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Abstract. Traditional multi-objective reinforcement learning problems
pay attention to the expected return of each objective under different
preferences. However, the difference in strategy in practice is also impor-
tant. This paper proposes an algorithm Multi-objective RL with Prefer-
ence Exploration (MoPE), which can cover the optimal solutions under
different objective preferences as much as possible with only one trained
model. Specifically, the coverage of the optimal solution is improved by
exploring the preference space in the sampling stage and reusing samples
with similar preferences in the training stage. Furthermore, for different
preference inputs, a variety of diversity strategies that conform to the
preference can be generated by maximizing the mutual information of
preference and state based on a method of information theory. Com-
pared with the existing methods, our algorithm can implement more
diverse strategies on the premise of ensuring the coverage of the optimal
solution.

Keywords: Multi-objective · Reinforcement learning · Diversity ·
Information theory

1 Introduction

In the real world, a task often contains multiple objectives, and the preferences
for these objectives are different in different situations, so various strategies are
needed to meet the needs in different situations. Existing reinforcement learning
methods such as DQN [1] and DDPG [2] can already handle single-objective
problems. In more cases, the importance of each objective in the task is difficult
to determine in advance, or some changes need to be made according to the
actual situation. In single-objective reinforcement learning, this kind of problem
is solved by adjusting the weight of this objective separately. The results of
this adjustment method are often uncertain, because some objective may not be
independent of each other, or even exist in opposition to each other. And for the
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traditional reinforcement learning algorithm, its goal is to maximize the expected
return made up of multiple parts, the larger return is not necessarily achieved
by increasing the reward, but by reducing the penalty. For example, when the
reward for reaching the goal is small, and the penalty related to time is large,
the robot may end the episode early by colliding with the obstacle to reduce
the penalty obtained. Compared with traditional single-objective reinforcement
learning, multi-objective reinforcement learning (MORL) provides a better way
to deal with multi-objective tasks.

Existing MORL methods can be divided into two categories [3]: outer loop
and inner loop [5]. The outer loop method treats the MORL as multiple
single-objective reinforcement learning problems with different preferences. This
method achieves the effect of approximately representing the Pareto front by
maintaining a population of policies [6] distinguished by preference, which makes
it difficult to extend to complex problems or problems with a large number of
objective. The inner loop class method learns a value function or policy net-
work conditioned on preference, and uses the deep neural network to obtain an
approximate Pareto optimal solution. During the training process, different pref-
erences are used as the input of the neural network, and the goal is to maximize
the cumulative return under the linear weighting of the preferences. Compared
with the outer loop method, it avoids maintaining a large set of strategies, but
there are problems of large sample demand and catastrophic forgetting. Fried-
man et al. [7] combined the MORL method with Hindsight Experience Replay
(HER) [8] and Deep Deterministic Policy Gradients to achieve higher sample
utilization in continuous action space. Abels et al. [9] implemented a weight-
conditioned network (CN) based on vector Q-functions, and accelerate learning
by using deverse experience replay (DER). Yang et al. [10] proposed the opti-
mality operator for a generalized version of Bellman equation and the Envelope
Q-learning (EQL) method, they proved its theoretical onvergence under linear
preference. The EQL outperforms single-objective reinforcement learning on the
complex Atari game SuperMario.

Multi-objective problems can be seen as a form of diversity problems. For
multi-objective problems, the strategies on the Pareto frontier have certain dif-
ferences. Diversity problems focus on differences in strategies under the same
scenario, which can be caused by different reward functions. Shen et al. [6] used
multi-objective genetic algorithm combined with single-objective reinforcement
learning method to obtain different styles of game AI. Optimizing the distance of
trajectories obtained by different strategies or the kl-distance of different strate-
gies is also a way to generate diversity. Wu et al. [11] used the Maximum Mean
Discrepancy (MMD) distance between trajectories as a regular term to generate
different opponents strategies. Eysenbach et al. [12] used unsupervised learning
for generating diversity by maximizing the mutual information of different skills
and states based on maximum entropy reinforcement learning. These methods
can generate more fine-grained diversity, but for many practical problems, a
controllable and interpretable diversity is more valuable.
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The contribution of our work is threefold:

1) We propose an algorithm which can cover the optimal solution as much as
possible with training only one model.

