2 or 3 (mod 4), and so on.

• R is highly symmetric: Any automorphism between two induced subgraphs can
be extended to all of R (this is called homogeneity). The automorphism group
has the cardinality of the continuum.

• R is the “limit” if the collection of all finite graphs (Fraissé limit). Let us spell
this out. A relational structure is a set with a finite collection of relations (we
are working in first order logic without constants or functions). For example,
Q with x < y is a relational structure. A graph is a set with one symmetric
relation. The idea of a “relational sub-structure” clearly makes sense. A class
C of structures has the amalgamation property if for any A,B1, B2 ∈ C with

embeddingsA
f1→ B1 and A

f2→ B2, there exists C ∈ C and embeddingsB1
g1→ C

and B2
g2→ C such that g1f1 = g2f2. A countable relational structure M is

homogeneous if any isomorphism between finite substructures can be extended
to an automorphism of M . Graphs and Q are homogeneous relational structures.
A class C has the joint embedding property if for any A,B ∈ C there is a C ∈ C
so that A and B are embeddable in C.

Theorem 2 (Fraissé) Let C be a countable class of finite structures with
the joint embedding property and closed under ‘induced’ isomorphism with
amalgamation. Then there exists a unique countable homogeneous M with C
as induced substructures.

The rationals Q are the Fraissé limit of finite ordered sets. The Rado graph R is
the Fraissé limit of finite graphs. We have (several times!) been told “for a model
theorist, the Rado graph is just as interesting as the rationals”.

There are many further, fascinating properties of R; see [6].

2.2 Markov Chains

A transition matrix K(i, j), 0 � i, j < ∞, K(i, j) � 0,
∑∞

j=0 K(i, j) = 1 for all
i, 0 � i < ∞, generates a Markov chain through its powers

K�(i, j) =
∞∑

k=0

K(i, k)K�−1(k, j).

A probability distribution π(i), 0 � i < ∞, is reversible for K if

π(i)K(i, j) = π(j)K(j, i) for all 0 � i, j < ∞. (3)
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Example With definitions (1), (2) on the Rado graph, if i ∼ j ,

π(i)K(i, j) = Q(i)Q(N(i))

Z

Q(j)

Q(N(i))
= Q(i)Q(j)

Z
= π(j)K(j, i).

(Both sides are zero if i �∼ j .)

In the above example, we think of K(i, j) as a ‘ball walk’: From i, pick a neighbor
j with probability proportional to Q(j) and move to j . We initially found the neat
reversible measure surprising. Indeed, we and a generation of others thought that
ball walks would have Q as a stationary distribution. Yuval Peres points out that,
given a probability Q(j) on the vertices, assigning symmetric weight Q(i)Q(j) to
i ∼ j gives this K for the weighted local walk. A double ball walk—“from i, choose
a neighbor j with probability proportional to Q(j), and from j , choose a neighbor
k with probability proportional to Q(k)/Q(N(k))”—results in a reversible Markov
chain with Q as reversing measure. Note that these double ball walks don’t require
knowledge of normalizing constants. All of this suggests ball walks as reasonable
objects to study.

Reversibility (3) shows that π is a stationary distribution for K:

∞∑

i=0

π(i)K(i, j) =
∞∑

i=0

π(j)K(j, i) = π(j)

∞∑

i=0

K(j, i) = π(j).

In our setting, since the Rado graph has diameter 2, the walk is connected. It is easy
to see that it is aperiodic. Thus, the π in (2) is the unique stationary distribution.
Now, the fundamental theorem of Markov chain theory shows, for every starting
state i, K�(i, j) → π(j) as � → ∞, and indeed,

lim
�→∞ ‖K�

i − π‖ = 0.

Reversible Markov chains have real spectrum. Say that (K, π) has a spectral gap if
there is A > 0 such that for every f ∈ �2(π),

∑

i

(f (i)− f )2π(i) � A
∑

i,j

(f (i)− f (j))2π(i)K(i, j), (4)

where f = ∑∞
i=0 f (i)π(i). (Then the gap is at least 1/A.) For chains with a spectral

gap, for any i,

4‖K�
i − π‖2 � 1

π(i)

(
1 − 1

A

)2�

. (5)
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Background on Markov chains, particularly rates of convergence, can be found
in the readable book of Levin and Peres [19]. For the analytic part of the theory,
particularly (4) and (5), and many refinements, we recommend [23].

There has been a healthy development in Markov chain circles around the theme
‘How does a Markov chain on a random graph behave?’. One motivation being,
‘What does a typical convergence rate look like?’. The graphs can be restricted in
various natural ways (Cayley graphs, regular graphs of fixed degree or fixed average
degree, etc.). A survey of by now classical work is Hildebrand’s survey of ‘random-
random walks’ [14]. Recent work by Bordenave and coauthors can be found from [4,
5]. For sparse Erdős–Rényi graphs, there is remarkable work on the walk restricted
to the giant component. See [22], [11] and [3].

It is worth contrasting these works with the present efforts. The above results
pick a neighbor uniformly at random. In the present paper, the ball walk drives the
walk back towards zero. The papers above are all on finite graphs. The Markov
chain of Theorem 1 makes perfect sense on finite graphs. The statements and proofs
go through (with small changes) to show that order log∗

2 i steps are necessary and
sufficient. (For the uniform walk on G(n, 1/2), a bounded number of steps suffice
from most initial states, but there are states from which log∗

2 n steps are needed.)

2.3 Hardy’s Inequalities

A key part of the proof of Theorem 1 applies Hardy’s inequalities for trees to prove a
Poincaré inequality (Cf. (4)) and hence a bound on the spectral gap. Despite a large
expository literature, Hardy’s inequalities remain little known among probabilists.
Our application can be read without this expository section but we hope that some
readers find it useful. Extensive further references, trying to bridge the gap between
probabilists and analysts, is in [17].

Start with a discrete form of Hardy’s original inequality [13, pp. 239–243]. This
says that if an � 0, An = a1 + · · · + an, then

∞∑

n=1

A2
n

n2 � 4
∞∑

n=1

a2
n,

and the constant 4 is sharp. Analysts say that “the Hardy operator taking {an} to
{An/n} is bounded from �2 to �2”. Later writers showed how to put weights in. If
μ(n) and ν(n) are positive functions, one aims for

∞∑

n=1

A2
nμ(n) � A

∞∑

n=1

a2
nν(n),
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for an explicit A depending on μ(n) and ν(n). If μ(n) = 1/n2 and ν(n) = 1,
this gives the original Hardy inequality. To make the transition to a probabilistic
application, take a(n) = g(n) − g(n − 1) for g in �2. The inequality becomes

∞∑

n=1

g(n)2μ(n) � A

∞∑

n=1

(g(n) − g(n − 1))2ν(n). (6)

Consider a ‘birth and death chain’ which transits from j to j + 1 with probability
b(j) and from j to j − 1 with probability d(j). Suppose that this has stationary
distribution μ(j) and that

∑
j g(j)μ(j) = 0. Set ν(j) = μ(j)d(j). Then (6)

becomes (following simple manipulations)

Var(g) � A
∑

j,k

(g(j)− g(k))2μ(j)K(j, k) (7)

with K(j, k) the transition matrix of the birth and death chain. This gives a Poincaré
inequality and spectral gap estimate. A crucial ingredient for applying this program
is that the constant A must be explicit and manageable. For birth-death chains, this
is indeed the case. See [21] or the applications in [9]. The transition from (6) to (7)
leans on the one-dimensional setup of birth-death chains. While there is work on
Hardy’s inequalities in higher dimensions, it is much more complex; in particular,
useful forms of good constants A seem out of reach. In [21], Miclo has shown
that for a general Markov transition matrix K(i, j), a spanning tree in the graph
underlyingK can be found. There is a useful version of Hardy’s inequality for trees
due to Evans, Harris and Pick [10]. This is the approach developed in Sect. 7 below
which gives further background and details.

Is approximation by trees good enough? There is some hope that the best tree is
good enough (see [2]). In the present application, the tree chosen gives the needed
result.

2.4 The log∗ Function

Take any a > 1. The following is a careful definition of log∗
a x for x � 0. First, an

easy verification shows that the map x �→ (log x)/x on (0,∞) is unimodal, with a
unique maximum at x = e (where its value is 1/e), and decaying to −∞ as x → 0
and to 0 as x → ∞. Thus, if a > e1/e, then for any x > 0,

loga x = log x

log a
� x

e log a
< x.

Since loga is a continuous map, this shows that if we start with any x > 0,
iterative applications of loga will eventually lead to a point in (0, a) (because there
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are no fixed points of loga above that, by the above inequality), and then another
application of loga will yield a negative number. This allows us to define log∗

a x

as the minimum number of applications of loga , starting from x, that gets us a
nonpositive result.

If a � e1/e, the situation is a bit more complicated. Here, log a � 1/e, which
is the maximum value of the unimodal map x �→ (log x)/x. This implies that there
exist exactly two points 0 < ya � xa that are fixed points of loga (with ya = xa if
a = e1/e). Moreover, loga x < x if x /∈ [ya, xa], and loga x � x if x ∈ [ya, xa].
Thus, the previous definition does not work. Instead, we define log∗

a x to be the
minimum number of applications of loga , starting from x, that leads us to a result
� xa . In both cases, defining log∗

a 0 = 0 is consistent with the conventions. Note
that log∗

a x � 0 for all x � 0.

3 The Geometry of the Random Model

Throughout this section the graph is G(∞, 1/2) — an Erdős–Rényi graph on N =
{0, 1, 2, . . .} with probability 1/2 for each possible edge. From here on, we will
use the notation N+ to denote the set {1, 2, . . .} of strictly positive integers. Let
Q(x) = 2−(x+1) for x ∈ N. The transition matrix

K(x, y) = Q(y)

Q(N(x))
1{y∈N(x)}

and its stationary distribution π(x) = Z−1Q(x)Q(N(x)) are thus random variables.
Note that N(x), the neighborhood of x, is random. The main result of this section
shows that this graph, with vertices weighted by Q(x), has its geometry controlled
by a tree rooted at 0. This tree will appear in both lower and upper bounds on the
mixing time for the random model.

To describe things, let p(x) = minN(x) (p is for ‘parent’, not to be confused
with the edge probability p in G(∞, p)). We need some preliminaries about p(x).

Lemma 1 Let B be the event that for all x ∈ N+, p(x) < x. Then we have that
P(B) � 1/4.

Proof Denote E � {{x, y} : x �= y ∈ N}, and for any e ∈ E, consider Be = 1E(e),
whereE is the set of edges in G(∞, 1/2), so that (Be)e∈E is a family of independent
Bernoulli variables of parameter 1/2.

For x ∈ N+, define Ax the event that x is not linked in G to a smaller vertex.
Namely, we have formally

Ax �
⋂

y∈�0,x−1�

{B{y,x} = 0},
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where �0, x−1� := {0, 1, . . . , x−1}. Note that the family (Ax)x∈N+ is independent,
and in particular, its events are pairwise independent. We are thus in position to
apply Kounias–Hunter–Worsley bounds [15, 18, 26] (see also the survey [24]), to
see that for any n ∈ N+,

P

( ⋃

x∈�1,n�

Ax

)
� min

{ ∑

x∈�1,n�

P(Ax)− P(A1)
∑

y∈�2,n�

P(Ay), 1

}
,

where we used that P(A1) � P(A2) � · · · � P(An), which holds because

∀ x ∈ N+, P(Ax) =
∏

y∈�0,x−1�

P(B{y,x}) = 1

2x
.

We deduce that

P

( ⋃

x∈�1,n�

Ax

)
� min

{ ∑

x∈�1,n�

1

2x
− 1

2

∑

y∈�2,n�

1

2y
, 1

}
= 1

2
+ 1

4
− 1

2n+1 .

Letting n tends to infinity, we get P
(⋃

x∈N+ Ax

)
� 3

4 . To conclude, note that Bc =
⋃

x∈N+ Ax . ��

Remark 1 Assume that instead of 1/2, the edges of E belong to E with probability
p ∈ (0, 1) (still independently), the corresponding notions receive p in index. The
above computations show Pp(B) � 1 − (2 − 3p+ p2)∧ 1, so that Pp(B) goes to 1
as p goes to 1, but this bounds provides no information for p ∈ (0, (3 − √

5)/2].
In fact the above observation shows that the Kounias–Hunter–Worsley bound is

not optimal, at least for small p > 0. So let us give another computation of Pp(B):

Lemma 2 Consider the situation described in Remark 1, with p ∈ (0, 1). We have

Pp(B) =
(∑

n∈N
p(n)(1 − p)n

)−1

where p(n) is the number of partitions of n. In particular P(B) > 0 for all p ∈
(0, 1).

Proof Indeed, we have B = ⋂
x∈N+ Ac

x , so that by independence of the Ax , for
x ∈ N+,

Pp(B) =
∏

x∈N+
P(Ac

x) =
( ∏

x∈N+

1

1 − (1 − p)x

)−1

=
( ∏

x∈N+

∑

n∈N
(1 − p)xn

)−1
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Let N be the set of sequences of integers (nl)l∈N+ with all but finitely many elements
equal to zero. Applying the distributive law to the above expression, we have

Pp(B) =
( ∑

(nl)l∈N+∈N

∏

x∈N+
(1 − p)xnx

)−1

=
(∑

n∈N
p(n)(1 − p)n

)−1

where p(n) is the number of ways to write n as
∑

x∈N+ xnx , with (nl)l∈N+ ∈ N.
��

Consider the set of edges

F � {{x, p(x)} : x ∈ N+}

and the corresponding graph T � (N, F ). Under B, it is clear that T is a tree. But
this is always true:

Lemma 3 The graph T is a tree.

Proof The argument is by contradiction. Assume that T contains a cycle, say
(xl)l∈Zn with n � 3. Let us direct the a priori unoriented edges {xl, xl+1}, for l ∈ Zn,
by putting an arrow from xl to xl+1 (respectively from xl+1 to xl) if p(xl) = xl+1
(resp. p(xl+1) = xl). Note that we either have

∀ l ∈ Zn, xl → xl+1, or ∀ l ∈ Zn, xl+1 → xl, (8)

because otherwise there would exist l ∈ Zn with two arrows exiting from xl , a
contradiction. Up to reindexing (xl)l∈Zn as (x−l )l∈Zn , we can assume that (8) holds.

Fix some l ∈ Zn. Since p(xl) = xl+1, we have xl ∈ N(xl+1), so xl+2 =
p(xl+1) � xl . Due to the fact that xl �= xl+2 (recall that n � 3), we get xl+2 < xl .
Starting from x0 and iterating this relation (in a minimal way, n/2 times if n is even,
or n times if n is odd), we obtain a contradiction: x0 < x0. Thus, T must be a tree.

��
Let us come back to the case where p = 1/2. The following result gives an idea of
how far p(x) is from x, for x ∈ N+.

Lemma 4 Almost surely, there exist only finitely many x ∈ N+ such that p(x) >
2 log2(1 + x). In particular, a.s. there exists a (random) finite C � 2 such that

∀ x ∈ N+, p(x) � C log2(1 + x).

Proof The first assertion follows from the Borel–Cantelli lemma, as follows. For
any x ∈ N+, consider the event

Ax � {p(x) > 2 log2(1 + x)}.



A Random Walk on the Rado Graph 267

Denoting 3·4 the the integer part, we compute

∑

x∈N+
P(Ax) =

∑

x∈N+
P(B{0,x} = 0, B{1,x} = 0, . . . , B{32 log2(1+x)4,x} = 0)

=
∑

x∈N+

1

21+32 log2(1+x)4 �
∑

x∈N+

1

(1 + x)2
< +∞.

Having shown that a.s. there exists only a finite number of integers x ∈ N+
satisfying p(x) > 2 log2(1 + x), denote these points as x1, . . . , xN , with N ∈ N. To
get the second assertion, it is sufficient to take C � max{p(xl)/log(1 + xl) : l ∈
�1, N�}, with the convention that C � 2 if N = 0. ��

4 The Lower Bound

The lower bound in Theorem 1, showing that order log∗
2 i steps are necessary for

infinitely many i is proved in [8] for the binary model of the Rado graph and we
refer there for the proof. A different argument is needed for the G(∞, 1/2) model.
This section gives the details (see Theorem 3 below).

Let μ be the stationary distribution of our random walk on G(∞, 1/2) (with
Q(j) = 2−(j+1), as in Theorem 1), given a realization of the graph. Note that μ is
random. For each x ∈ N, let τx be the mixing time of the walk starting from x, that
is, the smallest n such that the law of the walk at time n, starting from x, has total
variation distance � 1/4 from μ. Note that the τx ’s are also random.

Theorem 3 Let τx be as above. Then with probability one,

lim sup
x→∞

τx

log∗
16 x

� 1.

Equivalently, with probability one, given any ε > 0, τx � (1 − ε) log∗
16 x for

infinitely many x.

We need the following lemma.

Lemma 5 With probability one, there is an infinite sequence x0 < x1 < x2 < · · · ∈
N such that:

1. For each i, xi+1 is connected to xi by an edge, but not connected by an edge to
any other number in {0, 1, . . . , 2xi − 1}.

2. For each i, 23xi � xi+1 � 23xi+1 − 1.
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Proof Define a sequence y0, y1, y2, . . . inductively as follows. Let y0 be an arbitrary
element of N. For each i, let yi+1 be the smallest element in {23yi , 23yi +
1, . . . , 23yi+1 − 1} that has an edge to yi , but to no other number in {0, 1, . . . , 2yi −
1}. If there exists no such number, then the process stops. Let Ai be the event that
yi exists. Note that A0 ⊇ A1 ⊇ A2 ⊇ · · · .

Let F(x) := 23x , G(x) := 23x+1 − 1, a0 = b0 = y0, and for each i � 1, let

ai := F ◦ F ◦ · · · ◦ F︸ ︷︷ ︸
i times

(y0), bi := G ◦ G ◦ · · · ◦ G︸ ︷︷ ︸
i times

(y0).

Since 23yi � yi+1 � 23yi+1 − 1 for each i, it follows by induction that ai � yi � bi
for each i (if yi exists). Now fix some i � 1. Since the event Ai−1 is determined
by y1, . . . , yi−1, and these random variables can take only finitely many values (by
the above paragraph), we can write Ai−1 as a finite union of events of the form
{y1 = c1, . . . , yi−1 = ci−1}, where c1 < c2 < · · · < ci−1 ∈ N.

Now note that for any c1 < · · · < ci−1, the event Ai ∩ {y1 = c1, . . . , yi−1 =
ci−1} happens if and only if {y1 = c1, . . . , yi−1 = ci−1} happens and there is some
y ∈ {23ci−1, 23ci−1 + 1, . . . , 23ci−1+1 − 1} that has an edge to ci−1, but to no other
number in {0, . . . , 2ci−1 − 1}. The event {y1 = c1, . . . , yi−1 = ci−1} is in Fci−1 ,
where Fx denotes the σ -algebra generated by the edges between all numbers in
{0, . . . , x}. On the other hand, on the event {y1 = c1, . . . , yi−1 = ci−1}, it is not
hard to see that

P(Ai |Fci−1) = 1 − (1 − 2−2ci−1)2
3ci−1

.

Thus,

P(Ai ∩ {y1 = c1, . . . , yi−1 = ci−1})
= P(y1 = c1, . . . , yi−1 = ci−1)(1 − (1 − 2−2ci−1)2

3ci−1
)

� P(y1 = c1, . . . , yi−1 = ci−1)(1 − e−2ci−1
),

where in the last step we used the inequality 0 � 1 − x � e−x (which holds for
all x ∈ [0, 1]). Note that the term inside the parentheses on the right side is an
increasing function of ci−1, and the maximum possible value of yi−1 is bi−1. Thus,
summing both sides over all values of c1, . . . , ci−1 such that {y1 = c1, . . . , yi−1 =
ci−1} ⊆ Ai−1, we get P(Ai) = P(Ai ∩ Ai−1) � P(Ai−1)(1 − e−2bi−1

). Proceeding
inductively, this gives

P(A1 ∩ · · · ∩ Ai) �
i−1∏

k=0

(1 − e−2bk ).
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Taking i → ∞, we get P(B) �
∏∞

k=0(1−e−2bk ), where B := ⋂∞
k=1 Ak . Now recall

that the event B, as well as the numbers b0, b1, . . ., are dependent on our choice of
y0. To emphasize this dependence, let us write them as B(y0) and bk(y0). Then by
the above inequality,

∑

y0∈N
P(B(y0)

c) �
∑

y0∈N

(
1 −

∞∏

k=0

(1 − e−2bk(y0)
)

)
,

where B(y0)
c denotes the complement of B(y0). Due to the extremely rapid growth

of bk(y0) as k → ∞, and the fact that b0(y0) = y0, it is not hard to see that
the right side is finite. Therefore, by the Borel–Cantelli lemma, B(y0)

c happens for
only finitely many y0 with probability one. In particular, with probability one, B(y0)

happens for some y0. This completes the proof. ��
Proof (Of Theorem 3) Fix a realization of G(∞, 1/2). Let x be so large that
μ([x,∞)) < 1/10, and

∏∞
k=1(1 − 2−ak(x)+1) � 9/10.

Let x0, x1, x2, . . . be a sequence having the properties listed in Lemma 5 (which
exists with probability one, by the lemma). Discarding some initial values if
necessary, let us assume that x0 > x. By the listed properties, it is obvious that
xi → ∞ as i → ∞. Thus, to prove Theorem 3, it suffices to prove that

lim inf
i→∞

τxi

log∗
16 xi

� 1. (9)

We will now deduce this from the properties of the sequence.
Suppose that our random walk starts from xi for some i � 1. Since xi connects

to xi−1 by an edge, but not to any other number in {0, . . . , 2xi−1 − 1}, we see that
the probability of the walk landing up at xi−1 in the next step is at least

1 − 1

2−xi

∞∑

k=2xi

2−k = 1 − 2−xi+1.

Proceeding by induction, this shows that the chance that the walk lands up at x0 at
step i is at least

∏i
k=1(1 − 2−xk+1). Let μi be the law of walk at step i (starting

from xi , and conditional on the fixed realization of our random graph). Then by the
above deduction and the facts that x0 > x and xk � ak(x0) � ak(x), we have

μi([x,∞)) �
i∏

k=1

(1 − 2−xk+1) �
i∏

k=1

(1 − 2−ak(x)+1).

By our choice of x, the last expression is bounded below by 9/10. But μ([x,∞)) <

1/10. Thus, the total variation distance between μi and μ is at least 8/10. In
particular, τxi > i. Now, xi � 23xi−1+1 − 1 � 16xi−1 , which shows that
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log∗
16 xi � log∗

16 xi−1 + 1. Proceeding inductively, we get log∗
16 xi � i + log∗

16 x0.
Thus, τxi > log∗

16 xi − log∗
16 x0. This proves (9). ��

5 The Upper Bound (Assuming a Spectral Gap)

This section gives the upper bound for both the binary and random model of the
Rado graph. Indeed, the proof works for a somewhat general class of graphs and
more general base measures Q. The argument assumes that we have a spectral gap
estimate. These are proved below in Sects. 6 and 7. We give this part of the argument
first because, as with earlier sections, it gives a useful picture of the random graph.

Take any undirected graph on the nonnegative integers, with the property:

{
There exists C > 0 such that for any j � 2,

j is connected to some k � C log j.
(10)

Let {Xn}n�0 be the Markov chain on this graph, which, starting at state i, jumps to
a neighbor j with probability proportional to Q(j) = 2−(j+1). The following is the
main result of this section.

Theorem 4 Let K be the transition kernel of the Markov chain defined above.
Suppose that K has a spectral gap. Let μ be the stationary distribution of the chain,
and let a := e1/C . Then for any i ∈ N and any � � 1,

‖K�
i − μ‖ � C1e

log∗
a ie−C2�,

where C1 and C2 are positive constants that depend only the properties of the chain
(and not on i or �).

By Lemma 4, G(∞, 1/2) satisfies the property (10) with probability one, for
some C that may depend on the realization of the graph. The Rado graph also
satisfies property (10), with K = 1/ log 2. Thus, the random walk starting from
j mixes in time log∗

2 j on the Rado graph, provided that it has a spectral gap. For
G(∞, 1/2), assuming that the walk has a spectral gap, the mixing time starting from
j is log∗

a j , where a depends on the realization of the graph. The spectral gap for
G(∞, 1/2) will be proved in Sect. 6, and the spectral gap for the Rado graph will
be established in Sect. 7. Therefore, this proves Theorem 1 and also the analogous
result for G(∞, 1/2).

Proof (Of Theorem 4) Note that a > 1. Let Zn := log∗
a Xn. We claim that there is

some j0 sufficiently large, and some positive constant c, such that

E(eZn+1|Fn) � eZn−c if Zn > j0, (11)
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where Fn is the σ -algebra generated by X0, . . . , Xn. (The proof is given below.)
This implies that if we define the stopping time S := min{n � 0 : Xn � j0}, then
{eZS∧n+c(S∧n)}n�0 is a supermartingale with respect to the filtration {Fn}n�0 (see
details below). Moreover, it is nonnegative. Thus, if we start from the deterministic
initial condition X0 = j , then for any n,

E(eZS∧n+c(S∧n)|X0 = j) � eZS∧0+c(S∧0) = elog∗
a j .

But ZS∧n � 0. Thus, E(ec(S∧n)|X0 = j) � elog∗
a j . Taking n → ∞ and applying

the monotone convergence theorem, we get

E(ecS |X0 = j) � elog∗
a j . (12)

Now take any j � 1 and n � 1. Let μ be the stationary distribution, and let μj,n be
the law of Xn when X0 = j . Take any A ⊆ {0, 1, . . .}. Then for any m � n,

μj,n(A) = P(Xn ∈ A|X0 = j)

=
m∑

i=0

j0∑

l=0

P(Xn ∈ A|S = i, Xi = l, X0 = j)P(S = i, Xi = l|X0 = j)

+ P(Xn ∈ A|S > m, X0 = j)P(S > m|X0 = j).

But

P(Xn ∈ A|S = i, Xi = l, X0 = j) = P(Xn ∈ A|Xi = l) = μl,n−i (A),

and

μ(A) =
m∑

i=0

j0∑

l=0

μ(A)P(S = i, Xi = l|X0 = j)+ μ(A)P(S > m|X0 = j).

Thus, |μj,n(A)− μ(A)| can be bounded above by

m∑

i=0

j0∑

l=0

|μl,n−i (A)− μ(A)|P(S = i, Xi = l|X0 = j)+ P(S > m|X0 = j).

Now, if our Markov chain has a spectral gap, there exist constants C1 and C2
depending only on j0 and the spectral gap, such that

|μl,n−i (A)− μ(A)| � C1e
−C2(n−i) � C1e

−C2(n−m)
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for all 0 � i � m and 0 � l � j0. Using this bound and the bound (12) on
E(ecS |X0 = j) obtained above, we get

|μj,n(A)− μ(A)| � C1e
−C2(n−m) + elog∗

a j−cm.

Taking m = 5n/26, we get the desired result. ��
Proof (Of inequality (11)) It suffices to take n = 0. Suppose that X0 = j for some
j � 1. By assumption, there is a neighbor k of j such that k � K log j = loga j .
Assuming that j is sufficiently large (depending on K), we have that for any l � k,

log∗
a l � log∗

a k � log∗
a(loga j) = log∗

a j − 1.

Also, log∗
a l � log∗

a j for any l � j . Thus,

E(eZ1−Z0 |X0 = j) � e−1
P(X1 � k|X0 = j)+ P(k < X1 � j |X0 = j)

+
∑

l>j

elog∗
a l−log∗

a jP(X1 = l|X0 = j).

Now for any l � k,

P(X1 = l|X0 = j) � P(X1 = l|X0 = j)

P(X1 = k|X0 = j)
= Q(l)

Q(k)
= 2−(l−k).

Thus,

∑

l>j

elog∗
a l−log∗

a jP(X1 = l|X0 = j) �
∑

l>j

elog∗
a l−log∗

a j2−(l−k),

which is less than 1/4 if j is sufficiently large (since k � log∗
a j ). Next, let L be the

set of all l > k that are connected to j . Then

P(X1 > k|X0 = j) � P(X1 > k|X0 = j)

P(X1 � k|X0 = j)
=

∑
l∈L 2−l

2−k +∑
l∈L 2−l

.

Since the map x �→ x/(2−k + x) is increasing, this shows that

P(X1 > k|X0 = j) �
∑

l>k 2−l

2−k +∑
l>k 2−l

= 1

2
.
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Combining, we get that for sufficiently large j ,

E(eZ1−Z0 |X0 = j) � e−1
P(X1 � k|X0 = j)+ P(X1 > k|X0 = j) + 1

4

= e−1 + (1 − e−1)P(X1 > k|X0 = j) + 1

4

� e−1 + 1 − e−1

2
+ 1

4
= 3 + 2e−1

4
< 1.

��
Proof (Of the Supermartingale Property) Note that

E(eZS∧(n+1)+c(S∧(n+1))|Fn)

=
n∑

i=0

E(eZS∧(n+1)+c(S∧(n+1))1{S=i}|Fn) + E(eZS∧(n+1)+c(S∧(n+1))1{S>n}|Fn)

=
n∑

i=0

E(eZi+ci1{S=i}|Fn) + E(eZn+1+c(n+1)1{S>n}|Fn).

The events {S = i} are Fn-measurable for all 0 � i � n, and so is the event {S > n}.
Moreover, Z0, . . . , Zn are also Fn-measurable. Thus, the above expression shows
that

E(eZS∧(n+1)+c(S∧(n+1))|Fn)=1{S�n}eZS∧n+c(S∧n)+1{S>n}E(eZn+1+c(n+1)|Fn).

But if S > n, then Zn > j0, and therefore by (11),

E(eZn+1+c(n+1)|Fn) � eZn−c+c(n+1) = eZn+cn.

Thus,

E(eZS∧(n+1)+c(S∧(n+1))|Fn) � 1{S�n}eZS∧n+c(S∧n) + 1{S>n}eZn+cn

= eZS∧n+c(S∧n).
��

6 Spectral Gap for the Random Model

Our next goal is to show that the random reversible couple (K, π) admits a spectral
gap. The arguments make use of the ideas and notation of Sect. 3. In particular, recall
the event B = {p(x) < x ∀ x ∈ N+} from Lemma 1 and the random tree T with
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edge set F from Lemma 3. The argument uses a version of Cheeger’s inequality for
trees which is further developed in Appendix 1.

Proposition 1 On B, there exists a random constant & > 0 such that

∀ f ∈ L2(π), &π[(f − π[f ])2] � E(f )

where in the r.h.s. E is the Dirichlet form defined by

∀ f ∈ L2(π), E(f ) �
1

2

∑

x,y ∈N

(f (y)− f (x))2 π(x)K(x, y).

Taking into account that for any f ∈ L2(π), the variance π[(f − π[f ])2] of
f with respect to π is bounded above by π[(f − f (0))2], the previous result
is an immediate consequence of the following existence of positive first Dirichlet
eigenvalue under B.

Proposition 2 On B, there exists a random constant & > 0 such that

∀ f ∈ L2(π), &π[(f − f (0))2] � E(f ). (13)

The proof of Proposition 2 is based on the pruning of G into T and then resorting
to Cheeger’s inequalities for trees. More precisely, let us introduce the following
notations. Define the Markov kernel KT as

∀ x, y ∈ N, KT(x, y) �

⎧
⎨

⎩

K(x, y) if {x, y} ∈ F,

1 −∑
z∈N\{x} KT(x, z) if x = y,

0 otherwise.

Note that this kernel is reversible with respect to π . The corresponding Dirichlet
form is given, for any f ∈ L2(π), by

ET(f ) �
∑

x,y ∈N

(f (y)− f (x))2
π(x)KT(x, y)

2
=
∑

{x,y}∈F
(f (y)− f (x))2 π(x)K(x, y)

It will be convenient to work with Ẽ � ZET, where Z is the normalizing constant
of π , as in equation (2). Define a nonnegative measure μ on N+ as

∀ x ∈ N+, μ(x) � Q(x)Q(p(x)). (14)

Proposition 3 On B, there exists λ > 0 such that

∀ f ∈ L2(μ), λμ[(f − f (0))2] � Ẽ(f ). (15)
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This result immediately implies Proposition 2. Indeed, due on one hand to the
inclusion N(x) ⊂ �p(x),∞� and on the other hand to the nature of Q, we have

∀ x ∈ N+, Q(p(x)) � Q(N(x)) � 2Q(p(x)). (16)

Thus for any f ∈ L2(μ),

λπ[(f − f (0))2] = λ

Z

∑

x∈N+
(f (x)− f (0))2Q(x)Q(N(x))

� 2λ

Z

∑

x∈N+
(f (x)− f (0))2Q(x)Q(p(x))

= 2λ

Z
μ[(f − f (0))2] � 2

Z
Ẽ(f ) = 2ET(f ) � 2E(f ),

and thus, Proposition 2 holds with & � λ/2.
The proof of Proposition 3 is based on a Dirichlet-variant of the Cheeger

inequality (which is in fact slightly simpler than the classical one, see Appendix 1).
For any A ⊂ N+, define ∂A � {{x, y} : x ∈ A, y �∈ A} ⊂ E. Endow E with the
measure ν induced by, for any {x, y} ∈ E,

ν({x, y}) � Zπ(x)KT(x, y) =
{
Q(x)Q(y) if {x, y} ∈ F,

0 otherwise.

Define the Dirichlet–Cheeger constant

ι � inf
A∈A

ν(∂A)

μ(A)
� 0

where A � {A ⊂ N+ : A �= ∅}. The proof of the traditional Markovian Cheeger’s
inequality given in the lectures by Saloff-Coste [23] implies directly that the best
constant λ in Proposition 3 satisfies λ � ι2/2. Thus it remains to check:

Proposition 4 On B, we have ι � 1/2 and in particular ι > 0.

Proof Take any nonempty A ∈ A and decompose it into its connected components
with respect to T: A = ⊔

i∈IAi , where the index set I is at most denumerable.
Note that

μ(A) =
∑

i∈I
μ(Ai), ν(A) =

∑

i∈I
ν(Ai),

where the second identity holds because there are no edges in F connecting two
different Ai’s. Thus, it follows that ι = inf

A∈Ã ν(∂A)/μ(A), where Ã is the set of
subsets of A which are T-connected.



276 S. Chatterjee et al.

Consider A ∈ Ã, it has a smallest element a ∈ N+ (since 0 �∈ A). Let Ta be the
subtree of descendants of A in T (i.e., the set of vertices from N+ whose non-self-
intersecting path to 0 passes through a). We have A ⊂ Ta , and ∂A ⊃ {a, p(a)} =
∂Ta , and it follows that ν(∂A)/μ(A) � ν(∂Ta)/μ(Ta). We deduce that

ι � inf
a∈N+

ν(∂Ta)

μ(Ta)
= inf

a∈N+

Q(a)Q(p(a))

μ(Ta)
.

On B, we have for any a ∈ N+, on the one hand

∀ x ∈ Ta, p(x) � p(a), (17)

and on the other hand

Ta ⊂ �a,∞�. (18)

We get μ(Ta) equals
∑

x∈Ta
Q(x)Q(p(x)) � Q(p(a))

∑

x∈Ta
Q(x) � Q(p(a))

∑

x∈�a,∞�

Q(x) = 2Q(p(a))Q(a).

It follows that ι � 1/2. ��
Lemma 4 can now be used to see that the ball Markov chain on the random
graph has a.s. a spectral gap. Indeed, we deduce from Lemma 4 that there exists a
(random) vertex x0 ∈ N such that for any x > x0, p(x) < x. Consider

x1 � max{p(x) : x ∈ �1, x0�}.

It follows that for any a > x1, we have, for all ∀ x ∈ Ta , p(x) < x. (To see this, take
any path a0, a1, . . . in Ta , starting at a0 = a, so that p(ai) = ai−1 for each i. Let
k be the first index such that ak � ak+1, assuming that there exists such a k. Then
ak+1 � x0, and so ak = p(ak+1) � x1. But this is impossible, since a0 � ak and
a0 > x1.) In particular, we see that (17) and (18) hold for a > x1. As a consequence,

inf
a>x1

ν(∂Ta)

μ(Ta)
� 1

2
.

By the finiteness of �1, x1�, we also have infa∈�1,x1� ν(∂Ta)/μ(Ta) > 0. So, finally,

ι = inf
a∈N+

ν(∂Ta)

μ(Ta)
> 0,

which shows that G(∞, 1/2) has a spectral gap a.s.
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7 Spectral Gap for the Rado Graph

This section proves the needed spectral gap for the Rado graph. Here the graph has
vertex set N and an edge from i to j if i is less than j and the ith bit of j is a one. We
treat carefully the case of a more general base measure, Q(x) = (1 − δ)δx . As delta
tends to 1, sampling from this Q is a better surrogate for “pick a neighboring vertex
uniformly”. Since the normalization doesn’t enter, throughout take Q(x) = δx . The
heart of the argument is a discrete version of Hardy’s inequality for trees. This is
developed below with full details in Appendix 2.

Consider the transition kernel K reversible with respect to π and associated to
the measure Q given by Q(x) � δx for all x ∈ N, where δ ∈ (0, 1) (instead of
δ = 1/2 as in the introduction, up to the normalization). Recall that

∀ x, y ∈ N, K(x, y) �
Q(y)

Q(N(x))
1N(x)(y),

∀ x ∈ N, π(x) = Z−1Q(x)Q(N(x)),

where N(x) is the set of neighbors of x induced by K and where Z > 0 is the
normalizing constant. Here is the equivalent of Proposition 3:

Proposition 5 We have

λ � 1 − δ

16(2 ∨ 5log2 log2(2/ log2(1/δ))6)
.

This bound will be proved via Hardy’s inequalities. If we resort to Dirichlet–
Cheeger, we rather get

λ � (1 − δ)2

2
. (19)

To see the advantage of Proposition 5, let δ come closer and closer to 1, namely,
approach the problematic case of “pick a neighbor uniformly at random”. In this
situation, the r.h.s. of the bound of Proposition 5 is of order

1 − δ

165log2 log2(1/(1 − δ))6
which is better than (19) as δ goes to 1−.

Here we present the Hardy’s inequalities method to get Proposition 5 announced
above. Our goal is to show that K admits a positive first Dirichlet eigenvalue:

Proposition 6 There exists & > 0 depending on δ ∈ (0, 1) such that

∀ f ∈ L2(π), &π[(f − f (0))2] � 1

2

∑

x,y ∈N

(f (y)− f (x))2 π(x)K(x, y).
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It follows that the reversible couple (K, π) admits a spectral gap bounded below
by & given above. Indeed, it is an immediate consequence of the fact that for any
f ∈ L2(π), the variance of f with respect to π is bounded above by π[(f−f (0))2].

The proof of Proposition 6 is based on a pruning of K and Hardy’s inequalities
for trees. Consider the set of unoriented edges induced by K:E � {{x, y} ∈ N×N :
K(x, y) > 0} (in particular, E does not contain the self-edges or singletons). For
any x ∈ N+, let p(x) the smallest bit equal to 1 in the binary expansion of x, i.e.,

p(x) � min{y ∈ N : K(x, y) > 0}.

Define the subset F of E by

F � {{x, p(x)} ∈ E : x ∈ N+}

and the function ν on F via

∀ {x, p(x)} ∈ F, ν({x, p(x)}) � Zπ(x)K(x, p(x)) = Q(x)Q(p(x)).

To any f ∈ L2(π), associate the function (df )2 on F given by

∀ {x, p(x)} ∈ F, (df )2({x, p(x)}) � (f (x)− f (p(x)))2.

Finally, consider the (non-negative) measure μ defined on N+ via

∀ x ∈ N+, μ(x) � Q(x)Q(p(x)). (20)

Then we have:

Proposition 7 There exists λ > 0 depending on δ ∈ (0, 1) such that

∀ f ∈ L2(μ), λμ[(f − f (0))2] �
∑

e∈F
(df )2(e)ν(e).

This result implies Proposition 6. Indeed, note that by the definition of Q,

∀ x ∈ N+, Q(p(x)) � Q(N(x)) � 1

1 − δ
Q(p(x)). (21)

Thus, for any f ∈ L2(μ),

λπ[(f − f (0))2] = λ

Z

∑

x∈N+
(f (x)− f (0))2Q(x)Q(N(x))

� λ

(1 − δ)Z

∑

x∈N+
(f (x)− f (0))2Q(x)Q(p(x))
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= λ

(1 − δ)Z
μ[(f − f (0))2] � 1

(1 − δ)Z

∑

e∈F
(df )2(e)ν(e)

� 1

2(1 − δ)

∑

x,y ∈N

(f (y)− f (x))2 π(x)K(x, y)

namely Proposition 6 holds with & � λ(1 − δ).
Note that N endowed with the set of non-oriented edges F has the structure of a

tree. We interpret 0 as its root, so that for any x ∈ N+, p(x) is the parent of x. Note
that for any x ∈ N, the children of x are exactly the numbers y2x , where y is an odd
number. We will denote h(x) the height of x with respect to the root 0 (thus, the odd
numbers are exactly the elements of N whose height is equal to 1).

According to [21] (see also Evans, Harris and Pick [10]), the best constant λ in
Proposition 7, say λ0, can be estimated up to a factor 16 via Hardy’s inequalities for
trees, see (23) below. To describe them we need several notations.

Let T the set of subsets T of N+ satisfying the following conditions

• T is non-empty and connected (with respect to F ),
• T does not contain 0,
• there exists M � 1 such that h(x) � M for all x ∈ T ,
• if x ∈ T has a child in T , then all children of x belong to T .

Note that any T ∈ T admits a closest element to 0, call it m(T ). Note thatm(T ) �= 0.
When T is not reduced to the singleton {m(T )}, then T \ {m(T )} has a denumerable
infinity of connected components which are indexed by the children of m(T ). Since
these children are exactly the y2m(T ), where y ∈ I, the set of odd numbers, call
Ty2m(T ) the connected component of T \ {m(T )} associated to y2m(T ). Note that
Ty2m(T ) ∈ T. We extend ν as a functional on T, via the iteration

• when T is the singleton {m(T )}, we take ν(T ) � ν({m(T ), p(m(T ))}),
• when T is not a singleton, decompose T as {m(T )} � ⊔y∈I Ty2m(T ) , then ν is

defined as

1

ν(T )
= 1

ν({m(T )}) + 1∑
y∈I ν(Ty2m(T ) )

. (22)

For x ∈ N+, let Sx be the set of vertices y ∈ N+ whose path to 0 passes through x.
For any T ∈ T we associate the subset

T ∗ � (Sm(T ) \ T ) � L(T )

where L(T ) is the set of leaves of T , namely the x ∈ T having no children in T .
Equivalently,T ∗ is the set of all descendants of the leaves of T , themselves included.
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Consider S ⊂ T the set of T ∈ T which are such that m(T ) is an odd number.
Finally, define

A � sup
T ∈S

μ(T ∗)
ν(T )

.

We are interested in this quantity because of the Hardy inequalities:

A � 1

λ0
≤ 16A, (23)

where recall that λ0 is the best constant in Proposition 7. (In [21], only finite trees
were considered, the extension to infinite trees is given in Appendix 2). So, to prove
Proposition 7, it is sufficient to show that A is finite. To investigateA, we need some
further definitions. For any x ∈ N+, let

b(x) �
Q(2x)

Q(p(x))
.

A finite path from 0 in the direction to infinity is a finite sequence z � (zn)n∈�0,N�
of elements of N+ such that z0 = 0 and p(zn) = zn−1 for any n ∈ �1, N�. On such
a path z, we define the quantity

B(z) �
∑

n∈�1,N�

b(zn).

The following technical result is crucial for our purpose of showing that A is finite.

Lemma 6 For any finite path from 0 in the direction to infinity z � (zn)n∈�0,N�, we

have B(z) � C, where C �
∑

l∈N δ22l−l < +∞.

Proof Note that for any n ∈ �1, N�, h(zn) = n. Furthermore, for any x ∈ N+, we
have h(x) � x and we get h(p(zn)) = h(zn) − 1 = n − 1, so that p(zn) � n − 1.
Writing zn = yn2p(zn), for some odd number yn, it follows that

b(zn) = Q(2yn2p(zn))

Q(p(zn))
= δ2yn2p(zn)−p(zn) � δ22p(zn)−p(zn) � δ22n−1−n−1.

The desired result follows at once. ��
We need two ingredients about ratios μ(T ∗)/ν(T ). Here is the first one.

Lemma 7 For any T ∈ T which is a singleton, we have μ(T ∗)
ν(T )

� 1
1−δ

.

Proof When T is the singleton {m(T )}, on the one hand we have

ν(T ) = ν({p(m(T )),m(T )}) = μ(m(T )).
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On the other hand, T ∗ is the subtree growing from m(T ), namely the subtree
containing all the descendants of m(T ). Note two properties of T ∗:

T ∗ ⊂ {y ∈ N+ : y � m(T )} and ∀ y ∈ T ∗, p(y) � p(m(T )), (24)

and we further have p(y) � m(T ) for any y ∈ T ∗ \ {m(T )}. It follows that

μ(T ∗) =
∑

y∈T ∗
Q(y)Q(p(y)) � Q(p(m(T )))

∑

y�m(T )

Q(y) = Q(p(m(T )))
∑

y�m(T )

δy

= Q(p(m(T )))
Q(m(T ))

1 − δ
= 1

1 − δ
μ(m(T )). (25)

Thus, we get μ(T ∗)/ν(T ) � 1
1−δ

. ��
For the second ingredient, we need some further definitions. The length �(T ) of
T ∈ T is given by �(T ) � maxx∈T h(x) − minx∈T h(x), and for any l ∈ N, we
define

Tl � {T ∈ T : �(T ) � l}

Lemma 8 For any l ∈ N, we have supT ∈Tl

μ(T ∗)
ν(T )

< +∞.

Proof We will prove the finiteness by induction over l ∈ N. First, note that T0 is the
set of singletons, and so Lemma 7 implies that supT ∈T0

μ(T ∗)
ν(T )

� 1
1−δ

. Next, assume
that the supremum is finite for some l ∈ N and let us show that it is also finite for
l + 1.

Consider T ∈ Tl+1, with �(T ) = l + 1; in particular, T is not a singleton.
Decompose T as {m(T )} � ⊔y∈I Ty2m(T ) and recall the relation (22). Since T ∗ =⊔

y∈I T ∗
y2m(T )

, it follows that

μ(T ∗)
ν(T )

=
∑

y∈I
μ(T ∗

y2m(T ) )

(
1

ν({m(T )}) + 1∑
y∈I ν(Ty2m(T ) )

)

=
∑

y∈Iμ(T ∗
y2m(T )

)

ν({m(T )}) +
∑

y∈Iμ(T ∗
y2m(T )

)
∑

y∈I ν(Ty2m(T ) )

�
μ(�y∈IT ∗

y2m(T )
)

μ(m(T ))
+ sup

{
μ(T ∗

y2m(T )
)

ν(Ty2m(T ) )
: y ∈ I

}
. (26)

Consider the first term on the right. Given y ∈ I, the smallest possible element of
T ∗
y2m(T )

is y2m(T ), and we have for any x ∈ T ∗
y2m(T )

,

p(x) � p(y2m(T )) = m(T ).
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Thus we have the equivalent of (24):

⊔

y∈I
T ∗
y2m(T ) ⊂ {y ∈ N+ : y � 2m(T )}, ∀ x ∈

⊔

y∈I
T ∗
y2m(T ) , p(x) � m(T ). (27)

Following the computation (25), we get

μ

⎛

⎝
⊔

y∈I
T ∗
y2m(T )

⎞

⎠ <
1

1 − δ
Q(m(T ))Q(2m(T )),

where the inequality is strict, because in (27) we cannot have equality for all x ∈⊔
y∈I T ∗

y2m(T )
. It follows that

∑
y∈Iμ(T ∗

y2m(T )
)

μ(m(T ))
<

1

1 − δ

Q(m(T ))Q(2m(T ))

Q(m(T ))Q(p(m(T )))
= b(m(T ))

1 − δ
� C

1 − δ
(28)

where C is the constant introduced in Lemma 6. Since for any y ∈ I, we have
Ty2m(T ) ∈ Tl , we deduce the desired result from the induction hypothesis. ��
We are now ready to prove Proposition 7.

Proof (Of Proposition 7) Fix some T ∈ S, we are going to show that
μ(T ∗)/ν(T ) � 1 + C/(1 − δ), where C is the constant introduced in Lemma 6.
Due to Lemma 7, this bound is clear if T is a singleton. When T is not the singleton
{m(T )}, decompose T as {m(T )} � ⊔y∈I Ty2m(T ) and let us come back to (26).
Denote z1 � m(T ) and

ε �
b(z1)

1 − δ
−
∑

y∈Iμ(T ∗
y2m(T )

)

μ(m(T ))

which is positive according to (28). Coming back to (26), we have shown

μ(T ∗)
ν(T )

� b(z1)

1 − δ
+ μ(T ∗

z2
)

ν(Tz2)

where z2 ∈ {y2m(T ) : y ∈ I} is such that

sup

{
μ(T ∗

y2m(T )
)

ν(Ty2m(T ) )
: y ∈ I

}
�

μ(T ∗
z2
)

ν(Tz2)
+ ε.

To get the existence of z2, we used that the supremum is finite, as ensured by
Lemma 8.
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By iterating this procedure, define a finite path from 0 in the direction to infinity
z � (zn)n∈�0,N�, such that for any n ∈ �1, N − 1�,

μ(T ∗
zn
)

ν(Tzn)
� b(zn)

1 − δ
+ μ(T ∗

zn+1
)

ν(Tzn+1)

and TzN is a singleton. We have N � max{h(x) : x ∈ T }. We deduce that

μ(T ∗)
ν(T )

� B(z)

1 − δ
+ μ(T ∗

zN
)

ν(TzN )
� C + 1

1 − δ
,

as desired. ��
To get an explicit bound in terms of δ, it remains to investigate the quantity C.

Lemma 9 We have

C �
{

2 if δ ∈ (0, 1/
√

2],
1 +

⌈
log2 log2

(
2

log2(1/δ)

)⌉
if δ ∈ (1/

√
2, 1).

Proof Consider l0 � min(l ∈ N+ : δ22l−l � 1/2). Elementary computations show
that

∀ l � 1, 22l+1 − l − 1 � 2(22l − l),

so we get

∑

l�l0

δ22l−l �
∑

n�0

1

22n �
∑

n�1

1

2n
= 1.

Since we have for any l ∈ N, 22l − l � 0, we deduce

C � 1 +
∑

l∈�0,l0−1�

δ22l−l � 1 + l0.

It is not difficult to check that for any l � 1, 22l − l � 1
2 22l , so that

l0 = min{l ∈ N+ : 22l − l � 1/ log2(1/δ)} � min{l ∈ N+ : 22l � 2/ log2(1/δ)}
= 1 ∨ 5log2 log2(2/ log2(1/δ))6.
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The announced result follows from the fact

log2 log2(2/ log2(1/δ)) � 1 ⇔ δ � 1√
2
.

��
The following observations show that Q needs to be at least decaying exponen-

tially for the Hardy inequality approach to work.

Remark 2

(a) In view of the expression of π , it is natural to try to replace (20) by

∀ x ∈ N+, μ(x) � Zπ(x) = Q(x)Q(N(x)).

But then in Lemma 7, where we want the ratios μ(T ∗)/ν(T ) to be bounded
above for singletons T , we end up with the fact that

Q(N(m(T )))

Q(p(m(T )))
= μ(T )

ν(T )
� μ(T ∗)

ν(T )

must be bounded above for singletons T . Namely an extension of (21) must
hold: there exists a constant c > 0 such that

∀ x ∈ N+, Q(N(x)) � cQ(p(x)). (29)

Writing x = y2p, with y ∈ I and p ∈ N, we must have Q(N(y2p)) � cQ(p).
Take y = 1 + 2 + 4 + · · · + 2l , then we get that p,p + 1, . . . , p + l all belong
to Q(N(y2p)), so that Q({p,p + 1, . . . , p + l}) � cQ(p), and letting l go to
infinity, it follows that Q(�p,∞�) � cQ(p), namely, Q has exponential tails.

(b) Other subtrees of the graph generated by K could have been considered. It
amounts to choose the parent of any x ∈ N+. But among all possible choices of
such a neighbor, the one with most weight is p(x), at least if Q is decreasing.
In view of the requirement (29), it looks like the best possible choice.

(c) If one is only interested in Proposition 7 with μ defined by (20), then many
more probability measures Q can be considered, in particular any polynomial
probability of the form Q(x) � 1

ζ(l)(x+1)l
, for any x ∈ N, where ζ is the

Riemann function and l > 1.
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Appendix 1: Dirichlet–Cheeger Inequalities

We begin by showing the Dirichlet–Cheeger inequality that we have been using in
the previous sections. It is a direct extension (even simplification) of the proof of
the Cheeger inequality given in Saloff-Coste [23]. We end this appendix by proving
that it is in general not possible to compare linearly the Dirichlet–Cheeger constant
of an absorbed Markov chain with the largest Dirichlet–Cheeger constant induced
on a spanning subtree.

Let us work in continuous time. ConsiderL a sub-Markovian generator on a finite
set V . Namely, L � (L(x, y))x,y∈V , whose off-diagonal entries are non-negative
and whose row sums are non-positive. Assume that L is irreducible and reversible
with respect to a probability π on V .

Let λ(L) be the smallest eigenvalue of −L (often called the Dirichlet eigenvalue).
The variational formula for eigenvalues shows that

λ(L) = min
f∈RV \{0}

−π[fL[f ]]
π[f 2] . (30)

The Dirichlet–Cheeger constant ι(L) is defined similarly, except that only indicator
functions are considered in the minimum:

ι(L) = min
A⊂V,A�=∅

−π[1AL[1A]]
π[A] . (31)

Here is the Dirichlet–Cheeger inequality:

Theorem 5 Assuming L �= 0, we have

ι(L)2

2�(L)
� λ(L) � ι(L)

where �(L) � max{|L(x, x)| : x ∈ V } > 0.

When L is Markovian, the above inequalities are trivial and reduce to ι(L) =
λ(L) = 0. Indeed, it is sufficient to consider f = 1 and A = V respectively in
the r.h.s. of (30) and (31). Thus there is no harm in supposing furthermore that L
is strictly sub-Markovian: at least one of the row sums is negative. To bring this
situation back to a Markovian setting, it is usual to extend V into V � V � {0}
where 0 �∈ V is a new point. Then one introduces the extended Markov generator L
on V via

∀ x, y ∈ V , L(x, y) �

⎧
⎨

⎩

L(x, y) if x, y ∈ V,

−∑
z∈V L(x, z) if y = 0,

0 otherwise.
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Note that the point 0 is absorbing for the Markov processes associated to L.
It is convenient to give another expression for ι(L). Consider the set of edges

E � {{x, y} : x �= y ∈ V }. We define a measure μ on E:

∀ e � {x, y} ∈ E, μ(e) �

⎧
⎨

⎩

π(x)L(x, y) if x, y ∈ V,

π(x)L(x, 0) if y = 0,
π(y)L(y, 0) if x = 0.

(Note that the reversibility assumption was used to ensure that the first line is well-
defined.) Extend any f ∈ R

V into the function f on V by making it vanish at 0 and
define

∀ e � {x, y} ∈ E, |df |(e) � |f (y)− f (x)|.

With these definitions we can check that

∀ f ∈ R
V , −π[fL[f ]] =

∑

e∈E
|df |2(e)μ(e).

These notations enable to see (31) as a L1 version of (30):

Proposition 8 We have

ι(L) = min
f∈RV \{0}

∑
e∈E |df |(e)μ(e)

π[|f |] .

Proof Restricting the minimum in the r.h.s. to indicator functions, we recover the
r.h.s. of (31). It is thus sufficient to show that for any given f ∈ R

V \ {0},
∑

e∈E |df |(e)μ(e)
π[|f |] � ι(L). (32)

Note that |df |(e) � |d|f ||(e) for any e ∈ E, so without lost of generality, we can
assume f � 0. For any t � 0, consider the set Ft and its indicator function given
by

Ft � {f > t} = {f > t} and ft � 1Ft .

Note that

∀ x ∈ V, f (x) =
∫ +∞

0
ft (x) dt,
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so that by integration,

π[f ] =
∫ +∞

0
π[Ft ] dt.

Furthermore, we have

∑

e∈E
|df |(e)μ(e) =

∑

e�{x,y} : f (y)>f (x)
(f (y)− f (x))μ(e) =

∑

e�{x,y} : f (y)>f (x)

∫ f (y)

f (x)

μ(e) dt

=
∫ +∞

0

∑

e�{x,y} : f (y)>t�f (x)

μ(e) dt =
∫ +∞

0
μ(∂Ft) dt,

where for any A ⊂ V , we define

∂A � {{x, y} ∈ E : x ∈ A and y �∈ A}.

Note that for any such A, we have μ(∂A) = −π[1AL[1A]], so that

∑

e∈E
|df |(e)μ(e) = −

∫ +∞

0
π[ftL[ft ]] dt � ι(L)

∫ +∞

0
π[Ft ] dt = ι(L)π[f ],

showing (32). ��

Proof (Of Theorem 5) Given g ∈ R
V , let f = g2. By Proposition 8, we compute

ι(L)π[f ] �
∑

e∈E
|df |(e)μ(e) =

∑

e�{x,y}∈E
|g2(y)− g2(x)|μ(e)

=
∑

e�{x,y}∈E
|g(y)− g(x)||g(y)+ g(x)|μ(e)

�
√ ∑

e�{x,y}∈E
(g(y)− g(x))2μ(e)

√ ∑

e�{x,y}∈E
(g(y)+ g(x))2μ(e)

�
√−π[gL[g]]

√
2

∑

e�{x,y}∈E
(g2(y)+ g2(x))μ(e)

= √−π[gL[g]]
√

4
∑

e�{x,y}∈E
g2(x)μ(e)

= √−π[gL[g]]
√

2
∑

x∈V
g2(x)π(x)

∑

y∈V\{x}
L(x, y)
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= √−π[gL[g]]
√

2
∑

x∈V
g2(x)π(x)|L(x, x)|

�
√

2�(L)
√−π[gL[g]]

√
π[g2] = √

2�(L)
√−π[gL[g]]√π[f ].

Thus, we have

ι(L)2

2�(L)
π[g2] � −π[gL[g]],

which gives the desired lower bound for λ(L). The upper bound is immediate. ��
The unoriented graph associated to L is G � (V ,EL) where EL � {e ∈ E :

μ(e) > 0}. Consider T, the set of all subtrees of G, and for any T ∈ T, consider the
sub-Markovian generator LT on V associated to T via

LT (x, y) �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

L(x, y) if {x, y} ∈ E(T ),

−∑
z∈V \{x} LT (x, z) if x = y and {x, 0} �∈ E(T ),

−∑
z∈V \{x} LT (x, z)− L(x, 0) if x = y and {x, 0} ∈ E(T ),

0 otherwise,

where x, y ∈ V and E(T ) is the set of (unoriented) edges of T .
Note that LT is also reversible with respect to π (it is irreducible if and only if

0 belongs to a unique edge of E(T )). Denote μT the corresponding measure on E.
It is clear that μT � μ, so we get ι(LT ) � ι(L). In the spirit of Benjamini and
Schramm [2], we may wonder if conversely, ι(L) could be bounded above in terms
of maxT ∈T ι(LT ). A linear comparison is not possible:

Proposition 9 It does not exist a universal constant χ > 0 such that for any L as
above, χι(L) � maxT ∈T ι(LT ).

Proof Let us construct a family (L(n))n∈N+ of sub-Markovian generators such that

lim
n→∞

maxT ∈T ι(L(n)
T )

ι(L(n))
= 0 (33)
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For any n ∈ N+, the state space V (n) of L(n) is �n� × {0, 1} (more generally, all
notions associated to L(n) will marked by the exponent (n)). Denote V (n)

0 � �n� ×
{0} and V (n)

1 � �n� × {1}. We take

L(n)(x, y) �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ε if x ∈ V
(n)
i , y ∈ V

(n)
1−i with i ∈ {0, 1},

nε + 1 if x = y ∈ V
(n)
0 ,

nε if x = y ∈ V
(n)
1 ,

0 otherwise,

where x, y ∈ V (n), and ε > 0, that will depend on n, is such that nε < 1/2.
Recall that 0 is the cemetery point added to V (n), we have

∀ x ∈ V (n), L
(n)
(x, 0) =

{
1 if x ∈ V

(n)
0 ,

0 if x ∈ V
(n)
1 .

Note that π(n) is the uniform probability on V (n). Let us show that

ι(L(n)) = nε. (34)

Consider any ∅ �= A ⊂ V (n), and decompose A = A0 � A1, with A0 � A ∩ V
(n)
0

and A1 � A∩V
(n)
1 . Denote a0 � |A0| and a1 � |A1|. We have that ∂A is given by

{{x, y} : x ∈ A0, y ∈ V
(n)
1 \ A1}{{x, y} : x ∈ V

(n)
0 \ A0, y ∈ A1} � {{x, 0} : x ∈ A0},

and thus μ(n)(∂A) = 1
2n (ε(a0(n − a1)+ a1(n − a0)) + a0). It follows that

μ(n)(∂A)

π(n)(A)
= nε + a0(1 − 2εa1)

a0 + a1
.

Taking into account that 1 − 2εa1 > 0, the r.h.s. is minimized with respect to a0 ∈
�0, n� when a0 = 0 and we then get (independently of a1), μ(n)(∂A)/π(n)(A) = nε.
We deduce (34).

Consider any T ∈ T
(n) and let us check that

ι(L
(n)
T ) � ε. (35)

Observe there exists x ∈ V
(n)
1 such that there is a unique y ∈ V

(n)
0 with {x, y} being

an edge of T . Indeed, put on the edges of T the orientation toward the root 0. Thus
from any vertex x ∈ V

(n)
1 there is a unique exiting edge (but it is possible there are

several incoming edges). Necessarily, there is a vertex in V (n)
0 whose edge exits to 0.

So there are at most n− 1 vertices from V
(n)
0 whose exit edge points toward V

(n)
1 . In

particular, there is at least one vertex from V
(n)
1 which is not pointed out by a vertex
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from V
(n)
0 . We can take x to be this vertex from V

(n)
1 and y ∈ V

(n)
0 is the vertex

pointed out by the oriented edge exiting from x.
Considering the singleton {x}, we get

μ
(n)
T (∂{x}) = μT ({x, y}) = ε

2n
and π(n)(x) = 1

2n
.

implying (35) (a little more work would prove that an equality holds there). As a
consequence, we see that maxT∈T(n) ι(L

(n)
T ) � ε. Taking for instance ε � 1/(4n) to

fulfill the condition nε < 1/2, we obtain
max

T ∈T(n) ι(L
(n)
T )

ι(L(n))
� 1

n
, and (33) follows. ��

Appendix 2: Hardy’s Inequalities

Our goal here is to extend the validity of Hardy’s inequalities on finite trees to
general denumerable trees, without assumption of local finiteness. We begin by
recalling the Hardy’s inequalities on finite trees. Consider T = (V ,E, 0) a finite
tree rooted in 0, whose vertex and (undirected) edge sets are V and E. Denote
V � V \ {0}, for each x ∈ V , the parent p(x) of x is the neighbor of x in the
direction of 0. The other neighbors of x are called the children of x and their set is
written C(x). For x = 0, by convention C(0) is the set of neighbors of 0. Let be
given two positive measures μ, ν defined on V . Consider c(μ, ν) the best constant
c � 0 in the inequality

∀ f ∈ R
V , μ[f 2] � c

∑

x∈V
(f (p(x))− f (x))2ν(x) (36)

where f was extended to 0 via f (0) � 0.
According to [21] (see also Evans, Harris and Pick [10]), c(μ, ν) can be

estimated up to a factor 16 via Hardy’s inequalities for trees, see (39) below. To
describe them we need several notations.

Let T the set of subsets T of V satisfying the following conditions

• T is non-empty and connected (in T),
• T does not contain 0,
• if x ∈ T has a child in T , then all children of x belong to T .

Note that any T ∈ T admits a closest element to 0, call it m(T ), we have m(T ) �=
0. When T is not reduced to the singleton {m(T )}, the connected components of
T \ {m(T )} are indexed by the set of the children of m(T ), namely C(m(T )). For
y ∈ C(m(T )), denote by Ty the connected component of T \ {m(T )} containing y.
Note that Ty ∈ T.

We extend ν as a functional on T, via the iteration
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• when T is the singleton {m(T )}, we take ν(T ) � ν(m(T )),
• when T is not a singleton, decompose T as {m(T )} � ⊔y∈C(m(T )) Ty , then ν

satisfies

1

ν(T )
= 1

ν(m(T ))
+ 1∑

y∈C(m(T )) ν(Ty)
. (37)

For x ∈ V , let Sx be the set of vertices y ∈ V whose path to 0 pass through x. For
any T ∈ T we associate the subset

T ∗ � (Sm(T ) \ T ) � L(T )

where L(T ) is the set of leaves of T , namely the x ∈ T having no children in T .
Equivalently,T ∗ is the set of all descendants of the leaves of T , themselves included.

Consider S ⊂ T, the set of T ∈ T which are such that m(T ) is a child of 0.
Finally, define

b(μ, ν) � max
T ∈S

μ(T ∗)
ν(T )

. (38)

We are interested in this quantity because of the Hardy inequality:

b(μ, ν) � c(μ, ν) ≤ 16 b(μ, ν). (39)

Our goal here is to extend this inequality to the situation where V is denumerable
and where μ and ν are two positive measures on V , with

∑
x∈V μ(x) < +∞.

Remark 3 Without lost of generality, we can assume 0 has only one child, because
what happens on different Sx and Sy , where both x and y are children of 0, can be
treated separately.

More precisely, while V is now (denumerable) infinite, we first assume that the
height of T � (V ,E, 0) is finite (implying that T cannot be locally finite). Recall
that the height h(x) of a vertex x ∈ V is the smallest number of edges linking x to
0. The assumption that supx∈V h(x) < +∞ has the advantage that the iteration (37)
enables us to compute ν on T, starting from the highest vertices from an element of
T. Then b(μ, ν) is defined exactly as in (38), except the maximum has to be replaced
by a supremum. Extend c(μ, ν) as the minimal constant c � 0 such that (36) is
satisfied, with the possibility that c(μ, ν) = +∞ when there is no such c. Note that
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in (36), the space R
V can be reduced and replaced by B(V ), the space of bounded

mappings on V :

Lemma 10 We have

c(μ, ν) = sup
f∈B(V )\{0}

μ[f 2]∑
x∈V (f (p(x))− f (x))2ν(x)

.

Proof Denote c̃(μ, ν) the above r.h.s. A priori we have c(μ, ν) � c̃(μ, ν). To prove
the reverse bound, consider any f ∈ R

V and consider for M > 0, fM � (f ∧M)∨
(−M). Note that

∑

x∈V
(fM(p(x)) − fM(x))2ν(x) �

∑

x∈V
(f (p(x)) − f (x))2ν(x).

(This a general property of Dirichlet forms and comes from the 1-Lipschitzianity of
the mapping R ' r �→ (r ∧M) ∨ (−M).) Since fM ∈ B(V ), we have

μ[f 2
M ] � c̃(μ, ν)

∑

x∈V
(fM(p(x))− fM(x))2ν(x)

� c̃(μ, ν)
∑

x∈V
(f (p(x)) − f (x))2ν(x).

Letting M go to infinity, we get at the limit by monotonous convergence

μ[f 2] � c̃(μ, ν)
∑

x∈V
(f (p(x))− f (x))2ν(x).

Since this is true for all f ∈ R
V , we deduce that c(μ, ν) � c̃(μ, ν). ��

Consider (xn)n∈N+ an exhaustive sequence of V , with x0 = 0 and such that for
any n ∈ N+, V n � {x0, x1, . . . , xn} is connected. We denote Tn the tree rooted on
0 induced by T on V n and as above, Vn � V n \{0} = {x1, . . . , xn}. For any n ∈ N+
and x ∈ Vn, introduce the set

Rn(x) � {x}
⊔

y∈C(x)\Vn
Sy.

In words, this is the set of elements of V whose path to 0 first enters Vn at x.
From now on, we assume that 0 has only one child, taking into account Remark 3.

It follows that

V =
⊔

x∈Vn
Rn(x). (40)
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Let μn and νn be the measures defined on Vn via

∀ x ∈ Vn,

{
μn(x) � μ(Rn(x)),

νn(x) � ν(x).

The advantage of the μn and νn is that they brought us back to the finite situation
while enabling to approximate c(μ, ν):

Proposition 10 We have limn→∞ c(μn, νn) = c(μ, ν).

Proof We first check that the limit exists. For n ∈ N+, consider the sigma-field Fn

generated by the partition (40). To each Fn-measurable function f , associate the
function fn defined on Vn by

∀ x ∈ Vn, fn(x) � f (x).

This function determines f , since for any x ∈ Vn and any y ∈ Rn(x), f (y) = fn(x).
Furthermore, we have:

μ[f 2] = μn[f 2
n ]

∑

x∈V
(f (p(x))− f (x))2ν(x) =

∑

x∈Vn
(fn(p(x)) − fn(x))

2νn(x).

It follows that

c(μn, νn) = sup
f∈B(Fn)\{0}

μ[f 2]∑
x∈V (f (p(x))− f (x))2ν(x)

,

where B(Fn) is the set of Fn-measurable functions, which are necessarily bounded,
i.e., belong to B(V ). Since for any n ∈ N+ we have Fn ⊂ Fn+1, we get that the
sequence (c(μn, νn))n∈N+ is non-decreasing and, taking into account Lemma 10,
that

lim
n→∞ c(μn, νn) � c(μ, ν).

To get the reverse bound, first assume that c(μ, ν) < +∞. For given ε > 0, find a
function f ∈ B(V ) with

μ[f 2]∑
x∈V (f (p(x))− f (x))2ν(x)

� c(μ, ν)− ε.

Consider π the normalization of μ into a probability measure and let fn be the
conditional expectation of f with respect to π and to the sigma-field Fn. Note
that the fn are uniformly bounded by ‖f ‖∞. Thus by the bounded martingale
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convergence theorem and since π gives a positive weight to any point of V , we
have

∀ x ∈ V, lim
n→∞ fn(x) = f (x).

From Fatou’s lemma, we deduce

lim inf
n→∞

∑

x∈Vn
(fn(p(x)) − fn(x))

2νn(x) = lim inf
n→∞

∑

x∈Vn
(fn(p(x)) − fn(x))

2ν(x)

�
∑

x∈V
lim inf
n→∞ [(fn(p(x)) − fn(x))

21Vn(x)] ν(x) =
∑

x∈V
(f (p(x))− f (x))2ν(x).

By another application of the bounded martingale convergence theorem, we get

lim
n→∞μn[f 2

n ] = lim
n→∞μ[f 2

n ] = μ[f 2],

so that

lim sup
n→∞

μn[f 2
n ]∑

x∈V (fn(p(x)) − fn(x))2ν(x)
� μ[f 2]∑

x∈V (f (p(x)) − f (x))2ν(x)
.

It follows that limn→∞ c(μn, νn) � c(μ, ν) − ε, and since ε > 0 can be chosen
arbitrary small,

lim
n→∞ c(μn, νn) � c(μ, ν).

It remains to deal with the case where c(μ, ν) = +∞. Then for any M > 0, we can
find a function f ∈ B(V ) with

μ[f 2]∑
x∈V (f (p(x)) − f (x))2ν(x)

� M.

By the above arguments, we end up with limn→∞ c(μn, νn) � M , and since M can
be arbitrary large, limn→∞ c(μn, νn) = +∞ = c(μ, ν). ��
Our next goal is to show the same result holds for b(μ, ν). We need some additional
notations. The integer n ∈ N+ being fixed, denote Tn and Sn the sets T and
S associated to Tn. The functional νn is extended to Tn via the iteration (37)
understood in Tn. To any T ∈ Tn, associate Tn the minimal element of T containing
T . It is obtained in the following way: to any x ∈ T , if x has a child in T , then add
all the children of x in V , and otherwise do not add any other points.
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Lemma 11 We have the comparisons

νn(T ) � ν(Tn) and μn(T
∗) � μ(T ∗

n ),

where T ∗ is understood in Tn (and T ∗
n in T).

Proof The first bound is proven by iteration on the height of T ∈ Tn.

• If this height is zero, then T is a singleton and Tn is the same singleton, so that
νn(T ) = ν(Tn).

• If the height h(T ) of T is at least equal to 1, decompose

T = {mn(T )} �
⊔

y∈Cn(mn(T ))

Tn,y

where mn(·), Cn(·) and Tn,· are the notions corresponding to m(·), C(·) and T· in
Tn.

Note that T and Tn have the same height and decompose

Tn = {m(Tn)} �
⊔

z∈C(m(Tn))
Tn,z.

On the one hand, we have m(Tn) = mn(T ) and Cn(mn(T )) ⊂ C(mn(T )) and on
the other hand, we have for any y ∈ Cn(mn(T )), νn(Ty) � ν((Ty)n) = ν(Tn,y),
due to the iteration assumption and to the fact that the common height of Ty and
(Ty)n is at most equal to h(T ) − 1. The equality (Ty)n = Tn,y is due to the fact
that Tn,y is obtained by the same completion of Ty as the one presented for T just
above the statement of Lemma 11, and thus coincides with (Ty)n. It follows that

1

νn(T )
= 1

νn(mn(T ))
+ 1∑

y∈Cn(mn(T ))
νn(Ty)

= 1

ν(m(Tn))
+ 1∑

y∈Cn(mn(T ))
νn(Ty)

≤ 1

ν(m(Tn))
+ 1∑

y∈Cn(mn(T ))
ν(Tn,y)

� 1

ν(m(Tn))
+ 1∑

y∈C(m(Tn)) ν(Tn,y)
= 1

ν(Tn)
,

establishing the wanted bound νn(T ) � ν(Tn). We now come to the second
bound of the above lemma. By definition, we have

T ∗ = �x∈Ln(T )Sn,y,

where Ln(T ) is the set of leaves of T in Tn and Sn,y is the subtree rooted in y in
Tn.
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Note that Ln(T ) ⊂ L(Tn) and by definition of μn, we have

∀ y ∈ Ln(T ), μn(Sn,y) = μ(Sy).

It follows that

μn(T
∗) =

∑

x∈Ln(T )

μn(Sn,y) =
∑

x∈Ln(T )

μ(Sy) �
∑

x∈L(Tn)
μ(Sy) = μ(T ∗

n ).

��
Let S̃n be the image of Sn under the mapping Sn ' T �→ Tn ∈ S. Since Sn ' T �→
Tn ∈ S̃n is a bijection, we get from Lemma 11,

b(μn, νn) � max
T ∈Sn

μn(T
∗)

νn(T )
� max

Tn∈Sn
μ(T ∗

n )

ν(Tn)
� b(μ, ν),

so that

lim sup
n→∞

b(μn, νn) � b(μ, ν). (41)

Let us show more precisely:

Proposition 11 We have limn→∞ b(μn, νn) = b(μ, ν).

Proof According to (41), it remains to show that

lim inf
n→∞ b(μn, νn) � b(μ, ν). (42)

Consider T ∈ S such that the ration μ(T ∗)/ν(T ) serves to approximate b(μ, ν),
namely up to an arbitrary small ε > 0 if b(μ, ν) < +∞ or is an arbitrary large
quantity if b(μ, ν) = +∞. Define

∀ n ∈ N+, T (n) � T ∩ Vn.

Arguing as at the end of the proof of Proposition 10, we will deduce (42) from

lim
n→∞

μn((T
(n))∗)

νn(T (n))
= μ(T ∗)

ν(T )
,

where (T (n))∗ is understood in Tn. This convergence will be the consequence of

lim
n→∞μn((T

(n))∗) = μ(T ∗), (43)

lim
n→∞ νn(T

(n)) = ν(T ). (44)
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For (43), note that

μ(T ∗) =
∑

x∈L(T )
μ(Sy),

and as we have seen at the end of the proof of Lemma 11,

μ(T ∗) =
∑

x∈Ln(T (n))

μ(Sy).

Thus (43) follows by dominated convergence (since μ(V ) < +∞), from

∀ x ∈ T , lim
n→∞1Ln(T (n))(x) = 1L(T )(x).

To show the latter convergences, consider two cases:

• If x ∈ L(T ), then we will have x ∈ Ln(T
(n)) as soon as x ∈ Vn.

• If x ∈ T \ L(T ), then we will have x �∈ Ln(T
(n)) as soon as Vn contains one of

the children of x in T .

We now come to (44), and more generally let us prove by iteration over their
height, that for any T̃ ∈ T and T̃ ⊂ T , we have

lim
n→∞ ↑ νn(T̃ ∩ Vn) = ν(T̃ ), (45)

i.e., the limit is non-decreasing. Indeed, if T̃ has height 0, it is a singleton {x}, we
have νn(T̃ ∩ Vn) = ν(T̃ ) as soon as x belongs to Vn, insuring (45).

Assume that T̃ has height a h � 1 and that (45) holds for any T̃ whose height is
at most equal to h− 1. Write as usual

1

ν(T̃ )
= 1

ν(m(T̃ ))
+ 1
∑

y∈C(m(T̃ )) ν(T̃y)
. (46)

Assume that n is large enough so that C(m(T̃ )) ∩ Vn �= ∅ and in particular m(T̃ ) ∈
Vn and mn(T̃ ∩ Vn) = m(T̃ ). Thus we also have

1

νn(T̃ ∩ Vn)
= 1

νn(mn(T̃ ∩ Vn))
+ 1
∑

y∈Cn(mn(T̃∩Vn)) νn((T̃ ∩ Vn)y)

= 1

ν(m(T̃ ))
+ 1
∑

y∈Cn(m(T̃ ))
νn(T̃y ∩ Vn)

. (47)
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On the one hand, the set Cn(m(T̃ )) is non-decreasing and its limit is C(m(T̃ )), and
on the other hand, due to the induction hypothesis, we have for any y ∈ C(m(T̃ )),

lim
n→∞ ↑ νn(T̃y ∩ Vn) = ν(T̃y).

By monotone convergence, we get

lim
n→∞ ↑

∑

y∈Cn(m(T̃ ))

νn(T̃y ∩ Vn) =
∑

y∈C(m(T̃ ))
ν(T̃y),

which leads to (45), via (46) and (47). This ends the proof of (42). ��
The conjunction of Propositions 10 and 11 leads to the validity of (39), when V is
denumerable with T of finite height.

Let us now remove the assumption of finite height. The arguments are very
similar to the previous one, except that the definition of b(μ, ν) has to be modified
(μ and ν are still positive measures on V , with μ of finite total mass). More
precisely, for any M ∈ N+, consider VM � {x ∈ V : h(x) � M}. Define on
VM the measure νM as the restriction to VM of ν and μM via

∀ x ∈ VM, μM(x) �
{
μ(x) if h(x) < M,

μ(Sx) if h(x) = M.

By definition, we take

b(μ, ν) � lim
M→∞ b(μM, νM).

This limit exists and the convergence is monotone, since he have for any M ∈ N+,
b(μM, νM) = maxT ∈SM

μ(T ∗)
ν(T )

, where SM � {T ∈ S : T ⊂ VM}. Note that a direct
definition of b(μ, ν) via the iteration (37) is not possible: we could not start from
leaves that are singletons.

By definition, c(μ, ν) is the best constant in (36). It also satisfies c(μ, ν) �
limM→∞ c(μM, νM), as can be seen by adapting the proof of Proposition 10. We
conclude that (39) holds by passing at the limit in

∀ M ∈ N+, b(μM, νM) � c(μM, νM) ≤ 16 b(μM, νM).
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1 Introduction

Let e ⊂ C be a compact, not finite set and denote by

‖f ‖e := sup
z∈e

|f (z)|

the supremum norm of a continuous, complex-valued function f on e. A classical
problem in approximation theory is, for every n ≥ 1, to find the unique monic degree
n polynomial, Tn, which minimizes ‖P‖e among all monic degree n polynomials,
P . The resulting sequence is called the Chebyshev polynomials of e.

By the maximum principle, we may assume that e is polynomially convex. This
means that " := (C ∪ {∞}) \ e is connected so that e has no inner boundary.

It is only in the case of e being a (possibly elliptical) disk or a line segment that
explicit formulas for all Tn’s are available. The Chebyshev polynomials of the unit
disk are simply Tn(z) = zn, while the ones for the interval [−1, 1] (or any ellipse
with foci at ±1) are given by

Tn(x) = 2−n+1 cos(nθ),

where x = cos θ .
In addition to this, there are certain sets generated by polynomials (such as

lemniscates and Julia sets) for which a subsequence of Tn can be written in
closed form. For general e, however, the best one can hope for is to determine the
asymptotic behavior of Tn. In this article we seek to present what is known about
the asymptotics of Chebyshev polynomials. Had it not been for Widom’s landmark
paper [49], there probably wouldn’t be much to say.

To get started, we briefly introduce some notions from potential theory (see, e.g.,
[8, 27–29, 33] for more details). Let C(e) denote the logarithmic capacity of e. When
e is non-polar (i.e., C(e) > 0), we denote by dρe the equilibrium measure of e and
by G := Ge the Green’s function of e. These are closely linked by the relation

G(z) = − log
[
C(e)

]+
∫

log |z − x| dρe(x). (1)

For subsets f ⊂ e, we shall also refer to ρe(f) as the harmonic measure of f. The set
e is called regular if G vanishes at all points of e (equivalently, G is continuous on
all of C).

The general results for Chebyshev polynomials are few, but important. Szegő
[40] showed that

‖Tn‖e ≥ C(e)n. (2)

This applies to all compact sets e ⊂ C and is optimal since equality occurs for all
n when e is a disk. When e ⊂ R, Schiefermayr [37] improved upon (2) by showing
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that

‖Tn‖e ≥ 2 C(e)n, n ≥ 1, (3)

which is again optimal (take e to be an interval). Szegő [40], using prior results of
Faber [21] and Fekete [22], also proved the following asymptotic result:

lim
n→∞ ‖Tn‖1/n

e = C(e). (4)

This certainly puts a growth restriction on ‖Tn‖e but is not strong enough to force
‖Tn‖e/C(e)n to be bounded. We shall discuss which extra assumptions on e may
imply this in Sects. 2 and 3.

The polynomials themselves also obey nth root asymptotics. For a non-polar
compact set e ⊂ C, we have that

|Tn(z)|1/n → C(e) exp
[
G(z)

]
(5)

uniformly on any closed set disjoint from cvh(e), the convex hull of e. This result
is implicitly in Widom [48], where he shows that all zeros of Tn must lie in cvh(e)
before proceeding to the asymptotics. See also Ullman [46] and Saff–Totik [36,
Chap. III].

“All asymptotic formulas have refinements,” quoting the introduction of [49].
And this is precisely what we aim at, just as Widom did. As (2)–(5) suggest, it is
natural to scale Tn by a factor of C(e)n. We shall study the limiting behavior of the
so-called Widom factors

Wn(e) := ‖Tn‖e/C(e)n. (6)

If this scaled version of the norms does not have a limit, can we then at least
single out the possible limit points? Regarding the polynomials Tn, we aim at strong
asymptotics or what we shall refer to as Szegő–Widom asymptotics.

The first result in this direction goes back to Faber [21]. When e is a closed Jordan
region, there is a Riemann map of " onto the unit disk, D. We uniquely fix this map,
B, by requiring that

B(z) = C(e)

z
+ O(1/z2) (7)

near ∞. Assuming that ∂e is analytic, Faber showed that Wn(e) → 1 and, more
importantly, that

Tn(z)B(z)
n

C(e)n
→ 1 (8)

uniformly for z in a neighborhood of ".
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The picture changes completely when e consists of more than one component.
In his work on Chebyshev polynomials of two intervals, Akhiezer [1, 2] proved that
either Wn(e) is asymptotically periodic or else the set of limit points of Wn(e) fills
up an entire interval. But it was only Widom [49] who lifted the theory to e being
a union of disjoint compact subsets of C and developed a framework to distinguish
between periodicity and almost periodicity.

In replacement of the Riemann map, we introduce (on ") a multivalued analytic
function B := Be which is determined by

|B(z)| = exp
[−G(z)

]
(9)

and (7) near ∞. One can construct this B using the fact that −G is locally the real
part of an analytic function whose exponential (=B) can be continued along any
curve in ". By the monodromy theorem, the continuation is the same for homotopic
curves and, due to (9), going around a closed curve γ can only change B by a phase
factor. Hence there is a character χe of the fundamental group π1(") so that going
around γ changes B by χe([γ ]). More explicitly, if γ winds around a subset f ⊂ e
and around no other points of e, then the multiplicative change of phase of B around
γ is given by

exp
[−2πiρe(f)

]
. (10)

In line with Faber and (8), Widom looked at Tn(z)B(z)n/C(e)n for the “new” B
and noted that its character χn

e only has a limit when χe is trivial (i.e., " is simply
connected). So there is no hope of finding a pointwise limit except when e just
has one component. Widom’s stroke of genius was to find a good candidate for the
asymptotics when e has several components. For every character χ in π1(")

∗ there
exists a so-called Widom minimizer which we shall denote by Fχ . This is the unique
element of H∞(", χ) (i.e., the set of bounded analytic χ-automorphic functions on
") with Fχ(∞) = 1 and for which

‖Fχ‖∞ = inf
{‖h‖∞ : h ∈ H∞(", χ), h(∞) = 1

}
. (11)

Writing Fn as shorthand notation for Fχn , the Widom surmise is the notion that

Tn(z)B(z)
n

C(e)n
− Fn(z) → 0. (12)

When it holds uniformly on compact subsets of the universal cover of ", we say
that e has Szegő–Widom asymptotics.

