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Abstract. Clustering by fast search and find of density peaks is a new density-
based clustering algorithm, which is widely used in various fields owing to its
simplicity and efficiency, unique parameters, and recognition of arbitrary shape
clusters. However, when selecting the cluster center requires human participation,
which makes the clustering result to be subjectively affected by the operator, thus
reducing the availability of clustering and interrupting the fluency of the algorithm.
In this study, to eliminate artificial participation in the selection of cluster centers, a
weighted decision measurement slope change method is proposed to select cluster
centers, and the F-Measure, ARI, and AMI of the algorithm are tested in the UCI
and synthetic datasets. Experimental results show that the proposed algorithm
addresses the limitation of human participation in the selection of cluster centers
and improves the clustering performance of the algorithm.

Keywords: Clustering algorithm · Clustering by fast search and find of density
peaks (DPC) · Cluster centers · Decision metrics

1 Introduction

Cluster analysis is one of the key technologies in data mining, and its main idea is to
divide the dataset into different clusters so that the data in the same cluster are more
similar and the data similarity between different clusters is low. Cluster analysis is widely
used in image processing [1], social sciences [2], biomedicine [3], and other fields [4].
Classical clustering algorithms are divided into five types: division-based (such as K-
Means [5]), hierarchical (such as BIRCH [6]), density-based (such as DBSCAN [7]),
grid-based (such as STING [8]), and model-based.

Rodríguez and Laio proposed a fast search and find density peak clustering in 2014
that identifies arbitrary-shaped clusters, and is easy to understand, and does not require
iteration [9]. The algorithm calculates the local density of a data point and the distance
between the point and the point with a higher density and the closest point, generates a
decision map, selects the cluster center based on the decision map, and assigns the non-
cluster center point to the cluster with the highest density and closest point. Although
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DPC is simple and efficient, it has some disadvantages: (1) the value of the cutoff
distance of the input parameter is selected empirically; (2) the algorithm adopts a one-
step allocation strategy for the allocation strategy of the non-clustered center point; if
the cluster center point is selected incorrectly, the subsequent data point allocation will
also be incorrect; and (3) the cluster center point needs to be artificially selected.

In response to these shortcomings, many studies have been conducted to improve
the DPC. Liang et al. [10] introduced Chameleon to DPC and proposed a clustering
algorithm that requires only one discrete parameter, which realizes automatic detection
of the algorithm. To reduce the computational complexity of the DPC, Xu et al. [11]
proposed a new sparse search strategy to improve the similarity measure between data
points. To reduce the influence of parameters on clustering results, the density-sensitive
similaritywas used, and a density cluster indexwas proposed for selecting cluster centers
[12]. Xu et al. [13] introduced graph theory ideas to DPC by selecting cluster centers
through the graphical connectivity of corners and centroids.

In this study, adaptive clustering by fast search and find density peaks, referred
to as AdDPC, is proposed to address the problem that the density peak clustering algo-
rithm requires human participation in the selection of cluster centers. AdDPC introduces
weighted thinking and uses weighted decision measurement changes to select cluster
centers to avoid the influence of artificial subjective thoughts on the clustering results.

The remainder of this paper is organized as follows: the second section introduces the
original clustering by fast search and finds density peaks; the third section describes the
AdDPC proposed in this paper; the fourth section analyses the results of the experiment;
and the fifth section provides conclusions and future work.

2 Clustering by Fast Search and Find of Density Peaks

Clustering by fast search and find of density peaks(DPC) is based on the following two
assumptions: (1) the cluster center is surrounded by low-density neighbor data points,
and (2) the cluster center is sufficiently distance from another data point with a higher
density. Themain steps of DPC are divided into three stages: calculating the local density
and distance, selecting cluster centers, and allocating the remaining data points.

For dataset D = {x1, x2, . . . , xn}, the DPC preprocesses the input dataset and cal-
culates the Euclidean distances between data points, thus generating a distance matrix.
The algorithm calculates the local density ρi of the data point xi according to Eqs. (1)
or (2), and its distance δi to the higher density data points is calculated using Eq. (3).

