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Abstract. Planar graph coloring is a classic NP - hard problem. So far there
is no completely effective method to solve this problem. This paper presents a
discrete artificial electric field algorithm to solve the graph coloring problem.
The algorithm first codes according to the graph coloring problem to meet the
requirements of the graph coloring problem, and then adds part of local search
to improve the performance of the algorithm. The algorithm can effectively and
accurately solve the coloring problem of plane graphs. Compared with several
classical algorithms, the results show that the proposed algorithm has a smaller
average number of iterations and a higher success rate in dealing with graph
coloring problems, and it can also find the correct coloring scheme in real map
problems.
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1 Introduction

The graph coloring problem is a classical NP problem. It is of great significance in
network modeling, computer science, sociology andmany other disciplines. At the same
time, it also has applications in many fields such as electronic information, bioscience
and Internet [1]. The graph coloring problem can be described as finding a vertex scheme
with the least number of colors, and in the simplest case, making the colors of any two
adjacent vertices different. It can be used to solve combinatorial optimization problems,
such as minimum dominance set and maximum coverage problems. Edges and vertices
in the graph can be used to show a variety of connections and programs in physical,
natural, social and PC systems [2]. Such as course schedule problem [3], multiprocessor
task scheduling [4], frequency allocation in mobile wireless networks [5] and chemical
storage.

Artificial Electric Field Algorithm (AEFA) [6] is an optimization algorithm based
on physical Coulomb electrostatic force law proposed by Indian scholars Anita and
Anupam Yadav in 2019. In artificial electric field algorithm, each individual in the
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population is regarded as an electric particle, and the position of each particle represents
a candidate solution to the problem. These particles constantly change their position
under the action of electric field force, so as to find the optimal position of the individual,
which is the optimal solution to the problem. The proposed algorithm has been widely
used in many fields such as scheduling, classification, power system, feature selection,
and prediction. Recent studies show that artificial electric field algorithm is superior
to other metaheuristic algorithms in some aspects. For example, artificial electric field
algorithmhas been used in high-ordermatching graph problem [7], quadratic distribution
problem [8], adjustment of fractional order PID controller of magnetic levitation system
[9], detection of white blood cells in approximate blood [10]. Power system economic
load distribution [11] and other fields have been successfully applied, and has excellent
performance. Artificial electric field algorithm has gradually developed into one of the
mainstream algorithms in the field of intelligent optimization.

This paper presents a discrete artificial electric field algorithm to solve the graph
coloring problem. Firstly, a discrete artificial electric field algorithm is proposed to meet
the requirements of the graph coloring problem by redefining the position and velocity
representation of charged particles and the position updating rules. The local search part
is added to speed up the convergence of the algorithm and improve the development
ability of the algorithm. In the experimental part, 5 randomly generated maps with
different numbers of regions are used to test the effectiveness of the proposed algorithm,
and finally, three real maps are selected to verify the performance of the algorithm.
According to the experimental results, this version of discrete artificial electric field
algorithm is feasible and advantageous in solving the planar graph coloring problem.

2 Discrete Artificial Electric Field Optimization Algorithm

Artificial electric field algorithm has outstanding application in many fields. This paper
proposes a discrete artificial electric field algorithm based on GCP problem. Firstly, the
code is coded according to the graph coloring problem, then the position and speed
update formula of each particle are redefined to meet the requirements of the graph
coloring problem, and then the part of local search is added to improve the performance
of the algorithm.

2.1 Discrete Position Representation

InAEFA, the positions of charged particles correspond to possible solutions to a problem.
When coding GCP problem with n maps, this paper implements a relatively simple and
effective coding method. According to the four-color guess problem, which has been
proved by numerous scientists, any planar graph can be filled with four colors. The
numbers 0, 1, 2 and 3 are used to represent the four different colors. A viable code is the
sequence (X1, . . . ,Xi, . . . ,Xn) of 0, 1, 2, and 3, with integers between Xi ∈ [0, 1].

Example 1: For a GCP problem of size 6. A hypothetical code Numbers for 1 to 0, 2,
1, 0, 2, 3 said being shaded areas for 0 color, Numbers for 2 being shaded area for no. 2
colors, number 3 being shaded area as the no. 1 color, number 4 area also being shaded
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for 0 color, Numbers for five areas are also shading for no. 2 colors, The area numbered
6 is colored as color 3.