2) For different preference inputs, a variety of diversity strategies that conform
to the preference can be generated.

3) Compared with single-objective reinforcement learning, our algorithm can
reduce the possibility of falling into a local optimal solution, and can better
converge to the optimal solution in sparse reward environments.

The structure of this paper is organized as follows: In Sect. 2, we introduce the
relevant background of multi-objective reinforcement learning and some nota-
tions used in this paper. In Sect. 3, we analyze some problems with existing
methods and propose a multi-objective reinforcement learning algorithm with
preference exploration (MoPE). In Sect. 4, we introduce two multi-objective envi-
ronments and validate our methods based on them. In Sect. 5, we summarize the
contributions of this article and illustrate future research directions.

2 Background

The Multi-objective Reinforcement Learning (MORL) is a class of meth-
ods relative to traditional single-objective reinforcement learning. Its reward
function r(s, a) = (r1(s, a), ...rm(s, a)) is given in vector form, where m is the
number of targets. The MORL is derived from multi-objective optimization
problems, whose goal is to solve max f(x) = (f1(x), ...fm(x))�. In most multi-
objective problems, there are conflicts or incomparability between objectives,
and the global optimal solution cannot be obtained, which leads to the improve-
ment of one objective that tends to weaken other objectives. For a solution, if
there is no other solution that is better than it on all objectives, it is called a
Pareto solution under the problem. A set of Pareto optimal solutions is called
the Pareto optimal set, and the surface formed by the optimal set in space is
called the Pareto front.

The Markov Decision Process (MDP) is the basic form of reinforcement
learning (RL). MDP can be represented by the tuple (S,A, P, γ, r), with state
space S, action space A, action a ∈ A, transition probability P (s′ | s, a), discount
factor γ, reward function r(s, a). The goal of reinforcement learning is to learn
the strategy π : S × A → [0, 1] to obtain the maximum cumulative return Gt =∑∞

t γtr(s, a), at this time the strategy is called the optimal strategy π∗. The
solution method of the optimal strategy can be divided into two types: based on
the value function V (s) = Eπ[Gt | St = s] and Q(s, a) = Eπ[Gt | St = s,At = a]
and based on the policy. The DQN is a representation of a value function-based
approach, which value function is updated as:

Q(s, a)i+1 ← Q(s, a)i + α

[

r + γ max
a′∈A

Q (s′, a′)i − Q(s, a)i

]

(1)
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The PPO is a policy base algorithm, which loss function is:

JPPO(θ) =
T∑

t=1

πθ (at | st)
πold (at | st)

Ât − λKL [πold | πθ]

Ât = R̂t − Vφ (st)

(2)

The Multi-objective Markov Decision Process (MOMDP) can be rep-
resented by the tuple (S,A, P, r, Ω, fΩ) with vector reward function r(s, a, s′),
the space of preference Ω, preference function fω = ωT r(s, a), preference ω ∈ Ω.
When ω is fixed, each ω corresponds to a MDP process. All optimal solutions
form the Pareto coverage set (PCS) F∗ := {r̂ | r̂ ≥ ∇̂′,∀r̂′} , where the return
r̂t =

∑∞
t γtrt(s, a). The optimal strategies corresponding to all optimal solu-

tions constitute the Pareto front of this problem. For all possible ω ∈ Ω consti-
tute a convex coverage set (CCS) [10] which is a subset of PCS:

CCS :=
{
r̂ ∈ F∗ | ∃ω ∈ Ω s.t. ω�r̂ ≥ ω�r̂′,∀r̂′ ∈ F∗} . (3)

Our goal is to learn a general value function Q(s, a,ω, θ) that can generalize
to the entire preference space, and the policy obtained by this value function
can cover the CCS as much as possible.

