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Abstract. The crow search algorithm is a novel swarm intelligence optimization
algorithm. Aiming at the shortcomings of the crow search algorithm, a complex
coding crow search algorithm (CCSA) is proposed to enhance its detection ability.
A greedy algorithm is introduced into the algorithm to balance detection and devel-
opment and enhance the optimization accuracy. And use the Sigmoid function to
discretize the CCSA algorithm to solve the 0–1 knapsack problem.

Keywords: Complex-valued · Crow search algorithm (CSA) · Complex-valued
crow search algorithm · 0–1 KP

1 Introduction

The crow search algorithm (CSA) [1] is a new swarm intelligence optimization algorithm
proposed by Iranian scholar Askarzadeh in 2016. Its principle is to imitate the behavior
of crows hiding their food and “stealing” food from each other, and to evolve the behavior
of crows “stealing” food from each other into a random optimization process. The crow
search algorithm has been widely used in many fields. For example, Laabadi et al.
(2020) [2] proposed a Binary CSA (BCSA) for solving the two-dimensional bin packing
problem (2D-BPP). Sayed et al. (2019) [3] proposed a Chaotic Crow Search Algorithm
(CCSA) based on the integration of chaos in CSA for solving the feature selection
problem. Sahoo and Padhy (2019) [4] proposed an Improved Crow Search Algorithm
(ICSA) for solving the multiprocessor task scheduling problem. dos Santos Coelho
et al. (2018) [5] proposed a modified CSA, named MCSA, for solving the circular
antenna arraydesignproblems.Gaussianprobability distribution function andpopulation
diversity information were used to tune and control AP and Flight Length parameters.
Mandala and Rao (2019) [6] proposed an improved CSA, called Adaptive Awareness
Probability-based CSA (AAP-CSA) for medical data preservation. Fred et al. (2020)
[7] proposed a hybrid technique (FCM-CSA) based on the hybridization of CSA with
FCM for medical image segmentation. Shekhawat and Saxena (2019) [8] proposed
an enhanced CSA called Intelligent Crow Search Algorithm (ICSA) for solving real
structural design problems. Rizk-Allah et al. (2020) [9] developed a multi-objective
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orthogonal opposition-based CSA (M2O-CSA) for solving large-scale multi-objective
optimization problems. Yundi Rao et al. (2022) [10] introduced a probability simplified
sine cosine algorithm to form a new hybrid algorithm called PSCCSA (Probabilistic
Simplified Sine Cosine Crow Search Algorithm). PSCCSA has been used to solve four
classic engineering problems (pressure vessel design, speed reducer design,weldedbeam
design and tension/compression spring design problem). Farh et al. (2020) [11] proposed
a hybrid method (CSA-PSO) based on the combination of CSA with PSO for solving
the optimal power flow problem with Renewable Distributed Generations (RDGs). Li L,
Liu Z F, TsengM L, et al. (2021) [12] the enhanced crow search algorithm optimization-
extreme learning machine (ENCSA-ELM) model is proposed to accurately forecast
short-term wind power to improve the utilization efficiency of clean energy. Necira A,
Naimi D, Salhi A, et al. (2021) [13] an enhanced version of CSA called dynamic crow
search algorithm (DCSA) is proposed to overcome the drawbacks of the conventional
CSA.

In order to improve the optimization performance of CSA algorithm, this paper pro-
poses a complex-valued encoding crow search algorithm (CCSA) based on the idea of
a diploid structure. In order to avoid local optimization, greedy search strategy is intro-
duced in CCSA algorithm and used to solve 0–1 knapsack problem. Finally, abnormal
solution is modified. In solving discrete problems like 0–1 knapsack, variables need to
be discretized. In this paper, Sigmoid function is used to discretize CCSA algorithm.
Finally, the improved algorithm is simulated and compared with other optimization
algorithms, and CCSA algorithm achieves good optimization effect.

