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Abstract. The present work proposes an Adaptive Compliant Control
scheme based on a closed-form output-redefined and perturbed dynamic
model of a Single-link Flexible Manipulator (SLFM) in Unknown Envi-
ronment. The control scheme is composed of inner and outer controllers.
The inner control is designed based on Two-Time Scale Adaptive Robust
Control (TTARC) to ensure fast and precise motion control, while the
outer control is based on the impedance dynamics aiming to offer a
desired compliant behavior in constrained motion. External force is esti-
mated based on the extended Kalman Filter (EKF). The stability of the
closed-loop system is verified through Lyapunov theory. The effectiveness
of the overall control scheme is verified through simulation.

Keywords: Collaborative robots · Flexible-link manipulators ·
Compliance control · Two-time scale · Force observers

1 Introduction

Collaborative robots could meet the human’s demand further by extending their
application fields since traditional robots have limitations on handling complex
products, being suitable for unstructured environments, and guaranteeing human
safety. The expansion of collaborative robots could allow industrial robotics to
be more attractive, with an estimation of 4 millions in 2022 [4]. Collaborative
robots are characterized by their safety and flexibility, while still facing problems
to be solved, such as accurate dynamic modeling and precise motion control.
Most of collaborative robots designed in literature are usually equipped with
rigid links, which cause hard collision problem during interactive operation with
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humans [2]. Considering the core issue of safety and compliance, manipulators
with flexible joints are recently presented [6]. Besides, if the manipulator link
has flexible structure or is operating at high speed, the manipulator will exhibit
flexible characteristics rather than rigid behavior. Therefore, the high perfor-
mance control of flexible link manipulator (FLM) needs to be further developed
for wide application of collaborative robots by handling the following well-known
addressed problems: (i) link vibration, (ii) system nonlinearity, (iii) inevitable
uncertainties, and (iv) instability in the internal dynamics.

Besides passive [10] and active compliant controls [16], Impedance control
has been verified as best alternative way to achieve compliance behavior of the
robot through regulation of its inertia, stiffness, and damping [13]. Because of
modeling uncertainties, both unknown disturbances and environments, robust
[5], adaptive [8,11], and learning technique [14] controls have been investigated
and used to enforce the basic impedance control of robot manipulators. Most
of the above different impedance control techniques are widely implemented on
rigid, parallel rigid, and flexible joint robots. However, research on the implemen-
tation of compliant control on Cobots with flexible link are limited to adaptive
impedance [1], dynamic hybrid position/force [9], backstepping approach [7] con-
trols, and composite impedance control based singular perturbation (SP) theory
[3]. Unfortunately, most of control designs are based on complex dynamics equa-
tions with hard task either to measure the vibration states or to retrieve them
through accurate sensors.

The current research aims firstly to develop an explicit dynamics model
for a SLFM system with high order vibration modes based on the combined
Assumed Modal and Lagrange formulation methods. Then, a redefined closed-
form dynamic model with both parametric and nonlinear uncertainties under
necessary conditions for stability of the internal dynamics is proposed. Sec-
ondly, the control scheme comprises an inner control designed based on singular-
perturbed and two-time scale sub-system dynamics. The outer control is designed
based on impedance dynamics to enable the robot with compliance characteris-
tic for the safety of both robot and unknown environment, during constrained
motion. The unknown environment parameters includes contact force, stiffness
and equilibrium position. The contact force is estimated by a designed force
observer based on the extended Kalman filter (EKF) algorithm.

2 Dynamic of FLM

The SLFM in Fig. 1 consists of thin flexible link regarded as an Euler-Bernoulli
beam of length l and a deflection w derived from the assumed modal method.

w(x, t) =
∞∑

i=0

φi(x)qi(t) (1)

where φi(x) and qi(t) are respectively link i-th mode shape function and its asso-
ciated time generalized coordinate. The link, at one end (i.e., the hub), is driven
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Fig. 1. Schematics of a rotary SLFM

by a rotary actuator and the other end attached to a payload attached while
interacting unknown environment. In addition, the following assumptions are
considered: (i) the link material property follows Hook’s law; (ii) the link deflec-
tion is small; (iii) no longitudinal stiffness and length’s variation are considered in
the link; (iv) the environments is compliant and described by a massless spring.