A possible solution is a permutation of the integers 0, 1, 2 and 3, with the
corresponding numbers corresponding to the corresponding region’s color label.

2.2 Fitness Function

For a given undirected connected planar graphG, the graph can be simplified into a point
set V (G) and an edge set E(G), which is defined as follows:

V (G) = {v1, v2, v3, . . . , vn} (1)

E(G) = {e1, e2, e3, . . . , em} (2)

where n is the number of points (that is, the number of regions in the map), and m is the
number of edges (that is, the number of adjacent edges between regions in the map). In
this way, we can describe the number of points and edges on a picture with an association
matrix, which is expressed as:

aij =
{
1, if vivj ∈ E(G)

0, other
(3)

Thus, the fitness function can be expressed as

f (R) =
n∑

x=1

n∑
y=1

conflictxy (4)

conflictxy =
{
axy adjacent matrices are of the same colors
0 adjacent matrices are different colors

(5)

2.3 Charged Particle Velocity Representation

The velocity of a charged particle is expressed as an I by N two-dimensional matrix, and
the elements in the matrix represent the probability that the dotted particle will change
color. The initialization of velocityV i

N is the same as the initialization of charged particle
position, which is randomly generated by the integers 0, 1, 2, 3.

2.4 Location Update

Location updates are an essential part of global search. The updated speed can be cal-
culated according to the updating formula of the artificial electric field algorithm. The
speed of the charged particle is processed by Eq. (6) to change the color probability of
the particle with points. In order to better adapt to the coding, the color updating process
according to the speed is shown in Algorithm 1.

si = 0.5/
(
1 + e−v) (6)
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Algorithm 1: Location update
si = 0.5/(1+ ) 
if  rand() > 0.5 & rand < si 
  S(i) = mod(S(i)+0,4); 
else if rand() <= 0.5 & rand < si 
  S(i) = mod(S(i)+1,4); 
else if rand() <= 0.5 & rand >= si 
  S(i) = mod(S(i)+2,4); 
else if rand() > 0.5 & rand >= si 
  S(i) = mod(S(i)+3,4); 
endif

2.5 Local Search Operator

The local search part is added to the artificial electric field algorithm to enhance the
exploration ability of the algorithm. The main purpose of local search is to find a better
solution in the neighborhood space. It depends on the number of collisions between a
node and its neighbors. The number of conflicting nodes can be obtained from Eq. (7).
The number of conflicting nodes is then converted into a conflict factor by the Sigmoid
function (Eq. (8)). If the collision coefficient is larger than the randomly generated
number between 0 and 1, it will be assigned a higher probability of changing the color
number (Eq. (9)). The discrete local search formula is as follows:

Crj =
n∑

k=1

conflictjk (7)

Cfj = 1

1 + e−Crj+2
(8)

S(i, j) =
{
best(1, j) if Cfj > rand()
S(i, j) other

(9)

2.6 The Exchange Operator

After adding the local search operator, the search ability of the algorithm is improved,
but because of its limited search ability, it is difficult to explore the map containing a
large number of regions. Therefore, an exchange operator is added in the local search
process to enhance the local search capability of the algorithm. There are two kinds of
exchange operators, one is single point exchange, the other is subsequence exchange.
The operation mode is as follows:
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Example 2: The sequence before the exchange was 0, 2, 1, 0, 2, 3. After the exchange
of the positions of the second and sixth particles, the sequence becomes 0, 3, 1, 0, 2, 2.

For subsequence swapping, a random subsequence of length N is first selected and
then flipped.

Example 3: The sequence before the swap is 0, 2, 1, 0, 2, 3. After the position of the
second to sixth particles is flipped, the sequence changes to 0, 3, 2, 0, 1, 2 to obtain a
new sequence.

The specific implementation steps of DAFEA to solve the planar graph coloring
problem can be summarized as the pseudo-code shown in Algorithm 2.
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3 Simulation Experiment and Result Analysis

The operating environment of this experiment is as follows: Operating system: Win-
dows 10; Processor: Intel(R) Core (TM) I7-9700 CPU; Frequency: 3.00 GHz; Memory:
16.0 GB (15.9 GB available); Programming tool: Matlab R2019(a).