2 Crow Search Algorithm

Crows are considered the most intelligent birds. They can also remember their food’s
hiding place and recall their food’s hiding place up to several months later [1]. Crows
are able to track other crows to find their food’s hiding place and steal the food. The
tracked crows have a certain probability of sensing that they are being tracked and then
fly to an arbitrary location to make sure their food is not found.

When solving the problem, it is assumed that there areN crows randomly distributed
in the d-dimensional environment, After (iteration) iter times, the position of crow i in
the search space is specified by a vector xi,iter(i = 1, 2, . . . ,N ; iter = 1, 2, . . . , itermax)
where xi,iter = [xi,iter1 , xi,iter2 , . . . xi,iterd ] and itermax is the maximum number of iterations.
mi,iter represents the best position of the food hidden by crow i during iteration iter times.
Assume that during iteration iter times, crow j wants to visit its own hidden location
mi,iter . During this iteration, crow i decides to follow crow j to approach the location
where crow j hides the food. When crow j is unaware that crow i is following itself, this
causes that crow i will approach to the location where crow j hides the food. When crow
j notices that crow i is following it, crow j will lead crow i to another position in the
search space. the new position of crow i is obtained as follows:

xi,iter+1 =
{
xi,iter + ri × fli,iter × (

mj,iter − xi,iter
)
, rj ≥ APj,iter

a random position, otherwise
(1)
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where ri is a random number with uniform distribution between 0 and 1; fli,iter denotes
the flight length of crow i at iteration iter; APj,iter denotes the awareness probability of
crow j at iteration iter.

It is seen that if the fitness function value of the new position of a crow is better than
the fitness function value of the memorized position, the crow updates its memory by
the new position. The update method is as follows:

mi,iter+1 =
{
xi,iter+1, f (xi,iter+1) ≥ f

(
mi,iter

)
mi,iter, otherwise

(2)

3 Complex-Valued Crow Search Algorithm

The principle of complex-valued encoding is to use the idea of a diploid structure to
encode individuals, to expand the information capacity of individuals. Complex-valued
encoding [14] maps one-dimensional expression space with two-dimensional coding
space, and the real and imaginary parts are updated separately. So, the CCSA algorithm
greatly enriches the diversity of the population, improves the shortcoming that the CSA
algorithm is easy to fall into the local optima, and extends the application range of the
CSAalgorithm to the complex range.Complexnumber have two-dimensional properties,
so the CCSA algorithm can represent larger spatial dimensions.

3.1 Initialize the Complex-Valued Encoding Population

Based on the definition interval of the problem [Ak ,Bk ],k = 1, 2, . . . , 2M , generate 2M
complex modulus and 2M phase angle randomly [14].

ρk ∈
[
0,

Ak − Bk

2

]
, k = 1, 2, . . . , 2M (3)

θk ∈ [−2π, 2π ], k = 1, 2, . . . , 2M (4)

According to the Eq. (5), get 2M complex number:

XRk + iXIk = ρk(cosθk + i sinθk), k = 1, 2, . . . , 2M (5)

Thus, obtain 2M real parts and 2M imaginary parts, and the real and imaginary parts
are updated according to the following way.

3.2 The Updating Method of CCSA

Update the real parts

X i,iter+1
R =

{
X i,iter
R + ri × fli,iter ×

(
mj,iter
R − X i,iter

R

)
, rj ≥ APj,iter

a random position, otherwise
(6)

Update the imaginary parts

X i,iter+1
1 =

{
X i,iter
1 + ri × fli,iter ×

(
mj,iter
1 − X i,iter

1

)
, rj ≥ APj,iter

a random position, otherwise
(7)

where mj,iter
R and mj,iter

I are positions in the crow j’s memory.
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3.3 Fitness Function Value Calculation

Due to the complex domain has two parts, a real part and an imaginary part, when
calculating the fitness value, it is necessary to convert the complex number into the real
number first [14], and then calculate its fitness value. Specific practices are as follows:

(1) Take complex modulus as the value of the real number:

ρk =
√
X2
Rk + X2

Ik, k = 1, 2, . . . ,M (8)

(2) The sign is determined by phase angle:

Xk = ρk sgn

(
sin

(
XIk

ρk

))
+ Ak + Bk

2
, k = 1, 2, . . . ,M (9)

where, Xk represent the converted real variables.