By only selecting the first vibration mode while considering higher-order
vibration modes as system uncertainties, the FLM dynamic model with uncer-
tainties is given by [17]

{
a0θ̈ + a1q̈1 + (κ2 + bv)θ̇ + Af tanh(λv θ̇) + Δn = κ1u − τθ,e

a1θ̈ + q̈1 + 2ξ1ω1q̇1 + ω2
1q1 = −τq,e

(2)

where a0 = Jh +ml2 + ρAbl
3/3, ai = ρAb

∫ l

0
xφidx+mlφie, Δn =

∑∞
i=1 (aiq̈i)−

a1q̈1, i = 1, 2, ..., n. τθ,e = JT
θ (θ, q)fe and τq,e = JT

q (θ, q)fe are joint and flexible
body frame joint torques, respectively, due to contact force. κ1 and κ2 are dc-
motor parameters, Af and bv are the unknown coefficient of Column and viscous
friction torques, respectively, and λv is a large positive coefficient.

According to the above assumptions and to the link deflection (1), the
total tip-point angle of the link is given by yt(l, t) = θ + α(t) where α(t) =
arctan

(∑∞
i=0 φ̄ieqi(t)

)
, with φ̄ie = φie/l, and φie = φ(l), in which the vibration

mode of link can be expressed as

q1 = φ̄−1
1e α + φ̄−1

1e Δq (3)

where Δq is the approximation error of tip-end deflection of link, which is given
by Δq = q1φ̄1e − arctan

(∑∞
i=1 φ̄ieqi

)
. Substituting (3) into (2) and expressing

the results in term of system parameters gives
{

θ̈ = ζ1u + ζ2α + ζ3θ̇ + ζ4α̇ + ζ9 tanh(λv θ̇) + ζ11fe + ζ13

α̈ = ζ5u + ζ6α + ζ7θ̇ + ζ8α̇ + ζ10 tanh(λv θ̇) + ζ12fe + ζ14
(4)
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Fig. 2. Compliance control scheme of SLFM

where ζ1 = κ1
a0−a2

1
, ζ2 =

a1ω2
1 φ̄−1

1e

a0−a2
1

, ζ3 = − κ2+bv

a0−a2
1
, ζ4 =

2a1ξ1ω1φ̄−1
1e

a0−a2
1

, ζ5 = −a1κ1φ̄1e

a0−a2
1

,

ζ6 = − a0ω2
1

a0−a2
1
, ζ7 = a1φ̄1e

a0−a2
1
(κ2 + bv), ζ8 = − 2a0ξ1ω1

a0−a2
1

, ζ9 = − 1
a0−a2

1
Af , ζ10 = a1φ̄1e

a0−a2
1
Af ,

ζ11 =
a1JT

q −JT
θ

a0−a2
1

, ζ12 =
(a1JT

θ −a0JT
q )φ̄1e

a0−a2
1

, ζ13 = a1
a0−a2

1
Δ1 − 1

a0−a2
1
Δ2, ζ14 = − a0φ̄1e

a0−a2
1
Δ1 +

a1φ̄1e

a0−a2
1
Δ2. and Δ1 = φ̄−1

1e [Δ̈q + 2ξ1ν1Δ̇q + ν2
1Δq], Δ2 = φ̄−1

1e a1Δ̈q + Δn. ζ13 and ζ14
are regarded as the nonlinear uncertainty of FLM, including modeling error
from neglected high-order vibration modes, unmodeled complex friction torque,
approximation error of tip deflection and unknown disturbances, etc.

3 Control Design

The proposed compliance control strategy comprises two main controllers: an
Impedance Dynamics-based Control and the Two-Time Scale Adaptive Robust
Control (TTARC) as outer and inner controllers Fig. 2. The feedback for both
controllers is realized by an output redefined function. During constrained
motion, a force observer estimates the parameters of the environments. In the
following, each control part is designed, as well as the stability of the closed-loop
system is verified.

3.1 Output Redefined Model

Consider a new output redefine function yΓ � θ + Γα. Taking use of (4), the
second derivative of yΓ helps to obtain a refined dynamics model.

