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Abstract. Existing automatic mixed-precision quantization algorithms focus on
search algorithms, ignoring the huge search space and inaccurate performance
evaluation criteria. In order to narrow the search space, this paper analyzes the
influence of quantization truncation error and rounding error on the performance
of quantization model from the perspective of progressive optimization. It was
found that for a given model, the quantization truncation error is a constant, while
the quantization rounding error is a function of the quantization accuracy. Based
on this, this paper proposes a finite-error progressive optimization quantization
algorithm. In order to solve the problem of inaccurate performance evaluation
criteria, based on quantitative loss analysis and reasoning, this paper proposes a
performance evaluation criteria based on Hessian matrix. Adam’s second-order
gradient is used as proxy information to reduce the computational complexity
of Hessian matrix. The method obtains a model that satisfies the hardware con-
straints in an end-to-end manner. Rigorous mathematical derivation and compara-
tive experiments have proved the rationality of the algorithm, and its performance
far exceeds the current mainstream algorithms. For example, on the ResNet-18
network, while achieving a search space reduction of 1019x, the computational
efficiency of the model performance evaluation standard is increased by 12 times,
and the mixed precision model only loses 0.3% of performance, while achieving
a 5.7x compression gain.

Keywords: Neural network quantization · Incremental optimization ·
Compression and acceleration

1 Introduction

Quantization is a common and well-established algorithm for compression and acceler-
ation of deep convolutional neural networks. This algorithm sets all the convolutional
layers of the neural network to a unified low-precision, and performs convolution oper-
ations on the low-precision multiplier-adder to achieve the purpose of compression and
acceleration. However, different neural network layers have different sensitivities and
different degrees of redundancy to different quantization precision settings, and also have
different performances on hardware. Reflected on the performance of the entire network,
there will be different impacts. Without loss of generality, this uniform precision setting
is not optimal. To solve this problem, mixed-precision quantization came into being. For
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a given neural network with N network layers, assuming that the size of the optional
quantization precision space is m, the mixed precision quantization is intended to find
the optimal quantization precision for each layer of the neural network. Combined with
the network architecture search algorithm, the traditional mixed-precision quantization
algorithm is generally divided into three steps: (1) design an optional mixed-precision
search space; (2) design a performance evaluation index to measure the performance of
each mixed-precision model; (3) Select an appropriate search algorithm and explore in
the alternative precision space based on the performance evaluation criteria. Traditional
algorithms [2, 24, 26] usually focus on the design of iterative search algorithms, such as
reinforcement learning [15, 24, 25], evolutionary learning [2], and gradient-based update
[26]. Themixed-precision search space is generally set manually. As for the performance
evaluation indicators, the existingmixed-precision quantization algorithms are generally
based on the Performance Ranking Hypothesis. For a given network A and network B, if
the verification performance of network A is higher than that of network B in the initial
training stage, then After both A and B have converged, the performance of network A
is often better than that of network B), and the model performance based on one training
frequency (Epoch) is used as the model evaluation criterion. In the step-by-step iteration
process, the search algorithm and performance evaluation criteria are used to find the
optimal mixed-precision strategy in the entire search space. Although these methods
have improved the performance of the model, there are still two important and urgent
problems in mixed-precision quantization: (1) huge mixed-precision search space; (2)
imprecise performance criteria.

The huge mixed-precision search space is an exponential O(m2N) complexity prob-
lem. An effective search space approximation method is urgently needed to achieve the
purpose of speeding up the search. The traditional method simply reduces the number
of candidate precisions [5] by hand, namely: m << 32. However, this method does
not completely solve the problem of exponential search space. Manually designing the
search space also requires a lot of experimentation and deployment experience, which
is also unacceptable in the actual application process. In addition, the limited candidate
precision space also greatly reduces the effectiveness of the search algorithm. The second
problem of mixed-precision quantization comes from the model performance evaluation
criteria. The existing methods are based on the performance ranking assumption, and
the model performance after one training frequency (Epoch) is equivalent to the per-
formance after model training convergence. There is a time-consuming problem with
performance evaluation criteria, and it is not friendly to heavy neural networks and large
datasets. In addition, this paper further studies the correlation between this performance
ranking assumption and mixed-precision quantization, and finds that during the iterative
update process, due to factors such as parameter sharing and parameter inheritance, the
performance ranking assumption is effective in the mixed-precision quantization model
search process. Based on the above observations, this paper will focus on the study of
the optimization problem of mixed-precision quantization algorithms with huge search
space and invalid performance criteria.