3.1 Comparison of Each Algorithm Performance

The local discrete artificial electric field algorithm proposed in this paper is compared
with themainstream swarm intelligence algorithmsPSO [12], EPSO,DE [13, 14], EODE
[15] and LDFPA [16] respectively. EPSO is a particle swarm algorithm with the same
operator, and the average number of iterations and success rate are used to compare
their optimal performance. Set the maximum iteration times of the algorithm to 10000



882 Y. Yu et al.

generations; Population size: 50; Independent run: 20 times. To test the performance of
the algorithm, randomly generate planar graphs of 7, 10, 20, 30, 54 and 100 regions, and
if a method can get the correct coloring sequence in 10,000 generations, then it should
be considered a successful run. If a method does not get the correct coloring sequence
at 10,000 iterations, it should be considered a failed method. The maximum number of
iterations, minimum number of iterations, average number of iterations and success rate
are listed in the table recording the experimental results. Table 1 shows the numerical
results of different algorithms for maps with different region numbers. In the table, the
decimal part of the number is dropped for simplicity.

Table 1. Comparison of the experimental results for 5 regions

10 DAEFA 1 1 1 100%

PSO 66 6 32 100%

EPSO 47 5 26 100%

DE 235 5 64 100%

EODE 22 2 7 100%

LGFPA 2 1 1 100%

20 DAEFA 12 2 4 100%

PSO 5896 116 2418 40%

EPSO 13 5 9 100%

DE 2212 914 1554 50%

EODE 1782 410 688 95%

LGFPA 7 2 4 100%

30 DAEFA 83 4 24 100%

PSO 10000 3426 2418 40%

EPSO 4680 91 1569 100%

DE 2212 914 1554 50%

EODE 1782 410 688 95%

LGFPA 32 8 18 100%

54 DAEFA 621 45 232 100%

PSO 10000 10000 10000 0%

EPSO 2743 8087 6226 20%

DE 10000 10000 10000 0%

EODE 10000 10000 10000 0%

LGFPA 270 23 95 100%

100 DAEFA 5677 65 1243 90%

(continued)
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Table 1. (continued)

PSO 10000 10000 10000 0%

EPSO 10000 10000 10000 0%

DE 10000 10000 10000 0%

EODE 10000 10000 10000 0%

LGFPA 5794 81 1328 80%

Can be seen from Table 1, compared with other algorithms, DAEFA in to solve the
problems of the regional plan of the small and medium-sized coloring success rate is
100%, also can prove DAEFA in addressing the problem of small and medium-sized
effect is very good, and the other several algorithms in solving the problem of the area
of a small number of floor plan can also meet the conditions of coloring, However, the
number of iterations and accuracy are not as good as DAEFA. As the floor plan of the
area number increasing, the dimensions of the problem are increasing, the algorithm put
forward higher request, this time even decrease of several other contrast coloring the
success rate of the algorithm under the specified number of iterations has been cannot
providemeet the conditions of coloring solution, but DAEFA can also give the right color
scheme. It can be found from the table that DAEFA can also find the correct solution
algorithm when solving large-scale problems. Only LGFPA and DAEFA can find the
correct solution in the 100block area. But DAEFA’s success rate of 90% is higher than
LGFPA’s.

Figures 1, 2, 3 and 4 shows the convergence curves ofDE, EODE, EPSO, LDFPAand
DAEFA algorithms for maps with different number of regions (20 regions, 30 regions,
54 regions and 100 regions). These curves and the statistics listed in Table 1 indicate that
DAEFA has a high rate of convergence. And its high level of search power and stability
is easy to find.

Fig. 1. The convergence curve of coloring 20
regions

Fig. 2. The convergence curve of coloring 30
regions
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Fig. 3. The convergence curve of coloring 54
regions

Fig. 4. The convergence curve of coloring
100 regions

3.2 Performance Verification of Real Map Coloring Problem

In Sect. 3.1, a large number of numerical experiments were carried out, but the results
were not intuitive enough. Therefore, in this section, three realmaps (Chinamap,African
map and counties map of Sichuan Province) are selected for coloring to verify the
performance of DAEFA in a more intuitive way.

