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Abstract. Imaging flow cytometer provides high throughput cell imaging capa-
bility and is an essential tool for cell biology research. However, the high through-
put also dramatically increases the cell image datasets in cell analysis. In this paper,
we propose an image compression method combining compressive sensing and
convolution neural network for massive imaging flow cytometer data. In the pro-
posed workflow, data compression is done using compressive sensing technique
and the image reconstruction is done using convolution network to improve speed.
We demonstrate the proposed method on imaging flow cytometer cell dataset and
evaluate the performance.
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1 Introduction

High throughput analysis has been an essential tool in cell biology research [1–3].
Conventional intensity basedflowcytometer has beenwidely used in high throughput cell
analysis [4]. In intensity based flow cytometer, cells are suspended and flow through laser
illumination region at high speed, then fluorescence intensity and scattering intensity of
large amount of cells are measured by photodetectors and stored for statistical analysis
[5]. Since the invention of the first imaging flow cytometer (IFC) in 2000s [6], imaging
capability are integrated with flow cytometer, and researchers are able to acquire images
for each single cell using IFC. Thanks to the development of IFC, large amount of cell
images can be recorded in a short time period for phenotype study that benefits drug
discovery [7], immunology research [8], cancer research [9], etc. However, the data size
of high throughput cell analysis also increased dramatically due to the imaging capability
of IFC [10]. In conventional cytometer, only light intensity is recorded, and there are
only a few parameters for each cell. However, in IFC based cell analysis, images are
recorded for each cell. Furthermore, due to themulti-modal andmulti-fluorescence-color
capability of IFC, usually 3–4 images are recorded for each single cell in real applications.
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The transfer and storage of large cell image datasets remains to be the bottleneck of IFC
cell analysis, and efficient data compression method needs to be developed.

Compressive sensing [11] is a technique for data compression. In compressive sens-
ing process, sensing matrix are designed to project high dimensional data to low dimen-
sional space. To realize successful data reconstruction, the original data needs to meet
sparsity requirement. IFC datasets consist of large number of cell images, and each image
is a single cell image. Due to the single cell image characteristics, either the cell image
itself is sparse or the total variation of cell image is sparse, which makes compressive
sensing suitable for IFC image compression [12]. The data compression can be realized
using simple matrix multiplication, which makes the compression process time efficient.
In addition, the compressive sensing algorithm is compatible with other existing image
compression techniques, meaning that the cell images can be first compressed by other
image compressionmethod, then further compressed using compressive sensingmethod.

However, the image reconstruction process of compressive sensing is time consum-
ing. Typically, reconstructing one image takes several seconds to several minutes [13].
There are usually hundreds of thousands of single cell images in a IFC dataset, which
makes the time consuming reconstruction process unacceptable in real IFC applica-
tions. Another disadvantage of compressive sensing reconstruction is that predefined
constraints such as image sparsity is required for successful image reconstruction. And
designing the predefined constraints requires manual experience of cell property.

Convolution neural network [14] is a powerful technology for image reconstruction.
Since convolution neural network is a forward generative model, the image reconstruc-
tion speed is much improved. Here, we combine compressive sensing and convolution
neural network to propose a novel workflow for IFC cell image compression. The pro-
posed workflow consists of two major steps. The first step is image compression. In the
image compression step, random generated sensing matrix are generated for compres-
sive sensing. The second step is image reconstruction. In the reconstruction step, we
design a neural network to bypass the compressive sensing based image reconstruction.
Using the neural network generative model, not only the image reconstruction speed is
significantly improved, but also the requirement for predefined constraints is released. To
demonstrate the proposed method, we compressed the Jurkat cell image using compres-
sive sensing method. And for the image reconstruction step, we compared the proposed
neural network based method to the compressive sensing method. From the experi-
mental results, we can conclude that the proposed method is significantly faster, and
reconstructed image quality is improved.

This paper will be arranged as follows. First, related works are introduced. Second,
the proposed method is described in detail. Third, experiments and experimental results
are discussed.