4 CCSA Algorithm for Solving 0–1 KP Problem

The knapsack problem is a classical combinatorial optimization problem and is applied
to many practical problems. For example, interactive multimedia systems [15], item
selection, resource allocation and loading cargo issues, etc. Also, there are several vari-
ants of the knapsack problem, one of which is the 0–1 knapsack problem (0–1 KP). The
purpose of 0–1 KP is to maximize the total profit of items put into the backpack under
the premise of meeting the maximum capacity of the backpack.

The mathematical model of the 0–1 knapsack problem is as follows:

Maximize
n∑

i=1

pixi (10)

Subject to

⎧⎨
⎩

n∑
i=1

wixi ≤ C

xi ∈ {0, 1}, 1 ≤ i ≤ n
(11)

where xi is a binary decision variable. If item i is included in the knapsack, then xi = 1;
otherwise, xi = 0. pi is the profit of item i; wi is the weight of item i; C is the maximum
capacity item i.

4.1 Discretization Processing Method

The 0–1 knapsack problem is a discrete problem, and the problem needs to be discretized
when solving such problems. In this paper the sigmoid function (Eq. (12), Eq. (13)) is
used to transform a continuous space value into a binary one.

Discretization method is as follows:

Sk = 1

1 + e−Xk
(12)

Xk =
{
1, Rand < Sk
0, otherwise

(13)
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4.2 The Algorithm Flowchart of CPBA

5 Simulation Experiments and Results Analysis

To evaluate the performance of the CCSA algorithms, their results have been compared
with the state-of-the-art meta-heuristics. Three data sets, including low-dimensional,
medium-dimensional, and high-dimensional KP01 instances, have been chosen for com-
parative studies. All these data sets can be found in Ref. [16]. The optimal values of the
proposed CCSA are taken from Table 1, and the optimal values of the parameters of the
other optimization algorithms are considered from their original articles. All experimen-
tal procedures are implemented using Matlab R2020(b) in a PC with Intel(R) Core(TM)
i7-9700@ 3.0 GHz CPU, and 16 GBDDR4 of RAM underWindows 10 Operating Sys-
tem. It should be noted that the statistical criteria of best, average, worst, and percentage
deviation (PDav (%)) were used to evaluate the performance of the proposed model.
[17] The percentage deviation criterion indicates how far the result obtained from the
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optimizers is from the optimal value of each data set and is calculated using Eq. (14).

PDav(%) = Opt − Avg

Opt
× 100 (14)

Table 1. The parameter setting

Parameters Value

Max_iteration 30

NPOP 30

Number of runs 10

fl 2

AP 0.1

5.1 Low-Dimensional 0–1 KP

In this section, the proposed CCSA is compared with CSA [1], BMBO [18], NBBA
[19], BABC [20], CWDO [21], PSA [22], PSO [23], and BA [24]. The results of the
comparative study on this data set are shown in Table 2. From Table 2, some facts can
be elicited: The CCSA algorithm is as effective as other algorithms on low-dimensional
instances, and can reach the optimal value. According to the average value, it can be
judged that the stability of the CCSA algorithm is better than that of the standard CSA
algorithm.

Table 2. Comparison of low-dimensional 0–1 KP instance CCSA with other algorithms

Dataset Dim Opt Metric CCSA CSA BMBO NBBA BABC CWDO PSA PSO BA

KP1 10 295 Best 295 295 295 295 295 295 295 295 295

Avg 295 295 295 295 295 295 295 295 295

Worst 295 295 295 295 295 295 295 295 295

KP2 20 1024 Best 1024 1024 1024 1024 1024 1024 1024 1024 1024

Avg 1024 1024 1024 1024 1024 1024 1024 1024 1024

Worst 1024 1024 1024 1024 1024 1024 1024 1024 1024

KP3 4 35 Best 35 35 35 35 35 35 35 35 35

Avg 35 35 35 35 35 35 35 35 35

Worst 35 35 35 35 35 35 35 35 35

KP4 4 23 Best 23 23 23 23 23 23 23 23 23

(continued)
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Table 2. (continued)

