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Abstract. In this paper, a radial basis function neural network
(RBFNN) learning control scheme is proposed to improve the trajectory
tracking performance of a 3-DOF robot manipulator based on deter-
ministic learning theory, which explains the parameter convergence phe-
nomenon in the adaptive neural network control process. A new kernel
function is proposed to replace the original Gaussian kernel function in
the network, such that the learning speed and accuracy can be improved.
In order to make more efficient use of network nodes, this paper pro-
poses a new node distribution strategy. Based on the improved scheme,
the tracking accuracy of the 3-DOF manipulator is improved, and the
convergence speed of the network is improved.

Keywords: Deterministic learning · 3-DOF manipulator · Trajectory
tracking control · RBFNN

1 Introduction

With the rapid development of automation, robots play an increasingly irre-
placeable role in industrial manufacturing, medical and health care, daily life,
military, aerospace, and other fields.

The robot manipulator is the most widely used automatic mechanical device
in robot technology. Although their structures and functions are different, they
are all required to track the reference signal accurately and quickly. There are
strong uncertainties such as parameter perturbation, external disturbance, and
unmodeled dynamics in the manipulator, which affect the trajectory tracking
accuracy. Therefore, it is challenging to further improve the manipulator’s track-
ing accuracy.

The model-based adaptive controller can deal with the problem that the
plant cannot be modeled accurately. However, it often depends on the system’s
gain, the increase in gain will affect the robustness of the system and make it
more sensitive to noise. Therefore, performing feedforward control of the system
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based on the identification model is a better choice. The neural network has a
higher model approximation ability than other traditional system identification
algorithms. With the rapid improvement of computing power, it is possible to
use a neural network to design a feedforward controller in the trajectory tracking
control process. In [1], Cong Wang proposed a deterministic learning mechanism
for identifying nonlinear dynamic systems using RBF networks. When it satisfies
the persistent excitation (PE) condition [2] which is proved to be satisfied when
the RBFNN is persistently excited by recurrent input signals, its weights can
converge to a specific range around the optimal values. The numerical control
system or some manipulators in production applications repeat periodic actions.
It provides an effective off-line high-precision control method for practical appli-
cation scenarios.

However, deterministic learning also has some defects and deficiencies in some
aspects. One of them is that its training speed is limited by the PE levels, and
it often takes thousands of seconds to learn the knowledge of some complex
tracking control tasks. The excessive consumption of time makes it difficult to
be applied to practical production. This paper points out two standards to mea-
sure the training speed and improve the training speed of deterministic learning
in two aspects: changing the structure of the RBF network and changing the
distribution of nodes. By improving the kernel function in the RBF network,
the training structure can meet the PE condition and reduce the amount of cal-
culation. Furthermore, the use of nodes is improved by an optimized node dis-
tribution strategy. As a result, each node can better characterize the unknown
dynamics while raising the PE levels to improve the training speed.

2 Problem Formulation and Preliminaries

This part will establish the dynamical equation of the 3-DOF manipulator and
design a corresponding adaptive RBFNN controller based on the deterministic
learning theory. It shows that for any periodic trajectory, the RBFNN can satisfy
the PE condition with appropriate parameter selection.

2.1 3-DOF Manipulator Model

The selected three-link manipulator model is shown in Fig. 1. For the link
i (i = 1, 2, 3), mi represents the mass, li is the length, θi represents the angle
of each link joint with the vertical direction, Ji is the moment of inertia of each
link perpendicular to the XY plane, lci is the distance from the head joint its
center of gravity.