Widom [49] proved that one has this type of asymptotics when e is a finite union
of disjoint Jordan regions with smooth boundaries and conjectured that this should
also hold for finite gap sets (in R). A main result of [13] was to settle this conjecture.
By streamlining the method of proof, this was then extended to a large class of
infinite gap sets in [14] (see Sect. 2 for further details).
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The framework of characters is also useful when describing the fluctuation of
Wn(e). In [49], Widom proved that

Wn(e)/‖Fn‖∞ → 1 (13)

for finite unions of disjoint Jordan regions and established the counterpart (with 1
replaced by 2 on the right-hand side) for finite gap sets. The behavior of ‖Fn‖∞
very much depends on the character χe. If χn

e = 1 for some n, then the sequence
is periodic (with period at most n) and otherwise it is merely almost periodic. This
is precisely the pattern that Akhiezer discovered for two intervals. We shall discuss
the possible limit points in more detail in Sect. 2.

The paper is organized as follows. In Sect. 2 we discuss bounds and asymptotics
for Chebyshev polynomials of compact subsets of the real line. Then in Sect. 3
we survey similar results for Chebyshev and weighted Chebyshev polynomials of
subsets of the complex plane, including results on the asymptotic distribution of
zeros. Open problems are formulated along the way.

We would be remiss if not mentioning related problems, such as the Ahlfors
problem [19], and similar classes of polynomials or functions, for instance, residual
polynomials [17, 54] and rational Chebyshev functions [20]. But to consider the
subject in more depth, we decided to merely focus on the Chebyshev problem.

2 Real Chebyshev Polynomials

As we shall see, there is a rather complete theory for Chebyshev polynomials of
compact sets e ⊂ R. This is in part due to what is called Chebyshev alternation.
We say that Pn, a real degree n polynomial, has an alternating set in e if there exists
n + 1 points in e, say x0 < x1 < . . . < xn, so that

Pn(xj ) = (−1)n−j‖Pn‖e. (14)

The alternation theorem gives the following characterization of the nth Chebyshev
polynomial of e: Tn always has an alternating set in e and, conversely, any monic
degree n polynomial with an alternating set in e must be equal to Tn.

This result, in turn, has consequences for the zeros of Tn. Not only do all of them
lie in cvh(e), but any gap of e (i.e., a bounded component of R \ e) contains at most
one zero of Tn. The alternating set need not be unique and usually isn’t. However, it
always contains the endpoints of cvh(e). See, e.g., [13] for proofs and more details.

We now turn the attention to the Widom factors which were introduced in (6). By
[37] we always have Wn(e) ≥ 2 and, as proven in [15], equality occurs for n = km

(with m ≥ 1) precisely when

e = P−1([−2, 2]) (15)
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for some degree k polynomial, P(z) = czk + lower order terms. In that case, Tkm is
nothing but themth Chebyshev polynomial of [−2, 2] composed with P and divided
by cm. It also follows that equality holds for all n if and only if e is an interval. A
stronger and related result of Totik [42] states that if limn→∞ Wn(e) = 2, then e
must be an interval.

Interestingly, the sets that appear in (15) are not only of interest for the lower
bound; they play a key role in the theory. For e ⊂ R, we introduce the so-called
period-n sets, en, (aka n-regular sets [39]) by

en := T −1
n

([−‖Tn‖e, ‖Tn‖e]
)
. (16)

Clearly, Tn is also the Chebyshev polynomial of en ⊃ e and furthermore we have
that

‖Tn‖e = 2 C(en)n. (17)

Due to alternation we can write any period-n set as

en =
n⋃

j=1

[αj , βj ], (18)

where α1 < β1 ≤ . . . ≤ αn < βn are the solutions of Tn(x) = ±‖Tn‖e. So Tn is
strictly monotone on each of the bands [αj , βj ] and en ⊂ cvh(e). Note that α1 and
βn always belong to e while for j = 1, . . . , n − 1, at least one of βj and αj+1 must
lie in e. Therefore, any gap of e can at most overlap with one of the bands of en.

The period-n sets are well suited for potential theory. For instance, the Green’s
function and equilibrium measure of en are explicitly given by

Gn(z) = 1

n
log

∣∣∣∣
�n(z)

2
+
√(

�n(z)

2

)2

− 1

∣∣∣∣ (19)

and

dρn(x) = 1

πn

|�′
n(x)|√

4 − �n(x)2
dx, x ∈ en, (20)

where �n is defined by

�n(z) := 2Tn(z)/‖Tn‖e. (21)

In particular, each band of en has ρn-measure 1/n. See, e.g., [13] for proofs and
further details.
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Comparing the Green’s functions for e and en at ∞, and letting {Kj } account for
the gaps of e, we see that

log
[
C(en)/C(e)

] =
∫

en

[
G(x)− Gn(x)

]
dρn(x) ≤ 1

n

∑

j

max
x∈Kj

G(x) (22)

which combined with (17) then yields

‖Tn‖e/C(e)n ≤ 2
∑

j

max
x∈Kj

G(x). (23)

This observation leads to an upper bound on Wn(e) for a large class of compacts
sets e ⊂ R. When e is regular (for potential theory), the Green’s function vanishes
at all endpoints of the Kj ’s and since G is also concave on the gaps, it attains its
maximum on Kj at the unique critical point, cj , in that gap. A regular compact set
e ⊂ R (or C) is called a Parreau–Widom set (in short, PW) if

PW(e) :=
∑

j

G(cj ) < ∞, (24)

where the sum is over all points cj ∈ R \ e for which ∇G(cj ) = 0. Such sets are
known to have positive Lebesgue measure (see, e.g., [12] for details). One of the
main results of [13] that we have now deduced is the following:

Theorem 2.1 If e ⊂ R is a PW set, then the Widom factors are bounded. Explicitly,
we have that

‖Tn‖e ≤ 2 exp
[
PW(e)

]
C(e)n. (25)

Remarks

(i) Sets which obey (24) were introduced by Parreau [32] in the context of
Riemann surfaces. They later appeared in Widom’s work on multi-valued
analytic functions [50, 51] and the name was coined by Hasumi in his
monograph [25].

(ii) Examples of PW sets include finite gap sets but also sets that are homogeneous
in the sense of Carleson [11], e.g., fat Cantor sets.

(iii) Upper bounds of the form ‖Tn‖e ≤ K · C(e)n are also referred to as Totik–
Widom bounds. Here K > 0 is a constant that does not depend of n.

As alluded to in the introduction, the Widom factors are not always bounded.
It was proven in [9] that they are unbounded when e is the Julia set of (z − λ)2

and λ > 2. Interestingly, W2n (e) is bounded (in fact, constant) in that case, while
W2n−1(e) → ∞. There are more elaborate examples of very thin Cantor-type sets
for which Wn(e) grows subexponentially of any order, see Goncharov–Hatinoǧlu
[24] for details. But it is not known if the Widom factors of, e.g., the middle third
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Cantor set are bounded. The best result in this direction, due to Andrievskii [6],
states that when e ⊂ R is uniformly perfect there exists a constant c > 0 such that
Wn(e) = O(nc). We pose the following question:

Open Problem 2.2 Does there exist a Lebesgue measure zero set or merely a non-
PW set e ⊂ R for which the Widom factors are bounded?

It remains to consider the fluctuation and possible limit points of Wn(e). We shall
do so in conjunction with the asymptotics of the polynomials.

Let us start by explaining, following [13, 14], how one can establish Szegő–
Widom asymptotics. Since every band of en has ρn-measure 1/n, the nth power of
Bn := Ben is single-valued. In fact,

Bn(z)
±n = �n(z)

2
∓
√(

�n(z)

2

)2

− 1 (26)

with �n as in (21). It follows that

2Tn(z)

‖Tn‖e = Bn(z)
n + Bn(z)

−n (27)

and this is the key formula we need. As a side remark we note that when e =
[−1, 1], (27) corresponds to the familiar formula

Tn(z) = 1

2n

((
z −

√
z2 − 1

)n +
(
z +

√
z2 − 1

)n)
. (28)

The idea is now to recast (27) in the form

Tn(z)B(z)
n

C(e)n
=
(

1 + Bn(z)
2n
) Mn(z)

Mn(∞)
, (29)

where

Mn(z) = B(z)n/Bn(z)
n. (30)

Since supn, z∈K |Bn(z)| < 1 on any compact subset K of the universal cover of ",
the task is reduced to proving that

Fn(z)− Mn(z)/Mn(∞) → 0 (31)

and this can be done by controlling the limit points of Mn.
In order to go beyond finite gap sets, some issues have to be sorted out. First of

all, for which infinite gap sets do the Widom minimizers at all exist and are they
unique? Secondly, how are the limit points of Mn related to the Widom minimizers
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and do these minimizers depend continuously on the character so that one can pass
to the limit along convergent subsequences?

The answer to both of the above questions are rooted in Widom’s work. In [51],
he proved that (24) holds if and only if there is a nonzero element in H∞(", χ)

for every χ ∈ π1(")
∗. Hence, by compactness, Widom minimizers exist for all PW

sets. Uniqueness requires a separate argument for which we refer the reader to [14]
and [47]. Note also that Theorem 2.1 implies |Mn| ≤ 1 in the PW regime. So limit
points do exist in that setting by Montel’s theorem.

To proceed with the analysis, it is instructive to also consider the problem dual
to (11). The function Qχ ∈ H∞(", χ) which satisfies

Qχ(∞) = sup
{
g(∞) : g ∈ H∞(", χ), ‖g‖∞ = 1, g(∞) > 0

}
(32)

is called the dual Widom maximizer. Clearly, we have

Qχ = Fχ/‖Fχ‖∞, Fχ = Qχ/Qχ(∞), Qχ(∞) = 1/‖Fχ‖∞ (33)

and therefore the two problems either both or neither have unique solutions. By
controlling the zeros of Tn in gaps of e and using the fact that

|Mn(z)| = exp

[
−n

∫

∪jKj

G(x, z) dρn(x)

]
, (34)

one can prove that the limit points of Mn are dual Widom maximizers. More
precisely, the approach of [14] reveals that limit points of Mn are Blaschke products
with at most one zero per gap of e and such character automorphic products are
indeed dual Widom maximizers.

As for the final issue, Widom [50] noted that “It is natural to ask (and important to
know) whether Qχ is continuous as a function of χ on the compact group π1(")

∗.”
He pointed out that this can easily fail to hold (e.g., if e has isolated points) but was
not able to characterize those sets for which we have continuity. Years later, this was
settled by Hayashi and Hasumi (see [25, 26]). Continuity in χ is equivalent to having
a so-called direct Cauchy theorem (DCT) on ". There seems to be no obvious
geometric interpretation of this DCT property; while it may fail for a general PW
set, it always holds when e is homogeneous (see, e.g., [55] for further details).

We should point out that DCT is responsible for the almost periodic behavior of
the Widom minimizers. That is,

n �→ ‖Fn‖∞ is an almost periodic function (35)

and

n �→ Fn(z) is almost periodic uniformly for z in compact

subsets of the universal cover of ". (36)
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Recall namely that n �→ xn is almost periodic precisely when {xn} is the orbit of a
continuous function on a torus (possibly of infinite dimension). Since the character
group π1(")

∗ is topologically a torus, we are led to (35) and (36).
After this extended discussion, we are now ready to formulate the main result of

[14]:

Theorem 2.3 If e ⊂ R is a PW set and obeys the DCT condition, then the
Chebyshev polynomials of e have strong Szegő–Widom asymptotics. That is, the
Widom surmise (12) and also (35) and (36) hold. Moreover,

lim
n→∞

‖Tn‖e
C(e)n‖Fn‖∞

= 2. (37)

Remarks

(i) The additional word “strong” is used here to include the almost periodicity
of (35) and (36).

(ii) The last statement also follows from (29) by noting that supz∈" |1+Bn(z)
2n| =

2 since there are points x ∈ en with |Bn(x)| = 1.

The above theorem enables us to shed more light on the fluctuation of the
Widom factors. When e ⊂ R is a PW set with DCT, the function n �→ Wn(e) :=
‖Tn‖e/C(e)n is asymptotically almost periodic. The set of limit points may or may
not fill up the entire interval between the lower bound (=2) and the upper bound
from Theorem 2.1. Generically, it will (as explained in [15]; see also below) but
this is not the case when, for instance, e is a period-n set. For in that case we have
χn
e = 1 and the function in (35) becomes periodic.

Following [14], we say that e has a canonical generator if the orbit {χn
e }n∈Z is

dense in π1(")
∗. This holds if and only if for all decompositions e = e1 ∪ . . . ∪ el

into disjoint closed sets and rational numbers {qj }l−1
j=1 (not all zero), we have that

l−1∑

j=1

qjρe(ej ) �= 0 (mod 1). (38)

In particular, a finite gap set has a canonical generator precisely when the harmonic
measures of the bands are rationally independent (except that they sum to 1). One
can show that the property of having a canonical generator is generic (see [14] for
details) and it implies that any number ≥ 2 and ≤ 2 exp

[
PW(e)

]
is a limit point of

Wn(e).
To end this section, we return to the open problem formulated a few pages ago.

It was proven in [14] that if e has a canonical generator and obeys a Totik–Widom
bound (as in Theorem 2.1), then it must be a PW set. This provides some evidence
that the answer could be in the negative. However, there are also results pulling in
the opposite direction. While lim infWn(e) = 2 for any PW set with DCT (as proven
in [17]), it is not always the case that lim sup is equal to 2 exp

[
PW(e)

]
when e is
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a period-n set and n ≥ 2. For instance, one can prove that strict inequality applies
when e is the degenerate period-3 set

[−√
3, 0

] ∪ [√3, 2
]
.

We thus wonder if some cleverly arranged limit of period-n sets could provide an
example of a non-PW set with bounded Widom factors.

3 Complex Chebyshev Polynomials

In this section we consider Chebyshev and weighted Chebyshev polynomials
for compact subsets of the complex plane. In particular, we discuss Widom’s
contribution to the subject as well as several recent refinements.

Throughout the section we will assume that C(e) > 0 and let w be a nonnegative
upper semi-continuous weight function on e (this ensures that w is bounded) which
is nonzero at infinitely many points of e. Under these assumptions, there exists for
each n ≥ 1 a unique weighted Chebyshev polynomial Tn,w := T

(e)
n,w that minimizes

‖wTn,w‖e among monic polynomials of degree n.
In [48], Widom proved that one has root asymptotics analogous to (4) for a

fairly general class of monic extremal polynomials which, in particular, includes
the Lp(w dρe)-extremal polynomials for 0 < p < ∞ and weights w satisfying
w > 0 dρe-a.e. This type of asymptotics for the L1(w dρe)-extremal polynomials,
Pn, combined with (4) and the two-sided estimate

‖Pn‖L1(wdρe)
≤ ‖Tn,w‖L1(wdρe)

≤ ‖wTn,w‖e ≤ ‖wTn‖e ≤ ‖w‖e‖Tn‖e (39)

yields that the weighted Chebyshev polynomials obey the root asymptotics

lim
n→∞ ‖wTn,w‖1/n

e = C(e) (40)

whenever w > 0 dρe-a.e.
As explained below, there is also a lower bound, an asymptotic upper bound, and

strong asymptotics for the weighted Chebyshev polynomials under an additional
assumption on the weight function w, namely the so-called Szegő condition

S(w) := exp

[∫
logw(z) dρe(z)

]
> 0. (41)

A generalization of Szegő’s lower bound (2) to the weighted case was observed
for finite unions of Jordan regions by Widom [49, Sect. 8] and extended to general
non-polar compact sets e ⊂ C in [31]. It relies on (41) and states that

‖wTn,w‖e ≥ S(w)C(e)n. (42)
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In addition, it was shown in [31] that unlike the unweighted case, this lower bound
is sharp even for real sets e (cf. (3)). Moreover, equality in (42) occurs for some n
if and only if there exists a monic polynomial, Pn, of degree n such that Pn(z) = 0
implies G(z) = 0 and w(z)|Pn(z)| = ‖wPn‖e for dρe-a.e. z ∈ e, in which case
Tn,w = Pn.

Next, we turn to upper bounds. A collection of very general bounds for
unweighted Chebyshev polynomials were obtained by Andrievskii [5, 6] and
Andrievskii–Nazarov [7]. See also Totik–Varga [44]. In particular, it was shown
that if e ⊂ C is a finite union of quasiconformal arcs and/or Jordan regions bounded
by quasiconformal curves (aka quasidisks), then a Totik–Widom upper bound

‖Tn‖e ≤ K · C(E)n

holds for some constant K . This result includes a large class of regions with
pathological boundaries, for example, the Koch snowflake. In addition, in the
absence of any smoothness it was shown that for compact sets e with finitely many
components, the Widom factors Wn(e) can grow at most logarithmically in n. Yet,
in this setting no example of unboundedness is known. Numerical evidence points
in the direction of bounded Widom factors, at least in the case of Jordan regions.
But no proof is currently available.

Open Problem 3.1 Does there exist a compact set e ⊂ C with finitely many
components for which the Widom factors are unbounded?

The above mentioned results are qualitative in nature as the involved constants are
large and their dependence on the set e is rather implicit. Going in the other direction
and assuming smoothness of the components of e typically yields more explicit
constants and even precise asymptotics for the Widom factors and the Chebyshev
polynomials.

Suppose now that e ⊂ C is a finite disjoint union of C2+ arcs and/or Jordan
regions with C2+ boundaries. Assume also that the weight function w is supported
on the boundary of e. Under these assumptions, Widom [49, Sect. 11] obtained the
asymptotic upper bound

lim sup
n→∞

‖wTn,w‖e/C(e)n ≤ 2S(w) exp
[
PW(e)

]
, (43)

compare with (25). This asymptotic bound is sharp within the class of real sets (i.e.,
e consisting only of arcs lying on the real line). However, in the case of e consisting
only of regions, Widom [49, Sect. 8] established the improved asymptotic upper
bound

lim sup
n→∞

‖wTn,w‖e/C(e)n ≤ S(w) exp
[
PW(e)

]
. (44)

More remarkably, in that case Widom showed that we have Szegő–Widom asymp-
totics for the weighted Chebyshev polynomials Tn,w and their norms ‖wTn,w‖e (i.e.,
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the weighted analogs of (12) and (13)). The improved asymptotic bound (44) is also
sharp; in fact, by (42), equality is attained when e consists of a single region since
in that case the Green’s function has no critical points and thus PW(e) = 0.

For special subsets of the complex plane, we also have non-asymptotic upper
bounds that parallel the real case. The following two results are taken from [16].

Theorem 3.2 If e ⊂ C is a solid lemniscate, that is,

e = {z ∈ C : |P(z)| ≤ α} (45)

for some polynomial P of degree k ≥ 1 and α > 0, then

‖Tn‖e ≤ K · C(e)n, (46)

where the constant K is given by

K = max
j=1,...,k

Wj (e). (47)

The other special case is motivated by an old result of Faber [21] stating that
the Chebyshev polynomials of an ellipse are the same as the ones for the interval
between the two foci. This in particular leads to explicit values of the Widom factors
for ellipses. By further developing the results of Fischer [23] for two intervals, one
can produce general results for level sets of the Green’s function.

Theorem 3.3 If e0 ⊂ R is a PW set and

e = {z ∈ C : Ge0(z) ≤ α} (48)

for some α > 0, then

∥∥T (e)
n

∥∥
e

≤ (
1 + e−nα

)
exp

[
PW(e0)

]
C(e)n. (49)

In addition, if e0 is a period-n set then the Chebyshev polynomials of degree nk for
the sets e and e0 coincide and

∥∥T (e)
nk

∥∥
e

= cosh(nkα)
∥∥T (e0)

nk

∥∥
e0
. (50)

As mentioned above, in the case where e consists of finitely many C2+ Jordan
regions, Widom obtained both Szegő–Widom asymptotics and asymptotics of the
Widom factors for the weighted Chebyshev polynomials. In the case of arcs,
however, very little is known. For weighted Chebyshev polynomials on finitely
many interval (i.e., in the special case of arcs lying on the real line), Widom [49,
Sect. 11] merely established asymptotics of the Widom factors and conjectured the
corresponding Szegő–Widom asymptotics for the polynomials. This conjecture was
proven in the unweighted case in [13], but remains open for the weighted case.
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In [45], Totik–Yuditskii extended the asymptotics of the Widom factors for
weighted Chebyshev polynomials to the case of e consisting of finitely many
intervals and C2+ Jordan regions symmetric with respect to the real line. Yet, the
case of sets consisting of finitely many smooth components some or all of which are
arcs in general position in the complex plane has proven to be much more difficult.
Widom made conjectures regarding that case, but subsequent works [18, 41, 45]
have shown that these conjectures are incorrect. In particular, Widom expected that
generically the asymptotic upper bound (43) is attained for sets e with finitely many
smooth components when at least one of them is an arc. While this was shown to
be false in [45], the same work [45] (and [41] in the unweighted case) also showed
that Widom was qualitatively correct in expecting larger asymptotics when an arc
component is present. In addition, for unweighted Chebyshev polynomials it was
shown in [42] that sets e containing an arc lead to an increased lower bound

‖Tn‖e ≥ (1 + β)C(e)n, n ≥ 1, (51)

for some β > 0 that depends only on e (cf. (2)).
So far, the only nontrivial example of an arc for which the asymptotics is known

is a single arc on the unit circle. In that case, Widom expected the asymptotics to be
the same as for an interval. However, it was observed in [41] that for the circular arc
e = {

eiθ : θ ∈ [−α, α]} (with 0 < α < π), the unweighted Widom factors obey the
asymptotics

lim
n→∞Wn(e) = 1 + cos

(α
2

)
. (52)

This shows that the case of a circular arc continuously interpolates between the
case of a region (e.g., Wn(D) ≡ 1 for a closed disk D) and the case of a flat
arc (e.g., Wn(I) ≡ 2 for an interval I ). In addition, it was shown in [38] that
the Widom factors for a circular arc are strictly monotone increasing. The Szegő–
Widom asymptotics for the unweighted Chebyshev polynomials of a circular arc
was derived by Eichinger [18] and the behavior is indeed different from the case of
an interval.

At this point, we also mention a curious observation made in [4, Thm. 5.1].
For the polynomials orthogonal with respect to the equilibrium measure dρe on
a circular arc e, the square of the associated L2-Widom factors have the same
asymptotics as Wn(e) in (52). This suggests that the two quantities might also
coincide for other smooth arcs in the complex plane. Since the asymptotics of the
L2-Widom factors for a C2+ arc is known (see [3, 49]), we are led to the following
conjecture:

Conjecture 3.4 If e is a smooth arc in the complex plane, then

lim
n→∞Wn(e) = 2πS(we)C(e), (53)
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where we = 1
2π

(
∂G
∂n+ + ∂G

∂n−
)

is the density of the equilibrium measure dρe with
respect to arc-length.

For C2+ arcs, Alpan [3] showed that the conjectured asymptotic value satisfies

1 < 2πS(we)C(e) ≤ 2 (54)

with the upper bound being strict if and only if ∂G
∂n+ (z) �= ∂G

∂n− (z) for some non-
endpoint z ∈ e. The latter holds, for example, for non-analytic arcs. Partial progress
towards the above conjecture is also reported in [3, Thm. 1.3] where the asymptotic
upper bound (43) is improved by replacing the constant 2 with the smaller constant
2
√
πS(we)C(e).
The study of Chebyshev polynomials for subsets of the complex plane has

another interesting and challenging direction which concerns the asymptotic behav-
ior of their zeros. Letw1, . . . , wn be the zeros of Tn counting multiplicity and denote
by

dμn = 1

n

n∑

j=1

δwj (55)

the normalized zero-counting measure for Tn. The limit points of {dμn}∞n=1 as n →
∞ are called density of Chebyshev zeros for e.

In [48], Widom proved that for any closed subset S of ", the unbounded
component of (C ∪ {∞}) \ e, there is an upper bound on the number of zeros of
Tn in S which depends only on S and not on n. This implies the following general
result on the density of Chebyshev zeros as stated in [16].

Theorem 3.5 Any limit point dμ∞ of the zero-counting measures dμn is supported
in the polynomial convex hull of e. Moreover, for all z ∈ " we have that

∫
log |z − w| dμ∞(w) =

∫
log |z − w| dρe(w). (56)

This theorem says that dρe is the balayage (see, e.g., [36, Sect. II.4]) of dμ∞
onto ∂e, equivalently, the balayage of dμn converges to dρe; ideas that go back at
least to Mhaskar–Saff [30]. It is an intriguing question to understand whether or
not the zero-counting measures dμn (or some subsequence thereof) converge to the
equilibrium measure dρe. In [35], Saff–Totik proved the following result.

Theorem 3.6 Let e ⊂ C be a compact set with connected interior and complement.
Then:

(a) If e is an analytic Jordan region (i.e., ∂e is an analytic simple curve), then there
is a neighborhood U of ∂e so that for all large n, Tn has no zeros in U .

(b) If ∂e has a neighborhood U and there is a sequence nj → ∞ so that
μnj (U) → 0, then e is an analytic Jordan region.
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Accordingly, for analytic Jordan regions the equilibrium measure is never a
density of Chebyshev zeros and one may start wondering where these densities are
supported. Interestingly, and around the same time, Widom [52] had a similar result
for nonselfadjoint Toeplitz matrices and Faber polynomials of the second kind.

On the other hand, Blatt–Saff–Simkani [10] proved the following result.

Theorem 3.7 Let e ⊂ C be a polynomially convex set with empty interior. Then, as
n → ∞, the Chebyshev zero-counting measures dμn converge weakly to dρe.

As explained below, there are also local versions of the above two theorems (see
[16] for proofs).

Theorem 3.8 Let e ⊂ C be a polynomially convex set and suppose U ⊂ C is an
open connected set with connected complement so that U ∩ ∂e is a continuous arc
that divides U into two pieces, eint∩U and (C\e)∩U . If Mn(U) denotes the number
of zeros of Tn in U and

lim inf
n→∞

Mn(U)

n
= 0 (57)

then

U ∩ ∂e is an analytic arc. (58)

It readily follows that if e is a Jordan region whose boundary curve is piecewise
analytic but not analytic at some corner points, then at least these corner points are
points of density for the zeros of Tn. Moreover, if ∂e is nowhere analytic then all
of the boundary points are points of density for the zeros. In that light, it might be
tempting to expect that the zero-counting measures dμn converge to the equilibrium
measure dρe whenever ∂e is nowhere analytic—and this was conjectured in [16].
However, Totik [43] recently disproved such a statement (which was also considered
by Widom [53] in the context of nonselfadjoint Toeplitz matrices).

Nevertheless, local convergence to the equilibrium measure can be proved in
some cases.

Theorem 3.9 Let e ⊂ C be a polynomially convex set and suppose U ⊂ C is an
open connected set whose complement is also connected. Assume that C(U ∩e) > 0
but that U ∩ e has two-dimensional Lebesgue measure zero. Then, as n → ∞,
the zero-counting measures dμn restricted to U converge weakly to the equilibrium
measure dρe restricted to U .

Another interesting result on convergence to the equilibrium measure is given
by Saff–Stylianopoulos [34]. They prove that if ∂e has an inward pointing corner
(more generally, a non-convex type singularity), then the zero-counting measures
dμn always converge weakly to dρe. For example, if e is a non-convex polygon
then their hypothesis holds. The case of convex polygons, on the other hand, leads
to an interesting open problem.
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Open Problem 3.10 What are the density of Chebyshev zeros when e is a convex
polygon?

This is not even known for the equilateral triangle, although numerical computations
present some evidence for convergence to the equilibrium measure. The other
natural candidate for the limit points of zeros is the skeleton consisting of the line
segments from the centroid of the triangle to the vertices.
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Some Recent Progress on the Stationary
Measure for the Open KPZ Equation

Ivan Corwin

Dedicated to the Memory of Harold Widom

Abstract This note is an expanded version of a lecture I gave in fall 2021 at the
MSRI program “Universality and Integrability in Random Matrices and Interacting
Particle Systems”. I will focus on the behavior of the stationary measure for the
open KPZ equation, a paradigmatic model for interface growth in contact with
boundaries. Much of this will review elements of my joint work with A. Knizel
as well as with H. Shen, as well as subsequent works of W. Bryc, A. Kuznetsov,
Y. Wang, and J. Wesołowski and of G. Barraquand and P. Le Doussal. The basis
for this advance is fundamental work of B. Derrida, M. Evans, V. Hakim and V.
Pasquier from 1993, of T. Sasamoto, M. Uchiyama and M. Wadati from 2003, and
of W. Bryc and J. Wesołowski from 2010 and 2017. I will try to explain how all
of this fits together, without laboring details for the sake of exposition. Though this
work does not directly follow from Harold Widom’s own work, it (and a great deal
of my research) is very much inspired by his and Craig Tracy’s work on ASEP.

Keywords Asymmetric simple exclusion process · Askey-Wilson processes ·
Matrix product ansatz · Kardar-Parisi-Zhang stochastic partial differential
equation

1 Preface

The purpose of this note is to describe the stationary measure for the open KPZ
(Kardar-Parisi-Zhang) equation and some of the ideas related to its construction.
The KPZ equation has been a subject of intense study due to its value as a model for
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random growth and as a singular stochastic PDE, its remarkable connection with
integrable systems, its ubiquitous occurrence in seemingly unrelated problems in
mathematics and physics, e.g., see the reviews [13, 14, 29, 36, 46].

The open KPZ equation is supposed to model stochastic growth in contact with
boundaries, or equivalently (through differentiation) stochastic transport between
reservoirs. As is often the case in the study of Markov processes, a fundamental
question here is to understand the structure of its stationary state—for instance,
whether it is unique and how it can be characterized.

Remarkably, as I will explain below, this stationary measure can be described in
terms of the Brownian motion measure reweighted in terms of certain exponential
functionals—a subject which has attracted great interest within other realms of
probability theory in its own right, e.g. [20, 37, 42].

2 An Aside on q-Pochhammer Symbol Asymptotics

I start with something that may seem far from the advertised subject. A devoted
reader who gets to the very end of this note (see Sect. 8.5) will see that, indeed, this
is quite key in the asymptotic analysis that leads to the main result presented in this
note. Indeed, it is very much in the spirit of Harold’s work that in the end, things
boil down to involved asymptotic analysis.

The q-Pochhammer symbol is defined for a ∈ C and |q| < 1 by

(a; q)∞ := (1 − a)(1 − qa)(1 − q2a) · · · .

This convergent infinite product defines an analytic function (in a) which arises in
many contexts. In combinatorics it encodes certain generating functions. Two of the
simplest examples are

(−q; q)∞ =
∑

λ strict

q |λ| and (q; q)−1∞ =
∑

λ

q |λ|

where λ denotes a partition (i.e., a weakly decreasing sequence of non-negative
integers λ1 ≥ λ2 ≥ · · · ), strict means that λ1 > λ2 > · · · , and |λ| := λ1 +λ2 +· · · .

The q-Pochhammer symbol is key to defining various q-deformed variants of
classical special functions. These come up, for example, in the Askey-Wilson
scheme of orthogonal polynomials, see, for example, Sect. 8.3 below or [1].

The q-gamma function is a deformed special function, defined for z ∈ C and
|q| < 1 as

�q(z) := (1 − q)1−z (q; q)∞
(qz; q)∞ .



On the Stationary Measure for the Open KPZ Equation 323

It is not too hard to see that

lim
q→1

�q(z) = �(z),

for instance by observing convergence to the Euler product formula for the gamma
function.

It is an interesting and (as will be clear much later) valuable question to determine
the nature of this convergence. For instance, the gamma function has various
asymptotic behaviors as |z| → ∞, in a manner depending on the direction to which
z goes to complex infinity. Does the q-gamma function enjoy similar asymptotic
behavior and is this uniform, in any sense, as q tends to 1?

In 1984, Moak [44] first took up this question, proving a Stirling’s type expansion
for �q(z) with q ∈ (0, 1) fixed and z tending to infinity with arg(z) ∈ (−π/2 +
δ, π/2 − δ) for any fixed ε. Soon after, McIntosh [43] addressed the case where z is
fixed but q tends to 1 from below, see also work of Daalhuis [22] and more recently
Katsurada [38] and Zhang [55].

The most complicated element in �q(z) is the denominator (qz; q)∞. Consider
z ∈ C and

q = e−ε

as ε tends to 0. In that case, qz approaches 1 (for z fixed) and hence many terms
in the product defining (qz; q)∞ will approach 0. In fact, a quick calculation shows
that there are order ε−1 such terms. This suggests that log(qz; q)∞ will decay like a
negative constant times ε−1. This is the case, and the constant is remarkably given
by ζ(2). The expansion continues like

log(qz; q)∞ = −π2

6 ε−1 −
(
z − 1

2

)
log(ε)− log

(
�(z)
2π

)
+ · · · .

The �(z) term in this expansion is what ultimately leads to the limit �q(z) → �(z).
The · · · lower order terms hide a lot here. For instance, it is possible to go out to
arbitrary order m ∈ Z≥1 in ε so that the lower order terms take the form

· · · = −
m∑

n=1

Bn+1(z)Bn

n(n + 1)! ε
n + Errorm(ε, z)

where Bk(z) and Bk are the Bernoulli polynomials and Bernoulli numbers, respec-
tively, and the remaining error in this approximation is denoted as Errorm(ε, z).

Of course, everything is now moved into studying the behavior of the residual
error term Errorm(ε, z). Namely, how does it behave as ε and z vary? For ε fixed
and z varying in certain regions of the complex plane, or for ε tending to 1 and
z in fixed compact regions of the complex plane, this was understood in the earlier
mentioned works. However, what if z varies in a region that is not bounded as ε tends
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to 0? It turns out that exactly this type of control is pivotal in my derivation of the
open KPZ equation stationary measure with Knizel in [17] since things eventually
boil down to studying asymptotics of integrals involving factors like (qz; q)∞ for
z varying over regions that grow as q goes to 1. In order to apply the dominated
convergence theorem, some type of uniform control is needed. In particular, in my
work with Knizel we make an estimate [17, Proposition 2.2] that shows that for any
δ ∈ (0, 1/2) and b ∈ (m− 1,m), there exists C, ε0 > 0 such that for all ε ∈ (0, ε0)

and all z ∈ C with |Im(z)| < 5/ε,

|Errorm(ε, z)| ≤ C
(
ε(1 + |z|)2 + εb(1 + |z|)1+2b+δ

)
.

While we made no claim as to whether this is an optimal bound, it does suffice
for our purposes in applying dominated convergence. There is a similar sort of
expansion for (−qz; q)∞, though I will not record it here.

The proof of this asymptotic expansion and error bound in [17, Proposition 2.2]
builds on work of Zhang [55], correcting some mistakes therein and extending
from compact domains for z to unbounded ones. The starting point is the following
Mellin-Barnes integral representation

log(qz; q)∞ = − 1

2π

∫ c+ι∞

c−ι∞
�(s)ζ(s + 1)ζ(s, z)ε−sds

where q = e−ε , and where c > 1, Re(z) > 0, the integral is over a vertical contour,
and ζ(s, z) is the Hurwitz zeta function. Asymptotic of this integral formula requires
a well-controlled understanding of asymptotics of the terms in the integrand. For
�(s) and ζ(s+1) such control is well-known, while for ζ(s, z) it needs to be derived,
again based on Mellin-Barnes integral formulas which express ζ(s, z) in terms of
simpler functions (namely, the gamma and zeta function). Finally, observe that the
above Mellin-Barnes formula for log(qz; q)∞ was restricted to Re(z) > 0. The
move into the other half of the complex plane is facilitated by certain identities
involving the Jacobi theta functions. I will not give any further details here. An
interested reader can find more in the final section of [17].

3 What Is the Open KPZ Equation?

Since this is not a survey on the KPZ equation as a stochastic PDE, I will try to stay
brief on this side of the story and instead refer an interested reader to my earlier
survey [13] and more recent expository piece with Shen [19].

The open KPZ equation is a singular stochastic PDE describing the evolution of
a height function h(t, x) taking real values, with time t ∈ R≥0, and space x ∈ [0, 1].
The evolution is a function of a time-space white noise, denoted by ξ(t, x), and
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described by the equation

∂th = 1
2∂xxh+ 1

2 (∂xh)
2 + ξ

with the boundary conditions for all t ∈ R>0 depending on two parameters u, v ∈ R

given by

∂xh =
{
u, x = 0

−v x = 1.

Since the noise driving this equation is uncorrelated in time, it follows that this
defines a Markov process. At a physical level, this equation is supposed to model
the evolution of an interface that is subject to smoothing (the Laplacian), growth
normal to the interface (the non-linearity) and a stochastic driving force (the white
noise). The boundary condition is suppose to indicate that local to the end of the
interval, the slope is maintained at specific values. From a physical perspective, this
could be caused by an interaction between the boundary and growing media. See
Fig. 1 for an illustration of this growth process over time.

Another physical interpretation of this equation is in terms of the dynamics on
∂xh. The resulting stochastic PDE is known as the stochastic Burger’s equation
and it is supposed to model stochastic conservative transport along the interval
[0, 1]. The boundary conditions then correspond to maintaining specific densities
or potentials for reservoirs at the two endpoints of the interval.

When I introduce the open ASEP height and particle process later and describe its
limit to the open KPZ equation, both of these interpretations may come into further
focus.

Fig. 1 An illustration of the open KPZ equation evolution at three times t1, t2 and t3. The height is
plotted as a function of space x. The height functions, in general, can overlap since they may both
grow and shrink. At the left boundary, the slope is maintained as u and at the right it is maintained
as −v. The initially smooth height profile is roughened with time, as it approaches the stationary
measure.
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3.1 Long-Time and Stationary Behavior

The driving question behind studying the open KPZ stationary measure is to
understand the long-time behavior of the open KPZ equation. Does the height
function have a limit (in distribution) as time goes to infinity? The easy answer
to this question is NO. There is nothing pinning the height function down and hence
over time the height will drift away to infinity. Of course, the relevant question is not
about the absolute height, but rather the relative height—that is the height function
centered by its value at x = 0. Now there is good reason to believe that the law of
this profile should converge as time grows to a limit distribution on height functions
which take value 0 at x = 0, and that the law should not depend on the initial
distribution of the profile. I will return to this, as of yet, open problem a bit later.

The law on a height function hu,v : [0, 1] → R with hu,v(0) = 0 will be said to

be a stationary measure for the open KPZ equation if when started with h(0, ·) (d)=
hu,v(·), it follows that h(t, ·)− h(t, 0)

(d)= hu,v(·) for all subsequent times t > 0. Of
course, it is reasonable to expect that the long-time limit profile will converge to such
a stationary measure, and in the case of the open KPZ equation that for each choice
of u, v there is just one such stationary measure. Though these are great questions
that should be addressed, here I will focus on the question of how to construct and
describe a stationary measure for the open KPZ equation.

3.2 Defining the Open KPZ Equation

Before proceeding in this direction, let me briefly address the highly non-trivial task
of making mathematical sense of what it means to solve the open KPZ equation.
Even a näive understanding of time-space white noise suggests that the spatial
trajectory of h(t, x) should have the regularity of Brownian motion and hence
be Hölder 1/2−. Thus, making sense of the KPZ equation non-linearity becomes
challenging in this case, as does making sense of the meaning of the boundary
condition. This can all be done by appealing to Hairer’s regularity structure
framework, see [32], by smoothing ξ and then performing suitable renormalization
(in fact if the smoothing is only on space, Bertini and Cancrini’s earlier approach
from [4] should suffice).

The simplest way, however, to define the open KPZ equation is through the
open stochastic heat equation (SHE). For the sake of completeness I will recall
this definition from [18] here. In fact, most of what I discuss in this note can be
appreciated without a deep understanding of the stochastic PDE side of this story.

The Hopf-Cole solution to the open KPZ equation is defined as h(t, x) :=
log z(t, x) where z(t, x) solves the SHE

∂tz = 1
2∂xxz + ξz
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with boundary conditions

∂xz =
{
(u− 1

2 )z, x = 0,

−(v − 1
2 )z x = 1.

The inclusion of this 1/2 factor is just a convention that ensures that the point u, v =
0 is special (in terms of the phase diagram for the open KPZ equation). The above
form of the SHE can be defined and solved via classical methods of semi-linear
stochastic PDEs. In particular, a process z(t, x) is a (mild) solution to the SHE if
z(t, ·) is adapted to the filtration generated by the initial data z0(·) and the time-
space white noise ξ up to time t , and if z satisfies for all t ∈ R>0 and x ∈ [0, 1] the
equation

z(t, x) =
∫ 1

0
pu,v(t; x, y)z0(y)dy +

∫ 1

0

∫ t

0
pu,v(t − s; x, y)z(s, y)ξ(ds, dy).

The last integral is in the sense of Itô and pu,v(t; x, y) is the heat kernel on [0, 1]
satisfying

∂tpu,v(t; x, y) = ∂xxpu,v(t; x, y), pu,v(0; x, y) = δx=y

with boundary conditions for all y ∈ [0, 1] and t ∈ R>0

∂xpu,v =
{
(u− 1

2 )pu,v, x = 0,

−(v − 1
2 )pu,v x = 1.

The open SHE admits a chaos series expansion and can (though it has not been
precisely given in the literature) also be interpreted as a partition function for a
continuum directed random polymer model in which the underlying path measure
is that of Brownian motion which either dies or splits at the boundaries 0 and 1,
depending on the signs of u and v.

4 Constructing the Stationary Measure

I will relate here the main result of my joint work with A. Knizel, given there as
[17, Theorem 1.2]. Essentially, we show that for each pair (u, v) ∈ R of boundary
parameters there exists a stationary measure for the corresponding version of the
open KPZ equation; for general (u, v) we provide some properties of our measure
while for (u, v) such that u + v ≥ 0 we are able to completely characterize the
measure in terms of an exact formula for its multi-point Laplace transform. In
phrasing our results, there is a bit of subtlety stemming from the fact that we did
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not show that these are the unique stationary measures (though we conjecture this
to be the case).

As suggested above, our first result is that for each pair (u, v) ∈ R there
exists a stationary measure for the corresponding open KPZ equation with those
boundary parameters. We denote a random function distributed according to this
measure by hu,v(·). As I will explain later in this note, these measures arise as
subsequential limits of a stationary measure for a discrete approximation to the open
KPZ equation, namely the open ASEP.

In the special case that u + v = 0, the random function hu,v(·) has the law
of a standard Brownian motion of drift u = −v. In fact, in that case the ASEP
approximation scheme is not just tight but has a unique limit point. That is not to
say that this implies that there is a unique stationary measure in this case, only that
the ASEP stationary measures has a unique limit, denoted by hu,−u(·).

For general (u, v) ∈ R, the increments of hu,v(·) satisfy a property that we
call stochastic sandwiching. The simplest and most useful implication of this
sandwiching is the following. There exists a coupling (i.e., a common probability
space which supports these random processes) of hu,v(·), hu,−u(·) and h−v,v(·) such
that for all 0 ≤ x ≤ y ≤ 1, almost surely

h−v,v(y)− h−v,v(x) ≤ hu,v(y)− hu,v(x) ≤ hu,−u(y)− hu,−u(x)

when u + v > 0; when u+ v < 0, the above holds with the inequalities swapped.
For u + v > 0, we completely characterize the law of hu,v(·) in terms of

its multi-point Laplace transform. Before stating that, let me relate the simplest
version of this formula which characterizes hu,v(1). Physically, this represents the
total displacement of the open KPZ height interface on the interval. Due to its
Brownianity, in the case where u + v = 0 this increment is clearly a Gaussian
random variable of mean u = −v and variance 1. When u, v > 0 the law of hu,v(1)
is determined by the following formula

E

[
e−shu,v(1)

]
= es

2/4

∫ ∞
0
e−r2

μs(r)dr

∫ ∞
0
e−r2

μ0(r)dr

, for μs(r) =
∣∣�( s2 + u + ιr)�(− s

2 + v + ιr)
∣∣2

|�(2ιr)|2

(1)

and where the Laplace variable s is allowed to vary in (0, 2v). When u + v >

0 yet one of the variables is negative, there is a similar albeit slightly more
complicated formula involving a measure with and atomic part as well as an
absolutely continuous part.

Turning to the general formula, let Cu,v = 21u/∈(0,1) + 2u1u∈(0,1) and consider
any d ∈ Z≥1, any 0 = x0 < x1 < · · · < xd ≤ xd+1 = 1 and any c1, . . . , cd such
that c1 + · · · + cd < Cu,v . Then, letting sk = ck + · · · + cd for k = 1, . . . , d and
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sd+1 = 0, the multi-point Laplace transform is given by the formula

E

[
e
−

d∑
k=1

ckhu,v(xk)
]

=
E

[
e

1
4

d+1∑
k=1

(s2
k−Tsk )(xk−xk−1)

]

E

[
e− 1

4T0
] . (2)

The expectation on the left side above is over the open KPZ stationary measure on
hu,v(·) while on the right it is over the measure on a stochastic process (Ts)s∈[0,Cu,v)

that we termed the continuous dual Hahn process. The transition probabilities
for this process are given in terms of the orthogonality probability measure for
the continuous dual Hahn polynomials, and the measure according to which we
initialize this process in the above identity takes a similar form in terms of a ratio
of products of gamma functions. Since this involves a number of formulas that
probably will not be illuminating, I will not write anything further on this definition
here. An interested reader is referred to [17] or the subsequent work of Bryc [7] for
more on this process and the formulas used to define it.

The above characterization of the stationary measure hu,v(·) in the case where
u + v > 0 is, in my own opinion, a bit less than fulfilling. While it uniquely
characterizes the law it does not provide a direct description of hu,v(·) in terms
of a “nice” stochastic process, such as is the case when u + v = 0 (when hu,−u(·)
is Brownian). In fact, it is challenging (though certainly possible) to take the limit
of u + v ↘ 0 in our Laplace transform formula in order to recover the Laplace
transform of the Brownian motion hu,−u(·).

Thankfully (for us), this lack of a nice stochastic process description was fairly
quickly resolved, as I explain now.

5 Inverting the Multipoint Laplace Transform Formula

It took a few years for Knizel and me to complete our work, proving the above
results. Pretty early on, though, we had a good sense of what the final formula
should look like and we communicated this to Bryc when he visited us as Columbia
for a seminal. He had worked with Wang in [9] on inverting some similar (albeit
less complicated) Laplace transform formulas arising for the limit of the ASEP
stationary measure, so it seems reasonable to see if he had ideas on how to proceed.
The seed was planted and as luck would have it, around the time that Knizel
and I were finishing our paper, Bryc and his collaborators (Kuznetsov, Wang, and
Wesołowski) had figured out how to do the desired inversion. In fact, this was
extremely helpful since it provided a check for our formulas and helped reveal a
few missing factors that we hunted down and repaired.
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Fig. 2 A depiction of Y(·). In this illustration we assume u, v > 0 so the starting and ending
points are probabilistically rewarded for going up with a linear energy contribution. However, the
exponential energy term eY (s) pushes the curves down. It is this balance of energetic constraints
(depicted in dark blue) that results in the reweighted measure being normalizable despite the fact
that the free starting point Brownian motion is an infinite measure.

The description that they arrived at in [12] can be written as follows. The process
x �→ hu,v(x) for x ∈ [0, 1] has the same law as the process

x �→ B(x)+ Y (0)− Y (x). (3)

Here B denotes a Brownian motion started at zero and with variance 1/2 and mean
0 at time 1. The process Y is independent of B and has a Radon-Nikodym derivative
against a free starting point Brownian motion with variance 1/2 and no drift which
is proportional to (see also Fig. 2)

exp

⎛

⎝2uY (0)−
1∫

0

e2Y (s)ds + 2vY (1)

⎞

⎠ . (4)

By a free starting point Brownian motion, I mean the infinite measure on paths
where the starting point is distributed according to Lebesgue measure on R and
the trajectory from there is distributed according to a Brownian motion with that
starting point. The time interval for this Brownian motion is [0, 1] and the variance
at time 1 is 1/2. It is a non-trivial calculation to show that despite the free Brownian
motion being an infinite measure, after multiplying by the above Radon-Nikodyn
derivative, the resulting measure has finite mass and can be normalized to define a
probability measure, i.e., the measure on Y . The work in [12, Proposition 1.6] is
valid for u + v > 0 and min(u, v) > −1, though the description seems to make
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sense for general u + v > 0 and that extension should be possible with what is
already known.

Soon after the work of [12] was posted, Barraquand and Le Doussal [3] used a
different set of tools from physics (coming from the study of 1d Liouville quantum
gravity and not addressed there with mathematical rigor) to independently invert the
Laplace transform. They arrived at a slightly different description that, in fact, has
some advantages. They show that the process x �→ hu,v(x) for x ∈ [0, 1] has the
same law as the process

x �→ B(x) + Ỹ (x). (5)

As before, B denotes a Brownian motion started at zero and with variance 1/2 and
mean 0 at time 1. The process Ỹ is independent of B and has a Radon-Nikodym
derivative against Brownian motion started at zero and with variance 1/2 and mean
0 at time 1 which is propositional to

⎛

⎝
1∫

0

e−2Ỹ (s)ds

⎞

⎠
−u⎛

⎝
1∫

0

e2Ỹ (1)−2Ỹ (s)ds

⎞

⎠
−v

. (6)

The factor e−2vỸ(1) which appears above can be thought of as introducing a drift so
we can also characterize Ỹ as having a Radon-Nikodym derivative against Brownian
motion started at zero and with variance 1/2 and mean −v at time 1 which is
propositional to

⎛

⎝
1∫

0

e−2Ỹ (s)ds

⎞

⎠
−u−v

. (7)

It may not seem so immediate how to move between the two descriptions above
for hu,v . Such a matching is shown in [8]. Here is a brief sketch. Starting with (3),
write Ŷ (x) = Y (0) − Y (x). The aim is to show that Ŷ (·) and Ỹ (·) have the same
law. Notice that the Radon-Nikodym derivative from (4) can be rewritten in terms
of Ŷ and Y (0) as

exp

⎛

⎝2(u+ v)Y (0) − e2Y (0)

1∫

0

e−2Ŷ (s)ds

⎞

⎠ e−2vŶ (1).
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The law of Ŷ (·) and Y (0) are independent, and hence it is possible to integrate
out Y (0) since this does not figure into the description of hu,v . Recall the integral
identity

∫ ∞

−∞
e2ax−be2x

dx = 1
2b

−a�(a)

which holds provided the real part of a and b are strictly positive. Choose a = u+v

and b = ∫ 1
0 e−2Ŷ (s)ds. Since both a and b are strictly positive, after integrating this

yields the Radon-Nikodym derivative expression in (6) (written there in terms of Ỹ ,
not Ŷ ) and hence implies that Ŷ and Ỹ have the same law.

As far as how to link either of these descriptions to the Laplace transform
formula, I will just say a bit since this is a substantial calculation. As is generally the
case, given the description of the process hu,v as above, it is much easier to verify
that it has the correct Laplace transform than it is to invert the Laplace transform
from the start without any inspiration. Taking the Laplace transform relies on the
following ideas (much more detail can be found in the papers [12] and [3]). First,
recall that for Brownian motions subject to energetic penalization by an exponential
potential, the subMarkov generator L that is relevant acts on a suitable space of
functions f as Lf := f ′′(x) − e2xf (x). Define fu(x) := Kιu(e

x) where K is the
modified Bessel function (or Macdonald function) given, for u ∈ R and x > 0, by
Kιu(x) = ∫∞

0 e−x cosh(w) cos(uw)dw. Then the heat kernel from x to y in time t for
this operator takes the form

∞∫

0

e−tu2
fu(x)fu(y)

2du

π |�(ιu)|2

as can be shown by appealing to the eigenrelations
(
Lfu

)
(x) = −u2fu(x). This

leads to formulas for the finite dimensional distributions of hu,v in terms of integrals
of these functions. Finally, the Laplace transform can be computed by appealing
repeatedly to the two identities:

∞∫

−∞
etxfu(x)fv(x)dx = 2t−3

�(t)

∣∣∣∣�
(
t + ι(u+ v)

2

)
�

(
t + ι(u− v)

2

)∣∣∣∣
2

,

∞∫

−∞
etxfu(x)dx = 2t−2

∣∣∣∣�
(
t + ιu

2

)∣∣∣∣
2

,

where u, v ∈ R and Re(t) > 0. The gamma function products arising here
ultimately account for those in the Laplace transform formula.

Let me close this section with a few comments and discussions on directions
related to the results described in this and the previous section.
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A keen reader will have noticed that the Laplace transform formula in [17] is
only given for u+v > 0. I will discuss later about the origins of this restriction. The
natural question here is to identify the Laplace transform or better yet the law of hu,v
when u+v < 0. In fact, it is even non-trivial to take the limit where u+v ↘ 0 in the
Laplace transform formula (2) or the formulas in (3) and (4) for hu,v from [12]. At
least in the case of (2), this limit can be performed with some care and does recover
the Brownian motion Laplace transform as one would hope. By comparison, the
formula for hu,v in (5) and (6) (or even better (7)) immediately admits this limit—
when u + v = 0 in (7) the Radon-Nikodym derivative is identically equal to 1 and
hence Ỹ is a Brownian motion of standard deviation

√
2 and drift −4v. Plugging

this into (5) shows that hu,v is a standard Brownian motion with drift u = −v, as it
should be.

The description for hu,v from [3] in (5), in fact, readily admits and extension to all
u and v, not just u+v > 0. In that case, the process Ỹ (·) is still well-defined. What is
not clear (though is conjectured to be true in [3]) is whether the process hu,v defined
through (5) in this case when u+ v < 0 is, in fact, stationary for the KPZ equation.
Proving (or disproving) this seems like a great question. A natural approach might
be to try to use some variant of uniqueness of analytic continuation—to show that
the stationary measure depends in some sort of analytic manner on the boundary
parameters u and v, and likewise hu,v defined above by (5). This is all rather vague
since the correct notion of analyticity as well as the means to prove it is currently
unclear to me.

Another extension discussed in [3] is to consider the open KPZ equation
stationary measure on a general interval [0, L], or even on a half-infinite interval
[0,∞). In both cases they write down candidates for the stationary measure. It
should be possible to modify the approach from [17] to address these cases. One
nice observation in [3] is that the stationary measure process hu,v actually arose (in
a very different context) in 2004 work of Hariya and Yor [37]. In that case, their
motivation was to study properties of exponential transforms of Brownian motion.

On the subject of the form of the Radon-Nikodym derivatives above, I just want
to mention that they bare remarkable similarities to the type of reweighting that
arose in my study with Hammond of the KPZ line ensemble [16].

My final remark returns to the question of uniqueness (for each pair u, v) of
the open KPZ stationary measures hu,v(·). In [17] we conjectured that this is true,
and moreover that the open KPZ equation is ergodic and satisfies a one-force one-
solution principle which essentially says that if you start at time −T with two
different choices of initial data, and then look at the solution around time 0, as
T → ∞, the height increments of the two processes will converge to be the same,
and hence independent of the initial data. There are some similar results to this
proved in the literature for the periodic boundary condition KPZ equation or for
some other similar models, see for example [2, 27, 34, 35, 47, 52].
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6 Open ASEP to KPZ

How does one even start to show that there exists a stationary measure for the open
KPZ equation, let alone check that it is given in the form that we claim? Usually the
idea is to construct the generator or semi-group for the open KPZ equation and then
check that the generator acts on a given stationary measure to give zero or that the
semi-group preserves the stationary measure. Mixing properties can then be studied
by finding the spectral gap or probing clever couplings.

This approach has been successfully implemented for the KPZ equation on a
torus or to some extent on the full line where the stationary measure is purely
Brownian, see for example [28, 34, 35]. For the open KPZ equation this approach
has not been implemented, though I would be quite interested to see it done.

Instead, in [17] we proceed through a discretization of the open KPZ equation—
the interacting particle system called open ASEP. In a nutshell, the idea is to first
show that under special scaling, the height function for open ASEP converges to
the open KPZ equation, provided that the initial data has a limit and satisfies some
reasonable hypotheses (i.e., its has Brownian-like Hölder behavior). Open ASEP
is a finite state space Markov process and for each system size N it has a unique
stationary measure. The challenge then becomes to show that these stationary
measures converge to a limit as N goes to infinity and satisfy the desired hypotheses.
In fact, we only show the existence of a limit in the case where u + v > 0
(I will explain what these mean in the open ASEP context below). For general
u, v we are able to show tightness of the N-indexed sequence of open ASEP
stationary measures which translates into the existence of subsequential limits
that are stationary measures for the open KPZ equation. Of course, if we knew
uniqueness of the open KPZ stationary measures, that would imply there is only
one limit point.

In this section, I am going to try to explain how open ASEP approximates
the open KPZ equation. This is based on work of mine with Shen in [18] and a
subsequent extension by Parekh [45]. Open ASEP is quite an interesting and well-
studied object in its own right, and the rest of this note will almost entirely focus
on it. As such, I will start out here with a bit of background, in particular its phase
diagram. Then I will return to the connection to open KPZ.

6.1 Introducing Open ASEP

Open ASEP was first introduced by MacDonald et al. in 1968 [41] as a model for
the dynamics of ribosomes on an mRNA chain during the synthesis of proteins.
Already in that work, their main interest was in studying its stationary measure.
Within probability, Spitzer initiated study of a general class of exclusion processes
in his 1970 work [50] and Liggett introduced open ASEP to the community in his
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Fig. 3 An exclusion process on a network with reservoirs. Dotted red lines show the possible
jumps of the left-most particle and the dotted red line with an × through it, shows an excluded
jump. Other possible jumps and jump rates are not shown.

1975 work [39] as a tool to study the nature of stationary measures for ASEP on the
full line and half-line.

Let me now introduce open ASEP. Consider the exclusion process in Fig. 3.
Particles (red dots) occupy vertices of a graph and jump along edges according
to exponential rates subject to the exclusion rule (jumps to occupied sites are
suppressed). There are reservoirs (grey squares) which (according to exponential
rates) insert particles into unoccupied neighboring sites, or remove particles from
occupied neighboring sites. This models transport through a network with sources
and sinks.

The presence of reservoirs leads to remarkable physical behavior. Since the total
number of particles is not conserved, even when in its steady state (i.e., started its
unique stationary measure) there will typically be a net flow of particles through
this system—like how a flowing stream may have a stationary density profile while
still moving water from source to sink. In statistical physics such models are said to
have a non-equilibrium steady state (e.g. see the review [6]). Because the Markovian
dynamics which produce these steady states are not reversible, non-equilibrium
steady states do not take the Boltzmann weight form common in equilibrium
statistical mechanics. This renders the study of thermodynamic (i.e. large system
size) limits of non-equilibrium steady states quite challenging.

The presence of reservoirs can also induce phase transitions as the number of
nodes (N in our case) in the network grows. I am unaware of a precise statements
to this effect when dealing with general networks but for the one-dimensional
asymmetric simple exclusion process with reservoirs (i.e., open ASEP) such a phase
transition is understood. Besides serving as a transport model, I will explain below
how the height function for open ASEP is also connected with stochastic interface
growth and, through exponentiation, to a discrete stochastic heat equation.

Let me start by defining the open ASEP in one-dimension. Figure 4 gives an
illustration of it along with its height function. We consider an N site nearest
neighbor graph {1, . . . , N} with edges between consecutive numbers. Particles jump
left according to exponential clocks of rate q < 1 and right at rate 1. These jumps
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Fig. 4 A given instance of open ASEP with N = 10 is illustrated both in terms of occupation
variables (the red dots) and its height function hN (the piecewise linear function drawn above
the particle configuration). The red arrows indicate some possible moves with the associated
exponential rates labeled.

(and all others) are independent and only taken if the exclusion rule is observed—
particles cannot move to occupied sites. In addition to this bulk evolution, there are
two reservoirs which interact with site 1 and site N . At rate α a particle enters site
1 (provided it is empty) and at rate γ a particle is removed from site 1 (provided it
is occupied); similarly at rate δ a particle enters site N (provided it is empty) and
at rate β a particle is removed from site N (provided it is occupied). This process
can be encode as τ (t) = (

τ1(t), . . . , τN (t)
)

where τx(t) = 1 if site x is occupied at
time t and otherwise τx(t) = 0 if it is unoccupied. The (backward) generator of the
process τ (t) is discussed later around (16). It is important to note that since there
is no conservation of particle number (particles are created and removed) there is
a single invariant measure (or steady state) for this process. The physics literature
often denotes this measure as πN(τ), with the dependence on the other parameters
implicit, and denotes the expectation of a function f : {0, 1}�1,N� → R under πN
by

〈
f
〉
N

:=
∑

τ∈{0,1}�1,N�

f (τ) · πN(τ). (8)

While the existence of this measure πN is clear, it is not obvious how it behaves as
N tend to infinity. I will return to this important point a bit later.

There is one piece of information that is lost in the open ASEP occupation
process—the count of how many particles have entered or exited from the bound-
aries. Going to the height function process remedies this. I will define the height
function process hN(t, x) as follows. Of course, the subscript indicates the lattice
size N , and the time t and spatial location x are now both written as arguments.
The dependence of hN(t, x) on the other parameters q, α, β, γ, δ will be generally
suppressed from the notation, though they will eventually all depend on N non-
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trivially. The height function is defined for t ≥ 0 and x ∈ {0, . . . N} as

hN(t, x) := hN(t, 0)+
x∑

i=1

(
2τi(t)−1

)
, where hN(t, 0) := −2NN(t) (9)

and where the net current NN(t) records the total number of particles that have
entered into site 1 from the left reservoir up to time t minus the number of particles
that have exited from site 1 into the left reservoir up to time t . It is convenient to
linearly interpolate to define a continuous height function in space.

The open ASEP height function process does not have an invariant probability
measure. Indeed, due to the net current NN(t), the only invariant measure takes the
form of infinite counting measure on the height at the origin and then the induced
measure (coming from πN on the occupation variables τ ) on the height function
increments from there. Another way of saying this is that if hN(x) is the random
height function defined by hN(x) := ∑x

i=1

(
2τi(t) − 1

)
where τ is distributed

according to the invariant measure πN(τ), then starting the open ASEP height
process with initial data hN(0, ·) = hN(·) implies that for all later times t > 0,
hN(t, x) − hN(t, 0) will still have the law of hN(x) as a process in x. Thus, I call
hN(·) the stationary measure. Here I use stationary instead of invariant to emphasize
that it is the increment process that is invariant.

6.2 Phase Diagram

The boundary reservoirs play a key role in determining the limiting behavior of open
ASEP as N goes to infinity. Define the current in stationarity to be

JN :=
〈
α(1 − τ1) − γ τ1

〉
N

1 − q
.

The term α(1 − τ1) accounts for the rate α at which particles enter the system
provided τ1 = 0 and the term γ τ1 for the rate γ at which they depart provided
τ1 = 1. The different measures the instantaneous rate of signed movement across
the bond between the reservoir and site 1.

If open ASEP starts according to its invariant measure πN , then it follows that
for all t > 0

JN =
〈
NN(t)

〉
N

t(1 − q)
.

I am abusing notation here since now 〈·〉N represent the expectation of the open
ASEP occupation process τ (t) started from in its invariant measure πN(·) at time
t = 0, not just the expectation of a function of the state space. The quantity JN
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represents the average (normalized by the bulk drift 1 − q) current of particles
moving through the system at stationarity. In fact, since particles are conserved by
the bulk dynamics, this average current will be the same everywhere in the system.

There is a remarkable phase diagram for the largeN limit of JN which highlights
the role of the boundary rates. The existence of such a limit is non-trivial, let alone
computing its value as a function of q, α, β, γ, δ. I will give a simple (and non-
rigorous) heuristic to derive it, though a more complete derivation in the physics
literature follows from the matrix product ansatz (which will be introduced near the
end of this note) in [25] for q = 0 and [51] for general q . In fact, a version of this
phase diagram arose in a closely related context in early work of [40].

The limit J := limN→∞ JN exists and depends on two parameters ρ� and ρr
which have nice physical interpretations as effective boundary densities at the left
and right boundaries.

Consider N very large and focus on the invariant measure near site 1. Without
any justification, imagine that locally and asymptotically in N , the invariant measure
looks like a product Bernoulli measure there with density ρ� for some ρ� ∈ (0, 1).
Provided this, it is possible to determine what value ρ� must take through a simple
consideration. Since particles are conserved within the bulk of open ASEP, in
stationarity the net number of particles moving from the left reservoir into site 1
must equal the net number moving from site 1 to 2. Taking expectations, this implies
a simple conservation equation

α(1 − ρ�) − γρ� = (1 − q)ρ�(1 − ρ�).

The first term on the left accounts for the rate α at which particles enter from the
boundary to site 1 provided it is unoccupied (which happens in stationarity with
probability 1−ρ�) and the second term accounts for the rate γ at which particles exit
to the boundary from site 1 provided it is occupied (which happens in stationarity
with probability ρ�). On the right, the factor ρ�(1 − ρ�) is the probability (under the
Bernoulli product measure assumption) of having a particle and a hole next to each
other in any prescribed order. The factor (1 − q) comes from the rate of particles
jumping right minus the rate jumping left. Solving this quadratic equation yields ρ�.
A similar consideration around N yields ρr . In both cases, there is just one positive
solution which yields the effective density at the boundaries.

It is convenient (for later purposes) to write the solutions to the above quadratic
equations explicitly in the following form:

ρ� = 1

1 + C
, ρr = A

1 + A
(10)

where A,C > 0 are given by

A = κ+(q, β, δ), B = κ−(q, β, δ), C = κ+(q, α, γ ), D = κ−(q, α, γ )
(11)
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Fig. 5 The phase diagram
for the current J of open
ASEP as a function of the
effective densities ρ� and ρr .

with

κ±(q, x, y) := 1

2x

(
1 − q − x + y ±

√
(1 − q − x + y)2 + 4xy

)
. (12)

The κ− terms are the negative roots of the quadratic and are introduced for
later purposes. Notice that for q fixed, (11) actually gives a bijection between
{(α, β, γ, δ) : α, β > 0, γ , δ ≥ 0} and {(A,B,C,D) : A,C > 0, B,D ∈ (−1, 0]}.

The phase diagram for the value of J is determined entirely by the values of ρ�
and ρr (or equivalently A and C) as follows (see also Fig. 5):

• Maximal current phase (ρ� > 1/2 and 1 − ρr > 1/2, or equivalently C < 1
and A < 1): The left boundary creates particles at a fast enough rate (and does
not remove them too quickly) and the right boundary removes particles at a fast
enough rate (and does not create them too quickly) so that the system is able to
transport particles from left to right in the bulk at its level of maximal efficiency.
The maximal rate of transport for particles is 1/4 and is achieved when the bulk
density is 1/2. To see this, note that if there is local product measure of density ρ
in the bulk of ASEP then the rate at which particles move (normalized by 1 − q)
will be ρ(1 − ρ). This is maximized at ρ = 1/2 and takes value 1/4 in that case.
Thus, J = 1/4 in this phase and the density should look locally in the bulk like
product Bernoulli with density 1/2.

• Low density phase (ρ� + ρr < 1, or equivalently C < A and A > 1): The left
boundary creates particles relatively slowly and the right boundary removes them
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fast enough so that they do not build up there. As such, the density in the bulk is
determined by the effective density on the left, ρ� and the current J = ρ�(1−ρ�).

• High density phase (ρ� + ρr > 1, or equivalently C > A and C > 1): By
applying a particle-hole transform this is equivalent to the low density phase
for the holes. In particular, now the right boundary removes particles so slowly
and there is enough input from the left boundary that the density builds up and
becomes ρr . Thus, the current J = ρr(1 − ρr).

The line ρ�+ρr = 1 involves coexistence of the high and low density phases and
displays interesting behavior that I will not touch on here. Another point of interest
is the triple point when ρ� = ρr = 1/2. This point will play an key role since it is
around there that the KPZ equation arises.

Besides the phases addressed above, there is one other important division of the
phase diagram:

• Fan region (ρ� > ρr , or equivalently AC < 1): Very close (in a scaling going
to zero relative to N) to the left boundary, the density exceeds that of the bulk.
This is called the fan region since going from high to low density in the Burgers
equation produces a rarefaction fan.

• Shock region (ρ� < ρr , or equivalentlyAC > 1): Very close (in a scaling going to
zero relative to N) to the left boundary, the density is lower than that of the bulk.
Thus, in the same spirit of the Burgers equation, one sees shock-type behavior
here.

The boundary between the fan and shock regions, when ρ� = ρr or equivalently
AC = 1, is special since it is the only part of the phase diagram where the invariant
measure is simple. Along this line, in the finite N open ASEP, the invariant measure
is Bernoulli product with density ρ = ρ� = ρr . I will recall later how this important
fact is shown.

Beyond determining the current J , the above phase diagram also dictates the
nature of the fluctuations and large deviations for the open ASEP height function
stationary measure and process. For instance, the fluctuations as a spatial process
for the stationary measure has been determined for TASEP (q = 0) by Derrida,
Lebowitz and Enaud [26] and for ASEP (general q ∈ (0, 1)) more recently by Bryc
and Wang [9]. In fact, the work of [9] is what prompted my interest in the open KPZ
stationary measure and what indicated to me that it should be possible using, in part,
methods in that work.

6.3 Microscopic Hopf-Cole Transform

I want to now address the question of how open ASEP and open KPZ are related.
The study of stochastic PDE limits of interacting particle systems has been a hot
topic in the past decade, and has a significantly longer history. Typically such limits
arise when the system size and time scale are taken to infinity appropriately while
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various parameters are tuned in a critical manner as well. In the case of the KPZ
equation on the entire real line, the earliest example of such a convergence result
is the 1995 work of Bertini and Giacomin [5]. That work relied on the starting
observation which came from earlier work of Gärtner [31] that

Zt(x) := e−λhN(t,x)+νt, with λ = 1
2 log q, ν = 1 + q + −2

√
q (13)

satisfies a microscopic version of the SHE. This transform can be thought of as a
microscopic version of the Hopf-Cole transform. The analysis from there on was
challenging, but possible since a well-developed solution theory for the SHE was
already developed.

I have a few papers from the past decade devoted to generalizing the Bertini-
Giacomin approach in different directions and to different types of interacting
particle systems. Always, the starting point is the microscopic Hopf-Cole transform.
Often this arises as a result of a hidden Markov duality, though I will not say more
about this here. The need for such a transform severely limits the applicability
of this technique. However, work of Dembo and Tsai [23], and then subsequent
developments by Yang have demonstrated that even in instances where the micro-
scopic Hopf-Cole transform does not exactly satisfy a version of the SHE, it is still
possible to show convergence to the SHE, and hence of the height process to the
KPZ equation. In fact, Yang’s recent work [54] shows that the open KPZ equation
arises as a limit of a wide variety of open exclusion processes. Other techniques
such as energy solutions, paracontrolled distributions and regularity structures also
provide routes to derive the KPZ equation as a limit of interacting particle systems.

In the case of the open ASEP, the first proof of its convergence to the open KPZ
equation came in my work with Shen [18]. As indicated above, the starting point was
our observation that open ASEP satisfies an exact microscopic Hopf-Cole transform.
In fact, a special case of this observation showed up around the same time in work
of Goncalves et al. [33].

In order for the microscopic Hopf-Cole transform to work for open ASEP, it is
necessary to impose a restriction on the parameters. With Shen, we called this the
Liggett condition since it arose in his much earlier work [39, 40]. The condition is
that

α

1
+ γ

q
= 1 = β

1
+ δ

q
. (14)

Under this condition the effective reservoir densities simplify so that ρ� = α and
ρr = 1 − β. Moreover, this condition implies that the role of the reservoirs can be
replaced by a simpler boundary interaction—if there is no particle at site 1, then
with rate 1 the system attempts to pull a particle out of the reservoir to fill site 1,
and that attempt is successful with probability α; if there is a particle at site 1, then
with rate q the system attempts to push that particle out into the reservoir, and that
attempt is successful with probability 1 − α. There is a similar dynamic with the
reservoir near N . Thus, under Liggett’s condition, the left reservoir can be thought
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of as a standard ASEP site which is occupied or vacant with probability α or 1 − α

at any given moment of time, independently of all other times. This implication of
the condition was explained initially in [39].

Under Liggett’s condition, Z(t, x) from (13) satisfies the following discrete
stochastic differential equation version of the SHE:

dZt(x) = 1
2�Zt(x)+ dMt(x) (15)

for all x ∈ {0, . . . , N} subject to the boundary conditions that for all t ≥ 0

Zt(−1) = μ�Zt(0) Zt (N + 1) = μrZt(N)

where μ� and μr take values in [q1/2, q−1/2] and are given by

μ� = q−1/2 − α(q−1/2 − q1/2) and μr = q−1/2 − β(q−1/2 − q1/2).

The term Mt(x) represents a martingale with an explicit bracket process that I will
not record here. The meaning of the boundary condition (which is an inhomoge-
neous discrete Robin boundary condition) is that when considering �Zt(x) for
x = 0 or x = N , the term which involves x = −1 or x = N + 1 is replaced
by use of the boundary condition above.

The convergence result that Shen and I proved, and that will be described in the
next section, uses this transformation as the starting point and thus requires that
the parameters satisfy Liggett’s condition. This reduces the number of boundary
parameters from four to two, though these remaining two parameters can be thought
of as the reservoir potentials ρ� and ρr and by tuning them we are able to access
the full two-parameter family of open SHE/KPZ equation boundary parameters. It
would be nice to see a proof of the open ASEP to KPZ scaling limit which does not
require Liggett’s condition (note that this condition seems to be necessary in Yang’s
work [54] as well).

6.4 Convergence to Open KPZ

In order to prove convergence of the discrete SHE (15) to the continuum SHE, it
is necessary to introduce two more scalings of the remaining parameters (which we
can take to be q, ρ� and ρr ). The first is known as weak asymmetry scaling. In the
full-line setting of Bertini and Giacomon, they introduce a scaling parameter ε and
take q scaled close to 1 on the order of ε1/2, space scale down by ε and time scaled
down by ε2. It takes a bit of work to see why this is a natural choice of scaling
and, in my opinion, is best seen by studying scalings under which the KPZ equation
remains fixed (e.g., see [15]).

In the context of the open ASEP, space is always fixed to involve N sites. This
suggests to think of N and ε−1 as being the same (or at least proportional). Informed
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by this and earlier scaling of Bertini and Giacomin, I will assume below that

q = exp

(
− 2√

N

)

and call this weak asymmetry scaling. Notice that q ≈ 1 − 2N−1/2, which matches
with the ε1/2 notion of weak asymmetry coming from Bertini and Giacomin.
Likewise, further define

h(N)(t, x) := N−1/2hN(
1
2e

N−1/2
N2t, Nx) + ( 1

2N
−1 + 1

24 )t, z(N)(t, x) := eh
(N)(t,x).

The scaling of space like Nx means that in h(N)(t, x) and z(N)(t, x), x can
vary over [0, 1]. The scaling of time like 1

2e
N−1/2

N2t captures the N2 scaling
from Bertini and Giacomin, as well as some additional corrections that simplify
coefficients elsewhere. The rest of the definition is fixed by the microscopic Hopf-
Cole transform—namely the fact that z(N)(t, x) should satisfy a scaled version of
the discrete SHE. Indeed, the factor ( 1

2N
−1 + 1

24 )t comes from the expansion of

ν 1
2e

N−1/2
N2t down to order 1 terms in N .

So far, none of this scaling has involved the boundary parameters or conditions.
Since h(N)(t, x) involves diffusive scaling between space and the scale of the height
function it is natural to imagine that the density of particles in open ASEP should be
close to 1/2 in order for this scaling to make sense. In fact, it should be within order
N−1/2 of density 1/2 to respect this scaling. This implies that ρ� and ρr should be
scaled in this manner around density 1/2, i.e., in an N−1/2 window around the triple
point of the phase diagram. Specifically, assume now that for some u, v ∈ R,

ρ� = 1

2
+ u

2
N−1/2 + o(N−1/2), ρr = 1

2
− v

2
N−1/2 + o(N−1/2).

The above assumptions have all been on parameters, but it is also necessary to
assume something about the initial data. Since N is varying, for each N there will be
a different choice of initial data—denote the height function for that initial data by
hN(·). This is an abuse of notation from earlier where I let this denote the stationary
height function. For the moment, I will just take this to be any choice of initial data.
Introduce its scaled version h(N)(x) := N−1/2hN(Nx) and exponentialZ(N)(x) :=
eh

(N)(x). These definitions match with the t = 0 height function scaling introduced
above.

The following Hölder bounds assumption will be sufficient to state the KPZ
convergence result: For all θ ∈ (0, 1/2) and every n ∈ Z≥1 there exists
C(n), C(θ, n) > 0 such that for every x, x ′ ∈ [0, 1] and N ∈ Z≥1

||Z(N)(x)||n ≤ C(n), and ||Z(N)(x)− Z(N)(x ′)||n ≤ C(θ, n)|x − x ′|θ

where || · ||n := E[| · |n]1/n and E is the expectation over the initial data.
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Notice that assuming initial data satisfying these Hölder bounds, the initial data
Z(N)(·) will form a tight sequence of random functions. With some work (as done
in [18]) it can be shown that the discrete SHE preserves this class of initial data.
This is the first step to proving convergence to the continuum SHE/KPZ equation
since it implies tightness of the entire process. The second step is to show that all
subsequential limits satisfy the desired SHE/KPZ equation.

I will informally state the main convergence result from [18] and [45]. This was
proved in [18] under the assumption that u, v ≥ 1/2 and extended by Parekh [45]
to general u, v ∈ R case. The reason why the general case was harder is that the
boundary condition for u, v ≥ 1/2 can be thought of as repulsive or killing in
terms of the Feynman-Kac representation, and thus the heat kernel for the associated
Laplacian tends to decay to zero, simplifying various estimates. In the general case,
the heat kernel may grow exponentially, thus complicating matters.

The combination of these two works showed that, provided a sequence of N-
indexed open ASEP processes with parameters satisfying Liggett’s condition, weak
asymmetry and triple point scaling, and initial data satisfying Hölder bounds, then
the following holds. For any fixed time horizon T > 0, the law of {Z(N)(·, ·)}N
is tight in the Skorokhod space D([0, T ], C([0, 1])) of time-space processes that
are CADLAG in time and continuous in space. Moreover, any limit point is in
C([0, T ], C([0, 1])), i.e., continuous in both time and space. If there exists a
(possibly random) non-negative-valued function z0 ∈ C([0, 1]) such that Z(N)(·)
converges to z0(·) along a subsequence as N goes to infinity in the space of con-
tinuous processes on [0, 1], then along that same subsequence Z(N)(·, ·) converges
to z(·, ·) in D([0, T ], C([0, 1])) where z(·, ·) is the unique (mild) solution to the
SHE with boundary parameters u and v and initial data z0(·), see Sect. 3.2. In other
words, this implies that the corresponding height function h(N)(·, ·) converges to
h(·, ·), the Hopf-Cole solution to the KPZ equation.

Before ending this section, I want to just remark on how the above scaling limit
result relates to the mixing time conjecture for open ASEP and to the uniqueness
conjecture for the stationary measure of open KPZ. Besides controlling the current
and stationary measure density, the phase diagram for the open ASEP is supposed
to control the mixing time, i.e., the time that it takes for a general initial state to
converge (e.g. in total variation distance) close to the stationary measure. Recently,
Gantert et al. [30] have made progress on characterizing the mixing time. In the high
and low density states, and assuming a strict asymmetry (i.e. q < 1) they show that
the mixing time grows linearly in the system size N . In the case of the triple point
between all three phases, they are able to give an upper bound of orderN3. However,
the expectation is that the true mixing time at this point and in the maximal current
phase is of order N3/2 and Schmid [49] has since proved this in the case of TASEP
(q = 0).

How does this ASEP mixing time behavior relate to the scaling limit of open
ASEP to open KPZ? The mixing time of N3/2 should have a prefactor that
depends on the strength of the asymmetry. In particular, I expect it to behave like
(1 − q)−1N3/2. Under our weak asymmetry, this behaves like N2 which is exactly
the time scaling in order to arrive at the open KPZ equation. Thus, if someone can
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prove mixing for open ASEP in a manner sufficiently uniform over q , this could
yield a route to study the mixing of the open KPZ equation as well (and hence
imply the uniqueness of the stationary measure). Of course, this is probably not the
easiest (or most direct) route to prove the uniqueness result about open KPZ.

7 Taking Asymptotics of the Open ASEP Stationary Measure

The convergence result described above shows that under special scaling and
assuming Hölder bounds on the open ASEP initial data, there is tightness of the
scaled open ASEP height function and all subsequential limits of the initial data
yield subsequential limits of the process which solve the open KPZ equation (in
fact, things are phrased in terms of the SHE). Since my goal (i.e., the results claimed
in Sect. 4) is to construct a stationary measure for the open KPZ equation, I will
consider now what happens when the convergence result is applied to the open
ASEP stationary measure.

There are two types of results in Sect. 4—those that deal with the existence
and general properties of the stationary measure and those that address the exact
formulas in the case where u + v > 0. Let me start by addressing the first type of
result.

There are two inputs that we appeal to about the open ASEP stationary measure.
The first is that when ρ� = ρr = ρ, the corresponding stationary measure is
Bernoulli with density parameter ρ. Liggett [39] provided a proof of this (under
the Liggett condition) and a more general result from the matrix product ansatz
[25], as explained further in Sect. 8.2. It is straight-forward to see that in this case
the open ASEP stationary measure height function satisfies the necessary Hölder
bounds since it is just a simple random walk trajectory.

The second input is a microscopic version of the stochastic sandwiching result
that I described earlier for the open KPZ stationary measure. Before stating it, let
me motivate it. Imagine you have two versions of open ASEP, one with boundary
parameters α, β, γ, δ and the other with α′, β ′, γ ′, δ′. If α ≤ α′, β ≥ β ′, γ ≥ γ ′,
and δ ≤ δ′, then in the primed system there is an increased rate at which particles
enter and a decreased rate at which they exit the system. It would reason then that
the stationary measure for the primed system should have more particles than in the
original system. This is true, as is the stronger statement that πN is stochastically
dominated (see the definition below) by π ′

N .
Consider two measures π and π ′ on {0, 1}{1,...,N}. The measure π is said to be

stochastically dominated by π ′ (written π > π ′) if there exists a coupling of π
and π ′ on which all sites occupied under π are likewise occupied under π ′. More
explicitly, this means that there exists a probability measure μ on {0, 1}{1,...,N} ×
{0, 1}{1,...,N} such that if let (τ, τ ′) be sampled according to μ (here τ and τ ′ take
values in {0, 1}{1,...,N}) then marginally τ has law π , τ ′ has law π ′ and almost surely
τ ≤ τ ′ in the sense that τi ≤ τ ′

i for all i ∈ {1, . . . , N}.
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This result can be generalized to consider three sets of boundary parameters, and
it is this consideration that leads to stochastic sandwiching for the open ASEP. After
all, the height function increments are just sums of occupation variables, and thus
stochastic domination of the individual occupation variables certainly implies that
of their sums.

I will briefly explain how to demonstrate the above stochastic domination of the
stationary measures. However, before that let me note how it implies the general
u, v Hölder bounds. When u + v = 0 it is possible to choose ρ� = ρr and
thus deal with product Bernoulli measure. When u + v > 0 or u + v < 0, the
parameters α, β, γ, δ can be adjusted in the spirit explained above to show that
the corresponding stationary measure is stochastically sandwiched between two
different product Bernoulli measures. The density parameter for the upper and lower
bounding Bernoulli measures only differ by order N−1/2 which is compatible with
the diffusive scaling that is applied to the height function. Consequently, the Hölder
bounds follow by applying the sandwiching in concert with the analogous bounds
for simple random walks that are converging to drifted Brownian motions.

As far as proving the stochastic domination, the main idea is to use second
class particles. This is the same mechanism that is used to show what is termed
attractiveness of the usual ASEP. Consider starting both the original and the primed
version of open ASEP in state τ (0) and τ ′(0) in such a way that τ (0) ≤ τ ′(0)
(e.g. they could both start out entirely empty). Let α(0) = τ ′(0) − τ (0) denote the
occupation variables for what are called second class particles. For ASEP on the
full line, the basic coupling provides a dynamic on the pair (τ, α) such that at any
later time τ ′(t) and τ (t) + α(t) have the same distribution.

In order to demonstrate such a coupling on the interval, the basic coupling needs
to be augmented at the boundary. This coupling at the boundary is best explained
with the help of Fig. 6. The red particles are those of τ and the blue are those of
α. The arrows and labels represent the transitions and rates associated with the
boundary coupling dynamics. For instance, if there is neither a τ or α particle at
site 1, then at rate α a τ -particle can enter, and at rate α′ −α an α-particle can enter.
Thus, if I am only keeping track of the τ -particles, the transition from empty to

Fig. 6 Coupling τ and τ ′ at
the boundary. Particles in τ
are red dots, and those in τ ′
are blue dots. The transition
rates and transitions are
labeled in grey.
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occupied occurs at rate α and if I am tracking the τ +α particles (i.e. the occurrence
of their, which should match the τ ′ dynamic), this occurs at rate α + (α′ − α) = α′
as desired. Similar considerations imply that these dynamics project onto the τ and
τ ′ dynamics marginally, and hence shows that this constitutes the desired coupling.
This type of coupling is also used in the open ASEP mixing time work of Gantert,
Nestoridi and Schmid [30]. In fact, in the case when Liggett’s condition is assumed,
this monotonicity seems to first have been shown in Liggett’s 1975 paper [39] as
Corollary 3.8, based on a calculation involving the open ASEP generator.

Given the two inputs I have discussed above along with the convergence result
from Sect. 6.4, let me complete the construction of the open KPZ stationary mea-
sure. As indicated above, the stochastic sandwiching and Bernoulli cases provide a
way to demonstrate the Hölder bounds for h(N)(x) := N−1/2hN(Nx) (where hN
is the open ASEP stationary measure in question under the Liggett condition, weak
asymmetry and triple-point scaling). The calculation for the Bernoulli case is fairly
simple, and is transferred to the general u + v �= 0 case through the sandwiching
and some simply inequalities.

Once the Hölder bounds are in place, the argument proceeds by observing that
these bounds imply tightness of the initial data, and hence (through the results
discussed in Sect. 6.4) also tightness of the process h(N)(·, ·). Any subsequential
limit will solve the open KPZ equation and any subsequential limit of the initial
data h(N)(·) will be a stationary measure (since the same held true before taking
the limit). Of course, if someone proves that there is only one open KPZ stationary
measure (for each pair of u, v ∈ R) then this would imply that h(N)(·) converges to
it.