Dataset Dim Opt Metric CCSA CSA BMBO NBBA BABC CWDO PSA PSO BA

Avg 23 22.2 23 23 23 23 23 22.9 22.3

Worst 23 22 23 23 23 23 23 22 22

KP5 15 481.07 Best 481.07 481.07 481.07 481.07 481.07 481.07 481.07 481.07 481.07

Avg 481.07 481.07 481.07 481.07 481.07 481.07 481.07 481.07 481.07

Worst 481.07 481.07 481.07 481.07 481.07 481.07 481.07 481.07 481.07

KP6 10 52 Best 52 52 52 52 52 52 52 52 52

Avg 52 52 52 52 52 52 52 52 52

Worst 52 52 52 52 52 52 52 52 52

KP7 7 107 Best 107 107 107 107 107 107 107 107 107

Avg 107 107 107 107 107 107 107 107 107

Worst 107 107 107 107 107 107 107 107 107

KP8 23 9767 Best 9767 9767 9767 9767 9767 9767 9767 9767 9767

Avg 9767 9767 9766.12 9767 9767 9767 9767 9765.6 9767

Worst 9767 9767 9765 9767 9767 9767 9767 9763 9767

KP9 5 130 Best 130 130 130 130 130 130 130 130 130

Avg 130 130 130 130 130 130 130 130 130

Worst 130 130 130 130 130 130 130 130 130

KP10 20 1025 Best 1025 1025 1025 1025 1025 1025 1025 1025 1025

Avg 1025 1025 1025 1025 1025 1025 1025 1025 1025

Worst 1025 1025 1025 1025 1025 1025 1025 1025 1025

* The bold numbers are the best obtained values

5.2 Medium-Dimensional 0–1 KP

In this section, the proposed CCSA is compared with CSA [1], NBBA [19], CI [19],
B&B [19], PSA [22], PSO [23], and BA [24]. The comparison results are shown in Table
3, where “–” indicates that the cited data is not given. From Table 3 can be concluded
that (1) the CCSA algorithm and the PSA algorithm reach the best-known solution, (2)
by comparing the optimal value and the average value, the CCSA algorithm except that
in the KP_19 instance, the average value and There is a small gap between the optimal
solutions, and all the remaining examples reach the best-known solution, which shows
that the stability of the CCSA algorithm is also very good. It can be seen from Fig. 1 and
Fig. 2 that the CCSA algorithm has certain advantages in terms of convergence speed
and convergence accuracy compared with the PSO, BA, and CSA algorithms.
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Table 3. Comparison of Medium-dimensional 0–1 KP instance CCSA with other algorithms