3 Multi-objective RL with Preference Exploration

The algorithm we propose is based on two ideas. The first is the exploration
and utilization of existing samples. For inner loop methods, it is necessary to
sample trajectories under different preferences during the training process to
learn a general value function, which reduce sample size for each preference. To
address this issue, we expand and explore in existing samples through HER and
prioritization experience replay (PER) [13] combined with information theory
to increase sample utilization. The second is the exploration of preference space
during sampling. Existing methods usually directly obtain the preference used in
each episode through uniform sampling. While it’s favorable to use the already
trained preferences and corresponding result as priors to guide the selection of
new preferences.

Exploring and Utilizing Existing Experience is the key to improving sam-
ple efficiency. The HER is a technique for dealing with the sparse reward goal-
condition problem, which improves the utilization of samples by relabeling the
goals of existing trajectories as goals that can be reached by the current strategy.
Preference is also a goal in this paper. The preference will only affect the action
of the agent, but not the dynamics of the environment. Therefore, A relabeling
can be used to the experience to improve the utilization of the sample. For each
experience in the batch (s,ωb, a, r, s′) we additionally sample Nω preferences
ω = {ω0, ω1, ..., ωNω

| ∀ω, ‖ωi − ωb‖2 ≤ σω} as new goals. Different from the
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EQL, it can be noticed that policies with similar preferences will be more sim-
ilar under linear preferences, which can provide more information to help the
learning of the current policy, so we will limit the newly sampled preferences to
the vicinity σω of the actual sampled ωb which called Similar Preference Explo-
ration. After relabeling, The EQL’s loss is used to update the network. The loss
function L includes two parts:

LA(θ) = Es,a,ω

[‖y − Q(s, a,ω; θ)‖22
]

LB(θ) = Es,a,ω

[∣
∣ω�y − ω�Q(s, a,ω; θ)

∣
∣
]

L = LA + LB

(4)

where y = Es′
[
r + γ argQ maxa,ω ′ ω�Q (s′, a,ω′; θk)

]
. Compared to the original

DQN objective, the EQL takes the largest Q value among the sampled actions
and preferences simultaneously. LA updates the vector Q function, LB is the
auxiliary loss, and the existence of LB is to reduce the influence of the discrete
solutions on the frontier on the optimization. The optimal solution corresponding
to the preference is the same, which increases the difficulty of learning the value
function.

The HER focuses on the utilization of data in the current batch, and PER is
used to focus on the utilization of historical data. PER is generally based on the
TD error of each experience. Based on the above analysis, it is more beneficial to
consider a preference interval rather than the empirical TD error under a single
preference in the MORL problem:

δ =
1

Nω

Nω∑

i=0

ωi
�y − ωi

�Q(s, a,ωi ; θ). (5)

The TD error takes into account the error of the value function, reflecting
how well the value function is learned. However, discrete optimal solutions will
make strategies under multiple preferences correspond to the same optimal solu-
tion, which increases the possibility of strategies falling into local optimality. At
the same time, the multi-objective reinforcement learning problem pays more
attention to the results of different strategies. But the differences in results do
not fully correspond to the differences in strategies. In this regard, we use the
method of information theory to deal with this problem. Our method is based on
an idea that a large difference in preference ω corresponds to a large difference
in the state S reached by the agent. It should be able to better distinguish the
agent’s preferences under different state, that is, maximize the mutual informa-
tion I(S;ω) between state and the preferences.

I(S;ω) = (H[ω] − H[ω | S])
= Eω∼p(ω),s∼π(ω)[log p(ω | s)] − Eω∼p(ω)[log p(ω)]
≥ Eω∼p(ω),s∼π(ω) [log qφ(ω | s) − log p(ω)]

(6)

Among them, p(ω | s) is difficult to calculate directly, a discriminator network
qφ(ω | s) is trained to approximate it. It can be proved that the approximated
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solution can provide a variational lower bound on mutual information. I(S;ω)
is optimized by add this priority to PER, the priority sampling probability is:

q(si) = δ + α(log qφ(ω | s) − log p(ω)). (7)

The above formula can be understood that we pay more attention to the
state that is easy to distinguish, and the value function has not been estimated
accurately. This kind of state also corresponds to the frontier of exploration, and
α is used to balance the ratio of the two parts. For some adversarial tasks, the
addition of the discriminator also brings convenience to opponent modeling.