Different from the brute force search method in exponential mixed-precision space,
this paper studies the problem of parameter sharing and parameter inheritance in the
mixed-precision search process from the perspective of asymptotic optimization. The
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relationship between progress length, quantization parameters, network parameters and
quantization perceptual loss, through the method of incremental optimization, the quan-
tization perceptual loss is limited by the gradual interval in each round of iteration
of the quantization model. The search space is greatly reduced, and the efficiency of
mixed-precision search is improved. Aiming at the problem of performance evaluation
criteria, this paper models the quantization perceptual loss, and proposes a new evalua-
tion criterion based on Hessian matrix information to measure the performance of mixed
precision models. In addition, limited by the computational complexity of the Hessian
matrix, this paper is further based on the assumption of positive semi-definite diagonal
approximation of the Hessian matrix, and introduces the proxy information based on
Adam’s second-order gradient approximation, realizing that only one batch of data can
be used to calculate The goal of performance evaluation criteria further optimizes the
entire search process. In addition, in the iterative search process of the whole algorithm,
a small amount of iterative training needs to be performed on the intermediate state net-
work tomake the performance evaluation indexmore accurate. In addition, it is noted that
this end-to-end search makes the intermediate state model retrained, so only one search
is needed to obtain the mixed-precision quantization model with the best performance
under the constraints of different parameters and computational constraints.

In order to prove the effectiveness of the algorithm, based on the deep learning frame-
work of Pytorch [20], the author uses the classic ResNet [7], DenseNet [9], MobileNet
[22] and other networkmodels as the skeleton structure, CIFAR-100 [11] and ImageNet-
2012 [3] and other datasets. Compared with the traditional algorithms, the algorithms
proposed in this paper have obtained the best model performance. For example, on the
CIFAR-10 dataset, the method in this paper enables the VGG network model to achieve
optimal performance under 2-bit accuracy, and it is also effective on heavier neural net-
works such as ResNet [7] and DenseNet [9]. It compensates for the performance loss
due to uniform quantization accuracy [3]. Compared with some of the latest mixed-
precision quantization algorithms [5], the algorithm proposed in this paper can achieve
better performance at a higher compression rate. In addition, on the ImageNet dataset,
compared with the traditional method, the algorithm can ensure that the performance
of low-precision deep neural network can be improved while effectively compress-
ing and accelerating the network model. Specifically, on the ResNet-18 network, the
mixed-precision model achieves 5.7 times the compression gain while losing 0.3.

2 Related Work

The core idea of neural network quantization is to convert floating-point operations and
floating-point representations intofixed-point operations andfixed-point representations,
so as to achieve the purpose of network model compression and acceleration. Taking the
quantization accuracy as the standard, neural network quantization canbe divided into the
following two types: (1) low-precision quantization; (2) high-precision quantization. In
addition, there is a special class of quantization algorithms called codebook quantization.

Low-precision quantization generally adopts a quantization precision of less than 4-
bit, and converts 32-bit floating-point weights into 4, 3, 2, 1-bit fixed-point weights, so
as to achieve the purpose of network compression and acceleration. Due to the low quan-
tization accuracy, the performance of the model after quantization is seriously degraded.
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The method in [4] directly converted the floating-point network weight parameters to
1-bit, which greatly reduced the memory storage pressure of the model. In addition, this
research creatively proposes the Straight-Through Estimator (STE) algorithm, which
solves the problem that the gradient of the Sign function is 0 everywhere. Based on this,
the quantization model can be directly updated through reverse gradient training to make
up for the quantization loss caused by the decrease in quantization accuracy. In addition,