ρi =
∑

j

χ
(
dij − dc

)
, χ(a) =

{
1, a < 0

0, otherwise
(1)

ρi =
∑

j

exp(−d2
ij

d2
c
) (2)

where dc is the cut-off distance. In the selection method, the value of dc is the average
number of near neighbors of the data points, which is approximately 1–2% of the total
number of data points in the entire data set. dij is the Euclidean distance from the data
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point xi to the data point xj. As can be noted from Eq. (1), the local density of the data
points is the number of data points whose distance from the data point xi is smaller than
the cut-off distance. Equation (2) was used to calculate the local density for small-scale
datasets (datasets with a total number of data points less than 6000).

δi =
⎧
⎨

⎩

min
j

(
dij

)
, ρj > ρi

max
j

(
dij

)
, other

(3)

Distance δi of the data point xi is calculated using Eq. (3), that is, the shortest distance
between the point and other points of higher density in the dataset; if the point is already
the highest density point, its distance δi is its maximum distance to other points.

After calculating the local density and distance of the data points, the DPC enters the
cluster center selection stage. There are two methods for selecting the cluster center of
the DPC (1) Decision-making diagram method. The decision-making diagram method
generates a decision graph based on the local density and distance, with the local density
as the x-axis and the distance as the y-axis, and then manually selects the best cluster
center according to the decision graph. As shown in Fig. 1 (b), is the decision diagram
corresponds to Fig. 1 (a), the number of data points in the figure represents the local
density of the data point sorting, number 1 is the data point with the largest local density,
and number 28 is the data point with the smallest local density. The rules for selecting
cluster centers based on the decision graph are as follows. Select the data points in the
upper-right corner of the decision graph that have both large local density values and
distance values as the cluster centers.

As can be seen from Fig. 1 (a), the local density values of data points 1 and 10 are
higher, and the distance from other data points with higher densities is farther away;
thus, they are suitable as cluster centers; data points 26, 27, and 28 are free from the
data class cluster and are therefore treated as noise points; the rest of the data points are
non-clustered center points.

From Fig. 1(b), it can be seen that the DPC divides the points, and the cluster center
points are distributed in the upper right corner of the decision map, that is, the data
points with large local density values and distant distance values are used as cluster
center points; data points that are close to the δ axis and farther away from the ρ axis
have smaller local density values and larger distance values, making them suitable as
outliers; the remaining data points are close to the ρ axis, have small distances and
relatively large local density values, and are divided into ordinary data points in the class
cluster.

(2) Formulation method. The formulation method was proposed by Rodríguez and
Laio, considering that if the decision graph of the dataset cannot be used to distinguish
the cluster center point with the naked eye, the decision measurement γ is generated
according to Eq. (4). Then, the decision measurement γ is sorted in descending order,
and the data point corresponding to the first k values is selected as the cluster center.

γi = ρi × δi (4)

After the cluster center is selected, the DPC assigns the remaining data points to the
cluster of classes that are closest to the point and have a high local density.
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Fig. 1. Data distribution plot and decision diagram [9]; (a) Data distribution plot; (b) Decision
diagram

3 Adaptive Clustering by Fast Search and Find of Density Peaks

From the introduction of the second section, it can be noted thatwhen selecting clustering
center points, the DPC has two schemes: the decision diagram method and the formula
method. If the decision diagram method is used to select the cluster center point, then
the clustering of the algorithm needs to be artificially involved, and in the process of
intercepting the cluster center point, has a certain subjectivity. In Fig. 2, points with
large local density values and large distance values are difficult to determine, andmanual
selection may lead to incorrect selection of the number of cluster center points, resulting
in a poor clustering effect. Figure 3(b) illustrates the incorrect clustering result, in which,
DPC selects four clustering center points, while Fig. 3(a) shows the standard clustering
result.

Fig. 2. Decision diagram of the Aggregation dataset
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Fig. 3. Clustering result on Aggregation; (a) Standard clustering results; (b) Incorrect clustering
result of DPC

To overcome the limitation that DPC requires human participation when selecting
the center point of the cluster, this study uses the formula method to select the cluster
center to achieve the adaptive selection of the cluster center.