The above argument shows everything claimed in Sect. 4 except for the Laplace
transform formula that characterizes the u + v > 0 stationary measure. The next
section explains the origin and derivation of such formulas.

8 Matrix Product Ansatz and Askey-Wilson Processes

It is at this point in the talk version of this note that my time usually is close to
cutting off (of course, much of what has been said above is severely curtailed in
the hour long talk as well). So, I would like to use this space to give a sketch of
the progression of ideas that form the starting point to derive the Laplace transform
formula for the open KPZ stationary measure.

The first major breakthrough in studying the stationary measure for open ASEP
was in Liggett’s 1975 work [39] where he discovered that the stationary measure
satisfies a recursion relation with respect to the system size N . Namely, the size
N stationary measure is expressible in terms of the size N − 1 case (see [39,
Theorem 3.2]). In that same work, Liggett proved (based on a fairly simple generator
calculation) that assuming the Liggett condition (14), if ρ� = ρr then the stationary
measure is Bernoulli with that density parameter. He also proved certain useful
monotonicity results about the stationary measure, including with respect to changes
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in N and in the boundary parameters. Liggett’s main motivation in that work was to
use open ASEP to approximate half-line and then full-line ASEP and study the
convergence of different choices of initial data in that final setting to Bernoulli
product measures.

A decade and a half later, there was significant renewed interest in the open ASEP
stationary measure, this time from the perspective of statistical physics. The phase
diagram and computation of thermodynamic quantities became centrally important.
Though initially Liggett’s recursion was used to make such calculations (see, e.g.
[24]), an alternative algebraic approach soon presented itself as quite useful in
extracting asymptotics.

8.1 Deriving the Matrix Product Ansatz

Derrida et al. introduced the matrix product ansatz (MPA) in their seminar 1993
work [25]. They primarily focused on the case of open TASEP (q = 0) for which
they could find useful representations of the matrices. However, they also explained
how to formulate the ansatz for the general open ASEP case. The MPA has found
many uses since then in the study of boundary driven integrable spin chains and
particle systems, and I will not try to survey this literature. Instead, let me briefly
introduce the MPA for open ASEP and describe how it is derived. After that I will
explain how to go from there to our open KPZ result.

As earlier in the text, let τ = (τ1, . . . , τN ) ∈ {0, 1}N denote the state-space
for open ASEP, and τ (t) denote the occupation process at time t . Then, for any
η, τ ∈ {0, 1}N , and Pη(t, τ ) := P(τ (t) = τ |τ (0) = η), the Kolmogorov backward
equation (or master equation) says that ∂tPη(t, τ ) = L∗Pη(t, τ ) where L∗ acts on
the τ variable and represents the backwards generator of open ASEP. In particular,
the stationary measure must have a zero time derivative and hence, recalling the
notation πN(τ) introduced earlier for the stationary measure, it must satisfy the
defining relation L∗πN(τ) = 0. Since there is no particle conservation and all
states communicate in open ASEP, the Perron-Frobenius theorem implies that (up to
constant scaling) there is a unique eigenfunction for L∗ with zero eigenvalue. This
means that for any function fN(τ) that is not identically zero and which satisfies
L∗fN(τ) = 0, πN(τ) must equal fN (τ)/ZN where ZN is the sum of fN(τ) over all
τ ∈ {0, 1}N .

Let me now write down explicitly the relation L∗fN(τ) = 0, separating things
out in terms of particle movement between the left reservoir and site 1, sites i and
i + 1 in the bulk for i = 1, . . .N − 1, and site N and the right reservoir:

L∗fN(τ) := L∗
�fN(τ)+

N−1∑

i=1

L∗
i,i+1fN(τ) + L∗

r fN (τ ) = 0 (16)
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where

L∗
�fN (τ) :=

∑

σ1

(h�)τ1;σ1fN (σ1, τ2, . . . τN ),

L∗
r fN (τ ) :=

∑

σN

(hr)τN ;σN fN (τ1, . . . , τN−1, σN ),

L∗
i,i+1fN (τ) :=

∑

σi,σi+1

(h)τi ,τi+1;σi,σi+1fN (τ1, . . . , σi , σi+1, . . . , τN ),

for each i ∈ {1, . . . , N−1}. In the above expressions, the sums over the σ ’s are take
over values in {0, 1}, h� and hr are 2 × 2 matrices and h is a 4 × 4 matrix. These
matrices are given as

h� =
(−α γ

α −γ

)
, h =

⎛

⎜⎜⎝

0 0 0 0
0 −q 1 0
0 q −1 0
0 0 0 0

⎞

⎟⎟⎠ , hr =
(−δ β

δ −β

)
(17)

where for h� (and similarly hr ) the term (h�)i;j corresponds to row i+1 and column
j + 1 with i, j,∈ {0, 1} and for h, the term (h)i,i′;j,j ′ corresponds to row i ′ + 2i+ 1
and column j ′ + 2j + 1 with i, i ′, j, j ′ ∈ {0, 1}.

In order for (16) to hold, it would be sufficient (though certainly not necessary)
that there exist two constants x0 and x1 such that the following relations hold for all
choices of τ1, . . . , τN :

L∗
�fN (τ) = xτ1fN−1(τ̂1), (18)

L∗
i,i+1fN (τ) = −xτi fN−1(τ̂i)+ xτi+1fN−1(τ̂i+1), (19)

L∗
r fN (τ ) = −xτN fN−1(τ̂N), (20)

where τ̂i denotes the vector τ with the ith coordinate (i.e., τi ) removed (e.g.
τ̂1 = (τ2, . . . , τN )). Clearly, if these relations hold, then summing the left-hand
sides yields the left-hand side of (16) while summing the right-hand side yields 0 by
telescoping.

Of course, the question is whether fN actually satisfies this relation and if so,
whether there exists a manageable representation for the solution to this recursion.
Inspired by earlier work in integrable systems, Derrida et al. [25] proposed an ansatz
for the form that fN could take. Consider the class of functions f̃N (τ ) that can be
written in the form

f̃N (τ1, . . . , τN ) = 〈W |(τ1D + (1 − τ1)E) · · · (τND + (1 − τN)E)|V 〉
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where D and E are matrices (possibly infinite dimensional), 〈W | is a row vector
and |V 〉 is a column vector. Here the dimension for all of these matrices and
vectors are assumed to match and the multiplication is well-defined (i.e. everything
is convergent if things are infinite dimensional). For instance, if everything is
one-dimensional, then the class of measures that can be defined by f̃N above
(after normalizing) is exactly that of product Bernoulli measure, all with the same
parameter.

Assuming the general form of f̃N above, it is possible to deduce conditions on
the matrices and vectors that are necessary in order that f̃N satisfies (18)–(20).
Consider (18). In terms of the matrix product, this asks that

〈W |(−αE + γD)

N∏

i=2

(τiD + (1 − τi)E)|V 〉 = x0〈W |
N∏

i=2

(τiD + (1 − τi)E)|V 〉,
(21)

〈W |(αE − γD)

N∏

i=2

(τiD + (1 − τi)E)|V 〉 = x1〈W |
N∏

i=2

(τiD + (1 − τi)E)|V 〉
(22)

where the product should be understood as ordered from left-to-right in terms of
increasing index. Clearly this implies that x0 = −x1 and since everything scales
homogeneously, it is fine to take x1 = 1. In order for the above relations to hold, it
is sufficient then, that

〈W |(αE − γD) = 〈W |.

Similar reasoning show that in order for f̃N to satisfy (20) it is sufficient that

(βD − δE)|V 〉 = |V 〉.

Likewise, the relation in (19) will be satisfied by f̃N as long as

DE − qED = D + E.

Notice that the quadratic term on the right-hand side above arises since the bulk
relation (19) involves summing over two particles.

To summarize, provided non-trivial matrices and vectors (potentially infinite
dimensional, though necessarily such that products are well-defined) that satisfy
the three relations

DE − qED = D + E, 〈W |(αE − γD) = 〈W |, (βD − δE)|V 〉 = |V 〉
(23)
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then necessarily the corresponding f̃N (τ ) will satisfy the defining conditions
asked for fN(τ), and hence yield the stationary measure (after normalizing). This
quadratic algebra is sometimes called the DEHP algebra. Of course, there is a priori
no reason to expect that there exist matrix representations to the DEHP algebra.

8.2 Representations for the DEHP Algebra

As an immediate application, it is now possible to use the MPA to give a sufficient
condition under which the stationary measure for open ASEP is homogeneous
product Bernoulli. If the matrices and vectors are all one-dimensional (which
implies the Bernoulli product measure) then the DEPH algebra relations reduce to

de(1 − q) = d + e, αe − γ d = 1, βd − δe = 1

for scalars d, e. In order for there to exist such d and e is suffices that the open ASEP
parameters satisfies

(1 − q)(α + δ)(β + γ ) = (α + β + γ + δ)(αβ − γ δ).

If we further assume that Liggett’s condition holds (thus expressing γ in terms of
α, and δ in terms of β) then the above equation is satisfied when α + β = 1, which
was precisely the condition mentioned in Sect. 7.

Putting aside the one-dimensional case, Derrida et al. [25] showed that any
other matrix representation to (23) must be infinite dimensional. Finding such
representations is a highly non-trivial task. When q = 0, Derrida et al. [25]
provided a few such representations. Different matrix representations have proven
useful in making various types of calculations involving the large N limit of the
stationary measure, for example including computing the stationary current, and
other correlation functions.

For the general q �= 0 and general α, β, γ, δ parameter case, it took about a
decade until Uchiyama et al. [51] provided the first representations to the DEHP
algebra. Their infinite dimensional matrix representations (that I will call the USW
representation) were written in terms of the Askey-Wilson orthogonal polynomials
(in particular, the associated Jacobi matrix). This remarkable link between orthog-
onal polynomials and the open ASEP stationary measure was already present in a
simpler case (when γ = δ = 0) in earlier work of just Sasamoto [48] in which the
Al-Salam-Chihara polynomials replaced the Askey-Wilson polynomials. Another
notable development in this area came in work of Corteel and Williams [21] who,
using a different matrix representation, found a combinatorial description for the
open ASEP stationary measure in terms of certain types of tableaux combinatorics.
A nice exposition on this direction and further developments around it can be found
in Williams’ recent expository piece [53].
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Since my aim here is explain how the work of [51] leads to the Askey-Wilson
process formulas of Bryc and Wesołowski [11], I will recall a variant of the USW
matrix representation for the DEHP algebra in the notation of [11].

It will be helpful to work with the parameterizations of α, β, γ, δ in terms of
A,B,C,D as facilitated by the bijection in (11). The USW matrix representation is
infinite dimensional and written in terms of one-sided infinite matrices and vectors
(i.e., indexed by natural numbers). I will use bold face variables to distinguish this
representation as well as associated matrices used in describing it. The row vector
〈W| = [1, 0, 0, . . .] and column vector |V〉 = [1, 0, 0, . . .]T are both simple. The
matrices E and D are more complicated and can be written in terms of the identity
matrix I and two other matrices x and y as

D = 1

1 − q
I + 1√

1 − q
x, E = 1

1 − q
I + 1√

1 − q
y. (24)

The x and y matrices are tridiagonal and admit explicit formulas for the coefficients.
Since I do not want to get lost in the (very important) details here, I will abstain
from recording them precisely, but rather just focus on their key properties. First
and foremost, they are such that D and E, along with the simple 〈W| and |V〉, satisfy
the DEHP algebra. That they satisfy the quadratic relation in the DEHP algebra is
equivalent to the q-commutation relation xy−qyx = I. This relation, in conjunction
with the knowledge of the first entry of the three non-trivial diagonals in both x and
y uniquely determine their values. The values of these non-trivial entries can be
determined from the two boundary relations in the DEHP algebra.

8.3 Askey-Wilson Polynomials and Processes

The other key property of the x and y matrices is that they appear in the Jacobi matric
that describes the three step recurrence for Askey-Wilson orthogonal polynomials.
Let me briefly introduce these polynomials since they will be needed in order to
relate the MPA to the Askey-Wilson process (which is not defined in terms of these
polynomials, but rather the orthogonality measure associated to them).

I will use the notation of [11] whereby they write the Askey-Wilson polynomials
as w̄n(x; a, b, c, d, q). The parameters should be assumed to satisfy q ∈ (−1, 1),
a, b, c, d ∈ C with abcd, abcdq, ab, abq /∈ [1,∞). These polynomials are
typically described in terms of their three term recurrence, though I will not write
this down here explicitly. Under some additional conditions on parameters (that
I will also suppress here) these polynomials will be orthogonal with respect to a
probability distribution known as the Askey-Wilson measure. This measure has the
form

ν(dx; a, b, c, d, q) := f (x; a, b, c, d, q)1|x|<1 +
∑

y∈F(a,b,c,d,q)
p(y; a, b, c, d, q)δy (dx).

(25)
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The first part above is an absolutely continuous measure on x ∈ (−1, 1)with density

f (x; a, b, c, d, q) = (q, ab, ac, ad, bc, bd, cd; q)∞
2π(abcd; q)∞

√
1 − x2

∣∣∣∣
(e2ιθ ; q)∞

(aeιθ , beιθ , ceιθ , deιθ ; q)∞
∣∣∣∣
2

(26)

where we recall (a; q)∞ = (1 − a)(1 − qa)(1 − q2a) · · · , (a1, . . . , ak; q)∞ =
(a1; q)∞ · · · (ak; q)∞, and θ is defined by the relation cos(θ) = x. The second part
of (25) is an atomic measure supported at locations y in the finite set F(a, b, c, d, q)
with masses p(y; a, b, c, d, q). The points and their masses are explicit as well,
though I will not record them here. Though I will not explain it, these atoms only
become important when the open KPZ parameters u, v are not both positive. The
formula (2) that I gave earlier for the Laplace transform of the stationary open KPZ
height increment from 0 to 1 was exactly in the case of u, v > 0 in which case it is
only the absolutely continuous part above in (25) that is present.

In a spirit similar (albeit considerably more involved) to how one uses the
Gaussian distribution (which is the orthogonality measure for Hermite polynomials)
to define Brownian motion, Bryc and Wesołowski [10] used the measure ν to
define a process that they called the Askey-Wilson process. The existence and
path properties (e.g. continuity versus jumps) of this process are non-trivial. It is
defined only for an interval I of time that is dependent upon the five parameters
A,B,C,D, q that determine it. These parameters are also subject to certain
conditions for existence of the process. Following [10] and [11], let Y = (Yt )t∈I
denote this process. It is a Markov process with marginal distribution for each t ∈ I

given by the measure

πt (dx) := ν(dx;A√
t , B

√
t, C/

√
t,D/

√
t, q)

and with transition probabilities for s < t both in I of the form

Ps,t (x, dy) := ν(dy;A√
t , B

√
t,
√
s/t(x +

√
x2 − 1),

√
s/t(x −

√
x2 − 1), q).

It takes some work to show that this is well-defined, i.e., satisfying Chapman-
Kolmogorov.

Bryc and Wesołowski’s original motivation for introducing the Askey-Wilson
process came from the study of quadratic harness which are stochastic processes
Xt such that the expectation of Xt and of X2

t , conditioned on the process outside
an interval containing t , are given as linear and quadratic functions (respectively)
of the values of the process X at the boundary of said interval. Brownian motion
or a Poisson jump process are arguably the simplest examples of such harnesses.
The question addressed in [10] was how to characterize the space of all standard
quadratic harnesses (standard means that Xt has the same mean and covariance as
standard Brownian motion), and it turned out that this was achieved by the Askey-
Wilson processes.
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The first time I heard about Askey-Wilson processes was at a conference on
“Orthogonal polynomials, applications in statistics and stochastic processes” in
2010 at Warwick. This was quite a notable event for me since it was among the
first times I gave a talk at a conference, especially one overseas. I have a vivid
memory of sitting in the lecture theater and listening to Wesołowski give a talk
entitled “Quadratic harnesses and Askey-Wilson polynomials”. One of the reasons
it was so vivid is that I was completely confused as to why anyone would study these
seemingly very complicated processes. I suppose the moral of this brief anecdote is
that when someone gives a talk about something that seems very complicated, it is
often worth paying attention even if you do not immediately understand why.

A property of the Askey-Wilson polynomials and process is that when combined,
they form a family of orthogonal martingales. Specifically, let

Zt := 2
√
t√

1 − q
Yt

and define the (infinite) row vector-valued function (x, t) �→ 〈rt (x)| where

〈rt (x)| := [r0(x; t), r1(x; t), . . .]

and where rn(x; t) are polynomials of degree n in the variable x and given in terms
of the Askey-Wilson polynomial w̄n by

rn(x; t) = tn/2w̄n

(√
1 − q

2
√

2
;A√

t , B
√
t, C/

√
t ,D/

√
t , q

)
.

The process 〈rt (Zt )| satisfies the following properties (proved in [10]):

1. r0(x; t) = 1 for all x,
2. E[rn(Zt ; t)rm(Zt ; t)] = 0 if m �= n,
3. E[rn(Zt ; t)|Zs] = E[rn(Zt ; t)|Fs] = rn(Zs; s) for s ≤ t and Fs = σ(Zv : v ≤

s) the sigma-algebra generated by Zv for all v ≤ s.

The three term recurrence relation for Askey-Wilson polynomials can be rewrit-
ten in terms of the rn version of these polynomials in the following succinct manner:

x〈rt (x)| = 〈rt (x)|(tx + y) (27)

where x and y are the matrices discussed earlier around (24). Since these are
tridiagonal matrices, they imply that xrn(x; t) can be expressed as a sum of
rn−1(x; t), rn(x; t) and rn+1(x; t) with coefficients that depend on t in a linear
manner but not on the variable x.
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8.4 Connecting Matrix Product Ansatz and Askey-Wilson
Processes

With all of the notation and properties introduced above, I am now in a position
to relate the beautiful proof that appears in [11] and relates the open ASEP
stationary measure, via the matrix product ansatz and the Uchiyama-Sasamoto-
Wadati representation, to the Askey-Wilson process.

The matrix product ansatz gives a formula for the stationary measure. However,
by summing over all states it also give a compact representation for the following
generating function for πN(τ) (recall the notation on the left-hand side means
averaging a function of τ against this measure)

〈
N∏

j=1

t
τj
j

〉

N

= 〈W|∏N
j=1(E + tjD)|V〉

〈W|∏N
j=1(E + D)|V〉 .

As before, the product is ordered from left to right in increasing order of indices.
Focusing on the numerator and using the USW representation (24) of the DEHP
algebra yields

〈W|
N∏

j=1

(E + tjD)|V〉 = (1 − q)−N 〈W|
N∏

j=1

(
(1 + tj )I +√

1 − q(tjx + y)
)|V〉

:= (1 − q)−N*.

Since r0(x; t) ≡ 1 and since E[rn(Zt ; t)] = E[rn(Zt ; t)r0(Zt ; t)] = 0 if n �= 0, the
vector 〈W| can be rewritten in terms of the vector E[〈rt (Zt )|] for any choice of t .
By linearity of the expectation,

* = E

⎡

⎣〈rt1(Zt1)|
N∏

j=1

(
(1 + tj )I +√

1 − q(tjx + y)
)|V〉

⎤

⎦ .

The three term recurrence relation (27) can now be applied to peal off the first term
in the product above. In particular, observe that for any t ,

〈rt (Zt )|
(
(1 + t)I +√

1 − q(tx + y)
) = (1 + t +√

1 − qZt)〈rt (Zt )|.

The term involving I follows since that is just the identity matrix, and the other
follows from (27). This means that * can be rewritten as

* = E

⎡

⎣(1 + t +√
1 − qZt1)〈rt1(Zt1)|

N∏

j=2

(
(1 + tj )I +√

1 − q(tjx + y)
)|V〉

⎤

⎦ .
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Provided that t2 ≥ t1, the martingale property for each rn(Zt ; t) implies that

〈rt1(Zt1)|
N∏

j=2

(
(1 + tj )I +√

1 − q(tjx + y)
)|V〉

= E

⎡

⎣〈rt2(Zt2)|
N∏

j=2

(
(1 + tj )I +√

1 − q(tjx + y)
)|V〉|Ft1

⎤

⎦ .

Plugging this into the above expression for * and using the tower property for
martingales to remove the conditional expectation yields

* = E

⎡

⎣(1 + t +√
1 − qZt1)〈rt2(Zt2)|

N∏

j=2

(
(1 + tj )I +√

1 − q(tjx + y)
)|V〉|

⎤

⎦ .

This procedure can be repeated providing t1 ≤ t2 ≤ t3 ≤ · · · ≤ tN , yielding

* = E

⎡

⎣
N∏

j=1

(1 + tj +√
1 − qZtj )〈rtN (ZtN )|V〉

⎤

⎦ .

However, since |V〉 = [1, 0, . . .]T and 〈rtN (ZtN )|V〉 = r0(ZtN ; tN ) = 1. Thus,

* = E

⎡

⎣
N∏

j=1

(1 + tj +√
1 − qZtj )

⎤

⎦ .

In the above calculation it was important that the Askey-Wilson process be defined
for the values of tj used, and for the parameters A,B,C and D that encode the
boundary parameters for open ASEP. Without going into the details, provided that
AC < 1, the Askey-Wilson process is well-defined for t ∈ (0,∞) and thus the
above argument proves the following result [10, Theorem 1]: For 0 < t1 ≤ · · · ≤ tN ,

〈
N∏

j=1

t
τj
j

〉

N

=
E

[∏N
j=1(1 + tj + √

1 − qZtj )
]

E
[
(2 + √

1 − qZ1)N
] (28)

where the 〈·〉N on the left-hand side is the stationary state expectation for open
ASEP and the E[·] on the right-hand side is the expectation with respect to the
Askey-Wilson process (with the two processes related in terms of their parameters
A,B,C,D and q). The condition AC < 1 corresponds exactly to the fan region
discussed in Sect. 6.2 and ultimately is the reason why the open KPZ stationary
measure Laplace transform is only computed for u+v > 0 (the limiting fan region).
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8.5 Coming Full Circle to Asymptotics

To close, I would like to briefly explain why (28) is quite useful for asymptotics.
Recall from earlier the formula (1) for the Laplace transform for the total change in
height for the open KPZ equation across the interval [0, 1]. The microscopic analog
for this is hN(N) = 2(τ1 + · · · + τN)− N .

If t1 = · · · = tN = e2s for s ∈ R then (28) implies the Laplace transform formula

〈eshN(N)〉 = e−sN
E
[
(1 + e2s + √

1 − qZe2s )N
]

E
[
(2 + √

1 − qZ1)N
] . (29)

The right-hand side numerator (and similarly denominator) can be written as an
integral against the law ofZe2s , i.e., against the (scaled) Askey-Wilson orthogonality
measure. As N grows, the complexity of the right-hand side does not. In fact, as
is often the case in asymptotic analysis, owing to the power of N , the right-hand
side will actually simplify in the N → ∞ limit, even when the special scalings
from Sect. 6 are applied. This should be compared to the original form of the matrix
product ansatz which requires multiplication ofN matrices, the complexity of which
grows considerably, even if they are tridiagonal.

I should be clear that the asymptotics of a formula like (29) is not simple. How-
ever, it can be done. In [11], they apply their Askey-Wilson process formula (28) to
prove a large deviation principle for the stationary measure of open ASEP with fixed
parameters as N goes to infinity. Soon after, Bryc and Wang [9] used (28) to study
the fluctuation scaling limit for the stationary measure, again for all parameters fixed
and N → ∞.

My results with Knizel, in particular, the open KPZ Laplace transform formula
discussed in Sect. 4 also proceed through (28). In our case, all of the parameters are
being scaled in an N−1/2 window around their limiting values: q approaching 1,
α, β, γ, δ approaching 1/2 and (in order to accommodate the scaling of hN(N)),
s approaching 0. Inputting these scalings into a formula like (29), it eventually
becomes clear that the main contribution to the integral against the Askey-Wilson
process marginal distribution comes when Z is within order N−1 of 1. Zooming
into this scale eventually (in the N → ∞ limit) leads to formulas involving a
tangent process to the Askey-Wilson process—the continuous dual Hahn process
mentioned earlier in Sect. 4. In terms of (29), all of this scaling also introduces a
diverging Jacobian factor which is compensated by the decay of the integrand. The
point-wise limit of the integrand and measure exists based on convergence of q-
gamma functions to gamma functions (recall that q is tending to 1 and there are
lots of q-Pochhammer symbols). However, in order to conclude that the integral
itself converges (and hence deduce formulas like (1)) requires an application of the
dominated convergence theorem. This, in turn, relies on uniform control over the
behavior of q-gamma functions with its variable varying in vertical strips in the
complex plane of height of order N (though Z has bounded support, after scaling
by order N−1 around Z = 1, the support becomes of order N). So, to bring things
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full circle, it is exactly in proving this type of dominated convergence bounds that
the results of Sect. 2 become necessary.
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Probability of Two Large Gaps in the
Bulk and at the Edge of the Spectrum
of Random Matrices

B. Fahs, I. Krasovsky, and T.-H. Maroudas

In memory of Harold Widom, 1932–2021

Abstract We present the probability of two large gaps (intervals without eigenval-
ues) in the bulk and also in the edge scaling limit of the Gaussian Unitary Ensemble
of random matrices.

Keywords Random matrices · Fredholm determinants · Gap probability

Let Ksin, KAi be the (trace class) operators on L2(sA), where sA = {sx : x ∈ A}
for s > 0 and A ⊂ R a finite union of intervals, with kernels

Ksin(x, y) = sin(x − y)

π(x − y)
,

KAi(z, z′) = Ai(z)Ai′(z′)− Ai′(z)Ai(z′)
z − z′ =

∫ ∞

0
Ai(z + ζ )Ai(z′ + ζ )dζ,

respectively.
Consider the Fredholm determinants

P sin(sA) = det(I − Ksin)sA, PAi(sA) = det(I − KAi)sA. (1)

The determinants (1), called the sine- and Airy-kernel determinants, respectively,
are the probability of gaps (intervals without eigenvalues) sA in the bulk and in the
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edge scaling limit, respectively, of the Gaussian Unitary Ensemble (GUE) of random
matrices. These determinants may be described in terms of solutions to integrable
systems of partial differential equations (see [27, 31, 32], and [33] for an overview).
A fascinating problem is to find their asymptotic expansion for large s.

First consider the case when A is a single interval. For the sine-kernel determi-
nant, it is sufficient, because of the translation invariance and rescaling, to consider
A = (−1, 1), and for the Airy-kernel determinant, the most interesting case is
A = (−1,+∞). In both models the asymptotics of the determinant are by now
well established.

In the case of the sine-kernel determinant, asymptotics of the logarithm of P sin

in (1) have the form:

logP sin(−s, s) = − s2

2
− 1

4
log s + c0 + O(s−1), s → ∞, (2)

where

c0 = 1

12
log 2 + 3ζ ′(−1). (3)

Here ζ ′(z) is the derivative of Riemann’s zeta function.
The leading term − s2

2 was found by Dyson in 1962 in [19]. Dyson used Coulomb

gas arguments. The terms − s2

2 − 1
4 log s were computed by des Cloizeaux and

Mehta [18] in 1973 who used the fact that the eigenfunctions of Ks are spheroidal
functions. The constant c0 appearing in (3), known as the Widom-Dyson constant,
was identified by Dyson [20] in 1976 who used the inverse scattering techniques
and the earlier work of Widom [35]. In that work, Widom computed asymptotics
of Toeplitz determinants with symbols supported on an arc of the unit circle. The
arguments in [19], [18], and [20] are not fully rigorous. The first proof of the main

term, i.e. the fact that logP sin(−s, s) = − s2

2 (1 + o(1)), was given by Widom
[36] in 1994. The full asymptotic expansion (2), apart from the expression (3)
for c0, was proved by Deift Its and Zhou [14] in 1997. The authors of [14] used
Riemann-Hilbert techniques to determine asymptotics of the logarithmic derivative
d
ds

logP sin(sA), where A is one (or a union of several) interval(s). The asymptotics
for Ps(A) were then obtained in [14] by integrating the logarithmic derivative
with respect to s. The reason the expression for c0 was not established in [14] is
that there is no initial integration point s = s0 where P sin(sA) would be known
explicitly. In [28], the author was able to justify the value of c0 in (3) by using
a different differential identity for associated Toeplitz determinants and again the
result of Widom [35]. An alternative proof of (3) was given in [15], which was
based on another differential identity for Toeplitz determinants. In [15], the result
of Widom on Toeplitz determinants in [35] was also rederived this way. Both [28]
and [15] relied on Riemann-Hilbert techniques. Yet another proof of (3) was given
by Ehrhardt [22] who used a very different approach of operator theory.
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In the case of the Airy-kernel determinant, the asymptotics of the logarithm of
PAi in (1) have the form:

logPAi(−s,+∞) = − 1

12
s3 − 1

8
log s + χAiry + O

(
1

s3/2

)
, s → ∞, (4)

where

χAiry = 1

24
log 2 + ζ ′(−1). (5)

The determinant PAi(−s,+∞) is the Tracy-Widom distribution [31]—the dis-
tribution of the largest eigenvalue of the GUE. The same determinant also describes
the distribution of the longest increasing subsequence in a random permutation [1].
Its large s asymptotics were first considered by Tracy and Widom [31] in 1994, who
observed that

PAi(−s,+∞) = exp

{
−
∫ ∞

−s

(x + s)u2(x)dx

}
, (6)

where u(x) is the Hastings-McLeod solution of the Painlevé II equation

u′′(x) = xu(x)+ 2u3(x) , (7)

specified by the following asymptotic condition:

u(x) ∼ Ai(x) as x → +∞. (8)

The asymptotics of the logarithmic derivative (d/ds) logPAi(−s,+∞) follow, up
to a constant (which is in fact zero), from (8) and the known asymptotics of the
Hastings-McLeod solution at −∞. Integrating in s, Tracy and Widom obtained (4)
up to an undetermined constant χAiry, whose value they conjectured to be (5). Two
independent and complete proofs of (4), confirming the value of χAiry, were given
in [16] and [2].

Note that analogous results on the probability of a large gap were obtained for
the Bessel-kernel determinant in [17, 23], see [29] for an overview.

Return now to the case of the sine-kernel determinant. If A is a union of several
intervals, it was shown by Widom in [37] that

d

ds
logP sin(sA) = −C1s + C2(s) + o(1), s → ∞, (9)

where C1 > 0 and C2(s) is a bounded oscillatory function. The constant C1 can be
computed explicitly, but C2(s) is an implicit solution of a Jacobi inversion problem.
This result was extended and made more explicit by Deift Its and Zhou in [14].
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Fig. 1 Cycles on the Riemann surface !.

From now on we will concentrate on the case of two gaps, A = (a0, b0) ∪
(a1, b1). We proceed to introduce the necessary notation, following [14], and will
subsequently present a complete solution.

Let p(z) = (z − a0)(z − b0)(z − a1)(z − b1), and consider the two-sheeted
Riemann surface ! of the function p(z)1/2. On the first sheet p(z)1/2/z2 → 1 as
z → ∞, while on the second, p(z)1/2/z2 → −1 as z → ∞. The sheets are glued
at the cuts (a0, b0) and (a1, b1). Each point z ∈ C \ A has two images on !. The
Riemann surface ! is topologically a torus.

Let the elliptic integralsLj ,Mj (which depend on the end-points ak, bk) be given
by

Lj =
∫ b1

a1

xjdx√|p(x)| = i

2

∫

A1

xjdx

p(x)1/2 , Mj =
∫ a1

b0

xjdx√|p(x)| = 1

2

∫

B1

xjdx

p(x)1/2 ,

(10)

j = 0, 1, 2, where the loops (cycles) Aj , Bj are shown in Fig. 1. The loops A0, A1
lie on the first sheet, and the loop B1 passes from one to the other: the part of it
denoted by a solid line is on the first sheet, the other is on the second.

Let

ψ(z) = q(z)

p(z)1/2 , q(z) = (z − x1)(z − x2) = z2 + q1z + q0,

q1 = −(x1 + x2), q0 = x1x2,

(11)

where the constants x1 ∈ (a0, b0) and x2 ∈ (a1, b1) are defined by the conditions

∫

Aj

ψ(z)dz = 0, j = 0, 1. (12)

It follows that

q1 = −a0 + b0 + a1 + b1

2
, q0 = − (L2 + q1L1)

1

L0
. (13)
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Note that (12) implies that ψ(z) has no residue at infinity. More precisely, we
obtain as z → ∞ on the first sheet

ψ(z) = 1 + G0

z2 +O(z−3), G0 = q0 − 1

2
q2

1 + 1

4
(a2

0 + a2
1 + b2

0 + b2
1). (14)

As shown in [14], G0 > 0.
Let

τ = i
M0

L0
, " = − 1

2π

∫

B1

ψ(ζ )dζ = 1

π

∫ a1

b0

ψ(ζ )dζ = 1

L0
, (15)

where the integration
∫ a1
b0

ψ(x)dx is taken on the first sheet, and where the last
equation for " follows by Riemann’s period relations (Lemma 3.45 in [14] for n =
1). Note that iτ < 0, " ∈ R. Recall the definition of the third Jacobian θ -function
θ3(z; τ ):

θ3(z) = θ3(z; τ ) =
∑

m∈Z
e2πimz+πiτm2

. (16)

The θ -function satisfies the following periodicity relations, see e.g. [34],

θ3(z + 1) = θ3(z) and θ3(z + τ ) = e−2πiz−πiτ θ3(z). (17)

We are now ready to present the result.

Theorem 1

logP sin((sa0, sb0) ∪ (sa1, sb1)) = −s2G0 − 1

2
log s + log

θ3(s"; τ )
θ3(0; τ )

+ 1

4
log(a1−a0)(b1−b0)− 1

8

1∑

j=0

log |q(aj)q(bj )|+2c0+O(s−1), s → ∞,

(18)

with G0 as in (14), c0 as in (3), and τ , " as in (15).

Deift et al. found in [14] the asymptotics of the derivative w.r.t. s,
d
ds
P sin(s ∪m

j=0 (aj , bj )). In particular, for the present case m = 1, this allowed

them to obtain the −s2G0 term, the G1 log s term (with G1 written in terms of a
limit of an integral of a combination of θ -functions), and the log θ3(s"; τ ) term.
The constant in s term remained undetermined (for the same reason as given above
in the case of one interval). The proof of Theorem 1 was concluded in [25] where the
constant term was found and proved, and the fact that G1 = −1/2 was established.
In [25] we also make a conjecture of the constant term in the general case of m + 1
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Fig. 2 Cycles on the Riemann surface !̃.

gaps. Combined with our previous work [24], Fahs and Krasovsky [25] also gives a
full description of all the transition asymptotics between one and two gaps (that is
when the edges ak , bk are allowed to depend on s).

The method of [25] is based on differential identities for d
dak

P sin, d
dbk

P sin, and
on the fact that when the distance between the gaps is large relative to their length,
the probability of two gaps may be approximated by the product of two single-
gap probabilities. The latter fact provides a starting point for the integration. The
main technical challenge in [25] was the integration over ak , bk of the asymptotic
expressions for the differential identities.

We now discuss the corresponding result for the Airy-kernel determinant on two
intervals A = (c, b) ∪ (a,+∞). The most interesting case and the one we consider
is when a, b, c < 0. This corresponds for large s to the asymptotics of the Tracy-
Widom distribution for the gap (−|a|s,+∞) in the presence of one additional gap
(−s|c|,−s|b|). Similarly to the sine case above, if the distance between gaps is
large compared to b − c and |a|, the logarithm of the probability is approximately
the sum of the (rescaled) Tracy-Widom distribution asymptotics (4) and the one-gap
asymptotics (2).

Let p̃(z) = (z−a)(z−b)(z− c), and consider the two-sheeted Riemann surface
!̃ of the function p̃(z)1/2. On the first sheet p̃(z)1/2 > 0 for z > a. The cuts are
shown on Fig. 2.

Consider the function

ψ̃(z) = q̃(z)

p̃(z)1/2 , q̃(z) = z2 + q̃1z + q̃0, (19)

where the polynomial q̃(z) is determined by the conditions

∫

B1

ψ̃(ζ )dζ = 0,
∫ z

a

ψ̃(ζ )dζ = 2

3
z3/2 + O

(
1

z1/2

)
, z → ∞. (20)

It follows that

q̃1 = −a + b + c

2
, q̃0 = −M̃2 + q̃1M̃1

M̃0
= 1

3
(ab+ac+bc)+1

3
q̃1
M̃1

M̃0
. (21)
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Here we define (cf. (10))

L̃j = i

2

∫

A1

xjdx

p̃(x)1/2
, M̃j = 1

2

∫

B1

xjdx

p̃(x)1/2
, j = 0, 1, 2. (22)

Furthermore, the function ψ̃(z) admits a large-z asymptotic expansion of the
form

ψ̃(z) = z1/2 − 1

2

α1

z3/2 − 3

2

α2

z5/2 + O
(
z−7/2

)
, z → ∞, (23)

where, in particular,

α2 = − 1

12

(
a3 + b3 + c3 − (a + b)(a + c)(b + c)− 8q̃0q̃1

)
. (24)

Let

τ̃ = i
L̃0

M̃0
, "̃ = − 1

2πi

∫

A1

ψ̃(ζ )dζ. (25)

Similarly to (15), we have that iτ̃ < 0, "̃ ∈ R.
We now state our result.

Theorem 2 The following asymptotics hold

logPAi((sc, sb) ∪ (sa,+∞)) = −s3α2 − 1

2
log s + log

θ3(s
3/2"̃; τ̃ )

θ3(0; τ̃ )
+ 1

4
log(a − c)− 1

8
log|2q̃(a)̃q(b)̃q(c)| + c0 + χAiry + o(1), s → +∞,

(26)

where the constants c0, χAiry are given by (3) and (5), respectively.

This theorem was established in [30] where we followed the method of [25].
In the recent work [3], Blackstone Charlier and Lenells have simultaneously

and independently analyzed the large-s asymptotics of logPAi(sA). They found
the expansion −α2s

3 − 1
2 log s+ log θ3(s

3/2"̃)+χ ′ +O(1/s) with an undetermined
constant term χ ′ = χ ′(a, b, c). (This analysis was then extended by the authors to
the case of n gaps in the bulk of the Airy process in [4], and in the Bessel process in
[5].) The authors of [3–5] followed the approach of [14], and used Riemann-Hilbert
analysis to obtain the asymptotics of the derivative d

ds
logPAi(sA). By contrast,

our approach of [25, 30] uses the differential identity w.r.t. ak , bk, which allows to
determine the constant.
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A related problem where θ -functions also appear is the computation of the
asymptotics of the determinant det(I − γKsin)(−s,s), where γ ∈ [0, 1]. This
determinant is the gap probability of a thinned version of the sine process. Namely,
if we independently remove each particle from the sine process with probability
1 − γ , then the probability of the resulting process having no particles in (−s, s)

is given by det(I − γKsin)(−s,s). When most of the particles are removed, the
resulting process is close to a Poisson process, and thus, as γ changes between 1
and 0, the determinant interpolates between a random matrix gap probability and
the gap probability of a Poisson process. It is of interest to compute the behaviour
of det(I − γKsin)(−s,s) as s → ∞, and in a certain double scaling limit where
γ → 1, fluctuations involving θ -functions appear in the asymptotic description
of the determinant. This problem was first studied by Dyson [21], and recently
addressed in [7–9] (see also [6] and references therein for work on an analogous
Airy kernel determinant).

For further related results on gap probabilities see [10–13, 26] and references
therein.
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Multiplicative Properties of Infinite Block
Toeplitz and Hankel Matrices

Caixing Gu

Dedicated to the memory of Harold Widom who made
fundamental contributions to the theory of (finite and infinite)
Toeplitz and Hankel matrices

Abstract We give a simple characterization of when the product of two infinite
block Toeplitz matrices is another infinite block Toeplitz matrix. We then use
this characterization to answer the question of when two infinite block Toeplitz
matrices commute. This approach gives a unified treatment for two related problems
which are often studied separately for infinite scalar Toeplitz-like and Hankel-like
matrices. Related results for products of two infinite block Hankel matrices are also
obtained.

Keywords Toeplitz matrix · Hankel matrix · Block Toeplitz operator ·
Block Hankel operator

1 Introduction

A Toeplitz matrix and a Hankel matrix are defined by

T = [
ai−j

]n
i,j=1 and H = [

bi+j

]n
i,j=1 ,

respectively, where ai and bi are complex numbers.
Toeplitz and Hankel matrices, more generally structured matrices as in [28],

have been studied intensively in the last few decades. They have wide applications
in signal and imaging processing, control theory and other branches of numerical
and computational sciences [21]. Fast algorithms about these matrices have been
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developed and used successfully in various applications [26] and [27]. Spectral
properties of banded Toeplitz matrices have been documented in the book [7]. Their
algebraic properties have also been discussed in book form and in a number of
papers, for example, see book [19] and papers [11, 17, 20, 30] and references therein.

An infinite Toeplitz matrix and an infinite Hankel matrix are defined by

T = [
ai−j

]∞
i,j=1 and H = [

bi+j

]∞
i,j=1 , (1)

respectively, where ai and bi are complex numbers subject to some boundedness
conditions, which will be made precise in next section. The infinite Toeplitz matrices
and infinite Hankel matrices (called Toeplitz operators and Hankel operators) have
also been studied extensively in operator theory and robust control literature [8,
9, 12] and [29]. The seminal paper [10] by Brown and Halmos laid down some
basic algebraic proprieties of Toeplitz operators. Their work has been generalized by
many authors, as seen by several hundreds of citations of their paper; for example,
see papers [2, 3] and [13]. Many authors studied analogous Toeplitz operators and
Hankel operators on various function spaces and the matrix representations of these
operators are in general similar and more complicated than the form (1).

In this paper we study some basic algebraic properties of infinite block Toeplitz
matrices and infinite block Hankel matrices (called block Toeplitz operators and
block Hankel operators), where ai and bi are matrices of any fixed size instead of
scalars. Some algebraic properties of block Toeplitz operators and block Hankel
operators were discussed in [14] and [18], but the results were sometimes com-
plicated or incomplete. However, recently satisfactory characterizations of normal
block Toeplitz operators and normal block Hankel operators are given in [16] even
when ai and bi are operators on a Hilbert space. See recent papers [22] and [23]
for some algebraic properties of finite block Toeplitz matrices which are notably
different from the algebraic properties of infinite block Toeplitz matrices discussed
here.

Next we recall a couple of results from [10] in a slightly different way and state
our generalizations using matrix terminology.

Theorem A Let T1 = [
ai−j

]∞
i,j=1 and T2 = [

bi−j

]∞
i,j=1 be two infinite Toeplitz

matrices. Then T1T2 is another infinite Toeplitz matrix if and only if either T1 is
lower triangular or T2 is upper triangular. In other words, T1T2 is another infinite
Toeplitz matrix if and only if one of the following holds.

(1) ai = 0 for all i ≥ 1.
(2) bi = 0 for all i ≤ −1.

Theorem A is Theorem 8 in [10].

Theorem 1.1 Let T1 = [
Ai−j

]∞
i,j=1 and T2 = [

Bi−j

]∞
i,j=1 be two infinite Toeplitz

matrices, where Ai are matrices of size m × n and Bi are matrices of size n × k.

Then T1T2 = [
Ci−j

]∞
i,j=1 , where Ci are matrices of size m × k, if and only if one

of the followings holds.
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(1) Ai = 0 for all i ≥ 1.
(2) Bi = 0 for all i ≤ −1.
(3) There exist an n × n invertible matrix U and a positive integer l (1 ≤ l < n)

such that the last n− l columns of AiU are zero for all i ≥ 1 and the first l rows
of U−1Bi are zero for all i ≤ −1.

The theorem above is just the matrix formulation of Theorem 4.12 below.

Remark 1.2 We can view Condition (1) and Condition (2) in Theorem 1.1 as
corresponding to l = 0 and l = n in Condition (3) respectively. The proof of
Theorem 4.12 will also give a meaning of l and thus tells exactly when each
condition is satisfied.

We now state a related result about the product of two infinite block Hankel
matrices. The result for the scalar case is implicitly in [10] by the connection
between Hankel and Toeplitz operators (see Lemma 2.1). However, Brown and
Halmos [10] did not use Hankel operators.

Theorem B Let H1 = [
ai+j

]∞
i,j=1 and H2 = [

bi+j

]∞
i,j=1 be two scalar infinite

Hankel matrices. Then H1H2 = 0 if and only if either H1 = 0 or H2 = 0.

Theorem 1.3 Let H1 = [
Ai+j

]∞
i,j=1 ,H2 = [

Bi+j

]∞
i,j=1 be two block infinite

Hankel matrices, where Ai are matrices of size m × n and Bi are matrices of size
n × k. Then H1H2 = 0 if and only if one of the followings holds

(1) H1 = 0.
(2) H2 = 0.
(3) There exist a positive integer l (1 ≤ l < n) and two matrices A and B of

sizes l × n and n × (n − l) such that AB = 0 and H1 = [
Fi+jA

]∞
i,j=1 ,

H2 = [
BGi+j

]∞
i,j=1 , where Fi andGi are matrices of sizes m×l and (n−l)×k

for all i ≥ 2.

Proof One merit of such a result is that the proof of one direction is almost trivial,
as we demonstrate now. Assume Condition (3) holds. Then

H1H2 = [
Fi+jA

]∞
i,j=1

[
BGi+j

]∞
i,j=1 =

[ ∞∑

r=1

Fi+rABGr+j

]
= 0,

since AB = 0. ��
The theorem above is the matrix formulation of Theorem 4.1. Again we can view

Condition (1) and Condition (2) as corresponding to l = 0 and l = n in case (3)
respectively.

Theorem C Let H1 = [
ai+j

]∞
i,j=1, H2 = [

bi+j

]∞
i,j=1, H3 = [

ci+j

]∞
i,j=1, H4 =

[
di+j

]∞
i,j=1 be four nonzero scalar infinite Hankel matrices. Then H1H2 = H3H4 if

and only if there exists a constant λ such that H1 = λH3 and H4 = λH2.
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Theorem C is a special case of Theorem 5 in [18]. It can also be derived from
Theorem 9 in [10].

Theorem 1.4 Let H1 = [
Ai+j

]∞
i,j=1, H2 = [

Bi+j

]∞
i,j=1, H3 = [

Ci+j

]∞
i,j=1, H4 =

[
Di+j

]∞
i,j=1 be four nonzero block infinite Hankel matrices, where Ai,Bi , Ci,Di

are matrices of compatible sizes. Then H1H2 = H3H4 if and only if there exist
four matrices A,B,C and D such that AB = CD and H1 = [

Fi+jA
]∞
i,j=1 H2 =

[
BGi+j

]∞
i,j=1 ,H3 = [

Fi+jC
]∞
i,j=1 ,H4 = [

DGi+j

]∞
i,j=1 , where Fi and Gi are

matrices of appropriate sizes for all i ≥ 2.

Proof We present the almost trivial proof of one direction. Assume

H1 = [
Fi+jA

]∞
i,j=1 , H2 = [

BGi+j

]∞
i,j=1 ,

H3 = [
Fi+jC

]∞
i,j=1 , H4 = [

DGi+j

]∞
i,j=1 .

Then

H1H2 = [
Fi+jA

] [
BGi+j

] =
[ ∞∑

r=1

Fi+rABGr+j

]
,

H3H4 = [
Fi+jC

] [
DGi+j

] =
[ ∞∑

r=1

Fi+rCDGr+j

]
.

Therefore H1H2 = H3H4 follows from AB = CD. ��
The above theorem is the matrix formulation of Theorem 5.2.
Other generalizations, such as when two infinite block Toeplitz matrices com-

mute, are slightly more complicated to state even though we feel we have found
the simplest answers possible. So for more precise statements and proofs, we will
introduce our function spaces, block Toeplitz operators and block Hankel operators
in the next section.

The proofs of our results are elementary and sometimes straightforward; how-
ever, the formulations of the results are modeled after the elegant and inspirational
results of Brown and Halmos [10]. It is our hope that this paper will play a similar
role to motivate the study of algebraic properties of block Toeplitz and Hankel
operators on various function spaces as the paper [10] did for algebraic properties
of scalar Toeplitz and Hankel operators.
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We would like to mention two-sided infinite block Laurent matrices. A two-sided
infinite block Laurent matrix is defined by

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
. . .

. . .
. . .

. . .

. . . A0 A−1 A−2
. . .

. . . A1 [A0] A−1
. . .

. . . A2 A1 A0
. . .

. . .
. . .

. . .
. . .

. . .

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2)

where Ai are matrices of an arbitrary but fixed size for −∞ < i < ∞ and [A0]
denotes the (0, 0)-entry. Then the product of such two matrices is still a two-sided
infinite block Laurent matrix. Two such matrices of compatible sizes commute if
and only if their symbols (to be defined in next section) commute. We observe that
an infinite block Toeplitz matrix is just the low right corner of a two-sided infinite
block Laurent matrix. Similarly one can show that an infinite block Hankel matrix
is unitarily equivalent to the upper right corner of a two-sided infinite block Laurent
matrix.

The author is honored to dedicate this paper in memory of Professor Harold
Widom who made many fundamental contributions to the theory and application of
Hankel matrices, Toeplitz matrices, Hankel operators, and Toeplitz operators; see,
for example, references [4–6, 32–34], and [31].

2 Block Toeplitz and Hankel Operators

Let T be the unit circle in the complex plane. Let L2 = L2(T) be the set of
all square-integrable functions on T. Each function f ∈ L2 has a Fourier series
expansion

f (eiθ ) =
∞∑

n=−∞
fne

inθ for θ ∈ [0, 2π]

and

‖f (z)‖2 =
∫

T

|f (z)|2 dm(z) =
∞∑

n=−∞
|fn|2
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where m(z) is the normalized Lebesgue measure on T. The function f (eiθ ) has a
unique harmonic extension into the unit disk D as follows

f (reiθ ) =
∞∑

n=−∞
fnr

|n|einθ , 0 ≤ r ≤ 1.

Let L∞ be the set of essentially bounded functions on T. Let H∞ = L∞ ∩ H 2;
that is, H∞ is the set of all bounded analytic functions on D. Given ϕ ∈ L∞, the
Laurent operator Mϕ is the multiplication operator defined by

Mϕg = ϕg, g ∈ L2.

Then with respect to the bases
{
einθ

}∞
n=−∞ of L2, the matrix representation of Mϕ

is a two-sided infinite Laurent matrix (with scalar entries) as in (2). The function ϕ

is called the symbol of Mϕ. Furthermore
∥∥Mϕ

∥∥ = ‖ϕ‖∞ . If ϕ1, ϕ2 ∈ L∞, then
Mϕ1Mϕ2 = Mϕ1ϕ2 = Mϕ2Mϕ1 .

The Hardy space H 2 is the closed subspace of L2 spanned by analytic polyno-
mials. In other words, each f ∈ H 2 has a Fourier series expansion

f (eiθ ) =
∞∑

n=0

fne
inθ for θ ∈ [0, 2π]

and we can view f as an analytic function inside the unit disk D with power series
expansion

f (z) =
∞∑

n=0

fnz
n, |z| < 1.

Given ϕ ∈ L∞, the Toeplitz operator Tϕ and the Hankel operator Hϕ are defined
by

Tϕ(g) = P(ϕg) and Hϕ(g) = JP⊥(ϕg), (g ∈ H 2)

where P and P⊥ denote the orthogonal projections that map L2 onto H 2 and H 2⊥

respectively, and J denotes the unitary operator on L2 defined by Jf (z) = zf (z).

The function ϕ is called the symbol of Tϕ and Hϕ. It is an elementary fact that

∥∥Tϕ
∥∥ = ‖ϕ‖∞ := ess sup

z∈T
|ϕ(z)|

and it is an important theorem (Nehari’s Theorem [25]) that

∥∥Hϕ

∥∥ = inf
f∈H∞ ‖ϕ − f ‖∞ .
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To define block Toeplitz and Hankel operators with matrix-valued symbols, we
first define the vector-valued L2 space and H 2 space. Let Cn be the standard n-
dimensional complex Hilbert space with the inner product defined by

〈u, v〉Cn =
n∑

i=1

uivi where u =
⎡

⎢⎣
u1
...

un

⎤

⎥⎦ , v =
⎡

⎢⎣
v1
...

vn

⎤

⎥⎦ .

Let Mm×n be the set of all constant m × n matrices. Let L2
n be the set of all Cn-

valued square-integrable functions on the unit circle T and H 2
n be the corresponding

Hardy space. For f, g ∈ L2
n, the inner product 〈f, g〉 is defined by

〈f, g〉 =
∫

T

〈f (z), g(z)〉
Cn
dm(z).

Let L∞
m×n be the set of matrix-valued functions $ on the unit circle T with finite

operator supremum norm. The operator supremum norm of $ is defined by

‖$‖∞ := ess sup
z∈T

‖$(z)‖,

where ‖$(z)‖ denotes the matrix norm of $(z) (as an operator from C
n into C

m).
Let H∞

m×n denote the set of analytic elements in L∞
m×n. Given $ ∈ L∞

m×n, the
Laurent operator M$ is the multiplication operator from L2

n into L2
m defined by

M$g = $g, g ∈ L2
n.

Similar to the definition of Toeplitz and Hankel operators with scalar-valued
symbols, if $ is a matrix-valued function in L∞

m×n, then the Toeplitz operator T$
and the Hankel operator H$ from H 2

n into H 2
m are defined by

T$f = P($f ) and H$f = JP⊥($f ) (f ∈ H 2
n ),

where P and P⊥ denote the orthogonal projections that map L2
m onto H 2

m and(
H 2
m

)⊥
, respectively, and J denotes the unitary operator on L2

m given by J (g)(z) =
zg(z) for g ∈ L2

m. Note that JP⊥ = PJ. Similarly,

‖T$‖ = ‖$‖∞,

and by matrix-valued Nehari’s Theorem in [1]

‖H$‖ = inf
F∈H∞

m×n

‖$− F‖∞ .
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For $ ∈ L∞
m×n, write

$̃(z) := $∗(z).

One can easily see that ˜̃$(z) = $(z).
It is instructive to write down two different representations of Toeplitz operators

and Hankel operators with matrix-valued symbols.
In the first representation, note that H 2

n and H 2
m can be viewed as the direct sum

of n and m copies of H 2, respectively,

H 2
n = H 2⊕H 2⊕ · · · ⊕H 2 (n copies of H 2) and

H 2
m = H 2⊕H 2⊕ · · · ⊕H 2 (m copies of H 2).

With respect to the decompositions above, we can write

$(z) = [
ϕij (z)

]
m×n

∈ L∞
m×n, T$ = [

Tϕij (z)
]
m×n

, H$ = [
Hϕij (z)

]
m×n

,

where Tϕij (z) and Hϕij (z) are Toeplitz and Hankel operators with scalar-valued
symbols, respectively.

In the second representation, write

$(z) =
∞∑

j=−∞
$jz

j ∈ L∞
m×n (z = eiθ ) (3)

where $j ∈ Mm×n. Then with respect to the decomposition

H 2
n = C

n ⊕ zCn ⊕ z2
C
n ⊕ · · · and H 2

m = C
m ⊕ zCm ⊕ z2

C
m ⊕ · · ·

we have

T$ =

⎛
⎜⎜⎜⎝

$0 $−1 $−2 · · ·
$1 $0 $−1

. . .

$2 $1 $0
. . .

...
. . .

. . .
. . .

⎞
⎟⎟⎟⎠ , H$ =

⎛
⎜⎜⎜⎝

$−1 $−2 $−3 · · ·
$−2 $−3 $−4 . .

.

$−3 $−4 . .
.
. .
.

... . .
.

. .
.

⎞
⎟⎟⎟⎠ .

So they are the infinite block Toeplitz and Hankel matrices. Note that H$ only
depends on $j for j < 0.

If $(z) ∈ L∞
m×n has the Fourier series expansion as in (3), we can write

$(z) = $+(z)+ $0 + $∗−(z),
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where $+(z) ∈ zH 2
m×n,$−(z) ∈ zH 2

n×m and $0 ∈ Mm×n. Similarly, if #(z) ∈
L∞
n×k we can write

#(z) = #+(z)+ #0 + #∗−(z).

As in the scalar case, operators such as T$+, T$+#∗− and T$+T#∗− are densely
defined on all vector-valued analytic polynomials. Let In be the identity operator
on C

n. Let Sn = TzIn be the unilateral shift operator on H 2
n , so Sn is the shift with

multiplicity n. Then the Toeplitz operator T$ is characterized as a bounded operator
satisfying the equation S∗

mT$Sn = T$. The Hankel operator is characterized as a
bounded operator satisfying the equation H$Sn = S∗

mH$. The following lemma on
several basic relations between block Toeplitz and block Hankel operators is well
known.

Lemma 2.1 Let $(z) ∈ L∞
m×n and #(z) ∈ L∞

n×k. Then

T ∗
$ = T$∗ ,H ∗

$ = H$̃, T$# − T$T# = H ∗
$∗H#. (4)

Since H# = 0 if #(z) ∈ H∞
n×k, the following result is clear from (4).

Corollary 2.2 If either $(z) ∈ H∞
m×n or #(z) ∈ H∞

n×k , then T$T# = T$#. In
particular T$T# is another block Toeplitz operator.

When $(z) and #(z) are scalar-valued functions, Brown and Halmos [10]
proved the converse of the above corollary and thus characterized when the product
of two scalar Toeplitz operators is another Toeplitz operator. This converse does not
hold for matrix-valued Toeplitz operators. We now study the question when T$T#
is another Toeplitz operator. Our result (Theorem 4.12) says that if T$T# is another
block Toeplitz operator, then part of $(z) is in H∞

m×n and part of #(z) is in H∞
n×k.

The following proposition follows from a general result in Proposition 4.1 in [9].

Proposition 2.3 If T$T# = T" for some " ∈ L∞
m×k , then " = $#.

Now by Lemma 2.1, T$# − T$T# = H ∗
$∗H#. Therefore T$# − T$T# = 0 if

and only if H ∗
$∗H# = 0. To study this equation, we first establish a lemma. Let

e1, e2, · · · , en be the standard basis of Cn. Then

(I − SnS
∗
n) =

n∑

i=1

ei ⊗ ei.

In other words, I − SnS
∗
n is the projection onto the constant vectors in H 2

n .

The following simple lemma is crucial in our approach because it provides a
direct link between Hankel operators and their symbols.
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Lemma 2.4 Let $(z) = L∞
m×n and #(z) ∈ L∞

n×k . Then

H ∗
$∗H# − S∗

mH
∗
$∗H#Sk =

n∑

i=1

H ∗
$∗ei ⊗ H ∗

#ei.

Proof By Lemma 2.1,

H ∗
$∗H# − S∗

mH
∗
$∗H#Sk = H ∗

$∗H# − H ∗
$∗SnS∗

nH#

= H ∗
$∗(I − SnS

∗
n)H# =

n∑

i=1

H ∗
$∗ei ⊗ H ∗

#ei.

The proof is complete. ��

3 Some Lemmas on Finite Rank Operators

We also need the following lemma, for which it is best to use more abstract
notations. This lemma has three versions and each version seems to give an
interesting different perspective. Let H and K be two complex Hilbert spaces. Let
h ∈ H and k ∈ K. The rank one operator k ⊗ h from H into K is defined by

(k ⊗ h) x = 〈x, h〉 k, x ∈ H.

For a constant matrix A, we write An×l to indicate that A ∈ Mn×l .

Lemma 3.1 (First Version) Let xi ∈ H and yi ∈ K for 1 ≤ i ≤ n. Then

n∑

i=1

xi ⊗ yi = 0 (5)

if and only one of the followings holds.

(i) All xi = 0 for 1 ≤ i ≤ n.

(ii) All yi = 0 for 1 ≤ i ≤ n.

(iii) For some 0 < l < n, there exist matrices Al×n and B(n−l)×n such that AB∗ =
0 and

[
x1 · · · xn

] = [
u1 · · · ul

]
A,

[
y1 · · · yn

] = [
wl+1 · · · wn

]
B.

for some ui ∈ H for 1 ≤ i ≤ l and wi ∈ K for l + 1 ≤ i ≤ n.
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Proof The sufficiency of (iii) is by a direct verification. Now we prove the necessity
of (iii). Let the dimension of the subspace spanned by {xi, 1 ≤ i ≤ n} be l. If l = 0,
we have (i). If l = n, we have (ii). So we assume 0 < l < n. We first assume
{xi, 1 ≤ i ≤ l} are linearly independent. The general case will be reduced to this
case by using a permutation matrix. Write

xi =
l∑

j=1

cjixj , l + 1 ≤ i ≤ n. (6)

Plugging the above equation into (5), we have

n∑

i=1

xi ⊗ yi

=
l∑

i=1

xi ⊗ yi +
n∑

j=l+1

xj ⊗ yj =
l∑

i=1

xi ⊗ yi +
n∑

j=l+1

(
l∑

i=1

cij xi

)
⊗ yj

=
l∑

i=1

xi ⊗ yi +
l∑

i=1

xi ⊗
⎛

⎝
n∑

j=l+1

cij yj

⎞

⎠ =
l∑

i=1

xi ⊗ (yi +
n∑

j=l+1

cij yj ) = 0.

Therefore

yi = −
n∑

j=l+1

cij yj , 1 ≤ i ≤ l.

Set

A = [
Il C

]
l×n

, B = [−C∗ In−l

]
(n−l)×n

, (7)

where C = [
cji
]

is the matrix of size l × (n − l) defined in (6). Then

[
x1 · · · xn

] = [
x1 · · · xl

]
A, (8)

[
y1 · · · yn

] = [
yl+1 · · · yn

]
B, (9)

and most importantly, AB∗ = −IlC + CIn−l = 0.
In the general case, assume

{
xni , 1 ≤ i ≤ l

}
are linearly independent. There

exists a permutation matrix Pn×n such that

[
x1 · · · xn

] = [
xn1 · · · xnl xnl+1 · · · xnn

]
P,

[
y1 · · · yn

] = [
yn1 · · · ynl ynl+1 · · · ynn

]
P.
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Since

n∑

i=1

xni ⊗ yni =
n∑

i=1

xi ⊗ yi = 0,

by the previous case, there exist A and B as in (7) such that AB∗ = 0 and

[
xn1 · · · xnl xnl+1 · · · xnn

] = [
xn1 · · · xnl

]
A

[
xn1 · · · xnl xnl+1 · · · xnn

] = [
ynl+1 · · · ynn

]
B.

Then AP and BP satisfy the equation AP(BP)∗ = AP 2B∗ = AB∗ = 0.
Furthermore

[
x1 · · · xn

] = [
xn1 · · · xnl xnl+1 · · · xnn

]
P

= [
xn1 · · · xnl

]
AP,

[
y1 · · · yn

] = [
yn1 · · · ynl ynl+1 · · · ynn

]
P

= [
ynl+1 · · · ynn

]
BP.

The proof is complete. ��
The following lemma restates the above result more succinctly.

Lemma 3.2 (Second Version) Notations as above. Then

n∑

i=1

xi ⊗ yi = 0

if and only if there exist matrices Cn×n and Dn×n such that CD∗ = 0 and

[
x1 · · · xn

] = [
x1 · · · xn

]
C,

[
y1 · · · yn

] = [
y1 · · · yn

]
D

Proof In the case all xi = 0 for 1 ≤ i ≤ n, we just set C = 0 and D = In. In the
case all yi = 0 for 1 ≤ i ≤ n, we just set C = In and D = 0. Otherwise, as in proof
of the previous lemma, if {xi, 1 ≤ i ≤ l} are linearly independent, set

C =
[
A

0

]

n×n

, D =
[

0
B

]

n×n

,

where A and B are as in (7). Then

[
x1 · · · xn

] = [
x1 · · · xn

]
C,

[
y1 · · · yn

] = [
y1 · · · yn

]
D.
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Furthermore,

CD∗ =
[
A

0

] [
0
B

]∗
=
[
A

0

] [
0 B∗ ] = 0.

In the general case where
{
xni , 1 ≤ i ≤ l

}
are linearly independent, the proof

can be done by using a permutation matrix. ��
The next lemma is based on the following observation: the simplest situation for∑n
i=1 xi ⊗ yi = 0 is that for some 0 ≤ l ≤ n,

xi = 0, 1 ≤ i ≤ l, and yi = 0, l + 1 ≤ i ≤ n

with the understanding that l = n corresponds to all xi = 0 for 1 ≤ i ≤ n and l = n

corresponds to all yi = 0 for 1 ≤ i ≤ n.

Lemma 3.3 (Third Version) Notations as above. Then

n∑

i=1

xi ⊗ yi = 0

if and only if there exist an invertible matrix Un×n and some 0 ≤ l ≤ n such that

[
x1 · · · xn

] = [
u1 · · · ul 0 · · · 0

]
U, (10)

[
y1 · · · yn

] = [
0 · · · 0 wl+1 · · · wn

]
U∗−1 (11)

for some ui ∈ H for 1 ≤ i ≤ l and wi ∈ K for l + 1 ≤ i ≤ n.

Proof The sufficiency is by a direct verification. We now prove the necessity. In the
case all xi = 0 for 1 ≤ i ≤ n, we have U = In and l = n. In the case all yi = 0
for 1 ≤ i ≤ n, we have U = In and l = 0. Otherwise, as in proof of the previous
lemma, if {xi, 1 ≤ i ≤ l} are linearly independent for 1 ≤ l < n, set

U =
[
Il C

0 In−l

]

where C = [
cji
]

is the matrix of size (n− l)× l defined in (6). Note that

U∗−1 =
[
Il C∗
0 In−l

]−1

=
[
Il −C∗
0 In−l

]
.
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It follows from (8) and (9) that

[
x1 · · · xn

] = [
x1 · · · xl 0 · · · 0

] [ Il C

0 In−l

]
,

[
y1 · · · yn

] = [
0 · · · 0 yl+1 · · · yn

] [ Il 0
−C∗ In−l

]
.

In the general case where
{
xni , 1 ≤ i ≤ l

}
are linearly independent, the proof

can be done by using a permutation matrix. ��

4 Products of Block Toeplitz and Hankel Operators

The following is one of our main results and also has three versions.

Theorem 4.1 (First Version) Let $(z) ∈ L∞
m×n and #(z) ∈ L∞

n×k. Then
H ∗
$∗H# = 0 if and only if there exist $̂(z) ∈ L∞

m×l and #̂(z) ∈ L∞
(n−l)×k for

some 0 ≤ l ≤ n and two constant matrices A ∈ Ml×n and B ∈ Mn×(n−l) such that

$(z)− $̂(z)A ∈ H∞
m×n, #(z)− B#̂(z) ∈ H∞

n×k and AB = 0.

Proof The proof of sufficiency is straightforward. Write $̂(z) = [
ϕ̂ij (z)

]
m×l

∈
L∞
m×l and #̂(z) = [

ψ̂ij (z)
]
l×k

∈ L∞
m×l . Then $(z) − $̂(z)A ∈ H∞

m×n and #(z) −
B#̂(z) ∈ H∞

n×k imply that

H ∗
$∗ =

[
H ∗
ϕ̂ij (z)

]

m×l
A and H# = B

[
Hψ̂ij (z)

]

l×k
.

Therefore

H ∗
$∗H# =

[
H ∗
ϕ̂ij (z)

]
AB

[
Hψ̂ij (z)

]
=
[
H ∗
ϕ̂ij (z)

]
· 0 ·

[
Hψ̂ij (z)

]
= 0.

The proof of the necessity is more involved, but the main part has already been
done in Lemmas 2.4 and 3.1. By Lemma 2.4, H ∗

$∗H# = 0 implies that

n∑

i=1

H ∗
$∗ei ⊗ H ∗

#ei =
n∑

i=1

H$̃∗ei ⊗ H#̃ei = 0. (12)

By Lemma 3.1, there exist matrices Cl×n and D(n−l)×n such that CD∗ = 0 and

[
H$̃∗e1 · · · H$̃∗en

] = [
u1(z) · · · ul(z)

]
C = U(z)C, (13)

[
H#̃ei · · · H#̃ei

] = [
wl+1(z) · · · wn(z)

]
D = W(z)D (14)
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for some U(z) ∈ H 2
m×l ,W(z) ∈ H 2

(n−l)×k. Since H# only depends on #∗−(z),
without loss of generality, assume $∗ = $∗+ and # = #∗−(z). Write

$̃∗ = $̃∗+ = [
ϕij
]
m×n

, #̃(z) = #̃∗−(z) = [
ψij

]
k×n

.

Then

[
H$̃∗e1 · · · H$̃∗en

] = $̃∗+ and

[
H#̃e1 · · · H#̃en

] = #̃∗−(z).

Now (13) and (14) becomes

$̃∗+ = U(z)C or $+ = U(z)C

#̃∗−(z) = W(z)D or #∗−(z) = D∗W̃(z)

for some U(z) ∈ zH 2
m×l and W̃(z) ∈ zH 2

(n−l)×k. In fact it follows from the proof

of Lemma 3.1 that U(z) are some columns of $+ and W̃(z) are some columns of
#∗−(z). So U(z) is the analytic part of some function in L∞

m×l and W̃(z) is the co-
analytic part of some function in L∞

n×k. Equivalently, we have $(z) − $̂(z)A ∈
H∞
m×n, #(z)−B#̂(z) ∈ H∞

n×k for some $̂(z) ∈ L∞
m×l and #̂(z) ∈ L∞

(n−l)×k, where
A = C, B = D∗, and AB = CD∗ = 0. The proof is complete. ��

Next we emphasize the cases l = 0 and l = n in the above theorem. We need the
following definition.

Definition 4.2 Let $(z) ∈ L2
m×n. The column rank of $(z) is the dimension of the

space spanned by the columns of $(z) as a subspace of L2
m. The row rank of $(z)

is the dimension of the space spanned by the rows of $(z) as a subspace of L2
n.

In general, there is no relation between the column rank of $(z) and the row rank
of $(z). It follows from the proof Lemma 3.1 that l in Theorem 4.1 can be taken as
the column rank of $+ or the row rank of #∗−(z).

Corollary 4.3 Let $(z) = $+(z) + $0 + $∗−(z) ∈ L∞
m×n and #(z) = #+(z) +

#0 + #∗−(z) ∈ L∞
n×k. If the column rank of $+ is n, then H ∗

$∗H# = 0 implies that
H# = 0. Similarly if the row rank of #∗−(z) is n, then H ∗

$∗H# = 0 implies that
H$∗ = 0.

Proof We observe that the column rank of $+ is the same as the column rank
of $̃∗+. If the column rank of $̃∗+ is n, then

{
H$̃∗e1 · · · H$̃∗en

}
are linearly

independent, so Eq. (12) implies that
[
H#̃e1 · · · H#̃en

] = #̃∗−(z) = 0. Thus
H# = 0. The proof of the other assertion in this corollary is similar. ��



386 C. Gu

Theorem 4.4 (Second Version) Let $(z) ∈ L∞
m×n and #(z) ∈ L∞

n×k. Then
H ∗
$∗H# = 0 if and only if there exist two constant matrices An×n and Bn×n such

that

$(z)− $(z)A ∈ H∞
m×n, #(z)− B#(z) ∈ H∞

n×k and AB = 0.

Proof The proof is similar to the proof Theorem 4.1 by using Lemma 3.2. ��

Theorem 4.5 (Third Version) Let $(z) ∈ L∞
m×n and #(z) ∈ L∞

n×k. Then
H ∗
$∗H# = 0 if and only if there exist some 0 ≤ l ≤ n and an invertible constant

matrix Un×n such that

$(z)U−1 = [
$̂(z) F ∗ ] and U#(z) =

[
G

#̂(z)

]
,

where $̂(z) ∈ L∞
m×l , F

∗ ∈ H∞
m×(n−l), #̂(z) ∈ L∞

(n−l)×k and G ∈ H∞
l×k.

Proof The proof of necessity is similar to the proof Theorem 4.1 by using
Lemma 3.3. The almost trivial proof of the sufficiency is really the strength of this
result. Note that since U is a constant matrix and HF = HG = 0,

H ∗
$∗H# = H ∗

($U−1)
∗HU# =

[
H ∗
($̂(z))

∗ 0
] [ 0

H#̂(z)

]
= 0

The proof is complete. ��

Remark 4.6 It follows from the proofs of Lemmas 3.1 and 3.3 that $̂(z) and #̂(z)

can be taken to be some columns of $(z) and some rows of #(z), respectively.

When m = k = 1, we have the following result for a finite sum of product of
Hankel operators. The characterizations in Theorem 5 in [18] for the case k = 1 are
more complicated.

Corollary 4.7 Let ϕi, ψi ∈ L∞ for i = 1, · · · , n. Then
∑n

i=1 HϕiHψi = 0 if and
only if there exist some 0 ≤ l ≤ n and an invertible constant matrix Un×n such that

[
Hϕ1 · · · Hϕn

] = [
Hf1 · · · Hfl 0 · · · 0

]
U and

[
Hψ1 · · · Hψn

]T = U−1 [0 · · · 0 Hfl+1 · · · Hfn

]

where fi ∈ L∞ for i = 1, · · · , n.
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By Proposition 2.3 and the results above, we have the three versions for
characterizing when the product of two block Toeplitz operator is another block
Toeplitz operator. See also Theorem 6 in [18] for special cases with different
characterizations.

Theorem 4.8 (First Version) Let $(z) ∈ L∞
m×n and #(z) ∈ L∞

n×k . Then T$T#

is another block Toeplitz operator if and only if there exist $̂(z) ∈ L∞
m×l and

#̂(z) ∈ L∞
(n−l)×k for some 0 ≤ l ≤ n, and two constant matrices A ∈ Ml×n

and B ∈ Mn×(n−l) such that

$(z)− $̂(z)A ∈ H∞
m×n, #(z)− B#̂(z) ∈ H∞

n×k and AB = 0.

Furthermore in this case T$T# = T$#.

Again we emphasize the cases l = 0 and l = n in the above theorem.

Corollary 4.9 Let $(z) = $+(z) + $0 + $∗−(z) ∈ L∞
m×n and #(z) = #+(z) +

#0 + #∗−(z) ∈ L∞
n×k. If the column rank of $+ is n, then T$T# is another block

Toeplitz operator if and only if #(z) ∈ H∞
n×k. Similarly if the row rank of #∗−(z) is

n, T$T# is another block Toeplitz operator if and only if $(z) ∈ H∞
m×n.

The following corollary extends Corollary 2 in [10], which characterizes when
T −1
$ is also a Toeplitz operator.

Corollary 4.10 Let $(z) = $+(z)+ $0 + $∗−(z) ∈ L∞
n×n.

(a) Assume the column rank of $+ is n. If T$ is invertible, then a necessary and
sufficient condition that T −1

$ be a Toeplitz operator is that $ is analytic.
(b) Assume the row rank of $∗− is n. If T$ is invertible, then a necessary and

sufficient condition that T −1
$ be a Toeplitz operator is that $ is co-analytic.

Proof If T$ is invertible and T −1
$ = T#(z) for some #(z) ∈ L∞

n×n. By
Corollary 4.9, #(z) ∈ H∞

n×n. But $(z)#(z) = In (the n × n identity matrix).
Thus $(z) = #(z)−1 is also analytic. ��

Theorem 4.11 (Second Version) Let $(z) ∈ L∞
m×n and #(z) ∈ L∞

n×k . Then
T$T# is another Toeplitz operator if and only if there exist two constant matrices
An×n and Bn×n such that

$(z)− $(z)A ∈ H∞
m×n, #(z)− B#(z) ∈ H∞

n×k and AB = 0.

Proof We would like to give the almost trivial proof of the sufficiency. Write

$(z) = $(z)A + F ∗, #(z) = B#(z)+ G
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where F ∈ H∞
m×n and G ∈ H∞

n×k. Then

T$T# = (
T$(z)A + TF ∗

) (
TB#(z) + TG

)

= T$TATBT# + T$(z)AG + TF ∗B#(z) + TF ∗G

= T$(z)AG + TF ∗B#(z) + TF ∗G.

The proof is complete. ��

Theorem 4.12 (Third Version) Let $(z) ∈ L∞
m×n and #(z) ∈ L∞

n×k . Then T$T#
is another Toeplitz operator if and only if there exist some 0 ≤ l ≤ n and an
invertible constant matrix Un×n such that

$(z)U−1 = [
$̂(z) F ∗ ] and U#(z) =

[
G

#̂(z)

]
,

where $̂(z) ∈ L∞
m×l , F

∗ ∈ H∞
m×(n−l), #̂(z) ∈ L∞

(n−l)×k and G ∈ H∞
l×k.

Proof We would like to give the almost trivial proof of the sufficiency. Since
F ∗ ∈ H∞

m×(n−l) and G ∈ H∞
l×k,

T$T# = T$U−1TU# =
[
T$̂(z) TF ∗

] [
TG

T#̂(z)

]

= T$̂(z)TG + TF ∗T#̂(z) = T$̂(z)G + TF ∗#̂(z) = T$̂(z)G+F ∗#̂(z).

The proof is complete. ��
When m = k = 1, we have the following result for a finite sum of products of

Toeplitz operators.

Corollary 4.13 Let ϕi, ψi ∈ L∞ for i = 1, · · · , n. Then
∑n

i=1 Tϕi Tψi is a Toeplitz
operator if and only if there exist some 0 ≤ l ≤ n and an invertible constant matrix
Un×n such that

[
ϕ1 · · · ϕn

] = [
f1 · · · fl hl+1 · · · hn

]
U and

[
ψ1 · · · ψn

]T = U−1 [h1 · · · hl fl+1 · · · fn
]
,

where fi ∈ L∞ and hi ∈ H∞ for i = 1, · · · , n. In this case
∑n

i=1 Tϕi Tψi = Tf ,

where

f =
l∑

i=1

fihi +
n∑

j=l+1

hjfj .
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Let $(z) ∈ L∞
m×n and #(z) ∈ L∞

n×k . The semi-commutator of T$ and T# is
defined to be

[T$, T#) = T$# − T$T#.

For a fixed $(z), let

S($, k) = {
# ∈ L∞

n×k : [T$, T#) = 0
}
.

Theorem 4.12 suggests a way of describing the set S($, k). LetU be an invertible
constant matrix Un×n such that $(z)U−1 = [

"(z) F ∗(z)
]
, where "(z) ∈ L∞

m×l

and F ∗ ∈ H∞
m×(n−l). Furthermore we can assume the column rank of "+(z) is l.

Then

S($, k) =
{
# = U−1

[
G(z)

�(z)

]
∈ L∞

n×k : G ∈ H∞
l×k, �(z) ∈ L∞

(n−l)×k

}
.

To see this, let # ∈ S($, k). We write

# = U−1
[
G(z)

�(z)

]
∈ L∞

n×k.

Then

T$# − T$T# = T$UU−1# − T$UTU−1#

= T"(z)G(z) + TF ∗(z)�(z) − [
T"(z) TF ∗(z)

] [TG(z)
T�(z)

]

= T"(z)G(z) − T"(z)TG(z) + TF ∗(z)�(z) + TF ∗(z)T�(z)

= T"(z)G(z) − T"(z)TG(z).

Therefore T$# −T$T# = 0 if and only if T"(z)G(z)−T"(z)TG(z). Since the column
rank of "+(z) is l, by Corollary 4.9, G ∈ H∞

l×k.

When $(z) and #(z) are scalar functions, by Corollary 1 in [10], T$T# = 0
if and only if and only either T$ = 0 or T# = 0 (there are no zero divisors). In
the matrix-valued case, this is not true even when the column rank of $+ is n. The
following simple example illustrates this phenomena. Let f, g ∈ H∞, then

[
Tf , Tg

] [ Tg

−Tf

]
= Tf Tg − TgTf = Tfg − Tgf = 0.

The following result follows from Proposition 2.3 and Theorem 4.12.
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Corollary 4.14 Let $(z) ∈ L∞
m×n and #(z) ∈ L∞

n×k . Then T$T# = 0 if and only
the following two conditions hold.

(1) $# = 0.
(2) There exist some 0 ≤ l ≤ n and an invertible constant matrix Un×n such that

$(z)U−1 = [
$̂(z) F ∗ ] and U#(z) =

[
G

#̂(z)

]
,

where $̂(z) ∈ L∞
m×l , F

∗ ∈ H∞
m×(n−l), #̂(z) ∈ L∞

(n−l)×k and G ∈ H∞
l×k.

We emphasize the cases l = 0 and l = n as a separate result.

Corollary 4.15 Let $(z) ∈ L∞
m×n and #(z) ∈ L∞

n×k . If the column rank of $+ is
n, then T$T# = 0 if and only if #(z) ∈ H∞

n×k and $# = 0. Similarly if the row

rank of #∗−(z) is n, then T$T# = 0 if and only if $(z) ∈ H∞
m×n and $# = 0.

5 Commuting Block Toeplitz Operators

In this section we study when two block Toeplitz operators commute (Theorem 5.4).
In fact, the commuting problem of two block Toeplitz operators reduces to the
commuting problem of four block Hankel operators (Theorem 5.2). We first
characterize when four block Toeplitz operators satisfy a commuting relation by
a simple and direct application of Theorem 4.8.

It is quite surprising and amazing that we can derive the solution to the commut-
ing problem from the solution of the zero product problem, as in Corollary 4.14,
since in literature, these two problems (for the scalar case) are often studied
separately. The commuting problem receives more attentions and is usually more
difficult. We also studied these two questions separately at the beginning. In fact we
studied square matrix-valued functions at first as traditionally done and changed to
general matrix-valued functions later on. This is yet another strong reason to study
the block Toeplitz and Hankel operators with non square matrix-valued symbols
because it could give a unified approach to several related problems. Without much
extra work we can state our results for four block Toeplitz operators.

Theorem 5.1 (First Version) Let $1(z) ∈ L∞
m×n, #1(z) ∈ L∞

n×k, $2(z) ∈ L∞
m×j ,

and #2(z) ∈ L∞
j×k. Then T$1T#1 = T$2T#2 if and only if the following two

conditions hold.

(1) $1(z)#1(z) = $2(z)#2(z).
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(2) There exist $̂(z) ∈ L∞
m×l and #̂(z) ∈ L∞

(n+j−l)×k for some 0 ≤ l ≤ n + j and
four constant matrices A,B,C and D such that AB = CD and

$1(z)− $̂(z)A ∈ H∞
m×n, #1(z)− B#̂(z) ∈ H∞

n×k (15)

$2(z) − $̂(z)C ∈ H∞
m×j , #2(z)− D#̂(z) ∈ H∞

j×k. (16)

Proof Note that T$1T#1 = T$2T#2 if and only if

T"T� = 0 where " = [
$1 $2

]
m×(n+j)

, � =
[−#1

#2

]

(n+j)×k

.

By Theorem 4.8, there exist $̂(z) ∈ L∞
m×l and #̂(z) ∈ L∞

(n+j−l)×k for some 0 ≤
l ≤ n+ j, and two matrices Um×l and V(n+j−l)×k such that UV = 0 and

"(z)− $̂(z)U ∈ H∞
m×(n+j)

, �(z)− D#̂(z) ∈ H∞
(n+j)×k. (17)

Write

U = [
A B

]
, V =

[−C

D

]

where A ∈ Mm×n, B ∈ Mm×j , C ∈ Mn×k , D ∈ Mj×k. Then UV = 0 is
the same as AB = CD and Condition (17) is equivalent to Condition (15) and
Condition (16). ��

The following is the result for four block Hankel operators.

Theorem 5.2 (First Version) Let $1(z) ∈ L∞
m×n, #1(z) ∈ L∞

n×k, $2(z) ∈ L∞
m×j ,

#2(z) ∈ L∞
j×k. Then H ∗

$∗
1
H#1 = H ∗

$∗
2
H#2 if and only if there exist $̂(z) ∈ L∞

m×l

and #̂(z) ∈ L∞
(n+j−l)×k for some 0 ≤ l ≤ n+j and four constant matrices A,B,C

and D such that AB = CD and

$1(z)− $̂(z)A ∈ H∞
m×n, #1(z)− B#̂(z) ∈ H∞

n×k (18)

$2(z)− $̂(z)C ∈ H∞
m×j , #2(z)− D#̂(z) ∈ H∞

j×k. (19)

Proof We prove the sufficiency. Write

$̂(z) = [
ϕ̂ij (z)

]
m×l

, #̂(z) = [
ψ̂ij (z)

]
(n+j−l)×k

,
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where αij (z) and βij (z) are scalar L∞ functions. Conditions (18) and (19) imply
that

H ∗
$∗

1
=
[
H ∗
ϕ̂ij (z)

]

m×l
A and H#1 = B

[
Hψ̂ij (z)

]

l×k
,

H ∗
$∗

2
=
[
H ∗
ϕ̂ij (z)

]

m×l
C and H#2 = D

[
Hψ̂ij (z)

]

l×k
.

Therefore

H ∗
$∗

1
H#1 =

[
H ∗
ϕ̂ij (z)

]
AB

[
Hψ̂ij (z)

]
=
[
H ∗
ϕ̂ij (z)

]
CD

[
Hψ̂ij (z)

]
= H ∗

$∗
2
H#2 .

The proof is complete. ��
In fact Theorem 5.1 follows from Theorem 5.2 by the following proposition,

which in turn follows from Lemma 2.1 and Proposition 2.3. However, we consider
Theorem 5.2 to be satisfactory since four constant matrices A,B,C, and D are
arbitrary except the condition AB = CD, while Theorem 5.1 can still be improved
because besides AB = CD, Condition (1) in Theorem 5.1 also imposes some
restrictions on A,B,C and D. The l in the theorem above can be taken as the
column rank of

[
$1+ $2+

]
.

Proposition 5.3 Let $1(z) ∈ L∞
m×n,#1(z) ∈ L∞

n×k,$2(z) ∈ L∞
m×j ,#2(z) ∈

L∞
j×k. Then T$1T#1 = T$2T#2 if and only if $1(z)#1(z) = $2(z)#2(z) and

H ∗
$∗

1
H#1 = H ∗

$∗
2
H#2 .

We now study when two block Toeplitz operators commute. We first recall
terminology, which is one of the motivations behind the study of commuting two
block Toeplitz operators.