Using Newton-Euler equation, the dynamic equation of three-link manipula-
tor can be expressed as follows:

M (θ) θ̈ + C
(
θ, θ̇

)
θ̇ + G (θ) = τ (1)

where M (θ) ∈ R
3×3 is the inertia matrix, which meets the positive definiteness

and symmetry, C
(
θ, θ̇

)
∈ R

3×3 is the combination vector of Coriolis force and
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Fig. 1. Structure of three-link manipulator.

centrifugal force; G (θ) ∈ R
3×1 is the gravity matrix. θ̈ =

[
θ̈1 θ̈2 θ̈

3

]T

is the

angular acceleration vector of the system, and θ̇ =
[
θ̇1 θ̇2 θ̇

3

]T

is the angular

velocity vector of the system, τ =
[
τ1 τ2 τ

3

]T is the control torque vector [3,4].
M (θ):

M (θ) =

⎡
⎣

α11 α12C21 α13C31

α12C21 α22 α23C32

α13C31 α23C32 α33

⎤
⎦ (2)

where α, S,C are fixed parameters:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α11 = J1 + m1lc1
2 + (m2 + m3)l12

α12 = (m2lc2 + m3l2) l1

α13 = m3l1lc3

α22 = J2 + m2lc2
2 + m3l2

2

α23 = m3l2lc3

α33 = J3 + m3lc3
2

(3)

{
Si = sin θi, Sij = sin (θi − θj)
Ci = cos θi, Cij = cos (θi − θj)

(4)

C
(
θ, θ̇

)
:

C
(
θ, θ̇

)
=

⎡
⎣

0 −α12θ̇2S21 −α13θ̇3S31

α12θ̇1S21 0 −α23θ̇3S32

α13θ̇1S31 α23θ̇2S32 0

⎤
⎦ (5)

where g is the gravitational acceleration, and the formation G (θ) are:

G (θ) =
[−β1S1 −β2S2 −β3S3

]T (6)

where ⎧
⎪⎨
⎪⎩

β1 = (m1lc1 + m2l1 + m3l1) g

β2 = (m2lc2 + m3l2) g

β3 = m3lc3g

(7)

The three-link manipulator model can be built based on the above dynamic
equations and parameters.
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2.2 RBF Neural Network and Deterministic Learning

RBF neural network has a good approximation ability. Theoretically, with
enough neurons it can approximate any Σ-Borel measure nonlinear function with
arbitrary precision in the compact set [5]. Generally, an RBF neural network can
be expressed as:

fnn (Z) =
N∑

i=1

wisi (Z) = WT S (Z) (8)

where Z ∈ ΩZ ⊂ R
n is the input vector of the neural network, N is the number

of network nodes, W = [w1, w2, . . . , wN ] ∈ R
N is the weight vector, S (Z) =

[s1 (‖Z − ξ1‖) , . . . , sN (‖Z − ξN‖)]T represents the regressor vector of the neural
network, si (·) (i = 1, . . . , N) describes the RBF, where ξi (i = 1, . . . , N) is the
center of each neuron function. The most commonly used RBF is the Gaussian
RBF [6], which is expressed as follows:

si (‖Z − ξi‖) = exp

[
−(Z − ξi)

T (Z − ξi)
ηi

2

]
(9)

where ηi indicates the width of the function receptive field.
The single axis of a three-link manipulator is considered, and its order is set

as 2. The nonlinear system in Brunovsky form is as follows:
{

ẋ1 = x2

ẋ2 = f (x) + u
(10)

where x = [x1, x2]
T ∈ R

2, u ∈ R is state variable and system input respectively,
f (x) is an unknown smooth nonlinear function, which can be approximated by
RBF network (8).

Consider the second-order reference model:{
ẋd1 = xd2

ẋd2 = fd (xd)
(11)

where xd = [xd1 , xd2 ]
T ∈ R

2 is the system state, fd (·) is a known smooth
nonlinear function. The system’s trajectory starting from the initial condition
xd (0) is denoted by ϕa (xd (0)) (also as ϕd for brevity). Assume that the states
of the reference model are uniformly bounded, i.e., xd (t) ∈ Ωd,∀t ≥ 0, and the
system orbit ϕd is assumed to be a periodic motion [1].

