)

Check for
updates

Greedy Squirrel Search Algorithm
for Large-Scale Traveling Salesman Problems

Chenghao Shi', Zhonghua Tang!%3, Yongquan Zhou>3®, and Qifang Luo*>

1 College of Electronic Information, Guangxi University for Nationalities, Nanning 530006,
China
2 College of Artificial Intelligence, Guangxi University for Nationalities, Nanning 530006,
China
yongguanzhou@l26.com
3 Guangxi Key Laboratories of Hybrid Computation and IC Design Analysis, Nanning 530006,
China

Abstract. A greedy strategy based on squirrel search algorithm is proposed and
used to solve the TSP problem. First, a new path initialization operator is designed
for partial path initialization. Secondly, two search operators and a mutation strat-
egy are designed to improve the convergence speed and performance of the algo-
rithm: (1) Greedy crossover operator, which is used to improve the information
interaction ability between each individual. (2) RC2opt+R3opt operator, which is
used to enhance the local search ability of individuals. (3) Local mutation strategy,
which uses seasonal constants to measure population differences and the number
of iterations, and performs mutation operations on individuals in the middle and
late stages of the algorithm to prevent the algorithm from falling into the local
optimum. Finally, a large number of TSP examples in the open dataset TSPLIB
are selected to verify the effectiveness of the algorithms and operators. The com-
parison results with 3 classical algorithms and 7 latest algorithms show that the
algorithm has higher precision and better stability.

Keywords: Greedy squirrel search algorithm - Greedy crossover operator -
R2Copt+R3opt operator - Traveling salesman problem

1 Introduction

Traveling salesman problem (TSP) [1] is one of the most representative combinatorial
optimization problems, and it has a wide range of applications in computer science,
operations research and other fields. Suppose there is a traveling merchant who wants
to visit n cities, he must choose the path he wants to take, and the restriction is that
each city can only be visited once, and he must return to the started city in the end. The
path selection goal is to require the path distance to be the minimum value among all
paths. Some engineering problems, such as printed circuit board design (PCB design)
[2], VRP vehicle routing problem (vehicle routing problem) [3-5], robot path planning
[6, 7], telecommunication network [8], can be attributed to in TSP. TSP is a typical

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D.-S. Huang et al. (Eds.): ICIC 2022, LNAI 13395, pp. 830-845, 2022.
https://doi.org/10.1007/978-3-031-13832-4_67

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13832-4_67&domain=pdf
https://doi.org/10.1007/978-3-031-13832-4_67

Greedy Squirrel Search Algorithm 831

NP-hard problem [9, 10]. As the scale of the problem increases, the scale of its feasible
solution set increases exponentially, which inevitably leads to the phenomenon of “com-
binatorial explosion”. The classical exact algorithm cannot obtain the optimal solution
in polynomial time.

Recent years, Swarm intelligence algorithms are widely used in various fields. Which
is a branch of artificial intelligence algorithm (AI). Scholars are inspired by movements
from animals, insects and organisms. Over the past few decades, the information interac-
tion behavior of various social insects such as bees, wasps, termites, birds, flies, and fish
has been studied, resulting in the creation of various meta-heuristic algorithms [11-13].
The most important factor in their success is their simplicity and versatility. At present,
the SI algorithm has been widely used to solve NP-hard problems, in which it is almost
impossible for the classical exact algorithm to find the global optimal solution in lim-
ited time. In this case, how to find a feasible solution within a reasonable time limit
becomes important. Therefore, it is of great significance to use the swarm intelligence
optimization algorithm to study and solve the TSP problem.

2 The Basic Squirrel Search Algorithms

The squirrel search algorithm [14] is a swarm intelligence algorithm, which is proposed
by Indian scholar Mohit Jain in 2019. It simulates the dynamic foraging strategies of
southern flying squirrels and their efficient locomotion, which is gliding. Considered
the most aerodynamically complex species, the flying squirrel has a membrane which
is simulate to parachute that provides the lifting and dragging forces for squirrel to
glide from one tree to other tree. Flying squirrels cannot fly, but rather glide quickly
and efficiently across long distances. The reason why flying squirrels glide is to avoid
predators, and find the best place to hunt with a minimum cost. There are three conditions
that squirrels may experience during dynamic foraging. In each case, Assuming that in
the absence of predators, the squirrel would glide through the forest and efficiently search
for its preferred food, while the predator’s pursuit makes them searching food cautiously
and forced them moving in smaller areas. Walk randomly inside to find nearby hidden
locations.