To eliminate the influence of different orders of magnitude on the data, this study
normalizes the local density ρ and distance δ. According to Eq. (4), the decision measure
of the data point is calculated, and the decision measurement γi is normalized to obtain
γ ∗
i . Then, γ ∗

i is sorted in descending order, and the first 50 dots are used to draw a
descending sorting diagram, as shown in Fig. 4 (Fig. 4, 5, and 6 use the Aggregation
dataset as an example, which has 788 data points and contains seven class clusters).

As can be observed from Fig. 4, the change in γ ∗
i decreases from rapid to flat, and

there are multiple inflection points in the graph; therefore, it is difficult to rely on the
descending sorting plot of γ ∗

i to determine the number of cluster center points. To solve
this problem, this study proposes the use of a slope to represent the downtrend of γ ∗

i
values, as shown in Eq. (5).

Fig. 4. γ ∗
i descending sort graph Fig. 5. Slope trend graph

ki = γ ∗
i − γ ∗

i+1

γ ∗
max − γ ∗

min
, (i = 1, 2, . . . , 50) (5)

The slope trend plot generated according to Eq. (5) is shown in Fig. 5, which shows
that if the most varied point is selected as the demarcation point, the cluster center point
may be selected incorrectly. From the comprehensive comparison of Fig. 4 and Fig. 5, it
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can be observed that the first few values of γ ∗
i are large, and the jump is relatively strong.

To reduce the influence of this on the selection of clustered center points, a weighted
idea is introduced, as shown in Eq. (6), where η is a weighted factor. η = 1.001.

kiti = (i − η)ki, i = 1, 2, . . . , 50 (6)

γ ∗
m = argmax

i
(kiti) (7)

If γ ∗
m satisfies Eq. (7), it becomes the point with the largest slope variation and

can be used as the dividing point between clustered and non-clustered center points;
specifically, the data point corresponding to γ ∗

1 , γ ∗
2 , . . . , γ ∗

m is the cluster center point,
and the number of cluster center points is m. Figure 6 shows a cluster center point
discriminant plot generated from the calculation in Eq. (6). As can be observed from the
plot, it is the maximum value; thus, the cluster center point of the dataset is 7.

Fig. 6. Cluster center point discriminant plot of Aggregation

Figure 7 shows the γ ∗
i descending sorting plot and clustered center point discriminant

plot of the Spiral dataset. The total number of data points in the Spiral dataset is 312,
including 3 class clusters. As can be observed in Fig. 7(b), the number of cluster center
is 3, which is the same as the number of real class clusters in the dataset. If the number of
cluster center is determined according to Fig. 7(a), the number of γ ∗

i tends to be stable
is selected, that is, the number of cluster center points is selected as 5, and the number
of cluster center points is selected incorrectly, which leads to incorrect cluster results.

Figure 8 illustrates the γ ∗
i descending sorting plot and cluster center point discrimi-

nant plot of the S2 dataset. The S2 dataset contains 15 class clusters, and the total number
of data points is 5000. From Fig. 8(b), it is clear that the number of cluster center points is
15, which is the same as the real number of class clusters in the dataset. Thus, the scheme
for determining the number of cluster center points according to Eq. (6) is suitable for
most datasets.
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Fig. 7. Plot of the Spiral dataset; (a) γ ∗
i descending sort graph; (b) Cluster center point

discriminant plot.

Fig. 8. Plot of the S2 dataset; (a) γ ∗
i descending sort graph; (b) Cluster center point discriminant

plot.

The major steps of AdDPC:
Input: dataset D; cutoff distance dc.
Output: cluster result.
Step1: Use data preprocessing to calculate the Euclidean distance matrix between

data points.
Step2: Calculate ρ usingEq. (2), calculate δ usingEq. (3), and normalize and generate

decision diagrams.
Step3:Calculate γ using Eq. (4) and use the normalization process to obtains γ ∗,

sorting γ ∗ in descending order, calculate the slope change rate of γ ∗ using Eq. (6), and
generate a cluster center point discriminant graph.