2 Related Works

2.1 Compressive Sensing

Compressed sensing, also known as compressed sampling or sparse sampling, is a tech-
nique for data compression based on the assumption that the original data is sparse
in certain space [15]. As shown in Fig. 1, the concept of compressive sensing can be
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expressed as Eq. (1). Where s is the original data(signal/image) to be compressed, � is
the sparse basis matrix, and � is the sensing matrix. Assuming s is a one dimensional
n×1 matrix, then � is a n×nmatrix. � projects s to a sparse basis using x = �s. Then
the sensing matrix � is introduced for data compression. The size of � is k × n, where
n � k. � projects a higher dimensional matrix x onto a lower dimensional space, and
y = �x is the compressed data of length k. Let A = ��, we can simplify Eq. (1) as
y = As.

y = ��s (1)

In the reconstruction process, y and A are known, the purpose of reconstruction is to
solve s. However, as discussed above, n � k, the problem is an ill-posed problem. Based
on the sparsity assumption, a regularized term γ (s) is introduced. So, s is reconstructed
by solving Eq. (2), where γ (s) is the regularization term designed based on the sparsity
assumption, and λ is the coefficient of the regularization term.

s
∧ = argmin‖y − As‖22 + γ (s) (2)

Compressive sensing solves the reconstruction problem by iteratively optimizing
Eq. (2). There are several compressive sensing algorithms. L1-Magic [16] and TwIST
[17] are representative algorithms, and we compare the performance of both algorithms
to our proposed method. L1-Maigic provides high quality reconstruction but is time
consuming. TwIST provides relatively high reconstruction speed but sacrifice image
quality. As shownby our results, the proposedmethod outperformsL1-Magic andTwIST
in both speed and reconstruction quality.

Fig. 1. Principle of compressed sensing

2.2 Convolutional Neural Network

Convolution neural network [18] is a feedforward neural network, whose artificial neu-
rons can respond to part of the surrounding elements within the coverage area and
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perform well in large-scale image processing. Through the cooperation of convolution,
pooling, activation and other operations, the convolution neural network can better learn
the features of spatial association. Convolution neural network can be used as a for-
ward generative model for image generation. And in this paper, we designed a network
for IFC compressive sensing image reconstruction to significantly improve the image
reconstruction speed.

3 Image Compression Based on Compressive Sensing and CNN

The proposed method consists of two major steps. The first step is data compression
step, and the second is image reconstruction steps. We will describe both steps in details
in this session.

Fig. 2. (a) Data compression process. (b) Image reconstruction process

3.1 Data Compression

The data compression step is shown in Fig. 2(a), where cell image is projected to a
low dimensional space using compressive sensing method. Assume the image size is
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n × n. And k sensing matrix are generated for data compression, and in this paper,
we use Gaussian random matrix as the sensing matrix since it satisfies the incoherence
requirement. For each sensing matrix, we can calculate the correlation between image
and the sensing matrix as shown by Eq. (3),

S(i) =
∑N

x=1

∑N

y=1
I(x, y)M i(x, y) (3)

where I is the image, M i is the ith sensing matrix. And S is a k dimensional vector. So,
when n × n � k, S is significantly compressed. In this paper, n = 55 and 2 different
values of k are tested.

In this paper, we propose convolution neural network for image reconstruction. To
compare performance, we also employed the conventional compressive sensing algo-
rithm for image reconstruction. For compressive sensing, we use Total variation (TV)
as the regularization term in Eq. (2). And the TV regularization term can be described
as Eq. (4),

ψ(I) =
∑

x

∑

y

√
Dx(I)2 + Dy(I)2 (4)

where ψ(I) is the TV regularization term, Dx(I) and Dy(I) are gradients of I in x and y
axis.