Exploring in Preference Space is key to speeding up training and mitigating
catastrophic forgetting. To guarantee coverage of the optimal solution, continu-
ously train with different preferences is needed. After many updates, the neural
network may forget some of the policies it learned earlier. In order to reduce
the impact of forgetting and take advantage of the learned policy, we need to
update the sampling probability p(ω) during training to purposefully learn some
preferences.

Specifically, we expect to give higher sampling probabilities to preferences
that currently have few visits or incomplete training. For the problem of visit
frequency, we discretize the preference space into NI intervals Ii ∈ Ω, i ∈ [0, NI ].
Put each used preference into the corresponding interval to get the count Ni.
Combined with the counting-based exploration method in reinforcement learn-
ing [15], we set p(ω) ∝ (Ni + 0.01)−1/2, ω ∈ Ii.

4 Experiment

Deep-Sea Treasure (DST) [14] is a simple multi-objective 10×11 grid world
environment, which is often used for the verification of MORL algorithms. Its
Pareto frontier is obtainable and convex. In the DST environment, there is an
agent and several treasures with scores, and the treasure near the bottom of
the map have higher scores. At the beginning of the round, the agent is in the
upper left corner of the map, and the algorithm needs to control the agent to
move in four directions until it reach the treasure. The agent’s goal is to obtain
the highest possible score while taking the fewest steps. The two parts of the
rewards are the reward rscore for reaching the treasure, and the penalty for each
step rsteps = −1 (Fig. 1).

In order to evaluate the coverage of the algorithm to the optimal solution in
the CCS, we introduce the evaluation metric Coverage Ratio (CR). The calcu-
lation of CR is based on the coincidence of the optimal solution set P and CCS
found by the algorithm [10]:

CR = 2 × precision × recall
precision + recall

, (8)

where precision = |P ∩ CCS| /|P|, recall = |P ∩ CCS| /|CCS|, represent the
proportion of coincident solutions in the two sets. In practical, we approximate
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Fig. 1. The Deep-sea treasure (DST) environment. Agent starts from the upper left
corner of the map, takes (x, y) as the state, and searches for treasures with different
scores by moving in four directions. The red and the orange line in the figure represent
two paths that can reach a specific treasure. It can be seen that the set of optimal
solution paths in the DST environment is the shortest path to each treasure. (Color
figure online)

Fig. 2. Evaluate Deep-sea treasure results. (a) Coverage ratio metric under 20000
timesteps. (b) The real CCS and the recovered solutions.

the current optimal solution set P by randomly sampling a certain number of ω
in the preference space.

We use a conditional Multi-head Q network [9] by 4 fully connected hidden
layers with {64, 128, 128, 64} for training. The inputs are states (x, y) and pref-
erences, and the number of heads in the output layer is equal to the number of
objectives. The original EQL and the algorithm after adding exploration were
trained for 20,000 timesteps, and the CR was evaluated every 1,000 steps during
the training process, and 2,000 preferences were evaluated using uniform sam-
pling. For the experience exploration (EE) approach, a discriminator network
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Fig. 3. Deep-sea treasure results. (a) The relationship between preference and optimal
solution under DST task. The gray dotted line is the Pareto optimal solution, the
green thick solid line is the optimal solution obtained by the algorithm. The preference
space can be divided into multiple parts according to the different solutions. The red
dotted line indicates that the corresponding optimal solution is missing, and the red
area indicates that the solution obtained by the algorithm is not in the optimal solution
set. (b) The discriminator’ s prediction of preference. The color indicates the weight
corresponding to rscore. (Color figure online)

with 3 fully connected layers is used to output the probabilities used in PER.
Then we sample 64 preferences under the condition of σω = 0.04 to relabel the
samples. For the preference exploration (PE) approach, we divided the pref-
erence space into 10 parts. MoPE integrates these two methods of preference
exploration. The final result is shown in Fig. 2. Under the same number of train-
ing steps, the algorithm after adding exploration can achieve higher CR than
the original algorithm.