Step4: Calculate the dividing point between the cluster center points and non-cluster
center points using Eq. (7). The data points corresponding to γ ∗

1 , γ ∗
2 , . . . , γ ∗

m are used
as the cluster center points, and m is used as the number of class clusters.

Step5: Assign the remaining data points to the class cluster that has the highest local
density and is closest to them.
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4 Experiments and Results

To prove the performance of the proposed algorithm, the dataset in Table 1 is used for
experiments and compared with the DPC, DBSCAN, and K-Means. Further, the F-M
[22], ARI(Adjusted Rand Index) [23], and AMI(Adjusted Mutual Information) [24] of
each algorithm are tested. These three indicates are commonly used to judge the quality
of clustering. The larger the value is, the better the clustering effect is.

Table 1. Tested dataset

Type Name Size Dimension Cluster Source

Synthetic Aggregation 788 2 7 [14]

Spiral 312 2 3 [15]

D31
Asymmetric

3100
1000

2
2

31
5

[16]
[17]

S2 5000 2 15 [18]

Real Waveform 5000 21 3 [19]

Seeds 210 7 3 [20]

Libras-movement 360 91 15 [21]

Figure 9 and Fig. 10 illustrate the results of the clusters of the four algorithms on
the Aggregation and the Spiral datasets, respectively; the color of the figure indicates
the data points that are divided into clusters of the same class. The black rectangles in
Fig. 9(a) and Fig. 10(a) represent the algorithm’s selection of clustering center points;
the stars in Fig. 9(b) and Fig. 10(b) represent the center points of clustering; the black
dots in Fig. 9(c) and Fig. 10(c) represent noise points; and in Fig. 9(d) and Fig. 10(d),
the black triangles represent the cluster center point.

Fig. 9. Cluster result of Aggregation. (a)AdDPC; (b)DPC; (c)DBSCAN; (d)K-Means.

As shown in Fig. 9, all four algorithms can determine the correct number of class
clusters; however, the K-Means clustering algorithm is erroneous because it identifies
two cluster center points in the same cluster and groups two different clusters into one
when identifying the cluster center point. Although DBSCAN does not have evident
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clustering errors, it erroneously identifies some non-clustered center points as noise
points when searching for noise points, which reduces the availability of the algorithm.
BothAdDPCandDPCcan cluster correctly, and the cluster availability is high, indicating
that AdDPC is more accurate in the selection of cluster center points.

Fig. 10. Cluster result of the Spiral. (a)AdDPC; (b)DPC; (c)DBSCAN; (d)K-Means.

As shown in Fig. 10, in addition to the K-Means, the other three algorithms are
capable of correct clustering. K-Means divides the dataset into three parts and takes the
center of each part as the cluster center point. The selection of the cluster center point
leads to poor availability of clustering, which indicates that even if the correct number of
class clusters k is entered, K-Means cannot effectively process the non-convex dataset.
The comparisons in Fig. 10(a) and Fig. 10(b) show that for the Spiral dataset, the cluster
center points selected by AdDPC are closer to the end of each cluster, and the local
density of the data points is larger and more reasonable than that of the other algorithms.

Figures 11, 12, and 13 are the comparative charts of cluster evaluation indicators of
AdDPC, DPC, DBSCAN and K-Means respectively, in Table 1. From the comparison
of the three graphs, it can be noted that the improved DPC has better indicator values on
the six datasets than the other three algorithms. Among the indicators of the Aggregation
dataset, the indicators of AdDPC and DPC are higher than those of DBSCAN and K-
Means. In addition, the index values of AdDPC are slightly higher than those of DPC,
whereas those of K-Means are the smallest. AdDPC has the best clustering effect on the
Aggregation dataset is, whereas K-Means exhibits the worst performance.