{
ÿΓ = φT

r ϑr + Δ(t)
α̈ = φT

f ϑf + Δα

(5)

where ϑr = [ζ1+Γζ5, ζ2+Γζ6, ζ3+Γζ7, ζ4+Γζ8, ζ9+Γζ10, ζ11+Γζ12, dn]T is the
vector parameters, φr = [u, α, θ̇, α̇, tanh(λv θ̇), fe, 1]T its corresponding regressor.
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ϑf = [ζ5, ζ6, ζ7, ζ8, ζ10, ζ12,Δα]T and φf = φf are the vector parameters of the
flexible dynamics and its corresponding regressor, respectively. Γ > 0 and Γ ∈
[0, Γ ∗]. Γ ∗ is a critical value above which the internal dynamics becomes unstable

3.2 Two-Time Scale Adaptive Robust Control Design

The dynamics (5) naturally have a higher frequency in the dynamics associated
with the vibration of flexible link than in the one associated with the movement
of rigid joint, especially during the motion and/or in the case of high stiffness
system. Therefore, (5) can be divided into two subsystems, slow and fast, and
the control design can be reduced to slow and fast slow and fast controllers.

Slow Dynamics: actual tip-trajectory yΓ tracks a reference tip-trajectory given
by yr with a tracking error er � yΓ − yd. Consider a sliding mode function sr

such that sr → 0 occurs when er → 0 as t → ∞:

sr = ėr + k1er = ẏΓ − x2eq (6)

with x2eq � ẏd − k1er, k1 a positive value. According to (5) and (6) the time
derivative of sr gives the error dynamic equation.

ṡr = ÿΓ − ẋ2eq = Kuu + φT
raϑ̂ra − ẋ2eq − φT

r ϑ̃r + d̃(t) (7)

where Ku = ζ̂1 + Γ ζ̂5, φra = [α, θ̇, α̇, tanh(λv θ̇), fe, I]T is the regressor vector,
and ϑ̃r = ϑ̂r − ϑ̃r is the system parameter estimation error, and
ϑ̂ra = [ζ̂2 + Γ ζ̂6, ζ̂3 + Γ ζ̂7, ζ̂4 + Γ ζ̂8, ζ̂9 + Γ ζ̂10, ζ̂11 + Γ ζ̂12, dn]T and d̃t(t) are
respectively the estimated parameter vector and nonlinear uncertainty term,
which are both assumed to be bounded and satisfy the following inequalities.

Ωϑr
� {ϑr,i,min ≤ ϑr,i ≤ ϑr,i,max}, and ΩΔ � |d̃t(t)| ≤ �0 (8)

where ϑr,i,min and ϑr,i,max are known lower and upper bound vectors of ϑr,
and �0 is a known constant value. ϑ̂r can be estimated through the parameter
adaptation law

˙̂
ϑr = Projϑ̂r

(Γrφrsr) (9)

where Γr is chosen as a symmetric positive definite adaptation rate matrix, and
Proj• is the projection mapping defined as

Projϑ̂r
(•) =

⎧
⎪⎨

⎪⎩

0 if ϑ̂r,i = ϑ̂r,i,max and • > 0
0 if ϑ̂r,i = ϑ̂r,i,min and • < 0
• otherwise

(10)

such that the following property is satisfied:

(i) ϑ̂r ∈ Ωϑr
� {ϑ̂r : ϑr,min ≤ ϑ̂r ≤ ϑr,max}, ∀ t

(ii) ϑ̃T
r

[
Γ−1

r Projϑ̂ (Γrφrsr) − φrsr

] ≤ 0, ∀ t
(11)



784 C. Yannick et al.

Let the control input be synthesized as follows

u = uslow + ufast = uda + uds + ufast (12)

where uda is the model compensation control law including the contact force
model compensation law given by uda = K−1

u (−φT
raϑ̂ra+ẋ2eq), the robust control

law uds = K−1
u us, and the fast controller law ufast = K−1

u uf , with us and uf

the control laws to be synthesized later.
The substitution of (12) into (7) leads to following output tracking error

dynamics considered as closed-form slow subsystem dynamics:

ṡr = −φT
r ϑ̃r + d̃(t) + us + uf (13)

Fast Dynamics: Consider a new variable η such that η = α/μ2 and by taking
(12) into second equation in (5) gives

μ2η̈ = ζ̂5K
−1
u (−φT

rbϑ̂rb + ẋ2eq + us + uf ) + [ζ̂6 − ζ̂5K
−1
u (ζ̂2 + Γ ζ̂6)]α

+ φT
fbϑ̂fb − φT

f ϑ̃f

(14)

where μ is the singular perturbation parameter, φrb = [θ̇, α̇, tanh(λv θ̇), fe, 1]T ,
ϑfb = [ζ7, ζ8, ζ10, ζ12,Δα]T , ϑrb =