2.1 Foraging Behavior

The mathematical model of dynamic foraging behavior is as follows:
Case 1: Acron nut tree — Hickory tree
Flying squirrels which are on acorn nut trees (FS,;) may move towards hickory nut
tree. In this case, the new location of squirrels can be obtained as follows:
FsiHl {FS;, +dy x G x (FS), — FS},)) Ry = Pyp 1)
a Random Location otherwise

where d, is random gliding distance, Ry is a random number in the range of [0, 1],
FSy; is the location of flying squirrel that reached hickory nut tree and t denotes the
current iteration. The balance between exploration and exploitation is achieved with the

832 C. Shi et al.

help of gliding constant G, in the mathematical model. Its value significantly affects the
performance of proposed algorithm. In the present work value of G, is considered as
1.9, which is obtained after rigorous analysis.

Case 2: Normal tree — Acron nut tree

Flying squirrels on normal trees (FS,;) may move towards acorn nut trees to fulfill
their daily energy needs. In this case, new location of squirrels can be obtained as follows:

@)

FsiH {FS,’” +dg x Ge X (FSY, — FS',)) Ry > Py,
nt Random Location otherwise
where R; is a random number in the range [0, 1].
Case3: Normal tree — Hickory tree
Some squirrels which are on normal trees and already consumed acorn nuts may
move towards hickory nut tree in order to store hickory nuts which can be consumed
at the time of food scarcity. In this case, new location of squirrels can be obtained as
follows:

3)

pottl _ | FSu +dg X Ge x (FS), — FS;,) Ry > Pop

" Random Location otherwise

where R3 is a random number in the range [0, 1]. Predator presence probability P, is
considered to be 0.1 in all cases for the present work.

3 Greedy Squirrels Search Algorithm for TSP

This section will introduce how to solve the TSP problem with a greedy squirrels search
algorithm (GSSA), which includes one route initialization operator, two route update
operators and one individual mutation strategy.

3.1 Description of TSP

Traveling Salesman Problem can be described: There are n cities, in the case of only
one salesman, how does the salesman visit all the cities and return to the departure city.
And each city can be visited only once, the goal of the TSP problem is to find a shortest
route back to the departure city. According to the graph theory, the Traveling Salesman
Problem can be described as a graph G = (V, E), where V is the set of vertices, E is the set
of edges, and the optimization goal is to find the shortest Hamiltonian loop. Each vertex
represents a city. Each edge represents a path between two cities. The mathematical
expression of the TSP model is:
Define: xij, Vi,j € {1,2,....,.n} &j # i

7 = Z Z dijxij “4)

i=1 j=1,j#i

n
Z xj=1lie(l,2,....n} 5)

Jj=Lj#i

Greedy Squirrel Search Algorithm 833

n

Z xj=1,j€e{1,2,...,n}. ©)
i=1,i#j
i€S jeS.j#i

When the salesman travels from the No.i city to the No.j city x;; = 1, otherwise
x;j = 0. Equation (4) is the route length, and dj; is the distance from the No.i city to
the No.j city. Equation (5) and Eq. (6) ensure that each city can be visited only once.
Equation (7) guarantees that there is only one closed loop in each solution, excluding
the case of two or more closed loops in a solution, which is not feasible although the
constraints of the equation are satisfied. In the squirrel search algorithm, the natural
number coding mechanism is adopted. X = {xi, x2, ..., x,} is the sequence of cities
which salesman passes through, where x; € V. x; are unique to each others, and the
Traveling Salesman Problem can be described as:

Define the best individual: X :

Xpest = {x1, 22, ..., Xp}, 5 €V (8)

The minimum distance: Z,;;,,:

n—1
Zin = Zk:l kaXk+1 &)

3.2 The Framework of GSSA

The framework of GSSA for TSP can be described as Algorithm 1. It can be seen from
the flow chart that compared with SSA, GSSA is different from four parts: (1) Elite
Individual Greedy Initialization (2) Greedy Crossover operator (3) 2opt&3opt operator
(4) Local mutation strategy. The positions of added four parts in SSA are shown in Fig. 1.
The variable names and their corresponding explanations are described in Table 1.