The adaptive neural controller using the Gaussian RBF network is expressed
as:

u = −z1 − c2z2 − ŴT S (Z) + α̇1 (12)

where ⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

z1 = x1 − xd1

z2 = x2 − α1

α1 = −c1z1 + ẋd1 = −c1z1 + xd2

α̇1 = −c1ż1 + ẋd2 = −c1 (−c1z1 + z2) + fd (xd)

(13)
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c1, c2 > 0 is the control gain, Z = x = [x1, x2]
T is the network input.

W ∗ is ideal constant weights and Ŵ is the estimated value of weights W ∗ of
RBF network. Let W̃ = Ŵ − W ∗, and its update rate is:

˙̂
W = ˙̃W = Γ

(
S (Z) z2 − σŴ

)
(14)

where Γ = ΓT > 0 is a design matrix, σ is a small positive value.
PE condition is an essential concept in adaptive control systems.In the study

of adaptive control, the PE condition played an essential role in the convergence
of controller parameters. It is defined as follows:

A piecewise-continuous, uniformly bounded, the vector-valued function S :
[ 0,∞) → R

n is said to satisfy the PE condition if there exist positive constants
T0,α1 and α2 such that:

α1I ≤
∫ t0+T0

t0

S (τ)S(τ)T
dτ ≤ α2I (15)

holds for ∀t0 > 0, where I ∈ R
n×n is the identity matrix [2].

It has been proved that almost any periodic or quasi-periodic trajectory can
satisfy the partial PE condition of the corresponding RBF regressor vector [7].

When RBF neural network is applied locally, f (Z) can be approximated by
a limited number of neurons involved in a particular region of trajectory Z:

f (Z) = Wξ
∗T Sξ (Z) + eξ (16)

Sξ (Z) = [sj1 (Z) , . . . , sjξ (Z)]T ∈ R
Nξ (Nξ < N),|sji| > τ (i = 1, . . . , ξ) , τ > 0

is a small positive constant, Wξ
∗ = [wj1

∗, . . . , wjξ
∗]T , eξ is the error caused by

approximation. That is to say, Sξ (Z) is a dimension-reduced subvector of S (Z).
Since the input of the manipulator follows a cyclic (or quasi-cyclic) trajec-

tory, it can be proved in [8] that the RBF neural network satisfies the local PE
condition.

In deterministic learning theory, the neural weight estimation Ŵξ converges
to its optimal value Wξ

∗, and the locally accurate ŴT S (Z) approximation of the
dynamic system fg (x) along the trajectory ϕζ (x (T )) is obtained by reaching
the error level e∗.

W̄ = meant∈[ta,tb]Ŵ (t) (17)

where [ta, tb] with tb > ta > T represents a time segment after the transient
process.

3 Methods to Improve Training Speed

The low training speed is the disadvantage of deterministic learning, and it is
caused by the irrational distribution of the neural network. In the process of
applying deterministic learning theory, the training speed can be reflected in
two aspects:
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– Weights Convergence: according to the deterministic learning theory, the
weights will eventually converge when the PE condition is satisfied. The ear-
lier the weights join, the faster it can approach the inverse model of the plant,
and the tracking error can be reduced to a reasonable range.

– Convergence of tracking error: after the weight has converged or is close to
convergence, the tracking error of the plant will generally decrease with the
training process. The shorter the tracking error can be reduced to a reasonable
range, the faster the training speed will be.

To improve the training speed of deterministic learning, this paper considers
two aspects: one is to change the RBF’s structure and find a scheme to replace
the Gaussian kernel function, the other is to propose a method to calculate the
radius of curvature from scattered data, to design the node distribution.