3.2 Image Reconstruction

The image reconstruction step is shown in Fig. 2(b). The purpose of image reconstruction
step is to generate cell images using the compressed low dimensional data. We deigned
a CNN structure convolution neural network as the generator. The designed network
is a forward generative model which takes the compressed data as input and outputs
the reconstructed cell image, thus significantly improves the reconstruction speed. Also,
shown by our experimental results, the convolutional layers efficiently extract the data
features and improves the reconstructed image quality. The designed convolution neural
network structure is shown in Fig. 3, which consists of six convolutional layers, four
maximum pooling layers and one full connection layer. The input dimension is deter-
mined by the compression ratio. In this paper, we test 2 different compression ratio
20% and 5%, corresponding to the input dimension as 606 and 151. The input signal
is stretched to 4096 × 1 through a fully connected layer and then reshaped to 64 ×
64. The features are extracted by the sub-sampling network, which is composed of six
sub-conversion layers, which are composed of activation layer and convolution layer.
The activation function uses ReLU function. The convolution layer is composed of 3
× 3 convolution blocks, whose step size is 1. We set four maximum pooling layers at
the back of the first four convolution layers with a size of 2 × 2 and step size of 1.
The pooling layer selects features and filters information from the output feature maps.
Finally a 55 × 55 output image is obtained through the last convolutional layer. The
generated model is trained in the way of supervised learning. The loss function is the
absolute value of the difference between the generated image and the original image,
and can be described as Eq. (5), where I is the groundtruth image and I

∧

is the predicted
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image. Once the generative model is trained, it takes the compressed data as input and
directly outputs the reconstructed image.

Loss =
¨ ∣

∣
∣I − I

∧
∣
∣
∣dxdy (5)

Fig. 3. CNN structure diagram

4 Experimental Results

The flow chart of experiment is shown in Fig. 4. First, sensing matrix are generated and
cell images are compressed. Following is the reconstruction part. In the reconstruction
part, the compressed data is used as convolution neural network input to generate recon-
structed image. First, the reconstruction model is trained using training set. Then we
optimize the model until the best performance is achieved. The trained and optimized
model is used for image reconstruction. Finally, the performance is evaluated. The details
of the experiment and the final results will be explained in a later section.
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Fig. 4. The experimental process

4.1 Dataset

In our experiment, we used the Jurkat cell image dataset in the paper published by TBlasi
et al. [19]. The dataset is generated using an imaging flow cytometer platform named
ImageStreamX. Before image acquisition, Jurkat cells are stained with PI antibody and
MPM2 antibody. Then the stained cells are flow through the imaging flow cytometer.
Bright field, dark field and both fluorescence channels are imaged. For demonstration
purpose, we choose the PI stained fluorescence imaging channel. These cell images are
55 by 55 pixels in size, with a pixel size of 0.33 um. Among them, 80% of the images in
the data set are used as our training set and 20% of the samples are used as our test set.

4.2 Experimental Setup

Our compressed sensing image reconstruction based on supervised learning is completed
using TensorFlow [20] on an NVIDIA GeForce RTX 3060 Ti GPU. We used Adam
optimizer [21] to train our model, set the epoch to 150, and the batch size to 20, and
the learning rate to be fixed at 5 × 10–5. As mentioned in the previous content, we
will compare with TwIST algorithm and L1-Magic algorithm in the same data set and
experimental environment to test the effect of our image reconstruction.
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In order to test the reconstruction effect of our experiment, we tested and evaluated
the supervised learning method, TwIST algorithm, L1-Magic algorithm, and the per-
formance are compared. For TwIST and L1-Magic, we followed the same experiment
environment as [16, 17].

4.3 Performance Evaluation Index

In order to evaluate the quality of image reconstruction, PSNR [22] and SSIM [23] are
introduced. Given a clean image I and a noisy image K of size m × n, mean square error
is defined as follows:

MSE = 1

mn

∑m−1

x=0

∑n−1

y=0

[
I(x, y) − I

∧

(x, y)
]2

(6)

PSNR (Peak Signal-to-Noise Ratio) is defined as follows:

PSNR = 10log10

(
MAX 2

I

MSE

)

(7)

where MAX 2
I is the maximum possible pixel value of the picture. If each pixel is

represented by an 8-bit binary, 255.
SSIM(Structure Similarity) formula is based on three comparativemeasures between

samples x and y, brightness, contrast and structure.

l(x, y) = 2μxμy + c1
μ2
x + μ2

y + c1
(8)

c(x, y) = 2σxσy + c2
σ 2
x + σ 2

y + c2
(9)

s(x, y) = σxy + c3
σxσy + c3

(10)

where x is the original image, y is the reconstructed image;μx,μy is the mean value of x,
y; σ 2

x , σ
2
y is the variance of x, y; σxy is the covariance of x, y; c1 = (k1L)2, c2 = (k2L)2,

in general we take c3 = c2/2; L is the range of pixel values, we set k1 = 0.01, k2 = 0.02
as the default value.