834 C. Shi et al.

First, define the population size as N. Setting the maximum number of iterations
Maxisr, and determine the number of elite individuals Ng at the initialization stage
of the algorithm. As pseudocode shown in Algorithml lines 2-3. Then, running the
initialization operator for the entire population. First, using greedy initialization operator
to calculate the route of elite individuals Ng, and using random initialization operator to
calculate the route of rest normal individuals N — Ng. Sorting individuals according to
the fitness values, Select the best solution Fapesp, and the second optimal solution Fhy,gsp,
from the initialized population. Then, starting iteration. Using the greedy crossover
operator and 2opt [15] & 3opt operator to optimize the population. The details are
described in Sect. 3.4. During this period, if a better solution was founded, replace the
local optimal solution Lbest,as, . In order to prevent the algorithm from falling into local
optimum at the end of stages, a local mutation strategy was designed to jump out of the
local optimum. Details in Sect. 3.5. Finally, output the global best solution Gbestyus,.
According to the above description and analysis, the steps of the GSSA are summarized
as follows:

Table 1. Variable names and its meanings of GSSA

Names Meanings

D City distance martix
n Number of city
Maxiser Maximum iteration
N Population size

NE Number of elite individuals
Gbestpam Global best solution
Lbestpqm Local best solution
t Present iteration

i Present individual
Fapa Best solution
Fhyparn Secondary solutions
X; Normal solutions

Greedy Squirrel Search Algorithm 835

Algorithm1 Pseudocode of GSSA for TSP

01: import TSP coordinates, calculate the city distance matrix D

02: set up: Max iteration Max;,, Population size N, Number of elite individuals Ng,
initialize Gbestyqp, , Lbest, g, Geedy initialize elite individuals
Ng, Random initialize normal individuals N — N , calculate fitness value and find
out Fa,q¢p, Fhyqe. Calculate P gy, start iteration.

03: for =1 to Max;se, do

04: calculate fitness value and find out Fap,qep, Fhyqeh-

05: for i=1 to N do

06: if (r12Pgp)

07: Fay,qp < GreedyCross(Lbesty, gy, Fay,q:m)

08: else

09: Fayaen <20pt&3opt(Fayan)

10: Calculate Fa,q, fitness value, sorting and find out Fapaens Fhpaens Lbestyqen
11: if fit(F apgen)<fit(Lbest,qeh)

12: Lbest,qn<Fapam

13: if (ry>Pgp)

14: X; <GreedyCross(Lbest,qp,X ;)

15: else

16: X; «2opt&3opt(X;)

17: Calculate X; fitness value, sorting and find out Fayaen+ FRyaens Lbest, g
18 if fit(Fapqen)<fit(Lbest,qep)

19 Lbest,qipFapam

20: if (r3>Pgp)

21: X; <GreedyCross(Lbest,qp, Fhyan)

22: else

23: X; «2opt&3opy(X;)

24: Calculate X; fitness value, sorting and find out Fayaen« Fhypains Lbest,qm
25: if fit(Fapqen)<fit(Lbest,qep)

26: Lbest,qn—Fapan

27: Calculate season constants ¢y Sinin

28: if (§:<Smin)

29: Random generating new individual X Temp

30: X; «E2opt&3opt(GreedyCross(Lbestyqin, Xremp))

31: Calculate X; fitness value, sorting and find out Fapaens FRpaens Lbestyqen
32: if fit(Fa,qen)<fit(Lbest,qep)

33 Lbest,qipFapam

34: output global best solution Gbestyan

836 C. Shi et al.
Generating the random
=
l intensive RC20pt+R3opt

operator
Random initialization of
normal individuals
individuals
Calculate the route of elite

individuals Ng with greedy
initialization operator

if the scasonal
constants satisfied the
mutation condition?

< A
<
Sorting individuals with the
N fitness values, and find out
Fayan, Fhyaeh, Lbestyan
according to the fitness value
Y
Running RC20pt+R3o0pt
Using greedy crossover operator operator with Ftpan,
10 cross Fapaen, Fhyacn, Fpam Fhygpn and Fripae
with Lbest g
. |
| output the global best solution Gbestpgn | l

Sorting individuals with
the fitness values and
find out LbeStpen

v
g) - Lbestyan>Gbestyan

I:I SSA |:| Different parts of GSSA

Fig. 1. Flow chart of GSSA

3.3 Greedy Initialize

The idea of the elite individual greedy initialization operator can be described as: First,
initialize two arrays S, US. Where S is an empty array, which used to store the city
serial number that has been selected. US is an array which filling with natural number
from 1 to n. It used to store the unselected city serial number. Selecting Pgsar (Pstars =
1,2, 3,...,n) as the start point of the route. And save it into the S array, and then find
the nearest next city according to the greedy strategy until found a completed route. For
instance, There are currently 5 cities, and the corresponding city numbers are 1 to 5.
Where § ={}, US ={1, 2, 3, 4, 5} according to the initialization phase. Selecting the
city with serial number 1 as the starting point (Pgqre = 1). Saved Pgars as Ppresent and
store it into the S. Delete the current i from US. Where the § = {1}, US = {2, 3,4, 5},
as shown in Fig. 2. Find the closest point to Ppyesens from the US and save it into the
Pext, then assign Ppexs t0 Ppresens and repeat the above operation until a complete route
is found.