3.2.1 Chinese Map

Figure 5 is a map of China, including 34 provinces, municipalities and autonomous
regions, numbered. Figure 6 is a solution of DAEFA to solve the coloring problem in
Chinamap. Figure 7 is the convergence curve of successfully finding the correct coloring
sequence of Chinese map.

Fig. 5. Number the administrative regions for Chinese map
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Fig. 6. The Chinese map after coloring
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Fig. 7. The convergence curve of coloring Chinese map

The best individual coloring coding is: 0, 2, 1, 3, 3, 3, 1, 3, 0, 1, 2, 0, 1, 2, 0, 3, 0,
3, 1, 2, 0, 2, 0, 3, 2, 1, 3, 2, 0, 1, 2, 1, 0, 1. In Fig. 6, these 34 regions are colored by 4
colors without conflict as well.

3.2.2 African Map

We used DAEFA to find the correct coloring scheme for the African map. There were
54 countries in Africa and they were numbered. Figure 8 is the numbered African map.
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Fig. 8. Number the administrative regions for counties in African map

Fig. 9. The counties in African map after coloring
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Fig. 10. The convergence curve of coloring counties in African map

The results show that DAEFA can provide a coloring scheme for this problem in
a feasible time. Figure 9 is the map of Africa after coloring, and it can be found that
there is no coloring conflict in this scheme. Figure 10 shows the convergence curve of
successfully finding the correct coloring sequence of the African map.

The best individual coloring coding is: 0, 3, 1, 2, 3, 0, 3, 1, 0, 1, 0, 2, 3, 0, 3, 2, 0, 3,
1, 2, 2, 1, 2, 3, 2, 0, 1, 2, 1, 3, 0, 3, 2, 1, 3, 0, 2, 1, 2, 2, 1, 2, 0, 0, 2, 0, 3, 0, 0, 0, 0, 3,
0, 3. From Fig. 9, we can see that each area is painted with four colors. Every two areas
that have a common boundary are filled with a different color.

3.2.3 Sichuan Province Map

We used DAEFA to find out the correct coloring scheme for the map of each county in
Sichuan Province. There are 183 counties in Sichuan Province and they were numbered.
Figure 11 is the numbered map of each county in Sichuan Province. Figure 12 shows
DAEFA’s coloring scheme to solve coloringproblems in all counties of SichuanProvince.
Figure 13 shows the convergence curve of successfully finding the correct coloring
sequence of the map of each county in Sichuan Province.
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Fig. 11. Number the administrative regions for counties in Sichuan province map

Fig. 12. The counties in Sichuan province map after coloring
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Fig. 13. The convergence curve of coloring counties in Sichuan province map

For the map of each county in Sichuan Province, DAEFA can find a correct coloring
sequence, and it can be seen from Fig. 12 that there is no area of color conflict in the
colored map. But because the number of areas is more, so the number of costs also
increases, the success rate also decreases.

4 Conclusions

Artificial electric field algorithm is a novel heuristic optimization algorithm, which can
have excellent results in many fields. In order to solve the planar graph coloring problem,
aDAEFA is proposed, inwhich the velocity is redefined as the probability of color change
at this position, and local search operator and exchange operator are added to improve
the development ability of the algorithm. Experiments show that the algorithm can
effectively solve the planar graph coloring problem. Compared with other algorithms,
it can be found that DAEFA has high speed, high precision and high accuracy in the
optimization of coloring problems. The validity of DAEFA is verified. On the other hand,
three real maps are selected for coloring experiments, which proves that DAEFA can find
the correct coloring sequence, but with the increase of the number of regions, the success
rate of the algorithm will gradually decrease. The large-scale graph coloring problem
has higher requirements for algorithms, which need to be studied and experimented
continuously.

In solving the graph coloring problem, DAEFA provides a new optimizationmethod.
Simulation experiments show that DAEFA has certain advantages over other swarm
intelligence optimization algorithms. It is believed that with the continuous development
and improvement of artificial electric field algorithm, artificial electric field algorithm
will play a huge advantage in the field of artificial intelligence, such as combinatorial
optimization, computational intelligence, data mining and so on.
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No. U21A20464, 62066005.
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