Fig. 11. F-Measure on eight datasets Fig. 12. ARI on eight datasets
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Fig. 13. AMI on eight datasets

By comparing the clustering index values of the Spiral dataset by the algorithms
in the figure, it can be noted that the indicator values of AdDPC, DPC, and DBSCAN
reached the optimal value, whereas K-Means had the worst indicators on the dataset.
By comparing the clustering result graph in Fig. 10, it can be noted that on the Spiral
dataset, the AdDPC, DPC andDBSCAN algorithms can not only find the correct number
of cluster center points, but also that the values of each indicator are optimal. In particular,
these three algorithms achieve the best clustering performance on this dataset; however,
the clustering center points selected by the algorithms are different.

The D31 dataset contained 3100 data points and 31 high-density spherical clusters.
Among the indicators in the dataset, the AdDPC indicators were the optimal values of
the four algorithms; As can be observed in the F-Measure indicator graph, the values
of DPC and K-Means almost coincide, while the values of DBSCAN are the smallest.
In the ARI comparison, the values of DPC and DBSCAN coincide, while the values
of K-Means are the smallest in this case. Overall, AdDPC exhibited the best clustering
effect on the D31 dataset.

The Asymmetric dataset has a total of 1000 data points and contains five classes. On
this dataset, DBSCAN divides many data points incorrectly during clustering, resulting
in the worst clustering effect on both sides. Compared with the DPC and K-Means, the
AdDPC in this study is better in terms of the distribution of some boundary points and
has the best index values.

The S2 dataset contained 5000 data points and 15 categories. DBSCAN identifies
more data points as noise points, and as can be noted from the data of the three index
charts on this dataset, DBSCAN has the smallest index value and the worst performance.
The index value of the AdDPC algorithm is the best.

The Waveform dataset is a dataset with high dimensions and a large total amount
of data, containing three types of data samples. The three performance index values
of AdDPC are better than those of the other three algorithms, as indicated by the data
in the figure, implying that AdDPC has a better clustering performance on this dataset.
DBSCAN has the smallest the value in the F-Measure, while K-Means exhibits the worst
performance in ARI. By comparing the AMI, it can be seen that DPC and K-Means have
the lowest AMI in this dataset, indicating the worst performance. Overall, of the four
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algorithms for clustering on this dataset, AdDPC performed the best, and the remaining
three algorithms each had advantages.

The Seeds dataset contained three types ofwheat seed information, each described by
seven geometric parameters of the seeds. When the performance indicators F-Measure,
ARI, and AMI of the algorithm are compared, it can be shown that AdDPC is superior
to the other three algorithms, and DBSCAN has the worst clustering performance on
this dataset in terms of the overall index.

The Libras-movement dataset contained 360 data points in 15 clusters, each con-
taining 24 data points. In this dataset, the amount of data in each class cluster makes
calculating local densities for the algorithm more complex. On this dataset, the cluster-
ing index values of AdDPC are higher than those of other algorithms in Figs. 11, 12,
and 13. Furthermore, the index values of the other algorithms have been significantly
improved; that is, on this dataset, AdDPC has the best indicator performance.

Based on the above experimental clustering result graphs and the comparison of
cluster evaluation index values, it can be demonstrated that the clustering effect of
AdDPCproposed in this study is the best overall when compared toK-Means,DBSCAN,
andDPC. In addition, AdDPC can correctly identify a reasonable clustering center point,
which reduces the randomness effect of human participation in the selection of cluster
center points.

5 Conclusion and Future Work

This study proposes adaptive clustering by fast search and find of density peaks. Com-
pared with the DPC algorithm, this algorithm does not require the artificial selection of
clustering centers and does not interrupt the continuity of the algorithm. First, the short-
comings of the DPC are analyzed, and an improved scheme is proposed. The weighting
factor is introduced to calculate and weight the slope change rate of the decision mea-
surement so that the algorithm can adaptively select the cluster center point and verify
it experimentally. The experimental results show that the clustering performance of
AdDPC is improved, and the problem of human participation in the selection of cluster
center points by DPC is solved.

In future work, the improvement scheme of the allocation strategy for non-clustered
center points should be further studied. In addition, the problem of varying cut-off
distances affecting the clustering results for different datasets also should be further
investigated.
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