Greedy Squirrel Search Algorithm 837

203]a]s] | EXERERI L[[T

NN (s []] INENENERER

US, S after the first loop US, S after the second loop US, S route planning complete
4 4 4

3 0> 3 0 3 5

10 0y 10 09 10(—_402

after the first loop after the first loop completed road map

Fig. 2. Array US, S and its route

3.4 Greedy Crossover

The greedy crossover operator mainly utilizes the idea of crossover operation from
Genetic Algorithm. The crossover operation of the genetic algorithm refers to the
exchange of part of the genes between two paired chromosomes in a certain way. And
generated two new individuals. The two-point Crossover operator, which is randomly
setting two crossover points in the individual coding string, and then exchange the part of
gene. However, using the genetic crossover operator to solve the TSP problem may result
in repeated sequences, which makes a duplicates elimination operator was proposed to
solve this problem.

For instance, there are two sets of city sequences x;, xj before the update, where x; =
{1,2,3,4,5,6,7,8,9,10}, 5y = {1,7,5,3,8,9,2,6, 10,4}. Running the crossover
operator with individuals x;, xj. Assuming that the exchange points are ¢c; =4, ¢ =7
respectively, the selected gene fragments are shown in the following Fig. 3.

[i]a]3Talslel7[s]o]0] [i[70s]slslol2l6l10]4]

X;. xj before crossover
Lifafsfolsofofofo]o] [i]7]sTalolelofol10]0]

X;. xj duplicates elimination

Liflolsfalsfols]el[7]10] [17]slal2l6ls]s]10]0]

Xj. Xj crossover completed

Fig. 3. x;, xj crossover operator

Perform the crossover operation on x;, x; respectively, and replace the 4t to 7t
elements in x; with {3, 8,9, 2}, and replace the 4™ to 7 elements in x; with {4,5,6,7}.
Using duplicates elimination operator to eliminate the same elements on x;,x;.

838 C. Shi et al.

Where x; = {1,2,3,0,8,9,0,0,0,10}, x5y = {1,7,5,4,0,6,0,0, 10, 0}. Fill-
ing the non-appearing city sequence into the marker positions in turn, which makes
x=1{1,2,3,4,8,9,5,6,7,10},x, = {1,7,5,4, 2,6, 3, 8, 10, 9} sing greedy initializa-
tion operator for crossover area. For instance, x;={1,2,3,4,8,9,5,6,7,10}. The crossover
area of x; is {4, 8, 9, 5}. Using the greedy initialization operator to reconstruct the
route of the crossover area which makes the crossover area becomes {4, 9, 8, 5}. Then,
using the idea of 2opt operator, the crossover area is connected into the original x;;
crossover area in original order and reverse order. x;1 = {1,2,3,4,9,8,5,6,7, 10},
xip =1{1,2,3,5,8,9,4,6,7, 10}, and the route of x;1, x;; can be seen at Fig. 4. After
the fitness value evaluation, it is found that the distance x;; is shorter, so that makes
x = {1,2,3,4,9,8,5,6,7, 10}. Similarly, perform the above operations on x;j, and
compare the fitness values of xj1, xj2 to select the best one as the city sequence output
of this crossover area.

3.5 Local Mutation Strategy

In order to prevent the algorithm from falling into a local optimum in the middle and
late iterations, a local mutation strategy is proposed. Where S, is used to measure the
difference between the normal individuals and the optical individuals, and S,,;, is used
to evaluate the iterative stage of the algorithm. The calculation formulas of S., S, are
as follows:

o _ Vi) 7P

10
¢ 1000 (10
1000 x ¢~2
Smin = — (11)
365 25

where f is the fitness function, Maxj, is the maximum number of iterations, and t is
the current number of iterations. The value of Sc decreases with the fitness difference
between the best individual and the worst individual in the current population according
to the Eq. 10. At the same time, it can be concluded from Eq. 11 that Sy,i, would increase
with the increasing number of iterations t. S¢, Smin Will change at the same time as the
number of iterations increases. When S, < Smin, perform the mutation operation. Which
is, generate a set of random sequences by system. In order to make the mutant individual
converge quickly, using greedy crossover operator to cross the mutant with Lp,s. And
using enchanced 2opt&3opt operator improving its quality. Finally, replace the current
individual x; with the newly generated mutant individual.

4 Experimental Studies

In order to verify the effectiveness of the proposed greedy initialization operator for elite
individuals, Sect. 4.1 would use greedy initialization operator and random initialization
operator to conduct control experiments with different proportions of elite individuals
and normal individuals. After that, in Sect. 4.2, the crossover operator of Genetic Algo-
rithm, greedy crossover operator, greedy crossover operator + 2opt&3opt and greedy

Greedy Squirrel Search Algorithm 839

crossover operator + 2opt&3opt + local mutation strategy will be used to iteratively
update and run the four operators, and compared their results. Finally, Sect. 4.3 will
compare GSSA with excellent algorithms in recent literature. All the TSP instance are
selected from TSPLIB [16].