SSIM formula is defined as follows:

SSIM (x, y) = l(x, y)αc(x, y)βs(x, y)γ (11)

Set α = β = γ = 1, and new SSIM formula is shown in Eq. (12):

SSIM (x, y) =
(
2μxμy + c1

)(
2σxy + c2

)

(
μ2
x + μ2

y + c1
)(

σ 2
x + σ 2

y + c2
) (12)
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4.4 Image Reconstruction Result

In this section, we discuss the performance of image reconstruction. To quantitatively
evaluate the reconstruction performance, three evaluation indexes are used, including
PSNR, SSIM and image reconstruction speed. To compare performance, we also employ
the TwIST compressive sensing algorithm and L1-Magic algorithm. First, we set the
compression ratio to 20%.The example reconstructed images are shown inFig. 5, the first
column are the original images, the second column are the images reconstructed using
our proposed method, the third column are the images reconstructed using L1-Magic
method, the fourth column are the image reconstructed using the TwIST algorithm, and
the fifth column is the compressed low dimensional data corresponding to the original
images. As can be seen from the Fig. 5, the reconstruction performance of the proposed
method and L1-Magic method is relatively good, while the images reconstructed using
the TwIST algorithm have obviously worse quality. Then we compared the SSIM, PSNR
and image reconstruction speed of the three methods, and the results are shown in Table
1, Our proposed method and L1-Magic method have better reconstruction quality, SSIM
is 0.9932 and 0.9812, PSNR is 45.18 dB and 40.10 dB, respectively. As we can see, the
reconstruction quality of TwIST algorithm is not as good as the two methods. SSIM and
PSNRwere only 0.8592 and 31.57 dB. From Table 1, we can conclude that our proposed
method is much faster in reconstruction speed.

Fig. 5. Example reconstructed images (compression ratio = 20%)
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Table 1. Performance evaluation of image reconstruction (compression ratio = 20%)

Our method L1-Magic TwIST

PSNR 45.18 dB 40.10 dB 31.57 dB

SSIM 0.9932 0.9812 0.8592

Reconstruction speed 0.12 s 7.84 s 2.11 s

Then we reduced the compression ratio to 5%. When the compression ratio is 5%,
the image reconstruction of TwIST algorithm is unsuccessful, so we will not show the
reconstruction images. As can be seen from the Fig. 6, where the first column are the
original images, the second column are the images reconstructed using our proposed
method, the third column are the images reconstructed using L1-Magic method, and the
fourth column are the compressed low dimensional data corresponding to the original
images. The reconstruction quality of our proposed method is relatively good, while
the images reconstructed using the L1-Magic algorithm are obviously worse. Then we
compared the SSIM, PSNR and image reconstruction time of the two methods. And the
results are shown inTable 2,Our proposedmethodhas better reconstructionperformance,
SSIM is 0.9918, PSNR is 43.05 dB. In contrast, L1-Magic algorithm does not have such
good performance. Its SSIM and PSNR are 0.9135 and 29.61 dB respectively. And the
proposed method provides much faster image reconstruction. In conclusion, compared
with the other methods, our proposed method not only ensures the image reconstruction

Fig. 6. Example reconstructed images (compression ratio = 5%)
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quality, but also significantly improves the reconstruction speed, showing the superiority
of our proposed method.

Table 2. Performance evaluation of image reconstruction (compression ratio = 5%)

Our method L1-Magic

PSNR 43.05 dB 29.61 dB

SSIM 0.9918 0.9135

Reconstruction speed 0.11 s 2.24 s

5 Conclusion

In this paper, we proposed a data compression method for imaging flow cytometer
data combining compressive sensing and convolution neural network. In the proposed
method, random generated sensing matrix are used for image compression and convo-
lution neural network is used for image reconstruction. We use the Jurkat cell dataset
to demonstrate our proposed method. The experimental results show that the proposed
method is time efficient and provides good image reconstruction quality. We anticipate
that the proposed method would improve the data compression process for massive
imaging flow cytometer dataset and have broad application in cell biology research.
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