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Abstract. Skeleton-based hand gesture recognition has achieved great success in
recent years. However, most of the existingmethods cannot extract spatiotemporal
features well due to the skeleton noise. In real applications, some large models
also suffer from a huge number of parameters and low execution speed. This paper
presents a lightweight skeleton-based hand gesture recognition network by using
multi-input fusion to address those issues. We convey two joint-oriented features:
Center Joint Distances (CJD) feature and Center Joint Angles (CJA) feature as
the static branch. Besides, the motion branch consists of Global Linear Velocities
(GLV) feature and Local Angular Velocities (LAV) feature. Fusing static and
motion branches, a robust input can be generated and fed into a lightweight CNN-
based network to recognize hand gestures. Our method achieves 95.8% and 92.5%
hand gesture recognition accuracy with only 2.24M parameters on the 14 gestures
and 28 gestures of the SHREC’17 dataset. Experimental results show that the
proposed method outperforms state-of-the-art (SOAT) methods.

Keywords: Skeleton-based hand gesture recognition · Multi-input fusion ·
Joint-oriented feature Second Keyword

1 Introduction

Recently, thanks to the development of machine learning and computer vision, dynamic
hand gesture recognition becomes a popular research topic in many fields, e.g., human-
computer interaction (HRI), sign language interpretation and medical assistive appli-
cations. Over the past decade, with the widespread use of depth cameras and great
developing of hand-pose estimation, skeletal data of high accuracy can be generated
easily. Skeletal data is a time sequence of 3D coordinates of multiple hand joints. Com-
pared with RGB and RGB-D inputs, skeletal data is more robust to background changes
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and illumination variations. Skeleton-based gesture recognition has shown powerful
classification effect in many applications.

One essential problem in dynamic hand gesture recognition is how to extract rich
features to fully describe the variations of spatial configurations and temporal dynam-
ics in gestures. Skeleton-based gesture recognition algorithms are developing rapidly,
and there are mainly three deep learning methods, namely Convolutional Neural Net-
works (CNN), Recurrent Neural Networks (RNN) and Graph Convolutional Networks
(GCN). The above three methods transform the raw skeletal data into pseudo graph,
time series and graph structure for feature extraction, respectively. CNN-based method
is of frequently used as a backbone model of real-time gesture detection and recognition
because of its compact structure and fast processing speed.

In real applications, a desirable gesture recognition model should be adaptable to
the influence caused by the variation of the viewpoints and achieves high recognition
accuracy. It also should run efficiently by using a few parameters. To meet those require-
ments, we propose a multi-input fusion lightweight network, which is a CNN model
equipped with a static features branch and a motion feature branch. The proposed model
takes into account both the recognition accuracy and the execution speed. Extensive
experiments are conducted on public dataset to demonstrate the effectiveness of our
proposed method.

Specifically, our research is implemented based on the unique properties of skeletal
data. To tackle the issue of viewpoint rotation, we propose a simplified joint distances
feature. Meanwhile, to alleviate magnitude changes caused by the distance variations
between observer and hand, we introduce the feature of center joint angles. As shown
in Fig. 1, joint distances feature and joint angles feature can cope with the variations of
input data caused by viewpoints changes. To make full use of the rich spatio-temporal
information of skeleton data, motion features generated by joint coordinates and center
joint angles are extracted as input features. We adopt a fast slow frame generation
method, which is applied to motion branch. Different frame generation method can
distinguish the influence of the speed of gestures. At the network structure level, we
employ 1D convolutional neural network to embed the above features, and then utilize
2D convolutional neural network to process the fused features. The network structure not
only provides small parameter scale and fast running speed, but also can extract spatio-
temporal information well. Compared with other similar CNN method, our proposed
method has achieved better performance through experimental verification.

The contributions of this paper are as follows:

1. Two geometric features with translation, rotation and scaling invariance are com-
pounded to constitute the static feature module. Besides, motion features are intro-
duced to improve the sensitivity of the model to different temporal and spatial scales,
and improve the classification effectiveness.

2. The network architecture combining 1D CNN and 2D CNN is adopted to extract
the rich spatio-temporal features, and avoids unnecessary parameters and slow
processing speed.

3. Comparative experiment proves that the accuracy of the model is ahead of other
advanced CNN-based networks.
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The rest of the paper are arranged as follows: We review the related works in Sect. 2.
Section 3 introduces the methodology of our model. The fourth section makes ablation
studies and comparative experiments to demonstrate the effectiveness of our model. The
last section concludes our paper and the future works.

Fig. 1. Variations of Cartesian coordinates caused by viewpoint changes. Camera 1 and Camera
2 have different observation directions, which makes the skeleton rotation. Camera 2 and Camera
3 have different observation distances, which makes the skeleton scaling.