Let $(z) ∈ L∞
n×n and #(z) ∈ L∞

n×n be two square matrix-valued functions.
Recall that the commutator of two Toeplitz operators of T$ and T# is defined to be

[T$, T# ] = T$T# − T#T$.

Note that

[T$, T# ] = T$T# − T#T$ = T"T� where " = [
$ #

]
, � =

[−#

$

]
.

The commutator [T$, T# ] is a useful tool for studying Toeplitz operators [9]. Write

$(z) = $+(z)+ $0 + $∗−(z), #(z) = #+(z)+ #0 + #∗−(z).

Theorem 5.4 Let $(z) ∈ L∞
n×n and #(z) ∈ L∞

n×n. Then T$T# = T#T$ if and
only the following two conditions hold.
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(1) $# = #$.

(2) There exist $̂(z) ∈ zH 2
n×l and #̂(z) ∈ zH 2

(2n−l)×n for some 0 ≤ l ≤ 2n and
four constant matrices A,B,C and D such that AB = CD

$+(z) = $̂(z)A, $∗−(z) = D#̂(z),

#+(z) = $̂(z)C, #∗−(z) = B#̂(z).

Proof The result follows from Theorem 5.1 or Theorem 5.2 by noting that

[T$, T# ] = T$T# − T#T$

= T$T# − T$# + T#$ − T#T$ + T$#−#$

= −H ∗
$∗H# + H ∗

#∗H$ + T$#−#$, (20)

and H ∗
$∗H# = H ∗

$∗H# is equivalent to H ∗
$∗+

H#∗− = H ∗
#∗+

H$∗− . ��
We remark different (and more complicated) characterizations of T$T# = T#T$

were also given in [18].
The cases l = 0 and l = 2n lead to the following result.

Corollary 5.5 Let $(z) ∈ L∞
n×n and #(z) ∈ L∞

n×n.

(a) If the column rank of
[
$+ #+

]
is 2n, then T$T# = T#T$ if and only if

$# = #$ and $(z) ∈ H∞
n×n and #(z) ∈ H∞

n×n. In this case T$T# = T$# =
T#$ = T#T$.

(b) If the row rank of

[−#∗−
$∗−

]
is 2n, then T$T# = T#T$ if and only if $# = #$

and $(z) ∈ H∞
n×n and #(z) ∈ H∞

n×n. In this case T$T# = T$# = T#$ =
T#T$.

Recall in the scalar case, Theorem 9 in [10] says except the two scenarios for
T$T# = T#T$ described in the corollary above, the only other option is that # =
λ$. To capture this case for block Toeplitz operators, we need a lemma for finite
rank operators. This lemma is used implicitly in the proof of Theorem 3.2 in [14]
and can be proved by a similar method as Lemma 3.1.

Lemma 5.6 Let xi ∈ H, yi ∈ K for 1 ≤ i ≤ n and wj , zj ∈ K for
1 ≤ j ≤ k. If {xi, 1 ≤ i ≤ n} are linearly independent and

{
zj , 1 ≤ j ≤ k

}
are

linearly independent, then

n∑

i=1

xi ⊗ yi =
k∑

j=1

wj ⊗ zj (21)
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if and only if there exists a matrix Ak×n such that

[
y1 · · · yn

] = [
z1 · · · zk

]
A,

[
w1 · · · wk

] = [
x1 · · · xn

]
A∗.

The following theorem is a refinement of Theorem 5.2. In the square matrix case
(m = n = j = k), this result was proved in Theorem 7 [14].

Theorem 5.7 Let $1(z) ∈ L∞
m×n,#1(z) ∈ L∞

n×k,$2(z) ∈ L∞
m×j ,#2(z) ∈ L∞

j×k.

If the column rank of $1+ is n and the row rank of #∗
2− is j, then H ∗

$∗
1
H#1 =

H ∗
$∗

2
H#2 if and only if there exists a constant matrix Aj×n such that $2 − $1A

∗ ∈
H∞
m×j and #1 − A∗#2 ∈ H∞

m×j .

Proof The proof is similar to the proof of Theorem 4.1. We include the short proof
for clarity. Again the proof of sufficiency is meant to be straightforward. Write
$1+(z) = [ϕil(z)]m×n and #∗

2−(z) = [ψil(z)]j×k , then $2+ = $1+A∗ and
#∗

1−(z) = A∗#∗
2−. Thus

H ∗
$∗

1
H#1 = H ∗

$∗
1+
H#∗

1− =
[
H ∗
ϕil(z)

]
A∗ [Hψil(z)

]
,

H ∗
$∗

2
H#2 = H ∗

$∗
2+
H#∗

2− =
[
H ∗
ϕil(z)

]
A∗ [Hψil(z)

]
.

Now we prove the necessity. Without loss of generality, assume $∗
1 = $∗

1+,
$∗

2 = $∗
2+, #1 = #∗

1−(z) and #2 = #∗
2−(z). Let {ei}ni=1 and {fl}jl=1 be the

standard bases of Cn and C
j respectively. By Lemma 2.4, H ∗

$∗
1
H#∗

1
= H ∗

$2
H#∗

2

implies that

n∑

i=1

H ∗
$∗

1
ei ⊗H ∗

#1
ei =

j∑

l=1

H ∗
$∗

2
fl ⊗H ∗

#2
fl.

Equivalently

n∑

i=1

H$̃∗
1
ei ⊗H#̃1

ei =
j∑

l=1

H$̃∗
2
fl ⊗H#̃2

fl.

Since the column rank of $1 is n and the row rank of #2 is j,
{
H
$̃∗

1
ei, 1 ≤ i ≤ n

}

are linearly independent and
{
H#̃2

fl, 1 ≤ l ≤ j
}

are linearly independent. By
Lemma 5.6, there exist a constant matrix Aj×n such that

[
H
#̃∗

1
e1 · · · H

#̃∗
1
en

]
=
[
H#̃2

f1 · · · H#̃2
fl

]
A,

[
H
$̃∗

2
f1 · · · H

$̃∗
2
fn

]
=
[
H
$̃∗

1
e1 · · · H

$̃∗
1
en

]
A∗.



Infinite Block Toeplitz and Hankel Matrices 395

Equivalently

#̃1 = #̃2A or #1 = A∗#2

$̃∗
2(z) = $̃∗

1(z)A
∗ or $2(z) = $1A

∗.

The proof is complete. ��

Remark 5.8 Without the assumption on the column rank of $1+ and the row rank
of #∗

2−, the theorem above does not hold, and this can be seen from Theorem 5.2.
It seems four matrices A,B,C and D are needed in Theorem 5.2.

Corollary 5.9 Let ϕi, ψi ∈ L∞ for i = 1, · · · , n and fj , gj ∈ L∞
for j = 1, · · · , k. Assume {ϕi+, i = 1, · · · , n} are linearly independent
and

{
gj−, j = 1, · · · , k} are linearly independent. Then

∑n
i=1 H

∗
ϕi
Hψi =

∑k
j=1 H

∗
fj
Hgj if and only if there exist a matrix Ak×n such that

[
Hψ1 · · · Hψn

] = A∗ [Hg1 · · · Hgk

]
,

[
Hf1

· · · Hfk

]
= [

Hϕ1 · · · Hϕn

]
AT ,

where AT is the transpose of A.

Corollary 5.10 Let ϕi, ψi ∈ L∞ for i = 1, · · · , n and fj , gj ∈ L∞
for j = 1, · · · , k. Assume {ϕi+, i = 1, · · · , n} are linearly independent and{
gj−, j = 1, · · · , k} are linearly independent. Then

∑n
i=1 Tϕi Tψi = ∑k

j=1 TfiTgi

if and only if
∑n

i=1 ϕiψi = ∑k
j=1 fjgj and there exist a matrix Ak×n such that

[
ψ1 · · · ψn

]− A∗ [g1 · · · gk
] ∈ H∞

n×1,

[
f1 · · · fk

]− [
ϕ1 · · · ϕn

]
AT ∈ H∞

k×1.

The following result for commuting block Toeplitz operators in the scalar case
reduces to Theorem 9 in [10]. It follows immediately from Theorem 5.7 and
Proposition 5.3.

Theorem 5.11 Let $(z) ∈ L∞
n×n and #(z) ∈ L∞

n×n. If the column rank of $+ is n
and the row rank of $− is n, then T$T# = T#T$ if and only if $# = #$ and
there exists a constant matrix An×n such that #∗− = A$∗− and #+ = $+A.
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6 Unbounded Block Toeplitz and Block Hankel Operators

In this section we show that results of previous sections are also valid for unbounded
block Toeplitz and block Hankel operators. Let Pn be the set of analytic polynomial
in H 2

n , that is,

Pn =
{
p(z) ∈ H 2

n : p(z) =
m∑

i=0

ciz
i, ci ∈ C

n, m ≥ 0

}
.

Then Pn is dense in H 2
n . Let $(z) ∈ L2

m×n,#(z) ∈ L2
n×k and "(z) ∈ L2

m×k. Then
T$ and T# are defined on Pn and Pk respectively, however T$T# is not necessary
defined on Pk. As in [15] (where unbounded Hankel operators with scalar symbols
were discussed), we can introduce bilinear forms B$,# and D" defined on Pk ×Pm
by

B$,# (f, g) = 〈T#f, T#∗g〉H 2
m
, f ∈ Pk, g ∈ Pm, and

D"(f, g) = 〈T", g〉H 2
m
, f ∈ Pk, g ∈ Pm.

To be rigorous, we will carefully state and prove a couple of results. We first prove
the analogue of Proposition 2.3.

Proposition 6.1 Let $(z) ∈ L2
m×n and #(z) ∈ L2

n×k. If

〈T$f, T#∗g〉H 2
m

= 〈T"f, g〉H 2
m
, f ∈ Pk, g ∈ Pm,

for some " ∈ L2
m×k , then " = $#.

Proof Write z = eiθ ,

$(eiθ ) =
∞∑

j=−∞
$jz

j , #(eiθ ) =
∞∑

j=−∞
#jz

j , "(eiθ ) =
∞∑

j=−∞
"jz

j .

By definition, for f = zu+lc ∈ Pk, g = zv+ld ∈ Pm where c ∈ C
k, d ∈ C

m and u

and v are nonnegative integers,

0 = 〈T"f, g〉H 2
m

− 〈T$f, T#∗g〉H 2
m

= 〈P ["f ] , g〉H 2
m

− 〈
P [#f ] ,$∗g

〉
L2
m

=
〈 ∞∑

j=−u−l

"jcz
j+u+l , zv+ld

〉

H 2
m

−
〈 ∞∑

j=−u−l

#j cz
j+u+l ,

∞∑

j=∞
$∗
j z

−j+v+ld

〉

H 2
m
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= 〈"v−uc, d〉
Cm −

∞∑

j=−u−l

〈
#jc,$

∗
v−u−j d

〉

Cm

= 〈"v−uc, d〉
Cm −

∞∑

j=−u−l

〈
$v−u−j#jc, d

〉
Cm .

Let l → ∞, we have

〈"v−uc, d〉
Cm −

∞∑

j=−∞

〈
$v−u−j#jc, d

〉
Cm = 0.

Since c ∈ C
k and d ∈ C

m are arbitrary, therefore

"v−u =
∞∑

j=−∞
$v−u−j#j and " = $#. (22)

The proof is complete. ��

Remark 6.2 We note that $# does not necessarily belong to L2
m×k if $(z) ∈ L2

m×n

and #(z) ∈ L2
n×k. Thus in the above proposition we actually proved $# ∈ L2

m×k.

We also remark that the infinite series in (22) is convergent by the assumption
$(z) ∈ L2

m×n and #(z) ∈ L2
n×k.

Even though, H# only depends on the co-analytic part #∗−(z), it is cumbersome

that we have to assume # ∈ L∞
n×k before. Now we can just assume #(z) ∈ zH 2

n×k.

The analogue of Lemma 2.4 can be proved similarly.

Lemma 6.3 Let $(z) ∈ zH 2
m×n and #(z) ∈ zH 2

n×k . Then for f ∈ Pk, g ∈ Pm,

〈H#f,H$∗g〉H 2
n

− 〈H#zf,H$∗zg〉H 2
n

=
n∑

i=1

〈H#f, ei〉H 2
n
〈ei,H$∗g〉H 2

n

=
〈(

n∑

i=1

H ∗
$∗ei ⊗ H ∗

#ei

)
f, g

〉
.

We now state a couple of sample results for unbounded block Toeplitz and
Hankel operators.

Theorem 6.4 Let $(z) ∈ zH 2
m×n and #(z) ∈ zH 2

n×k. Then

〈H#f,H$∗g〉H 2
n

= 0
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for all f ∈ Pk, g ∈ Pm if and only if there exist $̂(z) ∈ zH 2
m×l and #̂(z) ∈

zH 2
(n−l)×k for some 0 ≤ l ≤ n and two constant matrices A ∈ Ml×n and B ∈

Mn×(n−l) such that $(z) = $̂(z)A,#(z) = B#̂(z) and AB = 0.

Proof By Lemma 6.3, if 〈H#f,H$∗g〉H 2
n

= 0 for all f ∈ Pk, g ∈ Pm, then

〈(
n∑

i=1

H ∗
$∗ei ⊗ H ∗

#ei

)
f, g

〉
= 0.

Note that
n∑

i=1
H ∗
$∗ei ⊗H ∗

#ei is a bounded operator, and Pk and Pm are dense in H 2
k

and H 2
m. Hence

n∑

i=1

H ∗
$∗ei ⊗ H ∗

#ei = 0.

The rest of proof goes exactly as the proof of Theorem 4.1 by using
Lemma 3.1. ��

Theorem 6.5 Let $(z) ∈ L2
m×n and #(z) ∈ L2

n×k. Then

〈T$f, T#∗g〉H 2
m

= 〈T"f, g〉H 2
m
, f ∈ Pk, g ∈ Pm,

for some " ∈ L2
m×k if and only if there exist $̂(z) ∈ L2

m×l and #̂(z) ∈ L2
(n−l)×k for

some 0 ≤ l ≤ n, and two constant matrices A ∈ Ml×n and B ∈ Mn×(n−l) such that

$(z) − $̂(z)A ∈ H 2
m×n, #(z) − B#̂(z) ∈ H 2

n×k, and AB = 0. Furthermore, in
this case " = $#.

It is natural to ask when the product of two Hankel operators is still a Hankel
operator or when a Toeplitz operator and a Hankel operator commute. Indeed, these
questions have been studied in literature, for example, see [24] and [35] for complete
answers to these two questions in the scalar case on Hardy space and [14] for some
partial answers in the matrix-valued case on Hardy space.
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Toeplitz and Related Operators
on Polyanalytic Fock Spaces

Raffael Hagger

In Memory of Harold Widom

Abstract We give a characterization of compact and Fredholm operators on
polyanalytic Fock spaces in terms of limit operators. As an application we obtain a
generalization of the Bauer–Isralowitz theorem using a matrix valued Berezin type
transform. We then apply this theorem to Toeplitz and Hankel operators to obtain
necessary and sufficient conditions for compactness. As it turns out, whether or not
a Toeplitz or Hankel operator is compact does not depend on the polyanalytic order.
For Hankel operators this even holds on the true polyanalytic Fock spaces.

Keywords Polyanalytic Fock space · Toeplitz operators · Hankel operators ·
Compactness · Essential spectrum

1 Introduction

Polyanalytic functions on C (also called polyentire functions) are smooth functions
f : C → C in the variables z and z̄ that satisfy

∂nf

(∂z̄)n
= 0

for some n ∈ N. They can be represented in the form

f (z) =
n−1∑

j=0

hj (z)z̄
j ,
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where the hj are entire functions. We then say that f is of polyanalytic order at
most n. In terms of regularity, polyanalytic functions are somewhere in between
(complex) analytic and real analytic functions. They still satisfy a Cauchy type
integral equation and are subject to Liouville’s theorem, but the maximum principle
fails as well as the strong form of the identity theorem. For example, f (z) = 1−|z|2
defines a polyanalytic function that vanishes on the unit circle and has a maximum at
0; two features a non-zero analytic function cannot have. But of course we still have
a weaker form of the identity theorem, which also holds for real analytic functions:
A polyanalytic function that vanishes on an open set is equal to 0 everywhere. We
refer to [3] for an overview of results on polyanalytic functions.

Polyanalytic functions have been studied for over a century as they naturally
appear in the theory of elasticity [15, 20]. However, it was only recently discovered
that certain polyanalytic function spaces possess an interesting creation-annihilation
structure similar to the quantum harmonic oscillator [23]. Subsequently, several
connections to time-frequency analysis, signal processing and quantum mechanics
have been found. We refer the interested reader to [1, 22] for now and return to
related work after some introductory material.

Let μ denote the Gaussian measure on C defined by

dμ(z) = 1

π
e−|z|2 dz. (1)

The polyanalytic Fock space F2
n is the closed subset of L2(C, μ) consisting of

polyanalytic functions of order at most n. For n = 1 we of course get the classical
Fock space F2 = F2

1 of analytic functions. Vasilevski [23] now observed that the
polyanalytic Fock spaces can be decomposed into an orthogonal sum of so-called
true polyanalytic Fock spaces

F2
n =

n⊕

k=1

F2
(k),

where F2
(k) consists of those f ∈ L2(C, μ) that can be written as

f (z) = 1

(k − 1)!e
|z|2 ∂k−1

∂zk−1

(
e−|z|2g(z)

)

for an entire function g. Now consider the following operators defined on F2
n:

a† :=
(

− ∂

∂z
+ z̄

)
and a := ∂

∂z̄
.
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The operator 1√
k
a† is an isometric isomorphism between F2

(k) and F2
(k+1) with

inverse 1√
k
a. In particular, N := a†a is the counting operator, that is,

Nf = kf for f ∈ F2
(k+1),

and it holds [a, a†] = I . Summing up all the true polyanalytic Fock spaces, we
obtain L2(C, μ):

L2(C, μ) =
∞⊕

k=1

F2
(k); (2)

see [23, Corollary 2.4].
Just like F2, the true polyanalytic Fock spaces are reproducing kernel Hilbert

spaces. Their reproducing kernels are given by

K(k)(z,w) = 1

(k − 1)!
(

− ∂

∂w̄
+ w

)k−1 (
− ∂

∂z
+ z̄

)k−1

ezw̄

= L0
k−1(|z − w|2)ezw̄,

where for α ∈ N0 the

Lα
k (x) :=

k∑

j=0

(−1)j
(
k + α

k − j

)
xj

j !

are the generalized Laguerre polynomials. Consequently, the orthogonal projection
onto F2

(k) is given by

P(k)f (z) =
∫

C

f (w)L0
k−1(|z − w|2)ezw̄ dμ(w)

for z ∈ C, f ∈ L2(C, μ). As F2
n is equal to the orthogonal sum of true polyanalytic

Fock spaces, the orthogonal projection Pn onto F2
n is just the sum of the P(k). Using

an identity for Laguerre polynomials, we get

Pnf (z) =
∫

C

f (w)L1
n−1(|z − w|2)ezw̄ dμ(w)

for z ∈ C, f ∈ L2(C, μ).
Via the decomposition (2), we can define the isometry

A† : L2(C, μ) → L2(C, μ), A†f = A†
∞∑

k=1

fk :=
∞∑

k=1

1√
k
a†fk,
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where fk := P(k)f ∈ F2
(k) is the k-th component of f ∈ L2(C, μ). Its adjoint is of

course given by

A : L2(C, μ) → L2(C, μ), Af = A

∞∑

k=1

fk =
∞∑

k=2

1√
k − 1

afk.

By definition, we have A†(F2
(k)) = F2

(k+1), A(F
2
(k+1)) = F2

(k) and A(F2
(1)) = {0}. In

particular, A† and A can be seen as the forward and backward shift on
∞⊕
k=1

F2
(k)

∼=
�2(N,F2). It is also clear that AA† = I and A†A = (I − P(1)).

For bounded functions f we can now define polyanalytic Toeplitz and Hankel
operators in the usual way:

Tf,(k) : F2
(k) → F2

(k), Tf,(k)g = P(k)(fg),

Tf,n : F2
n → F2

n, Tf,ng = Pn(fg),

Hf,(k) : F2
(k) → L2(C, μ), Hf,(k)g = (I − P(k))(fg),

Hf,n : F2
n → L2(C, μ), Hf,ng = (I − Pn)(fg).

For k = 1 (or equivalently n = 1) we just get the usual Toeplitz and Hankel
operators on the standard analytical Fock space F2 = F2

1 = F2
(1).

Shortly after Axler and Zheng [2] proved a similar result for the Bergman space
over the unit disk, Engliš [8] showed that a Toeplitz operator on F2 is compact
if and only if its Berezin transform vanishes at infinity. In fact, in both cases this
is true not only for Toeplitz operators but for any finite sum of finite products of
Toeplitz operators. This was later generalized to what we shall call the Bauer–
Isralowitz theorem: A bounded linear operator on F2 is compact if and only if it
is in the C∗-algebra generated by all Toeplitz operators and its Berezin transform
vanishes at infinity. Motivated by this result, many allegedly larger C∗-algebras of
operators, such as the sufficiently and weakly localized operators [14, 26], have been
introduced where the same result would hold. However, in 2015 Xia [25] proved the
surprising result that all these algebras actually coincide with the closure of the set of
all Toeplitz operators. All the different approaches notably had some limit operator
type arguments in common, reminiscent of the Fredholm theory of sequence spaces.
Consequently, in analogy to the sequence space case, another C∗-algebra, called
the band-dominated operators, was introduced in [9], which formalized the limit
operator idea. It was later shown in [4] that this would be again the same algebra, but
the band-dominated approach of [9] also provided a characterization of Fredholm
operators. Moreover, it allowed to study Hankel operators, providing quick proofs
for well-known compactness results as well as some new insights [13].

Apart from different algebras, several authors also started considering different
domains such as bounded symmetric domains [11] and Bergman-type function
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spaces [19] just to name a few. The structure of these results is always very similar.
In order to be compact, an operator must be contained in a certain C∗-algebra and
the Berezin transform must vanish at the boundary of the domain. In this paper
we now present an example where the Berezin transform is not strong enough to
characterize compactness, even within the reasonable algebra of band-dominated
operators, which, as mentioned above, at least in case of the analytic Fock space is
just the closure of the set of Toeplitz operators.

In [22], Rozenblum and Vasilevski showed that a Toeplitz operator on a true
polyanalytic Fock space F2

(k) is unitarily equivalent to a Toeplitz operator on F2,
but with possibly very irregular symbol. They then offer the options of either
considering Toeplitz operators on ‘bad’ spaces with ‘nice’ symbols or Toeplitz
operators on ‘nice’ spaces with ‘bad’ symbols. Rozenblum and Vasilevski conclude
that the second option is more promising. Our (operator algebraic) point of view
here is somewhat different as the inner structure of the polyanalytic function
spaces does not matter very much in our analysis. Indeed, the band-dominated
operators look exactly the same on each true polyanalytic Fock space (in the
sense that the algebras are isomorphic) and hence many results can be reduced
directly to the analytic case via A and A†. This also lets us circumvent some of
the problems in [18], which prevented a generalization of the Bauer–Isralowitz
theorem to polyanalytic Fock spaces. However, the downside is that our construction
of the generalized Berezin transform is rather ad-hoc and therefore appears to be
less natural. Nevertheless, we manage to obtain a generalization of the Bauer–
Isralowitz theorem for polyanalytic Fock spaces using a matrix valued Berezin
type transform. It is then not very surprising that our limit operator approach
also provides generalizations of other typical results in the area such as the
characterization of compact Hankel operators in terms of VMO-functions and the
corresponding formula for the essential spectrum of Toeplitz operators. We note that
the essential spectrum of polyanalytic Toeplitz operators did not get much attention
in the literature so far. The only related (but much weaker) result known to the
author is for the polyanalytic Bergman space over the unit disk and due to Wolf
[24]. Maybe the most unexpected result of this paper is that the compactness of
Hankel operators Hf,(k) on F2

(k) does not depend on the order k. It is somewhat
expected from the work of Rozenblum and Vasilevski [22] that if Hf,(1) is compact,
then all other Hankel operators Hf,(k) are compact as well, but the other direction
appears to be rather surprising in this context.

2 Properties of A and A†

We first introduce some more notation that will be needed later on. The algebra of
bounded linear operators between two Hilbert spaces H1 and H2 will be denoted by
L(H1,H2). IfH1 = H2, we will just write L(H1). Similarly, we will use K(H1,H2)

and K(H1) for the compact operators between the respective Hilbert spaces. The
identity operator on any Hilbert space will be denoted by I . Furthermore, the
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characteristic function of a set K ⊆ C will be denoted by 1K . An open ball in
C with midpoint z and radius r will be denoted by B(z, r).

The first property we are going to state is rather obvious, but still worth noting
for later.

Proposition 1 For every k ∈ N we have A†P(k)A = P(k+1).

Proof As AA† = I , A†P(k)A is an orthogonal projection onto F2
(k+1), hence equal

to P(k+1). ��
Next, we need the concept of band-dominated operators. The notion originates

in the theory of sequence spaces (see e.g. [21]), but has also been introduced
to Bergman and Fock spaces a few years ago in order to study compactness
and Fredholm problems [9, 10]. A slightly more systematic introduction of band-
dominated operators to non-discrete spaces is given in [12].

Definition 2 An operator T ∈ L(L2(C, μ)) is called a band operator if

sup
{
dist(K,K ′) : K,K ′ ⊆ C,M1K′TM1K �= 0

}
< ∞,

where dist(K,K ′) := inf
w∈K,z∈K ′ |w − z| is the distance between the setsK andK ′. T

is called band-dominated if it is the norm limit of a sequence of band operators. The
set of band-dominated operators is denoted by BDO2. An operator T defined on F2

(k)

or F2
n is called band-dominated if T P(k) ∈ BDO2 or T Pn ∈ BDO2, respectively.

The sets of band-dominated operators in L(F2
(k)) and L(F2

n) will be denoted byA2
(k)

and A2
n, respectively.

It turns out that the sets BDO2, A2
(k) and A2

n are actuallyC∗-algebras that contain
all compact operators; see [12, Theorems 3.7 and 3.10]. Luckily, for most integral
operators it is relatively straightforward to prove their membership in BDO2. The
following lemma is a special case that essentially follows from Young’s inequality.

Lemma 3 Let ν be the Gaussian measure defined by dν(z) := 1
2π e

− 1
2 |z|2dz, g ∈

L1(C, ν) and

(Tf )(z) :=
∫

C

f (w)g(z − w)ezw̄ dμ(w)

for z ∈ C and f ∈ L2(C, μ). Then T defines a bounded linear operator on
L2(C, μ), T ∈ BDO2 and ‖T ‖ ≤ 2 ‖g‖L1(C,ν).

Proof For m ≥ 0 we define

(Tmf )(z) :=
∫

C

f (w)g(z − w)1B(0,m)(z − w)ezw̄ dμ(w)
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for z ∈ C and f ∈ L2(C, μ). This implies

|(T − Tm)f (z)| e− 1
2 |z|2

≤ 1

π

∫

C

|f (w)| e− 1
2 |w|21C\B(0,m)(z − w) |g(z − w)| e− 1

2 |z−w|2 dw.

Using Young’s inequality, we get

‖(T − Tm)f ‖ ≤ 2 ‖f ‖ ∥∥g1C\B(0,m)
∥∥
L1(C,ν)

.

For m = 0 we obtain the boundedness of T and the norm estimate. As the operators
Tm are obviously band operators, we also get T ∈ BDO2. ��

With this lemma we can now prove the following important proposition. We
actually do not know if A and A† are in BDO2 themselves, but for our purposes it is
sufficient to know AP(k),A

†P(k) ∈ BDO2.

Proposition 4 AP(k) and A†P(k) are contained in BDO2 for all k ∈ N.

Proof As A†P(k) is the adjoint of AP(k+1) and BDO2 is a C∗-algebra, it suffices to
show that AP(k) ∈ BDO2 for all k ∈ N. AP(1) vanishes, so assume k ≥ 2. For k ≥ 2
the operator AP(k) can be written as an integral operator:

AP(k)f (z) = 1√
k − 1

aP(k)f (z)

= 1√
k − 1

∂

∂z̄

∫

C

f (w)L0
k−1(|z − w|2)ezw̄ dμ(w)

= − 1√
k − 1

∫

C

f (w)(z − w)L1
k−2(|z − w|2)ezw̄ dμ(w),

where f ∈ L2(C, μ), z ∈ C and we used (L0
k−1)

′ = −L1
k−2. Choosing g(z) :=

− 1√
k−1

zL1
k−2(|z|2), we obtain AP(k) ∈ BDO2 by Lemma 3. ��

As BDO2 is a C∗-algebra, we also have P(k) = AP(k+1)A
†P(k) ∈ BDO2. Obvi-

ously, one could also check this directly by the same argument as in Proposition 4.

Corollary 5 P(k), Pn ∈ BDO2 for all k, n ∈ N.

As the multiplication operators Mf for f ∈ L∞(C, μ) are obviously contained
in BDO2, all the Toeplitz and Hankel operators defined in the introduction are band-
dominated.

Corollary 6 Let k, n ∈ N and f ∈ L∞(C, μ). Then the operators Tf,(k), Tf,n,
Hf,(k) and Hf,n are band-dominated.
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We also get the following corollary of Proposition 4. It shows that the algebras
of band-dominated operators on each true polyanalytic Fock space are isomorphic.
This will allow us to jump back and forth between the spaces and, in particular,
obtain a generalization of the Bauer–Isralowitz theorem.

Corollary 7 The C∗-algebras A2
(k) are isomorphic for k ∈ N. The isomorphism

A2
(1) → A2

(k) is given by T �→ (A†)k−1TAk−1.

For z ∈ C the Weyl operators Wz : L2(C, μ) → L2(C, μ) are defined by

(Wzf )(w) = f (w − z)kz(w),

where the kz denote the normalized reproducing kernels on F2, that is,

kz(w) := ewz̄−
1
2 |z|2 .

The following properties of Weyl operators are well-known and easy to check:
Wz is unitary with W∗

z = W−z and

WzWw = e−i Im(zw̄)Wz+w. (3)

Moreover, Wz obviously leaves F2
(1) invariant. Our next proposition shows that all

the true polyanalytic Fock spaces are actually left invariant.

Proposition 8 We have AWz = WzA and A†Wz = WzA
† for all z ∈ C. In

particular, F2
(k) is invariant under Wz and we have P(k)Wz = WzP(k) for all k ∈ N.

Proof Let g ∈ F2
(k). Then

(aWzg)(w) = ∂

∂w̄

(
g(w − z)kz(w)

) = ∂g

∂w̄
(w − z)kz(w) = (Wzag)(w),

hence AWz = WzA. Taking adjoints yields the other equality since W∗
z = W−z.

The second claim follows via Proposition 1 as F2
(1) is invariant under Wz. ��

Another useful property of the Weyl operators is

W−zMfWz = Mf(·+z) (4)

for all f ∈ L∞(C, μ) and z ∈ C; see e.g. [9, Lemma 17].
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3 Limit Operator Methods

In this section we will briefly recall the limit operator methods developed in [12]
and show how they can be applied to operators on polyanalytic Fock spaces. The
main idea of [12] was to formulate a collection of very general assumptions that are
needed to characterize compact and Fredholm operators in terms of limit operators.
The assumptions are as follows.

Assumption 9 (Space) Let (X, d) be a proper metric space of bounded geometry
that satisfies property A’. Assume that d is unbounded and let μ be a Radon measure
on X.

In our case we haveX = C, d is the usual Euclidean metric and μ is the Gaussian
measure defined in (1). We will skip the definitions of the more technical terms and
just mention that they are more or less trivially satisfied here. For details, we refer
to [12, Example 6.5].

Assumption 10 (Subspaces and Projection) Let p ∈ (1,∞) and let Mp ⊆
Lp(X,μ) be a closed subspace with bounded projection P ∈ BDOp. Moreover,
assume that M1KP and PM1K

are compact for all compact subsets K ⊂ X.

For simplicity we only consider the case p = 2 here. M2 will be any of
the polyanalytic Fock spaces F2

(k) or F2
n. In each case we choose the orthogonal

projection discussed in the introduction for P . For these we have P ∈ BDO2 as
shown in Corollary 5. That M1KP and PM1K are compact follows from a Hilbert–
Schmidt type argument and will be proven in Theorem 14 below.

Assumption 11 (Shifts) Fix x0 ∈ X. For x ∈ X let φx : X → X be a bijective
isometry with φx(x0) = x. Assume that μ ◦ φx � μ � μ ◦ φx and let hx be a
measurable function such that |hx |p = d(μ◦φx)

dμ μ-almost everywhere. Assume that
the maps x �→ φx(y) and x �→ hx(y) are continuous for μ-almost every y ∈ X.
For p ∈ (1,∞) and x ∈ X let Up

x : Lp(X,μ) → Lp(X,μ) be defined by U
p
x f :=

(f ◦ φx) · hx and assume that x �→ M1KU
p
x P (U

p
x )

−1M1K′ extends continuously to
the Stone-Čech compactification βX of X for all compact sets K,K ′ ⊂ X.

We choose x0 = 0 and φx(z) := z + x for each x ∈ C. For μ ◦ φx we get

d(μ ◦ φx)(z) = 1

π
e−|z+x|2 dz = e−2 Re(zx̄)−|x|2dμ(z)

and hence μ ◦ φx � μ � μ ◦ φx for all x ∈ C. For hx we choose hx(z) :=
e−zx̄− 1

2 |x|2 = k−x(z). For U2
x we then have

(U2
x f )(z) = f (z + x)k−x(z) = (W−xf )(z).

The last assumption trivially holds as U2
x = W−x and P commute in our case by

Proposition 8.
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We have to admit that in the following the notation is a bit unfortunate as the sign
convention is conflicting between [12] and earlier works such as [5] and [9]. We will
use the former convention because it makes it compatible with the boundary values
of the Berezin transform introduced later and consequently lets some results appear
much cleaner (cf. Lemma 18 or Lemma 19 below). Anyway, let x ∈ βC \ C and
choose a net (zγ ) in C that converges to x ∈ βC \ C. For H := F2

(k) or H := F2
n

and T ∈ L(H) band-dominated we define

Txg := lim
zγ→x

W−zγ T Wzγ g

for g ∈ H . This strong limit is guaranteed to exist and independent of the chosen
net as shown in [12, Theorem 4.11]. Tx is called a limit operator of T ∈ L(H). The
main results of [12] are now as follows:

Theorem 12 (Corollary 4.24 of [12]) Assume that the Assumptions 9–11 are
satisfied. Then K ∈ L(Mp) is compact if and only if K is band-dominated and
Kx = 0 for all x ∈ βX \ X.

Theorem 13 (Theorem 4.38 of [12]) Assume that the Assumptions 9–11 are
satisfied. Further assume that T ∈ L(Mp) is band-dominated. Then T is Fredholm
if and only if Tx is invertible for all x ∈ βX \ X.

Translated to the case at hand we obtain the following theorem as a special case.

Theorem 14 Let H := F2
(k) or H := F2

n for some k, n ≥ 1.

(a) K ∈ L(H) is compact if and only if K is band-dominated and Kx = 0 for all
x ∈ βC \ C.

(b) Let T ∈ L(H) be band-dominated. Then T is Fredholm if and only if Tx is
invertible for all x ∈ βC \ C.

Proof We only need to show that the Assumptions 9–11 are satisfied for the true

polyanalytic Fock spaces F2
(k). For F2

n =
n⊕

k=1
F2
(k) the theorem then follows as well

because the theory is stable under orthogonal sums (compare with the remark at the
end of [12, Example 6.8]). Alternatively, the proof below also works for F2

n.
So let H := F2

(k) for some k ∈ N. After the discussion above, the only condition
left to prove is the compactness of M1KP(k) and P(k)M1K for compact sets K ⊂ C.

We have

P(k)M1K f (z) =
∫

K

f (w)L0
k−1(|z − w|2)ezw̄ dμ(w)
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for f ∈ L2(C, μ), z ∈ C. This integral operator is Hilbert–Schmidt because

∫

C

∫

K

∣∣∣L0
k−1(|z − w|2)ezw̄

∣∣∣
2

dμ(w) dμ(z)

= 1

π2

∫

C

∫

K

∣∣∣L0
k−1(|z − w|2)

∣∣∣
2
e−|z−w|2 dw dz

= 1

π2

∫

C

∫

K

∣∣∣L0
k−1(|z|2)

∣∣∣
2
e−|z|2 dw dz

< ∞.

A similar argument shows that M1KP(k) is also Hilbert–Schmidt. ��

4 Generalized Berezin Transforms

On F2
1 = F2 one defines the Berezin transform B(T ) of an operator T ∈ L(F2

1) as

[B(T )](z) := 〈T kz, kz〉 .

From the Bauer–Isralowitz theorem we know that the compact operators on F2
1 can

be characterized via the Berezin transform. Namely, T ∈ L(F2
1) is compact if and

only if T is in the Toeplitz algebra and B(T ) ∈ C0(C) [5, Theorem 1.1]. Note
that in this case the Toeplitz algebra coincides with the algebra of band-dominated
operators A2

1 [4, Theorem 4.20].
As F2

n is also a reproducing kernel Hilbert space, one can of course ask the same
question: Can the compact operators be characterized via the Berezin transform?
Unfortunately, the answer is no for n ≥ 2 (at least withinA2

n). Define the normalized
reproducing kernels kz,n as usual:

kz,n(w) := K(w, z)

‖K(·, z)‖ = 1√
n
L1
n−1(|z − w|2)ewz̄− 1

2 |z|2 .

Then

〈
(P(1) − P(2))kz,n, kz,n

〉 = 〈
P(1)kz,n, kz,n

〉− 〈
P(2)kz,n, kz,n

〉 = 1

n
− 1

n
= 0

for all z ∈ C. However, P(1) − P(2) is obviously not compact.
Nevertheless, one can still characterize compactness on F2

n with a real analytic
function, but it turns out to be matrix-valued. The set of complex n×n matrices will
be denoted by C

n×n.
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Definition 15 Let k, n ∈ N. For T ∈ L(F2
(k)) we define

B(k)(T ) : C → C, [B(k)(T )](z) := 〈
T lz,k, lz,k

〉

and for T ∈ L(F2
n) we define

Bn(T ) : C → C
n×n, [Bn(T )](z) :=

⎛
⎜⎝

〈
T lz,1, lz,1

〉
. . .

〈
T lz,n, lz,1

〉

...
...〈

T lz,1, lz,n
〉
. . .

〈
T lz,n, lz,n

〉

⎞
⎟⎠ ,

where lz,k ∈ F2
(k) is given by lz,k(w) = 1√

(k−1)!(w̄−z̄)k−1ewz̄− 1
2 |z|2 . We will also use

the notation T̃ for the Berezin transform of P1T |F2
1
: F2

1 → F2
1. For f ∈ L∞(C, μ)

we will use the abbreviations Bn(f ) := Bn(Tf,n), B(k)(f ) := B(k)(Tf,(k)) and
f̃ := B1(f ).

Note that lz,k is indeed in F2
(k) as

lz,k(w) = (A†)k−1kz(w), (5)

which is easily seen by induction. These generalized Berezin transforms thus inherit
all the basic properties of the usual Berezin transform B = B1. In particular,
B(k) : L(F2

(k)) → C(C) and Bn : L(F2
n) → C(C → C

n×n) are injective bounded
linear operators and their images consist of real analytic, Lipschitz continuous
functions.

This also makes it evident why this is suitable to characterize compactness.
Namely, T ∈ L(F2

n) is compact if and only if P(k)T |F2
(j)

∈ L(F2
(j),F

2
(k)) is compact

for all j, k = 1, . . . , n, which is equivalent to P(1)A
k−1T (A†)j−1|F2

(1)
∈ L(F2

(1))

being compact. As the Berezin transform of P(1)Ak−1T (A†)j−1|F2
(1)

is given by

〈
P(1)A

k−1T (A†)j−1kz, kz

〉
= 〈

T lz,j , lz,k
〉
,

the following theorem now follows directly from the Bauer–Isralowitz theorem on
F2 [5, Theorem 1.1], [4, Theorem 4.20] mentioned above and Corollary 7.

Theorem 16 Let j, k, n ∈ N.

(a) T ∈ L(F2
(j),F

2
(k)) is compact if and only if T P(j) ∈ BDO2 and z �→〈

T lz,j , lz,k
〉

is in C0(C).

(b) T ∈ L(F2
n) is compact if and only if T ∈ A2

n and Bn(T ) ∈ C0(C → C
n×n).

As A† commutes with the Weyl operators (see Proposition 8), Bn also preserves
the shift action.



Toeplitz and Related Operators on Polyanalytic Fock Spaces 413

Lemma 17 Let T ∈ L(F2
n). We have

[Bn(W−ζ TWζ )](z) = [Bn(T )](z + ζ )

for all ζ, z ∈ C.

Proof Let j, k ∈ {1, . . . , n}. By (3) and (5) we have

Wζ lz,j = Wζ (A
†)j−1kz = e−i Im(ζ z̄)Wz+ζ (A

†)j−11,

hence

〈
W−ζ T Wζ lz,j , lz,k

〉 =
〈
TWz+ζ (A

†)j−11,Wz+ζ (A
†)k−11

〉

=
〈
T (A†)j−1kz+ζ , (A

†)k−1kz+ζ

〉

= 〈
T lz+ζ,j , lz+ζ,k

〉
.

��
Let us define the oscillation of a bounded continuous function f : C → C

n×n at
z as

Oscz(f ) := sup {‖f (z)− f (w)‖ : |z − w| ≤ 1} ,

where ‖·‖ is of course the usual matrix norm on C
n×n induced by the Euclidean

norm on C
n. As z �→ Oscz(f ) is continuous and bounded, we can extend it to

the Stone-Čech compactification of C. We will use the notation Oscx(f ) for the
extension evaluated at some point x ∈ βC.

We say that a bounded continuous function f : C → C
n×n has vanishing

oscillation and write f ∈ VO(C → C
n×n) if

lim|z|→∞ Oscz(f ) = 0.

For n = 1 we just write f ∈ VO(C) as usual. Note that f ∈ VO(C → C
n×n) if and

only if all of its matrix entries are in VO(C).
The following is an adaptation of [11, Theorem 36]. Here, In denotes he n × n

identity matrix.

Lemma 18 Let λ ∈ C and x ∈ βC \ C.

(a) For T ∈ A2
(k) we have Tx = λI if and only if [B(k)(T )](x) = λ and

Oscx(B(k)(T )) = 0.
(b) For T ∈ A2

n we have Tx = λI if and only if [Bn(T )](x) = λIn and
Oscx(Bn(T )) = 0.

Proof The proofs of (a) and (b) are identical, so we only show (b).
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Assume that Tx = λI . Choose a net (zγ ) in C that converges to x. By Lemma 17,
it follows

lim
zγ→x

[Bn(T )](z + zγ ) = lim
zγ→x

[Bn(W−zγ T Wzγ )](z) = [Bn(Tx)](z) = λIn (6)

for all z ∈ C. In particular, choosing z = 0, we obtain [Bn(T )](x) = λIn.
Now assume that Oscx(Bn(T )) �= 0. Then there is an ε > 0 and a net (zγ )

converging to x such that Osczγ (Bn(T )) > 2ε for all γ . For every γ we may choose
a wγ ∈ C with

∣∣zγ − wγ

∣∣ ≤ 1 such that

∥∥[Bn(T )](zγ ) − [Bn(T )](wγ )
∥∥ > ε.

Without loss of generality we may assume that the net (zγ −wγ ) converges to some
z ∈ B(0, 1). The Lipschitz continuity of Bn(T ) then implies that there exists a
C ≥ 0 such that

∥∥[Bn(T )](zγ ) − [Bn(T )](wγ )
∥∥

≤ ∥∥[Bn(T )](zγ )− [Bn(T )](zγ − z)
∥∥+ ∥∥[Bn(T )](zγ − z)− [Bn(T )](wγ )

∥∥

≤ ∥∥[Bn(T )](zγ )− [Bn(T )](zγ − z)
∥∥+ C

∣∣zγ − z − wγ

∣∣ .

Using (6), this tends to 0, which is a contradiction. Thus Oscx(Bn(T )) = 0.
Now assume that Oscx(Bn(T )) = 0 and [Bn(T )](x) = λIn. Choose a net (zγ )

in C that converges to x. Then, by Lemma 17 again,

[Bn(Tx)](0) = lim
zγ→x

[Bn(W−zγ TWzγ )](0) = lim
zγ →x

[Bn(T )](zγ ) = [Bn(T )](x)

= λIn.

Moreover,

‖[Bn(Tx)](w) − [Bn(Tx)](0)‖
= lim

zγ →x

∥∥[Bn(W−zγ T Wzγ )](w)− [Bn(W−zγ T Wzγ )](0)
∥∥

= lim
zγ →x

∥∥[Bn(T )](w + zγ ) − [Bn(T )](zγ )
∥∥

≤ lim
zγ→x

Osczγ (Bn(T ))

= 0

for |w| ≤ 1. As Bn(Tx) is real analytic, the identity theorem implies [Bn(Tx)](w) =
λIn for all w ∈ C. The injectivity of Bn thus shows Tx = λI as expected. ��
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Lemma 19 Let x ∈ βC \C and f ∈ VO(C). Then (Tf,n)x = f (x)I for all n ∈ N.

Proof Choose a net (zγ ) in C that converges to x. By Combining (4) and
Proposition 8, we get

W−zγ Tf,nWzγ = Tf (·+zγ ),n.

For |w| ≤ 1 we have

∣∣f (w + zγ ) − f (x)
∣∣ ≤ ∣∣f (w + zγ )− f (zγ )

∣∣+ ∣∣f (zγ )− f (x)
∣∣

≤ Osczγ (f )+ ∣∣f (zγ ) − f (x)
∣∣ .

Since f ∈ VO(C), this converges to 0 uniformly in w. A straightforward induction
argument now shows that the net (f (· + zγ )) converges to the constant function
f (x) uniformly on compact sets. This implies Tf (·+zγ ),n → f (x)I in the strong
operator topology. ��

We now combine the previous two lemmas to our next theorem, which can
be viewed as a generalization of Theorem 14 (a). The formula for the essential
spectrum is well-known in case k = 1 (see [7, Theorem 19]).

Theorem 20 Let T ∈ A2
(k). The following are equivalent:

(i) Every limit operator of T is a multiple of the identity.
(ii) T = Tf,(k) + K , where f ∈ VO(C) and K is compact.

In that case f can be chosen as B(k)(T ) and we have

spess(T ) = [B(k)(T )](βC \ C).

Proof Assume that every limit operator of T is a multiple of the identity. Then
Lemma 18 implies f := B(k)(T ) ∈ VO(C). It remains to show that T − Tf,(k) is
compact. Let x ∈ βC \ C. We know from Lemma 19 that (Tf,n)x = f (x)I for
every n ∈ N. Since P(k) commutes with the Weyl operators (see Proposition 8) and
Tf,(k) = P(k)Tf,n|F2

(k)

for any n ≥ k, this means that we also have (Tf,(k))x =
f (x)I . On the other hand, we also have Tx = f (x)I by Lemma 18. It follows (T −
Tf,(k))x = 0. As x ∈ βC \ C was arbitrary, Theorem 14 (a) implies that T − Tf,(k)
is indeed compact. Moreover, we get the formula spess(T ) = [B(k)(T )](βC\C) via
Theorem 14 (b).

Now assume that T = Tf,(k) +K for some f ∈ VO(C) and K ∈ K(F2
(k)). Using

Theorem 14 (a) and Lemma 19 again, we obtain

Tx = (Tf,(k))x + Kx = f (x)I

for every x ∈ βC \ C. ��
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Next, we want to prove a version of this result for operators T ∈ A2
n. However,

a priori it is not clear what function f one should take for the decomposition T =
Tf,n + K because Bn(T ) is matrix valued. It turns out that any of the functions
B(k)(T ) := B(k)(P(k)T |F2

(k)

), k = 1, . . . , n works because they only differ by a

C0-function in that case.

Lemma 21 Let T ∈ A2
n and assume that every limit operator of T is a multiple of

the identity. Then

g := T̃ − B(k)(T ) ∈ C0(C)

for all k = 1, . . . , n. In particular, Tg,(k) is compact.

Proof Let k ∈ {1, . . . , n}, x ∈ βC \ C and Tx = λI for some λ ∈ C. This implies
that (P(k)T |F2

(k)

)x = λI as well because P(k) commutes with Wz by Proposition 8.

Thus [B(k)(T )](x) = λ for all k = 1, . . . , n by Lemma 18. As x ∈ βC \ C was
arbitrary, T̃ = B(1)(T ) and B(k)(T ) agree on βC \ C, which proves the first part of
the lemma. That C0-functions produce compact Toeplitz operators is easy to show
directly, but also follows from Theorem 14 (a) and Lemma 19.

We can now formulate a version of Theorem 20 for T ∈ A2
n.

Theorem 22 Let T ∈ A2
n. The following are equivalent:

(i) Every limit operator of T is a multiple of the identity.
(ii) T = Tf,n + K , where f ∈ VO(C) and K is compact.

In that case f can be chosen as T̃ and we have

spess(T ) = T̃ (βC \ C).

Proof Assume (i) and write T =
n∑

j,k=1
P(k)T P(j). Combining Theorem 20 with

Lemma 21 we get that P(k)T P(k) − P(k)TT̃ ,nP(k) is compact and T̃ ∈ VO(C).
P(k)T P(j) and P(k)TT̃ ,nP(j) are also compact for j �= k. In both cases this follows
from Theorem 14 as all limit operators are zero, respectively. We infer that T −TT̃ ,n
is compact, which implies (ii).

The other direction and the formula for the essential spectrum follow from
Theorem 14 and Lemma 19 just like in the proof of Theorem 20. ��

5 Compact Toeplitz and Hankel Operators

In [22] it was observed that a Toeplitz operator on a true polyanalytic Fock
space F2

(k) is unitarily equivalent to a Toeplitz operator on the analytic Fock

space F2 with a much more irregular, possibly distributional symbol. After this
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observation, Rozenblum and Vasilevski offer a choice of considering “operators
with nice symbols in ‘bad’ spaces or operators in nice spaces with ‘bad’ symbols”.
Conversely, one would therefore expect that if we take a very good symbol, e.g. a
symbol that induces a compact Toeplitz operator on F2, then this symbol would
also induce an in this sense very good (or even better) Toeplitz operator on the
polyanalytic spaces. The next result thus may not be very surprising and in fact
follows directly from our considerations above. A related result was proven by
different means in [18, Proposition 4.6].

Theorem 23 Let k, n ∈ N and f ∈ L∞(C, μ). Tf,1 is compact if and only if Tf,n
is compact. In particular, if Tf,(1) is compact, then every Tf,(k) is compact as well.

Proof As Tf,1 is a compression of Tf,n, it is clear that if Tf,n is compact, then Tf,1
is necessarily compact as well.

So assume that Tf,1 is compact. By Theorem 16, we need to show that Bn(Tf,n)

is in C0(C → C
n×n), that is, lim|z|→∞

〈
Tf,nlz,j , lz,k

〉 = 0 for all j, k = 1, . . . , n. We

have

〈
Tf,nlz,j , lz,k

〉

= 1√
(j − 1)!√(k − 1)!

∫

C

f (w)(w̄ − z̄)j−1(w − z)k−1ewz̄+w̄z−|z|2 dμ(w)

= 〈Tf,1 l̂z,k, l̂z,j 〉,

where l̂z,k(w) = 1√
(k−1)!(w − z)k−1ewz̄− 1

2 |z|2 . Note that l̂z,k ∈ F2
1 and

l̂z,k = Wzmk,

where mk is the monomial given by mk(w) = 1√
(k−1)!w

k−1. We thus have

〈
Tf,nlz,j , lz,k

〉 = 〈
Tf,1Wzmk,Wzmj

〉 = 〈
W−zTf,1Wzmk,mj

〉
,

which converges to 0 as |z| → ∞ by Theorem 14 (a). ��
Combining this result with Theorem 22, we obtain the following generalization.

It particularly applies to Toeplitz operators of the form λI + K with K ∈ K(F2
n),

which is the case considered in [18, Proposition 4.6].

Corollary 24 Let n ∈ N and f ∈ L∞(C, μ). Every limit operator of Tf,1 is a
multiple of the identity if and only if every limit operator of Tf,n is a multiple of the
identity.

Proof The “if” direction is again obvious. So assume that every limit operator
of Tf,1 is a multiple of the identity. Theorem 22 implies that f̃ ∈ VO and
T
f−f̃ ,1 is compact. This means that T

f−f̃ ,n
is also compact by Theorem 23. Using
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Theorem 22 again, we see that every limit operator of Tf,n is a multiple of the
identity as well.

Next, we turn our attention to Hankel operators. The theory developed in Sect. 3
cannot be applied directly to them because they do not map into a polyanalytic
Fock space. This can of course be circumvented by considering H ∗

f,nHf,n ∈ L(F2
n)

instead, which we will do later on. However, we will take a slightly more general
approach first which provides a compactness characterization for all operators acting
on L2(C, μ). For this we use the decomposition

L2(C, μ) =
∞⊕

k=1

F2
(k)

∼= �2(N,F2)

again. The (non-commutative) algebra �∞(N,L(F2)) acts on �2(N,F2) via multi-
plication, that is, if g ∈ �∞(N,L(F2)), then

mg : �2(N,F2) → �2(N,F2), (mgf )(k) = g(k)f (k)

for f ∈ �2(N,F2), k ∈ N. Moreover, we have the usual shift operators V acting on
�2(N,F2) defined by

(Vf )(1) := 0, (Vf )(k + 1) := f (k)

for f ∈ �2(N,F2), k ∈ N. One can now define band-dominated operators on
�2(N,F2) with respect to their matrix structure as follows.

Definition 25 (Definition 2.1.5 in [21]) Let ω ∈ N. Operators of the form

T =
ω∑

j=0

mgj V
j +

ω∑

j=1

mg−j (V
∗)j

with gj ∈ �∞(N,L(F2)) are called band operators on �2(N,F2). Operators
obtained as the norm limit of a sequence of band operators are then called band-
dominated on �2(N,F2).

One could of course also define band-dominated operators on �2(N,F2) just
like we did for L2(C, μ) in Definition 2 and it is not difficult to show that this
would be an equivalent definition (see e.g. [21, Theorem 2.1.6]). However, using
this version makes it a little more obvious why these operators are called band-
dominated and it will also be more straightforward to use in the proof of the next
theorem. We emphasize that it is important not to confuse the two notions of band-
dominated operators, though, which is why we added the suffix “on �2(N,F2)”.
Indeed, they act on different spaces (L2(C, μ) vs. �2(N,F2)) and are not equivalent
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via the isomorphism

U : L2(C, μ) → �2(N,F2).

Example 26

(a) Consider the Hankel operator Hf,1 for f (z) = ei|z|2 . Then Hf,1 is band-
dominated by Corollary 6. We claim that UHf,1U

−1 is not band-dominated
on �2(N,F2). So assume by contradiction that UHf,1U

−1 is band-dominated
on �2(N,F2). Then necessarily

∥∥(I − Pn)Hf,1P1
∥∥ → 0 as n → ∞ by [17,

Propositions 1.20 and 1.48]. The Toeplitz operator Tf,1 is compact, which
can be deduced directly from its eigenvalues (see [6, Example (A)]). By
Theorem 23, this means that for every n ∈ N the operator PnMf P1 = Tf,nP1
is compact as well. Combining this with

∥∥(I − Pn)Hf,1P1
∥∥ → 0 shows that

Hf,1P1 is also compact. But this would mean that

P1 = P1Mf̄Mf P1 = P1Mf̄Hf,1P1 + P1Mf̄ Tf,1P1,

is compact, which is obviously a contradiction. This shows that UHf,1U
−1 is

not band-dominated on �2(N,F2).
(b) To give an operator T /∈ BDO2 such that UTU−1 is band-dominated on

�2(N,F2) is much simpler; many such examples can be found in the literature.
As a specific example we mention the operator

T : L2(C, μ) → L2(C, μ), (Tf )(z) = f (−z).

T leaves every F2
(k) invariant, which implies that UTU−1 is a band operator

(with just one diagonal) on �2(N,F2). On the other hand,

T̃ (z) = 〈T kz, kz〉 = 〈k−z, kz〉 = e−2|z|2 → 0

as |z| → ∞. So if T was band-dominated, then T restricted to F2
1 would

be compact by Theorem 16, which it obviously is not. Further, maybe more
interesting examples are provided in [4, Example 2], for instance.

The next theorem now provides a limit operator type characterization of compact
operators on L2(C, μ).

Theorem 27 Let T ∈ L(L2(C, μ)). Then T is compact if and only if T ∈ BDO2,
UTU−1 is band-dominated on �2(N,F2), W−zTWz → 0 strongly as |z| → ∞ and

lim
k→∞

∥∥∥PnAkT (A†)kPn

∥∥∥ = 0 (7)

for every n ∈ N.
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Proof Define

K(�2(N,F2),P)

:=
{
K ∈ L(�2(N,F2)) : ‖K − P̂nK‖ + ‖K − KP̂n‖ → 0 as n → ∞

}
,

where P̂n := UPnU
−1 is the orthogonal projection onto �2({1, . . . , n} ,F2). We

will first show that K ∈ K(�2(N,F2),P) if and only if K is band-dominated on
�2(N,F2) and

lim
k→∞

∥∥∥P̂n(V ∗)kKV kP̂n

∥∥∥ = 0. (8)

This follows from a standard limit operator argument; nevertheless, we provide
some details for the convenience of the reader. First observe that if K belongs to
K(�2(N,F2),P), then

‖K − P̂nKP̂n‖ ≤ ‖K − P̂nK‖ + ‖P̂nK − P̂nKP̂n‖ → 0 (9)

as n → ∞. P̂nKP̂n is obviously a band operator on �2(N,F2) and so all K ∈
K(�2(N,F2),P) are band-dominated on �2(N,F2). Moreover, since P̂nV k = 0 for
k ≥ n, we have

lim
k→∞

∥∥∥(V ∗)kKV k
∥∥∥ = lim

k→∞

∥∥∥(V ∗)k(K − KP̂n)V
k
∥∥∥ = 0.

In particular, lim
k→∞

∥∥∥P̂n(V ∗)kKV kP̂n

∥∥∥ = 0.

Conversely, assume that K is a band operator on �2(N,F2) and satisfies

∥∥∥P̂n(V ∗)kKV kP̂n

∥∥∥ → 0 as k → ∞.

Write K as
ω∑

j=0
mgjV

j +
ω∑

j=1
mg−j (V

∗)j for some gj ∈ �∞(N,L(F2)). The

condition
∥∥∥P̂n(V ∗)kKV kP̂n

∥∥∥ → 0 implies that
∥∥mgj (k)

∥∥ → 0 for k → ∞,

j ∈ {−ω, . . . , ω}. It follows

∥∥∥mgj − P̂nmgj

∥∥∥ =
∥∥∥mgj − mgj P̂n

∥∥∥ ≤ sup
k≥n+1

∥∥mgj (k)
∥∥ → 0

as k → ∞ and thus mgj ∈ K(�2(N,F2),P) for each j ∈ {−ω, . . . , ω}. As

K(�2(N,F2),P) is an algebra and invariant under multiplying by V or V ∗, this
shows K ∈ K(�2(N,F2),P). K(�2(N,F2),P) is also closed and therefore the same
conclusion holds if K is assumed to be a band-dominated instead of a band operator.
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We already observed V = UA†U−1 in the introduction and so (8) for K =
UTU−1 is the same as (7). Hence, it suffices to prove that T is compact if
and only if T ∈ BDO2, UTU−1 ∈ K(�2(N,F2),P) and W−zTWz → 0
strongly as |z| → ∞. So assume that T is compact. Then T ∈ BDO2 is [12,
Theorem 3.7 (d)] and W−zTWz → 0 as |z| → ∞ follows from [12, Proposition
4.20]. Moreover, it is clear that K(�2(N,F2),P) contains all compact operators as
P̂n → I in the strong operator topology. Conversely, assume that T ∈ BDO2,
UTU−1 ∈ K(�2(N,F2),P) and W−zTWz → 0 strongly as |z| → ∞. By (9),
‖T − PnT Pn‖ → 0 as n → ∞. As Pn and Wz commute (see Proposition 8), we
have W−zPnT PnWz → 0 strongly as |z| → ∞. By Theorem 14 (a), PnT Pn is
compact for every n ∈ N. This shows that T is compact as well, which completes
the proof. ��

For operators T that satisfy either ‖T (I − Pn)‖ → 0 or ‖(I − Pn)T ‖ → 0 as
n → ∞, such as Hankel operators, Theorem 27 simplifies significantly.

Corollary 28 Assume that T ∈ L(L2(C, μ)) satisfies either ‖T (I − Pn)‖ → 0 or
‖(I − Pn)T ‖ → 0 as n → ∞. Then T is compact if and only if T ∈ BDO2 and
W−zTWz → 0 strongly as |z| → ∞.

Proof As T is compact if and only if T ∗T is compact, is suffices to consider T ∗T .
We only prove the case when ‖T (I − Pn)‖ → 0; the other case is similar. The
condition ‖T (I − Pn)‖ → 0 implies

∥∥(I − Pn)T
∗T
∥∥ = ∥∥T ∗T (I − Pn)

∥∥ → 0

and therefore UT ∗TU−1 ∈ K(�2(N,F2),P). The result now follows by the same
arguments as in the last paragraph of the proof of Theorem 27. ��

The next corollary is now immediate. It can be viewed as a partial generalization
of [13, Theorem 3.1].

Corollary 29 Let f ∈ L∞(C) and k, n ∈ N.

(a) Hf,(k) is compact if and only if W−zHf,(k)Wz → 0 strongly as |z| → ∞.
(b) Hf,n is compact if and only if W−zHf,nWz → 0 strongly as |z| → ∞.

Of course, we also have the classical characterization of compact Hankel
operators in terms of the Berezin transform. Quite surprisingly, the compactness
of Hf,(k) does not depend on k. For f ∈ L∞(C, μ) we say that f ∈ VMO(C) if

|̃f |2 − |f̃ |2 ∈ C0(C).

Theorem 30 Let k, n ∈ N and f ∈ L∞(C). The following are equivalent:

(a) Hf,(k) is compact,
(b) Hf,n is compact,
(c) f ∈ VMO(C).
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In particular, Hf,(k) is compact if and only if Hf̄ ,(k) is compact and Hf,n is compact
if and only if Hf̄ ,n is compact.

Proof Assume that Hf,(k) is compact. Then, by Corollary 29, W−zHf,(k)Wz → 0
strongly as |z| → ∞. Let x ∈ βC \ C and choose a net (zγ ) that converges to x.
Then W−zγ Tf,(k)Wzγ converges strongly to (Tf,(k))x . It follows that

f (· + zγ )g = W−zγ MfWzγ g = W−zγ Tf,(k)Wzγ g + W−zγ Hf,(k)Wzγ g

→ (Tf,(k))xg

for all g ∈ F2
(k) as zγ → x. In particular, for g(w) = w̄k−1, we get

lim
zγ→x

∫

C

∣∣f (w + zγ )− ψ(w)
∣∣2 |w|2k−2 dμ(w) = 0, (10)

where ψ(w) := ((Tf,(k))xg)(w)

w̄k−1 for w �= 0. As
∥∥f (· + zγ )

∥∥∞ ≤ ‖f ‖∞ for all γ ,

we also have ‖ψ‖∞ ≤ ‖f ‖∞. Moreover, gψ ∈ F2
(k). By Liouville’s theorem for

polyanalytic functions, this implies that gψ is a polynomial in w and w̄ of degree at
most k−1 (see [3, Theorem 2.2] or [16, Corollary 1]). But the only true polyanalytic
functions of order k that are also a polynomial of degree k − 1 are multiples of g. It
follows that ψ is constant. Furthermore, (10) implies

lim
zγ →x

∫

C

∣∣f (w + zγ ) − ψ
∣∣2 |w|2k−2 |φ(w)|2 dμ(w) = 0

for all bounded functions φ. This shows that the net of multiplication operators
Mf(·+zγ ) converges strongly to ψI on the set

{
gφ ∈ L2(C, μ) : φ ∈ L∞(C, μ)

}
.

This set is dense in L2(C, μ) and therefore Mf(·+zγ ) → ψI strongly on L2(C, μ)

as zγ → x. This of course implies (Tf,(k))x = ψI and (T|f |2,(k))x = |ψ|2 I , but
also W−zγ Hf,(k′)Wzγ → 0 and W−zγ Hf,nWzγ → 0 in the strong operator topology
for any k′, n ∈ N. Corollary 29 therefore reveals that Hf,(k′) and Hf,n are compact.
The same argument as above, for k = 1, also shows that if Hf,n is compact, then
W−zγ Hf,(k′)Wzγ → 0 for any k′ ∈ N. This proves the equivalence of (a) and (b),
and that the compactness is independent of k and n. For n = 1, the equivalence of
(b) and (c) is well-known (see e.g. [27, Theorems 8.5 and 8.13]), but also follows
directly from our previous results. Indeed, Mf(·+zγ ) → ψI implies

|̃f |2(x)− |f̃ (x)|2 = |ψ|2 − |ψ|2 = 0

for all x ∈ βCn \ Cn via Lemma 18, hence f ∈ VMO(C).



Toeplitz and Related Operators on Polyanalytic Fock Spaces 423

Conversely, assume that f ∈ VMO(C). Then the formula H ∗
f,1Hf,1 = T|f |2,1 −

Tf̄ ,1Tf,1 implies B1(H
∗
f,1Hf,1) = |̃f |2 − ∥∥Tf,1kz

∥∥2. Clearly, |f̃ | ≤ ∥∥Tf,1kz
∥∥ and

so

0 ≤ B1(H
∗
f,1Hf,1) ≤ |̃f |2 − |f̃ |2.

It follows B1(H
∗
f,1Hf,1) ∈ C0(C). Theorem 16 now implies that H ∗

f,1Hf,1 is
compact. ��

6 Remarks and Open Problems

It was quite surprising to the author that the compactness of the Hankel operators
Hf,(k) is independent of k. Indeed, one is tempted to define VMO(k)-spaces
consisting of bounded functions f satisfying

B(k)(|f |2)− |B(k)(f )|2 ∈ C0(C).

The same argument as in the proof of Theorem 30 then shows that Hf,(k) is compact
if and only if f ∈ VMO(k). But as it turns out, these VMO(k)-spaces are all the same.
This naturally leads to the following question.

Question 31 Is the compactness of Toeplitz operators Tf,(k) also independent of k?
The argument used in the proof of Theorem 23 does not quite work for k ≥ 2,
unfortunately.

In this paper we quite heavily used the functions Bn, which we introduced
to generalize the Berezin transform. However, as the polyanalytic Fock spaces
are reproducing kernel Hilbert spaces, it seems more natural to use the Berezin
transform induced by the normalized reproducing kernels. This did not turn out to
be very fruitful for our approach. Nevertheless, we pose the following question.

Question 32 Does the more standard Berezin transform z �→ 〈
T kz,n, kz,n

〉
have

any useful properties in connection with compactness or Fredholmness problems
on F2

n? It is fairly obvious that if T ∈ L(F2
n) is compact, then

〈
T kz,n, kz,n

〉 → 0
as |z| → ∞, but we also know that this Berezin transform is not strong enough
to characterize compactness in A2

n. Nevertheless, if restricted to Toeplitz operators
(with certain symbols) maybe something can still be said.

We have seen in Corollary 6 that every Toeplitz operator with bounded symbol is
band-dominated. Bauer and Fulsche [4] showed that the algebra of band-dominated
operators on F2 is generated by Toeplitz operators. A natural question is therefore:

Question 33 Are A2
(k) and A2

n also generated by Toeplitz operators for k, n ≥ 2? If
not, can the band-dominated operators in Theorem 16 and related results at least be
replaced by an algebra of Toeplitz operators?
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Abstract We consider certain determinants with respect to a sufficiently regular
Jordan curve γ in the complex plane that generalize Toeplitz determinants which
are obtained when the curve is the circle. This also corresponds to studying a planar
Coulomb gas on the curve at inverse temperature β = 2. Under suitable assumptions
on the curve we prove a strong Szegő type asymptotic formula as the size of the
determinant grows. The resulting formula involves the Grunsky operator built from
the Grunsky coefficients of the exterior mapping function for γ . As a consequence
of our formula we obtain the asymptotics of the partition function for the Coulomb
gas on the curve. This formula involves the Fredholm determinant of the absolute
value squared of the Grunsky operator which equals, up to a multiplicative constant,
the Loewner energy of the curve. Based on this we obtain a new characterization of
curves with finite Loewner energy called Weil-Petersson quasicircles.
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1 Introduction and Results

1.1 Definitions and Results

Let γ be a Jordan curve in the complex plane and g : γ �→ C a given function on
the curve. Define the determinant

Dn[eg] = det

(∫

γ

ζ j ζ̄ keg(ζ ) |dζ |
)

0≤j,k<n
(1)

assuming that all integrals exist. In the case γ = T, the unit circle, this is (2π)n

times the Toeplitz determinant with symbol eg. These determinants are related
to orthogonal polynomials on the curve γ when the weight function w = eg is
positive, see [17, Sec. 16.2]. Note that our definition is different from the one in
[17]; the Dn there is our Dn+1/L

n+1 where L is the length of the curve. In the
case when g = 0 these orthogonal polynomials were introduced by Szegő in [16],
and some properties of the polynomials and the determinants, like (15) below, were
investigated. By Andrieff’s identity, we have the integral formula

Dn[eg] = 1

n!
∫

γ n

∏

1≤μ�=ν≤n
|ζμ − ζν |

n∏

μ=1

eg(ζμ)
n∏

μ=1

|dζμ|. (2)

Note that Dn[1] is the partition function for a planar Coulomb gas on the curve γ ,

Zn(γ ) = Dn[1] = 1

n!
∫

γ n
exp

⎡

⎣−
∑

1≤μ�=ν≤n
log |ζμ − ζν |−1

⎤

⎦
n∏

μ=1

|dζμ|. (3)

In the case of Toeplitz determinants the strong Szegő limit theorem gives a precise
asymptotic formula for Dn[eg]/Dn[1] where Dn[1] = Zn(T) = (2π)n, see [2, 15]
for background on, and proofs of, this theorem. In this case the partition function
is easy to compute which is not the case for other curves. We want to generalize
the strong Szegő theorem to the case of a more general Jordan curve and also
understand the asymptotics of the partition function. Asymptotic properties of the
determinant (1) were studied in [16] and [6, Sec. 6.2], where the asymptotics
for a quotient of consecutive determinants was given, see (15). A strong Szegő
theorem for Dn[eg]/Dn[1] was proved in [9, Sec. III]. In this paper we prove a
precise asymptotic formula for Dn[eg] under a somewhat weaker, but certainly
not optimal, condition on the curve γ , and our assumption on the function g is
optimal. See Sect. 1.2 below for further comments and background. The asymptotics
of the partition function Zn(γ ) turns out to be interesting and we will discuss its
asymptotics under optimal conditions in Sect. 1.3. We will not prove any results for
the β-ensemble corresponding to (2), but we give a heuristic discussion in Sects. 1.4
and 5.
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We can expect that the leading order asymptotics of Dn[eg] should be given by
exp(−n2V (γ )), where V (γ ) is the logarithmic energy of γ . The logarithmic energy
is defined by

V (γ ) = inf
μ

∫

γ

∫

γ

log |ζ1 − ζ2|−1 dμ(ζ1)dμ(ζ2),

where the infimum is over all probability measuresμ on γ . The logarithmic capacity
of γ can be defined by cap(γ ) = exp(−V (γ )). Let " be the unbounded component
of the complement of γ and let cap(γ )φ : { |z| > 1} �→ " be the exterior mapping
function with the expansion,

φ(z) = z + φ0 + φ−1z
−1 + . . . (4)

around infinity. If |z| > 1, |ζ | > 1, we have the expansion

log
φ(ζ )− φ(z)

ζ − z
= −

∞∑

k,�=1

ak�ζ
−kz−�, (5)

where ak� = a�k ∈ C are the Grunsky coefficients, see e.g. [13, Sec. 3.1]. If γ is a
quasicircle, i.e. it is the image of the unit circle under a quasiconformal mapping of
the plane, there is a constant κ < 1 such that

∞∑

k=1

∣∣∣∣∣

∞∑

�=1

√
k� ak�w�

∣∣∣∣∣

2

≤ κ2
∞∑

k=1

|wk|2, (6)

and
∣∣∣∣∣∣

∞∑

k,�=1

√
k� ak�wkw�

∣∣∣∣∣∣
≤ κ

∞∑

k=1

|wk|2, (7)

called the Grunsky inequalities, see [13, Sec. 9.4]. Write

bk� = √
k� ak� = b

(1)
k� + ib(2)k� , (8)

where b(j)k� ∈ R and i = √−1. Consider the Grunsky operator B and its real and
imaginary parts,

B = (bk�)k,�≥1, B(j) = (b
(j)
k� )k,�≥1, j = 1, 2, (9)
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which are bounded operators on �2(C) by (6) with norm ≤ κ < 1. Define the
operator K on �2(C)⊕ �2(C), by

K =
(
B(1) B(2)

B(2) −B(1)

)
.

Note that K is real and symmetric.
Expand the function g(cap(γ )φ(eiθ )) in a Fourier series,

g(cap(γ )φ(eiθ )) = a0

2
+

∞∑

k=1

ak cos kθ + bk sin kθ, (10)

where ak, bk ∈ C and we assume that g(cap(γ )φ(eiθ )) is integrable. Define the
infinite column vector in �2(C)⊕ �2(C),

g =
(
( 1

2

√
kak)k≥1

( 1
2

√
kbk)k≥1

)
. (11)

We can now state our main theorem which gives the asymptotics for the determinant
(1) as n → ∞.

Theorem 1.1 Assume that the Jordan curve γ is C5+α , α > 0, and that

∞∑

k=1

k(|ak|2 + |bk|2) < ∞. (12)

We then have the asymptotic formula

Dn[eg] = (2π)n cap(γ )n
2

√
det(I + K)

exp
(
na0/2 + gt (I + K)−1g + o(1)

)
, (13)

as n → ∞.

The theorem will be proved in the next section. We see that the geometry of
the curve enters via the operator K , and also directly via φ since we have the
composition of g with φ in (10). If γ is the unit circle, we have K = 0, cap(γ ) = 1,
and we get the usual strong Szegő limit theorem. For the partition function (3) we
obtain the following asymptotic formula,

Zn(γ ) = Dn[1] = exp

(
n2 log cap(γ ) + n log 2π − 1

2
log det(I + K)+ o(1)

)
,

(14)

as n → ∞.
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1.2 Discussion

It was proved in [6, Sec. 6.2] that if γ is an analytic curve then

lim
n→∞ cap(γ )−2n−1Dn+1[eg]

Dn[eg] = 2π exp

(
1

2π

∫ π

−π

g(φ(eiθ )) dθ

)
, (15)

which is a consequence of (13) above. In [9, Sec. III] the following relative Szegő
type theorem was proved. If g is C1+α on γ and γ is C10+α for some α > 0, then

Dn[eg]
Dn[1] = exp[na0/2 + gt (I + K)−1g + o(1)] (16)

as n → ∞. The expression for the constant term in the exponent in the right side
was less clear in [9], see Theorem 7.1 and its Corollary. The form give here for
the constant term is more elegant and satisfactory. A calculation shows that they
are identical. We see that Theorem 1.1 is a strengthening of the earlier result. In
particular it is not a relative Szegő theorem since we do not divide by Dn[1], and
hence we also get asymptotics for the partition function as in (14). The condition
(12) in the theorem on g is natural since (I +K)−1 is an operator on �2(C) we have
to require that g ∈ �2(C) which is exactly (12). Thus the condition on g is optimal.
The condition in Theorem 1.1 that γ is C5+α is certainly not optimal although it is
not immediately clear what the optimal condition is. If we consider the case when
g = 0 we can say more about the optimal condition on γ . This is the topic of
the next subsection. At the end of that subsection we give a conjecture on the the
optimal condition on γ in the theorem.

If γ has a cusp it is not a quasicircle and the Grunsky inequality (6) no longer
holds with κ < 1. It would be interesting to see what the effect of a cusp is on the
asymptotics of the determinant. Another question is to generalize the result to an arc
instead of a Jordan curve. There are results in case when γ is an interval in R since
in that case we get a Hankel determinant, see [7], [5, 9]. In the case of an arc on the
unit circle there is an asymptotic formula due to Widom in [22]. See also [11] when
we have Fisher-Hartwig singularities, and [3] for a relative Szegő theorem.

1.3 Convergence of the Partition Function and Weil-Petersson
Quasicircles

Note that since det(I + K) = det(I − B∗B), see (50), it follows that (14) can be
written as

lim
n→∞ log

Zn(γ )/cap(γ )n
2

Zn(T)/ cap(T)n2 = lim
n→∞ log

Zn(γ )

(2π)ncap(γ )n2 = −1

2
log det(I − B∗B),

(17)
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since cap(T) = 1. Interestingly, the right side of (17) has occurred in other
contexts. In [18] it appears, up to a multiplicative constant, under the name universal
Liouville action which is a Kähler potential for the Weil-Petersson metric on the
T0(1) component of the universal Teichmüller space T (1). It is also the so called
Loewner energy of the Jordan curve, see [14, 21]. Motivated in part by connections
to the Schramm-Loewner Evolution, the Loewner energy has been further studied
in [19, 20]. Curves with the property that the Grunsky operator is a Hilbert-
Schmidt operator are called Weil-Petersson quasicircles. There are many different
characterizations and possible definitions of Weil-Petersson quasicircles, see [1] and
[21, Sect. 8]. It is therefore natural to conjecture that (17) holds if and only if γ is a
Weil-Petersson quasicircle. We will prove this but in order to state a theorem let us
be a bit more precise.

Let γ be a Jordan curve and let φ(z) be the exterior mapping function for γ as
above. Set φr(z) = 1

r
φ(rz) for |z| ≥ ρ−1, where 1 < ρ < r , and let γr be the

image of T under φr . Note that φr is an analytic curve so in particular Zn(γr) is
well-defined. Define the function

En(r) = log
Zn(γr)

(2π)ncap(γ )n2 , (18)

which we informally can think of as a finite n Loewner energy of γr . As n → ∞ it
converges to a multiple of the Loewner energy by (17). The following lemma will
be proved in Sect. 4.

Lemma 1.2 The function En(r) is decreasing in (1,∞) for every n ≥ 1.

The sequence En(r) is also increasing in n for each fixed r > 1. This is the
content of Lemma 4.1 below.

The determinant in (1) is not well-defined for a general Jordan curve. Therefore
we define the n:th partition function for the Jordan curve γ by

Zn(γ ) = lim
r→1+Zn(γr) (19)

with value in R ∪ {∞}. The limit exists by Lemma 1.2 possibly equal to infinity.
We can now formulate our theorem which gives a new characterization of Weil-
Petersson quasicircles and a way to compute their Loewner energy.

Theorem 1.3 The Jordan curve γ is a Weil-Petersson quasicircle if and only if

lim sup
n→∞

Zn(γ )

(2π)ncap(γ )n2 < ∞ (20)

and in that case we have the limit (17).

In fact, by Lemma 4.1, the sequence in (20) is increasing in n so we could replace
the upper limit with a proper limit. The theorem is proved in Sect. 4. In view of this
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theorem it is reasonable to conjecture that the optimal condition on the curve γ in
theorem 1.1 is that γ is a Weil-Petersson quasicircle.

1.4 The β-Ensemble

Consider the β-ensemble corresponding to (2), i.e. consider

Dn,β [eg] = 1

n!
∫

γ n

∏

1≤μ�=ν≤n
|ζμ − ζν |β/2

n∏

μ=1

eg(ζμ)
n∏

μ=1

|dζμ|,

where β > 0. This is not a determinant when β �= 2 but is the quantity analogous to
(1). The corresponding partition function is Zn,β(γ ) = Dn,β [1]. If γ = T, then

Zn,β(T) = (2π)n

n!
�(1 + βn/2)

�(1 + β/2)n
.

The expansion (5) gives

logφ′(z) = −
∞∑

k=2

⎛

⎝
k−1∑

j=1

aj,k−j

⎞

⎠ z−k. (21)

Define

gβ = (β/2 − 1)d + g,

where

d =
⎛

⎝

(
1
2

√
kRe

(∑k−1
j=1 aj,k−j

))

k≥1(
1
2

√
kIm

(∑k−1
j=1 aj,k−j

))

k≥1

⎞

⎠

comes from log |φ′(z)|. Here the k = 1 component is = 0, compare with (21). We
conjecture that, if a0 = 0, then

lim
n→∞

Dn,β [eg]
Zn,β(T)cap(γ )βn(n−1)/2+n

= 1√
det(I + K)

exp

(
2

β
gtβ(I + K)−1gβ

)
.

(22)

We will give a heuristic argument for this in Section 5. If we let β = 2 in this
argument it also gives the idea behind the proof of (13) given in the paper, although
making it precise is more complicated. If the conjecture is correct, we see that the
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appearance of the Fredholm determinant det(I +K) = det(I −B∗B) is not related
to β = 2. The proof of (16) in [9] does not use the fact that β = 2 in an essential
way, so by slightly modifying that proof it should be possible to show that

lim
n→∞

Dn,β [eg]
Dn,β [1] = exp

(
2

β
gt (I + K)−1g + 2(1 − 2

β
)dt (I + K)−1g

)
,

under the assumptions in [9].

2 Proof of the Main Theorem

In this section we will prove Theorem 1.1. An essential ingredient is Lemma 2.2
which is proved in the next section. Assume that γ is a C5+α-curve for some α > 0.
Then, by a theorem of Kellogg, see e.g. [4, Thm. II 4.3], the map φ can be extended
to |z| ≥ 1 in such a way that φ is C5+α on T, and φ′(z) �= 0 when |z| ≥ 1. Clearly,
the expansion (5) then holds for |z|, |ζ | ≥ 1. It follows from (2), by introducing the
parametrization ζμ = cap(γ )φ(eiθμ), that

Dn[eg] = cap(γ )n
2

n!
∫

[−π,π]n
exp

⎡

⎣
∑

μ�=ν

log |φ(eiθμ)− φ(eiθν )|

+
∑

μ

log |φ′(eiθμ)| + g(φ(eiθμ))

]
dθ. (23)

Combining (21) with (5) leads to the identity

∑

μ�=ν

log |φ(eiθμ)− φ(eiθν )| +
∑

μ

log |φ′(eiθμ)| (24)

=
∑

μ�=ν

log |eiθμ − eiθν | − Re
∞∑

k,�=1

ak�

(
∑

μ

e−ikθμ

)(
∑

ν

e−i�θν

)
.

Let

En[(·)] = 1

(2π)nn!
∫

[−π,π]n
exp

(∑

μ�=ν

log |eiθμ − eiθν |
)
(·) dθ, (25)
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be the expectation over the eigenvalues eiθμ of a random unitary matrix with respect
to normalized Haar measure, [12]. It follows from (23), (24) and (25) that

Dn[eg] = (2π)ncap(γ )n
2
En

⎡

⎣exp

⎛

⎝− Re
∞∑

k,�=1

ak�

(
∑

μ

e−ikθμ

)(
∑

ν

e−i�θν

)

+
∑

μ

g(φ(eiθμ))

)]
. (26)

To proceed we will need some linear algebra. Let bk� be given by (8) and define

Bm = (bk�)1≤k,�≤m = B(1)
m + iB(2)

m , (27)

so that B(1)
m andB(2)

m are real symmetricm times m matrices. SinceBm is a complex,
symmetric matrix there is a unitary matrix Um = Rm + iSm, with Rm and Sm real,
such that

Bm = Um&mU
t
m, (28)

where &m = diag(λm,1, . . . , λm,m) and λm,k , 1 ≤ k ≤ m, are the singular values of
Bm, [8, Sec. 4.4]. Define the real, symmetric 2m by 2m matrix

Km =
(
B
(1)
m B

(2)
m

B
(2)
m −B

(1)
m

)
,

and the matrices

Tm =
(
Rm Sm

Sm −Rm

)
, &̃m =

(
&m 0
0 −&m

)
.

Lemma 2.1 The matrix Tm is orthogonal and

Km = Tm&̃mT
t
m, (29)

so that Km has eigenvalues ±λm,k . These eigenvalues satisfy

|λm,k| ≤ κ < 1, (30)

where κ is the constant in the Grunsky inequality (7). Furthermore, if x =
(xj )1≤j≤m, y = (yj )1≤j≤m are real column vectors , then

Re
m∑

k,�=1

bk�(xk − iyk)(x� − iy�) =
(

x
y

)t
Km

(
x
y

)
. (31)
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Proof That Tm is orthogonal follows from UmU
∗
m = I . The identities (27), (28) and

Um = Rm + iSm give

B(1)
m = Rm&mR

t
m − Sm&mS

t
m,

B(2)
m = Rm&mS

t
m + Sm&mR

t
m,

which translates into (29). We also see that

Re
m∑

k,�=1

bk�(xk − iyk)(x� − iy�) =
m∑

k,�=1

b
(1)
k� (xkx� − yky�)+ b

(2)
k� (xky� + ykx�)

=
(

x
y

)t (
B
(1)
m B

(2)
m

B
(2)
m −B

(1)
m

)(
x
y

)
,

which proves (31). It follows from (7) and (31) that

∣∣∣∣∣

(
x
y

)t
Km

(
x
y

)∣∣∣∣∣ ≤ κ

(
x
y

)t (
x
y

)
,

which shows that all the eigenvalues of Km have absolute value ≤ κ .

Let

X =
(

1√
k

∑

μ

cos kθμ

)

k≥1

, Y =
(

1√
k

∑

μ

sin kθμ

)

k≥1

,

be infinite column vectors, and let Pm denote projection onto the first m components.
It follows from (29) and (31) that

−Re
m∑

k,�=1

ak�

⎛

⎝
∑

μ

e−ikθμ

⎞

⎠
(
∑

ν

e−i�θν

)
=
(
PmX

PmY

)t
Tm

(
−&m 0

0 &m

)
T t
m

(
PmX

PmY

)
.