Dataset Dim Opt Metric CCSA CSA NBBA CI B&B PSA PSO BA

KP11 30 1437 Best 1437 1437 1437 1437 1437 1437 1437 1437

Avg 1437 1437 1437 1418 – 1437 1436.1 1437

Worst 1437 1437 1437 1398 – 1437 1428 1437

KP12 35 1689 Best 1689 1689 1689 1689 1689 1689 1689 1689

Avg 1689 1689 1689 1686.5 – 1689 1689 1689

Worst 1689 1689 1689 1679 – 1689 1689 1689

KP13 40 1821 Best 1821 1821 1821 1816 1821 1821 1821 1821

Avg 1821 1820.2 1821 1807.5 1821 1821 1817.9 1821

Worst 1821 1817 1821 1791 1821 1821 1810 1821

KP14 45 2033 Best 2033 2033 2033 2020 2033 2033 2033 2033

Avg 2033 2033 2033 2017 – 2033 2025.2 2033

Worst 2033 2033 2033 2007 – 2033 2016 2033

KP15 50 2440 Best 2440 2440 2448 2440 2440 2449 2440 2440

Avg 2440 2439.8 2448 2436.1 – 2449 2437.2 2440

Worst 2440 2438 2448 2421 – 2449 2427 2440

KP16 55 2651 Best 2651 2651 2643 2643 2440 2651 2640 2651

Avg 2651 2648.8 2642.6 2605 – 2651 2627.9 2651

Worst 2651 2637 2632 2581 – 2651 2601 2651

KP17 60 2917 Best 2917 2917 2917 2917 2917 2917 2904 2917

Avg 2917 2917 2917 2915 – 2917 2894.3 2917

Worst 2917 2917 2917 2905 – 2917 2889 2917

KP18 65 2818 Best 2818 2818 2818 2814 2818 2818 2813 2818

Avg 2818 2816.7 2817.6 2773.6 – 2818 2802.7 2817.6

Worst 2818 2810 2814 2716 – 2818 2790 2817

KP19 70 3223 Best 3223 3223 3223 3221 3223 3223 3219 3223

Avg 3223 3220.6 2322.6 3216 – 3223 3212.7 3220.8

Worst 3223 3220 3219 3211 – 3223 3206 3220

KP20 75 3614 Best 3614 3614 3614 3614 3614 3614 3591 3614

Avg 3614 3612.3 3613.2 3603.8 – 3614 3578.3 3614

Worst 3614 3597 3605 3591 – 3614 3556 3614
* The bold numbers are the best obtained values
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Fig. 1. KP_19 Convergence curve Fig. 2. KP_20 Convergence curve

5.3 High-Dimensional 0–1 KP

In this section, the proposed CCSA is compared with CSA [1], BA [24], PSO [23], EOS2
[25], BB [26], GSA [26], and SA [26]. The comparison results are shown in Table 4,
where “–” indicates that the cited data is not given. Table 4 introduces the results obtained
by each algorithm on the high-dimensional datasets, in which our proposed algorithm
could achieve the optimal solution for 17 out of 21 datasets. Moreover, according to the
percentage deviation PDav(%), it can be judged that the stability of the CCSA algorithm
is better than other algorithm. Figure 3 shows the convergence curve of high-dimensional
KP01. It can be concluded that the convergence speed and convergence accuracy of the
proposed CCSA algorithm are better than other algorithms.

Table 4. Comparison of High-dimensional 0–1 KP instance CCSA with other algorithms

Instance Opt Metric CCSA CSA BA PSO EOS2 BB GSA SA

KP1_100 9147 Best 9147 9147 9147 9147 9147 – – –

Avg 9147 9147 9147 9037.6 9147 8026 2983 9147

Worst 9147 9147 9147 8842 9147 – – –

PDav 0 0 0 120.744 0 12.255 67.388 0

KP1_200 11238 Best 11238 11238 11238 11238 11238 – – –

Avg 11238 11238 11238 11131.1 11238 10438 9865 10163

Worst 11238 11238 11238 10973 11238 – – –

PDav 0 0 0 103.672 0 7.119 12.217 9.566

KP1_500 28857 Best 28857 28857 28857 27407 28857 – – –

Avg 28857 28843.2 28854.7 26692 28857 28043 9865 21390

Worst 28857 28834 28834 26008 28857 – – –

PDav 0 0.048 7.273 368.051 0 2.821 65.814 25.876

KP1_1000 54503 Best 54503 54503 54328 50120 54503 – – –

Avg 54503 54451.7 54197.4 49209.4 54503 53397 14927 36719

Worst 54503 54264 54017 48442 54503 – – –

(continued)
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Table 4. (continued)