4.1 The Best Proportion of Initialized Individuals

In order to find the best proportion of initialized individuals, a proportion experiment
of elite individuals and normal individuals would be done. Elite individuals use greedy
initialization operators to generate routes, while normal individuals use random ini-
tialization operators to generate routes. In the iterative process of the algorithm, greedy
crossover combined with 2opt&3opt operator to update. The proportion of Ng and N-Ng
is shown in the Table 2. Population size N = 100. Since it is an evaluation of the quality
of the solution in the initialization, set the maximum number of iterations Max;;., = 100.
And the local mutation operator is temporarily eliminated from the algorithm. Where
Avg.D stands for average value of length. PD.A (%) = (Avg.D — optima) x 100%,
which used to measure the standard deviation from the average value and the theoretical
optimum. Where optima is the theoretical optimal value for the current TSP instance.
The sum P.D.A represents the sum of the standard deviations from the mean optimal
value for all tested TSP instances. This section selects 5 datasets of different scales TSP
instances for testing, and the instances name are given in Table 2.

Table 2. The impact to initialization phase of different proportion Ng: N-Ng

Ng: | Kroel00 (22068) | Kroa200 (29368) | Pr299 (48191)

N-NE |pDA ' AvgD. |PDA AvgD. PDA AvgD.

0:10 021 |22114.13 |0.10 |29399.93 |0.55 | 4845831
1:9 028 2212902 0.14 | 29407.76 |0.38 | 48375.10
2:8 023 | 22119.87 0.07 2938848 0.43 | 48402.15
37 022 2211690 0.11 29399.03 |0.32 | 48344.08
4:6 019 | 22109.17 |0.16 | 2941528 031 | 48339.76
55 019 2210999 0.15 2941401 037 | 48368.03
6:4 023 | 22119.83 |0.04 |29378.49 031 | 48341.07
7331026 2212515 |0.09 |29395.17 |0.66 | 48507.10
82 024 22120.83 0.12 |29402.28 0.34 | 48357.09
9:1 024 2212069 0.15 2941345 036 | 48362.08
10:0 027 2212718 023 2943638 |0.35 | 48359.24

(continued)

840 C. Shi et al.

Table 2. (continued)

NEg: N-Ng | Rd400 (15281) U574 (36905) Sum
PD.A | AvgD. PD.A | AvgD. PD.A
0:10 1.07 15444.07 | 2.36 37774.62 |4.29
1:9 1.60 15525.98 |2.58 37858.60 |4.98
2:8 1.16 1545830 |2.34 37767.03 |4.23
3.7 1.34 15485.42 | 2.17 37706.65 | 4.16
4:6 1.43 15500.06 | 2.42 37798.24 | 4.51
55 1.37 15489.74 |2.53 37837.50 |4.61
6:4 1.41 15496.48 | 2.62 37871.73 | 4.61
7:3 1.52 15512.79 |2.36 37775.24 |4.89
8:2 1.10 15449.75 |2.70 37900.65 |4.50
9:1 1.11 15450.30 |2.22 3772478 | 4.08
10:0 1.10 15449.20 | 2.49 37824.64 |4.44

* Set the best value in bold.

Although different proportions of initialization individuals have different effects
on different scales of examples, still we can use P.D.A to evaluate the convergence
of individuals with different TSP instances in the early stage of the algorithm. First, by
comparing the values of P.D.A, it is found that with the increase scale of the TSP instance,
P.D.A increases. Second, in order to find the best proportion of N-Ng in different scale
TSP instances, comparing the sumP.D.A values of scale TSP instances, and find the
smallest sumP.D.A value, and this proportion is used for the individuals initialization of
the GSSA algorithm. Obviously, when Ng: N-Ng = 9:1, the value of sumP.D.A is the
smallest. Therefore, Ng: N-Ng = 9:1 is selected as the best proportion of the individual
initialization.

4.2 Comparison of SSA and Improved Operator

In order to verify the effectiveness of each improved operator, each new operator was
added to the standard squirrel search algorithm (SSA), and three algorithms (SSA,
SSA+GC, SSA+GC+LMS) were obtained. The three algorithms are compared to verify
the effect of each improved operator on the performance of the algorithm for solving
TSP problems.