(32)

Define, for ζ ∈ C,

Mm(ζ ) =
(
ζ&

1/2
m 0

0 &
1/2
m

)
T t
m

(
PmX
PmY

)
, (33)

so that

− Re
m∑

k,�=1

ak�

(
∑

μ

e−ikθμ

)(
∑

ν

e−i�θν

)
= Mm(i)tMm(i). (34)



Strong Szegő Theorem on a Jordan Curve 437

Without loss of generality we can assume that a0 = 0 in (10) by just subtracting off
the mean. For ζ ∈ C, we define

ak(ζ ) = 1

2

√
k(Re ak + ζ Im ak), bk(ζ ) = 1

2

√
k(Re bk + ζ Imbk), (35)

and the infinite column vectors

a(ζ ) = (ak(ζ ))k≥1, b(ζ ) = (bk(ζ ))k≥1,

which lie in �2(C) by the assumption (12). Set

g(ζ ) =
(

a(ζ )
b(ζ )

)
,

so that g(i) = g given by (11). We see that (10) can be written

∑

μ

g(φ(eiθμ)) = 2g(i)t
(

X
Y

)
. (36)

Define

wm(θ1, θ2) = Re
∑

k∨�>m
ak�e

−ikθ1−i�θ2, (37)

and

Wm(θ) = −
∑

μ,ν

wm(θμ, θν). (38)

Combining (34), (36), (37) and (38), we obtain the identity

− Re
∞∑

k,�=1

ak�

(
∑

μ

e−ikθμ

)(
∑

ν

e−i�θν

)
+
∑

μ

g(φ(eiθμ))

= Mm(i)tMm(i) + 2g(i)t
(

X
Y

)
+ Wm(θ),

for every m ≥ 1. Using this identity in (26) leads us to define the entire function

Gm,n(ζ ) = En[exp(Mm(ζ )
tMm(ζ )+ 2g(ζ )

(
X
Y

)
+ Wm(θ))], (39)
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for ζ ∈ C, so that, for any m ≥ 1,

Dn(e
g) = (2π)ncap(γ )n

2
Gm,n(i). (40)

Note that Gm,n(i) is independent of m, but of course for other ζ the function
Gm,n(ζ ) does depend on m.

The expression Mm(ζ )
tMm(ζ ) is a quadratic form in X and Y and we want

instead to have a linear form in X and Y. This can be achieved by using a
Gaussian integral, an idea that was also used in [10, Sec. 6.5]. Let u = (uk)1≤k≤m,
v = (vk)1≤k≤m be real column vectors. Then,

exp(Mm(ζ )
tMm(ζ )) = 1

πm

∫

Rm

du

∫

Rm

dv exp

(
−
(

u
v

)t (
u
v

)
+ 2

(
u
v

)t
Mm(ζ )

)

and Fubini’s theorem in (39) to get the formula

Gm,n(ζ ) = 1

πm

∫

Rm

du

∫

Rm

dv exp(−
(

u
v

)t (
u
v

)
)En[exp(2

(
u
v

)t
Mm(ζ )

+ 2g(ζ )
(

X
Y

)
+ Wm(θ))]. (41)

From the definition (33) we see that

(
u
v

)t
Mm(ζ ) = Lm(ζ )

t

(
X
Y

)
,

where

Lm(ζ ) =
(
Pm 0
0 Pm

)t
Tm

(
ζ&

1/2
m 0

0 &
1/2
m

)(
u
v

)
. (42)

Thus,

Gm,n(ζ ) = 1

πm

∫

Rm

du

∫

Rm

dv exp(−
(

u
v

)t (
u
v

)
)En[ exp(2(Lm(ζ )+ g(ζ ))t

(
X
Y

)

+ Wm(θ))]. (43)

Note that by the definitions

|Gm,n(ζ )| ≤ Gm,n(Re ζ ). (44)



Strong Szegő Theorem on a Jordan Curve 439

We will now state a lemma that will allow us to prove the theorem. The proof of the
lemma will be given in the next section. Define the function

fζ (λ) =
{
(1 − ζ 2λ)−1ζ 2λ, λ ≥ 0

−(1 + λ)−1λ, λ < 0
(45)

on the real line. We can use spectral calculus to define fζ (K). Recall that K is a
symmetric trace class operator with spectrum in [−κ, κ]. Define

G(ζ ) = 1√
det(I − ζ 2|B|) det(I − |B|) exp

(
g(ζ )t (I + fζ (K))g(ζ )

)
, (46)

which is holomorphic in |ζ | < κ . Note thatB is a trace-class operator by Lemma 3.1
below.

Lemma 2.2 Let Gm,n(ζ ) be defined by (39). Then if ρ ∈ (1, 1/
√
κ) there is a

constant C so that

|Gm,n(ζ )| ≤ C (47)

for all |ζ | ≤ ρ, n ≥ 1 and m sufficiently large. Also, if ζ is real and |ζ | ≤ ρ, then

lim
m→∞ lim

n→∞Gm,n(ζ ) = G(ζ ). (48)

Assume Lemma 2.2. It follows from (47) that {Gm,n(ζ )} is a normal family in
|ζ | < ρ. Let Hn = Gm,n(i), which is independent of m. By (47), |Hn| ≤ C for all
n ≥ 1. Let {Hni } be any convergent subsequence. If we can show that

lim
i→∞Hni = G(i), (49)

we are done since,

I + fi(K) = I − (I + K)−1K = (I + K)−1.

Also,

det(I + |B|) det(I − |B|) = det(I − |B|2) =
∞∏

j=1

(1 − λ2
j ) = det(I +K), (50)

where λj are the singular values of B. The fact that {Gm,n(ζ )} is a normal family
and a diagonal argument shows that there is a subsequence {ni,i} of {ni} such that

lim
i→∞Gm,ni,i (ζ ) =: Gm(ζ )
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uniformly in |ζ | ≤ ρ′ < ρ for each sufficiently large m. By (47), {Gm(ζ )} is a
normal family in |ζ | < ρ. Let {mj } be any sequence such that Gmj (ζ ) converges
uniformly in |ζ | ≤ ρ′, where 1 < ρ′ < ρ. Then, for ζ real, |ζ | ≤ ρ′,

lim
j→∞Gmj (ζ ) = lim

j→∞ lim
i→∞Gmj ,ni,i (ζ ) = G(ζ ),

by (48). Since {mj } was arbitrary, we see that limm→∞ Gm(ζ ) = G(ζ ) uniformly
for ζ ∈ C, |ζ | ≤ ρ′. For any fixed m,

lim
i→∞Hni = lim

i→∞Hni,i = lim
i→∞Gm,ni,i (i) = Gm(i).

We can now let m → ∞ to get (49). This completes the proof of the theorem.

3 Proof of Lemma 2.2

We start by giving a technical lemma that we will use below.

Lemma 3.1 Assume that γ is a C5+α curve for some α > 0 so that the extended
exterior mapping function φ is C5+α on T. Let the operator B on �2(C) be defined
by (9). Then B is a trace class operator. Also, if δm is defined by

δm =
(
∑

k∨�>m
(k�)2+ε |bk�|2

)1/2

, (51)

we have that δm → 0 as m → ∞. Furthermore there is a constant C so that

∑

k∨�>m
(k2 + �2)|ak�| ≤ C (52)

for all m ≥ 1.

Proof Since φ is C5+α it follows from the definition of the Grunsky coefficients
that there is a constant C such that

|ak�| ≤ C

k2+ε�2+ε
, (53)

|ak�| ≤ C

k3+ε�1+ε
, (54)
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for some ε > 0. Consider the operators given by K = (k1+ε/2�1+ε/2ak�)k,�≥1 and
D = (k−1/2−ε/2δk�)k,�≥1. Then K and D are Hilbert-Schmidt operators, and since
B = DKD we see that B is a trace class operator.

We see from (8), (51), and (53) that

δ2
m =

∑

k∨�>m
k2+ε�2+ε |bk�|2 ≤

∑

k∨�>m

C

k1+ε�1+ε
,

which → 0 as m → ∞. Also, since ak� is symmetric (54) gives the estimate

∑

k∨�>m
(k2 + �2)|ak�| = 2

∑

k∨�>m
k2|ak�| ≤ C

for all m ≥ 1. ��
We turn now to the proof of the estimate (47). This proof will also give us an

upper bound in (48). After that we will prove a lower bound in (48) which will
coincide with the upper bound and hence prove the limit. First, we need an estimate
of Wm(θ) defined by (38). Note that

Wm(θ) ≤
∑

k∨�>m
|bk�||Xk− iYk||X�− iY�| = lim

M→∞
∑

k∨�>m
k∧�≤M

|bk�||Xk− iYk||X�− iY�|.

Let ε > 0 be fixed. By the Cauchy-Schwarz’ inequality

∑

k∨�>m
k∧�≤M

|bk�||Xk − iYk||X� − iY�| (55)

≤
⎛
⎜⎝
∑

k∨�>m
k∧�≤M

(k�)2+ε |bk�|2
⎞
⎟⎠

1/2⎛
⎜⎝

∑

k∨�>m
k∧�≤M

1

k2+ε
|Xk − iYk|2 1

�2+ε
|X� − iY�|2

⎞
⎟⎠

1/2

≤ δm

(
M∑

k=1

1

k2+ε
(X2

k + Y 2
k )

)
.

We know from Lemma 3.1 that our assumptions on γ imply that δm → 0 as m →
∞. Define the 2M times 2M matrix Dm,M by

D−1
m,M =

(
diag ( δm

k2+ε )1≤k≤M 0

0 diag ( δm
k2+ε )1≤k≤M

)
.
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Because of the inequality (44) we can assume that ζ ∈ R which we will do from
now on. We see from (43), Fatou’s lemma and (55) that

Gm,n(ζ ) ≤ 1

πm

∫

Rm
du

∫

Rm
dv exp(−

(
u

v

)t (
u

v

)
) (56)

× lim
M→∞

En

⎡

⎢⎢⎣exp

⎛

⎜⎜⎝2(Lm(ζ )
t + g(ζ ))t

(
X

Y

)
+

∑

k∨�>m
k∧�≤M

|bk�||Xk − iYk||X� − iY�|

⎞

⎟⎟⎠

⎤

⎥⎥⎦

≤ 1

πm

∫

Rm
du

∫

Rm
dv exp(−

(
u

v

)t (
u

v

)
)

× lim
M→∞

En

[
exp

(
2(Lm(ζ )

t + g(ζ ))t
(

X

Y

)
+
(
PMX

PMY

)t
D−1
m,M

(
PMX

PMY

))]
.

We now use the Gaussian integral

exp

((
PMX
PMY

)t
D−1
m,M

(
PMX
PMY

))
= 1

πM

(
M∏

k=1

k2+ε

δm

)∫

RM

dp

∫

RM

dq

× exp

(
−
(

p
q

)t
Dm,M

(
p
q

)
+ 2

(
P t
Mp

P t
Mq

)t (
X
Y

))
,

where p and q are column vectors in R
M . If we use this identity in (56), we obtain

the estimate

Gm,n(ζ ) ≤ 1

πm+M

(
M∏

k=1

k2+ε

δm

)∫

RM

dp

∫

RM

dq

∫

Rm

du

∫

Rm

dv (57)

× lim
M→∞

exp

(
−
(

u
v

)t (
u
v

)
−
(

p
q

)t
Dm,M

(
p
q

))

× En

[
exp

(
2

(
Lm(ζ )+ g(ζ )+

(
P t
Mp

P t
Mq

))t (
X
Y

))]
.

We will now make use of the following upper bound which is a consequence of the
strong Szegő limit theorem, [9, p. 268], or the Geronimo-Case-Borodin-Okounkov
identity, [10, Lemma 2.3].
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Lemma 3.2 We have the estimate

En

[
exp

(
2

(
c
d

)t (
X
Y

))]
≤ exp

((
c
d

)t (
c
d

))
, (58)

for infinite column vectors c = (ck)k≥1, d = (dk)k≥1 in �2(R).

The estimate (58) gives

En

[
exp

(
2

(
Lm(ζ )+ g(ζ ) +

(
P t
M

p

P t
M

q

))t (
X

Y

))]
(59)

≤ exp

((
Lm(ζ )+ g(ζ ) +

(
P t
M

p

P t
M

q

))t (
Lm(ζ ) + g(ζ ) +

(
P t
M

p

P t
M

q

)))

= exp

(
(Lm(ζ )+ g(ζ ))t (Lm(ζ )+ g(ζ ))+ 2 (Lm(ζ )+ g(ζ ))t

(
P t
M

p

P t
M

q

)
+
(

p

q

)t (
p

q

))
.

Inserting this into (57), the pq-integral becomes

1

πM

(
M∏

k=1

k2+ε

δm

)∫

RM

dp

∫

RM

dq exp

(
−
(

p
q

)t
(Dm,M − I)

(
p
q

)
(60)

+2 (Lm(ζ )+ g(ζ ))t
(
PM 0
0 PM

)t (
p
q

))

=
(

M∏

k=1

k2+ε/δm

k2+ε/δm − 1

)

× exp

(
(Lm(ζ )+ g(ζ ))t

(
PM 0
0 PM

)t
(Dm,M − I)−1

(
PM 0
0 PM

)
(Lm(ζ )+ g(ζ ))

)

≤
M∏

k=1

1

1 − δm/k2+ε
exp

(
δm

1 − δm
(Lm(ζ )+ g(ζ ))t (Lm(ζ )+ g(ζ ))

)
,

where the last inequality follows from the fact that all entries in (Dm,M − I)−1 are
≤ δm(1 − δm)

−1. If we assume that m is so large that δm ≤ 1/2 then there is a
constant Cε so that

M∏

k=1

1

1 − δm/k2+ε
≤ eCεδm .
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Thus, (57), (59) and (60) give

Gm,n(ζ ) ≤ eCεδm

πm

∫

Rm

du

∫

Rm

dv exp

(
−
(

u
v

)t (
u
v

)

+ 1

1 − δm
(Lm(ζ )+ g(ζ ))t (Lm(ζ )+ g(ζ ))

)
.

We now insert the definition (42) of Lm(ζ ) into the right side. After some
computation we get the estimate

Gm,n(ζ ) ≤ eCεδm

πm

∫

Rm

du

∫

Rm

dv exp

(
−
(

u
v

)t (
I −

(
ζ 2

1−δm
&m 0

0 1
1−δm

&m

))(
u
v

)

(61)

+ 2

1 − δm

(
u
v

)t (
ζ&

1/2
m 0

0 &
1/2
m

)
T t
m

(
Pm 0
0 Pm

)
g(ζ )+ 1

1 − δm
g(ζ )tg(ζ )

)

Since 0 ≤ λm,k ≤ κ , we see that if |ζ | ≤ ρ < 1/
√
κ and m is so large that

ρ2κ/(1 − δm) < 1, then the matrix I −
(

ζ 2

1−δm
&m 0

0 1
1−δm

&m

)
is positive definite.

Hence, we can compute the Gaussian integral in (61) to get the estimate

Gm,n(ζ ) ≤ eCεδm

√
det(I − ζ 2

1−δm
|Bm|) det(I − 1

1−δm
|Bm|)

exp

(
1

1 − δm

(
Pma(ζ )
Pmb(ζ )

)t
Tm

(62)

×
(
(I − ζ 2

1−δm
&m)

−1 ζ 2

1−δm
&m 0

0 (I − 1
1−δm

&m)
−1 1

1−δm
&m

)
T t
m

(
Pma(ζ )
Pmb(ζ )

)

(63)

+ 1

1 − δm
g(ζ )tg(ζ )

)

for all ζ ∈ [−ρ, ρ] and m sufficiently large. Since Tm is an orthogonal matrix we

see that the �2(R)⊕ �2(R)-norm of T t
m

(
Pma(ζ )
Pmb(ζ )

)
is

≤
m∑

k=1

a(ζ )2k + b(ζ )2k ≤ ρ2
∞∑

k=1

k(|ak|2 + |bk|2) < ∞,
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by the assumption (12). Since |ζ | ≤ ρ, λm,k , and ρ2κ/(1 − δm) < 1, δm < 1/2 for
m sufficiently large, we see that the expression in the exponent in the right side of
(62) is bounded by a constant. Note that it is proved in Lemma 3.1 that δm → 0 as
m → ∞ and hence Cεδm ≤ 1 if m is sufficiently large. Also, since B is trace class

det(I − ζ 2

1 − δm
|Bm|) → det(I − ζ 2|B|)

as m → ∞ for |ζ | ≤ ρ. This proves (47) in Lemma 2.2. If we recall (45), we se that
(62) gives

lim
n→∞Gm,n(ζ ) ≤ eCεδm

√
det(I − ζ 2

1−δm
|Bm|) det(I − 1

1−δm
|Bm|)

× exp

(
1

1 − δm

(
Pma(ζ )
Pmb(ζ )

)t
fζ

(
1

1 − δm
Km

)(
Pma(ζ )
Pmb(ζ )

)
+ 1

1 − δm
g(ζ )tg(ζ )

)
,

for ζ ∈ R, |ζ | ≤ ρ. We can let m → ∞ in the right side to conclude

lim
m→∞ lim

n→∞Gm,n(ζ ) ≤ exp
(
g(ζ )t (I + fζ (K))g(ζ )

)
√

det(I − ζ 2|B|) det(I − |B|) = G(ζ ), (64)

for ζ ∈ R, |ζ | ≤ ρ.
In order to prove (48) we also need a lower bound. Fix D > 0 and let ζ ∈ R. We

see from (43) that

Gm,n(ζ ) ≥ 1

πm

∫

[−D,D]m
du

∫

[−D,D]m
dv exp(−

(
u
v

)t (
u
v

)
) (65)

× En

[
exp

(
2(Lm(ζ )+ g(ζ ))t

(
X
Y

)
+ Wm(θ)

)]
.

Let f (θ) be such that

2(Lm(ζ )+ g(ζ ))t
(

X
Y

)
=
∑

μ

f (θμ). (66)

Note that f is real-valued since ζ ∈ R. We want to estimate

En[exp(
∑

μ

f (θμ) + Wm(θ))]
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from below. To do this we will use an idea from [9, Lemma 2.3]. Let h(θ) be a given,
smooth 2π-periodic, real-valued function, and let C(h) denote a positive constant,
whose exact meaning will change, that depends only on h but not on n or θ . Where
it occurs below it can be bounded by ||h||∞, ||h′||∞ and ||h′′||∞. Write

Sn(θ) =
∑

μ

f (θμ − 1

n
h(θμ)),

Un(θ) = − 1

n

∑

μ�=ν

1

2
cot(

θμ − θν

2
)(h(θμ)− h(θν)),

Vn(θ) = − 1

n

∑

μ

h′(θμ)− 1

n

∑

μ�=ν

(h(θμ)− h(θν))
2

sin2(
θμ−θν

2 )
.

If we let

φμ = θμ − 1

n
h(θμ),

a Taylor expansion gives

∑

μ�=ν

log |eiφμ − eiφν | +
∑

μ

f (φμ) (67)

=
∑

μ�=ν

log

∣∣∣∣∣2 sin
θμ − θν − 1

n
(h(θμ)− h(θν))

2

∣∣∣∣∣+
∑

μ

f (θμ − 1

n
h(θμ))

=
∑

μ�=ν

log |eiθμ − eiθν | + Sn(θ)+ Un(θ) + Vn(θ)+ 1

n

∑

μ

h′(θμ) + R(1)
n (θ),

where

|R(1)
n (θ)| ≤ C(h)

n
. (68)

We see from (65), (66) and (67) that

Gm,n(ζ ) ≥ 1

πm

∫

[−D,D]m
du

∫

[−D,D]m
dv exp(−

(
u

v

)t (
u

v

)
) (69)

× En

⎡

⎣exp

⎛

⎝Sn(θ)+ Un(θ) + Vn(θ)+
∑

μ,ν

wm(θμ − h(θμ)

n
, θν − h(θν)

n
) + R

(2)
n (θ)

⎞

⎠

⎤

⎦ ,
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where

R(2)
n (θ) = R(1)

n (θ)+
∑

μ

log(1 − 1

n
h′(θμ))+ 1

n
h′(θμ)

by (68) satisfies

|R(2)
n (θ)| ≤ C(h)

n
. (70)

The 1- and 2-point marginal densities for en[·] are given by, [12],

p1,n(θ) = 1

2π
(71)

p2,n(θ1, θ2) = 1

4π2n(n − 1)

⎡

⎢⎣n2 −
∣∣∣∣∣∣

n−1∑

j=0

eij (θ1−θ2)

∣∣∣∣∣∣

2
⎤

⎥⎦ .

These formulas can be used to show that

En[Un(θ)] = 0, and En[Vn(θ)] ≥ −
∞∑

k=1

k|hk|2, (72)

where hk are the complex Fourier coefficients of h. Hence, we can use Jensen’s
inequality in (69) to get the estimate

Gm,n(ζ ) ≥ 1

πm

∫

[−D,D]m
du

∫

[−D,D]m
dv exp(−

(
u

v

)t (
u

v

)
) (73)

× exp

⎛

⎝En[Sn(θ)] −
∞∑

k=1

k|hk |2 − En

⎡

⎣
∑

μ,ν

wm(θμ − h(θμ)

n
, θν − h(θν)

n
)

⎤

⎦− C(h)

n

⎞

⎠ .

Define

T (1)
n = En[Sn(θ)] = n

2π

∫ π

−π

f (θ − 1

n
h(θ)) dθ, (74)

T (2)
n = − n2

4π2

∫ π

−π

∫ π

−π

wm(θ1 − 1

n
h(θ1), θ2 − 1

n
h(θ2)) dθ1dθ2,

T (3)
n = 1

4π2

∫ π

−π

∫ π

−π

wm(θ1 − 1

n
h(θ1), θ2 − 1

n
h(θ2))

∣∣∣∣∣∣

n−1∑

j=0

eij (θ1−θ2)

∣∣∣∣∣∣

2

dθ1dθ2

− n

2π

∫ π

−π

wm(θ − 1

n
h(θ), θ − 1

n
h(θ)) dθ.
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Then, using (71) and (73), we find that for ζ ∈ R,

Gm,n(ζ ) ≥ 1

πm

∫

[−D,D]m
du

∫

[−D,D]m
dv exp

(
−
(

u
v

)t (
u
v

)
+ T (1)

n + T (2)
n + T (3)

n

(75)

−
∞∑

k=1

k|hk|2 − C(h)

n

)
.

Note that f depends on u and v, and we can choose h to depend on u and v also.
Hence T (j)

n depends on u and v. Define, for n sufficiently large (depending on h),

rn(θ) = θ − 1

n
h(θ), and sn(θ) = r−1

n (θ). (76)

Then, if we write

s′n(θ) = 1 + 1

n
h′(θ)+ 1

n2Hn(θ), (77)

we have the bound

|Hn(θ)| ≤ C(h). (78)

By (74), (76), (77), and the fact that f has zero mean,

T (1)
n = 1

2π

∫ π

−π

f (θ)h′(θ) dθ + 1

2πn

∫ π

−π

f (θ)Hn(θ) dθ (79)

= −i
∑

k∈Z
kfkh−k + e(1)n ,

where

|e(1)n | ≤ C(h)

n
||f ||1. (80)

Also,

T (2)
n = − n2

4π2

∫ π

−π

∫ π

−π

wm(θ1, θ2)s
′
n(θ1)s

′
n(θ2) dθ1dθ2

= −Re
∑

k∨�>m
ak�

n2

4π2

∫ π

−π

∫ π

−π

e−ikθ1−i�θ2s′n(θ1)s
′
n(θ2) dθ1dθ2.
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By (77) and (78),

n2

4π2

∫ π

−π

∫ π

−π

e−ikθ1−i�θ2s′n(θ1)s
′
n(θ2) dθ1dθ2 = −k�hkh� + e(2)n (k, �),

where

|e(2)n (k, �)| ≤ C(h)

n
.

Thus

T (2)
n = Re

∑

k∨�>m
k�ak�hkh� − e(2)n , (81)

where

|e(2)n | =
∣∣∣∣∣Re

∑

k∨�>m
ak�e

(2)
n (k, �)

∣∣∣∣∣ ≤ C(h)

n
, (82)

by Lemma 3.1. We now consider T (3)
n . By Taylor’s theorem

wm(θ1 − 1

n
h(θ1), θ2 − 1

n
h(θ2)) = Re

∑

k∨�>m
ak�e

−ikθ1−i�θ2

− 1

n
(h(θ1) + h(θ2))Re

∑

k∨�>m
−ikak�e

−ikθ1−i�θ2 + e(3)n (θ1, θ2),

where

|e(3)n (θ1, θ2)| ≤ C(h)

n2

∑

k∨�>m
(k2 + �2)|ak�| ≤ C(h)

n2 , (83)

by Lemma 3.1. Thus, by the definition of T (3)
n ,

T (3)
n = Re

∑

k∨�>m
ak�

1

4π2

∫ π

−π

∫ π

−π

e−ikθ1−i�θ2

∣∣∣∣∣∣

n−1∑

j=0

eij (θ1−θ2)

∣∣∣∣∣∣

2

dθ1dθ2 (84)

− 1

n
Re

∑

k∨�>m

−ikak�
4π2

∫ π

−π

∫ π

−π

(h(θ1)+ h(θ2))e
−ikθ1−i�θ2

∣∣∣∣∣∣

n−1∑

j=0

eij (θ1−θ2)

∣∣∣∣∣∣

2

dθ1dθ2

+ 2Re
∑

k∨�>m
ak�

1

2π

∫ π

−π

h(θ)(−ike−i(k+�)θ) dθ + e
(3)
N =: I1 + I2 + I3 + e(3)n ,
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where

e(3)n = 1

4π2

∫ π

−π

∫ π

−π

e(3)n (θ1, θ2)

∣∣∣∣∣∣

n−1∑

j=0

eij (θ1−θ2)

∣∣∣∣∣∣

2

dθ1dθ2 − n

2π

∫ π

−π

e(3)n (θ, θ) dθ.

Since

1

4π2

∫ π

−π

∫ π

−π

∣∣∣∣∣∣

n−1∑

j=0

eij (θ1−θ2)

∣∣∣∣∣∣

2

dθ1dθ2 = n

it follows from the estimate (83) that

|e(3)n | ≤ C(h)

n
. (85)

Now,

I1 = Re
∑

k∨�>m
ak�

n−1∑

j1,j2=0

1

4π2

∫ π

−π

∫ π

−π

e−ikθ1−i�θ2+i(j1−j2)(θ1−θ2) dθ1dθ2 (86)

= Re
∑

k∨�>m
ak�

n−1∑

j1,j2=0

δk,j1−j2δ�,j2−j1 = 0, (87)

since non-zero Kronecker deltas require j1 − j2 = k = −�, which is not possible
since k, � ≥ 1. Next, we see that

I2 = − 1

n
Re

∑

k∨�>m
−ikak�

n−1∑

j1,j2=0

(hk+j2−j1δ�,j2−j1 + h�+j1−j2δk,j1−j2)

= − 1

n
Re

∑

k∨�>m
−ikak�(2n− (k + �))hk+�.

Finally,

I3 = 2Re
∑

k∨�>m
−ikak�hk+�

and thus

I2 + I3 = − 1

2n
Re

∑

k∨�>m
i(k + �)2ak�hk+�.
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Using Lemma 3.1 we see that

|I2 + I3| ≤ C(h)

n
,

and thus by (84), (85) and (86),

|T (3)
n | ≤ C(h)

n
.

We have shown that

T (1)
n + T (2)

n + T (3)
n ≥ −i

∑

k∈Z
kfkh−k + Re

∑

k∨�>m
k�ak�hkh� − C(h)

n
(1 + ||f ||1),

and inserting this estimate into (75) gives

Gm,n(ζ ) ≥ 1

πm

∫

[−D,D]m
du

∫

[−D,D]m
dv exp

(
−
(

u
v

)t (
u
v

)
−

∞∑

k=1

khkh−k

(88)

−i
∑

k∈Z
kfkh−k + Re

∑

k∨�>m
k�ak�hkh� − C(h)

n
(1 + ||f ||1)

)
.

We now choose hk = −isgn (k)fk , 1 ≤ |k| ≤ m, hk = 0 if |k| > m or k = 0, so
that h is a cut-off of the Fourier series for the conjugate function to f . Then

−i
∑

k∈Z
kfkh−k = 2

m∑

k=1

k|fk|2, and
∞∑

k=1

khkh−k =
m∑

k=1

k|fk|2,

and

Re
∑

k∨�>m
k�ak�hkh� = 0.

Hence, from (88) we see that for ζ ∈ R,

Gm,n(ζ ) ≥ 1

πm

∫

[−D,D]m
du

∫

[−D,D]m
dv exp

(
−
(

u
v

)t (
u
v

)

+
m∑

k=1

k|fk|2 − C(h)

n
(1 + ||f ||1)

)
.
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With m fixed and for u, v ∈ [−D,D]m with D fixed, and |ζ | ≤ ρ, we see that C(h)
is bounded and thus

lim
n→∞

Gm,n(ζ ) ≥ 1

πm

∫

[−D,D]m
du

∫

[−D,D]m
dv exp

(
−
(

u
v

)t (
u
v

)
+

m∑

k=1

k|fk|2
)
.

(89)

We see from (66) that

m∑

k=1

k|fk|2 = (Lm(ζ )+ Pmg(ζ ))t (Lm(ζ )+ Pmg(ζ )).

In (89) we can let D → ∞ so that the integration in the right side is over Rm and
compute the Gaussian integral. The same computations that led to (62) then give

lim
n→∞

Gm,n(ζ ) ≥ 1√
det(I − ζ 2

1−δm
|Bm|) det(I − 1

1−δm
|Bm|)

exp

((
Pma(ζ )

Pmb(ζ )

)t
Tm

×
(
(I − ζ 2&m)

−1ζ 2&m 0

0 (I −&m)
−1&m

)
T t
m

(
Pma(ζ )

Pmb(ζ )

)
+
(
Pma(ζ )

Pmb(ζ )

)t (
Pma(ζ )

Pmb(ζ )

))
.

We can now let m → ∞, and the same computations as previously then give

lim
m→∞

lim
n→∞

Gm,n(ζ ) ≥ G(ζ ),

for ζ ∈ [−ρ, ρ] which is what we wanted to prove.

4 Proof of Theorem 1.3

Without loss of generality we can assume that cap(γ ) = 1 and we will do so in this
section. Consider the functionEn(r) defined by (18). We have the following lemma.

Lemma 4.1 The sequence of functions En(r), n ≥ 1 is increasing.

The lemma will be proved below. We will now prove Theorem 1.3 using Lemma 1.2
and Lemma 4.1.

Proof (Of Theorem 1.3) Let Br , r > 1 be the Grunsky operator for the curve γr .
Then for each r > 1, by (17),

E(r) := lim
n→∞En(r) = −1

2
log det(I − B∗

r Br) (90)
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since γr satisfies the conditions of Theorem 1.1. Assume first that γ is a Weil-
Petersson quasicircle. Then the Grunsky operator B for γ is a Hilbert-Schmidt
operator so B∗B is a trace-class operator and consequently it follows from (90)
that

E := lim
r→1+E(r) = −1

2
log det(I − B∗B) < ∞, (91)

which can be seen by expressing the Grunsky coefficients for Br in terms of the
Grunsky coefficients of B, see below. Since En(r) is increasing in n, we have that
En(r) ≤ E(r) and combining this with (91) we obtain

En := log
Zn(γ )

(2π)n
= lim

r→1+En(r) ≤ lim
r→1+E(r) = E < ∞

for all n ≥ 1. Hence

lim sup
n→∞

Zn(γ )

(2π)n
≤ E < ∞, (92)

which proves (20). It remains to prove that we also get the right limit. From the
monotonicity in r we have that En(r) ≤ En(r

′) if 1 < r < r ′, and letting r ′ → 1+
gives En(r) ≤ En for all r > 1, n ≥ 1. Taking the limit n → ∞ gives E(r) ≤
limn→∞ En for all r > 1. Finally, we can let r → 1+ to obtain E ≤ limn→∞ En,
which combined with (92) gives,

lim
n→∞ log

Zn(γ )

(2π)n
= E = −1

2
log det(I − B∗B),

which is what we wanted to prove.
Next we want to prove that if (20) holds, then γ is a Weil-Petersson quasicircle.

It follows from Lemma 1.2 and the definition (19) that

Zn(γr)

(2π)n
≤ Zn(γ )

(2π)n
(93)

for any r > 1. We can use (17) and take the limit n → ∞ in (93) to obtain

(det(I − B∗
r Br))

−1/2 ≤ lim
n→∞

Zn(γ )

(2π)n
=: A < ∞ (94)

for any r > 1. From (5) we see that if the Grunsky coefficients for γ are bk�,
k, � ≥ 1, then the Grunsky coefficients for γr are bk�/rk+�, k, � ≥ 1. Let λj (r) be
the singular values of Br . Then (94) gives the inequality

∞∏

j=1

(1 − λj (r)
2) ≥ A−2,
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so

||Br ||2HS =
∞∑

j=1

λj (r)
2 ≤ −

∞∑

j=1

log(1 − λj (r)
2) ≤ 2 logA

for all r > 1. Thus

∞∑

k,�=1

|bk�|2
2rk+�

≤ 2 logA,

and letting r → 1+ shows that B is a Hilbert-Schmidt operator, so γ is a Weil-
Petersson quasicircle. ��

Lemma 1.2 will follow from the following lemma.

Lemma 4.2 The function En(r) defined by (18) satisfies

rE′′
n(r) + E′

n(r) ≥ 0 (95)

for all r > 1. Furthermore

lim
r→∞En(r) = 0. (96)

Proof Note that by definition

Zn(γr) = 1

n!rn(n−1)

∫

[−π,π]n
exp

(
Re

(∑

μ�=ν

log(φ(reiθμ)− φ(reiθν )) (97)

+
∑

μ

logφ′(reiθμ)

))
dθ,

where we used φr(z) = φ(rz)/r and φ′
r (z) = φ′(rz). Making the change of

variables θμ �→ θμ + α for some real α in the right side of (97) does not change its
value so

Zn(γr) = 1

n!rn(n−1)

∫

[−π,π]n
eF (r,α,θ) dθ, (98)

where

F(r, α, θ) =
∑

μ�=ν

log(φ(rei(θμ+α))−φ(rei(θν+α)))+
∑

μ

logφ′(rei(θμ+α)). (99)
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From the definition of En(r) we then obtain

En(r) = − log((2π)nn!)− n(n − 1) log r + log
∫

[−π,π]n
eF (r,α,θ) dθ. (100)

Using this formula we can compute the derivatives of En(r) which gives

E′
n(r) = −n(n− 1)

r
+
∫
(Re ∂rF )eReF dθ∫

eReF dθ
, (101)

and

E′′
n(r) = n(n− 1)

r
+
∫
(Re ∂2

r F + (Re ∂rF)2)e ReF dθ∫
eReF dθ

−
(∫

(Re ∂rF)eRe F dθ∫
eReF dθ

)2

,

(102)

where the integrals are over [−π, π]n. If we take the derivative with respect to α in
(100) we get similarly

∫
(Re ∂αF )eReF dθ∫

eReF dθ
= 0, (103)

and

∫
(Re ∂2

r F + (Re ∂αF )2)eReF dθ∫
eReF dθ

−
(∫

(Re ∂αF )eReF dθ∫
e ReF dθ

)2

= 0. (104)

From the definition (99) we see that

∂rF =
∑

μ�=ν

ei(θμ+α)φ′(rei(θμ+α)) − ei(θν+α)φ′(rei(θν+α))

φ(ei(θμ+α))− φ(ei(θν+α))
+
∑

μ

ei(θμ+α)φ′′(rei(θμ+α))

φ′(ei(θμ+α))
,

and

∂2
r F =

∑

μ�=ν

[
(ei(θμ+α))2φ′′(rei(θμ+α)) − (ei(θν+α))2φ′′(rei(θν+α))

φ(ei(θμ+α)) − φ(ei(θν+α))

−
(
ei(θμ+α)φ′(rei(θμ+α)) − ei(θν+α)φ′(rei(θν+α))

φ(ei(θμ+α)) − φ(ei(θν+α))

)2
⎤

⎦

+
∑

μ

⎡

⎣ (e
i(θμ+α))2φ′′′(rei(θμ+α))

φ′(ei(θμ+α))
−
(
ei(θμ+α)φ′′(rei(θμ+α))

φ′(ei(θμ+α))

)2
⎤

⎦ .
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An analogous computation gives

∂αF = ir∂rF, and ∂2
αF = −r∂rF − r2∂2

r F.

Consequently,

Re ∂αF = −rIm ∂rF, and Re ∂2
αF = −rRe ∂rF − r2Re ∂2

r F.

If we insert these relations into (104), we get

∫
(−rRe ∂rF − r2Re ∂2

r F + r2( Im ∂rF)
2)eReF dθ∫

eReF dθ
−
(∫

(rIm ∂rF)e
Re F dθ∫

eReF dθ

)2

= 0,

which gives

r2
∫
(Re ∂2

r F )e
ReF dθ∫

eReF dθ

= − r
∫
(Re ∂rF )eReF dθ∫

eReF dθ
+ r2

∫
(Im ∂rF )

2eReF dθ∫
eReF dθ

− r2

(∫
(Im ∂rF )e

ReF dθ∫
eReF dθ

)2

= −rE′
n(r)− n(n − 1)+ r2

∫
(Im ∂rF )

2eReF dθ∫
eReF dθ

− r2

(∫
(Im ∂rF )e

ReF dθ∫
eReF dθ

)2

,

where the last equality follows from (101). We can use this identity in (102) to find

r2E′′
n(r) = n(n − 1)− rE′

n(r)− n(n − 1)+ r2

[∫
(Im ∂rF )

2eReF dθ∫
eReF dθ

−
(∫

(Im ∂rF )e
ReF dθ∫

eReF dθ

)2

+
∫
(Re ∂rF )2eReF dθ∫

eReF dθ
−
(∫

(Re ∂rF )eReF dθ∫
eReF dθ

)2
⎤

⎦ .

This can be written

1

r2
(r2E′′

n(r)+ rE′
n(r))(

∫
eReF dθ)2

= 1

2

∫
dθ

∫
dθ ′[(Im ∂rF (r, α, θ) − Im ∂rF (r, α, θ

′))2

+ (Re ∂rF (r, α, θ) − Re ∂rF (r, α, θ
′))2

]
eReF(r,α,θ)+ReF(r,α,θ ′) ≥ 0,

and we have proved the inequality (95).
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We have that

Zn(γr)

(2π)n
= 1

n!
∫

[−π,π]n
∏

μ�=ν

|φr(eiθμ)− φr(e
iθν )|

∏

μ

|φ′
r (e

iθμ)| dθ. (105)

Since the series (4) is absolutely convergent for |z| > 1, there is a constant C so that
|φ−k| ≤ C2k for all k ≥ 1. Now, by (4)

φr(z) = z +
∞∑

k=0

φ−k

rk+1zk
, and φ′

r (z) = 1 +
∞∑

k=1

kφ−k

rk+1zk+1 , (106)

and consequently φr(z) → z and φ′
r (z) → 1 uniformly for z ∈ T as r → ∞.

Hence, we can take the limit r → ∞ in (105) to obtain

lim
r→∞

Zn(γr)

(2π)n
= 1

(2π)nn!
∫

[−π,π]n
∏

μ�=ν

|eiθμ − eiθν | dθ = 1.

This proves (96) and we are done.

Now we can give the

Proof (Of Lemma 1.2) Assume that E′
n(r0) > 0 for some r0 > 1. From (95) we

see that rE′
n(r) is increasing and hence rE′

n(r) ≥ r0E
′
n(r0) for r ≥ r0. Thus,

En(r) ≥ En(r0) + r0E
′
n(r0)

∫ r

r0

ds

s
= En(r0)+ r0E

′
n(r0) log(r/r0).

If we let r → ∞ this contradicts (96). Consequently, E′
n(r) ≤ 0 for all r > 1.

We turn now to the proof of Lemma 4.1.

Proof (Of Lemma 4.1) Let *n be the set of all polynomials of degree ≤ n with
leading coefficient = 1. Then, see [17, Sec. 16.2], [16], we have that

Zn+1(γr)/(2π)n+1

Zn(γr)/(2π)n
= Dn+1(1)/(2π)n+1

Dn(1)/(2π)n
= 1

κ2
n

= min
p∈*n

1

2π

∫

γr

|p(ζ )|2 |dζ |,
(107)

and the minimum is attained if and only if p(ζ ) = πn(ζ ) := 1
κn
pn(ζ ) = ζ n + . . . ,

where pn are the orthonormal polynomials with respect to γr ,

∫

γr

pm(ζ )pn(ζ ) |dζ | = δmn.
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Hence,

En+1(r)− En(r) = log

(
1

2π

∫

γr

|πn(ζ )|2 |dζ |
)
. (108)

Note that φr is analytic in |z| > ρ−1 if 1 ≤ ρ < r . Fix ρ ∈ (1,∞). Then, by (106),

zφr(
1

z
) = 1 +

∞∑

k=0

φ−k

rk+1 z
k+1, and hr(z) := φr(

1

z
) = 1 +

∞∑

k=0

kφ−k

rk+1 z
k+1,

(109)

and these functions are analytic in |z| < ρ. By (108) and Jensen’s inequality,

En+1(r)− En(r) = log

(
1

2π

∫ π

−π

|πn(φr(eiθ ))|2|φ′
r (e

iθ )| dθ
)

(110)

≥ 1

2π

∫ π

−π

2 log |πn(φr(eiθ ))| + log |φ′
r (e

iθ )| dθ

= 1

2π

∫ π

−π

2 log |πn(φr(e−iθ ))| + log |φ′
r (e

−iθ )| dθ.

Note that

|πn(φr(e−iθ ))| = |(eiθ )nπn(φr(e
−iθ ))| = |ψn,r (e

iθ )|, (111)

where

ψn,r (z) = znπn(φr(
1

z
)).

If πn(z) = ∑n
j=0 aj z

j , with an = 1, then

ψn,r (z) = zn
n∑

j=0

ajφr(
1

z
)j =

n∑

j=0

aj z
n−j

(
zφr(

1

z
)
)j
, (112)

so we see that ψn,r is analytic in |z| < ρ. Hence, log |ψn,r (z)| and log |hr(z)| are
subharmonic functions in |z| < ρ, and we see from (110) and (111) that

En+1(r) − En(r) ≥ 1

2π

∫ π

−π

2 log |ψn,r (e
iθ )| + log |hr(eiθ )| dθ (113)

≥ 2 logψn,r (0)+ log |hr(0)|.
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It follows from (109) that hr(0) = 1, and from (109) and (112),

ψn,r (0) =
n∑

j=0

aj0n−j · 1j = an = 1.

Consequently, (113) gives En+1(r)− En(r) ≥ 0.

5 Heuristic Argument for the β-Ensemble

We will use the same notation, sometimes slightly modified, as in the previous
sections and only sketch the argument. Let

En,β [(·)] = 1

Zn,β(T)n!
∫

[−π,π]n
∏

μ�=ν

|eiθμ − eiθν |β/2(·) dθ

denote expectation with respect to the β-ensemble on the unit circle. As in (26), we
see that

Dn,β [eg]
Zn,β (T)

= cap(γ )
βn2

2 En,β

⎡

⎣exp

⎛

⎝−β

2
Re

∞∑

k,�=1

ak�

⎛

⎝
∑

μ

e−ikθμ

⎞

⎠
(
∑

ν

e−i�θν

)

(114)

+(1 − β

2
)
∑

μ

log |φ′(eiθμ)| +
∑

μ

g(φ(eiθμ))

⎞

⎠

⎤

⎦

= cap(γ )
βn2

2 En,β

⎡

⎣exp

⎛

⎝−β

2
Re

∞∑

k,�=1

ak�

⎛

⎝
∑

μ

e−ikθμ

⎞

⎠
(
∑

ν

e−i�θν

)
+ 2gtβ

(
X

Y

)⎞

⎠

⎤

⎦ ,

where we used (21). If we write

∞∑

k,�=1

ak�

(
∑

μ

e−ikθμ

)(
∑

ν

e−i�θν

)
= lim

m→∞

m∑

k,�=1

ak�

(
∑

μ

e−ikθμ

)(
∑

ν

e−i�θν

)

in (114), take the limit outside the expectation and then interchange the order of the
m → ∞ and n → ∞ limits, we are led to study the limit

lim
m→∞ lim

n→∞ en,β

⎡

⎣exp

⎛

⎝−β

2
Re

m∑

k,�=1

bk�(Xk − iYk)(X� − iY�)+ 2gtβ

(
X
Y

)⎞

⎠

⎤

⎦ .
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It seems that it is not easy to justify changing the order of the limits but doing so

leads, as we will see, to the conjecture (22). Set Mm,β =
√

β
2Mm(i), with Mm(i) as

in (33). We can then use a Gaussian integral to write

En,β

⎡

⎣exp

⎛

⎝−β

2
Re

m∑

k,�=1

bk�(Xk − iYk)(X� − iY�) + 2gtβ

(
X
Y

)⎞

⎠

⎤

⎦ (115)

= 1

πm

∫

Rm

du

∫

Rm

dv exp(−
(

u
v

)t (
u
v

)
)En,β

[
exp

(
2

(
u
v

)t
Mm,β + 2gtβ

(
X
Y

))]

= 1

πm

∫

Rm

du

∫

Rm

dv exp(−
(

u
v

)t (
u
v

)
)En,β

[
exp

(
2(Lm,β + gβ)t

(
X
Y

))]
,

where

Lm,β =
√
β

2
Lm(i) =

√
β

2

(
Pm 0
0 Pm

)
Tm

(
i&1/2

m 0
0 &

1/2
m

)(
u
v

)
.

We can now use the strong Szegő limit theorem for the β-ensemble on the unit circle
to take the n → ∞ limit in the last expectation in (115). This gives the limit

1

πm

∫

Rm

du

∫

Rm

dv exp(−
(

u
v

)t (
u
v

)
) exp

(
2

β
(Lm,β + gβ)t (Lm,β + gβ)

)
.

(116)

Now,

2

β
Lt
m,βLm,β = −

(
u
v

)t (
I −

(−&m 0
0 &m

))(
u
v

)
,

and

4

β
Lm,βgβ = 2

√
2

β

(
u
v

)t (
i&1/2

m 0

0 &
1/2
m

)
Tm

(
Pm 0
0 Pm

)
gβ.

We can now perform the Gaussian integrations in (116) to get

1√
det(I + Km)

exp

(
− 2

β
gβ

(
Pm 0
0 Pm

)
(I + Km)

−1Km

(
Pm 0
0 Pm

)
gβ + 2

β
gtβgβ

)
.

If we take the m → ∞ limit of this expression we obtain the right side of (22).
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1 Introduction and Main Result

Let X be a Banach space. For a bounded linear operator A on the space X, its kernel
and range (image) are defined by

KerA := {x ∈ X : Ax = 0}, RanA := {Ax : x ∈ X}.

If S is a subset of X, then closX(S) denotes the closure of S in X.
For 1 ≤ p ≤ ∞, let Lp(T) be the standard Lebesgue space on the unit circle T

in the complex plane C, equipped with the norm

‖f ‖p :=
(∫ 2π

0
|f (eiθ )|pdθ

)1/p

, 1 ≤ p < ∞,

and

‖f ‖∞ := ess sup
θ∈[0,2π]

|f (eiθ )|.

Further, let C(T) denote the space of all continuous functions f : T → C. For
f ∈ L1(T), let

f̂ (n) := 1

2π

∫ π

−π

f (eiϕ)e−inϕ dϕ, n ∈ Z,

be the sequence of the Fourier coefficients of f . For 1 ≤ p ≤ ∞, the classical
Hardy spaces Hp(T) are defined by

Hp(T) := {
f ∈ Lp(T) : f̂ (n) = 0 for all n < 0

}
. (1)

Consider the operators S and P , defined for a function f ∈ L1(T) and an a.e. point
t ∈ T by

(Sf )(t) := 1

πi
p.v.

∫

T

f (τ)

τ − t
dτ, (Pf )(t) := f (t) + (Sf )(t)

2
,

respectively, where the integral is understood in the Cauchy principal value sense.
It is well known that the operators P and S are bounded on Lp(T) if p ∈ (1,∞)

and are not bounded on Lp(T) if p ∈ {1,∞} (see, e.g., [2, Section 1.42]). For
a ∈ L∞(T), the Toeplitz operator T (a) with symbol a is defined by

T (a)f := P(af ), (2)

where f ∈ Hp(T). It easy to see that T (a) is bounded on every Hardy space Hp(T)

with 1 < p < ∞.
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Lewis Coburn observed in the proof of [3, Theorem 4.1] (see also [5, Proposi-
tion 7.24]) that if T (a) is a non-zero Toeplitz operator on H 2(T), then

KerT (a) = {0} or KerT ∗(a) = KerT (a) = {0}. (3)

This result remains true for Hp(T) with 1 < p < ∞, and it can be rephrased as
follows (see, e.g., [2, Theorem 2.38]).

Theorem 1 If a ∈ L∞(T)\{0}, then the Toeplitz operator T (a) has a trivial kernel
or a dense range on the Hardy space Hp(T) with 1 < p < ∞.

The aim of this paper is to show that an analogue of the above theorem does not
hold for the so-called Hardy-Marcinkiewicz spaces Hp,∞(T) with 1 < p < ∞ (see
Theorem 2 below). On the other hand, it can be shown that (3) does generalise to
this setting (see [12] and Sect. 6 below).

Let us recall the definition of the Hardy-Marcinkiewicz spaces. The Lebesgue
arc-length measure of a measurable set E ⊆ T will be denoted by |E|. The
distribution function mf of a measurable a.e. finite function f : T → C is given by

mf (λ) := |{t ∈ T : |f (t)| > λ}|, λ ≥ 0.

The non-increasing rearrangement of f is defined by

f ∗(x) := inf{λ : mf (λ) ≤ x}, x ≥ 0.

We refer to [1, Chap. 2, Section 1] for properties of distribution functions and non-
increasing rearrangements. For 1 < p < ∞, the Marcinkiewicz space (or the weak-
Lp space) Lp,∞(T) consists of all measurable a.e. finite functions f : T → C such
that

‖f ‖p,∞ := sup
x>0

(
x1/pf ∗(x)

)

is finite. Note that, by [9, Proposition 1.4.5(16)],

‖f ‖p,∞ = sup
λ>0

(
λmf (λ)

1/p
)
. (4)

Although ‖ · ‖p,∞ is not a norm, it is equivalent to a norm. More precisely, by [1,
Chap. 4, Lemma 4.5], for every measurable a.e. finite function f : T → C, one has

‖f ‖p,∞ ≤ ‖f ‖(p,∞) ≤ p

p − 1
‖f ‖p,∞,

where

‖f ‖(p,∞) := sup
x>0

(
x1/pf ∗∗(x)

)
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and

f ∗∗(x) = 1

x

∫ x

0
f ∗(y) dy, x > 0.

In view of [1, Chap. 4, Theorem 4.6], Lp,∞(T) is a Banach (function) space with
respect to the norm ‖ · ‖(p,∞). Marcinkiewicz spaces form a very interesting class
of non-separable rearrangement-invariant Banach function spaces (see, e.g., [1,
Chap. 4, Section 4]).

Since each Marcinkiewicz space Lp,∞(T) is continuously embedded into L1(T),
by analogy with (1), for every p ∈ (1,∞), one can define the Hardy-Marcinkiewicz
(weak Hardy) space by

Hp,∞(T) := {
f ∈ Lp,∞(T) : f̂ (n) = 0 for all n < 0

}
.

It follows from the boundedness of P on all Lebesgue spaces Lp(T) with
p ∈ (1,∞) and Calderón’s extension of the Marcinkiewicz interpolation theorem
(see, e.g., [1, Chap. 4, Theorem 4.13]), that the operator P is bounded on all
Marcinkiewicz spaces Lp,∞(T) with 1 < p < ∞. Thus, one can define the
Toeplitz operator T (a) with symbol a ∈ L∞(T) on the Hardy-Marcinkiewicz space
Hp,∞(T) by (2) for f ∈ Hp,∞(T).

Very little seems to be known about Toeplitz operators on abstract Hardy
spaces built upon non-separable rearrangement-invariant Banach function spaces
(this class of spaces includes all Hardy-Marcinkiewicz spaces Hp,∞(T) with
p ∈ (1,∞)). We were able to find only one paper [13] where such operators are
treated. It contains, among other things, a version of the Brown-Halmos theorem in
this setting (see [13, Theorem 4.3]).

Our main result says that a direct analogue of Theorem 1 does not hold on Hardy-
Marcinkiewicz spaces Hp,∞(T) for 1 < p < ∞.

Theorem 2 (Main Result) For every 1 < p < ∞, there exists a function a ∈
C(T) \ {0} such that the following equalities hold for the kernel and the closure of
the range of the Toeplitz operator T (a) acting on the Hardy-Marcinkiewicz space
Hp,∞(T):

dim (Ker T (a)) = ∞, dim
(
Hp,∞(T)/ closHp,∞(T)

(
Ran T (a)

)) = ∞.

The proof proceeds along the following lines. Suppose a ∈ C(T) is such that
|a(ζ )| = |ζ + 1|α for ζ ∈ T, where 0 < α < 1/p. Take any ϕ ∈ Hp,∞(T).
Then T (a)ϕ = af , where f := 1

a
P (aϕ). It follows from the Khvedelidze

theorem and Calderón’s extension of the Marcinkiewicz interpolation theorem that
the operator 1

a
PaI is bounded on the Marcinkiewicz space Lp,∞(T) (see Sect. 3).

So, every element of Ran T (a) is the product of a function in Lp,∞(T) and the
function a, which vanishes at ζ = −1. This allows one to prove the existence of
linearly independent functions fl ∈ Hp,∞(T), l ∈ N such that no nontrivial linear
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combination of them belongs to closHp,∞(T)

(
Ran T (a)

)
, which implies that

dim
(
Hp,∞(T)/ closHp,∞(T)

(
Ran T (a)

)) = ∞

(see Sect. 5). It is essential for this part of the proof that the underlying Banach
function space is the non-separable Marcinkiewicz space Lp,∞(T). The functions
fl are defined as outer functions whose moduli gl = |fl | ∈ Lp,∞(T) are constructed
in Sect. 4. The part of the proof described above depends only on |a|. It is left to
choose the argument of a in such a way that dim KerT (a) = ∞. To this end, we
take

a(z) := B(z)(z + 1)α ,

where B is an infinite Blaschke product (see Section 2). The zeros of B converge to
−1, so B ∈ C(T \ {0}). Since α > 0, one has a(−1) = 0 and a ∈ C(T).

In the final Sect. 6, we state a theorem that extends (3) to Hardy-Marcinkiewicz
spaces Hp,∞(T) (a more general result is proved in [12]).

2 Producing an Infinite-Dimensional Kernel

As usual, we denote by D the open unit disk in the complex plane C. Recall that a
function F analytic in D is said to belong to the Hardy space Hp(D), 1 ≤ p ≤ ∞,
if

‖F‖Hp(D) := sup
0≤r<1

(
1

2π

∫ π

−π

|F(reiθ )|p dθ
)1/p

< ∞, 1 ≤ p < ∞,

‖F‖H∞(D) := sup
z∈D

|F(z)| < ∞.

If F ∈ Hp(D), 1 ≤ p ≤ ∞, then the limit

f (eiθ ) = lim
r→1−0

F(reiθ )

exists for almost all θ ∈ [−π, π] (see, e.g., [6, Theorem 2.2]) and the boundary
function f = f (eiθ ) belongs to Lp(T).

Theorem 3 For every p ∈ (1,∞), there exists a function a ∈ C(T)\{0} depending
on p such that

dim Ker T (a) = ∞ (5)

on the Hardy-Marcinkiewicz space Hp,∞(T).
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Proof Let B be a convergent Blaschke product

B(z) = z

∞∏

j=1

|zj |
zj

zj − z

1 − zj z
, z ∈ D (6)

with

zj ∈ D \ {0} for j ∈ N, zj �= zl if j �= l, zj → −1 as j → ∞, (7)

and

∞∑

j=1

(1 − |zj |) < ∞. (8)

By [7, Chap. II, Theorem 6.1], the function B admits an analytic continuation to

C \ ({−1} ∪ {1/zj : j ∈ N}) .

In particular,B is continuous on T\{−1}. It follows from [7, Chap. II, Theorem 2.2]
that |B| = 1 on T \ {−1}.

Let α ∈ (0, 1/p) and

a(z) := B(z)(z + 1)α, z ∈ D ∪ T, (9)

where wα denotes the branch that is analytic in C \ (−∞, 0] and positive on
(0,+∞). Since α > 0, we conclude that a is a continuous function on T with
a(−1) = 0.

Let

Bk(z) :=
k∏

j=1

|zj |
zj

zj − z

1 − zj z
, z ∈ C, k ∈ N.

Then

a(ζ )Bk(ζ ) = bk(ζ ), ζ ∈ T,

where

bk(z) = z

⎛

⎝
∞∏

j=k+1

|zj |
zj

zj − z

1 − zj z

⎞

⎠ (z + 1)α, z ∈ D ∪ T.

It follows from [7, Chap. II, Theorem 2.2] that the middle term of bk(z) belongs
to H∞(D). It is also clear that (z + 1)α belongs to H∞(D). Thus bk(z) belongs to
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H∞(D) and the Taylor expansion of bk(z) does not contain a constant term. Taking
into account [6, Theorem 3.4], we conclude that the boundary value of bk belongs
to H∞(T) and b̂k(0) = 0. Hence

T (a)Bk = P (aBk) = P
(
bk

)
= 0.

So, Bk ∈ KerT (a) for all k ∈ N.
The finite Blaschke products Bk are linearly independent. Indeed, suppose they

are linearly dependent. Then there exist c1, . . . , cN ∈ C such that cN �= 0 and

N∑

k=1

ckBk = 0.

So,

BN = − 1

cN

N−1∑

k=1

ckBk,

where the left-hand side has a pole at 1/zN , while the right-hand side does not. This
contradiction shows that Bk are linearly independent and concludes the proof of (5).

��

3 Boundedness of an Auxiliary Operator

Lemma 1 Let 1 < p < ∞, 0 < α < 1/p, let a convergent Blaschke product B be
given by (6)–(8), and let a ∈ C(T) \ {0} be given by (9). Then the operator 1

a
PaI

is bounded on the Marcinkiewicz space Lp,∞(T).

Proof Take p1 and p2 such that 1 < p1 < p < p2 < ∞ and α < 1/p2. It follows
from (9) and [7, Chap. II, Theorem 2.2] that |a(ζ )| = |ζ + 1|α for a.e. ζ ∈ T. Since

−1/p1 < −1/p2 < −α < 0 < 1 − 1/p1 < 1 − 1/p2,

by Khvedelidze’s theorem (see, e.g., [8, Chap. 1, Theorem 4.1]), the Riesz projection
P is bounded on the weighted Lebesgue spaces

Lpj
(
T, |a|−1

)
:=
{
f : T → C : f |a|−1 ∈ Lpj (T)

}

equipped with the norms ‖f ‖pj ,|a|−1 := ‖f |a|−1‖pj for j = 1, 2. Equivalently, the

operator 1
a
PaI is bounded on Lpj (T). Then it follows from Calderón’s extension
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of the Marcinkiewicz interpolation theorem (see [1, Chap. 4, Theorem 4.13]) that
1
a
PaI is bounded on Lp,∞(T). ��

4 A Family of Auxiliary Functions

Lemma 2 Let 1 < p < ∞ and

γn,l :=
{
eiθ : n + l − 1

2nn
≤ θ − π <

n + l

2nn

}
, n ∈ N, l = 1, . . . , n. (10)

Then for every l ∈ N the function

gl(ζ ) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(2nn)1/p , ζ ∈ γn,l, n ≥ l,

1, ζ ∈ T \
⎛

⎝
⋃

n≥l
γn,l

⎞

⎠
(11)

belongs to the Marcinkiewicz space Lp,∞(T).

Proof For any λ ≥ 21/p, there exists a unique n ∈ N such that

(
2nn

)1/p ≤ λ <
(

2n+1(n + 1)
)1/p

.

Then

mgl (λ) = |{ζ ∈ T : |gl(ζ )| > λ}| =
∣∣∣∣∣∣

⋃

m≥max{n+1,l}
γm,l

∣∣∣∣∣∣
=

∞∑

m=max{n+1,l}

∣∣γm,l
∣∣

≤
∞∑

m=n+1

1

2mm
≤ 1

n + 1

∞∑

m=n+1

1

2m
= 1

2n(n + 1)
< 2λ−p.

It follows from the above inequality and (4) that

‖gl‖p,∞ = max

{
sup

0<λ<21/p

(
λmgl (λ)

1/p
)
, sup
λ≥21/p

(
λmgl (λ)

1/p
)}

≤ max

{
(2π)1/p sup

0<λ<21/p
λ, sup

λ≥21/p

(
λ

21/p

λ

)}
= (4π)1/p < ∞.

Hence gl ∈ Lp,∞(T). ��
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5 Producing an Infinite-Dimensional Co-Kernel

Theorem 4 Let 1 < p < ∞, 0 < α < 1/p, let a convergent Blaschke product B
be given by (6)–(8), and let a ∈ C(T) \ {0} be given by (9). Then

dim
(
Hp,∞(T)/ closHp,∞(T)

(
Ran T (a)

)) = ∞. (12)

Proof For l ∈ N, let the functions gl be defined by (10)–(11). It follows from
Lemma 2 that gl ∈ Lp,∞(T) ⊂ L1(T). Since gl ≥ 1, we have 0 ≤ log gl ≤ gl ,
whence log gl ∈ L1(T). Consider the outer functions

Fl(z) := exp

(
1

2π

∫ π

−π

eiθ + z

eiθ − z
log gl(eiθ ) dθ

)
, z ∈ D

(see [10, Chap. 5]). They belong to H 1(D) and their non-tangential boundary values
fl satisfy

|fl | = gl a.e. on T, l ∈ N. (13)

The above equality immediately implies that fl ∈ Lp,∞(T). On the other hand,
by [6, Theorem 3.4], fl ∈ H 1(T). Hence the functions fl belong to the Hardy-
Marcinkiewicz space Hp,∞(T) = Lp,∞(T) ∩ H 1(T) for every l ∈ N.

Let us show that for any N ∈ N and any c1, . . . , cN ∈ C with

N∑

l=1

|cl| > 0

we have

N∑

l=1

clfl �∈ closHp,∞(T)

(
Ran T (a)

)
.

Let k ∈ {1, . . . , N} be such that

|ck| = max
l=1,...,N

|cl|.

Then

c′
l := cl

ck
, l = 1, . . . , N,
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satisfy

|c′
l | ≤ 1, l = 1, . . . , N. (14)

It is sufficient to prove that

fk +
∑

l∈{1,...,N}\{k}
c′
lfl �∈ closHp,∞(T)

(
Ran T (a)

)
. (15)

Take any ϕ ∈ Hp,∞(T). Then it follows from Lemma 1 that

f := 1

a
P(aϕ) ∈ Lp,∞(T)

and

T (a)ϕ = af. (16)

For n ≥ N , let

γ 0
n,k :=

{
ζ ∈ γn,k : |(T (a)ϕ)(ζ )| > (2nn)1/p

3

}
.

For every

ζ = eiϑ ∈ γn,k ⊂
{
eiθ : 2−n ≤ θ − π < 2−(n−1)

}
,

one has

|a(ζ )| = |a(eiϑ)| = |eiϑ + 1|α = |ei(ϑ−π) − 1|α =
∣∣∣∣
∫ ϑ−π

0
eiτ dτ

∣∣∣∣
α

≤ |ϑ − π |α < 2−(n−1)α.

The above inequality and equalities (4) and (16) imply that for all n ≥ N ,

∣∣∣γ 0
n,k

∣∣∣ =
∣∣∣∣∣

{
ζ ∈ γn,k : |a(ζ )f (ζ )| > (2nn)1/p

3

}∣∣∣∣∣

≤
∣∣∣∣∣

{
ζ ∈ γn,k : |f (ζ )| > (2nn)1/p 2(n−1)α

3

}∣∣∣∣∣

= mf

(
(2nn)1/p2(n−1)α

3

)
≤ ‖f ‖pp,∞ 3p 2−(n−1)αp 1

2nn
. (17)
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Take n0 ≥ N such that

‖f ‖pp,∞ 3p 2−(n0−1)αp ≤ 1

2
, N − 1 <

(2n0n0)
1/p

3
. (18)

Equality (10), inequality (17) and the first inequality in (18) yield

∣∣γn,k
∣∣ = 1

2nn
,

∣∣∣γ 0
n,k

∣∣∣ ≤ 1

2n+1n
,

which implies that for all n ≥ n0,

∣∣∣γn,k \ γ 0
n,k

∣∣∣ = ∣∣γn,k
∣∣−

∣∣∣γ 0
n,k

∣∣∣ ≥ 1

2nn
− 1

2n+1n
= 1

2n+1n
. (19)

It follows from (11) and (13) that

|fk(ζ )| = (2nn)1/p (20)

for all ζ ∈ γn,k . If l ∈ {1, . . . , N} \ {k}, then (10) implies that

⎛

⎝
⋃

n≥l
γn,l

⎞

⎠ ∩
⎛

⎝
⋃

n≥k
γn,k

⎞

⎠ = ∅.

Therefore, (11), (13), (14), and the second inequality in (18) allow us to conclude
that for n ≥ n0 and ζ ∈ γn,k ,

∑

l∈{1,...,N}\{k}
|c′
l | |fl(ζ )| ≤ N − 1 <

(2nn)1/p

3
. (21)

Let

h := fk +
∑

l∈{1,...,N}\{k}
c′
lfl − T (a)ϕ.

Then it follows from the definition of the sets γ 0
n,k and from (20)–(21) that for all

n ≥ n0 and ζ ∈ γn,k \ γ 0
n,k ,

|h(ζ )| ≥ |fk(ζ )| −
∑

l∈{1,...,N}\{k}
|c′
l| |fl(ζ )| − |(T (a)ϕ)(ζ )|

>
(
2nn

)1/p − (2nn)1/p

3
− (2nn)1/p

3
= (2nn)1/p

3
=: λn.



474 O. Karlovych and E. Shargorodsky

Then, taking into account (19), we see that for all n ≥ n0,

mh(λn) = |{ζ ∈ T : |h(ζ )| > λn}|
≥ |{ζ ∈ γn,k \ γ 0

n,k : |h(ζ )| > λn}|

=
∣∣∣γn,k \ γ 0

n,k

∣∣∣ ≥ 1

2n+1n
= 1

3p2
λ

−p
n .

This inequality and (4) imply that for n ≥ n0,

‖h‖p,∞ ≥ λnmh(λn)
1/p ≥ 1

21/p3
.

Hence, for every ϕ ∈ Hp,∞(T),

∥∥∥∥∥∥
fk +

∑

l∈{1,...,N}\{k}
c′
lfl − T (a)ϕ

∥∥∥∥∥∥
p,∞

= ‖h‖p,∞ ≥ 1

21/p3

and (15) holds. This proves (12). ��
Theorem 2 follows immediately from Theorems 3 and 4.

6 Concluding Remarks

Let 1 < p < ∞. The associate space (Lp,∞)′(T) of the Marcinkiewicz space
Lp,∞(T) is the collection of all measurable a.e. finite functions f : T → C such
that

‖f ‖′
(p,∞) := sup

{∫ ∞

0
f ∗(x)g∗(x) dx : g ∈ Lp,∞(T), ‖g‖(p,∞) ≤ 1

}
< ∞

(see, e.g., [1, Chap. 1, Section 2 and Chap. 2, Proposition 4.2]). It is well known that
the space (Lp,∞)′(T) coincides up to equivalence of norms with the Lorentz space
Lq,1(T), where 1/p + 1/q = 1, consisting of all measurable a.e. finite functions
f : T → C such that

‖f ‖(q,1) :=
∫ ∞

0
x1/qf ∗∗(x)dx

x
< ∞

(see, e.g., [1, Chap. 4, Theorem 4.7]). Since the Marcinkiewicz space Lp,∞(T)

is non-separable, its associate is canonically isometrically isomorphic to a proper
subspace of the Banach dual space (Lp,∞)∗(T) (see [1, Chap. 1, Theorem 2.9 and
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Corollaries 4.3 and 5.6] and [4]). The Hardy-Lorentz space Hq,1(T) is defined, as
usual, by

Hq,1(T) := {
f ∈ Lq,1(T) : f̂ (n) = 0 for all n < 0

}
.

It follows from the boundedness of P on all Lebesgue spacesLr(T) with r ∈ (1,∞)

and Calderón’s extension of the Marcinkiewicz interpolation theorem (see, e.g., [1,
Chap. 4, Theorem 4.13]), that the operator P is bounded on all Lorentz spaces
Lq,1(T) with 1 < q < ∞.

A proof of the following version of Coburn’s lemma (cf. (3)) will be given in
[12] in the more general setting of abstract Hardy spaces built upon Banach function
spaces on which the Riesz projection is bounded (see [11]).

Theorem 5 Let a ∈ L∞(T), 1 < p < ∞ and 1/p + 1/q = 1. Then the kernel of
the Toeplitz operator

T (a) : Hp,∞(T) → Hp,∞(T)

or the kernel of the Toeplitz operator

T (a) : Hq,1(T) → Hq,1(T)

is trivial.
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1 Introduction

This section briefly describes the physical background, introduces the most impor-
tant mathematical definitions, and provides a summary of the main results.

1.1 Physical Background

Over the last decades the so-called entanglement entropy (EE) has become a useful
single-number quantifier of non-classical correlations between subsystems of a
composite quantum-mechanical system [1, 14]. For example, one may imagine a
macroscopically large system consisting of a huge number of particles in the state
of thermal equilibrium at some (absolute) temperature T ≥ 0. All the particles
inside some bounded spatial region Λ may then be considered to constitute one
subsystem and the particles outside of Λ another one. The corresponding EE, more
precisely the spatially bipartite thermal EE, now quantifies, to some extent, how
strongly these two subsystems are correlated “across the interface” between Λ and
its complement.

In the simplified situation where the particles do not dynamically interact with
each other, such as in the ideal gas or, slightly more general, in the free gas, all
possible correlations are entirely due to either the Bose–Einstein or the (Pauli–)
Fermi–Dirac statistics by the assumed indistinguishability of the (point-like and
spinless) particles.The present study is devoted to the latter case. Accordingly, we
consider the free Fermi gas [3, 7, 10] infinitely extended in the Euclidean space Rd

of an arbitrary dimension d ≥ 1. Although the fermions neither interact with each
other nor with any externally applied field, their EE remains a complicated function
of the region Λ ⊂ Rd which is difficult to study by analytical methods. In general
one can only hope for estimates and asymptotic results for its (physically interesting)
growth when Λ is replaced with αΛ where the scaling parameter α > 0 becomes
large. A decisive progress towards the understanding of the growth of the EE at
T = 0, in other words of the ground-state EE, is due to Gioev and Klich [11, 12].
They observed, remarkably enough, that this growth is related to a conjecture of
Harold Widom [28, 31] about the quasi-classical Szegő-type asymptotics for traces
of (smooth) functions of multi-dimensional versions of truncated Wiener–Hopf
operators with discontinuous symbols. After Widom’s conjecture had been proved
by one of us [21, 23] the gate stood open to confirm [16] the precise (leading) large-
scale growth conjectured in [12] and, in addition, to establish its extension from the
von Neumann EE to the whole one-parameter family of (quantum) Rényi EE’s.

In the present study we only consider the case of a true thermal state character-
ized by a strictly positive temperature T > 0 (and a chemical potential μ ∈ R or,
equivalently, a spatial particle-number density ρ > 0). On the one hand, the case
T > 0 is simpler, because the Fermi function E �→ 1/

(
1 + exp(E/T )

)
on the real

line R is smooth in contrast to its zero-temperature limit, the Heaviside unit-step
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function. On the other hand, a reasonable definition of the EE (see (8)) is more
complicated, because the thermal state is not a pure state. Nevertheless, due to the
presence of the “smoothing parameter” T > 0 the leading asymptotic growth of
the EE as α → ∞, is determined by an asymptotic coefficient again going back to
Widom [27, 30], see also [8, 19]. We introduce it in (17) and denote it by B.

From a physical point of view it is interesting to study the scaling asymptotics
α → ∞ as the temperature T varies. The emerging double asymptotics of the EE
and of the coefficient B are not simple to analyze and hard to guess by heuristic
arguments. For low temperatures, that is, small T > 0, this analysis has been
performed in [18] for d = 1 and in [25] for d ≥ 2 yielding a result consistent
with that for T = 0 in [12, 16].

At high temperatures quantum effects become weaker and the free Fermi gas
should exhibit properties of the corresponding classical free gas without correlations
(for fixed particle density). In particular, the ideal Fermi gas [3, 10] should
behave like the Maxwell–Boltzmann gas, the time-honored “germ cell” of statistical
mechanics. Hence the main purpose of our study is to determine the precise two-
parameter asymptotics of the EE as α → ∞ and T → ∞.

1.2 Pseudo-Differential Operators and Entropies

At first we introduce the translation invariant pseudo-differential operator1

(
Opα(a)u

)
(x) := αd

(2π)d

∫∫

Rd×Rd
eiαξ ·(x−y)a(ξ)u(y) dydξ , x ∈ Rd . (1)

Here the smooth real-valued function a is its underlying symbol, u is an arbitrary
complex-valued Schwartz function, and α > 0 is the scaling parameter. Informally,
one may think of Opα(a) as the function a(−(i/α)∇) of the gradient operator
∇ := (∂x1, ∂x2, . . . , ∂xd ), that is, the vector of partial derivatives with respect to
x = (x1, x2, . . . , xd).

The main role will be played by the truncated Wiener–Hopf operator

Wα(a,Λ) := χΛ Opα(a)χΛ ,

where χΛ is the (multiplication operator corresponding to the) indicator function of
the “truncating” open set Λ ⊂ Rd . Clearly, for a bounded symbol a the operators
Opα(a) and Wα(a;Λ) are bounded on the Hilbert space L2(Rd). Given a test
function f : R → R, we are interested in the operator f

(
Wα(a,Λ)

)
and in the

1 In [18, 26] the right-hand side of (1) is mistakenly multiplied by (2π)d/2.
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operator difference

Dα(a,Λ; f ) := χΛf
(
Wα(a,Λ)

)
χΛ − Wα(f ◦ a,Λ) , (2)

where the symbol f ◦ a is the composition of f and a defined by (f ◦ a)(ξ) :=
f
(
a(ξ)

)
.

For a bounded Λ and suitable a and f both operators on the right-hand side of
(2) belong individually to the trace class. Remarkably, its difference does so even
for a large class of unbounded Λ, see Condition 2.1 and Proposition 2.6 below. Our
analysis of the scaling behavior of the entropies will be based on the asymptotics for
the trace of Dα(a,Λ; f ) as α → ∞. The reciprocal parameter α−1 can be naturally
viewed as the Planck constant, and hence the limit α → ∞ can be regarded as the
quasi-classical limit. By a straightforward change of variables the operator (2) is
seen to be unitarily equivalent to D1(a, αΛ; f ), so that α → ∞ can be interpreted
also as a spatial large-scale limit. In our large-scale applications it is either α itself
or a certain combination of α with the temperature T that will become large.

The macroscopic thermal equilibrium state of the free Fermi gas depends, first
of all, on its (classical) single-particle Hamiltonian h : Rd → R, sometimes also
called the energy-momentum (dispersion) relation. The minimal conditions that we
impose on h are as follows. We assume that h is smooth in the sense that h ∈
C∞(Rd) and that it satisfies the bounds

∣∣∂nξ h(ξ )
∣∣ � |ξ |2m for all n ∈ Nd

0 , and h(ξ ) � |ξ |2m for |ξ | � 1 , (3)

for some constant m > 0. Here N0 := N ∪ {0} and the notations ∂n
ξ

, � , � are
defined at the end of the Introduction.

For given h, temperature T > 0, and chemical potential μ ∈ R we introduce
the Fermi symbol as the composition of the Fermi function and the “shifted”
Hamiltonian h− μ by

aT ,μ(ξ ) := 1

1 + exp
(h(ξ)−μ

T

) , ξ ∈ Rd . (4)

Next, we introduce the (bounded and continuous) entropy function ηγ : R →
[0, ln(2)] for each Rényi index γ > 0. For γ �= 1 it is defined by

ηγ (t) :=
{ 1

1−γ
ln
[
tγ + (1 − t)γ

]
if t ∈ (0, 1),

0 if t �∈ (0, 1),
(5)

and for γ = 1, the von Neumann case, it is given by the point-wise limit

η1(t) := lim
γ→1

ηγ (t) =
{−t ln(t) − (1 − t) ln(1 − t) if t ∈ (0, 1),

0 if t �∈ (0, 1).
(6)
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Finally, we define the (Rényi) local entropy associated with a bounded region Λ as
the trace

Sγ (T , μ;Λ) := tr ηγ
(
W1(aT ,μ,Λ)

) ≥ 0, (7)

and the (Rényi) entanglement entropy (EE) for the bipartition Rd = Λ ∪ (Rd \ Λ)
as

Hγ (T , μ;Λ) := trD1(aT ,μ,Λ; ηγ )+ trD1(aT ,μ,R
d \Λ; ηγ ) . (8)

This definition is motivated by the notion of mutual information, see e.g. [1, Eq. (9)].
The conditions (3) guarantee that these entropies are well-defined, see the paragraph
after Proposition 2.6. In formula (8) either Λ or its complement Rd \Λ is assumed
to be bounded, see Sect. 2 for details. It is useful to observe, as in (26) of [17], that
the local entropy (7) can be expressed as

Sγ (T , μ;Λ) = sγ (T , μ) |Λ| + trD1(aT ,μ,Λ; ηγ ) . (9)

Here |Λ| is the volume (Lebesgue measure) of the bounded region Λ and

sγ (T , μ) := trW1(ηγ ◦ aT ,μ,Λ)
|Λ| = (2π)−d

∫

Rd
ηγ
(
aT ,μ(ξ )

)
dξ (10)

is the spatial entropy density. For γ = 1 it is the usual thermal entropy density [3, 7].

1.3 Summary of the Main Results

Our first result is of non-asymptotic nature. In Sect. 3 we explore concavity
properties of the function ηγ . First we notice that ηγ is concave on the unit interval
[0, 1] for all γ ∈ (0, 2], so that for a bounded Λ one can use a Jensen-type trace
inequality to establish a lower bound for the local entropy (7) in terms of the entropy
density (10), see Theorem 3.3. For the EE (8) this argument is not applicable, but we
observe that ηγ for γ ∈ (0, 1] is even operator concave so that the Davis operator
inequality (32) implies the positivity of the EE for γ ∈ (0, 1] (including the most
important case γ = 1 corresponding to the von Neumann EE), see Theorem 3.5.
We do not know whether the EE is positive for γ ∈ (1, 2]. Later on however, we
will see that the EE for γ ∈ (1, 2] is positive at least for large T , see Remark 2 and
5 in Sect. 6.3.

The other main objective of the present paper is to study the asymptotics of
Hγ (T , μ; αΛ) as α → ∞ and T → ∞. For this, we have to impose conditions
on the Hamiltonian h stronger than those in (3), see Sect. 5.1. In particular, h should
be asymptotically homogeneous as |ξ | → ∞. We distinguish between two high-
temperature cases: the case of a constant chemical potential μ ∈ R and the case
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where the mean particle density

0(T ,μ) := 1

(2π)d

∫

Rd
aT ,μ(ξ ) dξ , (11)

being finite by (3), is (asymptotically) fixed to a prescribed constant ρ > 0, as
T becomes large. The latter case implies that the chemical potential effectively
becomes a function of T (and ρ) in the sense that

0(T ,μρ(T )) → ρ as T → ∞ . (12)

This corresponds to the quasi-classical limit of the free Fermi gas at fixed particle
density. Indeed, since the so-called integrated density of states

N (T ) := (2π)−d

∫

h(ξ)<T

dξ (13)

of the single-particle Hamiltonian h, evaluated at T , tends to infinity as T → ∞, one
has ρ/N (T ) → 0. In physical terms, the spatial density of the number of particles
is much smaller than that of the number of occupiable single-particle states with
(eigen)energies below T , when T is sufficiently large. Therefore the restrictions by
the Pauli exclusion principle are negligible.

Our results on the high-temperature scaling asymptotics are presented in The-
orem 6.1 (for constant μ) and in Theorem 6.3 (for constant ρ). We postpone the
discussion of these theorems until Sect. 6. Here we only mention two important
facts: a) in both regimes the asymptotics still hold if T → ∞ and the scaling
parameter α is fixed, e.g. α = 1, b) the EE with Rényi index γ > 2 becomes
negative for fixed particle density at high temperature; the same happens for fixed
chemical potential at large γ . This suggests that values γ > 2 are only of limited
physical interest.

The main asymptotic orders as α → ∞ and T → ∞ have been presented
(without precise pre-factors and proofs) in [17], in the cases of fixed μ and fixed
ρ, for γ = 1 and all d ≥ 1. Here we provide complete proofs for all γ > 0, but
concentrate on the multi-dimensional case d ≥ 2. The case d = 1 is not considered
for lack of space.

The paper is organized as follows. In Sect. 2 we present the basic information
such as our conditions on the truncating region and the definition of the asymptotic
coefficient B. Section 2 also contains the results, borrowed mostly from [26], that
are used throughout the paper. In Sect. 3 we study the concavity of the function ηγ
and investigate the positivity of the corresponding entanglement entropy. In Sect. 4
we derive elementary trace-class bounds for some abstract bounded (self-adjoint)
operators. These bounds are based on estimates for quasi-commutators of the form
f (A)J −Jf (B) with bounded J , bounded self-adjoint A, B, and suitable functions
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f . By using such bounds in Sect. 5 we obtain the large α and T asymptotics for the
trace of the operator Dα(pT ,Λ; f ) with a symbol pT modeling the Fermi symbol
(4) in the fixed μ or fixed ρ regimes. In Sect. 6 we collect our results on the high-
temperature asymptotics for the EE (8), see Theorems 6.1 and 6.3. Their proofs are
directly based on the formulas obtained in Sect. 5. In Sect. 6.3 we also comment on
the asymptotics of the local entropy (7). The Appendix contains a short calculation
clarifying the structure of the Fermi symbol when the mean particle density is fixed
as T → ∞.

Throughout the paper we adopt the following standard notations. For two positive
numbers (or functions) X and Y , possibly depending on parameters, we write
X � Y (or Y � X) if X ≤ CY with some constant C ≥ 0 independent of those
parameters. If X � Y and X � Y , then we write X ? Y . To avoid confusion
we often make explicit comments on the nature of the (implicit) constants in the
bounds. For multiple partial derivatives we use the notation ∂n

ξ
:= ∂

n1
ξ1
∂
n2
ξ2

· · · ∂ndξd
for a vector ξ ∈ Rd and a multi-index n = (n1, n2, . . . , nd) ∈ Nd

0 of order
|n| := n1 + n2 + · · · + nd . By B(z, R) we mean the open ball in Rd with center
z ∈ Rd and radius R > 0. We also use the weight function 〈v〉 := √

1 + |v|2 for
any vector v ∈ Rd .

The notation Sp, p ∈ (0,∞), is used for the Schatten–von Neumann classes of
compact operators on a complex separable Hilbert space H, see e.g. [6, Chapter 11].
By definition, the operator A belongs to Sp if ‖A‖p := (tr(A∗A)p/2)1/p < ∞. The
functional ‖ · ‖p on Sp is a norm if p ≥ 1 and a quasi-norm if p < 1. Apart from
Sect. 4, where the space H is arbitrary, we assume that H = L2(Rd ).

We dedicate this paper to the memory of Harold Widom (1932–2021). His
ground-breaking results on the asymptotic expansions for traces of pseudo-
differential operators have been highly influential to many researchers including
us. Without his results the present contribution and our previous ones to the study
of fermionic entanglement entropy would have been unthinkable. We are deeply
indebted to Widom’s ingenious insights. All three of us had the honor and pleasure
of meeting him at a memorable workshop in March 2017 hosted by the American
Institute of Mathematics (AIM) in San Jose, California, USA.

2 Basic Definitions and Basic Facts

In this section we collect some definitions and facts from [26] concerning the trace
of (2) and its asymptotic evaluation. They are instrumental in the proof of our main
asymptotic results corresponding to a = aT ,μ and f = ηγ . Throughout the rest of
the paper we always assume d ≥ 2 for the spatial dimension.
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2.1 Conditions on the Truncating Region Λ

We call an open and connected set Λ ⊂ Rd a Lipschitz domain, if it can be
described locally as the epigraph of a Lipschitz function, see [22, 23] for details. We
call Λ a Lipschitz region, if it is a union of finitely many Lipschitz domains such that
their closures are pair-wise disjoint. From now on we always assume that Λ satisfies
the following condition. Nevertheless, for convenience we will often mention it.

Condition 2.1

1. The set Λ ⊂ Rd is a Lipschitz region, and either Λ or Rd \ Λ is bounded.
2. The boundary (surface) ∂Λ is piece-wise C1-smooth.

We note that Λ and Rd \ Λ satisfy Condition 2.1 simultaneously.

2.2 The Asymptotic Coefficient B and Its Basic Properties

We assume the real-valued symbol to be smooth in the sense that a ∈ C∞(Rd ) and
satisfies the decay condition

∣∣∂nξ a(ξ)
∣∣ � 〈ξ 〉−β with some constant β > d , (14)

for all ξ ∈ Rd and all n ∈ Nd
0 with some implicit constants that may depend on n.