2 Related Works

2.1 Static and Motion Features

In many prior works, static features are frequently applied in recognizing action and
gesture tasks, e.g., position, angle, distance, velocity and acceleration. Li et al. [9] pro-
pose 2D and 3D joint distance map (JDM) features. Zhang et al. [10] provide a variety
of distance and angle features of lines and planes. Liao et al. [4] utilize a set of joint-
oriented features for human action recognition. Song et al. [8] propose an early fused
Multiple Input Branches (MIB) architecture to capture structure features from skeleton
sequences.

Motion features contain rich dynamic information. Chen et al. [11] extract finger
articulated features from the hand skeleton by a variational autoencoder (VAE). Choutas
et al. [12] introduce a fixed-sized representation that encodes posemotion. Feichtenhofer
et al. [5] propose two scalesmotion features difference of slowand fastmotions.Different
from these works, our work obtains static and motion features by a center joint-oriented
method, which can reduce the noise of skeletal data and consume a small amount of
computing resources.



Skeleton-Based Hand Gesture Recognition 27

2.2 Skeleton-Based Gesture Recognition

Skeleton-based action recognition has been studied for decades. Yang et al. [1] propose
DD-Net solely based on 1D CNNs for easy computation and training, while taking into
consideration the integration of location-viewpoint invariant feature Joint Collection
Distances (JCD) and two-scale global motion features. Ding et al. [13] encoded five
spatial skeleton features into images and then fed those features to a CNN structure. Ke
et al. [14] created texture arrays from 3D coordinates of body joints using 4 key body
joints as a reference to form the center of a coordinate system by which the 3D positions
of body joints are shifted before conversion into cylindrical coordinates. Twelve maps
were generated which are fed to 12 CNN streams. Guo et al. [18] propose a normalized
edge convolution operation to recognize hand gestures. In [15], a skeleton sequence
representation was proposed in the form of a matrix that concatenates the joint coordi-
nates in each instant and arranged those vector representations in a chronological order.
Vemulapalli et al. [6] utilize rotations and translations to represent the 3D geometric
relationships of body parts in Lie group. Some methods cost huge computing resources
[4, 10–12] or contain redundant input [9]. Inspired by [1], we design our method on
two aspects: introduce new features for skeleton sequences and propose novel neural
network architectures.

3 Methodology

This section will describe the implementation process of the model. The framework of
our networks is shown in Fig. 2. Our network takes a hand skeleton sequence as input
and predicts the class label of dynamic hand gesture. It consists of two main branches,
which process static features and motion features, respectively. In the following, we
explain our motivation for designing input features and network structure of the model.

3.1 Modeling Static Feature by Center Joint Oriented Method

Raw skeleton data is a set of 3D Cartesian coordinates of hand joints. For one frame, the
nth joint can be donated byJn = (

Jx, Jy, Jz
)
, where n ∈ {0, 1, 2, . . . , (N − 1)} and N is

the number of the hand joints. However, the Cartesian coordinate is variant to locations
and viewpoints. As Fig. 1 shows, when the position of observer changes, skeletons
may rotate or zoom. The Cartesian coordinate will be changed significantly. However,
the geometric feature (e.g., distances and angles) is location-viewpoint invariant, and
thereby we adopt it as the static feature input of the network. To reduce the computation
and decrease the noise interference of bone data, we adopt a joint oriented method to
extract static features.

First, a center joint J0 is selected as original point. For each frame, the Euclidean
distance Dn between joints J0 and Jn can be denoted as.

Dn = ‖Jn − J0‖2, n ∈ {1, 2, . . . , (N − 1)}. (1)
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The cosine Ai,k of the joint angle Ji − J0 − Jk is denoted as

Ai,k = cos <
⇀

Ji,
⇀

Jk >, i, k ∈ {1, 2, . . . , (N − 1)}, i �= k, (2)

where
⇀

Ji is the vector from
⇀

J0 to
⇀

Ji, and <
⇀

Ji,
⇀

Jk > is the angle of vector
⇀

Ji and
⇀

Jk .
Except for the center joint J0, the other (N − 1) joints can generate (N − 1) joint

oriented distances by formula (1). The collection of those distances is named Center
Joint Distances (CJD). The dimension of CJD : [

D1D2 . . .DN−1
]
is (N − 1). Similarly,

the collection of all joint angles is named Center Joint Angles (CJA). The CJA feature
can be denoted as

CJA =
⎡

⎢
⎣

A2,1
...

. . .