The improved operators are added to the algorithm in turn. First test the SSA algo-
rithm, which using the two-point crossover operator of the genetic algorithm to update
the individuals in the SSA framework. Then test the SSA+GC algorithm, which replace
the two-point crossover operator with the greedy crossover+2opt&3opt operator for
comparison. Finally, the SSA+GC+LMS algorithm is tested. On the basis of using the
greedy crossover+2opt&3opt operator, a local mutation strategy is added, which is the
GSSA (Table 3).

Greedy Squirrel Search Algorithm 841

Table 3. Test results of SSA, SSA+GC, SSA+GC+LMS (GSSA)

Problem | Optima | Method Avg. Best S.D. PEB (%) | PEA (%)
Krob100 | 22141 | SSA 25404.96 | 25010.50 | 228.36 | 12.96 14.74
SSA+GC 22175.12 | 22139.07 3143 | —0.01 0.15
SSA+GC+LMS | 22168.20 | 22139.07 | 29.13 | —0.01 0.12
Eill101 629 | SSA 729.01 715.05 6.50 | 13.68 15.90
SSA+GC 640.68 640.21 095| 1.78 1.86
SSA+GC+LMS 640.31 640.21 0.17 | 1.78 1.80
Pr124 59030 | SSA 66145.09 | 62603.74 | 1280.45 | 6.05 12.05
SSA+GC 59030.76 | 59030.76 0.00 | 0.00 0.00
SSA+GC+LMS | 59030.76 | 59030.76 0.00 | 0.00 0.00
Ch150 6528 | SSA 7069.80 | 7018.05 19.27 | 7.51 8.30
SSA+GC 6539.15 6530.90 1244 | 0.04 0.17
SSA+GC+LMS 6531.04 | 6530.90 0.63 | 0.05 0.04
Pr152 73682 | SSA 79369.37 | 79066.34 | 167.36 | 7.31 7.72
SSA+GC 7372440 | 73683.64 | 63.23 | 0.00 0.06
SSA+GC+LMS | 73718.04 | 73683.64 | 59.58 | 0.00 0.05
Kroa200 | 29368 | SSA 34278.80 | 33744.78 | 235.37 | 14.90 16.72
SSA+GC 29381.53 | 29369.41 24.23 | 0.00 0.05
SSA+GC+LMS | 29373.26 | 29369.41 8.07 | 0.00 0.02
Pr299 48191 | SSA 57573.16 | 56821.25 | 430.62 | 1791 19.47
SSA+GC 48278.20 | 48198.78 37.67 | 0.02 0.18
SSA+GC+LMS | 48211.05 | 48194.92 18.92 | 0.01 0.04
Rd400 15281 | SSA 18069.10 | 18268.90 | 59.31 | 18.24 19.55
SSA+GC 15374.63 | 15326.76 31.28 | 0.30 0.61
SSA+GC+LMS | 15350.24 | 15300.55 | 30.88| 0.13 0.45
Pr439 107217 | SSA 125566.03 | 123865.35 | 924.40 | 15.53 17.11
SSA+GC 108234.93 | 107407.15 | 931.50 | 0.18 0.95
SSA+GC+LMS | 108085.30 | 107268.67 | 873.06 | 0.05 0.81
Us74 36905 | SSA 44491.75 | 44416.23 33.16 | 20.35 20.56
SSA+GC 37669.82 | 37664.07 8.78 | 2.06 2.07
SSA+GC+LMS | 37421.35 | 37352.18 45.28 | 1.21 1.40

* Set the best value in bold.

842 C. Shi et al.

* Pr124 4
66 <10 6 210 Pr299
ssA
SSA+GC
65 Y SSA+GCHLMS
64 10*
58 48231
4
863 eyl 3 4.822|
s G 54
z 594 g a821f
S62f E
593 B ——
a1 592 52 4819}
591 4818/ {
4817} {
6 59 5 L . -
[0 10 2) 498 4985 499 4995 500 5005
59 48
100 200 300 400 500 0 100 200 300 400 500
iteration iteration
* Rd400 <10* Us74
1850 1° 457
| pE——yEE—
SSA SSA
SSA+GC 44 SSA+GC r
18 SSA+GCHLMS SSA+GCHLMS |

distance
distance
N

420 440 460 480 500 20 40 60 8 100
— ash

17 10° .
1.56
1.65
154 4t
_
16 "
b agkm)

0 100 200 300 400 500 0 100 200 300 400 500
iteration iteration

Fig. 4. Convergence curve of pr124 krob200 pr439 u574

4.3 Comparing with Latest Research
(1) GSSA vs TO-GWO

Reference [17] redesigned the gray wolf optimization algorithm (GWO)[18], com-
bined exchange, shift and symmetric transformation operators to solve the permutation-
encoded traveling salesman problem (TSP), and named as transformation operator based
grey wolf optimizer (TO-GWO). In TO-GWO, each wolf represents a possible solution
of TSP, and the wolf interacts with the leading wolf through exchange, shift and symme-
try operators to obtain the optimal solution of TSP. In order to improve the local search
ability of the algorithm in solving discrete problems, the 2-opt algorithm is also been
used. According to the experiments results, the algorithm is efficiency in solving TSP
problems (Table 4).