Compare the distribution of the optimal solutions obtained by the two algo-
rithms in the preference space as shown in Fig. 3a. The solutions obtained by
MoPE are more uniformly distributed in the preference space and are all within
the CCS, while the EQL will have some suboptimal and concentrated solutions.
Further, we plot the discriminator’s prediction of preference as shown in Fig. 3b.
For the DST environment, the optimal solution is unique, but the optimal path
is not. The agent’s preference is more difficult to discern when it is close to a
treasure location in the top half of the map. Under our method, this part exhibits
larger differences in predicted preferences, which means that agents choose more
diversity routes for different preferences.

Robot Confrontation Game is a multi-objective problem in a continuous
action space. There are two red and blue agents Ar, Ab in the scene, where Ar

is the agent to be controlled, Ab is the rule-based agent, and the state update of
the agents is based on (9).
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ẋ = v cos θ, ẏ = v sin θ, θ̇ = w, v̇ = a, (9)

where robot’s acceleration a ∈ [−0.2, 0.2] m/s, angular velocity w ∈ [−0.8, 0.8]
rad/s, direction θ ∈ [−π, π]. The goal is to hunt down the blue agent without
going out of bounds. The definition of winning is that the distance and relative
angle between the two agents are less than a certain threshold, such as (10)
(Fig. 4).

Fig. 4. Parameter definition of the environment.

qr < 30◦, qb > 30◦, β < 40◦, d < 0.3m, (10)

where qr, qb is the angle between the speed direction and the line connecting the
two agents, β is the angle between the speed directions, and d is the distance
between the two robots. For the strategy of rule-based agents, we use the threat
index T which widely used in air combat problems as the evaluation index of
the state, combined with single-step forward prediction, then select the action
with the highest threat to the opponent. The threat index T we use includes
two parts, the angle threat Ta and the distance threat Tb, which are defined as
follows:

Ta =
qb − qr

π
, Td =

dmax + dmin − 2d

dmax − dmin
, T = aTa + bTb, (11)

where dmax and dmin are the maximum and minimum distances that two agents
may encounter, a and b are the corresponding weight coefficients. In this paper,
a = 0.1, b = 0.9.

For this environment we choose pursuit reward rcatch and moving distance
reward rmove as optimization goals.



678 W. Xi and X. Guo

rcatch =

⎧
⎪⎨

⎪⎩

10 if red wins
− 10 if bule wins
(Ta − 1)/10 + (Tb − 1)/10 otherwise

rrun =

{
− 10 if out of range
vdt otherwise

(12)

In this environment, the capability of the two agents is consistent, which
makes it easy for the algorithm to fall into a sub-optimal solution that keeps
accelerating in circles. At this time, although the agent cannot obtain rewards,
it will not be punished for being caught up. To alleviate this problem we use the
threat index penalty to guide the agent.

Fig. 5. Optimal solutions obtained by different algorithms. The dashed line is result
fitted by data.

Compare the optimal solutions obtained by different algorithms in Fig. 5. The
data of the PPO [16] is obtained by training single-objective problems under dif-
ferent preferences, and the data of MoPE and the EQL are obtained by uniform
sampling 100 preferences after training. From the maximum reward that the
algorithm can achieve, it can be seen that (1) the single-target PPO algorithm
does not learn a strategy that can catch up with the opponent (the reward for
catching up with the opponent is 10). (2) Compared with the EQL, MoPE has
more diverse strategies. We further map MoPE’s representative games under
different preferences as Fig. 6.
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Fig. 6. MoPE result with different preferences.

5 Conclusion

We propose a multi-objective reinforcement learning algorithm (MORL), which
can cover the optimal solutions under different preferences as much as possible
when only one model is trained, and can generate sufficiently diversity strate-
gies under different preference inputs. We conduct experiments on the algorithm
in a simple grid world environment DST and a more difficult robot confronta-
tion environment, Our experiments demonstrate that our algorithm has suffi-
cient generalization and diversity relative to the benchmark algorithms. Future
research will consider constrained multi-objective problems. The method in this
paper is based on the assumption of linear preference, which means that all
rewards must participate in the weighting calculation, and their corresponding
weights need to be sampled in training, but for some penalty items, such as
collisions, timeouts, etc., we do not need to consider them preferences, but wish
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to constrain them within a certain range. One possible approach to this problem
is Thresholded Lexicographic Ordering (TLO) [17].
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