3.1 Change the Structure of the Network

The periodicity of the input signal Z (t) makes Sζ (Z) satisfy the PE condition,
but this is usually not the PE condition of the entire regressor vector S (Z).
According to the adaptive law (14), the whole closed-loop system can be sum-
marized as follows:

[
ż
˙̃W

]
=

[
A −bS(Z)T

ΓS (Z) bT 0

] [
z

W̃

]
+

[
be

−σΓŴ

]
(18)

where z = [z1, z2]
T
, W̃ = Ŵ − W ∗ are the states,A is an asymptotically stable

matrix expressed as

A =
[−c1 1

−1 −c2

]
(19)

which satisfies A + AT = −Q < 0, b = [0, 1]T , (A, b) is controllable, Γ = ΓT > 0
is a constant matrix. Then we have:

˙̂
W ζ̄ = ˙̂

W ζ̄ = Γζ̄

(
Sζ̄ (Z) z2 − σŴζ̄

)
(20)

From [9–11], PE of Sζ (Z) leads to the exponential stability of
(
z, W̃ζ

)
= 0

for the nominal part of the system (18).
∣∣∣
∣∣∣e′

ζ

∣∣∣ − |eζ |
∣∣∣ is small, and σΓζŴζ can

be made small by choosing a small σ [12].
Selecting W̄ according to (17), the convergence of Ŵζ to a small neighborhood

of Wζ
∗ indicates along the orbit ϕζ (x (T )), we have:

f (x) = f (Z) = Wζ
∗T Sζ (Z) + eζ = ŴT

ζ Sζ (Z) − W̃T
ζ Sζ (Z) + eζ

= ŴT
ζ Sζ (Z) + eζ1 = W̄T

ζ Sζ (Z) + eζ2

(21)

where eζ1 = eζ − W̃T
ζ Sζ (Z) is close to eζ due to the convergence of W̃ζ , W̄ζ =[

w̄j1 , . . . , w̄jζ

]T is the subvector of W̄ , using W̄T
ζ Sζ (Z) to approximate the whole

system, then eζ2 is the error.
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After time T , ||eζ2| − |eζ1|| is small. Besides, neurons whose center is far
away from the track ϕζ ,

∣∣Sζ̄ (Z)
∣∣ will become very small due to the localization

property of the RBF network. From the law (20) and Ŵ (0) = 0, the small values
of Sζ̄ (Z) will make the neural weights Ŵζ̄ activated and updated only slightly.
Since many data are small, there is:

f (Z) = Wζ
∗T S (Z) + eζ

= ŴT
ζ Sζ (Z) + ŴT

ζ̄ Sζ̄ (Z) + e1 = ŴT S (Z) + e1

= W̄T
ζ Sζ (Z) + W̄T

ζ̄ Sζ̄ (Z) + e2 = W̄T S (Z) + e2

(22)

It is seen that both the RBF network ŴT S (Z) and W̄T S (Z) can approxi-
mate the unknown f (x) = f (Z).

From the above process of proving the weights convergence, it can be found
that the requirement for the RBF is only its localized structure, so the selection
of the RBF can be more extensive. Considering that most of the radial basis func-
tions used in the original RBF network are Gaussian kernels, the deterministic
learning theory also continues to use Gaussian kernels when proposed. However,
considering the computational complexity, the Gaussian kernel function is not
necessarily the optimal solution in all cases.

Quadratic rational kernel is also commonly used radial basis functions:

si (‖Z − ξi‖) = 1 − ‖Z − ξi‖2
‖Z − ξi‖2 + c

(23)

where Z ∈ ΩZ ⊂ R
n is the input vector of the neural network, ξi (i = 1, . . . , N)

is the center of each neuron function.
Since the unknown quantity c in the quadratic rational kernel function is a

constant, we have:

si (‖Z − ξi‖) = 1 − ‖Z − ξi‖2
‖Z − ξi‖2 + c

=
c

‖Z − ξi‖2 + c
(24)

Let ‖Z − ξi‖ = t, comparing the computational complexity of (9), (24), it can
be found that the computational complexity of quadratic rational kernel function
is o

(
t2

)
, while the computational complexity of Gaussian kernel function is o (et).