(2) GSSA vs DSFLA

In [19], a heuristic-based discrete shuffled frog leaping algorithm was proposed, and the
traveling salesman problem was used as the test problem. First, a new individual gener-
ation operator is designed using the nearest neighbor information. Then, four improved

Greedy Squirrel Search Algorithm 843
Table 4. The comparison result of TO-GWO and GSSA on TSP instances.

Problem TO-GWO [17] GSSA

Name Optima | Avg. Best S.D. PD.A | Avg. Best S.D. PE.A
kroal00 | 21282 |21285.44 |21285.44 0.00 | 0.02 |21285.44 |21285.44 0.00 | 0.01
Pri24 59030 | 59030 59030 0.00 | 0.00 | 59030 59030 0.00 | 0.00
Ch150 6528 | 6539.87 6530.92 19.27 | 8.30 | 6531.04 6530.90 0.63 | 0.04
Kroa200 | 29368 |29646.05 |29468 11471 | 0.95 |29373.26 |29369.41 8.07 10.02
Pr299 48191 | 48402.87 | 48307.04 67.42 | 0.44 | 48211.05 |48194.92 18.92 | 0.01
Rd400 15281 | 15567.63 | 15507.42 59.31 | 18.24 | 15350.24 | 15300.55 30.88 | 0.13
Pr439 107217 | 108037.04 | 107819.04 | 149.34 | 0.76 | 108085.30 | 107268.67 | 873.06 | 0.81
D493 35002 | 35641.26 | 35443.72 85.62 | 1.83 |35313.05 |35201.27 54.99 | 0.89
Us74 36905 | 37862.83 | 37711.45 7097 | 2.60 |37421.35 |37352.18 45.28 | 1.21
Rat783 8806 | 9222.56 9149.38 2721 | 4.73 | 8972.71 8960.12 8.24 | 1.89
Pr1002 | 259045 |268402.25 | 266636.49 | 813.68 | 3.61 | 262503.30 | 261915.65 | 393.31 | 1.34

* Set the best value in bold.

search strategies are designed to improve the algorithm performance. And the effective-
ness of the new individual generation operator and four improved strategies is verified
by experiments (Table 5).

Table 5. The comparison result of DSFLA and GSSA on TSP instances.

Problem DSFLA [19] GSSA

Name Optima | Avg. Best | S.D. PD.A | Avg. Best S.D. PEA
Att48 33522 |33567.27 | 33522 | 54.97 |4.25 |33523 33523 0.00 | 0.01
Rat99 1211 1216.80 | 1211 0.84 |1.87 |1219.24 |1219.24 0.00 | 0.68
Kroal00 | 21282 |21312.03 | 21282 | 50.01 |0.14 |21285.44 | 21285.44 0.00 | 0.02
Eil101 629 632.90 629 3.650.62 |640.31 640.21 0.17 | 1.78
Lin105 | 14379 |14423.93 14379 | 55.82 |0.31 | 14383 14383 0.00 | 0.03
Pr124 59030 |59503.43 | 59030 0.80 [0.00 {59030 59030 0.00 | 0.00
Ch130 6110 | 6211.97 | 6140 | 47.66 | 1.67 |6123.48 |6110.72 11.42 {0.22
Pr144 58537 | 58632.10 | 58537 | 93.42 |0.16 |58535.22 | 58535.22 0.00 | 0.00
Ch150 6528 6562.83 | 6533 | 12.95]0.53 |6531.04 | 6530.90 0.63 | 0.04
pr152 73682 | 73970.97 | 73682 |271.23 | 0.39 | 73718.04 | 73683.64 | 104.36 | 0.05
Kroa200 | 29368 |29671.37 | 29499 | 135.84 | 1.03 |29373.26 | 29369.41 8.07 1 0.02

* Set the best value in bold.