A(N−1),1 · · · A(N−1),(N−2)

⎤

⎥
⎦. (3)

In our processing, the CJA is flattened to be a one-dimensional matrix and the
dimension of the flattened CJA is

dCJA = C2
N−1 = (N − 1)(N − 2)

2
. (4)

3.2 Extracting Global and Local Motion Features by Different Frames

Since static features do not containmotion information, we introduce themotion features
as another input. Two kinds of motion features can be extracted by calculating the
temporal differences of the Cartesian coordinate feature and geometric feature. Inspired
by [5], we adopt the slow-fast networks method to extract two scale of velocities:

s(t) = x(t + 1) − x(t), t = 1, 2, 3, . . . ,T − 1, (5)

f (t) = x(t + 2) − x(t), t = 1, 3, 5, . . . ,T − 2, (6)

where s(t) and f (t) are the slow and fast motion at frame t. x(t) is the physical quantity
at frame t. x(t + 1) and x(t + 2) represents the physical quantities 1 frame and 2 frames
after frame t, respectively. The frame number of the temporal sequence is denoted as T .

To represent the motion, we introduce Global Linear Velocities (GLV) and Local
Angular Velocities (LAV). GLV represent the movements of all hand joints’ coordinates
Jn = (

Jx, Jy, Jz
)
in the Euclidean space, while LAV represent the rates of change of

Center Joint Angles (CJA).

3.3 Dimension Adjustment and Feature Fusion by CNN Embedding

After extracting static and motion features, we adopt embedding method similar to
[1]. 1D convolutions are used to transform the features into four embeddings, which are
concatenated together to feed in spatiotemporal 2D representation layers. The embedding
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method can automatically learn the correlation between joint points and reduce the
noise interference of skeletal data. In order to fuse different features and eliminate the
inconsistency of different time dimensions, we adopt zero paddingmethod and two kinds
of different embedding methods.

Specially, dim of static features is dstatic∗T for it is extracted per frame. While dim
of slow-motion feature is dmotion∗(T − 1). We employ a zero padding in slow motion
feature so that it can match with the frame number of the static features. Same zero
padding is employed in fast motion feature as well so that its dimension can be resized
to T/2. We introduce two embedding operations for features of different dimension.

More formally, let embedding representations of static feature, slow motion fea-
tures and fast motion features to be estatic, eslow and efast , respectively. The embedding
operation is as follows:

estatic = Embeds[CJD ⊕ CJA], (7)

eslow = Embeds[s(t)], (8)

efast = Embedf
[
f (t)

]
, (9)

where ⊕ is the concatenation operation. Our network further fuses those embedding
features to a representation e by concatenation:

e = estatic ⊕ eslow ⊕ efast . (10)

Rich spatial features are extracted by embedding and feature fusion. Then we use 2D
convolutional neural network to extract spatiotemporal features and classification. Our

(a) Overview (b) Details of embedding operators and 
networks

Fig. 2. The network architecture of our network. “2 * CNN (3 * 3, c = 128)” denotes two 2D
Conv-Net layers (kernel size = 3 * 3, channels = 128), and “CNN (1, c = 128) represents a 1D
ConvNet layer with a 1-dimension kernel. Other CNN layers are defined in the same way. GAP
denotes Global Average Pooling. “Maxpooling(s = 2)” denotes a Maxpooling with 2 strides. FC
denotes Fully Connected Layers (Dense Layers in our experiments).
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feature fusion network embeds the static features (CJD, CJA) and the two-scale motion
features into latent vectors at each frame. Through the embedding, the correlation of
joints can be automatically learned. Also, joint-oriented method and embedding process
can reduce the effect of skeleton noise. The overall process is shown in Fig. 2.

4 Experiments

4.1 Dataset

The performance of our method is evaluated on SHREC’17 Track dataset[2], which is
a challenging gesture dataset with skeletal data. In this subsection, we introduce the
experimental dataset in detail.

The SHREC’17 Track dataset [2] use Intel RealSense short range depth camera to
collect hand gesture data. The depth images and hand skeletons were captured at 30
frames per second. Each sample gesture has 20 to 50 frames. Each frame of sequences
contains a depth image, the coordinates of 22 joints both in the 2D depth image space
and in the 3D world space forming a full hand skeleton. We take only 3D hand skeletons
sequences as the raw data for all experiments.

The dataset contains sequences of 14 hand gestures performed in two ways: using
one finger and the whole hand. Each gesture is performed between 1 and 10 times by 28
participants in 2 ways, resulting in 2800 sequences. Those 2800 sequences are divided
into 1960 sequences (70% of the dataset) for training and 840 sequences (30% of the
dataset) for testing. We adopt the same evaluation metric.

4.2 Training Details

The project was completed on a computer equipped with Intel Xeon E-2136 CPU
and NVIDIA Quadro P5000 GPU. The environment of deep learning is Python3.7,
tensorflow2.4.0, CUDA11.0.