With the increase of t, the computational complexity o (et) > o
(
t2

)
. Therefore,

when the number of nodes i is kept constant, the computational complexity of
applying the Gaussian kernel function is more than that of the quadratic rational
kernel function.

For the quadratic rational kernel function, if the constant n is introduced,
there is si (‖Z − ξi‖) = 1 − n∗‖Z−ξi‖2

‖Z−ξi‖2+c
. The approximation accuracy of the net-

work is further improved by changing the value of the constant n.

3.2 Change the Distribution Strategy of Nodes

The nonlinear approximation ability of the neural network will be improved with
the increase of the node density. On the other hand, an excessive number of nodes
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will affect the training speed. Therefore, under the same approximation accuracy,
reducing the number of nodes can effectively improve the training speed of the
RBF network.

In the deterministic learning theory, the reference input of RBF model train-
ing is generally selected as the required position information and its first and
second derivative information (velocity and acceleration information). A certain
point in the three-dimensional space thus constructed can represent their posi-
tion, velocity, and acceleration information at the current time. The selection of
network nodes is based on this three-dimensional space. There are two modes
for the distribution of RBF network nodes:

– Distributed by regular lattice: Only the area occupied by the input informa-
tion of the RBF network in the three-dimensional space needs to be consid-
ered, as shown in Fig. 2.

– Distributed along the input signal: This distribution model is evenly dis-
tributed along the input track, as shown in Fig. 3, which can better use each
nodes.

Fig. 2. Nodes are distributed by
lattice.

Fig. 3. Nodes are evenly distributed by
input.

The curvature information can be used to represent the complexity of input
signal. In the space composed of three-dimensional input information, the part
where the curve changes sharply is usually the position where the radius of
curvature is small. Therefore, more nodes should be distributed around the parts
with larger curvature (smaller curvature radius) to improve the approximation
accuracy, and the node width can be reduced accordingly.

For curve y = f (x), the commonly used curvature calculation formula is
K = |ÿ|

(1+ẏ2)
3
2
, where ẏ, ÿ are the first and second derivatives of y to x. However,

the limitation of this method is that it is only applicable to continuous functions.
The problem with this method is that the curve fitting will lose part of the
input signal information, resulting in the decline of approximation accuracy.
When calculating the curvature of the local position, it is also easy to receive
the interference of noise and other information to produce peaks, which is not
conducive to the approximation of the network.
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Therefore, consider a new way to define the curvature for the scattered points
in space. For three points A,B,C in state space, their time sequence is A passes
through B to C. When the angle formed by ∠ABC is an acute angle or right
angle, the schematic diagram is as follows:

Since the coordinates of points A,B,C in the input data are known, the size
of |AB| , |BC| , |AC| in space can be obtained. Let |AC| = lb, ∠ABC = ∠θ. Let
the center of the circumscribed circle passing through the three points be O and
the radius be R, thus the radius of curvature obtained from the three points
A,B,C in the definition space be the circumscribed circle radius R.

To obtain the size of radius R, connect segment OA,OB,OC, and OH is
the vertical line of AC. Then at ∠θ ≤ 90◦, it can be known from the geometric
relationship:

∠ABO + ∠CBO + ∠OAC = 90◦ (25)

where ∠ABO + ∠CBO = ∠θ, can get ∠AOH = ∠COH = ∠θ. In ΔAOH, we
can calculate the newly defined radius of curvature of the scatter:

R =
lb

2 sin (θ)
(26)

When ∠θ > 90◦, the transition from
−−→
AB to

−−→
BC is smooth and the corre-

sponding radius of curvature is large, the calculation results of the above formula
conform to this feature.