Before stating the leading asymptotic formula for trDα(a,Λ; f ) as α → ∞, we
need to introduce the corresponding asymptotic coefficient. For a function f : R →
R and any u, v ∈ R we consider the integral

U(u, v; f ) :=
∫ 1

0

f
(
tu + (1 − t)v

) − [
tf (u) + (1 − t)f (v)

]

t (1 − t)
dt . (15)

It is well-defined for any Hölder continuousf . And it is positive if f is also concave.
For every unit vector e ∈ Rd we define a functional of the symbol a by the

principal-value integral:

A(a, e; f ) := 1

8π2 lim
ε↓0

∫

Rd

∫

|t |>ε
U
(
a(ξ), a(ξ + te); f )

t2
dt dξ . (16)

Finally we define the main asymptotic coefficient by

B(a, ∂Λ; f ) := 1

(2π)d−1

∫

∂Λ

A(a,nx; f ) σ(dx) , (17)

where nx is the (unit outward) normal vector at the point x ∈ ∂Λ and σ is the
canonical (d − 1)-dimensional area measure on the boundary surface ∂Λ.
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For functions f ∈ C2(R) with bounded second derivative and for a symbol a
obeying the condition (14) the integral (16) exists in the usual sense and is bounded
uniformly in e. Hence (17) is also finite, see [26, Section 3]. However, in order to
accommodate the entropy function ηγ we allow for test functions being non-smooth
in the sense of the following condition.

Condition 2.2 The function f is in C2(R\T )∩C(R), where T := {t1, t2, . . . , tN }
is a finite set of its singular points. Moreover, for some δ > 0 and all R > 0 the
function f = f (0) and its first two derivatives satisfy the bounds

∣∣f (k)(t)
∣∣ �

∑

u∈T
|t − u|δ−k , k = 0, 1, 2 , (18)

for all t ∈ [−R,R] \ T with an implicit constant that may depend on R.

Under this condition B(a, ∂Λ; f ) is finite:

Proposition 2.3 ([26, Corollary 3.4]) Let the set Λ satisfy Condition 2.1 and let
the function f satisfy Condition 2.2 with δ > 0. Finally, let the symbol a satisfy
(14), but this time with some β > d max{1, 1/δ}. Then the coefficient B(a, ∂Λ; f )
is finite.

We point out a few simple properties of this coefficient.

Remark 2.4

1. Since A(a, e; f ) = A(a,−e; f ), the coefficientsB for the regionsΛ and Rd \Λ
coincide.

2. By definition (15), the coefficient (17) is positive for concave functions f and
negative for convex ones. For example, the function ηγ with γ ∈ (0, 2] is concave
on the interval [0, 1] (see Lemma 3.1) so that B(a, ∂Λ; ηγ ) ≥ 0 for symbols a
taking values only in [0, 1], like the Fermi symbol aT ,μ.

3. If the symbol a is spherically symmetric (for example, by spherical symmetry of
the Hamiltonian h in aT ,μ), then the surface area |∂Λ| factors out ofB(a, ∂Λ; f ).
Nevertheless, the remaining integral is still hard to compute for general a and f .
See, however, Remark 2 in Sect. 6.3 for Gaussian a and quadratic f .

A less obvious property of the coefficient B(a, ∂Λ; f ) is its continuity in the
symbol a. Since it is important for our purposes, we state a corresponding result. In
the next and subsequent assertions we consider a one-parameter family of symbols
{a0, aλ}, λ > 0, all of them satisfying (14) with some β > d max{1, δ−1}, uniformly
in λ, and point-wise convergence aλ → a0 as λ ↓ 0.

Proposition 2.5 ([26, Corollary 3.5]) Let the set Λ and the function f be as in
Proposition 2.3. Then

B(aλ, ∂Λ; f ) → B(a0, ∂Λ; f ) as λ ↓ 0 . (19)
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2.3 The Asymptotics for tr Dα(a,Λ;f ) as α → ∞

Now we are in a position to state the required asymptotic facts.

Proposition 2.6 ([26, Theorem 2.3]) Let the set Λ, the function f , and the symbol
a be as in Proposition 2.3. Then the operator Dα(a,Λ; f ) is of trace class and

lim
α→∞α1−d trDα(a,Λ; f ) = B(a, ∂Λ; f ) .

This limit is uniform in the class of symbols a that satisfy (14) with the same implicit
constants.

Proposition 2.6 ensures the existence of the entropies (7) and (8). In fact, assume
that Λ satisfies Condition 2.1 and that the Hamiltonian h in the Fermi symbol
aT ,μ of (4) is as specified in (3). Then aT ,μ satisfies (14) for all T > 0 and
μ ∈ R. Moreover, the function ηγ satisfies Condition 2.2 for all γ > 0 with
arbitrary δ < min{1, γ } and the set T = {0, 1}. Thus, due to Proposition 2.6, the
operators D1(aT ,μ,Λ; ηγ ) and D1(aT ,μ,R

d \ Λ; ηγ ) are of trace class, so that the
entanglement entropy (8) is finite. If we additionally assume that Λ is bounded, then
by (9) also the local entropy (7) is finite.

Proposition 2.6 was also used in [26] to determine the scaling asymptotics for the
entanglement entropy at fixed temperature. To study the high-temperature regime,
we need the continuity of this result in the symbol a:

Corollary 2.7 Let the set Λ and the function f be as in Proposition 2.3. Then

lim α1−d trDα(aλ,Λ; f ) = B(a0, ∂Λ; f ) , (20)

where the limits α → ∞ and λ → 0 are taken simultaneously.

Proof According to Proposition 2.6,

lim
α→∞ α1−d trDα(aλ,Λ; f ) = B(aλ, ∂Λ; f ) ,

uniformly in λ. Together with (19) this leads to (20). ��
The next two propositions describe the asymptotics for “small” symbols.

Proposition 2.8 ([26, Theorem 2.5]) Let the set Λ satisfy Condition 2.1 and let f0
be the function defined by f0(t) := M|t|δ with real constants M and δ > 0. Finally,
suppose that the function f ∈ C2(R \ {0}) satisfies the conditions

lim
t→0

|t|k−δ dk

dtk
(
f (t) − f0(t)

) = 0 , k = 0, 1, 2 . (21)
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Then

lim
α→∞ λ→0

(
α1−dλ−δ trDα(λaλ,Λ; f )) = B(a0, ∂Λ; f0) .

In the next proposition we consider instead of the homogeneous function f0 the
function η defined by

η(t) := −t ln(|t|) , t ∈ R , (22)

which still leads to an asymptotically homogeneous behavior.

Proposition 2.9 ([26, Theorem 2.6]) Let the set Λ satisfy Condition 2.1 and
suppose that the function f ∈ C2(R \ {0}) satisfies the conditions

lim
t→0

|t|k−1 dk

dtk
(
f (t) − η(t)

) = 0 , k = 0, 1, 2 . (23)

Then

lim
α→∞ λ→0

(
α1−dλ−1 trDα(λaλ,Λ; f )) = B(a0, ∂Λ; η) .

We note that under any of the assumptions (21) and (23) the function f satisfies
Condition 2.2 with T = {0}. For assumption (21) (resp. (23) ) the condition (18)
holds with the constant δ from (21) (resp. arbitrary δ < 1).

The asymptotic results listed above are useful, but, as they stand, not directly
applicable for our purposes. This is because our symbol of main interest, the Fermi
symbol (4), depends on the two parameters T and μ, and in the course of our
analysis in Sect. 5 we naturally come across certain “effective” symbols that do not
satisfy conditions like (14) uniformly in these parameters. However, we overcome
this problem by considering a wider class of symbols, called multi-scale symbols in
[18, Section 3].

2.4 Multi-Scale Symbols

We consider symbols a ∈ C∞(Rd) for which there exist two continuous functions
τ and v on Rd with τ > 0, v > 0, v bounded, and such that

∣∣∂kξ a(ξ)
∣∣ � τ (ξ )−|k|v(ξ ) , k ∈ Nd

0 , ξ ∈ Rd , (24)

with implicit constants independent of ξ . It is natural to call τ the scale (function)
and v the amplitude (function). The scale τ is assumed to be globally Lipschitz
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continuous with Lipschitz constant L < 1, that is,

|τ (ξ )− τ (ξ ′)| ≤ L|ξ − ξ ′| , for all ξ , ξ ′ ∈ Rd . (25)

Under this assumption the amplitude v is assumed to satisfy the bounds

v(ξ ′) ? v(ξ ) , for all ξ ′ ∈ B
(
ξ , τ (ξ )

)
, (26)

with implicit constants independent of ξ and ξ ′. It is useful to think of τ and v

as (functional) parameters. They, in turn, may depend on other parameters, e.g.
numerical ones like α and T . For example, the results in the previous subsections
are based on the assumption that a satisfies (14), which translates into (24) with
τ (ξ) = 1 and v(ξ ) = 〈ξ 〉−β . On the other hand, in Sect. 5 we encounter amplitudes
and scales depending on the temperature T .
Actually, we will only need the following result involving multi-scale symbols. As
mentioned in the Introduction, ‖ · ‖p denotes the (quasi-)norm in the Schatten-von
Neumann class Sp of compact operators. Below the underlying Hilbert space is
H = L2(Rd ).

Proposition 2.10 ([18, Lemma 3.4]) Let the set Λ satisfy Condition 2.1 and let the
functions τ and v be as described above. Suppose that the symbol a satisfies (24)
and that the conditions

ατinf � 1 , τinf := inf
ξ∈Rd

τ (ξ ) > 0 , (27)

hold. Then for any q ∈ (0, 1] we have

‖[Opα(a), χΛ]‖qq � αd−1
∫

Rd

v(ξ )q

τ (ξ)
dξ . (28)

This bound is uniform in the symbols a satisfying (24) with the same implicit
constants.

We will make use of (28) in Sect. 5 by combining it with bounds obtained in
Sect. 4.

3 The Positivity of Certain Entanglement Entropies

Given the organization of the paper, this section is a kind of interlude. It turns out
that the property given by its title is present if the underlying entropy function ηγ ,
as defined in (5) and (6), is operator concave (when restricted from the real line R to
its unit interval [0, 1]). Since this and related results are not of asymptotic character,
we assume in this section α = 1 for the scaling parameter.
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3.1 Concavity of the Entropy Function ηγ for γ ≤ 2

We prove the property given by the title of this subsection and then establish
consequences for the corresponding local and entanglement entropies. The next
lemma is elementary.

Lemma 3.1 The entropy function ηγ is concave on the interval [0, 1] if γ ∈ (0, 2],
and neither convave nor convex if γ > 2.

Proof By the continuity of ηγ on [0, 1] its enough to check the sign of the second
derivative of ηγ on the open interval (0, 1). For γ = 1 we simply have η′′

1(t) =
−t−1(1 − t)−1 < 0 so that η1 is concave. For γ �= 1 we use the formula

η′′
γ (t)[tγ + (1 − t)γ

]2 = −γ [t (1 − t)]γ−2 − γ

1 − γ
[tγ−1 − (1 − t)γ−1]2 .

(29)

For γ < 1 the right-hand side is obviously negative for all t ∈ (0, 1). For γ = 2 it
simply equals −8t (1 − t) < 0. If γ > 2, then (29) implies η′′

γ (0) = γ /(γ − 1) > 0
and η′′

γ (1/2) = −4γ < 0. Hence ηγ is neither concave nor convex.
It remains to consider the case γ ∈ (1, 2). We rewrite (29) as

η′′
γ (t)[tγ + (1 − t)γ ]2 = − γ

γ − 1
gγ−1(t) ,

gp(t) := p[t (1 − t)]p−1 − [tp − (1 − t)p]2 ,

for any p := γ − 1 ∈ (0, 1). Our claim gp(t) ≥ 0 is equivalent to

[t (1 − t)]1−p[t2p + (1 − t)2p] ≤ 2t (1 − t) + p . (30)

Using the abbreviation

M := 2p−1 max
t∈[0,1]

[t2p + (1 − t)2p] =
{

2−p if 0 < p < 1/2

2p−1 if 1/2 ≤ p < 1
,

the (elementary example of the) Young inequality

ab ≤ au

u
+ bv

v
, a, b ≥ 0 , u, v > 1 ,

1

u
+ 1

v
= 1
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for a = [t (1 − t)]1−p , u = (1 − p)−1 and b = 1, v = p−1 yields

[(t (1 − t)]1−p[t2p + (1 − t)2p] ≤ M[2t (1 − t)]1−p

≤ M(1 − p)[2t (1 − t)] + Mp ≤ 2t (1 − t) + p .

Since this coincides with (30), the proof is complete. ��
The just established concavity is useful to find a lower bound on the local entropy

(7) with γ ≤ 2, which is greater than the obvious bound 0. To this end, we recall
a formulation [15, Theorem A.1] of an abstract Jensen-type trace inequality dating
back to Berezin [5].

Proposition 3.2 Let H be a complex separable Hilbert space, P an orthogonal
projection on H, A a self-adjoint operator on H with its spectrum contained in
the interval I ⊂ R, and f : I → R a concave function. Finally, let Δ :=
Pf (PAP)P − Pf (A)P be of trace class and PAP compact. Then trΔ ≥ 0. If
Δ and PAP are of trace class, than also the following trace inequality is valid:

tr(Pf (PAP)P) ≥ tr(Pf (A)P ) .

(If 0 /∈ I , then the operator f (PAP) is understood to act on the subspace PH).

The following result is a corollary to Proposition 3.2.

Theorem 3.3 Let Λ ⊂ Rd be bounded and satisfy Condition 2.1. Assume that the
Hamiltonian h satisfies (3) and that γ ∈ (0, 2]. Then the local entropy (7) obeys the
inequality

Sγ (T , μ;Λ) ≥ sγ (T , μ)|Λ| , (31)

where sγ (T , μ) is the entropy density (10).

Proof We use Proposition 3.2 with A = Op1(aT ,μ), P = χΛ, and the concave
function f = ηγ . Since 0 ≤ A ≤ 1 and PAP has 0(T ,μ)|Λ|, see (11), as its finite
trace, Proposition 3.2 is indeed applicable and yields trD1(a,Λ; ηγ ) ≥ 0. By (9)
this entails (31). ��

We stress that Proposition 3.2 cannot be applied if the set Λ is unbounded,
since in this case the operator χΛ Opα(aT ,μ)χΛ is not necessarily compact. Thus
Theorem 3.3 cannot be used to determine the sign of the entanglement entropy (8).
But, fortunately, we can use the rather strong property as given by the title of the
following subsection.
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3.2 Operator Concavity of the Entropy Function ηγ for γ ≤ 1

For the general background of this genre we recommend Simon’s comprehensive
book [20]. Let H be a complex separable Hilbert space of infinite dimension and
{A,B} an arbitrary pair of bounded self-adjoint operators on H with spectra in an
interval I ⊂ R. A continuous function f : I → R is called (decreasing) operator
monotone if the (operator) inequality f (A) ≥ f (B) holds whenever A ≥ B.
Likewise it is called operator concave if f

(
λA+(1−λ)B

) ≥ λf (A)+(1−λ)f (B)

holds for all λ ∈ [0, 1]. It is called operator convex if −f is operator concave.
Of course, every operator monotone (operator concave) function is monotone
(concave). We are going to use the following standard examples, see [2]:

1. The function t �→ tp , t ∈ [0,∞), is operator monotone and operator concave if
p ∈ (0, 1].

2. The function t �→ ln(t), t ∈ (0,∞), is operator monotone and operator concave.
3. The function t �→ −t ln(t), t ∈ [0,∞), is operator concave.

Any operator concave function f satisfies [9, 13] the following Davis operator
inequality for all bounded self-adjoint operators A with spectrum in I and all
orthogonal projections P on H:

Pf
(
PAP

)
P ≥ Pf (A)P . (32)

If 0 /∈ I , then the operator f (PAP) is understood to act on the subspace PH. If
0 ∈ I and f (0) = 0, then (32) may be shortened to f

(
PAP

) ≥ Pf (A)P .

Lemma 3.4 If γ ∈ (0, 1], then ηγ is operator concave on the interval [0, 1].
Proof It suffices to consider self-adjoint operators A and B with 0 ≤ A,B ≤ 1.
Assume first that γ < 1. The function gγ (t) := tγ + (1 − t)γ is operator concave
on [0, 1] (by example 1 above) and the logarithm is operator monotone on (0, 1]
(example 2). Thus for all λ ∈ [0, 1] we have

ηγ
(
λA + (1 − λ)B

) = 1

1 − γ
ln
[
gγ
(
λA + (1 − λ)B

)]

≥ 1

1 − γ
ln
[
λgγ

(
A
)+ (1 − λ)gγ

(
B
)]
.

Now, since the logarithm is also operator concave on (0, 1] (again example 2), the
right-hand side is larger than or equal to

1

1 − γ

[
λ ln(gγ (A))+ (1 − λ) ln(gγ (B))

] = ληγ (A)+ (1 − λ)ηγ (B) .

Hence ηγ , for γ < 1, is operator concave on (0, 1] and, by continuity, on [0, 1]. For
γ = 1 we proceed more directly and use that g(t) := −t ln(t) is operator concave
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on [0, 1] (example 3).This immediately implies that η1(t) = g(t)+ g(1 − t) is also
operator concave on [0, 1]. ��

Now we can use the inequality (32) with f = ηγ (for γ ∈ (0, 1]), P = χΛ, and
A = Op1(aT ,μ). Combining this with Proposition 2.6 yields the following result.

Theorem 3.5 Let Λ ⊂ Rd satisfy Condition 2.1. Assume that the Hamiltonian
h is as in (3) and that γ ∈ (0, 1]. Then both operators D1(aT ,μ,Λ; ηγ ) and
D1(aT ,μ,R

d \ Λ; ηγ ) are not only of trace class, but also positive. Hence the
entanglement entropy (8) is positive.

This method cannot be used for the EE with γ > 1 because of the following
negative result.

Theorem 3.6 If γ > 1, then ηγ is not operator concave on the interval [0, 1].
Proof For convenience, instead of ηγ we consider the function

gγ (u) := −ηγ
(
u + 1

2

) = 1
γ−1 ln

[
( 1

2 − u)γ + ( 1
2 + u)γ

]
, u ∈ [− 1

2 ,
1
2

]
.

Our objective is to show that gγ is not operator convex on [−1/2, 1/2]. If gγ were
operator convex, then by [4, Corollary 1], gγ would be analytic on the complex
plane with cuts along the half-lines (−∞,−1/2) and (1/2,∞). Let us prove that
such an analytic continuation of gγ is impossible. To this end, let u = iy/2 with
y > 0. Then

1
2 ± u = 1

2

√
1 + y2 exp[±i tan−1(y)]

so that

( 1
2 − u)γ + ( 1

2 + u)γ = 21−γ (1 + y2)γ /2 cos[γ tan−1(y)] . (33)

Since γ > 1, there exists a finite y0 > 0 such that γ tan−1(y0) = π/2, so that the
right-hand side of (33) changes sign at y = y0. This implies that the function gγ has
a branching point at u = iy0/2, and hence cannot be analytic in the whole upper
half-plane. This proves that gγ is not operator convex, as claimed. ��

4 Quasi-Commutator Bounds

In this section we collect some bounds for the Schatten–von Neumann classes Sp,
p ∈ (0,∞), of compact operators on a complex separable Hilbert space H, see
e.g. [6, Chapter 11]. As mentioned at the end of the Introduction, the functional
‖A‖p := (tr(A∗A)p/2)1/p, A ∈ Sp, defines a norm for p ≥ 1 and a quasi-norm
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for p < 1. It satisfies the following “triangle inequality”:

‖A + B‖pp ≤ ‖A‖pp + ‖B‖pp , 0 < p ≤ 1. (34)

This inequality is used systematically in what follows. The main part is played by
estimates for quasi-commutators f (A)J − Jf (B) with bounded J and bounded
self-adjoint A,B. The following fact is adapted from [24, Theorem 2.4].

Proposition 4.1 Suppose that f satisfies Condition 2.2 with some δ > 0. Let A,B
be two bounded self-adjoint operators and let J be a bounded operator. Suppose
that AJ − JB ∈ Sq where q satisfies 0 < q < min{1, δ}. Then

‖f (A)J − Jf (B)‖1 � ‖J‖1−q
(
1 + ‖A‖δ−q + ‖B‖δ−q

)‖AJ − JB‖qq , (35)

with a constant independent of the operators A,B, J . This constant in (35) may
depend on the set T in Condition 2.2, and is uniform in the functions satisfying (18)
with the same implicit constants.

Actually, [24, Theorem 2.4] provides bounds of the type (35) in arbitrary (quasi-)
normed operator ideals of compact operators and gives a more precise dependence
on the constants related to the function f . For the present paper (35) is sufficient.

All subsequent bounds involving the function f are uniform in f in the sense
specified in Proposition 4.1. We are going to apply Proposition 4.1 to obtain various
bounds for the operator difference D(A, P ; f ) := Pf (PAP)P −Pf (A)P with an
orthogonal projection P .

Corollary 4.2 Let the function f and the parameter q be as in Proposition 4.1. Let
A,B be bounded self-adjoint operators and let J be a bounded operator such that

[A, J ] = [B, J ] = 0 , (A − B)J = 0 . (36)

Then

‖D(A, P ; f )J‖1 + ‖JD(A, P ; f )‖1 � ‖[J, P ]‖qq + ‖[JA,P ]‖qq , (37)

and

‖D(A, P ; f )J − JD(B, P ; f )‖1 � ‖[J, P ]‖qq + ‖[J, P ]‖1 . (38)

The implicit constants in these bounds depend on the norms ‖A‖, ‖B‖, and ‖J‖,
but they are uniform in the operators A,B, J whose norms are bounded by the
same constants. They are also uniform in the functions f in the sense specified in
Proposition 4.1.

Proof The proof is based mainly on the bound (35). The assumption (36) consider-
ably simplifies the calculations, and we use it without further comments.
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For the proof of (37) we carry out the estimate for the first term on the left-hand
side only, as the second one can be treated in the same way. We rewrite

D(A, P ; f )J = P
(
f (PAP)PJ − PJf (A)

)− P [f (A), PJ ] . (39)

Then we use (35) and (34) to estimate the first term on the right-hand side,

‖Pf (PAP )PJ − PJf (A)‖1 ≤ ‖f (PAP )PJ − PJf (A)‖1

� ‖PAPJ − PJA‖qq � ‖P (AJ − JA)P ‖qq + ‖[P, J ]‖qq + ‖[JA,P ]‖qq
= ‖[P, J ]‖qq + ‖[JA,P ]‖qq .

For the second term on the right-hand side of (39) we also use (35) and (34):

‖P [f (A), PJ ]‖1 � ‖APJ − PJA‖qq
� ‖(AJ − JA)P‖qq + ‖[P, J ]‖qq + ‖[JA,P ]‖qq
= ‖[P, J ]‖qq + ‖[JA,P ]‖qq .

Adding up the above two estimates we get (37).
In order to prove (38) we first estimate the difference

Pf (PAP)PJ − JPf (PBP)P = P
(
f (PAP)J − Jf (PBP)

)
P

+ Pf (PAP)[P, J ] − [J, P ]f (PBP)P .

(40)

Then we use (35) to estimate the first term on the right-hand side as follows

‖P (f (PAP)J − Jf (PBP)
)
P‖1 � ‖PAPJ − JPBP‖qq ≤ ‖[J, P ]‖qq .

To estimate the second and the third term on the right-hand side of (40), we notice
that ‖f (A)‖ � 1, ‖f (B)‖ � 1 uniformly in the operators A,B and in the function
f . Consequently,

‖Pf (PAP)[P, J ] − [J, P ]f (PBP)P‖1 ≤ 2‖[J, P ]‖1 ‖f ‖L∞ � ‖[J, P ]‖1 .

To summarize, the difference (40) has an upper bound like the one in the claim (38).
Finally we are going to derive such a bound also for the difference analogous to

(40):

Pf (A)PJ − JPf (B)P = P
(
f (A)J − Jf (B)

)
P

+ Pf (A)[P, J ] − [J, P ]f (B)P .
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In view of (36), the first term on the right-hand side vanishes, and hence

‖Pf (A)PJ − JPf (B)P‖1 ≤ 2‖[P, J ]‖1 ‖f ‖L∞ � ‖[J, P ]‖1 .

By combining this with the upper bound on (40) and using the triangle inequality
for the trace norm we arrive at (38). ��

Corollary 4.3 Under the assumptions of Corollary 4.2 (with 1 being the identity
operator) we have

‖D(A, P ; f )− D(B, P ; f )‖1 � ‖[J, P ]‖qq + ‖[(1 − J )A,P ]‖qq
+ ‖[(1 − J )B, P ]‖qq + ‖[J, P ]‖1 . (41)

This bound is uniform in A,B, J and in the function f in the same sense as in
Corollary 4.2.

Proof We observe

D(A, P ; f )− D(B, P ; f ) = D(A, P ; f )J − JD(B, P ; f )
+ D(A, P ; f )(1 − J )− (1 − J )D(B, P ; f )

and apply Corollary 4.2. ��

5 High-Temperature Analysis

The purpose of this section is to obtain the large α and large T asymptotics for
the trace of the operator Dα(pT ,Λ; f ) with the symbol pT of (46), modeling the
Fermi symbol (4) for large T . Throughout the section we assume that the function f
satisfies Condition 2.2 with some δ > 0 and recall that this condition is guaranteed
by assumption (21) as well as by assumption (23). We also continue to assume that
the truncating region Λ satisfies Condition 2.1. Since Λ is always fixed, we omit
it from the notation and simply write Dα(pT ; f ) and B(pT ; f ). Recall that d ≥ 2
throughout.

5.1 Further Conditions on the Single-Particle Hamiltonian h

So far we assumed that the Hamiltonian h satisfies (3) with some m > 0. Now we
need to impose on h more restrictive conditions. We assume that h ∈ C∞(Rd) and
that for some constant m ∈ N, the following bounds hold:

∣∣∂nξ h(ξ )
∣∣ � 〈ξ 〉2m−|n| , for all n ∈ Nd

0 and ξ ∈ Rd . (42)
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Furthermore, we assume that there exists a function h∞ : Rd → R which is
homogeneous of degree 2m (that is, h∞(tξ ) = t2mh∞(ξ) for all ξ ∈ Rd and all
t > 0), such that

|ξ |−2m
∣∣h(ξ ) − h∞(ξ)

∣∣ → 0 as |ξ | → ∞ . (43)

The function h∞ is assumed to be non-degenerate in the sense that

2ν := min
|ξ |=1

h∞(ξ) > 0 . (44)

Homogeneity and non-degeneracy of h∞ imply that h∞ ≥ 0. It is clear that
the conditions (42), (43) and (44) imply that h satisfies (3) with the constant m
from (42). It is important to emphasize that from now on the constant m > 0 is
supposed to be integer. This guarantees that the function h∞ belongs to C∞(Rd )

which enables application of the results in Subsection 2.3 to the limiting symbols
(1 + eh∞)−1 and e−h∞ featured in Sect. 6.

5.2 Modeling the Fermi Symbol

Given two positive continuous functions T �→ φT ≥ 0 and T �→ ωT > 0 on the
temperature half-line [1,∞) with the properties

φT → φ∞ ≥ 0 and ωT → ω∞ > 0 as T → ∞ , (45)

we generalize the Fermi symbol aT ,μ of (4) to the symbol pT by the definition

pT (ξ ) := 1

φT + ωT exp
(
h(ξ )/T )

) , ξ ∈ Rd . (46)

We also consider its “high-temperature limit” p∞ naturally defined by

p∞(ξ ) := 1

φ∞ + ω∞ exp
(
h∞(ξ )

) . (47)

Theorem 5.1 Let pT be the symbol defined in (46). Then

lim
(
αT

1
2m
)1−d trDα(pT ; f ) = B(p∞; f ) , (48)

as αT 1/2m → ∞ and T → ∞.
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We also consider the operator Dα(λT pT ; f ) with the symbol λT pT , where
λT > 0 is, for the time being, an arbitrary continuous function of T that tends
to zero as T → ∞.

Theorem 5.2 Let f0 be as in Proposition 2.8 and η be as in (22). Assume that
αT 1/2m → ∞ and T → ∞. Then the following implications hold:

1. If f ∈ C2(R \ {0}) ∩ C(R) satisfies (21), then

lim
(
αT

1
2m
)1−d

λ−δ
T trDα(λT pT ; f ) = B(p∞; f0) . (49)

2. If f ∈ C2(R \ {0}) ∩ C(R) satisfies (23), then

lim
(
αT

1
2m
)1−d

λ−1
T trDα(λT pT ; f ) = B(p∞; η) . (50)

To prove these two theorems we compare the operator Dα for two different
symbols defined as follows. Firstly, we pick an arbitrary real-valued “cut-off”
function w ∈ C∞(Rd ) with w(ξ ) = 0 if |ξ | ≤ 1 and w(ξ ) = 1 if |ξ | ≥ 2.
Moreover, we define two scaled versions of w by

wT (ξ ) := w
(
ξT − 1

2m
)
, w̃T (ξ) := wT (ξ/2) , (51)

so that wT w̃T = w̃T . For a fixed number r ∈ (0, 1] we now consider the operators

A = Opα(pT ) , B = Opα(wrT pT ) , P = χΛ , J = Opα(w̃rT ) .

They fulfill (36) and their (uniform) norms are uniformly bounded in T . Thus we
can use Corollary 4.3 for the proof of the following “comparison lemma”:

Lemma 5.3 Assume that T � 1 and α(rT )
1

2m � 1 for a fixed r ∈ (0, 1]. Then,
using (51), we have the trace norm estimate

‖Dα(pT ; f )− Dα(wrT pT ; f )‖1 � αd−1(rT )
d−1
2m , (52)

with an implicit constant independent of α, T , and r .

Proof Let us estimate the right-hand side of (41) and start with a bound for
‖[J, P ]‖q , q ≤ 1. Since [J, P ] = −[1 − J, P ], we use Proposition 2.10 with
a = 1 − w̃rT . This symbol satisfies (24) with scale and amplitude functions

τ (ξ ) = (rT )
1

2m , v(ξ ) = 〈ξ (rT )− 1
2m 〉−β , ξ ∈ Rd ,

with an arbitrary β > 0. Now we assume that βq > d . The conditions (25) and (26)
are obviously satisfied, and hence Proposition 2.10 is applicable. We estimate the
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integral on the right-hand side of (28) as follows:

∫

Rd

v(ξ )q

τ (ξ )
dξ = (rT )−

1
2m

∫

Rd
〈ξ (rT )− 1

2m 〉−βq dξ � (rT )
d−1
2m .

Thus, under our assumptions on α, T , and r the condition (27) is satisfied, and
hence, by (28), we have

‖[J, P ]‖qq = ‖[Opα(a), χΛ]‖qq � αd−1(rT )
d−1
2m .

Estimating ‖[(1 − J )A,P ]‖q and ‖[(1 − J )B, P ]‖q is somewhat trickier. For the
first commutator we are going to use Proposition 2.10 with the symbol a = (1 −
w̃rT )pT . At first we estimate the derivatives of eh(ξ)/T for |ξ | ≤ 4(rT )

1
2m using

(42):

∣∣∂kξ e
h(ξ)
T

∣∣ � 〈ξ 〉−|k|e
h(ξ)
T � 〈ξ 〉−|k| , k ∈ Nd

0 .

Furthermore,

∣∣∂kξ
(
1 − w̃rT (ξ )

)∣∣ � (rT )−
|k|
2m χ{|ξ |≤4(rT )

1
2m }(ξ ) � 〈ξ〉−|k| χ{|ξ |≤4(rT )

1
2m }(ξ ) .

Therefore, we obtain from (46) that

∣∣∂kξ a(ξ)
∣∣ � 〈ξ 〉−|k|〈ξ (rT )− 1

2m 〉−β .

with an arbitrary β > d/q . Consequently, the symbol a satisfies (24) with the scale
and amplitude

τ (ξ ) = 1

2
〈ξ 〉 , v(ξ ) = 〈ξ (rT )− 1

2m 〉−β , ξ ∈ Rd .

Again the conditions (25), (26), and (27) are satisfied, and we can use Proposi-
tion 2.10 to produce the bound

∫

Rd

v(ξ )q

τ (ξ)
dξ ≤ 2

∫

Rd
|ξ |−1〈ξ (rT )− 1

2m 〉−βq dξ � (rT )
d−1
2m .

Thus by (28),

‖[(1 − J )A,P ]‖qq = ‖[Opα(a), χΛ]‖qq � αd−1(rT )
d−1
2m .

The bound for the commutator [(1−J )B, P ] is proved in the same way. Substituting
the above bounds into the statement (41) of Corollary 4.3, we get the claimed
estimate (52). ��
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A useful consequence of this fact is the following continuity statement:

Corollary 5.4 With the function wr defined in (51) and the symbol p∞ defined in
(47) we have

lim
r→0

B(wrp∞; f ) = B(p∞; f ) . (53)

Proof We apply Lemma 5.3 with h = h∞, T = 1, and the constant functions
ω ≡ ω∞ and φ ≡ φ∞. Then, for αr � 1,

‖Dα(p∞; f ) − Dα(wrp∞; f )‖1 � αd−1r
d−1
2m .

Therefore,

∣∣α1−d trDα(p∞; f ) − α1−d trDα(wrp∞; f )∣∣ ≤ r
d−1
2m .

Now, we use Proposition 2.6 to obtain the estimate

∣∣B(p∞; f ) − B(wrp∞; f )∣∣ � r
d−1
2m .

This leads to (53), as claimed. ��
We already have a result on the continuity of the asymptotic coefficient, see

Proposition 2.5. However, this proposition is not applicable to the truncated symbol
wr pT , since its derivatives are not bounded uniformly in r > 0. This explains why
we need Corollary 5.4.

The next lemma provides the same asymptotics as in Theorems 5.1 and 5.2, but
this time for wrT pT instead of pT . We recall that λT > 0 obeys λT → 0 as
T → ∞.

Lemma 5.5 Assume that r ∈ (0, 1] is fixed and that αT
1

2m → ∞, T → ∞. Then

lim
(
αT

1
2m
)1−d trDα(wrT pT ; f ) = B(wr p∞; f ) . (54)

If f satisfies (21), then

lim
(
αT

1
2m
)1−d

λ−δ
T trDα(λT wrT pT ; f ) = B(wr p∞; f0) . (55)

If f satisfies (23), then

lim
(
αT

1
2m
)1−d

λ−1
T trDα(λT wrT pT ; f ) = B(wr p∞; η) . (56)

Proof By a straightforward change of variables in definition (1), we obtain

Opα(wrT pT ) = OpL(bT ) and Dα(wrT pT ; f ) = DL(bT ; f ) ,
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where

L := αT
1

2m and bT (ξ ) := wr(ξ)pT (T
1

2m ξ ) , ξ ∈ R
d .

Thanks to the condition (43), for all ξ �= 0, we have as T → ∞:

T −1h(T
1

2m ξ ) → h∞(ξ) and hence, by (45), bT (ξ ) → wr(ξ )p∞(ξ) .

Assuming that T � 1, an elementary calculation using (42) leads to the bounds

∣∣∂nξ bT (ξ )
∣∣+ ∣∣∂nξ

(
wr(ξ )p∞(ξ )

)∣∣ � e−ν|ξ |2m , n ∈ Nd
0 , ξ ∈ Rd , (57)

with ν > 0 from (44) and implicit constants depending on the number r ∈ (0, 1].
Since bT satisfies (57) uniformly in T � 1, we obtain by Corollary 2.7 that

lim
L→∞,T→∞L1−dDL(bT ; f ) = B(wrp∞; f ) .

By the above change of variables, this leads to (54). Formulas (55) and (56) follow
along the same lines from Propositions 2.8 and 2.9. ��
Proof (Of Theorem 5.1) We begin by estimating as follows:

∣∣α−(d−1)T − d−1
2m trDα(pT ; f )− B(p∞; f )∣∣

≤ (
αT

1
2m
)1−d‖Dα(pT ; f ) − Dα(wrT pT ; f )‖1

+ ∣∣(αT
1

2m
)1−d

trDα(wrT pT ; f )− B(wr p∞; f )∣∣
+ |B(wr p∞; f ) − B(p∞; f )∣∣ .

By (52) and (54) we then obtain

lim sup
∣∣α−(d−1)T − d−1

2m trDα(pT ; f ) − B(p∞; f )∣∣

≤ r
d−1
2m + |B(wr p∞; f ) − B(p∞; f )∣∣ ,

where the upper limit is taken as αT
1

2m → ∞, T → ∞. Taking r → 0 and using
(53) we arrive at (48). ��
Proof (Of Theorem 5.2) We recall that the only singular point of the function f is
t = 0. We assume that f satisfies (21), so that for all t �= 0,

|f (k)(t)| � |t|δ−k, k = 0, 1, 2 . (58)
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Consequently, the function f̃T (t) := λ−δ
T f (λT t), t ∈ R, satisfies the same

inequalities with the same constants. Now we can apply the argument in the previous
proof to the operator

Dα(pT ; f̃T ) = λ−δ
T Dα(λT pT ; f ) .

More precisely, we estimate as follows

∣∣α−(d−1)T − d−1
2m λ−δ

T trDα(λT pT ; f ) − B(p∞; f0)
∣∣

≤ (
αT

1
2m
)1−d∥∥Dα(pT ; f̃T ) − Dα(wrT pT ; f̃T )

∥∥
1

+ ∣∣(αT
1

2m
)1−d

λ−δ
T trDα(λT wrT pT ; f )− B(wr p∞; f0)

∣∣

+ |B(wr p∞; f0) − B(p∞; f0)
∣∣ . (59)

By (52) and (55) we then obtain

lim sup
∣∣α−(d−1)T − d−1

2m λ−δ
T trDα(λT pT ; f ) − B(p∞; f0)

∣∣

≤ r
d−1
2m + |B(wr p∞; f0)− B(p∞; f0)

∣∣ ,

where lim sup is taken as αT
1

2m → ∞, T → ∞. Taking r → 0 and using (53) we
obtain (49).

Now we assume that f satisfies (23). We use (59) with δ = 1 and f0 replaced by
η. Then

∣∣α−(d−1)T − d−1
2m λ−1

T trDα(λT pT ; f ) − B(p∞; η)∣∣

≤ (
αT

1
2m
)1−d∥∥Dα(pT ; f̃T )− Dα(wrT pT ; f̃T )

∥∥
1

+ ∣∣(αT
1

2m
)1−d

λ−1
T trDα(λT wrT pT ; f )− B(wr p∞; η)∣∣

+ |B(wr p∞; η)− B(p∞; η)∣∣ .

As before, the last term on the right-hand side tends to zero due to (53). The second

term vanishes as αT
1

2m → ∞, T → ∞ due to (56). To estimate the first term we
represent f = η + g, so that g satisfies (58) with δ = 1. Therefore,

Dα(pT ; f̃T ) − Dα(wrT pT ; f̃T ) = [
Dα(pT ; η̃T )− Dα(wrT pT ; η̃T )

]

+ [
Dα(pT ; g̃T ) − Dα(wrT pT ; g̃T )

]
,

where η̃T (t) := λ−1
T η(λT t) and g̃T (t) := λ−1

T g(λT t). As in the previous

calculation, the second term is estimated with the help of (52) by r
d−1
2m . Since
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η̃T (t) = η(t)− t ln(λT ) and the operator difference (2) vanishes for linear functions
f , we have

Dα(pT ; η̃T )− Dα(wrT pT ; η̃T ) = Dα(pT ; η)− Dα(wrT pT ; η) .

The function η from (22) satisfies (58) for all δ < 1, and hence by (52) the above

difference is again estimated by r
d−1
2m . This entails (50) and the proof of Theorem 5.2

is complete. ��

6 Main Results on the High-Temperature Asymptotics

In this section we adapt Theorems 5.1 and 5.2 to two different asymptotic regimes
of the entanglement entropy (8), when the temperature becomes large. This is
straightforward for the (first) regime of a fixed chemical potential μ, since we work
from the outset within the grand-canonical formalism [3, 7] for an indefinite number
of particles. For the (second) regime of a fixed particle density ρ it is slightly more
involved, but physically often more interesting. Both results will be discussed in
some detail in Sect. 6.3.

6.1 Case of a Fixed Chemical Potential μ

Since the Fermi symbol aT ,μ of (4) equals pT of (46) with φT = 1 and ωT =
exp(−μ/T ), the limit symbol in this case is obviously p∞ = (1 + eh∞)−1. For
the function f we take ηγ which satisfies Condition 2.2 with T = {0, 1} and an
arbitrary δ < min{1, γ }. Thus, by combining definition (8), Remark 2.4(1), and
Theorem 5.1 we obtain:

Theorem 6.1 Let the truncating region Λ satisfy Condition 2.1. Then we have,

lim
(
αT

1
2m
)1−d Hγ (T , μ; αΛ) = 2 B

(
(1 + eh∞)−1, ∂Λ; ηγ

)
(60)

for any fixed μ ∈ R, as αT
1

2m → ∞ and T → ∞.



Rényi Entropies of the Free Fermi Gas in Multi-Dimensional Space at High. . . 503

6.2 Case of a Fixed Particle Density ρ

In this case we have to find a function T �→ μρ(T ) satisfying (12) for a fixed
constant ρ > 0. According to the Appendix we have for any such function

exp
(− μρ(T )/T

) = λ−1
T

(
1 + o(1)

)
as T → ∞ , (61)

with the function T �→ λT given explicitly by

λT := ρT − d
2m /1 where 1 := (2π)−d

∫

Rd
exp(−h∞(ξ)) dξ . (62)

This implies for the Fermi symbol at fixed ρ the formula

aT ,μρ(T ) = λT pT , (63)

where pT is given by (46) with

φT = λT and ωT = λT exp
(− μρ(T )/T

)
. (64)

By (61) and (62) we clearly have φT → 0 and ωT → 1 as T → ∞. Hence the limit
symbol is the classical “Boltzmann factor” corresponding to h∞:

p∞(ξ ) = e−h∞(ξ) , ξ ∈ Rd . (65)

To study the symbol aT ,μρ(T ) we use Theorem 5.2 with f = ηγ . For a start we need
to understand the behavior of ηγ (t) for small t . Since this behavior depends on γ ,
we need to distinguish five different regimes for its value. To state the result in a
unified way for all values, we define a parameter δγ and a pair of functions {fγ ,
ηeff
γ } on the interval [0,1] in Table 1.

The next lemma shows that ηeff
γ describes the effective asymptotic contribution

of fγ as t ↓ 0.

Table 1 The parameter δγ
and the functions {fγ , ηeff

γ }
for different values of the
Rényi index γ

δγ fγ (t) ηeff
γ (t)

0 < γ < 1 γ ηγ (t)
1

1−γ
tγ

γ = 1 1 η1(t) − t −t ln(t)

1 < γ < 2 γ ηγ (t) − γ
γ−1 t

1
1−γ

tγ

γ = 2 3 η2(t) − 2t − 4
3 t

3

γ > 2 2 ηγ (t) − γ
γ−1 t

γ
2(γ−1) t

2
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Lemma 6.2 Let the parameter δγ and the functions fγ , ηeff
γ on the interval (0, 1)

be as defined in Table 1. Then the following three asymptotic relations hold:

lim
t→0

tk−δγ
dk

dtk
(
fγ (t) − ηeff

γ (t)
) = 0 , k = 0, 1, 2 . (66)

Proof For γ �= 1 we expand ηγ at t = 0 to obtain

(1 − γ )ηγ (t) = tγ − γ t − γ

2
t2 + O(t3) + O(t2γ ) + O(t1+γ ) . (67)

The notation g(t) = O(tb) means that |g(k)(t)| � tb−k , for all k ∈ N0. This
expansion leads to the claim (66) for all γ /∈ {1, 2}. For γ = 2 the expansion (67)
is insufficient since the terms with t2 cancel out. By including the third-order term
explicitly we find η2(t) = 2t − 4

3 t
3 + O(t4) and obtain (66) for γ = 2. Finally, for

γ = 1 we have η1(t) = −t ln(|t|)+ t + O(t2) which again leads to (66). ��
Now we are in a position to state and prove our second main result for the scaling

of the entanglement entropy.

Theorem 6.3 Let the truncating region Λ satisfy Condition 2.1. For a fixed number
ρ > 0 let T �→ μρ(T ) be a function satisfying (12) and 1 be as defined in (62).
Finally, let δγ and ηeff

γ be as defined in Table 1. Then we have the asymptotic relation

lim
(
αT

1
2m
)1−d (

1 T
d

2m/ρ
)δγ Hγ (T , μρ(T ); αΛ) = 2B

(
e−h∞ , ∂Λ; ηeff

γ

)
,

(68)

as αT
1

2m → ∞ and T → ∞ .

Proof We replace the symbol aT ,μρ(T ) with λT pT as specified in (64). Further-
more, since the operator difference (2) vanishes for linear functions f , we have

Dα(λT pT ,Λ; ηγ ) = Dα(λT pT ,Λ; fγ ) .

As the function fγ satisfies the condition (66), we can use Theorem 5.2 which gives

lim
(
αT

1
2m
)1−d

λ
−δγ
T trDα(λT pT ,Λ; fγ ) = B(p∞, ∂Λ; ηeff

γ ) ,

as αT
1

2m → ∞ and T → ∞, where p∞ is given by (65). The same formula holds
for the region Rd \ Λ. The claimed formula (68) now follows from definition (8),
Remark 2.4(1), (62), and (63).

��
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6.3 Concluding Remarks

1. We have proved the positivity of the EE for Rényi index γ ≤ 1, see Theorem 3.5.
For bounded Λ we have actually a somewhat stronger statement, namely:

0 ≤ Sγ (T , μ;Λ)− sγ (T , μ)|Λ| ≤ Hγ (T , μ;Λ), γ ≤ 1 .

Here the first inequality for the local entropy is due to Theorem 31 and holds
even for γ ≤ 2. The second one follows by combining (8), (9), and Theorem 3.5.
Although Theorem 3.5 ensures the positivity of the EE only for γ ≤ 1, the
asymptotic coefficient B(aT ,μ, ∂Λ; ηγ ) is positive for all γ ≤ 2 and all μ ∈ R,
T > 0, see Remark 2.4(2). It is an open question however whether the positivity
of the EE extends to all γ ≤ 2.

2. In case of a fixed ρ (Theorem 6.3) and γ ≤ 2, the function ηeff
γ in Table 1 is

strictly concave on [0, 1], and since h∞ > 0, the coefficient B
(
e−h∞, ∂Λ; ηeff

γ

)

is strictly positive. On the other hand, if γ > 2, then ηeff
γ is strictly convex so

that this coefficient is strictly negative. This change of sign, unexpected by us,
suggests that our definition (8) of the EE is somewhat unphysical for γ > 2.
In passing we note that B

(
e−h∞, ∂Λ; ηeff

γ

)
for γ > 2 can be computed rather

explicitly. Indeed, since ηeff
γ (t) = γ (2(γ − 1))−1 t2 it is easy to calculate the

function (15):

U
(
u, v; ηeff

γ

) = − γ

2(γ − 1)
(u− v)2 , γ > 2 .

This observation and the use of Parseval’s identity, as in the proof of Proposition
1 in [29], enables us to find the coefficient (16) and hence (17) in terms of the
Fourier transform of exp(−h∞). In particular, for the quadratic “asymptotic”
Hamiltonian h∞(ξ) = |ξ |2/2 (which includes the Hamiltonian of the ideal Fermi
gas) we obtain the formula

B
(
e−h∞, ∂Λ; ηeff

γ

) = − γ

γ − 1
2−d−3π−(d+1)/2|∂Λ| , γ > 2 .

3. For γ < 2 the function ηeff
γ is exactly the classical entropy function of the

Maxwell–Boltzmann gas. This confirms our expectations stated in the Introduc-
tion. This conclusion does not hold for γ ≥ 2.

4. In case of a fixed μ (Theorem 6.1), and γ ≤ 2, we know that the coefficient
Bγ := B(p∞, ∂Λ; ηγ ), p∞ = (1 + exp(h∞))−1, on right-hand side of (60) is
positive. Here we indicate that Bγ should become negative for large γ . Indeed,
we calculate the point-wise limit:

η∞(t) := lim
γ→∞ ηγ (t) = min

{− ln(1 − t),− ln(t)
}
, t ∈ [0, 1] .
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This function is (strictly) convex on [0, 1/2] and also on [0, 1/2], but not on the
whole interval [0, 1]. Since by our assumptions in Sect. 5.1 h∞ ≥ 0, we have
p∞ ≤ 1/2, and hence

B∞ = B(p∞, ∂Λ; − ln(1 − ·)) < 0 .

Thus, assuming continuity of Bγ as a function of γ > 0 we can claim that there
is a value γ0 > 2 such that Bγ0 = 0 and Bγ < 0 for all finite γ > γ0.

One can be more specific about the value of B∞. Namely, for u, v ∈ [0, 1/2]
we have

U
(
u, v; η∞

) = −U
(
u, v; ln(1 − ·)) = −U

(
1 − u, 1 − v; ln(·))

= −1

2

(
ln(1 − u)− ln(1 − v)

)2
.

The last step is an elementary calculation (see [29]) that reconfirms the negativity
of U . With b(ξ) := ln

(
1 + exp(−h∞(ξ)

)
we get

U
(
p∞(ξ), p∞(ξ + te); η∞

) = −1

2

(
b(ξ) − b(ξ + te)

)2
.

Similarly to Remark 2, the coefficient B∞ can be found in terms of the Fourier
transform of the symbol b. In particular, in the case h∞(ξ) = |ξ |2/2 the
coefficient B∞ can be computed explicitly:

B((1 + exp(h∞))−1, ∂Λ; η∞) = −1

2
(2π)−(d+1)/2Σ(d)|∂Λ| ,

whereΣ(d) := ∑
n,m≥1(−1)n+m(nm)−1/2(n+m)−(1+d)/2 [Numerically we find

e.g. Σ(2) ≈ 0.19798 and Σ(3) ≈ 0.15419]. We omit the details.
5. In both high-temperature regimes (fixed μ or fixed ρ) the scaling parameter α

may be fixed to, say, α = 1. Thus the truncating set αΛ is fixed and only the
temperature T tends to infinity.

6. Using the relation (9) and Theorem 5.1 one can also derive appropriate asymp-
totic formulas for the local entropy. For example, assuming that μ is fixed, as in
Theorem 6.1, we easily obtain the asymptotic relation

lim
(
αT

1
2m
)1−d [Sγ (T , μ; αΛ) − αdsγ (T , μ) |Λ|] = B

(
(1 + eh∞)−1, ∂Λ; ηγ

)
,

as αT
1

2m → ∞ and T → ∞. However, in order to obtain from this formula a
proper asymptotic expansion for the local entropy, one needs to find an expansion
for the entropy density sγ (T , μ) as T → ∞. A convenient starting point for its
derivation could be, for example, the representation (10.8) in [18].
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An analogous formula can be written down for the case of a fixed ρ. The
inequality B

(
e−h∞ , ∂Λ; ηeff

γ

)
< 0 for γ > 2 would then imply that the local

entropy obeys for large T the bound Sγ (T , μρ(T );Λ) < sγ (T ,μρ(T ))|Λ|,
instead of (31) which is valid for all γ ≤ 2 and all T > 0.

Appendix: The Fermi Symbol for Fixed ρ and Large T

Our main aim is to derive formula (61) for a Hamiltonian h as specified in Sect. 5.1.
After a change of variables and replacing μ with μρ(T ) formula (11) for the mean
particle density takes the form

0
(
T ,μρ(T )

) = T
d

2m

(2π)d

∫

Rd

dξ

1 + exp
(− μρ(T )/T

)
exp

(
h(ξT

1
2m )/T

) .

Since T −1h(T
1

2m ξ ) → h∞(ξ ) as T → ∞, for each ξ �= 0, the condition (12)
requires that exp

(− μρ(T )/T
) → ∞. Consequently,

0
(
T ,μρ(T )

) = 1T
d

2m exp
(
μρ(T )/T

)(
1 + o(1)

)
,

where 1 is defined in (62). Using (12), this leads to (61).
As explained in the Introduction, the high-temperature limit under the condition

(12) corresponds to the Maxwell–Boltzmann gas limit. This fact can be conveniently
restated in terms of the so-called fugacity zρ(T ) := exp

(
μρ(T )/T

)
as follows. By

(43) the integrated density of states N (T ) of (13), satisfies for large T the relation

N (T ) ? T
d

2m . So (61) implies zρ(T ) ? ρN (T )−1 → 0.
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Spectral Asymptotics for Toeplitz
Matrices Having Certain Piecewise
Continuous Symbols

Richard A. Libby

Dedicated to the memory of Harold Widom, 1932–2021

Abstract The limiting behavior of the eigenvalues of the Toeplitz matrices Tn[σ ] =
(σ̂ (i − j)), where 0 ≤ i, j ≤ n, as n → ∞, is investigated in the case of complex
valued functions σ defined on the unit circle T and having exactly one point of
discontinuity. It is found that if σ(z) = (−z)βτ (z), β not an integer and τ satisfying
certain smoothness conditions, then detTn[σ ] = G[τ ]n+1n−β2

E[τ, β](1 + o(1))
as n → ∞, where G[τ ] denotes the geometric mean of τ and E is a constant
independent of n. A value for E is found in terms of the Fourier coefficients of
τ and an analytic function of β. These results were known previously in the case
that )β, the real part of β, was sufficiently small. A corollary of this result is a
determination of the limiting set and limiting distributions for the eigenvalues of
Tn[σ ].

Keywords Toeplitz operator · Toeplitz determinant · Spectral asymptotics

1 Introduction

A classical result of Szegő describes the limiting behavior of the eigenvalues for
the Toeplitz matrices Tn[σ ] = (σ̂ (i − j)), 0 ≤ i, j ≤ n, for bounded, measurable,
real valued functions σ defined on the unit circle T as n → ∞. Here σ̂ (k) denotes
the kth Fourier coefficient of σ . Let m denote Lebesgue measure on T normalized
so that m(T) = 1. Define μσ as the measure given by μσ (A) = m(σ−1(A)) for
measurable sets A. Let μn,σ denote the discrete measure assigning to each point
λ in the spectrum of Tn[σ ] measure 1

n+1 times the multiplicity of λ. Szegő’s well
known result is that the measure μn,σ tends weakly to μσ as n → ∞; i.e., for any
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continuous function F ,

lim
n→∞

1

n + 1

n∑

i=0

F(λi,n) = 1

2π

∫ 2π

0
F(σ(eiθ )) dθ (1)

where λ0,n, . . . , λn,n are the eigenvalues of Tn[σ ], counted according to multiplicity.
For general σ : T → C such that (1) holds, the eigenvalues of Tn[σ ] are said to be
canonically distributed (see [35]).

For the moment, consider also the limiting set of the eigenvalues of Tn[σ ],
namely the set of limit points of sequences having the form {λij ,nj : j =
1, 2, 3, . . . , j < k ⇒ nj < nk}. If σ is continuous, bounded, and real valued,
then from an application of the finite section method, as developed by Böttcher and
Silbermann [10], and a theorem of Hartman and Wintner [20, pp. 179–183], one
finds that the limiting set of the eigenvalues is equal to the range of σ .

These results need not hold for σ complex-valued. A trivial example is provided
by the function σ(z) = z, for which the finite Toeplitz matrices are strictly lower
triangular. The measures μn,σ equal the Dirac measure at {0} and clearly do not
converge in any meaningful way to μσ , which in this case is just our normalized
Lebesgue measure m. Canonical distribution has been shown to fail in general
for Laurent polynomials [28] and for rational functions with poles off T [15].
The limiting sets, too, behave differently from the real valued case. Canonical
distribution is known to hold for certain classes of symbols σ that have (among other
features) the property that σ cannot be extended analytically to any open annulus
either containing T or having T as a component of its boundary. It is an outstanding
conjecture of Widom that this last condition is sufficient for canonical distribution
to hold (see [35]).

In order to obtain information concerning the eigenvalue distributions of these
matrices, one begins with the asymptotic nature of their determinants Dn[σ ] =
detTn[σ ]. Note that if σ is positive and bounded away from 0 and if (1) holds, then
from the case F(x) = log(x) one obtains

lim
n→∞

1

n + 1
logDn[σ ] = log G[σ ], (2)

where as before, G[σ ] denotes the geometric mean of σ , namely

G[σ ] = exp

(
1

2π

∫ 2π

0
log σ(eiθ ) dθ

)
.

Under certain conditions on σ , a technique that goes back to at least Grenander and
Szegő [26] and has been used by Widom as well, allows one to obtain (1) for general
F from the special case (2). Much research beginning with Szegő’s original work
has been devoted to proving results similar to (2) for other classes of functions, and
the theory of Toeplitz determinants has also been extended to cases where σ itself is
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matrix valued. The oldest of these results considers the cases where σ is sufficiently
smooth, real valued, and has no zeroes. In 1952 Szegő [30] showed that if σ ′ satisfies
an appropriate Lipschitz condition, then

Dn[σ ] = G[σ ]n+1E[σ ] (1 + o(1)) ,

where

E[σ ] = exp

( ∞∑

k=1

k · l̂og σ(k) l̂ogσ(−k)

)
.

This result does not hold if σ has zeroes or discontinuities, the case under present
consideration. Relevant in this case is the (now largely proven) conjecture of Fisher
and Hartwig [23], who considered functions with a finite number of zeroes and
discontinuities. These functions can be written as

σ(eiθ ) = τ (eiθ )

R∏

r=1

(2 − 2 cos(θ − θr))
αr exp

(
iβr arg(−ei(θ−θr ))

)

where βr is not an integer for any r and τ is a sufficiently smooth non-vanishing
function with winding number zero. The argument in the last term is chosen in
(−π, π]. Note that this term is a function with a jump discontinuity at θ = θr . By
considering special cases whereDn[σ ] is explicitly calculable, they conjectured that

Dn[σ ] = G[τ ]n+1n
∑
(α2

r−β2
r )E[τ, α1, . . . , αR, β1, . . . , βR] (1 + o(1)) ,

where E does not depend on n. Early research of this conjecture in the 1970s and
1980s includes the work of Widom [34], Basor [3, 4], Böttcher and Silbermann [10–
12], and others, providing verification of the conjecture in several cases. In 1973
Widom proved the conjecture in the case that βr = 0 and )αr > −1/2 for all r , τ is
continuously differentiable and of winding number zero, and τ ′ satisfies a Lipschitz
condition with positive exponent. A value for E was also obtained. He also found
a proof in the case R = 1, |)α| < 1

2 , |)β| < 1
2 , without specifying the value for

E. In 1979 Basor verified the conjecture in the case αr = 0 for all r , |)β| < 1
2 for

all r , obtaining an expression for E as well. In the 1980s Böttcher and Silbermann
verified the conjecture for several other cases, for example, when |)(αr )| < 1/2
and |)(βr)| < 1/2 for all r . In these cases E was expressed as E[τ ] per Szegő’s
definition, multiplied by an explicit analytic function of the αr ’s and βr ’s.

Building on these lines of development the present work examines the conjecture
in the case R = 1 and α1 = 0. It can be assumed without loss of generality that
θ1 = 0. The significance of this case lies in the fact that the winding number of σ
will not be assumed to be bounded. The main result obtained is that if β is not an
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integer and

σ(eiθ ) = τ (eiθ )eiβ(θ−π), 0 < θ < 2π, (3)

where τ is continuous, non-vanishing of winding number zero, and satisfies a certain
smoothness condition, then

Dn[σ ] = G[τ ]n+1n−β2
E[τ, β] (1 + o(1)) . (4)

Here G[τ ] again denotes the geometric mean, and E[τ, β] is defined below in
(7). The smoothness conditions requires that τ is C∞ away from θ = 0 and has
one-sided derivatives of any order at θ = 0. From this result one finds that the
eigenvalues of the matrices Tn[σ ] are canonically distributed as n → ∞ and that
the limiting set of the eigenvalues is the closure of the range of σ .

The main idea behind the proof is as follows. We start with Widom’s result for
the case |)β| < 1

2 in which he constructs a pair of operator equations via Wiener-
Hopf factorization, which allows us to describe the asymptotic behavior of certain
elements of the inverse matrices Tn[σ ]−1 as n → ∞. This information yields the
desired asymptotic formula of the main result, by way of Jacobi’s generalization
of Cramer’s rule. This technique allows us to determine the general nature of the
asymptotic formula for almost all β. An application of the Poisson-Jensen formula
and careful estimates for the behavior of the determinants as β approaches the
remaining set of measure zero show that the asymptotic formula holds there as well.
The product of the Barnes G-function and E[τ ] in (4) is the same as is found by
Basor and by Böttcher and Silbermann, via use of Vitali’s convergence theorem,
making the extension of Widom’s result minus the restriction on β complete. Much
of the machinery for this result was developed in the author’s Ph.D. thesis [27] to
prove the result when |)β| < 5

2 ; the goal of the present work was to remove this
last restriction. The author completed this research in advance of, and presented
these results at, a conference organized in 1992 in honor of Harold Widom’s 60th
birthday.

Investigations into the Fisher-Hartwig conjecture have continued from the 1990s
to the present. In 1999 Ehrhardt [21] proved the Fisher-Hartwig conjecture in
all cases of parameters αr and βr for which it is true and under the assumption
τ ∈ C∞ (see also [22] for the case of one singularity). Earlier it had been found
that the Fisher-Hartwig conjecture cannot be true for certain parameters and a
generalized conjecture was formulated by Basor and Tracy [6] (see also [9]). This
generalized conjecture was proved by Deift et al. in 2011 [16]. For an overview
of this development see the survey [18] and the monograph [13]. The smoothness
condition on τ was also discussed in [19, 22]. In these papers it is required that
the Fourier coefficients of τ decay power-like, depending on the parameters. This
condition is notably different from the condition imposed in this paper, and it seems
that the asymptotics of the eigenvalue distribution obtained in this paper cannot be
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directly inferred in the same manner from the results in [19, 22] (except possibly
when |)β| is small).

Apart from symbols with one jump discontinuity, the asymptotic eigenvalue
distribution has also been studied subsequently to some extent in other cases. For
various aspects see the papers of Widom [33], Basor and Morrison [5], Böttcher et
al. [14], as well as Deift et al. [17].

2 Solutions to Finite Toeplitz Systems

2.1 Preliminaries

For complex valued β we set zβ = exp (β log |z| + iβ arg(z)) where arg takes its
values in the interval (−π, π]. Since we have assumed without loss of generality
that θ1 = 0 in (3) we may write

σ(z) = (−z)βτ (z). (5)

This function has a jump discontinuity at z = 1. The minus sign in this expression
simplifies many of the expressions which follow.

Definition 1 Let Cβ denote the class of functions σ : T → C of the form σ(z) =
(−z)βτ (z), where τ satisfies the following conditions:

(i) τ is continuous on T,
(ii) 0 /∈ Range(τ ),

(iii) Δ0≤θ≤2π arg
(
τ (eiθ )

) = 0,
(iv) τ is C∞ away from θ = 0 and the left and right hand limits

lim
θ→0+

dk

dθk
τ (eiθ ) and lim

θ→2π−
dk

dθk
τ (eiθ )

exist for all k > 0.

Let |)β| < 1
2 and suppose σ ∈ Cβ . It is known ([34] and [4]) that

Dn[σ ] = G[τ ]n+1n−β2
E[τ, β] (1 + o(1)) , as n → ∞, (6)

where G[τ ] is the geometric mean,

E[τ, β] = G(1 + β)G(1 − β)E[τ ]τ+(1)βτ−(1)−β, (7)

E[τ ] = exp

( ∞∑

k=1

k · ̂log τ (k) ̂log τ (−k)

)
,
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and G(·) denotes the Barnes G-function [2]

G(z + 1) = (2π)z/2e−[z2(γ+1)+z]/2
∞∏

n=1

[(
1 + z

n

)n
ez

2/(2n)−z
]
,

γ being Euler’s constant. The Barnes G-function is perhaps best understood in terms
of its functional equation G(z + 1) = Γ (z)G(z) and its value G(1) = 1. The
functions τ+ and τ− are the factors of the Wiener-Hopf factorziation of τ defined
below in (12).

We make use of the following facts [10, pp. 26–39]. Let PC denote the algebra
of all bounded, measurable, complex valued functions σ on T that are continuous
except for finitely many points, such that the right and left hand limits of σ exist
at these points of discontinuity. For σ ∈ PC let Rσ denote the continuous curve
obtained by adjoining to the range of σ the straight line segments connecting the
right and left hand limits of each discontinuity of σ . Let w(Rσ ) denote the winding
number of Rσ about the origin [1, pp. 114–117], provided it exists. Let H2(T) ⊂
L2(T) denote the Hardy space of square integrable functions on T whose negative
Fourier coefficients vanish; define for any σ ∈ L∞(T), the Toeplitz operator with
symbol σ on H2(T), as T [σ ] = PM[σ ], where M[σ ] denotes multiplication
by σ and P is the standard projection of L2(T) onto H2(T). Let Pn denote the
projection of H2(T) onto the subspace spanned by the functions {1, eiθ , . . . , einθ }.
With respect to this basis, the operator PnM[σ ]Pn has matrix representation Tn[σ ].
Taking a minor liberty with operator and matrix notation we can examine the nature
of any convergence of operators Tn[σ ] → T [σ ] by imagining the matrices Tn[σ ]
growing without bound to a semi-infinite matrix representing T [σ ].
Theorem 1 For any σ ∈ PC, T [σ ] is a Fredholm operator if and only if w(Rσ )

exists, in which case the index of T [σ ] is equal to −w(Rσ ).

Theorem 2 (Coburn) For any σ ∈ L∞(T) not identically zero, either T [σ ] or
T [σ̄ ] has trivial kernel.

Here σ̄ denotes the complex conjugate of σ .
By imposing the restriction |)β| < 1

2 it easily follows from these two theorems
that σ ∈ Cβ implies T [σ ] is invertible on H2(T). From an application of the finite
section method, it follows that Tn[σ ] is invertible for n sufficiently large (the main
focus of this method being the suitability of PnT [σ ]−1Pn as an approximate inverse
for Tn[σ ]; see [10], ch. 3). For what follows we will assume n to be thus sufficiently
large.

For p ≤ n let X denote the p × p matrix with (i, j) entry xi,j equal to the
(n−p+ i + 1, j) entry of Tn[σ ]−1. Jacobi’s theorem concerning minors of inverse
matrices (extending Cramer’s rule, see [24, p. 20]) implies that

detX = (−1)(n+1)p det T̃

Dn[σ ]
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where T̃ is the matrix obtained from Tn[σ ] by deleting the last p columns and the
first p rows. An easy inspection of these matrices shows that

T̃ = Tn−p[z−pσ ] = (−1)−(n−p+1)pTn−p[(−z)−pσ ],

so that

Dn−p[(−z)−pσ ] = (−1)p detX · Dn[σ ]. (8)

It follows that if a first order asymptotic expression for detX is found, then a first
order asymptotic expansion is obtainable for the determinants of related Toeplitz
matrices with symbols not subject to the restriction |)β| < 1

2 . To this end, since
X is a submatrix of Tn[σ ]−1, we determine the entries of X by investigating the
solution to finite Toeplitz systems of equations.

2.2 Wiener-Hopf Factorization

For a starting point it will be most convenient to consider Tn[σ ] as acting on the
space of polynomials in the variable z of degree at most n. The equation

Tn[σ ]p = q (9)

will be taken to mean that

q̂(i) =
n∑

j=0

σ̂ (i − j)p̂(j)

where

p(z) =
n∑

i=0

p̂(i)zi and q(z) =
n∑

i=0

q̂(i)zi .

Setting qi(z) = zi and Tn[σ ]pi = qi it follows that the (i, j) entry in the matrix
Tn[σ ]−1 is given by p̂j (i). We obtain from these definitions and that of X that

xi,j = p̂(n − p + 1 + 1). (10)

Equation (10) and the condition on σ yield the equation

σp = q + φ + znψ (11)
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where φ ∈ zH1 and ψ ∈ zH1. (Here Hs = {f ∈ Ls (T) : n < 0 ⇒ f̂ (n) = 0},
1 ≤ s ≤ ∞; the variable z takes values in T.) The solution of (11) proceeds
by means of the Wiener-Hopf factorization of σ and the introduction of certain
projection operators. The notation f ∼ ∑∞

i=−∞ f̂ (i)zi will be used to denote the
representation of a function by its Fourier series.

For g ∈ L2(T) define

P+g(z) =
∞∑

i=0

ĝ(i)zi, P−g(z) =
0∑

i=−∞
ĝ(i)zi,

P+g(z) = g(z) − P−g(z), P−g(z) = g(z)− P+g(z),

and

g̃(z) = −i (P+g(z)− P−g(z))

The operator P+ is the standard orthogonal projection of L2[T] onto H2[T].
P− is the projection onto H2[T]. The two operators P+ and P− are a simple way
of excluding zero from sums defining P+ and P−, respectively. If g satisfies an
additional Lipschitz condition with exponent greater than zero, then it follows that
log g and l̃og g are continuous [36, theorem III.13.27].

Set

g± = exp

(
1

2

(
log g ± i l̃og g

))
, (12)

so that g = g−g+, the Wiener-Hopf factorization of g. The function g+ (respec-
tively, g−) extends analytically and is nonzero inside (respectively, outside) the unit
circle of the complex plane. Taking the Wiener-Hopf factorization of the function τ
from Eq. (5) we define

σ+(z) = (1 − z)βτ+(z),

σ−(z) = (1 − z−1)−βτ−(z),

so that σ = σ−σ+ and the function σ+ (respectively, σ−) also extends analytically
and is nonzero inside (respectively, outside) the unit circle. Equation (11) may now
be written as a pair of equations

σ+p = q

σ−
+ φ

σ−
+ znψ

σ− ,

z−nσ−p = q

znσ+
+ φ

znσ+
+ ψ

σ+
.

(13)
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The condition |)β| < 1
2 implies that φ ∈ zH2, ψ ∈ zH2, σ±1+ ∈ H2, and σ±1− ∈ H2.

As p is a polynomial of finite degree, σ+p ∈ H2 and z−1σ−p ∈ H2. We apply the
operators P− and P+ to these equations, obtaining

0 = P−
(

q

σ−

)
+ φ

σ−
+ P−

(
znψ

σ−

)
,

0 = P+
(

q

znσ+

)
+ P+

(
φ

znσ+

)
+ ψ

σ+
.

Let u(z) = σ−(z)
σ+(z) and let v(z) = 1/u(z). Setting z = eiθ we have

u(z) = (2 − 2 cos θ)−β τ−(θ)
τ+(θ)

.

Define operators U and V by

U(g) = P+(z−nug) and V (g) = P−(znvg).

Our pair of equations can now be written as a matrix equation:

[
I V

U I

][ φ
σ−
ψ
σ+

]
=
⎡

⎣ −P−
(

q
σ−
)

−P+
(

q
znσ+

)

⎤

⎦ .

Multiplying on the left by the matrix

[
I −V

−U I

]
yields

[
I − VU O

O I − UV

][ φ
σ−
ψ
σ+

]
=
⎡

⎣−P−
(
znvP−

(
q

znσ+

))

−P+
(
z−nuP+

(
q
σ−

))

⎤

⎦ .

This last equation has a solution if the matrix on the left is invertible, which in turn
yields a solution of (11) for p. As it happens, we need only consider the invertibility
of I − VU , namely the solution of the equation

(I − VU)

(
φ

σ−

)
= −P−

(
znvP−

(
q

znσ+

))
. (14)

In keeping with our identification of L2 functions with their Fourier series, the above
equation can be interpreted as a semi-infinite matrix equation on the space of series
indexed by the negative integers. The operator VU has the matrix representation
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with (i, j) entry

(VU)i,j =
∞∑

k=1

û(k + n − j)v̂(i − n − k), (15)

the convergence of the series depending on the restriction |)β| < 1
2 .

The estimation of detX is obtained from this information in two steps. The
first step consists of finding a complete asymptotic expansion for the entries xi,j
of X as n → ∞. The second step is the use of this expansion to find a first
order expression for detX. To achieve step one we first approximate VU by an
integral operator acting on a particular function space, the approximation being in
the context of finding an estimate for (14) and relying on a simple identification
of a sequence of complex numbers with a function on the real line that is constant
between consecutive integers. Under this identification a matrix acting on sequences
behaves like an integral operator with kernel consisting of a function in the plane
which is constant on squares with unit length edges and integer-valued coordinate
vertices. The operator I −VU is first approximated by an operator with more easily
obtainable asymptotic information, and the approximation is then improved using
a Neumann expansion and the Euler-Maclaurin summation formula. By keeping
track of pertinent details of the resulting asymptotic expansions of the entries of X
a relatively straightforward attack on detX is possible, yielding a solution for step
two.

3 Invertibility of I − V U

We start with a consideration of the asymptotics for the entries in the matrix VU .

Lemma 1 As n → ∞ we have the asymptotic expansions

û(n) ∼
∞∑

m=0

cmn
−1+2β−m and v̂(−n) ∼

∞∑

m=0

c′
mn

−1−2β−m.

These expansions follow directly from Erdélyi’s method of integration by parts
(see, for example, [7, pp. 89–91]).

Definition 2 For x ∈ R let {x} denote the smallest integer greater than or equal to
x, called the ceiling of x.

Let M : R2 → C be given by

M(x, y) = VU{−x},{−y}. (16)
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We formally define the integral operator

Mf (x) =
∫ ∞

0
M(x, y)f (y) dy.

Lemma 2 As n → ∞ and for any δ > 0 we have

M(x, y) = c0c
′
0

∫ ∞

0
(n + {x} + z)−1−2β(n + {y} + z)−1+2β dz

+ o
(
(n + {x})− 1

2 −β−δ(n + {y})− 1
2 +β−δ

)
.

Proof Apply Lemma 1, (16), and the Euler-Maclaurin summation formula ([32, pp.
127–128]; the calculation is carried out in full in [27, pp. 17–18]).

Definition 3 We make use of the following function spaces and their norms:

L2,β(0,∞) = {f (x) : (1 + x)−βf (x) ∈ L2(0,∞)},
‖f (x)‖2,β = ‖(1 + x)−βf (x)‖2,

L2,β,n(0,∞) = {f (x) : f (nx) ∈ L2,β(0,∞)},
‖f (x)‖2,β,n = ‖f (nx)‖2,β.

L2,β and L2,β,n with the given norms are easily shown to be Banach spaces.

Definition 4 Let

K(x, y) = c0c
′
0

∫ ∞

0
(n + x + z)−1−2β(n+ y + z)−1+2β dz.

We define the following operators on L2,−β,n(0,∞):

Kf (x) =
∫ ∞

0
K(x, y)f (y) dy,

Kef (x) =
∫ ∞

0
[M(x, y)− K(x, y)]f (y) dy.

Lemma 3 The operator I − K is bounded and invertible on L2,−β,n(0,∞). The
norm of I − K does not depend on n.

Proof Let K̃ = AKA−1, where

Ag(x) = e(
1
2 +β)xg

(
n(ex − 1)

)
.
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Direct calculation shows that

K̃f (x) =
∫ ∞

0
k(x − y)f (y) dy,

where

k(x) = c0c
′
0 e

(
1
2 +β

)
x
∫ ∞

0
(z + 1)−1+2β(z + ex)−1−2β dz.

Calculation also shows that A is a norm-preserving linear isomorphism of L2,−β,n

onto L2, and that K̃ is a Wiener-Hopf operator (namely, an operator of the form
W[σ ]f = F−1P(σFf ), where F denotes the Fourier transform; see [33, p. 111])
with symbol given by the Fourier transform of k:

k̂(ξ) = c0c
′
0

π2 csc
(
π
(

1
2 − β + iξ

))
csc

(
π
(

1
2 − β − iξ

))

Γ (1 + 2β)Γ (1 − 2β)
.

The values of the constants c0 and c′
0 are useful at this point, being obtained from

an integration by parts in each case:

c0 = Γ (1 − 2β) sinπβ

π
· τ−(1)
τ+(1)

,

c′
0 = Γ (1 + 2β) sinπβ

π
· τ+(1)
τ−(1)

.

These formulas yield

k̂(ξ) = − sin2 πβ

cosh2 πξ − sin2 πβ
.

Since |)β| < 1
2 it follows that ‖K̃‖2 ≤ ‖k̂(ξ)‖∞ < ∞, implying that K̃ is

a bounded operator. Also, the curve {1 − k̂(ξ) : ξ ∈ R} never vanishes and has
winding number zero about the origin. These facts imply that the operator I − K̃
is invertible on L2(0,∞) and consequently that the operator I − K is invertible on
L2,−β,n (see [25, p. 41]).

Finally, the norm of I − K is seen to be independent of n since A is norm-
preserving and K̃ is independent of n.

Lemma 4 We have ‖Ke‖2,−β,n = o(n−δ).
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Proof The kernel Ke(x, y) = o
(
(n+ x)− 1

2 −β−δ(n + y)− 1
2 +β−δ

)
, from the defini-

tion and from Lemma 2. The Schwarz inequality for the spaces L2,β,n is given by

‖fg‖1 ≤ ‖f ‖2,β,n‖g‖2,−β,n,

hence

‖Kef (x)‖2,−β,n = ‖(1 + x)βKef (nx)‖2

≤
∫ ∞

0
(1 + x)β(n + nx)−

1
2 −β−δdx · n 1

2 +β−δ · ‖f ‖2,−β,n

= c′n−2δ‖f ‖2,−β,n.

Proposition 1 The operator I − M is invertible on L2,−β,n for n sufficiently large.

Proof I − M = I − K − Ke. Apply Lemmas 3 and 4 and the fact that the set of
invertible operators is open.

The conclusion to be drawn from Proposition 1 is that for n sufficiently large, the
operator I − VU is invertible on the space of sequences l2,−β,n(Z+) obtained from
L2,−β,n(0,∞) by considering the subspace of functions constant on open intervals
between successive integers.

4 Asymptotics of a Section of Tn[σ ]−1

We state first an important step towards the desired result of this section.

Proposition 2 detX = (−1)pG[τ ]−pn−p2+2βpc (1 + o(1)), where c is a constant.

The proof of this identity is divided into three parts. The first part is a
factorization, essentially due to Widom, for which the evaluation of the determinants
of the individual terms is facilitated.

Lemma 5 X = −Tp−1[1/σ−] Y Tp−1[1/σ−], where Y is the p × p matrix with
(i, j) entry

yi,j =
(
z−nu(I − VU)−1zj

)
ˆ (−i). (17)
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Proof Recall X has (i, j) entry

xi,j = p̂j (n− p + i + 1)

=
p−1∑

k=1

σ̂−1− (i − k)σ̂−pj (n − p + k + 1)

since σ−1− ∈ H2. From (13) we obtain

z−nσ−pi = zi−nσ−1+ + z−nu
φ

σ−
+ ψ

σ+
.

Now

φ

σ−
= −(I − VU)−1

(
P+

(
zi

σ−

))
− zi

σ−

so that

z−nσ−pi = −z−nu(I − VU)−1
(
P+

(
zi

σ−

))
,

as ψ
σ+ ∈ zH1. Putting the above identities together yields the desired matrix identity.

An auxiliary fact is the

Corollary 1 detX = (−1)pG[τ ]−p detY .

Using the identity (I − VU)−1 = I + (I − VU)−1VU we write

yi,j = û(n − i − j)+
∞∑

k=0

û(n− i + k)
[
(I − VU)−1VUzj

]
ˆ (−k). (18)

The second part of the proof of Proposition 2 establishes the following asymptotic
expansion.

Lemma 6 yi,j ∼ ∑∞
k=0 pk(i, j)n

−1+2β−k , where pk is a polynomial of degree k.

Proof We use the Euler-Maclaurin summation formula to obtain terms in the
asymptotic expansion of yi,j . As in the previous section we utilize an approximation
of VU by an operator with smooth kernel. As it happens, the particular operator
used previously is not suitable for obtaining a complete asymptotic expansion. We
alter the given operators as follows. Define complex-valued functions ζ1(x) for
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0 ≤ x < ∞ and ζ2(x) for −∞ < x ≤ 0 by the formulas

ζ1(x) =
M∑

m=0

cmx
−1+2β−m and ζ2(−x) =

M∑

m=0

c′
mx

−1−2β−m

for x ≥ 0, where the constants cm and c′
m are defined previously by Lemma 1 and

M is as large as we like (for any fixed value of β, we require only finitely many
terms in any of these expansions, the number growing larger as the modulus of β
increases). From these definitions and Lemma 1 we immediately conclude that

û(n)− ζ1(n) = o(n−1+2β−M), v̂(−n)− ζ2(−n) = o(n−1−2β−M),

and that

(V U)i,j =
∞∑

k=1

ζ1(n− j + k)ζ2(−n + i − k)+ o(n−1−M).

Let

W(x, y) =
∞∑

k=1

ζ1(n + {y} + k)ζ2(n− {x} − k),

and let W denote the integral operator on L2,−β,n(0,∞) with kernel W(x, y).
Letting o notation here be in the context of operator norm, it follows that M =
W + o(n−M) and hence by Proposition 1 that I − W is invertible on L2,−β,n(0,∞)

and that (I − M)−1 = (I − W)−1 + o(n−M). Replacing our old definitions of K and
Ke we write

K(x, y) =
∫ ∞

0
ζ1(n + y + z)ζ2(−n − x − z) dz,

Ke(x, y) = W(x, y) − K(x, y),

gk = K(x,−k),

gk,e = Ke(x,−k),

and let K and Ke denote the integral operators on L2,−β,n(0,∞) with kernels
K(x, y) and Ke(x, y), respectively. We obtain

(I − M)−1Mzk = (I − K − Ke)
−1(gk + gk,e)+ o(n−M),

where again, o(n−M) refers to a function with this norm on L2,−β,n(0,∞). K is just
a perturbation of our previous operator of this name; it is easy to show that I − K
is invertible for n sufficiently large and that the norm of the new K is the same as
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the old, up to a term of norm o(1). The operator Ke, too, behaves like its previous
version; in particular we have ‖Ke‖ = o(n−1) as n → ∞. We therefore obtain a
Neumann expansion for the inverse:

(I − K − Ke)
−1 = (I − K)−1

∞∑

i=0

[
Ke(I − K)−1

]i
.

Applying Euler-Maclaurin summation to each term in this series, we obtain an
expansion

(I − K − Ke)
−1(gk + gk,e)(x) ∼

∞∑

i=0

(n− k)−1−ihi

(
j + k

n − j

)
,

where the functions hi do not depend on n or k. Using Euler-Maclaurin summation
on the expansion

∞∑

k=0

û(n − i + k)

∞∑

l=0

(n − j)−1−lhl

(
j + k

n− j

)
,

Lemma 1 and the binomial theorem applied to û(n − i − j), counting carefully the
resulting powers of the i and j terms, yield the desired result.

The third part of the proof of Proposition 1 now uses the above information to
compute the desired determinant.

Lemma 7 detY = cn−p2+2βp (1 + o(1)), where c is a constant.

Proof Given the expansion

yi,j =
M∑

k=0

pk(i, j)n
−1+2β−k + o(n−1+2β−M),

we compute the determinant of Y directly. For the computation that follows we shall
use for the sake of convenience the definition 00 = 1. We have

det Y =
M∑

k0=0

· · ·
M∑

kp−1=0

det
[(
pki (i, j)

)
0≤i,j<p

]
n−p+2βp−k0−···−kp−1 .

Writing the polynomials in the above expression as sums of monomials and
expanding the determinant we obtain a sum of terms of the form

c det

[(
ik1,j j k2,j

)

0≤i,j<p

]
n−p+2βp−k0−···−kp−1
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where k1,i + k2,i ≤ ki . This last expression equals

c

p−1∏

i=0

ik1,i det

[(
jk2,i

)

0≤i,j<p

]
n−p+2βp−k0−···−kp−1 .

In collecting these terms to obtain an expression for det Y one finds considerable
algebraic cancellation. Note that if k2,i1 = k2,i2 for some 0 ≤ i1 �= i2 < p, then

the determinant of the matrix
[(
jk2,i

)
i,j

]
is zero. Furthermore, if k1,i1 = k2,i2 for

0 ≤ i1 �= i2 < p, then the collection of terms constituting detY will contain two
terms corresponding to the permutations of the set {i1, i2}; these terms cancel each
other as they differ by a factor of (−1). From these observations we conclude that
nonzero contributions to a first order asymptotic expansion of detY arise from the
case in which k1,i0, . . . , k1,ip−1 are distinct and k2,i0, . . . , k2,ip−1 are distinct. Having
these two sets of distinct elements implies in turn that

k0 + · · · + kp−1 ≥ k1,i0, . . . , k1,ip−1 + k2,i0, . . . , k2,ip−1

≥ 2
p−1∑

i=0

i = p2 − p.

The leading term in the asymptotic expansion of detY is therefore of the form

cn−p+2βp−(p2−p) = cn−p2+2βp,

yielding detY = cn−p2+2βp (1 + o(1)), as desired.

Proof (Of Proposition 2)

detX = (−1)pG[τ ]−p det Y

= (−1)pG[τ ]−pcn−p2+2βp (1 + o(1)) ,

as desired.

Having this result we may now partially extend Eq. (6) for values of β outside of
the region of the complex plane |)β| < 1

2 , along the lines of the remarks following
Eq. (8).

5 Asymptotics of Dn[σ ] and Eigenvalue Distributions

Proposition 3 For σ ∈ Cβ , |)β| < 1
2 , Dn[(−z)pσ ] = G[τ ]n+1n−(p+β)2

c (1 + o(1)) for any integer p.
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Proof The case p = 0 is just Eq. (5). The case p < 0 follows from Eqs. (5), (8),
and Proposition 2. The case p > 0 is obtained from the case p < 0 by matrix
transposition.

We have obtained our first order asymptotic expression for Dn[σ ] for σ ∈ Cβ ,
provided β /∈ Z + 1

2 . It remains to remove this last condition and to determine the
value of the constant c in the above proposition. To this end, we use the following
corollary of the Poisson-Jensen formula ([1, p. 208]; see also [34, p. 358]).

Lemma 8 Suppose h is an analytic function on the disk |z| ≤ 1 and satisfies there
|h(z)| ≤ |)z|−c for some constant c > 0. Then for each subdisk |z| ≤ ρ < 1 we
have |h(z)| ≤ A where A is a constant depending only on c and ρ.