844 C. Shi et al.

5 Conclusions

The experiments compare the effects of the proposed operators and strategies on the
performance of SSA to verify their effectiveness. The cumulative improvement strategies
(SSA+GC, SSA+GC+LMS) are compared with the SSA, and the influence of each
improved operator and strategy on SSA is verified. The experimental results show that
SSA+GC, SSA+GC+LMS outperform SSA on all instances. And when the TSP problem
size is less than 150, the performances of SSA+GC and SSA+GC+LMS are close. When
the TSP problem size is greater than 150, SSA+GC+LMS (GSSA) is better. The above
results show that each strategy can improve the solution accuracy and stability of the
algorithm. The third group compares the proposed GSSA with TO-GWO, DFSLA in
the existing literature. The results showed that GSSA was significantly better than TO-
GWO, DSFLA under different instances. The above results show that the algorithm has
high accuracy and good stability in solving TSP problems.

Acknowledgment. This work is supported by National Science Foundation of China under Grants
No. U21A20464, 62066005.

References

1. Junger, M., Reinelt, G., Rinaldi, G.: Chapter 4: the traveling salesman problem In: Handbooks
in Operations Research and Management Science, vol. 7, pp. 225-330 (1995)

2. Alexandridis, A., Paizis, E., Chondrodima, E., Stogiannos, M.: A particle swarm optimization
approach in printed circuit board thermal design. Integr. Comput. Aided Eng. 24(2), 143-155
(2017)

3. Savla, K., Frazzoli, E., Bullo, F.: Traveling salesperson problems for the Dubins vehicle. IEEE
Trans. Autom. Control 53(6), 1378-1391 (2008)

4. Liao, T.Y.: On-line vehicle routing problems for carbon emissions reduction. Comput. Aided
Civ. Infrastruct. Eng. 32(12), 1047-1063 (2017)

5. Hacizade, U., Kaya, I.: GA based traveling salesman problem solution and its application to
transport routes optimization. IFAC-PapersOnLine 51(30), 620-625 (2018)

6. Purcaru, C., Precup, R.E., Iercan, D., Fedorovici, L.O., David, R.C., Dragan, F.: Optimal robot
path planning using gravitational search algorithm. Int. J. Artif. Intell. 10(13), 1-20 (2013)

7. Saraswathi, M., Murali, G.B., Deepak, B.B.V.L.: Optimal path planning of mobile robot using
hybrid cuckoo search-bat algorithm. Procedia Comput. Sci. 133, 510-517 (2018)

8. Ali, M.K.M., Kamoun, F.: Neural networks for shortest tour computation and routing in
computer networks. IEEE Trans. Neural Netw. 4(5), 941-953 (1993)

9. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman, New York (1979)

10. Papadimitriou, C.H.: Euclidean traveling salesman problem is NP-complete. Theoret.
Comput. Sci. 4, 237-244 (1977)

11. Bonabeau, E., Dorigo, M., Theraulaz, G.: Inspiration for optimization from social insect
behaviour. Nature 406(6791), 39-42 (2000)

12. Ozsoydan, F.B., Baykasoglu, A.: A swarm intelligence-based algorithm for the set-union
knapsack problem. Future Gener. Comput. Syst. 93, 560-569 (2019)

13. Yang, X.-S.: Swarm intelligence based algorithms: a critical analysis. Evol. Intell. 7(1), 17-28
(2013). https://doi.org/10.1007/s12065-013-0102-2

https://doi.org/10.1007/s12065-013-0102-2

15.

16.

17.

18.

19.

Greedy Squirrel Search Algorithm 845

. Jain, M., Singh, V., Rani, A.: A novel nature-inspired algorithm for optimization: squirrel

search algorithm. Swarm Evol. Comput. Sci. 44, 148-175 (2019)

Croes, G.A.: A method for solving traveling-salesman problems. Oper. Res. 6(6), 791-812
(1958)

Reinelt, G.: TSPLIB-a traveling salesman problem library. ORSA J. Comput. 3(4), 267-384
(1991)

Panwar, K., Deep, L.: Transformation operators based grey wolf optimizer for travelling
salesman problem. J. Comput. Sci. 101454, 55 (2021)

Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69(3), 46-61
(2014)

Huang, Y., Shen, X.-N., You, X.: A discrete shuffled frog-leaping algorithm based on heuristic
information for traveling salesman problem. Appl. Soft Comput. 107085, 102 (2021)

	Greedy Squirrel Search Algorithm for Large-Scale Traveling Salesman Problems
	1 Introduction
	2 The Basic Squirrel Search Algorithms
	2.1 Foraging Behavior

	3 Greedy Squirrels Search Algorithm for TSP
	3.1 Description of TSP
	3.2 The Framework of GSSA
	3.3 Greedy Initialize
	3.4 Greedy Crossover
	3.5 Local Mutation Strategy

	4 Experimental Studies
	4.1 The Best Proportion of Initialized Individuals
	4.2 Comparison of SSA and Improved Operator
	4.3 Comparing with Latest Research

	5 Conclusions
	References