Instance Opt Metric CCSA CSA BA PSO EOS2 BB GSA SA

PDav 0 0.094 92.511 626.496 0 2.029 72.613 32.629

KP1_2000 110625 Best 110625 110578 108946 97132 110578 – – –

Avg 110587.2 110495.3 108090.5 96214.2 110578 109679 25579 95739

Worst 110578 110227 107577 95647 110578 – – –

PDav 0.034 0.117 420.771 442.447 0 0.813 76.868 13.419

KP1_5000 276457 Best 276456 276379 269432 234008 275725 – – –

Avg 276363.7 274908 265037 231920.5 274358 275720 39677 150731

Worst 276149 272876 261947 230005 273367 – – –

PDav 0.033 0.560 2318.496 1206.367 0.759 0.267 85.648 45.478

KP1_10000 563647 Best 563606 563298 544254 469465 – – – –

Avg 563503.1 561898.6 534233.7 464408.3 – – – –

Worst 562585 556235 525132 461039 – – – –

PDav 0.026 0.310 5.218 17.607 – – – –

KP2_100 1514 Best 1514 1514 1514 1512 1514 – – –

Avg 1514 1514 1514 1512 1514 1440 1041 1486

Worst 1514 1514 1514 1512 1514 – – –

PDav 0 0 0 0 0 4.888 31.242 1.849

KP2_200 1634 Best 1634 1634 1634 1634 1634 – – –

Avg 1634 1634 1634 1634 1634 1603 1073 1537

Worst 1634 1634 1634 1634 1634 – – –

PDav 0 0 0 0 0 1.897 34.333 5.936

KP2_500 4566 Best 4566 4557 4566 4497 4566 – – –

Avg 4559.2 4556.1 4564.2 4462.4 4564.4 4484 2951 3744

Worst 4556 4556 4557 4433 4556 – – –

PDav 0.018 0.217 3.795 19.608 0.035 1.796 35.370 18.003

KP2_1000 9052 Best 9052 9051 9051 8723 9052 – – –

Avg 9051.1 9049 9045.8 8668.7 9050.8 9006 5675 6831

Worst 9051 9046 9036 8628 9047 – – –

PDav 0.010 0.033 4.442 29.258 0.013 0.508 37.307 24.536

KP2_2000 18051 Best 18050 18047 17999 17164 17698 – – –

Avg 18046.8 18035.3 17933.5 17067.3 17497 17794 11064 12780

Worst 18046 17985 17890 17006 16875 – – –

PDav 0.018 0.087 34.471 53.139 3.069 1.424 38.707 29.201

KP2_5000 44356 Best 44356 44352 43943 41705 44305 – – –

Avg 44353.4 44308.5 43690.2 41537.9 44298 44198 25448 29220

Worst 44353 44218 43469 41395 44291 – – –

PDav 0.006 0.107 159.932 90.972 0.131 0.356 42.628 34.124

KP2_10000 90204 Best 90085 90059 89164 83678 – – – –

Avg 89735.1 89493.2 88397.4 83431.9 – – – –

(continued)
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Table 4. (continued)