A proof of this lemma appears in [27]. We now come to our main results.

Theorem 3 For σ(z) = (−z)βτ (z) ∈ Cβ we have

Dn[σ ] = G[τ ]n+1n−β2
E[τ, β] (1 + o(1)) ,

as n → ∞, where E[τ, β] is given by (7).

Proof The proof of this theorem is in several steps. We first determine the behavior
of the coefficients yi,j as |)β| < 1

2 , |)β| → 1
2 . The idea, with Lemma 8 in mind, is

to show that the formula for yi,j at most blows up only polynomially at the boundary

|)β| = 1
2 . In [27, pp. 49–53], the estimate |yi,j | ≤ d

−M1
β n−1+2)β is obtained from

equation (18), where dβ = min{ 1
2 − )β, 1

2 + )β} and M1 is a constant. From
this result one demonstrates that detY itself at most blows up only polynomially at
|)β| = 1

2 , the formula being

| detY | ≤ cd
−M2
β n−p2+2)βp, (19)

where c is a constant depending on τ , Y is p × p, and M2 is a constant. The means
by which these results are obtained are as follows. In [27] it is shown that p2 −p+1
terms of the asymptotic series for the coefficients yi,j are required to obtain the first
order term for detY , due to the large number of cancelling terms, along the lines of
the proof of Lemma 7. Writing yi,j = wi,j + εi,j , where

wi,j =
p2−p∑

k=0

pk(i, j)n
−1+2β−k
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denotes the first p2 −p+1 terms in the expansion of yi,j , we consider the expansion

detY = det
[(
wi,j

)
0≤i,j<p + (

εi,j
)

0≤i,j<p
]

= det
[(
wi,j

)
0≤i,j<p

]
+ ε

where ε denotes the error obtained by the multilinear expansion of the determinant.
This expansion gives the exponent of n of Eq. (19); the polynomial growth of dβ
arises from the polynomial growth of the corresponding term in yi,j and from the
fact that the coefficients of the polynomials pk(i, j) are also polynomially bounded;
see [27, Lemma 5.6].

We now make use of the estimate |Dn[(−z)βτ ]|nβ2 ≤ cd−3
β , essentially done in

[34, §XIII], the details of which are found in [27, Lemma 5.7]. In combination with
the previous result, we obtain the estimate

|Dn[(−z)βτ ]|nβ2 ≤ cd
−M3
β ,

where we now take dβ = dist(β,Z + 1
2 ) and M3 is a constant. Applying Lemma 8

we conclude that

Dn[(−z)βτ ]n−β2 = O(1)

uniformly on compact subsets of the complex plane. It follows that

Dn[σ ] = G[τ ]n+1n−β2
c (1 + o(1))

where c depends on τ and β. If |)β| < 1
2 then a result due to Basor [4] and Böttcher

[8] states that

c = E[τ, β]

Since the foregoing results demonstrate that, for fixed τ but variable β, Dn[σ ] is
an analytic function of β, Vitali’s convergence theorem [31, p. 168] implies that the
formula for c holds for all β, proving Theorem 3.

The result for the asymptotic eigenvalue distribution of Tn[σ ] will now be
established for functions from the following class PC1, consisting of all functions
σ : T → C which are C∞ away form θ = 0 and have left and right limits

lim
θ→0+

dk

dθk
σ (eiθ ) and lim

θ→2π−
dk

dθk
σ (eiθ )
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exist for all k > 0, while on the other hand,

lim
θ→0+ σ(e

iθ ) �= lim
θ→2π− σ(e

iθ ). (20)

In other words, these are piecewise continuous functions with precisely one jump
discontinuity that satisfy in addition appropriate smoothness conditions.

Theorem 4 For σ ∈ PC1 the eigenvalues of Tn[σ ] are canonically distributed as
n → ∞. Moreover, the limiting set L of the eigenvalues of Tn[σ ] equals the closure
of the range of σ .

Proof If λ does not belong to the closure of the range of σ , then σ − λ satisfies the
assumption of Definition 1, i.e., there exists a (uniquely determined) β /∈ Z such
that σ − λ ∈ Cβ . Hence we can apply Theorem 3 to the function σ − λ and obtain

lim
n→∞

1

n + 1
log |Dn[σ − λ]| = log |G [σ − λ] | = log G [|σ − λ|] ,

which thus holds in the sense of measure for λ ∈ C, as the constant term
E[τ, β] of Theorem 3 is nonzero. By a result of Widom [35, Lemma 5.1], this fact
implies canonical distribution of the eigenvalues. Now let {λ0,n, . . . , λn,n} denote
the eigenvalues of Tn[σ ], counted according to multiplicity. Let λ be a point in the
closure of the range of σ and for ε > 0 let Fε be a continuous function, positive near
λ and zero outside the open disk of radius ε centered at λ. We have

∫
(Fε◦σ)dθ > 0;

by the above discussion it follows that for any n sufficiently large, there is an in
such that dist(λin , λ) < ε. Thus λ is a limit point of a sequence of eigenvalues
and therefore is in L. L therefore contains the closure of the range of σ . For the
reverse inclusion, suppose λ is not in the closure of the range of σ . By Theorem 3,
Dn[σ − λ] is bounded away from zero for n sufficiently large and it easily follows
that the estimate holds uniformly for any λ̃ in a small neighborhood of λ. It follows
that no infinite sequence {λik,nk }∞k=0 tends to λ, so λ /∈ L.

Corollary 2 For any ε > 0 the number of eigenvalues λi,n within ε distance of a
given point in the range of σ is O(n).

Corollary 3 For any ε > 0 there is a number N such that the eigenvalues of Tn[σ ]
are within ε distance of the range of σ whenever n > N .

Proof Suppose not, i.e., that there exists a sequence {λik,nk }∞k=0, with n0 < n1 <

· · · , outside the set of points within ε distance of the range of σ . As the eigenvalues
of Tn[σ ] are uniformly bounded in absolute value by the (finite) operator norm of
T [σ ] on H2, it follows that {λik,nk }∞k=0 has a subsequence which converges to a value
λ, which by construction is not in the range of σ , a contradiction of Theorem 4.
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We conclude by noting that the condition (20) is necessary, as the counterexample
σ(z) = −z easily demonstrates. Indeed, it leads us to the situation where the jump
parameter β is a nonzero integer.

References

1. L. Ahlfors, Complex Analysis (McGraw-Hill, New York, 1979)
2. E.W. Barnes, The theory of the G-function. Q. J. Pure Appl. Math 31, 264–313 (1900)
3. E. Basor, Asymptotic formulas for Toeplitz determinants. Trans. Amer. Math. Soc. 239, 33–65

(1978)
4. E. Basor, A localization theorem for Toeplitz determinants. Indiana Univ. Math. J. 28, 975–983

(1979)
5. E. Basor, K.E. Morrison, The Fisher-Hartwig conjecture and Toeplitz eigenvalues. Linear

Algebra Appl. 202, 129–142 (1994)
6. E. Basor, C.A. Tracy, The Fisher-Hartwig conjecture and generalizations. Phys. A 177, 167–

173 (1991)
7. N. Bleistein, R.A. Handelsman, Asymptotic Expansions of Integrals (Dover Publ., New York,

1986)
8. A. Böttcher, Toeplitz determinants with piecewise continuous generating functions. Z. Anal.

Anw. 2, 23–29 (1982)
9. A. Böttcher, B. Silbermann, The asymptotic behavior of Toeplitz determinants for generating

functions with zeros of integral order. Math. Nachr. 102, 79–105 (1981)
10. A. Böttcher, B. Silbermann, Invertibility and Asymptotics of Toeplitz Matrices (Akademie-

Verlag, Berlin, 1983)
11. A. Böttcher, B. Silbermann, Toeplitz matrices and determinants with Fisher-Hartwig symbols.

J. Funct. Anal. 63, 178–124 (1985)
12. A. Böttcher, B. Silbermann, Toeplitz operators and determinants generated by symbols with

one Fisher-Hartwig singularity. Math. Nachr. 127, 95–124 (1986)
13. A. Böttcher, B. Silbermann, Analysis of Toeplitz Operators, 2nd edn., prepared jointly with A.

Karlovich, Springer Monographs in Mathematics (Springer, Berlin, 2006)
14. A. Böttcher, S.M. Grudsky, E.A. Maksimenko, Inside the eigenvalues of certain Hermitian

Toeplitz band matrices. J. Comput. Appl. Math. 233, 2245–2264 (2010)
15. K.M. Day, Measures associated with Toeplitz matrices generated by the Laurent expansion of

rational functions. Trans. Amer. Math. Soc. 209, 175–183 (1975)
16. P. Deift, A. Its, I. Krasovsky, Asymptotics of Toeplitz, Hankel, and Toeplitz+Hankel determi-

nants with Fisher-Hartwig singularities. Ann. Math. (2) 174, 1243–1299 (2011)
17. P. Deift, A. Its, I. Krasovsky, Eigenvalues of Toeplitz matrices in the bulk of the spectrum. Bull.

Inst. Math. Acad. Sin. (N.S.) 7(4), 437–461 (2012)
18. P. Deift, A. Its, I. Krasovsky, Toeplitz matrices and Toeplitz determinants under the impetus

of the Ising model: some history and some recent results. Commun. Pure Appl. Math. 66,
1360–1438 (2013)

19. P. Deift, A. Its, I. Krasovsky, On the Asymptotics of a Toeplitz Determinant with Singularities.
Math. Sci. Res. Inst. Publ., vol. 65 (Cambridge University Press, New York, 2014), pp. 93–146

20. R.G. Douglas, Banach Algebra Techniques in Operator Theory (Academic Press, New York,
1972)

21. T. Ehrhardt, A status report on the asymptotic behavior of Toeplitz determinants with Fisher-
Hartwig singularities. Oper. Theory Adv. Appl. 124, 217–241 (2001)

22. T. Ehrhardt, B. Silbermann, Toeplitz determinants with one Fisher-Hartwig singularity. J.
Funct. Anal. 148, 229–256 (1997)



530 R. A. Libby

23. M.E. Fisher, R.E. Hartwig, Toeplitz determinants: some applications, theorems, and conjec-
tures. Adv. Chem. Phys. 15, 333–353 (1968)

24. F.R. Gantmacher, Matrizenrechung, I (Deutscher Verlag d. Wiss., Berlin, 1958)
25. I. Gohberg, I. Feldman, Convolution Equations and Projection Methods for their Solutions

(American Mathematical Society, Providence, 1965)
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Global and Local Scaling Limits for
Linear Eigenvalue Statistics of Jacobi
β-Ensembles

Chao Min and Yang Chen

Dedicated to the memory of Harold Widom

Abstract We study the moment-generating functions (MGF) for linear eigenvalue
statistics of Jacobi unitary, symplectic and orthogonal ensembles. By expressing the
MGF as Fredholm determinants of kernels of finite rank, we show that the mean
and variance of the suitably scaled linear statistics in these Jacobi ensembles are
related to the sine kernel in the bulk of the spectrum, whereas they are related to the
Bessel kernel at the (hard) edge of the spectrum. The relation between the Jacobi
symplectic/orthogonal ensemble (JSE/JOE) and the Jacobi unitary ensemble (JUE)
is also established.

Keywords Linear eigenvalue statistics · Moment-generating function · Jacobi
β-ensembles · Mean and variance · Sine kernel · Bessel kernel

1 Introduction

In random matrix theory (RMT), the joint probability density function for the (real)
eigenvalues {xj }Nj=1 of N ×N Hermitian matrices from a matrix ensemble is given
by [19]

P
(β)
N (x1, x2, . . . , xN) = 1

ZN

∏

1≤j<k≤N

∣∣xj − xk
∣∣β

N∏

j=1

w(xj ), (1)
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where β = 1, 2 and 4 (the Dyson index) correspond to the orthogonal, unitary
and symplectic ensembles respectively, w(x) is a weight function and ZN is a
normalization constant. If w(x) = e−x2

, x ∈ R and w(x) = xαe−x, x ∈ R
+, α >

−1, these are the Gaussian β-ensembles (GβE) and Laguerre β-ensembles (LβE).
See also [29] on the relation between orthogonal, symplectic and unitary ensembles.

Linear statistics is an important research object in RMT and has various
applications; see, e.g., [2, 5–9, 13, 16, 18, 28]. In previous works [21, 22], the authors
studied the large N asymptotics for the moment-generating functions (MGF) of
the suitably scaled linear statistics in GβE and LβE, from which the mean and
variance of the linear statistics are derived. In the present paper, we focus on
the problem in Jacobi β-ensembles (JβE). In this case, the weight function is
w(x) = (1 − x)a(1 + x)b, x ∈ [−1, 1], a, b > −1.

The MGF of the linear statistics
∑N

j=1 F(xj ) in JβE is given by the mathematical
expectation with respect to the joint probability density function (1),

E

(
e−λ

∑N
j=1 F(xj )

)
=
∫
[−1,1]N

∏
1≤j<k≤N

∣∣xj − xk
∣∣β∏N

j=1 w(xj )e
−λF (xj )dxj

∫
[−1,1]N

∏
1≤j<k≤N

∣∣xj − xk
∣∣β∏N

j=1 w(xj )dxj

,

(2)

where λ is a parameter and F(·) is a sufficiently well-behaved function to make the
integral well-defined. Similarly as in [21, 22], we write the right-hand side of (2) in
the form

G
(β)
N (f ) :=

∫
[−1,1]N

∏
1≤j<k≤N

∣∣xj − xk
∣∣β∏N

j=1 w(xj )
(
1 + f (xj )

)
dxj

∫
[−1,1]N

∏
1≤j<k≤N

∣∣xj − xk
∣∣β∏N

j=1 w(xj )dxj

, (3)

where

f (x) = e−λF (x) − 1. (4)

The denominator in (2) or (3) is known as Selberg’s integral, which has closed form
expression [19, (17.6.1)]. We are interested in the large N asymptotics of the MGF.
It is well known that the distributions of linear statistics in random matrix ensembles
are Gaussian; see, e.g., [8, 24].

We first consider the β = 2 case, which is the simplest among the three cases.
From the well-known result of Tracy and Widom [27] by expressing G

(2)
N (f ) as a

Fredholm determinant, we obtain its large N asymptotics. With the relation of f (x)
and F(x), we compute the mean and variance of linear statistics

∑N
j=1 F(xj ) in the

bulk of the spectrum and at the edge respectively. It can be seen that in the bulk
of the spectrum the results are related to the sine kernel, while at the edge they are
related to the Bessel kernel. The mean and variance of the linear statistics in unitary
ensembles have been studied a lot; see, e.g., [3, 4, 7, 20]. So the mean and variance
in the β = 2 case can also be obtained by using other approaches. Our main goal
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of this paper is to obtain the mean and variance in the β = 4 and β = 1 cases for
Jacobi ensembles. We show the results of the β = 2 case for reference and apply
the method to the β = 4 and β = 1 cases.

For the β = 4 case, we apply the previous results for general weight functions in
[21, 22] to the Jacobi weight. By making use of the skew orthogonal polynomials
for the Jacobi weight [1], we express G(4)

N (f ) as a Fredholm determinant involving

the Christoffel-Darboux kernel. The large N asymptotics of G(4)
N (f ) is derived by

using the trace-log expansions. The mean and variance of the scaled linear statistics∑N
j=1 F(xj ) then follows and the relation between the β = 4 case and β = 2 case

is built.
The β = 1 case is more difficult to deal with, and we only consider the case when

N is even. Usually in this situation the weight is taken to be the square root of the
weight considered in the β = 2 case, so we let w(x) = (1 − x)a/2(1 + x)b/2, x ∈
[−1, 1], a, b > −2. The following development is similar to the β = 4 case, but
with more complicated computations. Finally we obtain the mean and variance of
the scaled linear statistics

∑N
j=1 F(xj ) and establish the relation between the β = 1

case and β = 2 case. Note that as in the β = 2 case we also consider the β = 4 and
β = 1 cases in the bulk of the spectrum and at the edge, and the results are related
to the sine kernel and Bessel kernel, respectively.

We would like to point out that in this paper some calculations on the asymptotics
are heuristic. To be specific, we always substitute the asymptotic expressions of the
traces into the trace-log expansions for the MGF and do not care much about the
error terms. So the error estimates in the asymptotic analysis should be made more
precisely, such as the errors in the mean and variance formulas of the scaled linear
statistics obtained in the following sections.

2 Jacobi Unitary Ensemble (JUE)

In this section, we consider the β = 2 case, which is the simplest case and provides
a comparison to the β = 4 and β = 1 cases.

2.1 Finite N Case for the MGF in JUE

Recall that the weight function is w(x) = (1 − x)a(1 + x)b, x ∈ [−1, 1], a, b >

−1. Let {ϕj (x)}∞j=0 be the sequence obtained by orthonormalizing the sequence

{xj (1 − x)a/2(1 + x)b/2} in L2[−1, 1] and

K
(2)
N (x, y) :=

N−1∑

j=0

ϕj (x)ϕj (y). (5)
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In fact,

ϕj (x) = 1√
h
(a,b)
j

P
(a,b)
j (x)(1 − x)a/2(1 + x)b/2,

where P (a,b)
j (x) is the Jacobi polynomial of degree j with the orthogonality [15, 25]

∫ 1

−1
P
(a,b)
j (x)P

(a,b)
k (x)(1 − x)a(1 + x)bdx = h

(a,b)
j δjk, j, k = 0, 1, 2, . . .

and

h
(a,b)
j = 2a+b+1Γ (j + a + 1)Γ (j + b + 1)

j !(2j + a + b + 1)Γ (j + a + b + 1)
.

Tracy and Widom [27] proved that G(2)
N (f ) can be expressed as a Fredholm

determinant

G
(2)
N (f ) = det

(
I + K

(2)
N f

)
,

where K(2)
N is the operator on L2[−1, 1] with kernel K(2)

N (x, y) given by (5), and f
denotes the operator of multiplication by f . In addition, it is well known that

log det
(
I + K

(2)
N f

)
= Tr log

(
I + K

(2)
N f

)

= Tr K(2)
N f − 1

2
Tr
(
K

(2)
N f

)2 + 1

3
Tr
(
K

(2)
N f

)3 − · · · . (6)

This formula will help us to analyze the large N asymptotics of G(2)
N (f ) in the

following subsections.

2.2 Scaling in the Bulk of the Spectrum in JUE

In this subsection, we study the large N asymptotics of G(2)
N (f ) in the bulk of the

spectrum for the JUE, and obtain the mean and variance of the suitably scaled linear
statistics. We state a theorem before our discussion.

Theorem 1 For x, y ∈ R, we have as N → ∞,

1

N
K

(2)
N

( x
N
,
y

N

)
= Ksine(x, y)+ O(N−1),
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where Ksine(x, y) is the sine kernel defined by

Ksine(x, y) := sin(x − y)

π(x − y)
. (7)

The error term is uniform for x and y in compact subsets of R.

Proof By using the Christoffel-Darboux formula, we have

K
(2)
N (x, y) = Γ (N + 1)Γ (N + a + b + 1)

2a+b(2N + a + b)Γ (N + a)Γ (N + b)

× P
(a,b)
N (x)P

(a,b)
N−1 (y)− P

(a,b)
N−1 (x)P

(a,b)
N (y)

x − y

× (1 − x)a/2(1 + x)b/2(1 − y)a/2(1 + y)b/2. (8)

Taking advantage of the large n asymptotic formula of the Jacobi polynomials [25,
p. 196]

P (a,b)
n (cos θ) = 1√

πn

(
sin

θ

2

)−a− 1
2
(

cos
θ

2

)−b− 1
2

× cos

[(
n+ a + b + 1

2

)
θ − π

2

(
a + 1

2

)]
+ O(n−3/2), (9)

where 0 < θ < π , we find that K(2)
N (cos θ, cosφ) equals

Γ (N + 1)Γ (N + a + b + 1)

2a+b(2N + a + b)Γ (N + a)Γ (N + b)(cos θ − cos φ)

{
2a+b+1

π
√
N(N − 1) sin θ sinφ

×
[

cos

((
N + a + b + 1

2

)
θ − π

2

(
a + 1

2

))
cos

((
N + a + b − 1

2

)
φ − π

2

(
a + 1

2

))

− cos

((
N + a + b − 1

2

)
θ − π

2

(
a + 1

2

))
cos

((
N + a + b + 1

2

)
φ − π

2

(
a + 1

2

))]

+ O(N−2)

}
, 0 < θ, φ < π.

The above error terms are uniform for θ and φ in compact subsets of (0, π). Note
that the expression in the square brackets [· · · ] can be written in the form

2

[
cos

((
N + a + b

2

)
θ − π

2

(
a + 1

2

))
sin

((
N + a + b

2

)
φ − π

2

(
a + 1

2

))
cos

θ

2
sin

φ

2

− sin

((
N + a + b

2

)
θ − π

2

(
a + 1

2

))
cos

((
N + a + b

2

)
φ − π

2

(
a + 1

2

))
sin

θ

2
cos

φ

2

]
.
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Replacing cos θ and cosφ by x/N and y/N respectively and taking a large N limit,
we establish the theorem with the aid of Stirling’s formula. See also [12, 23]. ��

Remark 1 When x = y, we have as N → ∞,

1

N
K

(2)
N

( x
N
,
x

N

)
= Ksine(x, x)+ O(N−1),

where

Ksine(x, x) = 1

π
.

The error term is uniform for x in compact subsets of R.

Using Theorem 1, we compute (6) term by term as N → ∞, and we change
f (x) to f (Nx) in the computations. The first term is

TrK(2)
N f =

∫ 1

−1
K

(2)
N (x, x)f (Nx)dx

=
∫ N

−N

1

N
K

(2)
N

( x
N
,
x

N

)
f (x)dx

=
∫ ∞

−∞
Ksine(x, x)f (x)dx + O(N−1), N → ∞.

Remark 2 We assume that f (·) is a continuous real-valued function belonging to
L1(R) and vanishes at ±∞.

The second term gives

Tr
(
K

(2)
N f

)2 =
∫ 1

−1

∫ 1

−1
K

(2)
N (x, y)f (Ny)K

(2)
N (y, x)f (Nx)dxdy

= 1

N2

∫ N

−N

∫ N

−N

K
(2)
N

( x
N
,
y

N

)
f (y)K

(2)
N

( y
N
,
x

N

)
f (x)dxdy

=
∫ ∞

−∞

∫ ∞

−∞
K2

sine(x, y)f (x)f (y)dxdy + O(N−1), N → ∞.

Hence, we find heuristically from (6) that log det
(
I + K

(2)
N f

)
equals

∫ ∞

−∞
Ksine(x, x)f (x)dx − 1

2

∫ ∞

−∞

∫ ∞

−∞
K2

sine(x, y)f (x)f (y)dxdy

+ · · · + O(N−1). (10)
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Now we are able to derive the mean and variance of the scaled linear statistics∑N
j=1 F(Nxj ). Taking account of the relation of f (x) and F(x) in (4), we have

f (x) = −λF(x)+ λ2

2
F 2(x)− · · · . (11)

Substituting (11) into (10) gives

log det
(
I + K

(2)
N f

)
= −λ

∫ ∞

−∞
Ksine(x, x)F (x)dx + λ2

2

[ ∫ ∞

−∞
Ksine(x, x)F

2(x)dx

−
∫ ∞

−∞

∫ ∞

−∞
K2

sine(x, y)F (x)F (y)dxdy

]
+ · · · + O(N−1).

From the coefficients of λ and λ2 and in view of logG(2)
N (f ) = log det

(
I +K

(2)
N f

)
,

we get the following results.

Theorem 2 Let μ(JUE)
N and V (JUE)

N be the mean and variance of the scaled linear

statistics
∑N

j=1 F(Nxj ), respectively. We have as N → ∞,

μ
(JUE)
N =

∫ ∞

−∞
Ksine(x, x)F (x)dx + O(N−1), (12)

V (JUE)
N =

∫ ∞

−∞
Ksine(x, x)F

2(x)dx −
∫ ∞

−∞

∫ ∞

−∞
K2

sine(x, y)F (x)F (y)dxdy

+ O(N−1), (13)

where Ksine(x, y) is the sine kernel defined by (7).

Remark 3 The result of the above theorem can also be derived by using the method
in the paper [3], and it is consistent with the one for the Gaussian unitary ensemble
in that paper.

2.3 Scaling at the Edge of the Spectrum in JUE

Contrasting to the previous subsection, we rescale the JUE at the (hard) edge of the
spectrum in this subsection. It will be seen that the Bessel kernel arises.

Theorem 3 For x, y ∈ R
+, we have as N → ∞,

1

2N2
K

(2)
N

(
1 − x

2N2
, 1 − y

2N2

)
= K

(a)
Bessel(x, y)+ O(N−1),
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where K(a)
Bessel(x, y) is the Bessel kernel of order a defined by

K
(a)
Bessel(x, y) := Ja(

√
x)

√
yJ ′

a(
√
y)− J ′

a(
√
x)

√
xJa(

√
y)

2(x − y)
, (14)

and Ja(·) is the Bessel function of the first kind of order a [17, p. 102]. The error
term is uniform for x and y in compact subsets of R+.

Proof Taking account of (8) and using the Hilb-type asymptotic formula of the
Jacobi polynomials [25, p. 197]

(
sin

θ

2

)a (
cos

θ

2

)b
P
(a,b)
n (cos θ) =

(
n + a + b + 1

2

)−a Γ (n + a + 1)

n!
(

θ

sin θ

)1/2

× Ja

((
n + a + b + 1

2

)
θ

)
+ θ1/2O(n−3/2), (15)

where 0 < θ < π , we find that 1
2N2K

(2)
N

(
1 − x

2N2 , 1 − y

2N2

)
equals

Γ (N + 1)Γ (N + a + b + 1)

(2N + a + b)Γ (N + a)Γ (N + b)(x − y)

{[
Ja

(
N + a+b−1

2

N

√
x

)
Ja

(
N + a+b+1

2

N

√
y

)

− Ja

(
N + a+b+1

2

N

√
x

)
Ja

(
N + a+b−1

2

N

√
y

)]
+ O(N−2)

}
,

uniformly for x and y in compact subsets of R
+. By writing the formula in the

square brackets [· · · ] as

Ja

(
N + a+b−1

2

N

√
x

)(
Ja

(
N + a+b+1

2

N

√
y

)
− Ja

(
N + a+b−1

2

N

√
y

))

− Ja

(
N + a+b−1

2

N

√
y

)(
Ja

(
N + a+b+1

2

N

√
x

)
− Ja

(
N + a+b−1

2

N

√
x

))
,

we finally obtain the desired result by taking a large N limit together with the aid of
Stirling’s formula. ��

Remark 4 When x = y, we have as N → ∞,

1

2N2K
(2)
N

(
1 − x

2N2 , 1 − x

2N2

)
= K

(a)
Bessel(x, x)+ O(N−1),
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where

K
(a)
Bessel(x, x) = (Ja(

√
x))2 − Ja+1(

√
x)Ja−1(

√
x)

4
,

which is obtained by letting y → x in (14). The error term is uniform for x

in compact subsets of R
+. The Bessel kernel also arises in the Laguerre unitary

ensemble when scaling at the hard edge of the spectrum [11]; see also [26].

Similarly as in the previous subsection, we use Theorem 3 to compute (6) term
by term as N → ∞, and replace f (x) by f (2N2(1 − x)) in the computations. The
first term reads

TrK(2)
N f =

∫ 1

−1
K

(2)
N (x, x)f (2N2(1 − x))dx

=
∫ 4N2

0

1

2N2K
(2)
N

(
1 − x

2N2 , 1 − x

2N2

)
f (x)dx

=
∫ ∞

0
K

(a)
Bessel(x, x)f (x)dx + O(N−1), N → ∞.

Remark 5 We assume that f (·) is a continuous real-valued function belonging to
L1(R+) and vanishes at +∞.

The second term gives

Tr
(
K

(2)
N f

)2 =
∫ 1

−1

∫ 1

−1
K

(2)
N (x, y)f (2N2(1 − y))K

(2)
N (y, x)f (2N2(1 − x))dxdy

=
∫ ∞

0

∫ ∞

0

(
K

(a)
Bessel(x, y)

)2
f (x)f (y)dxdy + O(N−1), N → ∞.

It follows, again heuristically, from (6) that log det
(
I + K

(2)
N f

)
equals

∫ ∞

0
K

(a)
Bessel(x, x)f (x)dx − 1

2

∫ ∞

0

∫ ∞

0

(
K

(a)
Bessel(x, y)

)2
f (x)f (y)dxdy

+ · · · + O(N−1).
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Substituting (11) into the above gives

log det
(
I + K

(2)
N f

)
= −λ

∫ ∞

0
K

(a)
Bessel(x, x)F (x)dx

+λ2

2

[ ∫ ∞

0
K

(a)
Bessel(x, x)F

2(x)dx −
∫ ∞

0

∫ ∞

0

(
K

(a)
Bessel(x, y)

)2
F(x)F (y)dxdy

]

+ · · · + O(N−1).

Then, the following theorem follows.

Theorem 4 Let μ̃(JUE)
N and Ṽ (JUE)

N be the mean and variance of the scaled linear

statistics
∑N

j=1 F(2N
2(1 − xj )), respectively. Then as N → ∞,

μ̃
(JUE)
N =

∫ ∞

0
K

(a)
Bessel(x, x)F (x)dx + O(N−1), (16)

Ṽ (JUE)
N =

∫ ∞

0
K

(a)
Bessel(x, x)F

2(x)dx −
∫ ∞

0

∫ ∞

0

(
K

(a)
Bessel(x, y)

)2
F(x)F (y)dxdy

+ O(N−1), (17)

where K(a)
Bessel(x, y) is the Bessel kernel defined by (14).

Remark 6 The result of the above theorem is consistent with the one for the
Laguerre unitary ensemble by scaling at the hard edge of the spectrum [3].

3 Jacobi Symplectic Ensemble (JSE)

3.1 Finite N Case for the MGF in JSE

In this case, w(x) = (1 − x)a(1 + x)b, x ∈ [−1, 1], a, b > 0. The authors
[21] expressed G(4)

N (f ) as a Fredholm determinant based on the work of Dieng and
Tracy [10] and Tracy and Widom [27]. Define

ψ
(4)
j (x) := πj (x)

√
w(x), j = 0, 1, 2, . . . ,

where πj (x) is an arbitrary polynomial of degree j , and

M(4) :=
[∫ 1

−1

(
ψ
(4)
j (x)

d

dx
ψ
(4)
k (x)− ψ

(4)
k (x)

d

dx
ψ
(4)
j (x)

)
dx

]2N−1

j,k=0
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with its inverse denoted by

(
M(4)

)−1 =: (μjk)
2N−1
j,k=0.

It was shown in [21] that

[
G
(4)
N (f )

]2 = det
(
I + 2K(4)

N f − K
(4)
N εf ′) , (18)

where K(4)
N and ε are integral operators with kernel

K
(4)
N (x, y) := −

2N−1∑

j,k=0

μjkψ
(4)
j (x)

d

dy
ψ
(4)
k (y) (19)

and

ε(x, y) := 1

2
sgn(x − y),

respectively. We require that f ∈ C1[−1, 1] and vanishes at the endpoints ±1.

Remark 7 If g(x) is an integrable function on [−1, 1], then

εg(x) =
∫ 1

−1
ε(x, y)g(y)dy = 1

2

(∫ x

−1
g(y)dy −

∫ 1

x

g(y)dy

)
, x ∈ [−1, 1].

In addition, it is easy to see that ε(y, x) = −ε(x, y), i.e., εt = −ε, where t denotes
the transpose.

The fundamental theorem of calculus implies the following result [10]; see also
[21].

Lemma 1 Let D be the operator that acts by differentiation. Then for any function
g ∈ C1[−1, 1] and g(−1) = g(1) = 0, we have Dεg(x) = εDg(x) = g(x), i.e.,
Dε = εD = I .

Similarly to the discussions in [10, 21, 27], we choose a special ψ(4)
j to simplify

M(4) as much as possible. To proceed, let

ψ
(4)
2j+1(x) := 1√

2
(1 − x2)ϕ

(4)
2j+1(x), ψ

(4)
2j (x) := − 1√

2
εϕ

(4)
2j+1(x), j = 0, 1, 2, . . . ,
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where ϕ(4)j (x) is given by

ϕ
(4)
j (x) = P

(a−1,b−1)
j (x)
√
h
(a−1,b−1)
j

(1 − x)
a
2 −1(1 + x)

b
2 −1,

and P
(a−1,b−1)
j (x), j = 0, 1, . . . are the usual Jacobi polynomials with the

orthogonality condition

∫ 1

−1
P
(a−1,b−1)
j (x)P

(a−1,b−1)
k (x)(1 − x)a−1(1 + x)b−1dx = h

(a−1,b−1)
j δjk.

It can be shown that ψ(4)
j (x) is equal to (1 − x)a/2(1 + x)b/2 multiplied by a

polynomial of degree j . Similarly as the Laguerre symplectic ensemble case studied
in [21, Theorem 3.10], M(4) is computed to be the direct sum of N copies of(

0 1
−1 0

)
by using the orthogonality, namely

M(4) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 · · · 0 0
−1 0 0 0 · · · 0 0
0 0 0 1 · · · 0 0
0 0 −1 0 · · · 0 0
...

...
...

...
...

...

0 0 0 0 · · · 0 1
0 0 0 0 · · · −1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2N×2N

.

It follows that
(
M(4)

)−1 = −M(4), so μ2j,2j+1 = −1, μ2j+1,2j = 1, j =
0, 1, . . . , N − 1, and μjk = 0 for other cases.

Lemma 2 We have

K
(4)
N (x, y) = 1

2
S
(4)
N (x, y)+ 1

2
C
(4)
2Nεϕ

(4)
2N+1(x)ϕ

(4)
2N(y), (20)

where

C
(4)
2N =

√
(2N + 1)(2N + a)(2N + b)(2N + a + b − 1)

(4N + a + b + 1)(4N + a + b − 1)

and

S
(4)
N (x, y) =

2N∑

j=0

(1 − x2)ϕ
(4)
j (x)ϕ

(4)
j (y).
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Proof From (19) we find that K(4)
N (x, y) equals

N−1∑

j=0

ψ2j (x)ψ
′
2j+1(y)−

N−1∑

j=0

ψ2j+1(x)ψ
′
2j (y)

= 1

2

N−1∑

j=0

(1 − x2)ϕ
(4)
2j+1(x)ϕ

(4)
2j+1(y)− 1

2

N−1∑

j=0

εϕ
(4)
2j+1(x)

[
(1 − y2)ϕ

(4)
2j+1(y)

]′
.

By using the recurrence formulas for the Jacobi polynomials [25, Sec. 4.5]

(2n + a + b)(1 − x2)
d

dx
P (a,b)
n (x)

= n [a − b − (2n+ a + b)x]P (a,b)
n (x)+ 2(n + a)(n+ b)P

(a,b)
n−1 (x) (21)

and

(2n + a + b + 1)[(2n+ a + b)(2n+ a + b + 2)x + a2 − b2]P (a,b)
n (x)

= 2(n + 1)(n+ a + b + 1)(2n+ a + b)P
(a,b)
n+1 (x)

+ 2(n + a)(n+ b)(2n+ a + b + 2)P (a,b)
n−1 (x), (22)

we obtain

[
(1 − y2)ϕ

(4)
2j+1(y)

]′ = C
(4)
2j ϕ

(4)
2j (y)− C

(4)
2j+1ϕ

(4)
2j+2(y),

where

C
(4)
j :=

√
(j + 1)(j + a)(j + b)(j + a + b − 1)

(2j + a + b + 1)(2j + a + b − 1)
.

It follows that

K
(4)
N (x, y) = 1

2

N−1∑

j=0

(1 − x2)ϕ
(4)
2j+1(x)ϕ

(4)
2j+1(y)

+ 1

2

N∑

j=0

[
C
(4)
2j−1εϕ

(4)
2j−1(x)− C

(4)
2j εϕ

(4)
2j+1(x)

]
ϕ
(4)
2j (y)

+ 1

2
C
(4)
2Nεϕ

(4)
2N+1(x)ϕ

(4)
2N(y). (23)
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Using (21) and (22) again, we find

[
(1 − x2)ϕ

(4)
2j (x)

]′ = C
(4)
2j−1ϕ

(4)
2j−1(x)− C

(4)
2j ϕ

(4)
2j+1(x).

Then from Lemma 1 we have

(1 − x2)ϕ
(4)
2j (x) = ε

[
(1 − x2)ϕ

(4)
2j (x)

]′ = C
(4)
2j−1εϕ

(4)
2j−1(x)− C

(4)
2j εϕ

(4)
2j+1(x).

(24)

The combination of (23) and (24) gives

K
(4)
N (x, y) = 1

2

N−1∑

j=0

(1 − x2)ϕ
(4)
2j+1(x)ϕ

(4)
2j+1(y)+ 1

2

N∑

j=0

(1 − x2)ϕ
(4)
2j (x)ϕ

(4)
2j (y)

+ 1

2
C
(4)
2Nεϕ

(4)
2N+1(x)ϕ

(4)
2N(y)

= 1

2

2N∑

j=0

(1 − x2)ϕ
(4)
j (x)ϕ

(4)
j (y)+ 1

2
C
(4)
2Nεϕ

(4)
2N+1(x)ϕ

(4)
2N(y).

The proof is complete. ��

Theorem 5 For the Jacobi symplectic ensemble, we have

[
G
(4)
N (f )

]2 = det(I + TJSE), (25)

where

TJSE := S
(4)
N f−1

2
S
(4)
N εf ′+C

(4)
2N

(
εϕ

(4)
2N+1

)
⊗ϕ

(4)
2Nf+1

2
C
(4)
2N

(
εϕ

(4)
2N+1

)
⊗
(
εϕ

(4)
2N

)
f ′.

Proof Substituting K
(4)
N with the kernel given by (20) into (18), we obtain the

desired result with the aid of the property (u ⊗ v)A = u ⊗ (Atv) for integral
operators. ��

Finally we mention the following expansion formula

log det(I+TJSE) = Tr log(I+TJSE) = TrTJSE− 1

2
TrT 2

JSE+ 1

3
TrT 3

JSE−· · · , (26)

which will be used in the asymptotic analysis in the next subsections.
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3.2 Scaling in the Bulk of the Spectrum in JSE

Similarly as Theorem 1, we have the following theorem.

Theorem 6 For x, y ∈ R, we have as N → ∞,

1

2N
S
(4)
N

( x

2N
,
y

2N

)
= Ksine(x, y)+ O(N−1),

where Ksine(x, y) is the sine kernel given by (7). The error term is uniform for x and
y in compact subsets of R.

Theorem 7 For x ∈ R, we have as N → ∞,

ϕ
(4)
2N

( x

2N

)
=
√

2

π
sin

[
1

4

(
π + 2πa − 2(4N − 1 + a + b) arccos

x

2N

)]
+ O(N−1),

ϕ
(4)
2N+1

( x

2N

)
=
√

2

π
sin

[
1

4

(
π + 2πa − 2(4N + 1 + a + b) arccos

x

2N

)]
+ O(N−1),

εϕ
(4)
2N

( x

2N

)
= 1

2N
√

2π

{
sin

[
1

4

(
π + 2πa − 2(4N + 1 + a + b) arccos

x

2N

)]

− sin

[
1

4

(
π + 2πa − 2(4N − 3 + a + b) arccos

x

2N

)]}
+ O(N−2),

εϕ
(4)
2N+1

( x

2N

)
= 1

2N
√

2π

{
sin

[
1

4

(
π + 2πa − 2(4N + 3 + a + b) arccos

x

2N

)]

− sin

[
1

4

(
π + 2πa − 2(4N − 1 + a + b) arccos

x

2N

)]}
+ O(N−2).

The error terms are uniform for x in compact subsets of R.

Proof By using the asymptotic formula of the Jacobi polynomials (9), we obtain
the desired results after direct calculations. ��

Remark 8 It is easy to see from the above theorem that as N → ∞,

ϕ
(4)
2N

( x

2N

)
= O(1), ϕ

(4)
2N+1

( x

2N

)
= O(1),

εϕ
(4)
2N

( x

2N

)
= O(N−1), εϕ

(4)
2N+1

( x

2N

)
= O(N−1),

uniformly for x in compact subsets of R.
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We now use Theorems 6 and 7 to compute (26) as N → ∞, and change f (x)
to f (2Nx) in the calculations (in this case f ′(x) becomes 2Nf ′(2Nx)). We first
consider Tr TJSE:

Tr TJSE = Tr S(4)N f − Tr
1

2
S
(4)
N εf ′ + Tr C(4)

2N

(
εϕ

(4)
2N+1

)
⊗ ϕ

(4)
2Nf

+ Tr
1

2
C
(4)
2N

(
εϕ

(4)
2N+1

)
⊗
(
εϕ

(4)
2N

)
f ′. (27)

The first term gives

Tr S(4)N f =
∫ 1

−1
S
(4)
N (x, x)f (2Nx)dx

=
∫ 2N

−2N

1

2N
S
(4)
N

( x

2N
,
x

2N

)
f (x)dx

=
∫ ∞

−∞
Ksine(x, x)f (x)dx + O(N−1), N → ∞.

Remark 9 We assume that f (·) is smooth and sufficiently decreasing at ±∞ to
make the integrals well-defined.

It can be shown that the rest terms have contributions of O(N−1), where we have
used the fact

∫ ∞

x

Ksine(x, y)dy −
∫ x

−∞
Ksine(x, y)dy = 0

in the calculation of Tr 1
2S

(4)
N εf ′. Hence,

Tr TJSE =
∫ ∞

−∞
Ksine(x, x)f (x)dx + O(N−1). (28)

Next, we consider Tr T 2
JSE:

Tr T 2
JSE = Tr

(
S
(4)
N f

)2 − Tr S(4)N f S
(4)
N εf ′ + Tr 2C(4)

2NS
(4)
N f

(
εϕ

(4)
2N+1 ⊗ ϕ

(4)
2N

)
f

+ Tr C(4)
2NS

(4)
N f

(
εϕ

(4)
2N+1 ⊗ εϕ

(4)
2N

)
f ′ + Tr

1

4

(
S
(4)
N εf ′)2

− Tr C(4)
2NS

(4)
N εf ′ (εϕ(4)2N+1 ⊗ ϕ

(4)
2N

)
f − Tr

1

2
C
(4)
2NS

(4)
N εf ′ (εϕ(4)2N+1 ⊗ εϕ

(4)
2N

)
f ′

+ Tr
(
C
(4)
2N

)2 (
εϕ

(4)
2N+1 ⊗ ϕ

(4)
2Nf

)2 + Tr
1

4

(
C
(4)
2N

)2 (
εϕ

(4)
2N+1 ⊗ εϕ

(4)
2Nf

′)2

+ Tr
(
C
(4)
2N

)2 (
εϕ

(4)
2N+1 ⊗ ϕ

(4)
2Nf

) (
εϕ

(4)
2N+1 ⊗ εϕ

(4)
2Nf

′) . (29)
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We find as N → ∞,

Tr
(
S
(4)
N f

)2 =
∫ ∞

−∞

∫ ∞

−∞
K2

sine(x, y)f (x)f (y)dxdy + O(N−1),

Tr S(4)N f S
(4)
N εf ′ = − 1

2π2

∫ ∞

−∞

∫ ∞

−∞
Si2(x − y)f ′(x)f ′(y)dxdy + O(N−1),

Tr
1

4

(
S
(4)
N εf ′)2 = − 1

4π2

∫ ∞

−∞

∫ ∞

−∞
Si2(x − y)f ′(x)f ′(y)dxdy + O(N−1),

where we have used integration by parts to obtain the second equality and the
formula

∫ x

−∞
Ksine(y, z)dz −

∫ ∞

x

Ksine(y, z)dz = 2

π
Si(x − y),

and Si(x) is the sine integral defined by

Si(x) :=
∫ x

0

sin t

t
dt,

which can be found in Lebedev’s famous book [17, Sec. 3.3].
The rest terms in (29) are proven to have contributions of O(N−1) after some

elaborate computations. Hence,

Tr T 2
JSE =

∫ ∞

−∞

∫ ∞

−∞
K2

sine(x, y)f (x)f (y)dxdy

+ 1

4π2

∫ ∞

−∞

∫ ∞

−∞
Si2(x − y)f ′(x)f ′(y)dxdy + O(N−1). (30)

Proceeding as in the JUE case, we substitute (11) into (28) and (30) and finally
heuristically obtain from (26) that

log det(I + TJSE) = −λ

∫ ∞

−∞
Ksine(x, x)F(x)dx + λ2

2

[ ∫ ∞

−∞
Ksine(x, x)F

2(x)dx

−
∫ ∞

−∞

∫ ∞

−∞
K2

sine(x, y)F(x)F(y)dxdy

− 1

4π2

∫ ∞

−∞

∫ ∞

−∞
Si2(x − y)F ′(x)F ′(y)dxdy

]
+ · · · +O(N−1).

Since we have logG(4)
N (f ) = 1

2 log det(I + TJSE) from (25), the following theorem
follows.
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Theorem 8 Let μ(JSE)
N and V (JSE)

N be the mean and variance of the scaled linear

statistics
∑N

j=1 F(2Nxj ). We have as N → ∞,

μ
(JSE)
N = 1

2
μ
(JUE)
N +O(N−1),

V (JSE)
N = 1

2
V (JUE)
N − 1

8π2

∫ ∞

−∞

∫ ∞

−∞
Si2(x − y)F ′(x)F ′(y)dxdy +O(N−1),

where μ(JUE)
N and V (JUE)

N are given by (12) and (13), respectively.

3.3 Scaling at the Edge of the Spectrum in JSE

Similarly as Theorem 3, we have the following result.

Theorem 9 For x, y ∈ R
+, we have as N → ∞,

1

8N2
S
(4)
N

(
1 − x

8N2
, 1 − y

8N2

)
=
√
x

y
K

(a−1)
Bessel(x, y)+ O(N−1),

where K(a−1)
Bessel (x, y) is the Bessel kernel of order a − 1 given by

K
(a−1)
Bessel(x, y) = Ja−1(

√
x)

√
yJ ′

a−1(
√
y)− J ′

a−1(
√
x)

√
xJa−1(

√
y)

2(x − y)
.

The error term is uniform for x and y in compact subsets of R+.

Theorem 10 For x ∈ R
+, we have as N → ∞,

ϕ
(4)
2N

(
1 − x

8N2

)
= (2N)3/2 Ja−1(

√
x)√

x
+O(N1/2),

ϕ
(4)
2N+1

(
1 − x

8N2

)
= (2N)3/2 Ja−1(

√
x)√

x
+ O(N1/2),

εϕ
(4)
2N

(
1 − x

8N2

)
= 2−3/2N−1/2 (1 − 2Ja−1(

√
x)
)+O(N−3/2),

εϕ
(4)
2N+1

(
1 − x

8N2

)
= 2−3/2N−1/2 (1 − 2Ja−1(

√
x)
)+ O(N−3/2),



Global and Local Scaling Limits for Linear Eigenvalue Statistics of Jacobi β-Ensembles 549

where

Ja−1(x) :=
∫ x

0
Ja−1(t)dt. (31)

The error terms are uniform for x in compact subsets of R+.

Proof The results come from direct computations by using the large n Hilb-type
asymptotic formula of the Jacobi polynomials (15), and the formula

∫ ∞

x

Ja−1(
√
y)√

y
dy −

∫ x

0

Ja−1(
√
y)√

y
dy = 2

(
1 − 2Ja−1(

√
x)
)
,

where use has been made of the fact that
∫∞

0 Ja−1(t)dt = 1 (see, e.g., [14, p. 659]).
��

Using Theorems 9 and 10 to compute (27) term by term and changing f (x) to
f (8N2(1 − x)), we find

Tr S(4)N f =
∫ ∞

0
K

(a−1)
Bessel (x, x)f (x)dx + O(N−1),

Tr
1

2
S
(4)
N εf ′ = −1

4

∫ ∞

0
L(a−1)(x, x)f ′(x)dx +O(N−1),

Tr C(4)
2N

(
εϕ

(4)
2N+1

)
⊗ ϕ

(4)
2Nf = 1

8

∫ ∞

0

Ja−1(
√
x)√

x

(
1 − 2Ja−1(

√
x)
)
f (x)dx +O(N−1),

Tr
1

2
C
(4)
2N

(
εϕ

(4)
2N+1

)
⊗
(
εϕ

(4)
2N

)
f ′ = − 1

16

∫ ∞

0

(
1 − 2Ja−1(

√
x)
)2
f ′(x)dx +O(N−1),

where

L(a−1)(x, y) :=
∫ x

0

√
y

z
K

(a−1)
Bessel (y, z)dz−

∫ ∞

x

√
y

z
K

(a−1)
Bessel(y, z)dz. (32)

Remark 10 We assume that f (·) is smooth and sufficiently decreasing at infinity to
make the integrals well-defined.

Through integration by parts, we have the formula

∫ ∞

0

(
1 − 2Ja−1(

√
x)
)2
f ′(x)dx = 2

∫ ∞

0

Ja−1(
√
x)√

x

(
1 − 2Ja−1(

√
x)
)
f (x)dx.
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It follows that

Tr TJSE =
∫ ∞

0
K

(a−1)
Bessel (x, x)f (x)dx

+ 1

4

∫ ∞

0
L(a−1)(x, x)f ′(x)dx +O(N−1). (33)

Similarly, we obtain from (29) by changing f (x) to f (8N2(1 − x)) that Tr T 2
JSE

equals
∫ ∞

0

∫ ∞

0

(
K

(a−1)
Bessel(x, y)

)2
f (x)f (y)dxdy

+1

2

∫ ∞

0

∫ ∞

0

√
x

y
K

(a−1)
Bessel(x, y)L

(a−1)(x, y)f ′(x)f (y)dxdy

+1

4

∫ ∞

0

∫ ∞

0

Ja−1(
√
x)√

y
K

(a−1)
Bessel(x, y)

(
1 − 2Ja−1(

√
x)
)
f (x)f (y)dxdy

+ 1

16

∫ ∞

0

∫ ∞

0
L(a−1)(x, y)L(a−1)(y, x)f ′(x)f ′(y)dxdy

− 1

16

∫ ∞

0

∫ ∞

0

Ja−1(
√
x)√

x

(
1 − 2Ja−1(

√
y)
) (

L(a−1)(x, y) − L(a−1)(y, x)
)
f (x)f ′(y)dxdy

+ 1

32

∫ ∞

0

∫ ∞

0

(
1 − 2Ja−1(

√
x)
) (

1 − 2Ja−1(
√
y)
)
L(a−1)(x, y)f ′(x)f ′(y)dxdy

+O(N−1), (34)

where we have used integration by parts to simplify the results.
Similarly as in Sect. 3.2, by substituting (11) into (33) and (34) and using the

fact that logG(4)
N (f ) = 1

2 log det(I + TJSE), we heuristically obtain the following
theorem.

Theorem 11 Denoting by μ̃
(JSE)
N and Ṽ (JSE)

N the mean and variance of the linear

statistics
∑N

j=1 F(8N
2(1 − xj )), we have as N → ∞,

μ̃
(JSE)
N = 1

2
μ̃
(JUE,a−1)
N + 1

8

∫ ∞

0
L(a−1)(x, x)F ′(x)dx +O(N−1),

Ṽ (JSE)
N = 1

2
Ṽ (JUE,a−1)
N − 1

4

∫ ∞

0

∫ ∞

0

√
x

y
K

(a−1)
Bessel(x, y)L

(a−1)(x, y)F ′(x)F (y)dxdy

− 1

8

∫ ∞

0

∫ ∞

0

Ja−1(
√
x)√

y
K

(a−1)
Bessel(x, y)

(
1 − 2Ja−1(

√
x)
)
F(x)F (y)dxdy

+ 1

32

∫ ∞

0

∫ ∞

0

Ja−1(
√
x)√

x

(
1 − 2Ja−1(

√
y)
) (

L(a−1)(x, y) − L(a−1)(y, x)
)

F(x)F ′(y)dxdy − 1

32

∫ ∞

0

∫ ∞

0
L(a−1)(x, y)L(a−1)(y, x)F ′(x)F ′(y)dxdy
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− 1

64

∫ ∞

0

∫ ∞

0

(
1 − 2Ja−1(

√
x)
) (

1 − 2Ja−1(
√
y)
)
L(a−1)(x, y)

F ′(x)F ′(y)dxdy + 1

4

∫ ∞

0
L(a−1)(x, x)F (x)F ′(x)dx +O(N−1),

where μ̃(JUE,a−1)
N and Ṽ (JUE,a−1)

N are given by (16) and (17) with a replaced by a− 1,
and Ja−1(x) and L(a−1)(x, y) are defined by (31) and (32) respectively.

4 Jacobi Orthogonal Ensemble (JOE)

4.1 Finite N Case for the MGF in JOE

In the JOE case, we take the weight w(x) to be w(x) = (1 − x)a/2(1 + x)b/2, x ∈
[−1, 1], a, b > −2 for convenience. We assume that N is even. The authors [21]
expressed G

(1)
N (f ) as a Fredholm determinant based on [10, 27]. Let

ψ
(1)
j (x) := πj (x)w(x), j = 0, 1, 2, . . . ,

where πj (x) is an arbitrary polynomial of degree j , and

M(1) :=
(∫ 1

−1
ψ
(1)
j (x)εψ

(1)
k (x)dx

)N−1

j,k=0

with its inverse denoted by

(
M(1)

)−1 =: (νjk)N−1
j,k=0.

It was shown in [21] that

[
G
(1)
N (f )

]2 = det
(
I +K

(1)
N (f 2 + 2f ) −K

(1)
N εf ′ −K

(1)
N f εf ′) , (35)

where K(1)
N is the integral operator with kernel

K
(1)
N (x, y) :=

N−1∑

j,k=0

νjkεψ
(1)
j (x)ψ

(1)
k (y). (36)

We also require that f ∈ C1[−1, 1] and vanishes at the endpoints ±1.
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Similarly as the discussions in Sect. 3.1, we can choose a special ψ(1)
j to simplify

M(1) as the direct sum of N/2 copies of
(

0 1
−1 0

)
. Let

ψ
(1)
2j+1(x) = d

dx

[
(1 − x2)ϕ

(1)
2j (x)

]
, ψ

(1)
2j (x) = ϕ

(1)
2j (x), j = 0, 1, 2, . . . ,

where ϕ(1)j (x) is given by

ϕ
(1)
j (x) = P

(a+1,b+1)
j (x)
√
h
(a+1,b+1)
j

(1 − x)a/2(1 + x)b/2,

and P
(a+1,b+1)
j (x), j = 0, 1, . . . are the Jacobi polynomials with the orthogonality

condition

∫ 1

−1
P
(a+1,b+1)
j (x)P

(a+1,b+1)
k (x)(1 − x)a+1(1 + x)b+1dx = h

(a+1,b+1)
j δjk.

It is easy to see that ψ(1)
j (x) is equal to (1 − x)a/2(1 + x)b/2 multiplied by a

polynomial of degree j . Moreover, M(1) is computed to be

M(1) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 · · · 0 0
−1 0 0 0 · · · 0 0
0 0 0 1 · · · 0 0
0 0 −1 0 · · · 0 0
...

...
...

...
...

...

0 0 0 0 · · · 0 1
0 0 0 0 · · · −1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

N×N

.

It follows that
(
M(1)

)−1 = −M(1), so ν2j,2j+1 = −1, ν2j+1,2j = 1 and νjk = 0 for
other cases.

Lemma 3 We have

K
(1)
N (x, y) = S

(1)
N (x, y)+ C

(1)
N εϕ

(1)
N (x)ϕ

(1)
N−1(y), (37)

where

C
(1)
N =

√
N(N + a + 1)(N + b + 1)(N + a + b + 2)

(2N + a + b + 1)(2N + a + b + 3)

and
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S
(1)
N (x, y) =

N−1∑

j=0

(1 − x2)ϕ
(1)
j (x)ϕ

(1)
j (y).

Proof According to (36), we find that K(1)
N (x, y) equals

N
2 −1∑

j=0

εψ
(1)
2j+1(x)ψ

(1)
2j (y)−

N
2 −1∑

j=0

εψ
(1)
2j (x)ψ

(1)
2j+1(y)

=
N
2 −1∑

j=0

(1 − x2)ϕ
(1)
2j (x)ϕ

(1)
2j (y)−

N
2 −1∑

j=0

εϕ
(1)
2j (x)

[
(1 − y2)ϕ

(1)
2j (y)

]′
. (38)

In view of the recurrence formulas for the Jacobi polynomials (21) and (22), we find

[
(1 − y2)ϕ

(1)
2j (y)

]′ = C
(1)
2j ϕ

(1)
2j−1(y)− C

(1)
2j+1ϕ

(1)
2j+1(y),

where

C
(1)
j :=

√
j (j + a + 1)(j + b + 1)(j + a + b + 2)

(2j + a + b + 1)(2j + a + b + 3)
.

Then (38) becomes

K
(1)
N (x, y) =

N
2 −1∑

j=0

(1 − x2)ϕ
(1)
2j (x)ϕ

(1)
2j (y) + C

(1)
N εϕ

(1)
N (x)ϕ

(1)
N−1(y)

+
N
2∑

j=1

[
C
(1)
2j−1εϕ

(1)
2j−2(x)− C

(1)
2j εϕ

(1)
2j (x)

]
ϕ
(1)
2j−1(y). (39)

Using (21) and (22) again, we have

[
(1 − x2)ϕ

(1)
2j−1(x)

]′ = C
(1)
2j−1ϕ

(1)
2j−2(x)− C

(1)
2j ϕ

(1)
2j (x).

It follows from Lemma 1 that

(1 − x2)ϕ
(1)
2j−1(x) = ε

[
(1 − x2)ϕ

(1)
2j−1(x)

]′ = C
(1)
2j−1εϕ

(1)
2j−2(x) − C

(1)
2j εϕ

(1)
2j (x).

(40)
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The combination of (39) and (40) produces

K
(1)
N (x, y) =

N
2 −1∑

j=0

(1 − x2)ϕ
(1)
2j (x)ϕ

(1)
2j (y)+

N
2∑

j=1

(1 − x2)ϕ
(1)
2j−1(x)ϕ

(1)
2j−1(y)

+ C
(1)
N εϕ

(1)
N (x)ϕ

(1)
N−1(y)

=
N−1∑

j=0

(1 − x2)ϕ
(1)
j (x)ϕ

(1)
j (y)+ C

(1)
N εϕ

(1)
N (x)ϕ

(1)
N−1(y).

The theorem is then established. ��

Theorem 12 For the Jacobi orthogonal ensemble, we have

[
G
(1)
N (f )

]2 = det(I + TJOE),

where

TJOE : = S
(1)
N (f 2 + 2f ) − S

(1)
N εf ′ − S

(1)
N f εf ′ + C

(1)
N

(
εϕ

(1)
N

)
⊗ ϕ

(1)
N−1(f

2 + 2f )

+ C
(1)
N

(
εϕ

(1)
N

)
⊗
(
εϕ

(1)
N−1

)
f ′ − C

(1)
N

(
εϕ

(1)
N

)
⊗ ϕ

(1)
N−1f εf

′. (41)

Proof Substituting (37) into (35), we obtain the desired result. ��
The amenable expression of G(1)

N (f ) in the above theorem will allow us to study
its large N asymptotics in the next subsections by using the expansion formula

log det(I+TJOE) = Tr log(I+TJOE) = TrTJOE− 1

2
TrT 2

JOE+ 1

3
TrT 3

JOE−· · · . (42)

4.2 Scaling in the Bulk of the Spectrum in JOE

Similarly as Theorems 6 and 7, we have the following two theorems.

Theorem 13 For x, y ∈ R, we have as N → ∞,

1

N
S
(1)
N

( x
N
,
y

N

)
= Ksine(x, y)+ O(N−1),

uniformly for x and y in compact subsets of R.

Theorem 14 For x ∈ R, we have as N → ∞,
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ϕ
(1)
N

( x
N

)
= −

√
2

π
sin

[
1

4

(
π + 2πa − 2(2N + 3 + a + b) arccos

x

N

)]
+ O(N−1),

ϕ
(1)
N−1

( x
N

)
= −

√
2

π
sin

[
1

4

(
π + 2πa − 2(2N + 1 + a + b) arccos

x

N

)]
+ O(N−1),

εϕ
(1)
N

( x
N

)
= 1

N
√

2π

{
sin

[
1

4

(
π + 2πa − 2(2N + 1 + a + b) arccos

x

N

)]

− sin

[
1

4

(
π + 2πa − 2(2N + 5 + a + b) arccos

x

N

)]}
+ O(N−2),

εϕ
(1)
N−1

( x
N

)
= 1

N
√

2π

{
sin

[
1

4

(
π + 2πa − 2(2N − 1 + a + b) arccos

x

N

)]

− sin

[
1

4

(
π + 2πa − 2(2N + 3 + a + b) arccos

x

N

)]}
+O(N−2).

The error terms are uniform for x in compact subsets of R.

Using Theorems 13 and 14 to compute Tr TJOE and Tr T 2
JOE from (41), and

changing f (x) to f (Nx), we find that Tr TJOE and Tr T 2
JOE equal

∫ ∞

−∞
Ksine(x, x)

(
f 2(x)+ 2f (x)

)
dx

− 1

2

∫ ∞

−∞

[∫ ∞

−∞
(
1 − 2χ(−∞,x)(y)

)
Ksine(x, y)f (y)dy

]
f ′(x)dx + O(N−1)

and
∫ ∞

−∞

∫ ∞

−∞
K2

sine(x, y)
(
f 2(x) + 2f (x)

) (
f 2(y) + 2f (y)

)
dxdy

−
∫ ∞

−∞

∫ ∞

−∞
Ksine(x, y)

[∫ ∞

−∞
(
1 − 2χ(−∞,x)(z)

)
Ksine(y, z)f (z)dz

]

f ′(x)
(
f 2(y) + 2f (y)

)
dxdy + 1

π2

∫ ∞

−∞

∫ ∞

−∞
Si2(x − y)f ′(x)f ′(y)(2f (y) + 1)dxdy

+ 1

π

∫ ∞

−∞

∫ ∞

−∞
Si(x − y)

[∫ ∞

−∞
(
1 − 2χ(−∞,x)(z)

)
Ksine(y, z)f (z)dz

]
f ′(x)f ′(y)dxdy

+ 1

4

∫ ∞

−∞

∫ ∞

−∞

[∫ ∞

−∞
(
1 − 2χ(−∞,x)(z)

)
Ksine(y, z)f (z)dz

]

[∫ ∞

−∞
(
1 − 2χ(−∞,y)(u)

)
Ksine(x, u)f (u)du

]
f ′(x)f ′(y)dxdy +O(N−1)
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respectively, where we have used integration by parts and χJ (x) is the characteristic
function of the interval J , i.e., χJ (x) = 1 for x ∈ J and 0 otherwise.

Remark 11 We assume that f (·) is smooth and sufficiently decreasing at ±∞ to
make the integrals well-defined.

With the relation of f (x) and F(x) in (11), we find from (42) that

log det(I + TJOE) = −2λ
∫ ∞
−∞

Ksine(x, x)F(x)dx + λ2

2

{
4
∫ ∞
−∞

Ksine(x, x)F
2(x)dx

−
∫ ∞
−∞

[∫ ∞
−∞

(
1 − 2χ(−∞,x)(y)

)
Ksine(x, y)F(y)dy

]
F ′(x)dx

− 4
∫ ∞
−∞

∫ ∞
−∞

K2
sine(x, y)F(x)F(y)dxdy

− 1

π2

∫ ∞
−∞

∫ ∞
−∞

Si2(x − y)F ′(x)F ′(y)dxdy
}

+ · · · + O(N−1).

Taking account of the fact that logG(1)
N (f ) = 1

2 log det(I +TJOE) from Theorem 12,
we have the following heuristic result.

Theorem 15 Lettingμ(JOE)
N and V (JOE)

N be the mean and variance of the scaled linear

statistics
∑N

j=1 F(Nxj ), we have as N → ∞,

μ
(JOE)
N = μ

(JUE)
N +O(N−1),

V (JOE)
N = 2V (JUE)

N − 1

2

∫ ∞

−∞

[∫ ∞

−∞
(
1 − 2χ(−∞,x)(y)

)
Ksine(x, y)F(y)dy

]
F ′(x)dx

− 1

2π2

∫ ∞

−∞

∫ ∞

−∞
Si2(x − y)F ′(x)F ′(y)dxdy + O(N−1),

where μ(JUE)
N and V (JUE)

N are given by (12) and (13), respectively.

4.3 Scaling at the Edge of the Spectrum in JOE

Similarly as Theorems 9 and 10, we have the following results.

Theorem 16 For x, y ∈ R
+, we have as N → ∞,

1

2N2 S
(1)
N

(
1 − x

2N2 , 1 − y

2N2

)
=
√
x

y
K

(a+1)
Bessel(x, y)+ O(N−1),



Global and Local Scaling Limits for Linear Eigenvalue Statistics of Jacobi β-Ensembles 557

where K(a+1)
Bessel (x, y) is the Bessel kernel of order a + 1 given by

K
(a+1)
Bessel(x, y) = Ja+1(

√
x)

√
yJ ′

a+1(
√
y)− J ′

a+1(
√
x)

√
xJa+1(

√
y)

2(x − y)
.

The error term is uniform for x and y in compact subsets of R+.

Theorem 17 For x ∈ R
+, we have as N → ∞,

ϕ
(1)
N

(
1 − x

2N2

)
= N3/2 Ja+1(

√
x)√

x
+O(N1/2),

ϕ
(1)
N−1

(
1 − x

2N2

)
= N3/2 Ja+1(

√
x)√

x
+ O(N1/2),

εϕ
(1)
N

(
1 − x

2N2

)
= 2−1N−1/2 (1 − 2Ja+1(

√
x)
) +O(N−3/2),

εϕ
(1)
N−1

(
1 − x

2N2

)
= 2−1N−1/2 (1 − 2Ja+1(

√
x)
)+ O(N−3/2),

where

Ja+1(x) =
∫ x

0
Ja+1(t)dt. (43)

The error terms are uniform for x in compact subsets of R+.

Using Theorems 16 and 17 to compute Tr TJOE and Tr T 2
JOE from (41), and

changing f (x) to f (2N2(1 − x)), we obtain the next theorem following the similar
heuristic procedure in Sect. 4.2. (We assume that f (·) is smooth and sufficiently
decreasing at infinity.)

Theorem 18 Denoting by μ̃
(JOE)
N and Ṽ (JOE)

N the mean and variance of the linear

statistics
∑N

j=1 F(2N
2(1 − xj )), we have as N → ∞,

μ̃
(JOE)
N = μ̃

(JUE,a+1)
N + 1

4

∫ ∞

0
L(a+1)(x, x)F ′(x)dx +O(N−1),

Ṽ(JOE)
N = 2Ṽ(JUE,a+1)

N + 1

2

∫ ∞
0

L(a+1)(x, x)F(x)F ′(x)dx

− 1

2

∫ ∞
0

[∫ ∞
0

(
1 − 2χ(0,x)(y)

)√x

y
K
(a+1)
Bessel(x, y)F(y)dy

]
F ′(x)dx

− 1

16

∫ ∞
0

[∫ ∞
0

(
1 − 2χ(0,x)(y)

) Ja+1(
√
y)√

y
F(y)dy

]
Ja+1(

√
x)√

x
F(x)dx
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− 1

2

∫ ∞
0

∫ ∞
0

Ja+1(
√
x)√

y
K
(a+1)
Bessel(x, y)

(
1 − 2Ja+1(

√
y)
)
F(x)F(y)dxdy

+ 1

8

∫ ∞
0

∫ ∞
0

Ja+1(
√
x)√

x

(
1 − 2Ja+1(

√
y)
) (

L(a+1)(x, y) − L(a+1)(y, x)
)

F(x)F ′(y)dxdy − 1

8

∫ ∞
0

∫ ∞
0

L(a+1)(x, y)L(a+1)(y, x)F ′(x)F ′(y)dxdy

− 1

16

∫ ∞
0

∫ ∞
0

(
1 − 2Ja+1(

√
x)
) (

1 − 2Ja+1(
√
y)
)
L(a+1)(x, y)F ′(x)F ′(y)dxdy

−
∫ ∞

0

∫ ∞
0

√
x

y
K
(a+1)
Bessel(x, y)L

(a+1)(x, y)F ′(x)F(y)dxdy + O(N−1),

where

L(a+1)(x, y) =
∫ x

0

√
y

z
K

(a+1)
Bessel (y, z)dz−

∫ ∞

x

√
y

z
K

(a+1)
Bessel (y, z)dz,

Ja+1(x) is defined in (43) and μ̃
(JUE,a+1)
N and Ṽ (JUE,a+1)

N are given by (16) and (17)
with a replaced by a + 1.

Remark 12 We have used integration by parts to simplify the results in the above
theorem.
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On the Limit of Some
Variable-Coefficient Toeplitz-Like
Determinants

Bin Shao

In Memory of Harold Widom

Abstract The focus of this paper is to extend a limit theorem due to Tracy and
Widom which describes the asymptotics of the determinants of a certain class
of finite-rank perturbation of Toeplitz matrices. More precisely, we compute the
asymptotics of the determinants of the (m+N+1)×(m+N+1)variable-coefficient
Toeplitz-like matrices whose (j, k)-entries are given by

σpj−qk

(
rj

m+ N

)
:= 1

2π

∫ 2π

0
σ

(
rj

m + N
, eiθ

)
e−i(pj−qk)θ dθ.

Here {pj }∞j=0, {qj }∞j=0 and {rj }∞j=0 are sequences of integers satisfying pj = qj =
rj = j for j sufficiently large, say j ≥ m, as well as rj ≥ 0 for all 0 ≤ j <

m. Under some smoothness assumption on the function σ : [0, 1] × T → C, we
determine the limit of the ratio between the determinants of these matrices and the
usual variable-coefficient Toeplitz matrices (m = 0):

lim
N→∞

det
(
σpj−qk

(
rj

m+N

))

j,k=0,1,...,m+N

det
(
σj−k

(
j
N

))

j,k=0,1,...,N

.

In comparison to the pure Toeplitz case of Tracy and Widom, a new feature appears
in the limit.
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1 Introduction

Let T = {z ∈ C : |z| = 1} be the unit circle in the complex plane, let σ
be a complex-valued, essentially bounded function defined on [0, 1] × T with the
identification σ(x, θ) := σ(x, eiθ ), and let

σj (x) = 1

2π

∫ 2π

0
σ(x, θ)e−ijθ dθ, x ∈ [0, 1], j ∈ Z,

denote the j -th variable-dependent Fourier coefficient of σ . For a given integer m ≥
0, and given sequences of integers {pj }∞j=0, {qj }∞j=0, and {rj }∞j=0, satisfying the
conditions

(i) pj = qj = rj = j for all j ≥ m and
(ii) rj ≥ 0 for all 0 ≤ j < m,

we consider the following (m+ N + 1)× (m + N + 1) matrices

Mσ
m+N :=

(
σpj−qk

(
rj

m+ N

))

j,k=0,1,...,m+N

,

whose determinant asymptotics will be the subject of this paper. We note that the
above conditions imply that 0 ≤ rj

m+N
≤ 1 for all 0 ≤ j ≤ m + N whenever

N is sufficiently large, say N ≥ N0. Hence these matrices are well-defined for all
N ≥ N0.1

In the case m = 0, the matrix Mσ
m+N reduces to the ordinary (N + 1)× (N + 1)

variable-coefficient Toeplitz matrix2

opNσ :=
(
σj−k

(
j

N

))

j,k=0,1,...,N
.

If σ is independent of x, i.e., σ(θ) = σ(θ, x), then opNσ further reduces to the pure
(N + 1)× (N + 1) Toeplitz matrix3

TN(σ) = (
σj−k

)
j,k=0,1,...,N ,

1 To ensure that the matrices are well-defined for all N ≥ 1, one needs to replace the condition (ii)
by the requirement that 0 ≤ rj ≤ m + 1 for all 0 ≤ j < m.
2 The matrix opNσ can be interpreted as the discrete analogue of a class of pseudo-differential
operators. The notation opασ (for a large parameter α) appears in the early work of Widom
on asymptotic expansions for pseudo-differential operators on bounded domains (see [8–10] for
historical references).
3 In many (but not all) publications, including [6], the notation TN(σ ) is used to denote the Toeplitz
matrix of size N × N . Here we deviate from this convention in order to view TN(σ ) as a special
case of opNσ .
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whose determinant has been the subject of numerous investigations (see, e.g.,
[2] for historical background and details). In particular, for sufficiently smooth
nonvanishing functions σ with winding number zero, the asymptotics of detTN(σ)
is given by the well-known Szegő-Widom limit theorem,

detTN(σ) ∼ G[σ ]N+1E[σ ] as N → ∞,

where

G[σ ] = exp([log σ ]0), E[σ ] = exp

( ∞∑

k=1

k[log σ ]k[log σ ]−k

)
. (1)

The asymptotics of Toeplitz determinants have important applications in statistical
physics and in random matrix theory.

The asymptotics of the determinants of Mσ
m+N in the case when σ is independent

of x were considered by Tracy and Widom [6] in 2002 for the first time. Notice that
the Fourier coefficients σj = σj (x) are also independent of x, and the matrices
Mσ

m+N become

Mσ
m+N =

(
σpj−qk

)

j,k=0,1,...,m+N
,

where the integer sequences {pj } and {qj } are subject to condition (i) above. More
precisely, Tracy and Widom proved that the ratio between these determinants and
ordinary Toeplitz determinants converges to a limit,

lim
N→∞

detMσ
m+N

detTN(σ)
= det

( ∞∑

k=1

σ−
pi+k−m σ+

−qj−k+m

)

i,j=0,1,...,m−1

, (2)

provided that σ belongs to a suitable class of function on the unit circle. Therein,
σ = σ−σ+ is the Wiener-Hopf factorization of σ , and the Fourier coefficients of
the Wiener-Hopf factors σ± are denoted by σ±

j . Notice that the sum in (2) has only
finitely many terms since the Fourier coefficients of the Wiener-Hopf factors vanish
for k sufficiently large.

The asymptotics of the above determinants of Mσ
m+N in the x-independent case

has attracted the attention of further researchers. Indeed, using a different approach
the same asymptotics stated in a very different form was independently established
by Bump and Diaconis [3].

The aim of this paper is to obtain a variable-coefficient generalization of the
Tracy-Widom limit formula (2). Our main result will be Theorem 2.1, which states
that under certain assumptions on σ ,

lim
N→∞

detMσ
m+N

det opNσ
= Km[σ ] · Fm[σ ], (3)
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where the constant

Fm[σ ] = det

( ∞∑

k=1

σ−
pi+k−m(0) σ

+
−qj−k+m(0)

)

0≤i,j≤m−1

(4)

resembles the one in (2) (see (17) below for the definition of the Wiener-Hopf
factors), while the constant

Km[σ ] = exp

(
m

2π

∫ 2π

0

∫ 1

0
log

σ(x, θ)

σ (0, θ)
dx dθ

)
(5)

appears as a new feature.
The asymptotics of the determinant of opNσ has been determined by the author

and Ehrhardt [4]. Under certain assumptions on σ , it is given by the following
variable-coefficient version of the strong Szegő-Widom limit theorem,

det opNσ ∼ G[σ ]N+1E[σ ] as N → ∞, (6)

where, in contrast to (1),

G[σ ] = exp

(
1

2π

∫ 1

0

∫ 2π

0
log σ(x, θ) dθ dx

)
,

E[σ ] = exp

(
1

2

∞∑

k=1

k [log σ(0, θ)]k[log σ(0, θ)]−k

)

× exp

(
1

2

∞∑

k=1

k [log σ(1, θ)]k[log σ(1, θ)]−k

)

× exp

(
1

2

∫ 1

0

( ∞∑

k=−∞
k [log σ(x, θ)]k[(∂x log σ)(x, θ)]−k

)
dx

)

× exp

(
1

4π

∫ 2π

0
(log σ(0, θ)+ log σ(1, θ)) dθ

)

× exp

(
− 1

2π

∫ 1

0

∫ 2π

0
log σ(x, θ) dθ dx

)
.

Combining the asymptotic formulas (3) and (6) gives the complete asymptotics of
the determinant detMσ

m+N as N → ∞.
The rest of the paper is organized as follows. We will give the statement of

the main result (Theorem 2.1) and outline its proof in Sect. 2. We will also give
the definitions for the various function spaces in which the function σ will be
considered. Section 3 is devoted to some norm estimates for the matrices opNσ
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and Dmσ
N and the convergence of their inverses. The matrix Dmσ

N (to be defined in
Sect. 2) plays a key role in splitting the limit (3) in two parts. In Sect. 4 we give
the proof of the main result by evaluating the two parts of the limit, the first one
being a direct analogue of the Tracy-Widom formula, the second one involving trace
norm computations. Finally, in Sect. 5 we comment on a possible application of the
main result to the computation of the second-order asymptotics as N → ∞ of
tr f (Mσ

m+N) for suitable functions f .

2 Preliminaries and Main Result

In this section we introduce some preliminaries necessary to state and prove
our result. We begin with introducing some notation describing the smoothness
condition that has to be imposed on the symbol σ .

For each nonnegative integer n and 0 ≤ μ < 1, let Cn+μ stand for the set of all
n times differentiable functions defined on T whose n-th derivative is continuous (if
μ = 0) or satisfies a Hölder condition with exponent μ (if 0< μ < 1), respectively.
It is well known that, for 0 ≤ α < ∞, one can define a norm ‖ · ‖α such that Cα
becomes a Banach algebra. It is also well known that for f ∈ Cα with 0 ≤ α < ∞,
the Fourier coefficients fk of the function f satisfy the estimate

|fk | ≤ Kα(1 + |k|)−α‖f ‖α (7)

for all k ∈ Z, where the constant Kα depends only on α.
Now let !α,0 denote the set of all functions σ defined on [0, 1] ×T such that for

each fixed x ∈ [0, 1], the function σ[x](eiθ ) := σ(x, eiθ ) belongs to Cα and such
that the mapping x ∈ [0, 1] �→ σ[x] ∈ Cα is continuous. It is easy to see that the set
!α,0 forms a Banach algebra with the norm

‖σ‖!α,0 = max
x∈[0,1] ‖σ[x](eiθ )‖α.

Furthermore, let !α,1 denote the set of all functions σ ∈ !α,0 such that the
partial derivative ∂xσ exists and belongs to !α,0. The set !α,1 is a Banach algebra
equipped with the norm

‖σ‖!α,1 = ‖σ‖!α,0 + ‖(∂xσ )‖!α,0 .

Finally, let !α,1
0 be the subset of !α,1 consisting of all functions possessing a

logarithm logσ ∈ !α,1. In fact, one can show that !α,1
0 is the set of all functions

σ ∈ !α,1 which do not vanish on [0, 1] × T and for which the functions σ[x] have
winding number zero for each x ∈ [0, 1] (see [4, Lemma 2]).

Now we are prepared to state the main result of this paper.
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Theorem 2.1 Let σ ∈ !
α,1
0 with α > 3

2 . Then formula (3) holds with the constants
given by (4) and (5).

To give an outline of the proof, we introduce another (N + 1)× (N + 1) matrix
related to Mσ

m+N ,

Dmσ
N =

(
σj−k

(
m + j

m + N

))

j,k=0,1,...,N
.

The proof of the main result requires two steps. We are going to show that on the
one hand (Theorem 4.2)

lim
N→∞

detMσ
m+N

detDmσ
N

= Fm[σ ], (8)

while on the other hand (Theorem 4.5 and Proposition 4.6)

lim
N→∞

detDmσ
N

det opNσ
= Km[σ ]. (9)

The computation of the limit (8) follows the original ideas of Tracy and Widom
[6] and is based on the fact that Dmσ

N appears as a sub-matrix in a suitable partition
of Mσ

m+N . A well-known Schur-complement type formula from matrix theory [11]
states that

det

(
A B

C D

)
= detD · det(A − BD−1C) (10)

for a matrix partitioned in such a way that A and D are square matrices and D is
invertible. The matrix Mσ

m+N can be partitioned in this way with Dmσ
N taking the

place of D. As this approach suggest, it is necessary to address the invertibility of
Dmσ
N (for sufficiently large N). In fact, we need to prove the uniform invertibility of

Dmσ
N and the convergence of the inverses (Dmσ

N )−1. This will be done in the next
section.

Let us recall at this point some of the underlying basic notions. First of all, the
matrices considered in this paper can be thought of as operators acting on the Hilbert
space �2 of all one-sided infinite square-summable sequences. More precisely, let

PN : (x0, x1, . . . ) → (x0, x1, . . . , xN, 0, . . . )

denotes the finite rank projection on �2. An (N + 1) × (N + 1) matrix AN will
be identified with the matrix representation of the corresponding operator AN :
imPN → imPN , and the latter can be thought of as the compression of an operator
AN : �2 → �2 onto the image of PN , i.e., AN = PNANPN .
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One says that a sequence {AN }∞N=1 of matrices or operators AN is uniformly
invertible (or stable) if there exists an N0 such that matrices or operators AN are
invertible for all N ≥ N0 and

sup
N≥N0

‖A−1
N ‖∞ < ∞.

Here and in what follows, ‖ · ‖∞ denotes the operator norm (with respect to the
Hilbert space �2).

We recall the notion of strong convergence of operators on �2. As sequence of
bounded linear operators AN is said to converges strongly on �2 to a bounded linear
operator A as N → ∞, if ANx → Ax in the norm of �2 for each x ∈ �2.

A special class of bounded linear operators of �2 are trace class operators and
Hilbert-Schmidt operators. We refer to [2, Chap. 5] or [5, Chap. III] for definitions
and basic properties. The trace norm and the Hilbert-Schmidt norm of an operator
A will be denoted by

‖A‖1 and ‖A‖2,

respectively. When analyzing convergence, we will frequently use the following
estimates involving a bounded and a trace class operator,

‖AB‖1 ≤ ‖A‖1‖B‖∞, ‖BA‖1 ≤ ‖A‖1‖B‖∞.

as well as involving two Hilbert-Schmidt operators,

‖AB‖1 ≤ ‖A‖2‖B‖2.

Note that for trace class operators A, the determinant det(I + A) and the trace trA
are well-defined and depend continuously on A in the trace norm.

3 Boundedness and Invertibility of opNσ and Dmσ
N

3.1 Boundedness

We begin with the following lemma concerning estimates in operator norm and
Hilbert-Schmidt norm.

Lemma 3.1 Let ψ ∈ !α,0 and consider the matrices

AN =
(
ψj−k(ξ

(N)
jk )

)

j,k=0,1,2,...,N
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where {ξ(N)
jk }0≤j,k≤N is any collection of real numbers in [0, 1]. Then,

(a) ‖AN‖∞ ≤ Cα ‖ψ‖!α,0 if α > 1,
(b) ‖AN‖2 ≤ Cα

√
N ‖ψ‖!α,0 if α > 1

2 .

Here Cα is a constant depending only on α.

Proof We decompose AN = ∑N
k=−N Ak

N , where Ak
N has nonzero values only on

the k-th diagonal. Using estimate (7), it follows that

‖AN‖∞ ≤
N∑

k=−N

‖Ak
N‖∞ ≤

N∑

k=−N

max
x∈[0,1] |ψk(x)|

≤ Kα max
x∈[0,1] ‖ψ[x](θ)‖α

N∑

k=−N

(1 + |k|)−α.

Similarly, for the Hilbert-Schmidt norm,

‖AN‖∞ ≤ Kα max
x∈[0,1] ‖ψ[x](θ)‖α

⎛

⎝
N∑

j,k=0

(1 + |j − k|)−2α

⎞

⎠

1
2

≤ Kα ‖ψ‖!α,0

√
N + 1

(
N∑

k=−N

(1 + |k|)−2α

) 1
2

.

This implies (a) and (b). ��
Since both matrices opNσ and Dmσ

N are of the form of the matrices appearing
in the previous lemma, a direct consequence is the uniform boundedness in the
operator norm as well as an estimate for the Hilbert-Schmidt norm. Note that
statement (a) concerning opNσ has appeared before in [4, Prop. 2].

Proposition 3.2 Suppose σ ∈ !α,0. Then,

(a)
∥∥opNσ

∥∥∞ ≤ Cα‖σ‖!α,0 and
∥∥Dmσ

N

∥∥∞ ≤ Cα‖σ‖!α,0 if α > 1,

(b)
∥∥opNσ

∥∥
2 ≤ Cα

√
N ‖σ‖!α,0 and

∥∥Dmσ
N

∥∥
2 ≤ Cα

√
N ‖σ‖!α,0 if α > 1

2 .

Here Cα is a constant depending only on α.

The matrices Dmσ
N are a slight modification of the matrices opNσ . Therefore, our

next concern is the difference of these two matrices. Let us introduce the matrices

SmσN := Dmσ
N − opNσ, (11)

Wm
N := diag

({
m(N − j)

N(m + N)

}

j=0,1,...,N

)
. (12)
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It is easily seen that

‖Wm
N ‖∞ = O(N−1), ‖Wm

N ‖2 = O(N− 1
2 ), ‖Wm

N ‖1 = O(1), (13)

as N → ∞, which we record here also for further reference.

Proposition 3.3 Suppose σ ∈ !α,1. Then,

(a)
∥∥SmσN

∥∥∞ ≤ CαN
−1‖σ‖!α,1 if α > 1,

(b)
∥∥SmσN

∥∥
2 ≤ CαN

− 1
2 ‖σ‖!α,1 if α > 1

2 ,

(c)
∥∥SmσN

∥∥
1 ≤ Cα‖σ‖!α,1 if α > 1

2 .

Here Cα is a constant depending only on α.

Proof The (j, k)-entry of SmσN is given by

1

2π

∫ 2π

0

(
σ

(
m+ j

m+ N
, θ

)
− σ

(
j

N
, θ

))
e−i(j−k)θ dθ.

Therefore, by the mean value theorem, there exists ξ
(N)
jk ∈ [0, 1] depending on

j, k,N (and m) and satisfying j
N

≤ ξ
(N)
jk ≤ m+j

m+N
such that this entry is equal to

m(N − j)

N(m+ N)
· 1

2π

∫ 2π

0
(∂xσ )(ξ

(N)
jk , θ)e−i(j−k)θ dθ.