[
ζ3 + Γζ7, ζ4 + Γζ8, ζ9 + Γζ10, ζ11 + Γζ12,

dn

]T , φfb = φrb, φf = φr , and ϑf = [ζ5, ζ6, ζ7, ζ8, ζ10, ζ12,Δα]T .
By definition of the following new variables Kcl = min{ζ̂6−ζ̂5K

−1
u (ζ̂2+Γ ζ̂6)},

μ2 = |Kcl|−1, and Kclf = μ2Kcl, (14) shortly becomes

μ2η̈ = Kclfη + N̄1(θ̇, fe) + ΔN (t) + N2us + N2uf (15)

where N1(θ̇, fe) = ζ̂5K
−1
u (−φT

rbϑ̂rb + ẋ2eq)+φT
fbϑ̂fb −φT

f ϑ̃f = N̄1(θ̇, fe)+ΔN (t),
with N̄1(θ̇, fe) and ΔN (t) being slow and fast time-variant parts of N1(θ̇, fe)
respectively.

Moreover, by letting μ = 0 into (15), the invariant manifold

ηs = −K−1
clf [N̄1s(θ̇, fe) + N2us] (16)

is designed so that for canceling out effect of force contact in the fast time-
varying part of N1(θ̇, fe), the following new variables η1 � η−ηs and η2 � μ−1α̇
can be defined as fast subsystem state variables associated to the following fast
subsystem dynamics

μη̇2 = Kclfη1 + N2uf + ΔN (t) (17)

By introducing a new time-scale variable ς = t/μ, (17) can be expressed in
closed-form as

dη̄/dς = Af η̄ + Bfuf + Δf (18)

where η̄ = [η1, η2]T , Af =
[

0 1
Kclf 0

]
, Bf = [0, N2]T , and Δf = [0,ΔN (t)]T .
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Control Design for Slow Subsystem: In completion of the control law (12),
the robust control law of slow subsystem us is designed as

us = −kr sr − S(hsgn(sr)) (19)

where kr is the feedback gain to be designed during the closed-loop analysis.
The nonlinear term S(hsgn(sr)) is defined such that the following properties
are satisfied:

(i) − sr S(hsgn(sr)) ≤ 0

(ii) sr[−S(hsgn(sr)) − (φT
r ϑ̃ − d̃t)] ≤ ε(t)

(20)

where ε(t) is a bounded time-varying scalar, i.e. 0 < ε(t) ≤ εM , with εM > 0.

Control Design for Fast Subsystem: The control law uf aims to suppress
effectively the vibration within the link and especially at the tip link. uf is
synthesized as a state feedback control based on fast subsystem [15]

uf = −μfKf η̄ (21)

where Kf = [Kf1 Kf2 ] is the feedback gain to be synthesized by solving the
closed-loop characteristic equation.

s2 + (N2K2) s + (N2K1 − Kclf ) = s2 − 2pfd
s + p2fd

(22)

where pfd
is the desired pole. By identification, the feedback gains are given by

Kf1 =
p2

fd
+Kclf

N2
and Kf2 = −2pfd

N2
and computed after free placement of pfd

.

3.3 Stability of the Controller

Lyapunov Stability of the Closed-Loop Slow Subsystem: The Lyapunov
candidate for closed-loop slow subsystem and its time derivative are given in (23)

⎧
⎨

⎩
V1 =

1
2
s2r, with V1 ≥ 0 ∀ sr �= 0

V̇1 = sr ṡr ≤ −kr s2r + εM + lψ
(23)

where εM is defined in (20) and lψ = ||sr uf ||. The passivity condition of the
closed-loop slow subsystem relies in proper design of εM and lψ. Expressing (23)
in term of V1 as in (24)

V̇1 + 2krV1 ≤ (εM + lψ) (24)

and multiplying both side of (24) by e−2kr t, and by finally integrating over time
leads to