To show the generalization of our methods, we use the same configuration for all
experiments. Skeleton sequences are normalized into 32 frames which is as same as the
settings in [1]. Besides, the learning rate is set to 0.001 for faster convergence. We use
the Adam as the optimizer and the cross-entropy as the loss function. Training for 400
epochs with 128 batches, we achieve the following experimental results.

4.3 Ablation Studies

In this experiment, we explore how each feature component contributes to the hand
gesture recognition performance by removing one or more component while remain-
ing others unchanged. We conduct experiments on SHREC-28 dataset. Except for the
explored parts, other details are set the same for fair comparison.

Table 1 shows the necessity of each input branch. With the increase of branches,
the model performance is improved. This phenomenon further confirms the effective-
ness of the data preprocessing module. More specifically, similar to video recognition,
motion features play an important role in dynamic hand gesture recognition. Without
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motion feature, a networkwith solely static feature input only achieves 70.95% accuracy.
Besides, we cannot ignore the contributions of the static geometric feature. The CJD
feature provides our multi-input network rotation invariability property, while the CJA
feature provides scaling invariability property. The ablation studies prove that all of the
input branch in our method make the input robust.

Table 1. Contributions of different components

Ablations CJD CJA Motion Accuracy
√ √ × 70.95%

× × √
86.43%√ × √
91.31%

× √ √
90.83%

Ours
√ √ √

92.50%

4.4 Comparison with Previous Methods

The hand gesture classification results of SHREC’17 Track dataset are presented in Table
2 and more details are listed in their confusion matrices. The confusion matrices of 14
gestures and 28 gestures are shown in Fig. 3(a) and (b), respectively.

As shown in Table 2, our network achieves the accuracy of 95.8% for the 14 gestures
setting and 92.5% for the 28 gestures setting. The effect of our model outperforms the
state-of-the-art models’. This shows that our method has a satisfactory effect on hand
gesture recognition. Our model brings 1.2% and 0.6% improvements for 14 gestures
and 28 gestures setting compared with the state-of-the-arts. Due to the simple CNN-
based structure, our model contains only 2.24M parameters, which is smaller than many

Table 2. Accuracy of SHREC dataset

Method Parameters 14 Gestures 28 Gestures

Dynamic hand [3] – 88.2% 81.9%

Key-frame CNN [2] 7.92M 82.9% 71.9%

CNN + LSTM [21] 8–9M 89.8% 86.3%

Parallel CNN [20] 13.83M 91.3% 84.4%

STA-Res-TCN [9] 5–6M 93.6% 90.7%

MFA-Net [11] – 91.3% 86.6%

NormEdgeConv [18] – 92.9% 91.1%

DD-Net [1] 1.82M 94.6% 91.9%

Our method 2.24M 95.8% 92.5%
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other methods and only 0.42M more than DD-Net [1]. Compared with other methods,
the proposed model utilizes multi-features as input and a lightweight network structure,
which leads to high classification effect and fast execute speed. Thus, our method is
hardware-friendly.

As shown in Fig. 3(a), our network achieves recognition rate higher than 95.0% in
9 of the 14 gestures, and achieves 100.0% recognition rate in 4 of the 14 gestures. All
14 gestures can be classified with more than 90.0% accuracy. Figure 3(b) shows the
confusion matrix of 28 gestures setting. The proposed model achieves recognition rate
higher than 90.0% in 18 of 28 gestures and recognition rate higher than 95.0% in 13
of 28 gestures. Our model shows high classification accuracy for many different hand
gesture categories.

(a) 14 hand gestures (b) 28 hand gestures

Fig. 3. Confusion matrices of SHREC dataset (14 hand gestures & 28 hand gestures)

5 Conclusion

This paper proposed a pipeline for skeleton-based hand gesture recognition. First, we
introduced new static and motion features as robust input for our network. To sat-
isfy calculation speed of some real-time hand detection and recognition applications, a
lightweight CNN structure was proposed. Compared with other methods with numerous
parameters, our network has simple structure and requires less memory and processing
power. Our network showed great accuracy and speed advantages over similar networks
on our experimental dataset.

To improve the effectiveness of the algorithm and make it better adapt to different
environments, the following aspects can be considered for future work:

• We have verified the effectiveness of the network on the SHREC’17 dataset. Even
though themodel achieved satisfactory results, it needs to be tested onother benchmark
datasets for robustness and generalization;
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• More new features can be proposed and fused to the input branch. Besides, new fusion
methods can be utilized instead of simple concatenation;

• Other powerful convolutional neural networks, e.g., 3D-CNN, can be used to explore
rich spatiotemporal information.
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