Rastegari et al. [21] used the exclusive-or (XNOR) operation to quantize the network
weights and activations into 1-bit at the same time, so that the network model can be
compressed and under the condition of special hardware support, it can obtain effective
acceleration. The research work also introduces the floating scale factor corresponding
to the weight and activation binary quantization, and obtains the analytical solution of
the scale factor by optimizing the quantization error. Due to its excellent performance,
the scale factor was inherited and developed by subsequent research work, which pro-
moted the research of quantitative algorithms. Wan et al. [23] quantized the network
weights and activations into 2- or 3-bit, and converted floating-point matrix multipli-
cation into low-precision logical operations (XNOR, AND) through reasonable design
to achieve fast convolution calculations. Lin et al. [16] reduced the quantization loss
through the combination of multiple binary expressions, and at the same time alleviated
the problem of gradient disappearance to a certain extent. Hu et al. [8] combined the hash
algorithm with binary quantization for the first time, converted the objective function
into an optimized hash code, and used the hash function to map floating-point weights
or activations to the low-precision expression space. [17] proposed Cyclic Filters (CiFs)
and Cyclic Binary Convolution (CBConv) to enhance the feature extraction capability of
binary convolutions, and proposed Cyclic Back Propagation (CBP) to train the network
model. In addition to optimizing the low-precision quantization expression space, Cai
et al. [5] proposed a half-wave Gaussian quantizer, which focused on the optimization
of gradient mismatch problems and improved the performance of low-precision models.
Gong et al. [6] also paid attention to the problem of gradient error caused by STE, and
proposed to optimize the Tanh function scale and bias factor through training, and at the
same time convert the quantized truncation parameters into learnable parameters, and
use gradient approximation to improve the performance of binary networks. In addition,
in order to further improve the accuracy of the binary network, Bai et al. [1] proposed
a low-precision model training strategy with alternating update optimization. Martinez
et al. [19] proposed a binary module, combined with knowledge distillation to improve
the flow of feature information. Bi-Real [18] introduced residual connections to transfer
floating point values of binary networks. These algorithms all improve the performance
of binary networks from different perspectives.

Quantization is an efficient neural network compression and acceleration algorithm
that is orthogonal to other compression and acceleration algorithms. However, as men-
tioned above, the actual acceleration and compression effects are strongly dependent
on hardware implementation. Since current general-purpose hardware accelerators can
only support 16-bit and 8-bit acceleration, special hardwaremay support lower-precision
model acceleration. Therefore, the underlying hardware also limits the application and
deployment of quantization algorithms to a certain extent.
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3 Method

3.1 Problem Formulation

In the traditional quantization method, the quantization accuracy of all activation values
and weight values of the deep convolutional neural network is uniformly set to k-bit.
However, different neural network layers have different sensitivities to different quanti-
zation accuracy. In order to effectively improve the performance of the neural network
model after quantization, it is necessary to set different quantization precisions for the
neural network layers with different sensitivities. In general, higher quantization pre-
cision should be set for those network layers that are sensitive to precision, and vice
versa. Therefore, more and more researchers are devoted to finding an efficient method
to determine the quantization accuracy of each neural network layer.

Given a special dataset D, a pre-trained deep convolutional neural network (N net-
work layers) and a candidate precision space (K, the general case Next, K = [1, 2,
…, 32]). Mixed-precision quantization strives to find the most appropriate quantization
accuracy for each computationally intensive network layer of the neural network within
the range of the smallest possible loss of accuracy.However, there is currently no efficient
way to explore such a large search space (|K|2N). Some scholars [2, 24, 26] proposed to
approximate the entire candidate precision space through a learning-based method, that
is, directly reduce the number of optional quantization precisions (K << 32). However,
this method does not really solve the problem of huge precision search space. In addi-
tion, in order to be able to judge which mixed-precision strategy is better, it is necessary
to detect the impact of quantization accuracy on the entire deep convolutional neural
network. Performance Ranking Hypothesis is a commonly used method. However, this
method requires a lot of computation for both training and testing, and its time complex-
ity is very high for heavy-duty neural networks and large datasets. This paper introduces
a new mixed-precision search space approximation and model performance evaluation
method, which are respectively called: asymptotic-based quantization algorithm (ProQ)
andHessianmatrix information-aware performance evaluation standard (Hessian-Aware
Indicator), collectively referred to as ProQHA.