V1(t) = e−2kr tV1(0) +
εM + lψ

2kr

(
1 − e−2kr t

)
(25)
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For fast convergence in the transient part of (25), kr is desirable as large as
possible. The comparison Lemma [12] helps to write

|sr(t)|2 ≤ e−2kr t |sr(0)|2 +
εM + lψ

2kr

(
1 − e−2kr t

)
(26)

so one can easily shows that sr(∞) → 0 for large k1 and kr, and very small εM

and lψ. Small lψ also implies playing with μf in (21).
In case of Δ(x, t) �= 0, the asymptotic output tracking error can be achieved

by choosing a new Lyapunov candidate

V2 = V1 +
1
2
ϑ̃T

r Γ−1
r ϑ̃r (27)

where V2 ≥ 0 for sr = 0, and ϑ̃r = 0, and V2 > 0 ∀ sr �= 0, ϑ̃r �= 0, since Γr ≥ 0
and V1 ≥ 0. The time derivative of (27) gives

V̇2 = V̇1 +
∂Va

∂ϑ̃

˙̂
ϑr ≤ −kr s2r + lψ (28)

where ˙̃
ϑr = ˙̂

ϑr, since ϑr is constant vector. Therefore, the passivity condition
relies in proper design of lψ. If lψ → 0 ∀ sr, then V̇2 ≤ 0. In addition, according
to Barbalat’s lemma [12], V̇2 → 0 while t → ∞ because (i) V2 is lower bounded
(27), (ii) V̇2 ≤ 0, and (iii) V̇2 is uniformly continuous in time. Therefore, one can
concludes that sr is asymptotically stable, which according to (6), implies that
er = exp (−k1t), hence er(∞) = 0 since k1 > 0.

Stability of the Closed-Loop Fast Subsystem: The closed-loop internal
dynamic is obtained by substitution of fast control input (21) and fast state
variables η̄ into internal dynamic (15):

α̈ + 2ξfωf α̇ + ω2
fα = μ2ω2

fηs + ΔN (29)

where ω2
f = 1

μ (μfN2Kf1 − K̄clf )1/2 and ξf = μf N2Kf2
2μωf

, respectively frequency
and damping ratio of the fast closed-loop internal dynamics, all depending on
Γ , desired poles pfd

, and system parameters ζi. Because of stability analysis, let
define new variables σ = [αT , α̇T ]T such that (29) can be written as

σ̇ = Aσσ + d(t) (30)

where Aσ =
[

0 1
−ω2

f −2ξfωf

]
, d(t) = [0, N3]T , N3 = Kaηs + Δs(t), and the gain

Ka = μfN2Kf1 .
The stability of inner closed-loop dynamics (29) requires the real part of the

pole Pd of (30) to be negative while keeping small disturbance d(t). The selection
of stability region is then a trade off between small Re(Aσ), small Ka, and small
1/Ku as shown in Fig. 3 under varying Γ and Pdf

. It can be seen that the smaller
is the desired fast dynamics pole Pdf

, the more the pole Pd is close to zero, the
more the dynamics (30) is unstable, and the larger is 1/Ku, even though Ka

is getting smaller. Thus, Γ ∈ [0.3, 0.7] is suitable range for internal dynamics
stability and further good control performance.
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Fig. 3. Selection of output redefine parameter Γ

3.4 Impedance Control Design

In order to prescribe a robot dynamic behavior during constrained motion, the
impedance dynamics is given by

Md(ÿr − ÿd) + Bd(ẏr − ẏd) + Kd(yr − yd) = fe (31)

where Md > 0, Bd > 0, and Kd > 0 are respectively desired impedance iner-
tia, damping and stiffness. yr and yd are reference and desired tip-trajectories
in joint-space. fe is the contact force between the robot end-effector and the
unknown compliant environment given by

fe = Ke(y − ye)l (32)

where Ke is environment stiffness, y is the actual position of the robot end-
effector, and l is the length of robot link. Ke, ye and fe are the environment
parameters considered to be unknown.