Instance Opt Metric CCSA CSA BA PSO EOS2 BB GSA SA

Worst 89377 88453 87922 83083 – – – –

PDav 0.520 0.788 2.003 7.508 – – – –

KP3_100 2397 Best 2397 2397 2397 2396 2397 – – –

Avg 2396.9 2396.6 2397 2389.4 2397 2268 1095 2296

Worst 2396 2396 2397 2375 2397 – – –

PDav 0.004 0.017 0 6.753 0 5.382 54.318 4.214

KP3_200 2697 Best 2697 2697 2697 2697 2697 – – –

Avg 2697 2697 2697 2693.6 2697 2542 1095 2594

Worst 2697 2697 2697 2686 2697 – – –

PDav 0 0 0 3.921 0 5.747 59.399 3.819

KP3_500 7117 Best 7117 7117 7117 6886 7117 – – –

Avg 7117 7116.7 7117 6776.3 7117 6995 2916 6103

Worst 7117 7116 7117 6703 7117 – – –

PDav 0 0.004 0 53.275 0 1.714 59.028 14.248

KP3_1000 14390 Best 14390 14390 14378 13689 14390 – – –

Avg 14390 14388.8 14287.5 13427.1 14390 14271 6290 11789

Worst 14390 14386 14190 13284 14390 – – –

PDav 0 0.008 44.388 113.989 0 0.827 56.289 18.075

KP3_2000 28919 Best 28919 28919 28605 26408 28919 – – –

Avg 28919 28914.6 28456 26252.6 28919 28726 12312 22482

Worst 28919 28900 28198 26069 28919 – – –

PDav 0 0.015 131.725 133.015 0 0.667 57.426 22.259

KP3_5000 72505 Best 72505 72498 70504 65281 72205 – – –

Avg 72504.9 72316.6 69970.3 64740.6 71984 72345 30302 53672

Worst 72504 71980 69504 64195 71705 – – –

PDav 0 0.260 280.271 325.025 0.719 0.221 58.207 25.975

KP3_10000 146919 Best 146919 146819 143778 129305 – – – –

Avg 146810 146262 141191.5 129010.4 – – – –

Worst 146513 145518 139315 128507 – – – –

PDav 0.074 0.447 3.898 12.189 – – – –

* The bold numbers are the best obtained values
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Fig. 3. Convergence curve of higher dimension 0–1 KP
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Fig. 3. continued

To sum up, (a) among all the algorithms from the literature, the proposed CCSA
algorithm is the most effective optimization algorithm for 0–1 KP; (b) the performance
of an algorithm directly depends on the type of high-dimensional KP01 instance, while
CCSA achieves the optimal solution in all instances; (c) Compared with the standard
CSA algorithm, the CCSA algorithm has greatly improved the convergence accuracy,
convergence speed and stability, especially in high-dimensional instances. Finally, Table
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5 shows p-values of the Wilcoxon ranksum test on high-dimensional 0–1 KP, among
which 43 of the 54 p-values are less than 0.05. It can be concluded that in the high-
dimensional test examples, the CCSA algorithm is significantly different from the CSA,
BA, and PSO algorithms.

Table 5. p-values of the Wilcoxon ranksum test on high-dimensional 0–1 KP

Instance CSA BA PSO

KP1_100 0.8061 6.5896e−04 1.2022e−08

KP1_200 0.0528 0.0419 3.9877e−12

KP1_500 4.0356e−04 0.3678 0.3678

KP1_1000 9.7445e−05 4.3128e−10 2.0283e−11

KP1_2000 3.3103e−10 2.1196e−11 2.4399e−11

KP1_5000 1.1093e−10 1.4484e−12 1.9801e−11

KP2_100 0.3337 NaN 2.0551e−13

KP2_200 0.3005 0.0815 3.9935e−04

KP2_500 2.1708e−10 2.7201e−11 7.9306e−11

KP2_1000 2.2572e−07 3.8938e−08 2.7739e−11

KP2_2000 1.3561e−09 3.2590e−10 2.5078e−11

KP2_5000 1.2762e−10 2.6477e−12 2.5062e−11

KP3_100 0.0534 1.2247e−12 1.1050e−09

KP3_200 0.0726 0.0419 2.9408e−11

KP3_500 1.3086e−07 0.9528 1.5956e−11

KP3_1000 6.3767e−07 1.7147e−10 2.4808e−11

KP3_2000 6.3767e−07 1.7147e−10 2.4808e−11

KP3_5000 4.8658e−10 1.0759e−11 2.5286e−11

6 Conclusions

The crow search algorithm (CSA) is a new swarm intelligence optimization algorithm
proposed in recent years. Aiming at the shortcomings of the crow search algorithm, this
paper integrates the idea of complex coding into the crow search algorithm, and proposes
a complex-valued crow search algorithm (CCSA). The unique two-dimensional char-
acteristics of complex numbers are used to increase the diversity of the population and
improve the optimization performance of the algorithm. And use the CCSA algorithm to
solve the 0–1 knapsack problem, and use low, medium and high dimensional examples
to conduct simulation experiments. The experimental results show that the theoretical
optimal solution can be found in the low and medium dimensions, and the theoretical
optimal solution can be found in 16 of the 18 high-dimensional instances. It shows that
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the CCSA algorithm proposed in this paper is effective and correct. More experiments
or other improvement methods are needed in future work. In the future, you can try to
propose other coding methods for crow search algorithms.
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