When the variation trend of scattered points with time is more intense, the
result obtained from (26) is smaller. When the variation trend of spray with time
is flat, the result is larger. Define a threshold T , when the radius of curvature
R < T , the nodes distribution spacing and the scope of action are reduced,
and the nodes distribution spacing is increased at other positions to reduce the
number of nodes. In this way, the complex signal can be approximated more
accurately while maintaining a certain number of nodes, which saves computing
power and improves the approximation accuracy (Fig. 4).

Fig. 4. Calculation of radius of
curvature of scattered points.

Fig. 5. Tracking error of three-axis
manipulator.
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4 Experiment and Analysis

4.1 Experimental Result

1) Experiment preparation: Input x = sin (t) ; y = cos (t) ; z = sin (t) to the
three axes of the three-link manipulator model for training. Figure 5 shows the
system’s three-axis tracking error comparison data using only PID control and
in addition with the original deterministic learning control.

2) Change the RBF network structure: The Gaussian kernel function in the
RBF network is replaced by the modified quadratic rational kernel function
si (‖Z − ξi‖) = 1 − n∗‖Z−ξi‖2

‖Z−ξi‖2+c
, and n = 2.5; c = 1.5 is selected through experi-

mental comparison.
The three-axis input signals are x = sin (t) ; y = cos (t) ; z = sin (t) respec-

tively. For axis 3 of the three-link manipulator, Fig. 6 and Fig. 7 show the weights
convergence of the Gaussian kernel and the modified quadratic rational kernel.
Figure 8 is a comparison diagram of the tracking error between the Gaussian
kernel function and the modified quadratic rational kernel function.

Fig. 6. Axis 3’s weights of manipulator
using Gaussian kernel.

Fig. 7. Axis 3’s weights of manipulator
using the modified quadratic rational
kernel.

Fig. 8. Axis 3’s tracking error
comparison.

Fig. 9. 3-DOF manipulator input track.
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3) Change the distribution strategy of nodes: The crown trajectory is selected
as the input of the 3-DOF manipulator, as shown in Fig. 9, where X,Y,Z are
the position information of each axis.

In one trajectory period of axis 3, the value of the radius of curvature of the
scatter can be obtained, as shown in Fig. 10.

Set the threshold T to 20, and increase the node distribution density when
the threshold is less than 20.

Figure 11 shows the error comparison of axis 3 according to two distribution
modes when the number of nodes is 41.

Fig. 10. Curve of curvature radius
(axis 3).

Fig. 11. Comparison of tracking errors
between two node distribution meth-
ods.

4.2 Experimental Analysis

From the above experimental results, it can be seen that in the simulation with
the three-link manipulator model as the plant, compared with the original RBF
network, the method of changing the RBF network’s kernel function has the
following advantages:

– The weight convergence speed of the improved RBF network is faster than
that of the original one. The weight convergence speed will significantly affect
the network’s speed approaching the inverse model of the plant. Therefore, its
error reduction rate is higher than the original network, effectively improving
the training speed, reducing computing power and saving time.

– Compared with the original RBF network, the approximation accuracy of the
improved RBF network is also enhanced. In the simulation experiment, the
tracking error can be reduced to 10−6 in a short time.

Changing the node distribution strategy also has the following advantages: It
is often necessary to distribute a larger number of nodes for those complex input
trajectories. This method can optimize the distribution of nodes by applying the
same number of nodes, thereby improving the tracking accuracy, on the premise
of the same tracking accuracy, it can reduce the number of nodes, speeding up
the training.



Trajectory Tracking Control Based on RBF 421

5 Conclusion

Under the framework of deterministic learning theory, this paper modifies the
RBF network structure of the feedforward-feedback control loop part, proposes
a modified quadratic rational kernel function to replace the Gaussian kernel
function in the RBF network which is suitable for the 3-DOF manipulator. By
optimizing the network structure, periodic signals’ training speed and tracking
accuracy are improved. A new definition of the curvature radius is presented, and
the node distribution strategy is optimized on this basis, which can make better
use of nodes and save computing power. Experiments verify the effectiveness of
the improved strategy.
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