Stability Analysis of the Outer Closed-Loop Dynamics: the outer closed-
loop dynamics is a combination of the impedance dynamics (31), the interaction
force (32), and the inner closed-loop dynamics (13)

{
Md(ÿr − ÿd) + Bd(ẏr − ẏd) + Kd(yr − yd) = Ke(y − ye)l
ṡr = −φT

r ϑ̃r + d̃(t) + us + uf

(33)

Another Lyapunov candidate is chosen as

V3 = V2 +
1
2
Md(ẏd − ẏr)2 +

1
2
Kd(yd − yr)2 +

1
2
Ke(y − ye)2 (34)
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Table 1. Control parameters setup

Parameter Γr(8,8) Γ k1 kr εM hM Pd Kd Md Bd Ke ye

Value 250 0.7 120 70 1.0 5 -120 2 - 10 0.01 0.8
√
4MdKd 2 - 10 15o - 25o

where V2 is predefined in (27) and has been shown to be positive-definite. V3 ≥ 0
for all sr, y, yd, yr, ẏ, ẏd, and ẏr null and non-null. The time derivative V̇3 is
obtained as

V̇3 = V̇2 − Bde
2
d + feẏd + feėr (35)

with V̇2 ≤ 0, Bd > 0. Thus the passivity of the outwer closed-loop dynamics holds
for feẏd ≤ 0 and feėr ≤ 0, i.e. (i) small contact force (use of soft environments
- small Ke); (ii) accurate inner motion control (er ≈ 0); and (iii) the use of a
passive or compliant environment.

Environment Parameters Estimation: The contact force fe is estimated
using force observer based on EKF algorithm (36)
⎧
⎪⎨

⎪⎩

υ̂−
k = υ̂−

k + Ts f(υ̂k−1, us,k)
P̂−

k = F̂k−1P̂k−1F̂
T
k−1 + Ĥk−1Ñk−1Ĥ

T
k−1

Kk = P̂−
k CT

υ,k(Cυ,kP̂−
k CT

υ,k + W̃k)−1

⎧
⎪⎨

⎪⎩

υ̂+
k = υ̂−

k + Kk

(
ỹk − Cυ,kυ̂−

k

)

P̂k = (I − KkCυ,k) P̂−
k

fek
= υ̂+

k (end)
(36)

where v � [θ̇, θ, α̇, α, fe]T , f is the state transition function based on the dynam-
ics equation (4), (υ̂−

k , P̂−
k ) and (υ̂k, P̂k) are the predicted and estimated states

and their associated covariance, respectively. Kk is the Kalman filter gain to
correct the prediction on time step k.

Finally, by defining a threshold value for the contact force f∗
e , such that at

instance |f̂e| > f∗
e the contact can be detected. Thus, the actual position y at

that instance is considered as the estimated rest position of the environment ŷe.
The environment stiffness can be computed based on the Eq. (32).

4 Simulation Results

The effectiveness of the proposed controller is verified on a SFLM with model
parameters given in [17], tracking from its tip, a desired square wave trajectory
given by yd = [0 − 40]o, with ẏd,max = 80o/s and ÿd,max = 240o/s2

. Table 1
shows control parameters set for good control performance such as accurate
inner motion control, robustness, and fast response.

For given a compliant soft environment of Ke = 2 N/m, located at ye = 25o

and ye = 15o, for a period of 1.35 s, from 5.5 to 7.4 s and from 9.415 to
11.4 s respectively, Fig. 4 shows effect of stiff robot by setting up the desired
impedance stiffness to Kd = 5 N/m. The robot’s end-effector is able to pene-
trate within the environment, and damages the environment with low contact
force f̂e,ss ≈ 0.189 N. Therefore, for safety of soft environment, a small value of
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Fig. 4. Numerical simulation results of Compliant control of SLFM

Kd is suitable to maintain the robot end-effector at the equilibrium position of
environment. Moreover, for given stiff compliant environment of Ke = 20 N/m,
setting small Kd = 2 N/m (soft robot), prevents robot end-effector to penetrate
the environment and keep itself safe from hard collision. In addition, for high
environment stiffness the contact force becomes larger f̂e,ss ≈ 0.5 N and the
transient response could suffer from large overshoot.

5 Conclusion

In this paper, an adaptive compliance control of a SLFM in unknown envi-
ronment has been proposed in term of inner and outer controllers. The inner
controller has been designed firstly based on an output-redefined and singular-
perturbed slow dynamics for precise tip-trajectory tracking and secondly based
on two-time scales fast dynamics to suppress tip-link vibrations. Lyapunov the-
ory has been used to point out necessary passivity conditions for both closed-loop
inner and outer dynamics. The unknown environment parameters have been esti-
mated through two force observer based on EKF algorithm and compare with
RLSE method. System parameters have been updated through online adapta-
tion law. The effectiveness of the proposed controller has been verified through
numerical simulation.
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