Hence we can write SmσN = Wm
N AN where

AN =
(
(∂xσ )j−k(ξ

(N)
jk )

)

j,k=0,1,2,..., N

is a matrix to which we can apply Lemma 3.1 with ψ = ∂xσ ∈ !α,0. We are
also going to use (13). In particular, part (a) follows from ‖AN‖∞ = O(1)

and ‖Wm
N ‖∞ = O(N−1), while part (b) follows from ‖AN‖2 = O(N

1
2 ) and

again ‖Wm
N ‖∞ = O(N−1). Finally, part (c) follows from ‖AN‖2 = O(N

1
2 ) and

‖Wm
N ‖2 = O(N− 1

2 ). Alternatively, we could use (b) and the fact that AN = PNAN

with ‖PN‖2 = √
N + 1. ��

In the previous proposition, it is the convergence in the operator norm,

∥∥SmσN

∥∥∞ = ∥∥Dmσ
N − opNσ

∥∥∞ = o(1), N → ∞,

which will be of importance to us.
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3.2 Uniform Invertibility

We are now going to examine the uniform invertibility of the sequence of matrices
Dmσ
N and the strong convergence of their inverses. It is based on the corresponding

result for the sequence of matrices opNσ established in [4].
For an x-independent symbol ψ ∈ L∞(T) define the semi-infinite Toeplitz

matrix,

Tψ = (
ψj−k

)
0≤j,k<∞ , (14)

as bounded linear operator on �2. Furthermore, let

QN : (x0, x1, . . . ) → (xN , xN−1, . . . , x0, 0, . . . ) (15)

be a flip operator on �2. Note that Q2
N = PN .

The following result is based on Theorem 2 and Proposition 4 of [4].

Proposition 3.4 Suppose σ ∈ !
α,1
0 with α > 3

2 . Then both Toeplitz operators
Tσ(0,θ) and Tσ̃(1,θ) are invertible on �2 and the matrices opNσ are invertible for
sufficiently large N . Moreover,

(
opNσ

)−1 = opN(σ
−1) + PNK1PN + QNK2QN + CN,

where ‖CN‖∞ = o(1) as N → ∞ and both

K1 = T −1
σ(0,θ) − Tσ(0,θ)−1, K2 = T −1

σ̃ (1,θ) − Tσ̃(1,θ)−1, (16)

are trace class operators on �2.

The corresponding result for Dmσ
N can now be derived.

Proposition 3.5 Suppose σ ∈ !
α,1
0 with α > 3

2 . Then the matrices Dmσ
N are

invertible for sufficiently large N . Moreover,

(
Dmσ
N

)−1 = opN(σ
−1)+ PNK1PN + QNK2QN + ĈN ,

with K1 and K2 as in (16) and ‖ĈN‖∞ = o(1) as N → ∞.

Proof Notice first that Proposition 3.4 in connection with Proposition 3.2(a) implies
that is opNσ is uniformly invertible, i.e., it is invertible for sufficiently large N and
‖(opNσ)

−1‖∞ = O(1). Using that Dmσ
N = opNσ + SmσN it follows that

(opNσ)
−1Dmσ

N = PN + (opNσ)
−1SmσN
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where ‖(opNσ)
−1SmσN ‖∞ = o(1) by Proposition 3.3(a). Hence Dmσ

N is also
invertible for sufficiently large N and

(Dmσ
N )−1 =

(
PN + (opNσ)

−1SmσN

)−1
(opNσ)

−1,

which implies that

∥∥∥(Dmσ
N )−1 − (opNσ)

−1
∥∥∥∞ = o(1),

and now the assertion follows easily. ��

Corollary 3.6 Suppose σ ∈ !
α,1
0 with α > 3

2 . Then both

PN(opNσ)
−1PN → T −1

σ(0,θ), PN(D
mσ
N )−1PN → T −1

σ(0,θ),

strongly on �2 as N → ∞.

Proof The first statement has already been shown in [4, Corollary 1]. Both
statements follow easily by taking into account that QN → 0 weakly on �2 and
opNσ → Tσ(0,θ) strongly on �2. The latter has been shown in [4, Prop. 3] and holds
for σ ∈ !α,0. ��

4 Proof of the Main Result

4.1 First Limit Computation

We are first going to compute the limit (8). We start with an auxiliary result
established by Tracy and Widom [6], which assumes that σ is independent of x.

Proposition 4.1 (Tracy-Widom [6]) For σ ∈ L∞(T), let

X = (σpi−m−k)i,k and Y = (σm+k−qj )k,j , (i, j = 0, . . . ,m − 1; k = 0, 1, . . . )

be the semi-infinite m× ∞ and ∞ × m matrices, respectively, and assume that the
infinite Toeplitz matrix Tσ = (σi−j )i,j (i, j = 0, 1, . . . ) is invertible on �2. Then the
(i, j)-entry of the square matrix XT −1

σ Y is

σpi−qj −
∞∑

k=1

σ−
pi−m+k σ

+
−k−qj+m.

Here, σ = σ−σ+ is the Wiener-Hopf factorization of σ .
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We remark that the variable-coefficient analogue of the usual Wiener-Hopf
factorization also exists (see [4, Sect. 7]). Indeed, for σ ∈ !

α,1
0 with α > 0, we

have σ(x, θ) = σ−(x, θ)σ+(x, θ), where

σ+(x, θ) := exp

( ∞∑

k=0

[log σ(x, θ)]keikθ
)
,

σ−(x, θ) := exp

( ∞∑

k=1

[log σ(x, θ)]−ke
−ikθ

)
.

(17)

We will need it in what follows only for x = 0.

Theorem 4.2 Let σ ∈ !
α,1
0 with α > 3

2 . Then

lim
N→∞

detMσ
m+N

detDmσ
N

= det

( ∞∑

k=1

σ−
pi+k−m(0) σ

+
−qj−k+m(0)

)

i,j=0,1,...,m−1

.

Proof We consider a matrix partition

Mσ
m+N =

(
ANσ
m Bσ

mN

Cσ
Nm Dmσ

N

)
,

where all entries of the partition are given as follows:

ANσ
m =

(
σpj−qk

(
rj

m+ N

))

0 ≤ j, k ≤ m−1

Bσ
mN =

(
σpj−k−m

(
rj

m + N

))

0 ≤ j ≤ m−1, 0 ≤ k ≤ N

Cσ
Nm =

(
σj+m−qk

(
m + j

m+ N

))

0 ≤ j ≤ N, 0 ≤ k ≤ m−1

Dmσ
N =

(
σj−k

(
m+ j

m+ N

))

0 ≤j, k ≤ N

From Proposition 3.5 it follows that Dmσ
N is invertible for sufficiently large N , and

we can therefore use the matrix identity (10),

detMσ
m+N = detDmσ

N · det
(
ANσ
m − Bσ

mN

(
Dmσ
N

)−1
Cσ
Nm

)
.

The last determinant is that of an m × m matrix, where throughout the paper
m is given and fixed. We now claim that this matrix converges entry-wise (or,
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equivalently, in operator norm) to the following m× m matrix, as N → ∞,

A∞σ
m − Bσ

m∞T −1
σ(0,θ)C

σ∞m,

where

A∞σ
m := (

σpj−qk (0)
)

0 ≤ j,k ≤ m−1
,

Bσ
m∞ := (

σpj−k−m(0)
)

0 ≤ j ≤ m−1, 0 ≤ k < ∞ ,

Cσ∞m := (
σj+m−qk (0)

)
0 ≤ j < ∞, 0 ≤ k < m−1 ,

and Tσ(0,θ) = (
σj−k(0)

)
0≤j,k<∞ is the infinite Toeplitz matrix on �2. Notice that

Bσ
m∞ and Cσ∞m are m× ∞ and ∞ ×m matrices.

Clearly ANσ
m → A∞σ

m entry-wise. Indeed, the difference of the entries can be
estimated by

∣∣∣∣σ�
(

rj

m+ N

)
− σ�(0)

∣∣∣∣ ≤ Kα(1 + |�|)−α

∥∥∥∥σ[ rj
m+N ](θ)− σ[0](θ)

∥∥∥∥
α

taking � = pj − qk . Note that this convergence will hold under the sole assumption
σ ∈ !0,α with α > 0, where we use the fact that the map x ∈ [0, 1] �→ σ[x] ∈ Cα is
continuous.

From Corollary 3.6 we know that PN(Dmσ
N )−1PN → T −1

σ(0,θ) strongly on �2.

Actually, we only need the weak convergence of PN(Dmσ
N )−1PN and the uniform

boundedness in the operator norm.
In order to proceed we need the following convergence results,

‖Bσ
mN − Bσ

m∞PN‖∞ → 0, ‖Cσ
Nm − PNC

σ∞m‖∞ → 0, (18)

as N → ∞, which we are going to prove below. Taking these for granted, we can
continue to argue as follows

Bσ
mN(D

mσ
N )−1Cσ

Nm = (
Bσ
m∞PN + o(1)

)
(Dmσ

N )−1 (PNCσ∞m + o(1)
)

= Bσ
m∞PN(D

mσ
N )−1PNC

σ∞m + o(1)

= Bσ
m∞T −1

σ(0,θ)C
σ∞m + o(1). (19)

Therein o(1) stands for a sequence of operators or matrices converging to zero in
the operator norm. In the first step of the argument we only need the fact that the
inverses (Dmσ

N )−1 are uniformly bounded in the operator norm and that the matrices
Bσ
m∞ and Cσ∞m can be considered as bounded linear operators on �2. In the last step

of the argument we need the weak convergence of PN(Dmσ
N )−1PN . Notice that the

m rows of Bσ
m∞ and the m columns of Cσ∞m are in �2.
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Having established (19) we can now conclude that

det Mσ
m+N

det Dmσ
N

→ det
(
A∞σ
m − Bσ

m∞T −1
σ(0,θ)C

σ∞m

)
.

Using Proposition 4.1 with X = Bσ
m∞ and Y = Cσ∞m it follows that the (i, j)-entry

of the matrix in this determinant is given by

∞∑

k=1

σ−
pi+k−m(0) σ

+
−qj−k+m(0).

Thus we arrive the conclusion of the theorem.
Let us now come back to the proof of the two outstanding claims (18) about

convergence. Since Bσ
mN − Bσ

m∞PN and Cσ
Nm − PNC

σ∞m have m of rows and
columns, respectively, andm is fixed, it suffices to show that these rows and columns
converge to zero in the �2-norm as N → ∞. For Bσ

mN − Bσ
m∞PN , we can fix the

row index j = 0, . . . ,m − 1 and consider the row vector

{
σpj−k−m

(
rj

m+N

)
− σpj−k−m(0)

}

0≤k≤N

whose �2-norm can be estimated by

Kα

(
N∑

k=0

(1 + |pj − k − m|)−2α

) 1
2 ∥∥∥∥σ[ rj

m+N
](θ)− σ[0](θ)

∥∥∥∥
α

see estimate (7). The sum therein is bounded and the last term converges to zero as
N → ∞ because of the continuity of the map x �→ σ[x] ∈ Cα .

For the termCσ
Nm−PNC

σ
m∞, fix the column index k = 0, . . . ,m−1 and consider

the column vector
{
σj+m−qk

(
m+j
m+N

)
− σj+m−qk (0)

}

0≤j≤N

whose �2 can be estimated by

Kα

⎛

⎝
N∑

j=0

(1 + |j + m− qk|)−2α
∥∥∥σ[ m+j

m+N
](θ)− σ[0](θ)

∥∥∥
2

α

⎞

⎠

1
2

.
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We can now split the sum, e.g., into the parts 0 ≤ j < N
1
2 and N

1
2 ≤ j ≤ N , and

estimates the first one by a constant times

max

0≤x≤ m+N
1
2

m+N

∥∥σ[x](θ)− σ[0](θ)
∥∥2
α
,

while we estimate the last term by

2 ‖σ‖2
!0,α

∑

j≥N 1
2

(1 + |j + m− qk|)−2α.

Both terms converge to zero as N → ∞. This finishes the proof of (18), which only
requires the assumption σ ∈ !α,0 with α > 1

2 . ��
This concludes the computation of the first limit.

4.2 Second Limit Computation

We are now going to compute the second limit (9). This means that again we have
to relate the matrices Dmσ

N to the matrices opNσ . What we will need is a refinement
of Proposition 3.3. Recall the definition of the matrices SmσN and Wm

N given in (11)
and (12). We start with a technical lemma.

Lemma 4.3 Suppose ψ ∈ !α,0 with α > 1
2 . Let BN be a sequence of (N + 1) ×

(N + 1) matrices whose (j, k)-entries are equal to

1

2π

∫ 2π

0

(
ψ
(
ξ
(N)
jk , θ

)
− ψ

(
j

N
, θ

))
e−i(j−k)θdθ

where ξ(N)
jk satisfies j

N
≤ ξ

(N)
jk ≤ m+j

m+N
. Then ‖BN‖2 = o(N

1
2 ) as N → ∞.

Proof Using estimate (7), the (j, k)-entry of BN can be estimated by

|B(N)
jk | ≤ Kα(1 + |j − k|)−α ·

∥∥∥∥ψ[ξ (N)
jk ](θ)− ψ[ j

N ](θ)
∥∥∥∥
α

.

Taking into account that

0 ≤ ξ
(N)
jk − j

N
≤ m(N − j)

N(m + N)
≤ m

m+ N
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we can estimate the Hilbert-Schmidt norm of BN as follow

‖BN‖2 ≤ Kα

⎛

⎝
N∑

j,k=0

(1 + |j − k|)−2α

⎞

⎠

1
2

sup
|x−y|≤ m

m+N

∥∥ψ[x](θ)− ψ[y](θ)
∥∥
α

≤ K̂α

√
N + 1 sup

|x−y|≤ m
m+N

∥∥ψ[x](θ)− ψ[y](θ)
∥∥
α
.

Because the mapping x ∈ [0, 1] �→ σ[x] ∈ Cα is continuous (hence uniformly
continuous), we can conclude that the supremum converges to zero as N → ∞.
From this the statement follows. ��

Lemma 4.4 Let σ ∈ !α,1 with α > 1
2 . Then

∥∥SmσN − Wm
N

(
opN∂xσ

)∥∥
1 → 0, N → ∞.

Proof In the proof of Proposition 3.3 we have already shown that SmσN = Wm
NAN

where

AN =
(
(∂xσ )j−k(ξ

(N)
jk )

)

j,k=0,1,2,..., N

with ξ
(N)
j,k satisfying j

N
≤ ξ

(N)
jk ≤ m+j

m+N
. Therefore

SmσN − Wm
N

(
opN∂xσ

) = Wm
N

(
AN − opN∂xσ

)
.

From (13) we know that the Hilbert-Schmidt norm ‖Wm
N ‖2 = O(N− 1

2 ). Now the
matrix BN := AN − opN∂xσ has (j, k)-entry

1

2π

∫ 2π

0

(
(∂xσ )

(
ξ
(N)
jk , θ

)
− (∂xσ )

(
j

N
, θ

))
e−i(j−k)θdθ.

Notice that ψ := ∂xσ ∈ !α,0. Therefore, we can apply Lemma 4.3, which implies

that the Hilbert-Schmidt norm ‖BN‖2 = o(N
1
2 ). The lemma is established. ��

Theorem 4.5 Let σ ∈ !
α,1
0 with α > 3

2 . Then

detDmσ
N

det opNσ
= exp

(
tr

(
Wm

N opN

(
∂xσ

σ

))
+ o(1)

)
, N → ∞.

Proof It follows from Proposition 3.4 that opNσ is invertible for sufficiently large
N and that its inverse is uniformly bounded in the operator norm,

‖(opNσ)
−1‖∞ = O(1),
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as N → ∞. Hence, by the definition of SmσN we obtain

(opNσ)
−1Dmσ

N = PN + (opNσ)
−1 SmσN

for all sufficiently large N . Taking the determinant,

detDmσ
N

det opNσ
= det(PN + AN)

where we set

AN := SmσN (opNσ)
−1.

Since

‖SmσN ‖1 = O(1), ‖SmσN ‖∞ = o(1), N → ∞,

by Proposition 3.3 it follows that

‖AN‖1 = O(1), ‖AN‖∞ = o(1), N → ∞.

We conclude that ‖A2
N‖1 = o(1), and therefore, the regularized determinant

det(PN + AN) exp(−AN) = det

(
(PN + AN)

(
PN − AN + A2

N

2! − A3
N

3! + · · ·
))

= det

(
PN − A2

N

2
+ A3

N

3
− · · ·

)

tends to 1 as N → ∞. It follows that

det(PN + AN) ∼ det(exp(AN)) = exp(trAN), N → ∞.

Thus we are left with analyzing the asymptotics of the trace of AN . We will do this
by approximatingAN in the trace norm. For convenience we let o1(1) stand for any
sequence of matrices converging to zero in the trace norm (as N → ∞).

From Proposition 3.4 we know that

(opNσ)
−1 = opN(σ

−1)+ BN + CN

with ‖BN‖1 = O(1), ‖CN‖∞ = o(1) and ‖opN(σ
−1)‖∞ = O(1) by Proposi-

tion 3.2(a). On the other hand,

SmσN = Wm
N (opN∂xσ)+ o1(1)
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by Lemma 4.4, and ‖Wm
N ‖∞ = O(N−1), ‖Wm

N ‖1 = O(1), and ‖(opN∂xσ)‖∞ =
O(1). Taking the product we see that

AN =
(
Wm

N (opN∂xσ) + o1(1)
) (

opN(σ
−1)+ BN + CN

)

= Wm
N (opN∂xσ)

(
opN(σ

−1) + BN + CN

)
+ o1(1)

= Wm
N (opN∂xσ)

(
opN(σ

−1)
)

+ o1(1).

Therefore,

tr(AN) = tr
(
Wm

N (opN∂xσ)
(

opN(σ
−1)

))
+ o(1).

However, before proceeding with the trace calculation we are going to simplify the
product of the matrices opN∂xσ and opN(σ

−1). Notice that σ−1 ∈ !α,1 while
∂xσ ∈ !α,0.

In order to deal with the product, we need more detailed results from [4]. The
following formula,

opN(φψ) − (opNφ)(opNψ)
∗ = −TN(φ,ψ)+ HN [φ]HN [ψ̃]t + JN [φ]JN [ψ̃]t (20)

was provided as formula (2.6) in [4] for variable-coefficient symbols. Therein,
ψ̃(x, θ) = ψ(x,−θ), which in terms of Fourier coefficients means that ψ̃j (x) =
ψ−j (x). Moreover, TN(φ,ψ) is a new kind of matrix with (j, k)-entry

1

2π

∫ 2π

0
φ

(
j

N
, θ

)(
ψ

(
k

N
, θ

)
− ψ

(
j

N
, θ

))
e−i(j−k)θ dθ,

0 ≤ j, k ≤ N , and the Hankel-type matrices

HN [φ] =
(
φ1+j+k

(
j

N

))

0≤j≤N, 0≤k<∞
,

JN [φ] =
(
φ−1−N+j−k

(
j

N

))

0≤j≤N, 0≤k<∞
,
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JN [φ] = QNHN [φ̃(1−x, θ)] with the flip operatorQN defined in (15) occur along
with their transposes.4 Finally,

(opNψ)
∗ =

(
ψj−k

(
k

N

))

0≤j,k≤N

is the transpose of opNψ̃ (or the adjoint of opNψ). Note that

(opNψ)
∗ = opNψ + TN(1, ψ).

There are several properties known for these operators and matrices. For instance
in [4, Prop. 7] it is proved that

∥∥opNψ − (opNψ)
∗∥∥

1 = o(N), N → ∞ (21)

whenever ψ ∈ !α,0, α > 1
2 . Using this with ψ = σ−1, we can conclude that

Wm
N (opN∂xσ)(opN(σ

−1)) = Wm
N (opN∂xσ)(opNσ

−1)∗ + o1(1).

Notice here that ‖Wm
N ‖∞ = O(N−1) by (13) and ‖opN∂xσ‖∞ = O(1) as observed

earlier. Thus we arrive at

AN = Wm
N (opN∂xσ)(opNσ

−1)∗ + o1(1).

Now we are going to apply formula (20). Our desired formula,

AN = Wm
N opN

(
(∂xσ )(σ

−1)
)

+ o1(1) (22)

will follow once we have shown that the product of Wm
N with

− TN(φ,ψ) + HN [φ]HN [ψ̃]t + JN [φ]JN [ψ̃]t , (23)

where φ = ∂xσ ∈ !α,0 and ψ = σ−1 ∈ !α,1, tends to zero in the trace norm.
Indeed, from [4, Lemma 1] it follows immediately that

‖TN(φ,ψ)‖2 = o(N
1
2 )

4 Formula (20) generalizes the familiar Widom’s formula,

TN(φψ) = TN(φ)TN(ψ) + PNH(φ)H(ψ̃)PN + QNH(φ̃)H(ψ)QN

for x-independent symbols.
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whenever φ,ψ ∈ !α,0, α > 1
2 , which we combine with ‖Wm

N ‖2 = O(N− 1
2 )

from (13). Furthermore, in [4, Prop. 5] it has been established that

‖HN [φ]‖2 = O(1), ‖HN [ψ̃]t‖2 = O(1)

whenever φ,ψ ∈ !α,0, α > 1. The same holds also for the other kind of Hankel
operators. Combining this with ‖Wm

N ‖∞ = O(N−1), it follows finally that the
product of Wm

N with (23) (where φ = ∂xσ ∈ !α,0 and ψ = σ−1 ∈ !α,1) tends
to zero in the trace norm.

Therefore, the convergence (22) is proved and it follows

trAN = tr
(
Wm

N opN
(
(∂xσ )(σ

−1)
))

+ o(1), (24)

which prove the theorem. ��
What remains is to evaluate the trace expression in Theorem 4.5, which is done

in what follows.

Proposition 4.6 Let σ ∈ !
α,1
0 with α > 3

2 . Then

tr

(
Wm

N opN

(
∂xσ

σ

))
= m

2π

∫ 2π

0

∫ 1

0
log

σ(x, θ)

σ (0, θ)
dx dθ + o(1)

as N → ∞.

Proof Observing that ∂xσ/σ = ∂x log σ is continuous on [0, 1] × T, we have

tr
(
Wm

N opN(∂xσ/σ)
) = tr

(
Wm

N opN(∂x logσ)
)
.

The trace of the matrix on the right side is

N∑

j=0

m(N − j)

N(m + N)

1

2π

∫ 2π

0
(∂x log σ)

(
j

N
, θ

)
dθ

= mN

m+ N

N∑

j=0

1

N

(
1 − j

N

)
1

2π

∫ 2π

0
(∂x logσ)

(
j

N
, θ

)
dθ

= (m+ o(1))

(
1

2π

∫ 1

0

∫ 2π

0
(1 − x)(∂x log σ) (x, θ) dθ dx + o(1)

)

= m

2π

∫ 1

0

∫ 2π

0
(1 − x)(∂x log σ) (x, θ) dθ dx + o(1)
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as N → ∞. By switching the order of integration and performing integration by
parts, the integral with respect to x in the last expression can be written as

− log σ(0, θ)+
∫ 1

0
log σ(x, θ) dx =

∫ 1

0
log

σ(x, θ)

σ (0, θ)
dx.

This completes the proof. ��
The second limit computation (9) is now established by the previous proposition

with Theorem 4.5. Together with Theorem 4.2 this proves the main theorem
(Theorem 2.1).

5 Miscellaneous Remarks

It is interesting to note that for a suitable class of analytic functions f it is possible
to define f (opNσ). Indeed, from Proposition 3.2(a) we know that

‖opNσ‖∞ ≤ Cα‖σ‖!α,0 .

Therefore, if " is a bounded open subset of the complex plane containing the spectra
of opNσ for all N , and f is an analytic function defined on ", then f (opNσ) can
be defined via a functional calculus.

Ideas of Widom’s paper [9] can be used in order to improve the norm estimate
under the smoothness condition σ ∈ !α,1, α > 3

2 . That is, for each ε > 0, one can
obtain

‖opNσ‖∞ ≤ (1 + ε)‖σ‖!α,1 (25)

for sufficiently large N . One can further generalize this estimate to

‖Mσ
m+N‖∞ ≤ (1 + ε)‖σ‖!α,1 (26)

for sufficiently large N .
There exists another direction of improving the spectral norms. Indeed, a more

delicate estimate of the uniform boundedness of opNσ with weaker conditions on σ
can be found in the work of Böttcher and Grudsky [1]. This is of importance if one
is interested in the first order spectral asymptotics for quite general symbols σ .

The main remark we wish to make here is based on estimates (25) and (26) for
defining f (opNσ) and f (Mσ

m+N), while bearing in mind that" can be conveniently
chosen as suitable prescribed set, on which f is required to be analytic. Let ∂"
denote the boundary of ". Then one has

tr f
(
opNσ

) = Gf (σ) · (N + 1)+ Ef (σ) + o(1) (27)
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as N → ∞, where

Gf (σ) = 1

2π

∫ 1

0

∫ 2π

0
f (σ(x, θ)) dθdx, (28)

Ef (σ) = 1

2πi

∫

∂"

f (λ)
d

dλ
logE[σ − λ] dλ. (29)

The main result in this paper was the asymptotics of the determinants of the matrices
Mσ

m+N as N → ∞ (see Theorem 2.1 and the asymptotics (6)),

detMσ
m+N ∼ G[σ ]N+1E[σ ]Km[σ ]Fm[σ ]

as N → ∞. In much the same way, we have

tr f (Mσ
m+N) = Gf (σ) · (N+1)+ Ef (σ) + Kf (m; σ)+ Ff (m; σ)+ o(1)

(30)

as N → ∞, where

Kf (m; σ) = 1

2πi

∫

∂"

f (λ)
d

dλ
logKm[σ − λ] dλ, (31)

Ff (m; σ) = 1

2πi

∫

∂"

f (λ)
d

dλ
logFm[σ − λ] dλ. (32)

This can be viewed as the new feature in the generalization of the spectral
asymptotics of opNσ .

We further remark that formulas (27) and (30) are the analogue of the classical
Toeplitz case for the first order asymptotic formula for quite general symbols σ . It
also bears a resemblance to the Wiener-Hopf or pseudodifferential operator case,
which can be described by a general principle (see Widom [10]).

Lastly, in view of the classical Toeplitz case, we point out that formulas (29), (31)
and (32) can be made more explicit without the contour integrals by the method of
Widom [7]. For example, formula (31) is expected to take the form:

1

2πi

∫

∂"

f (λ)
d

dλ
logKm[σ − λ] dλ

= m

2π

∫ 2π

0

∫ 1

0
(f (σ )(x, θ)− f (σ)(0, θ)) dx dθ.

This is seen to be the contribution of Km[σ ] to the proposed tr f (Mσ
m+N) formula.
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On Diagonalizable Quantum Weighted
Hankel Matrices

František Štampach and Pavel Šťovíček

To the memory of Harold Widom (1932–2021)

Abstract A semi-infinite weighted Hankel matrix with entries defined in terms of
basic hypergeometric series is explicitly diagonalized as an operator on �2(N0).
The approach uses the fact that the operator commutes with a diagonalizable Jacobi
operator corresponding to Al-Salam–Chihara orthogonal polynomials. Yet another
weighted Hankel matrix, which commutes with a Jacobi operator associated with
the continuous q-Laguerre polynomials, is diagonalized. As an application, several
new integral formulas for selected quantum orthogonal polynomials are deduced.
In addition, an open research problem concerning a quantum Hilbert matrix is also
mentioned.

Keywords Weighted Hankel matrix · Jacobi matrix · Quantum Hilbert matrix ·
Al-Salam–Chihara polynomials · q-Laguerre polynomials

1 Introduction

A great account of research of Harold Widom was devoted to Hankel matrices [13,
14]. A prominent Hankel matrix of significant interest is the famous Hilbert matrix

Hν :=

⎛

⎜⎜⎜⎜⎝

1
ν

1
ν+1

1
ν+2 . . .

1
ν+1

1
ν+2

1
ν+3 . . .

1
ν+2

1
ν+3

1
ν+4 . . .

...
...

...
. . .

⎞

⎟⎟⎟⎟⎠
, ν ∈ R \ (−N0), (1)
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which, when regarded as an operator on �2(N0), is one of a very few non-trivial
examples of Hankel matrices that admit an explicit diagonalization. With the aid of
certain previously known identities due to Magnus and Shanker, the diagonalization
of Hν was done by Rosenblum [9], who found an integral operator whose matrix
representation with respect to a suitably chosen orthonormal basis coincides withHν

and diagonalizes the integral operator. The passing to the integral representation is
not necessary though. Alternatively, the diagonalization of Hν can be treated by
noting that Hν commutes with a Jacobi operator with an explicitly solvable spectral
problem [7], an approach sometimes referred to as the commutator method [15].

Let us explain the basic idea of the commutator method in more detail. To a
given operatorH , whose spectral analysis is the ultimate goal, we seek a commuting
operator J with simple spectrum and solvable spectral problem. Suppose that λ is an
eigenvalue of J and φ ∈ Ker(J − λ) an eigenvector. Then from equations Jφ = λφ

and JH = HJ , one infers that Hφ ∈ Ker(J −λ). Since the eigenvalue λ is simple,
there is a number h = h(λ) such that Hφ = hφ. If we can assure that φ0 �= 0, we
may suppose φ0 = 1, then the eigenvalue h can be computed as follows:

h = hφ0 = (Hφ)0 =
∞∑

n=0

H0,nφn. (2)

The Askey scheme of hypergeometric orthogonal polynomials and their q-
analogues [8] can serve as a rich source of diagonalizable tridiagonal matrix
operators, which follows from the well-known relation between spectral properties
of Jacobi operators and orthogonal polynomials [1, 6]. The simple tridiagonal
structure of the Jacobi matrix is helpful when trying to find a commuting Jacobi
operator J in the commutant of H (i.e., in the space of commuting operators).
Moreover, since the off-diagonal entries of J are non-vanishing, the spectrum of J is
always simple. Of course, the spectrum of J need not be only discrete, and therefore
the basic idea of the commutator method described in the preceding paragraph is to
be generalized.

Suppose J is a self-adjoint Jacobi operator determined by the tridiagonal matrix

J =

⎛

⎜⎜⎜⎝

β0 α0

α0 β1 α1

α1 β2 α2
. . .

. . .
. . .

⎞

⎟⎟⎟⎠, (3)

with βn ∈ R and αn ∈ R \ {0}, and {φn}∞n=0 is the sequence of corresponding
orthonormal polynomials defined recursively by the equations

(β0 − x)φ0(x)+ α0φ1(x) = 0,

αn−1φn−1(x)+ (βn − x)φn(x)+ αnφn+1(x) = 0, n ≥ 1, (4)
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and normalization φ0(x) = 1. Due to the self-adjointness of J , the polynomials
{φn | n ∈ N0} form an orthonormal basis of L2(R, dμ), where μ is a unique
probability measure on R,

∫

R

φm(x)φn(x)dμ(x) = δm,n, m, n ∈ N0.

Moreover, if we denote by {en | n ∈ N0} the standard basis of �2(N0), then the
unitary mapping

U : �2(N0) → L2(R, dμ) : en �→ φn

diagonalizes J , i.e, UJU−1 = Tid, where Tid is the operator of multiplication by
the independent variable acting on L2(R, dμ).

Now, if J commutes with a self-adjoint operator H , then there exists a measur-
able function h such that H = h(J ); see, for example [3, Thm. 1.4, p. 414]. Having
the spectral representation of J , a determination of h is the last step of the spectral
analysis of H . Since UHU−1 = Th, where Th is the multiplication operator by h,
the function h can be found using the equation

h = Th1 = UHU−1φ0 = UHe0 =
∞∑

n=0

H0,nφn, (5)

cf. (2). Notice that 1 ∈ L2(R, dμ) since μ is a probability measure.
The article is organized as follows. In Sect. 2, a brief summary of the current

state of the art of the research focused on diagonalizable weighted Hankel matrices
is given. Recall the Askey scheme [8] is divided into two parts: the hypergeometric
Askey scheme and their q-hypergeometric analogues. First, we explain that the
Hilbert matrix is, in a sense, the only Hankel matrix which can be diagonalized
by applying the commutator method to Jacobi operators associated to polynomial
families from the hypergeometric Askey scheme. When more degrees of freedom
are introduced to the problem by adding non-trivial weights, several explicitly
diagonalizable weighted Hankel matrices have already been found. When passing
to the q-Askey scheme, the applicability of the commutator method is fairly
unexplored. As a related and interesting research project, we mention in Sect. 2 an
open problem concerning diagonalizable quantum analogues of the Hilbert matrix.

Next, in Sect. 3, we initiate a study on diagonalizable weighted Hankel matrices
commuting with Jacobi operators associated to polynomial families from the
q-Askey scheme. First, as the main result of this article, we diagonalize a three-
parameter family of weighted Hankel matrices that are found in the commutant of
the Jacobi matrix associated to the Al-Salam–Chihara polynomials (Theorem 1). We
use this result to diagonalize another weighted Hankel matrix corresponding to the
continuous q-Laguerre polynomials (Theorem 2). As an application, we conclude
Sect. 3 by deriving several integral formulas for the aforementioned quantum
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orthogonal polynomials. Finally, selected identities for the q-hypergeometric series,
which are needed in proofs, are listed in the Appendix for reader’s convenience.

2 The State of the Art and an Open Problem

There are only very few examples of Hankel matrices, regarded as operators
on �2(N0), whose spectral problem is solvable explicitly or in terms of standard
families of special functions. This contrasts the situation for other well known
classes of special operators such as Jacobi, Schrödinger, Toeplitz, CMV, etc., where
many solvable models exist and find various applications. This lack of concrete
solvable models with Hankel matrices or their weighted generalizations served as a
motivation for a research whose recent achievements are briefly summarized below.

2.1 The State of the Art

In [7], the authors observed that the three-parameter matrix B = B(a, b, c) with
entries

Bm,n = �(m + n + a)

�(m + n + b + c)

√
�(m + b)�(m+ c)�(n + b)�(n + c)

�(m + a)m!�(n+ a) n! ,

for m,n ∈ N0, regarded as an operator on �2(N0), commutes with the Jacobi
matrix (3), where

αn = −√n(n − 1 + a)(n− 1 + b)(n− 1 + c)

and

βn = n(n − 1 + c)+ (n + a)(n+ b).

For parameters a, b, c from a suitable domain, this interesting observation yields an
explicit diagonalization of B since the commuting Jacobi operator is diagonalizable
with the aid of a family of hypergeometric orthogonal polynomials from the Askey
scheme called the continuous dual Hahn polynomials. As the entries of B are of the
form

Bm,n = wmhm+nwn, m, n ∈ N0,



On Diagonalizable Quantum Weighted Hankel Matrices 589

for

wn =
√
�(n + b)�(n+ c)

�(n + a) n! and hn = �(m + n + a)

�(m + n + b + c)
,

B is a so-called weighted Hankel matrix. In particular, if a = b and c = 1, wn = 1
for all n ∈ N0 then B becomes a Hankel matrix. In fact, B(ν, ν, 1) coincides with
the Hilbert matrix (1) and hence the commutator method worked out in detail in [7]
provides an alternative way for the diagonalization of the Hilbert matrix.

A natural question is whether there are other Hankel matrices commuting
with the diagonalizable Jacobi matrices from the hypergeometric Askey scheme.
Unfortunately, the answer is negative. More precisely, it was proven in [11] that,
up to an inessential alternating factor, a scalar multiple of the Hilbert matrix is the
only Hankel matrix with �2-columns and rank greater than 1 that can be found in
commutants of Jacobi matrices from the Askey scheme. This fact emphasizes even
more the prominent role of the Hilbert matrix.

On the other hand, if the class of considered Jacobi operators is slightly extended
by adding Jacobi operators diagonalizable with the aid of the Stieltjes–Carlitz poly-
nomials [4], four more diagonalizable Hankel matrices were found in [12, Thm. 6.1]
only recently. Stieltjes–Carlitz polynomials do not belong to the hypergeometric
Askey scheme since they are not given by terminating hypergeometric series. Rather
than that, Stieltjes–Carlitz polynomials are intimately related to Jacobian elliptic
functions.

When weighted Hankel matrices are considered, several more matrices, in
addition to the above mentioned matrix B, were successfully diagonalized by
applying the commutator method to Jacobi matrices from the Askey scheme.
Namely, in [10], four families of weighted Hankel matrices were diagonalized
with the aid of Hermite, Laguerre, Meixner, Meixner–Pollaczek, and dual Hahn
polynomials.

When passing to the q-Askey scheme, i.e., quantum analogues of the classical
orthogonal polynomials and corresponding diagonalizable Jacobi operators, the
above problems have not been explored yet. In Sect. 3, we initiate the study by
diagonalizing two weighted Hankel matrices that commute with Jacobi operators
associated to Al-Salam–Chihara and continuous q-Laguerre polynomials. Another
interesting question is whether a certain quantum analogue to the Hilbert matrix
commutes with a tridiagonal matrix and possibly can be diagonalized with the aid
of the q-Askey scheme. This open problem is partly discussed in the next subsection.

2.2 An Open Problem: The Quantum Hilbert Matrix

By the quantum Hilbert matrix, one may understand a Hankel matrix with entries
dependent on a parameter q which, possibly after a suitable scaling, tend to the
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entries of the Hilbert matrix as q → 1. Such a q-analogue of finite order has already
appeared in the literature. In [2], the authors derived formulas for the determinant
and the inverse of the finite quantum Hilbert matrix whose (m, n)-th entry equals

[ν]q
[m+ n+ ν]q ,

where

[α]q := qα/2 − q−α/2

q1/2 − q−1/2

is the symmetric q-deformation of a complex number α. Notice that [α]q → α, as
q → 1.

In greater generality, a reasonable candidate for the quantum analogue of the
Hilbert matrix can be found in the three-parameter family of semi-infinite Hankel
matrices Hν = Hν(q; ε) defined by

(Hν)m,n := qε(m+n)

1 − qm+n+ν
, m, n ∈ N0,

where q ∈ (0, 1), ν ∈ R \ (−N0), and ε > 0. Up to an unimportant multiplicative
factor, Hν(q; 1/2) is a semi-infinite version of the quantum Hilbert matrix from [2].
One can check that Hν determines a compact operator on �2(N0), for example, by
applying Widom’s criterion [13, Thm. 3.2]. In fact, it is not difficult to see that Hν is
actually trace class. More concrete results on spectral properties of Hν are definitely
of interest. The most accessible cases seem to be ε = 1/2 and ε = 1.

Further, let us consider the specific case when ε = ν = 1 for simplicity and
denote G := H1(q; 1/2). Hence, we consider the quantum analogue of the classical
Hilbert matrix whose entries are the reciprocal quantum integers

Gm,n = qm+n

1 − qm+n+1 , m, n ∈ N0.

Hoping for a diagonalization of G possibly in terms of the basic hypergeometric
series, one may try to apply the commutator method. Surprisingly, G commutes
with the Jacobi operator J given by (3) and sequences

αn = −
(
q−(n+1)/2 − q(n+1)/2

)2

and

βn = −4 +
(
q−1/2 + q1/2

) (
q−n−1/2 + qn+1/2

)
.
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Indeed, the commutation relation GJ = JG can be straightforwardly verified. The
operator J does not correspond to any polynomial family listed in the q-Askey
scheme, however. Moreover, to our best knowledge, properties of this operator or
the corresponding family of orthogonal polynomials have not been studied yet.
Such properties, as for example generating function formulas for the orthogonal
polynomials, would be of interest on their own regardless the connection to the
quantum Hilbert matrix.

Without going into details, let us remark that J determines an unbounded self-
adjoint Jacobi operator (i.e. J restricted to the span of {en | n ∈ N0} is essentially
self-adjoint) which is positive, invertible, and has discrete spectrum. The matrix
entries of the inverse read

(
J−1

)

m,n
=

∞∑

k=max(m,n)

1
(
q−(k+1)/2 − q(k+1)/2

)2 , m, n ∈ N0.

Nevertheless, whether it is possible to analyze spectral properties of G or J in a
greater detail possibly in terms of commonly known special functions remains an
open problem.

3 Two Diagonalizable Quantum Weighted Hankel Matrices

We diagonalize a three-parameter family of weighted Hankel matrices with entries
given in terms of the q-hypergeometric 0φ1-function. Recall the definition of the
general q-hypergeometric series [5]:

pφq

(
a1, . . . , ap

b1, . . . , bq

∣∣∣∣ q; z
)

:=
∞∑

n=0

(a1, . . . , ap; q)n
(b1, . . . , bq; q)n (−1)(1+q−p)n q(1+q−p)n(n−1)/2 zn

(q; q)n ,

where (a1, . . . , ap; q)n := (a1; q)n . . . (ap; q)n and

(a; q)n :=
n−1∏

j=0

(
1 − aqj

)

is the q-Pochhamer symbol. The index n can be taken ∞, the convergence of the
infinite product is guaranteed by the assumption |q| < 1. In the notation, we follow
the book of Gasper and Rahman [5].

The weighted Hankel matrix to be diagonalized is found in the commutant
of the Jacobi matrix associated to the Al-Salam–Chihara polynomials. Next,



592 F. Štampach and P. Šťovíček

we also diagonalize another weighted Hankel matrix with more explicit entries
and commuting with the Jacobi matrix associated to the continuous q-Laguerre
polynomials. Lastly, as an application, we obtain several integral formulas for the
aforementioned orthogonal polynomials that seem to be new.

3.1 The Case of Al-Salam–Carlitz Polynomials

We diagonalize the weighted Hankel matrix H with entries Hm,n = wmhm+nwn,
where the weight reads

wn = (−a)nqn(n−1)/2

√
(q, ab; q)n (6)

and the Hankel part is determined by the basic hypergeometric series

hn = 0φ1

( −
qb/a

∣∣∣∣ q; q2−n

a2

)
, (7)

for n ∈ N0. Hence

Hm,n = (−a)n+mqn(n−1)/2+m(m−1)/2

√
(q, ab; q)m(q, ab; q)n 0φ1

( −
qb/a

∣∣∣∣ q; q2−m−n

a2

)
, m, n ∈ N0.

(8)

If needed, we will write H = H(a, b) to emphasize the dependence on the
parameters a and b and similarly for hn = hn(a, b) and wn = wn(a, b). The
dependence on q is always suppressed in the notation. The range for the parameters
is restricted to q ∈ (0, 1), 0 < |a| < 1, and |b| < 1.

Let us also introduce the Jacobi operator J = J (a, b) of the form (3) with entries
determined by the sequences

αn =
√
(1 − qn+1)(1 − abqn) and βn = (a + b)qn, (9)

for n ∈ N0.

Proposition 1 The matrices H and J commute.

Proof Recall that the second Jackson q-Bessel function

Jν(x; q) := (qν+1; q)∞
(q; q)∞

(x
2

)ν
0φ1

( −
qν+1

∣∣∣∣ q; −x2qν+1

4

)
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solves the q-difference equation [6, Eq. (14.1.23)]

Jν(q
−1/2x; q)−

(
q−ν/2 + qν/2

)
Jν(x; q)+

(
1 + x2

4

)
Jν(q

1/2x; q) = 0.

It follows that sequence (7) satisfies the recurrence

(ab − q1−k)hk−1 − a(a + b)hk + a2hk+1 = 0,

for k ∈ Z. Next, by writing k = m+n in the above equation, one verifies the identity

(βm − βn)Hm,n + αm−1Hm−1,n + αmHm+1,n − αn−1Hm,n−1 − αnHm,n+1 = 0,

for the matrix entries Hm,n = wmhm+nwn, where wn is as in (6) and αn and βn
given by (9); by convention, we also put H−1,n = Hn,−1 := 0 for any n ∈ N0. This
means nothing but the matrix equality JH − HJ = 0. ��

The orthogonal polynomials determined by the Jacobi parameters (9) are the
Al-Salam–Chihara polynomials Qn(x; a, b | q) since they are given by the recur-
rence [8, Eq. (14.8.4)]

(1 − qn)(1 − abqn−1)Qn−1(x; a, b | q)+ (
(a + b)qn − 2x

)
Qn(x; a, b | q)

+ Qn+1(x; a, b | q) = 0

and Q−1(x; a, b | q) = 0, Q0(x; a, b | q) = 1. The corresponding orthonormal
polynomials fulfill

φn(2x) = 1√
(q, ab; q)n Qn(x; a, b | q), n ∈ N0, (10)

and form an orthonormal basis in the Hilbert space L2((−1, 1), dμ), where μ is
the absolutely continuous orthogonality measure determined by the density

dμ

dx
(cos θ) = (q, ab; q)∞

2π sin θ

∣∣∣∣
(e2iθ ; q)∞

(aeiθ, beiθ ; q)∞
∣∣∣∣
2

, (11)

for x = cos θ and θ ∈ (0, π); see [8, § 14.8].
Thus, by the commutator method, there exists a Borel function h on (−1, 1) such

that UHU−1 = Th, where the unitary mapping U : �2(N0) → L2((−1, 1), dμ)
is determined by the correspondence U : en �→ φn(2 ·), n ∈ N0. The function h

satisfies

h(x) = h(x)φ0(2x) =
∞∑

n=0

H0,nφn(2x) = w0

∞∑

n=0

hnwnφn(2x), (12)
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which means that

h(x) =
∞∑

n=0

(−a)nqn(n−1)/2

(q, ab; q)n 0φ1

( −
qb/a

∣∣∣∣ q; q2−n

a2

)
Qn(x; a, b | q), (13)

where we have substituted from (6), (7), and (10). At this point, the diagonalization
of H is a matter of a possible simplification of the expression on the right-hand side
in (13), which miraculously simplifies, indeed.

Proposition 2 For θ ∈ (0, π), we have

h(cos θ) = (ae−iθ , aeiθ , qe−iθ/a, qeiθ/a; q)∞
(ab, qb/a; q)∞ . (14)

Proof The starting point is the generating function formula for the Al-Salam–
Carlitz polynomials [8, Eq. (14.8.16)]

∞∑

n=0

(γ ; q)n tn
(q; ab; q)n Qn(x; a, b | q) = (γ eiθ t; q)∞

(eiθ t; q)∞ 3φ2

(
γ, aeiθ, beiθ

ab, γ eiθ t

∣∣∣∣ q; e−iθ t

)
,

where |t| < 1 and γ ∈ C. Here and everywhere below, x = cos θ with θ ∈ (0, π)
fixed. By putting t = z/γ and sending γ → ∞ in the above formula, we obtain

∞∑

n=0

qn(n−1)/2(−z)n

(q; ab; q)n Qn(x; a, b | q) = (zeiθ ; q)∞ 2φ2

(
aeiθ , beiθ

ab, zeiθ

∣∣∣∣ q; ze−iθ
)
,

for z ∈ C. Next, by setting z = aq−m, multiplying both sides by

qm(m+1)

a2m (q; qb/a; q)m,

and summing up for m = 0, 1, . . . , we deduce from (13) the formula

h(x) =
∞∑

m=0

(aq−meiθ ; q)∞
(q; qb/a; q)m

qm(m+1)

a2m 2φ2

(
aeiθ, beiθ

ab, aq−meiθ

∣∣∣∣ q; aq−me−iθ
)
.

Further, we apply formula (28) with

a ← aeiθ, b ← a

b
q−m, c ← aq−meiθ , z ← be−iθ ,



On Diagonalizable Quantum Weighted Hankel Matrices 595

which yields

h(x) = (be−iθ ; q)∞
(ab; q)∞

∞∑

m=0

(aq−meiθ ; q)∞
(q; qb/a; q)m

qm(m+1)

a2m 2φ1

(
aeiθ, aq−m/b

aq−meiθ

∣∣∣∣ q; be−iθ
)
.

(15)

As the next step, we apply identity (29) to the 2φ1-function in (15). Moreover,
the coefficients given in terms of q-Pochhammer symbols slightly simplify with the
aid of the identity

(αq−m, qm+1/α; q)∞ = (−α)mq−m(m+1)/2(α, q/α; q)∞,

which holds true for all α ∈ C \ {0} and m ∈ N0. The resulting expression reads

h(x) = (be−iθ, ae−iθ , aeiθ, qe−iθ /a; q)∞
(ab, qb/a, e−2iθ; q)∞

×
∞∑

m=0

qm(m+1)/2

(q; q)m
(

−eiθ

a

)m
2φ1

(
beiθ , qeiθ/a

qe2iθ

∣∣∣∣ q; qm+1
)

+ c.c., (16)

where the abbreviation c.c. stands for the term which equals the complex conjugate
of the previous term.

Using the definition of the 2φ1-function in (16) and interchanging the order of
summation, we observe that the first term in (16), up to the multiplicative factor, is
equal to

∞∑

n=0

(beiθ , qeiθ/a; q)n
(q, qe2iθ ; q)n qn0φ0

(−
−
∣∣∣∣ q; eiθqn+1

a

)
= (qeiθ /a; q)∞ 2φ1

(
beiθ , 0

qe2iθ

∣∣∣∣ q; q
)
,

where we have used (27). Hence we have

h(x) = (ae−iθ , aeiθ, qe−iθ /a, qeiθ/a; q)∞
(ab, qb/a; q)∞

×
[
(be−iθ ; q)∞
(e−2iθ ; q)∞ 2φ1

(
beiθ , 0

qe2iθ

∣∣∣∣ q; q
)

+ c.c.

]
.

Finally, it suffices to notice that, by (30), the expression in the square brackets
equals 1. ��

In total, we have deduced a full spectral representation ofH which is summarized
in the next theorem.
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Theorem 1 For a, b ∈ R such that 0 < |a| < 1 and |b| < 1, the operator H
with matrix entries (8) is unitarily equivalent to the operator of multiplication by
the function

h(x) = (ae−iθ, aeiθ , qe−iθ/a, qeiθ/a; q)∞
(ab, qb/a; q)∞ , x = cos θ,

acting on L2((−1, 1), dμ), where the measure μ is given by (11). In particular, the
spectrum of H is simple, purely absolutely continuous, and fills the interval

σac(H) = 1

(ab, qb/a; q)∞
[
(|a|, q/|a|; q)2∞, (−|a|,−q/|a|; q)2∞

]
.

Consequently, the operator norm of H reads

‖H‖ = (−|a|,−q/|a|; q)2∞
|(ab, qb/a; q)∞| .

3.2 The Case of Continuous q-Laguerre Polynomials

With the aid of the results of the previous subsection, we diagonalize the weighted
Hankel matrix

H̃m,n = H̃m,n(α; q) := q(m−n)2/2 (qα+1; q)m+n√
(q2, q2α+2; q2)m(q2, q2α+2; q2)n

, m, n ∈ N0,

(17)

where q ∈ (0, 1) and α > −1. In the course of the diagonalization, we will work
with the closely related matrix

Gm,n = Gm,n(a; q) := q(m−n)2/4 (aq1/4; q1/2)m+n√
(q, a2q1/2; q)m(q, a2q1/2; q)n

, m, n ∈ N0, (18)

rather than H̃ . Notice that G(qα+1/2; q2) = H̃ (α; q). The relation between the
matrices G and H from (8) reveals the following statement.

Proposition 3 One has

G(a; q) = AH(a, aq1/2) + BH(aq1/2, a), (19)
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where

A = − q1/4

a(1 − q1/2)(q1/4/a; q1/2)∞
and B = 1

(q1/4/a; q1/2)∞
.

Consequently, the matrices G(a; q) and J (a, aq1/2) commute.

Proof Equation (19) means that

AHm,n(a, aq
1/2) + BHm,n(aq

1/2, a) = Gm,n(a; q), ∀m,n ∈ N0,

which, when we use (6) and (18), gets the form

A
(
−aq−1/2

)k
hk(a, aq

1/2)+ B (−a)k hk(aq
1/2, a) = q−k2/4(q1/4a; q1/2)k,

for k := m+ n. Using also (7), we see that the claim holds provided the identity

A
(
−aq−1/2

)k
0φ1

( −
q3/2

∣∣∣∣ q; q2−k

a2

)
+ B (−a)k 0φ1

( −
q1/2

∣∣∣∣ q; q1−k

a2

)

= q−k2/4(q1/4a; q1/2)k (20)

is true for all k ∈ N0.
It is straightforward to decompose the q-exponential (27) into the sum of its odd

and even part. It results in the identity

− z

1 − q
0φ1

(−
q3

∣∣∣∣ q
2; q3z2

)
+ 0φ1

(−
q

∣∣∣∣ q
2; qz2

)
= (z; q)∞,

for z ∈ C. By substituting z = q−k+1/2/a and using that

q−k2/2 (aq1/2; q)k = (q−k+1/2/a; q)∞
(q1/2/a; q)∞ (−a)k,

for any k ∈ N0, we arrive at identity (20) with q replaced by q2. This proves the
first claim.

To verify the second claim, it suffices to note that J (a, b) commutes withH(a, b)

as well as with H(b, a), which follows from Proposition 1 and the symmetry
J (a, b) = J (b, a), see (9). Then it follows from (19) that G(a; q) and J (a, aq1/2)

commute. ��
The Jacobi matrix J (a, aq1/2) with a = qα/2+1/4 corresponds to the continuous

q-Laguerre polynomialsP (α)
n (· | q) that are a special case of the Al-Salam–Chihara
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polynomials, see [8, § 14.19]. More precisely, one has

P (α)
n (x | q) = an

(q; q)nQn(x; a, aq1/2 | q),

for a = qα/2+1/4. Hence, by (10) and (11), the functions

φn(2x) = 1√
(q, a2q1/2; q)n

Qn(x; a, aq1/2 | q) =
√

(q; q)n
(a2q1/2; q)n a

−nP (α)
n (x | q),

(21)

for n ∈ N0, form an orthonormal basis in the Hilbert space L2((−1, 1), dμ), where

dμ

dx
(cos θ) = (q, a2q1/2; q)∞

2π sin θ

∣∣∣∣
(e2iθ ; q)∞

(aeiθ ; q1/2)∞

∣∣∣∣
2

, x = cos θ, (22)

and a = qα/2+1/4 (here, we do not designate the dependence on a and b = aq1/2 in
the notation of φ and μ).

Analogously to the case of H , the unitary mapping

U : �2(N0) → L2((−1, 1), dμ) : en �→ φn(2 ·)

diagonalizes G, i.e., UGU−1 = Tg, where

g(x) =
∞∑

n=0

G0,nφn(2x). (23)

Proposition 4 For θ ∈ (0, π), we have

g(cos θ) = (q1/2; q)∞(−q1/4eiθ ,−q1/4e−iθ ; q1/2)∞
(−aq1/4; q1/2)∞

.

Proof It follows from (23) and Proposition 3 that

g(x) = A

∞∑

n=0

Hn,0(a, aq
1/2)φn(2x)+ B

∞∑

n=0

Hn,0(aq
1/2, a)φn(2x),

which, when compared to (12), yields

g(x) = Ah(x; a, aq1/2)+ Bh(x; aq1/2, a)
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where we have designated the dependence on the parameters a, b in the notation
h(x) = h(x; a, b) for obvious reasons. Using Proposition 2, we obtain

g(cos θ) = 1

(a2q1/2, q1/2; q)∞(q1/4/a; q1/2)∞

×
[
(aq1/2eiθ , aq1/2e−iθ , q1/2eiθ/a, q1/2e−iθ /a; q)∞

− q1/4

a
(aeiθ, ae−iθ , qeiθ/a, qe−iθ/a; q)∞

]
,

for θ ∈ (0, π). Finally, applying identity (31) to the expression in the square
brackets, we arrive at the formula from the statement. ��

Recalling that G(qα+1/2; q2) = H̃ (α; q), we may summarize the obtained
results on the diagonalization of H̃ as follows.

Theorem 2 For α > −1, the operator H̃ with matrix entries (17) is unitarily
equivalent to the operator of multiplication by the function

h̃(x) = (q; q2)∞(q1/2eiθ , q1/2e−iθ ; q)∞
(−qα+1; q)∞ , x = cos θ, (24)

acting on L2((−1, 1), dμ), where μ is given by (22) with q replaced by q2. In
particular, the spectrum of H̃ is simple, purely absolutely continuous, and fills the
interval

σac(H̃ ) = (q; q2)∞
(−qα+1; q)∞

[
(q1/2; q)2∞, (−q1/2; q)2∞

]
.

Consequently, the operator norm of H̃ reads

‖H̃‖ = (q; q2)∞(−q1/2; q)2∞
(−qα+1; q)∞ .

3.3 Application: Integral Formulas for Quantum Orthogonal
Polynomials

Recall that, in Theorem 1, we have diagonalized H in the sense that

UHU−1 = Th,
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where Th is the operator of multiplication by h acting on L2((−1, 1), dμ) and the
unitary mapping U : �2(N0) → L2((−1, 1), dμ) is unambiguously determined by
the correspondence Uen = φn(2 ·) for all n ∈ N0. The measure μ is given by
density (11) and the polynomials φn by (10). It follows that

Hm,n = 〈em,Hen〉�2(N0)
= 〈φm(2 ·), Thφn(2 ·)〉L2((−1,1),dμ)

=
∫ 1

−1
h(x)φm(2x)φn(2x)dμ(x),

for all m,n ∈ N0. Substituting for x = cos θ in the integral and using formulas (8),
(10), (11), and (14), we obtain the following non-trivial integral identity for Al-
Salam–Chihara polynomials:

(q; q)∞
2π(qb/a; q)∞

∫ π

0
Qm(cos θ; a, b | q)Qn(cos θ; a, b | q)

∣∣∣∣
(e2iθ , qeiθ /a; q)∞

(beiθ ; q)∞

∣∣∣∣
2

dθ

= (−a)n+m q
m(m−1)+n(n−1)

2 0φ1

( −
qb/a

∣∣∣∣ q; q2−m−n

a2

)
,

(25)

which holds true for all m,n ∈ N0, q ∈ (0, 1), and a, b ∈ R such that 0 < |a| < 1
and |b| < 1.

Analogously, using formulas (17), (21), (22), and (24) obtained in the course
of the diagonalization of H̃ , one deduces the integral formula for the continuous
q-Laguerre polynomials:

(q; qα+1; q)∞
2π

∫ π

0
P (α)
m (cos θ | q2) P (α)

n (cos θ | q2)

∣∣∣∣
(eiθ ,−eiθ , q1/2eiθ ; q)∞

(qα+1/2eiθ ; q)∞
∣∣∣∣
2

dθ

= q(α+1/2)(m+n)+(m−n)2/2 (qα+1; q)m+n

(q2; q2)m(q2; q2)n
,

(26)

for all m,n ∈ N0, q ∈ (0, 1), and α > −1. In fact, there is another q-analogue to
the Laguerre polynomials, see [8, Eq. (14.19.17)], that are related to the continuous
q-Laguerre polynomials by the quadratic transformation

P (α)
n (x; q) = q−αnP (α)

n (x | q2).
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Identity (26) written in terms of polynomials P (α)
n ( · ; q) becomes

(q; qα+1; q)∞
2π

∫ π

0
P (α)
m (cos θ; q) P (α)

n (cos θ; q)
∣∣∣∣
(eiθ ,−eiθ , q1/2eiθ ; q)∞

(qα+1/2eiθ ; q)∞
∣∣∣∣
2

dθ

= q(m+n)/2+(m−n)2/2 (qα+1; q)m+n

(q2; q2)m(q2; q2)n
,

where m,n ∈ N0, q ∈ (0, 1), and α > −1.
Yet another similar identity can be deduced for the continuous q-Laguerre

polynomials directly from (25) by using the equation

Qn(x; q α
2 + 1

4 , q
α
2 + 3

4 | q) = (q; q)n
q

(
α
2 + 1

4

)
n
P (α)
n (x | q),

see the first limit relation in [8, § 14.19]. Thus, putting a = q
α
2 + 1

4 and b = q
α
2 + 3

4

in (25), one obtains

(q; q)∞
2π(q3/2; q)∞

∫ π

0
P (α)
m (cos θ | q) P (α)

n (cos θ | q)
∣∣∣∣∣
(e2iθ , q

3
4 − α

2 eiθ ; q)∞
(q

3
4 + α

2 eiθ ; q)∞

∣∣∣∣∣

2

dθ

= (−1)m+n q
(α+1/2)(m+n)+m(m−1)/2+n(n−1)/2

(q; q)m(q; q)n 0φ1

( −
q3/2

∣∣∣∣ q; q−m−n−α+3/2
)
,

for m,n ∈ N0, q ∈ (0, 1), and α > −1.
We also mention another special case of (25) related to a q-analogue of Hermite

polynomials. If b = 0, the Al-Salam–Chihara polynomials becomes the continuous
big q-Hermite polynomials

Hn(x; a | q) = Qn(x; a, 0 | q),

see [8, § 14.18]. In this particular case, we have

(q; q)∞
2π

∫ π

0
Hm(cos θ; a | q)Hn(cos θ; a | q)

∣∣∣(e2iθ , qeiθ/a; q)∞
∣∣∣
2

dθ

= (−a)n+m q
m(m−1)+n(n−1)

2 0φ1

(−
0

∣∣∣∣ q; q2−m−n

a2

)
,

where m,n ∈ N0, q ∈ (0, 1), and 0 < |a| < 1.
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Appendix

For the reader’s convenience, we list 5 selected identities for basic hypergeometric
series and admissible parameters that are used in the proofs. All of them are
borrowed directly from [5].

One of the q-exponential functions is [5, Eq. (II.2)]

0φ0

(−
0

∣∣∣∣ q; z
)

= (z; q)∞. (27)

Jackson’s q-analogue of the Pfaff–Kummer formula reads [5, Eq. (1.5.4)]

2φ1

(
a, b

c

∣∣∣∣ q; z
)

= (az; q)∞
(z; q)∞ 2φ2

(
a, c/b

c, az

∣∣∣∣ q; bz
)
. (28)

Three term transformation [5, Eq. (III.31)] together with Heine’s transformation
formula [5, Eq. (1.4.1)] yields the identity

2φ1

(
a, b

c

∣∣∣∣ q; z
)

= (abz/c, q/c; q)∞
(az/c, q/a; q)∞ 2φ1

(
c/a, cq/abz

cq/az

∣∣∣∣ q; bq/c
)

− q

az

(b, c/a, az/q, q2/az; q)∞
(c, q/a, c/az, z; q)∞ 2φ1

(
q/b, z

aqz/c

∣∣∣∣ q; bq/c
)
.

(29)

The particular case of the non-terminating q-Vandermonde identity with b = 0
reads

(aq/c; q)∞
(q/c; q)∞ 2φ1

(
a, 0

c

∣∣∣∣ q; q
)

+ (a; q)∞
(c/q; q)∞ 2φ1

(
aq/c, 0

q2/c

∣∣∣∣ q; q
)

= 1, (30)

see [5, Eq. (II.23)]. Finally, the particular case of the identity from [5, Ex. 2.16(ii)]
with μ = eiθ and λ = a yields the equality

(aq1/2eiθ , aq1/2e−iθ , q1/2eiθ /a, q1/2e−iθ /a; q)∞

− q1/4

a
(aeiθ , ae−iθ , qeiθ/a, qe−iθ/a; q)∞

= (q1/2, q1/2, aq1/4, aq3/4, q1/4/a, q3/4/a; q)∞
× (−q1/4eiθ ,−q3/4eiθ ,−q1/4e−iθ ,−q3/4e−iθ ; q)∞.

(31)
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On the Product Formula for Toeplitz
and Related Operators

Jani A. Virtanen

In memory of Harold Widom

Abstract In this note known formulas for the product of Toeplitz operators
are revisited in the context of their applications to the study of Fredholmness,
boundedness of Toeplitz products, and the Berezin-Toeplitz quantization. A few
open problems are also mentioned.

Keywords Toeplitz operator · Hankel operator · Hardy space · Bergman space ·
Fock space

1 Introduction

Given two bounded Toeplitz operators Tf and Tg on the Hardy space H 2, their
product can be written as

Tf Tg = Tfg − HfHg̃, (1)

where Hf and Hg̃ are Hankel operators acting on H 2. As stated in [2], this identity
was established by Widom [20], while it had been known and used for a long time
in other forms, such as

Pf PgP = PfgP − PfQgP,
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where P is the orthogonal projection of L2 onto H 2 and Q = I −P . What resulted
from Widom’s use of this identity was a very ingenious way of dealing with the
asymptotics of block Toeplitz determinants in [20], now known as the Szegö-Widom
asymptotics, via operator theoretic methods and Schatten class properties of Hankel
operators. Paper [2] is embarking on this topic.

Going back to the identity in (1) and its original intent to show that certain
Toeplitz operators are Fredholm, I will discuss extensions of this formula in the
context of other function spaces, such as Bergman and Fock spaces, and show how
it leads to interesting questions about the properties of Hankel operators. What we
lack in these other function spaces, however, are effective matrix representations of
Toeplitz and Hankel operators, which creates an obstacle to obtaining Widom type
identities for the products of truncated Toeplitz matrices.

For simplicity, we limit the discussion to function spaces defined over domains in
C, except for Sect. 5, and note that the generalizations to the n-dimensional setting
can be easily found in the literature.

2 Preliminaries

For 0 < p < ∞, " ⊂ C, and μ a positive measure on ", denote by Lp(", dμ) the
space of all complex measurable functions f on " for which

‖f ‖p =
(∫

"

|f |p dμ
)1/p

< ∞.

For a complex measurable function f on ", define ‖f ‖∞ to be the essential
supremum of |f | and denote by L∞(", dμ) all f for which ‖f ‖∞ < ∞. The
set of all analytic functions in an open set " is denoted by H(").

In terms of domains ", the usual three model cases consist of the unit circle
T, the unit disk D, and the complex plane C. When " = T, we write Lp(T) for
Lp(T, dθ) and define the Hardy space Hp by

Hp = {f ∈ Lp(T) : fk = 0 for k < 0}.

Let dA = dxdy be the usual area measure on C. We write Lp(D) for Lp(D, dA)

and define the Bergman space Ap by

Ap = H(D) ∩ Lp(D).

When " = C, define the Fock space Fp by

Fp = H(C) ∩ Lp(C, e− p
2 |z|2dA).
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Let X2(") ∈ {H 2, A2, F 2}. Then X2(") is a Hilbert space and the orthogonal
projection of L2(") onto X2(") is denoted by P . We write Q = I − P for the
complementary projection. Given a bounded function f on ", the Toeplitz operator
Tf : Xp(") → Xp(") with symbol f is defined by

Tf g = P(fg).

When 1 < p < ∞, since P extends to a bounded projection on Lp("), Tf is clearly
bounded on Xp(") if f is bounded.

Defining Hankel operators is less straightforward. Indeed, the Hankel operators
that appear in (1) act on the Hardy space while the Hankel operators on Bergman
spaces Ap or Fock spaces Fp map into the corresponding Lp("). More precisely,
define the flip operator J : Lp(T) → Lp(T) by

Jf (t) = t̄f (t̄ )

for t ∈ T. For a bounded symbol f , the Hankel operator Hf is defined on Hp by

Hf g = PMfQJf,

where Mf is the multiplication operator. When " ∈ {D,C}, we define the Hankel
operator Hf : Xp(") → Lp(") by

Hf g = Q(fg).

Again, it is easy to see that the Hankel operator Hf is bounded in all the three cases
if 1 < p < ∞ and f is bounded.

3 Fredholm Properties of Toeplitz Opeators

In this section the Fredholm properties of Toeplitz operators acting on Hardy,
Bergman and Fock spaces are considered using (1) and its generalizations. Recall
that an operator A on a Banach space is said to be Fredholm if kerA and X/A(X)

are both finite dimensional, in which case the index indA is defined by

indA = dim kerA − dimX/A(X).

Equivalently, A is Fredholm if and only if A + K(X) is invertible in the Calkin
algebra B(X)/K(X), where B(X) and K(X) denote the sets of all bounded and
compact operators on X, respectively. The essential spectrum of A is defined by

σess(A) = {λ ∈ C : A − λ is not Fredholm}.
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3.1 The Hardy Space Case

Let f, g be bounded on T and write f̃ (t) = f (t̄) for t ∈ T. Then

Tfg = PMfgP = PMfMgP = PMf PMbP + PMfQMgP

= PMf P
2MgP + PMfQJ 2QMgP,

(2)

which is (1).
Suppose now that f is continuous and has no zeros on T. Then g = 1/f is also

continuous and has no zeros. By (1), since Hf is known to be compact,

Tf Tg = I + HfHg̃ = I + K

for some compact operator K . Similarly, TgTf − I is compact, and hence Tf is
Fredholm. In situations when Hankel operators are compact, the identity in (1)
is tailor-made for proving that Toeplitz operators are Fredholm. In other words,
whenever the Hankel operators are compact, the corresponding Toeplitz operators
commute modulo compact operators. A similar approach also applies to symbols in
the Douglas algebra C + H∞ but the use of (1) is no longer as effective with more
general classes of symbols.

Let f ∈ L∞(T)N×N and consider the block Toeplitz operator Tf on H
p
N =

{(f1, . . . , fN )
A : fj ∈ Hp}. Suppose that f ∈ (C + H∞)N×N and detf is

invertible in C+H∞. Choose h ∈ (R+H∞)N×N , where R is the set of all rational
functions, sufficiently close to f in the norm of L∞

N×N(T). Then

indTf = indTh and indTdetf = indTdeth.

Since Hh has finite rank, (1) implies that the entries of Th commute modulo finite-
rank operators, and hence indTh = indTdeth (see Theorem 1.15 of [7]), which
reduces the index computation to that of the scalar-valued symbols. For more
general symbols, such as piecewise continuous symbols, no such reductions are
possible.

Although the projection P is unbounded on L1(T), a Fredholm theory for
Toeplitz operators on H 1 can still be developed. In particular, when f is a
continuous function of logarithmic vanishing mean oscillation, the Hankel operator
Hf is compact on H 1, so (1) is readily available, and the Fredholm properties
can be described as in the reflexive case 1 < p < ∞ (see [19]). However, as
recently observed, there are continuous symbols f that generate bounded Toeplitz
operators on H 1 and for which Hf is not compact (see [10]). This makes the study
of Fredholmness of Tf with such continuous symbols considerably more difficult in
H 1 because (1) no longer produces a desired conclusion.

There are many other aspects of Toeplitz operators on the Hardy space whose
proofs benefit from (1), such as invertibility with analytic symbols, the applicability
of local principles, the study of Toeplitz algebras and Fisher-Hartwig symbols, but
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we refrain from further details (all of which can be found in [7]) and keep our focus
only on the Fredholm properties in this section.

3.2 The Bergman Space Case

As mentioned above, for 1 < p < ∞ and f ∈ L∞(D), the Hankel operator Hf is
defined by Hf g = Q(fg) for g ∈ Ap, and so it maps into Lp(D) instead of Ap.
However, we can still obtain formulas similar to (1) as follows. For two bounded
functions f, g on ", using the inner product in A2, it is easy to see that

Tf Tg = Tfg − H ∗̄
f
Hg (3)

when p = 2, which shows that

T|f |2 − Tf̄ Tf = H ∗
fHf ,

and hence compactness of Hf is equivalent to compactness of the semi-self-
commutator T|f |2 − Tf̄ Tf . In addition, the formulas

Tf Tg = PMf PMg = PMf (I − Q)Mg = Tfg − PMfHg (4)

= I − P(I − Mfg)− PMfHg = I − T1−fg − PMfHg (5)

are useful. For example, in [14], the identity in (4) was used to show that the Toeplitz
operator Tf with f ∈ C(D) is Fredholm on A2 if and only if f has no zeros on the
boundary. A similar approach, using (5), can be used to treat symbols in the Douglas
algebra C(D)+ H∞ and symbols of vanishing mean oscillation.

Let f ∈ L∞(D)N×N and consider the block Toeplitz operator Tf on A
p
N =

{(f1, . . . , fN )
A : fj ∈ Ap}. Fredholmness of block Toeplitz operators with symbols

in the Douglas algebra (C(D)+H∞(D))N×N can be handled as in the Hardy space
case but now with the identities in (4) and (5). However, the index formula for these
symbols cannot be derived as easily as in the Hardy space case because the formula
indA = ind detA, which holds for operator matrices A whose entries commute
modulo trace class operators, fails to reach all of C(D) + H∞(D) via (4). For an
alternate approach to the computation of the index of block Toeplitz operators Tf
on the Bergman spaces on the unit ball, see [6]. Similar comments can be made
about symbols in (L∞(D) ∩ VMO)N×N , where VMO is the space of functions of
vanishing mean oscillation, and in particular the approach in [6] should produce an
index formula for this symbol class, too. We return to this topic in the next section
when dealing with Toeplitz operators in the Fock space setting, where an analogous
problem still remains open.
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3.3 The Fock Space Setting

As in the Bergman space setting, for Toeplitz operators on F 2, we again have

Tf Tg = Tfg − H ∗̄
f
Hg. (6)

To my knowledge, this identity was first used to describe the Fredholm properties
of Tf on the Fock space in [17]. It was shown that, when f ∈ L∞(C) and Hf is
compact, we have

σess(Tf ) =
⋂

r>0

clf̃ (C \ Dr ), (7)

where clE stands for the closure of E in C, Dr = {|z| < r}, and f̃ is the Berezin
transform of f defined by

f̃ (z) = 1

2π

∫

C

f (w)e− 1
2 |z−w|2dA(w) (8)

for z ∈ C. In the proof of (7), identity (6) comes into play as follows. Suppose that
ξ /∈ clf (C \ Dr ) for some r > 0. To show that Tf−ξ is Fredholm, define

g(z) =
{
(f (z)− ξ)−1 if z ∈ C \ Dr ,

1 if z ∈ Dr .

Then g ∈ L∞(C), and an application of (6) shows that

TgTf−ξ = I − H ∗̄
gHf − T(f−ξ−1)χDr .

Notice that (f − ξ − 1)χDr has compact support and hence T(f−ξ−1)χDr is
compact. Since Hf is compact, it follows that Tf−ξ + K(F 2) is left-invertible in
B(F 2)/K(F 2). That Tf−ξ + K(F 2) is also right-invertible follows from Tf−ξ =
T ∗̄
f−ξ̄

and the fact that Hf̄ is compact whenever Hf is compact (see, e.g., [4]

or [13]). Therefore, Tf−ξ = Tf − ξ is Fredholm, that is, ξ /∈ σess(Tf ), and so
σess(Tf ) ⊂ clf (C \Dr) for all r > 0. Further, since Tf−f̃ is known to be compact,

σess(Tf ) = σess(Tf̃ ) ⊂ clf̃ (C \ Dr) for all r > 0 by the above argument applied to

f̃ . For the other inclusion (which involves no product formulas), see [17].
For an extension to other Fock spaces

Fp
ϕ =

{
f ∈ H(C) :

∫

C

|f (z)|pe−pϕ(z) dA(z) < ∞
}
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with more general weights ϕ and 0 < p < ∞, see [12], which deals with the so-
called doubling weights. These are very general weights that include all standard
weights (i.e., ϕ(z) = −α

2 |z|2 with α > 0), the so-called Fock-Sobolev weights, and
the weights ϕ for which there are positive constantsm andM (depending on ϕ) such
that

m ≤ �ϕ ≤ M (9)

on C, where � is the Laplacian. It is worth noting that, unlike in these other Fock
spaces, we do not currently know whether Fredholmness of Toeplitz operators on
doubling Fock spaces can be extended to C

n due to the lack of suitable estimates for
the reproducing kernel.

Let f ∈ L∞(C)N×N and consider the block Toeplitz operator Tf on F 2
N =

{(f1, . . . , fN )
A : fj ∈ F 2}. As in the previous two function spaces, the study of

Fredholmness of block Toeplitz operators can be reduced to the scalar-valued case
using (6). However, similarly to Tf on A2

N with f ∈ (C(D) + H∞)N×N , the index
computation in the Fock space setting cannot be reduced to the scalar-valued case
and it remains an open problem—perhaps the approach in [6] can be adapted to this
case.

A partial answer to the index computation can be derived from a recent result
in [10], in which the Schatten class properties of Hf are described in terms of
integral distance to analytic functions. More precisely, for f ∈ L2

loc(C), define

Gr(f )(z) = inf
h∈H(D(z,r))

(
1

|D(z, r)|
∫

D(z,r)

|f − h|2dA
) 1

2

(z ∈ C),

where D(z, r) is the disk centered at z with radius r . For 0 < s ≤ ∞, we say
f ∈ IDAs if ‖Gr(f )‖Ls(C) < ∞ for some r > 0. Notice that the space IDAs is
independent of r . In [10], for 0 < p < ∞, it was shown that Hf is in the Schatten
class Sp if and only if f ∈ IDAp. Let f ∈ (L∞(C) ∩ IDA1)N×N and suppose that
d̃etf is bounded away from zero on C\DR for some R > 0. Then (6) can be used to
show that the entries of Tf commute modulo trace class operators, and hence using
the scalar-valued case (see [4]), we conclude that

indTf = indTdetf = −wind(detf ||z|=R).

This result is unsatisfactory because there are bounded symbols that generate
compact Hankel operators but do not belong to IDA1, and further work is required
as indicated above.
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4 Sarason’s Product Problem

In [16], Sarason proposed the problem of characterizing the pairs of functions f, g
in H 2 such that the operator Tf Tḡ is bounded on H 2. Related to the present work,
he remarked that the identity

H ∗̄
f
Hḡ = Tf ḡ − Tf Tḡ (10)

reduces the problem to the question of whenH ∗̄
f
Hḡ is bounded under the assumption

that fg is bounded. When the boundedness assumption on fg is dropped, it can be
easily seen that the latter problem is more general (e.g., choose an unboundedf such
that Hf̄ is bounded and take g = f ). The following conjecture is often referred to

as Sarason’s conjecture: For two functions f, g in H 2, Tf Tḡ is bounded if and only
if

sup
z∈D

|̂f |2(z)|̂g|2(z) < ∞, (11)

where ĥ is defined as the Poisson extension of h ∈ L1(T). In fact, Treil had com-
municated an argument showing that (11) is necessary to Sarason (see Comment 6
in [16]) and subsequently Zheng [21] proved that (11) with 2 replaced by 2 + ε is
sufficient. Finally, in the well-known unpublished manuscript of Nazarov [15], it
was shown that Sarason’s conjecture fails.

A related conjecture was formulated in the Bergman space setting: For f, g ∈ A2,
Tf Tḡ is bounded on A2 if and only if

sup
z∈D

|̃f |2(z)|̃g|2(z) < ∞. (12)

This conjecture was also shown to be false by Aleman et al. [1] using harmonic
analysis. However, Stroethoff and Zheng [18] showed that if we consider the
question of whether Tf Tḡ is both bounded and invertible, then (11) and (12) provide
the right conditions in the settings of H 2 and A2, respectively. More precisely,
they showed that for f, g ∈ A2, Tf Tḡ is bounded and invertible on A2 if and
only (12) holds and inf{|f (z)||g(z)| : z ∈ D} > 0. They also remarked that a similar
approach yields an analogous result for Toeplitz operators on the Hardy space, that
is, for f, g ∈ H 2, Tf Tḡ is bounded and invertible on H 2 if and only (11) holds
and inf{|f (z)||g(z)| : z ∈ D} > 0. It should be noted that the latter result was
proved earlier for a pair of outer functions f, g ∈ H 2 by Cruz-Uribe [9] using a
characterization of invertible Toeplitz operators due to Devinatz and Widom (see,
e.g., Theorem 2.23 of [7]).

Finally, using a number of product identities for Toeplitz operators, Stroethoff
and Zheng [18] proved that Tf Tḡ is bounded and Fredholm on A2 if and only if (12)
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holds and infz∈D\rD |f (z)g(z)| > 0 for some r < 1. Again, the same is true in the
setting of the Hardy space—just replace (12) by (11).

Above we have considered Sarason’s problem only rather superficially, and while
the product formula in (10) gives a more general problem involving Hankel opera-
tors, the product formulas do not contribute to the two important counterexamples.
It is also worth noting that, despite the considerable progress, Sarason’s product
problem still remains open in the Hardy and Bergman space settings.

We now turn our attention to the Fock space, where Sarason’s problem has a
simple solution. Indeed, in [8], for f, g ∈ F 2, it is shown that Tf Tḡ is bounded on
F 2 if and only if there are a, b, c ∈ C such that f (z) = ea+cz and g(z) = eb−cz

for all z ∈ C. One of the key observations is that, when a ∈ C, f (z) = e
1
2 āz,

g(z) = e− 1
2 āz, we have

Tf Tḡ = e
1
4 |a|2Ua,

where Ua is the unitary operator on F 2 defined by

Uaf (z) = f (z − a)ka(z)

and ka is the normalized reproducing kernel of F 2 defined by

ka(z) = e
1
2 āz− 1

4 |a|2 .

As weighted Fock spaces F 2
ϕ have received significant attention recently, it would

be interesting to know whether something similar holds true for more general
weights than those considered in [5, 8]. A possible starting point may be the
weights ϕ whose Laplacians are bounded above and below (see (9) and [11]).
What makes Sarason’s product problem interesting in this generalized setting is
that the reproducing kernel of F 2

ϕ has no explicit representation (unlike in F 2) and
the unitary operators Ua can no longer be employed. The former obstacle may be
possible to overcome with the use of estimates for the (normalized) reproducing
kernel, but overall the generalized Sarason’s product problem seems nontrivial in
generalized Fock spaces and requires new ideas.

5 Quantization

As an application of product formula (6) and recent work on Hankel operators, we
consider deformation quantization (in the sense of Rieffel) and one of its essential
ingredients involving the limit condition

lim
t→0

∥∥∥T (t)
f T (t)

g − T
(t)
fg

∥∥∥
F 2
t (ϕ)→F 2

t (ϕ)
= 0, (13)
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where the Toeplitz operators T (t)
f and the Fock spaces F 2

t (ϕ) are defined as follows.
For t > 0, we set

dμt(z) = 1

tn
exp

{
−2ϕ

(
z√
t

)}
dv(z)

and denote by L2
t (ϕ) the space of all Lebesgue measurable functions f in C

n such
that

‖f ‖t =
{∫

C
n
|f |2 dμt(z)

} 1
2

.

Further, we let F 2
t (ϕ) = L2

t (ϕ) ∩ H(Cn) and define the Toeplitz operator T (t)
f on

F 2
t (ϕ) by

T
(t)
f = P (t)Mf ,

where P (t) is the orthogonal projection of L2
t (ϕ) onto F 2

t (ϕ).
Using the dilation Ut : f �→ f (·√t), it can be easily shown that

‖H(t)
f ‖F 2

t (ϕ)→L2
t (ϕ)

= ‖Hf(·√t)‖F 2(ϕ)→L2(ϕ), (14)

where H
(t)
f = (I − P (t))Mf is the Hankel operator. To study the limit condition

in (13), define for f ∈ L2
loc, z ∈ C

n, and r > 0,

MO2,r (f )(z) =
(

1

|B(z, r)|
∫

B(z,r)

∣∣f − fB(z,r)
∣∣2 dv

) 1
2

where B(z, r) = {w ∈ C
n : |z − w| < r}, fS = 1

|S|
∫
S
f dv for S ⊂ C

n measurable

and dv is the usual Lebesgue measure on C
n. Now, let f ∈ L2

loc. We say that
f ∈ VMO if

lim
r→0

sup
z∈Cn

MO2,r (f )(z) = 0.

Further, we say that f ∈ VDA∗ if

lim
r→0

sup
z∈Cn

G2,r (f )(z) = 0.

In [13], it was shown that, given f ∈ L∞, then for all g ∈ L∞, the limit condition
in (13) holds if and only if f ∈ VDA∗.
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To verify this, notice first that (6) gives

T
(t)
f T (t)

g − T
(t)
fg = −

(
H

(t)

f

)∗
H(t)
g .

for all f, g ∈ L∞. Let f ∈ VDA∗. Then, for all g ∈ L∞,

∥∥∥T (t)
f T (t)

g − T
(t)
fg

∥∥∥
F 2
t (ϕ)→F 2

t (ϕ)
≤ ‖g‖L∞

∥∥∥
(
H

(t)

f

)∗∥∥∥
L2
t (ϕ)→F 2

t (ϕ)

≤ C‖G2,1(f (·
√
t))‖L∞ = C‖G2,

√
t (f )(·

√
t)‖L∞ → 0

as t → 0, where we used the norm estimate for Hankel operators given in
Theorem 1.1 of [13]. For the converse, again by product formula (6), we have

lim
t→0

∥∥∥H(t)

f

∥∥∥
2

F 2
t (ϕ)→L2

t (ϕ)
= lim

t→0

∥∥∥
(
H

(t)

f

)∗
H

(t)

f

∥∥∥
F 2
t (ϕ)→F 2

t (ϕ)

= lim
t→0

‖T (t)
f T

(t)

f
− T

(t)

|f |2‖F 2
t (ϕ)→F 2

t (ϕ)
= 0,

and it remains to notice that

1

C
‖G2,1(f (·

√
t))‖L∞ ≤

∥∥∥
(
H

(t)

f

)∗∥∥∥
L2
t (ϕ)→F 2

t (ϕ)
,

which follows from the estimate for Hankel operators mentioned above.
Combining the characterization for (13) with the observation that VMO =

VDA∗ ∩VDA∗ gives the main result of [3] (where it was assumed that ϕ(z) = 1
8 |z|2

is the standard weight), that is, given f ∈ L∞, then, for all g ∈ L∞, it holds that

lim
t→0

∥∥∥T (t)
f T (t)

g − T
(t)
fg

∥∥∥ = 0 and lim
t→0

∥∥∥T (t)
g T

(t)
f − T

(t)
fg

∥∥∥ = 0 (15)

if and only if g ∈ VMO. Here ‖ · ‖ = ‖ · ‖F 2
t (ϕ)→F 2

t (ϕ)
. For further details, see [13].

As for an open problem in this line of work, it would be interesting to characterize
those symbols f ∈ L∞(Cn) for which (13) holds for all g ∈ L∞(Cn) when the
operator norm is replaced by the Hilbert-Schmidt (or other Schatten class) norm.
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