3.2 Progressive Optimization Mixed Precision Quantization

In order to solve the problem of the huge search space, this section proposes a quan-
tization algorithm based on incremental optimization, which gradually optimizes the
high-precision model to the corresponding low-precision model step by step, namely:
32-bit→ 8-bit→ 4bit→ 2-bit. Specifically, given a candidate precision space K, where
km < km−1<…< k1, km and k1 correspond to theminimumandmaximumquantization
precisions in the candidate precision space, respectively.As shown in (b) and (c) of Fig. 1,
in a deep convolutional neural network, the search space of any layer is iterated with
progressive intervals: for a given network layer, The number in each diamond represents
the candidate quantization accuracy, the number in each circle represents the accuracy
of the pre-trained model, and τ is the progressive quantization interval. Figure 1(a) rep-
resents a traditional search space where candidate precisions are randomly sampled at
each iteration step. Figure 1(b) and (c) are both progressively quantized search spaces,
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where τ is equal to 1 and 2, respectively. At any iteration step, the mixed-precision
search space of this layer depends only on the accuracy of the pre-trained model and the
progressive quantization interval (τ) in the previous iteration.

Fig. 1. Comparative analysis of single-layer search space

Themixed-precision space after asymptotic optimization effectively solves the prob-
lem that the mixed-precision search space is too large. In addition, it can be noticed that
the quantized model of (k − τ)-bit inherits the weights of the k-bit model, which brings
additional advantages, namely: the optimized solution based on the k-bit model, (k −
τ)-bit model is easier to optimize.

3.3 Model Structure

To express the hardware constraints for model compression and acceleration, this paper
defines the model cost as:

cost =
∑

wi∈W Pwi × Kwi

Pw
(1)

where P(�) and K(�) represent the number of neural network parameters and the cor-
responding accuracy of the quantization layer, respectively. P(�) can also use floating
point operands (FLOPs) to represent hardware resource constraints. Figure 2 shows the
quantization structure based on ResBlock. As shown in the figure, the paper makes
appropriate changes to the network structure, the batch normalization layer and acti-
vation quantization layer are performed before the convolutional layer. The algorithm
performs a mixed-precision search at the input and the convolution kernel, respectively.
The network parameter quantization uses the algorithm based on Dorefa [29], and the
activation value uses the algorithm based on PACT [3] to perform the quantization oper-
ation of the corresponding precision. Furthermore, this paper does not quantify the first
and last layers of the model to ensure stable performance. See Algorithm 1 for the com-
plete flow of the automatic mixed-precision quantization algorithm based on progressive
optimization.
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Fig. 2. Schematic diagram of quantization structure based on ResBlock

4 Experiment

The algorithm is based on Pytorch, and the corresponding verification experiments
are done on the CIFAR-100 and ImageNet-2012 datasets. This section expounds the
effectiveness of the algorithm in terms of experimental setup, performance comparison
experiments, ablation analysis experiments, and visualization experiments, respectively.
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4.1 Experimental Setup

In the initial pre-training stage of the model, for CIFAR-10, we train by using the
stochastic gradient descent (SGD) optimization algorithm with momentum 0.9, where
the initial learning rate and learning rate decay are set to 0.1 and 5e−4, respectively, for a
total of 78,200 iterations. The experimental settings of ImageNetmainly refer to previous
work [28]. In the mixed-precision search stage, the mixed-precision search algorithm
based on progressive optimization will search with a data batch size of 128, and perform
a total of one iteration. Adam is used for optimization during this process, while 600
samples are randomly sampled to calculate performance evaluationmetrics. The optimal
mixed-precision model was selected to re-execute the iterative optimization process for
30 training epochs (Epoch) to restore model performance. During the whole retraining
process, the initial learning rate is 0.001, and at the 10th and 20th Epochs, the learning
rate is reduced to 10% of the original. For models that meet the hardware constraints
of the model, this paper reports the highest validation performance after retraining the
model after 100 training epochs.

Table 1. Experimental results of quantifying the model on the CIFAR-100 dataset.

Model Precision ResNet-18 ResNet-50 DenseNet-40 MobileNetV2

WA Acc.-1 Cost Acc.-1 Cost Acc.-1 Cost Acc.-1 Cost

PACT [3] 2/2 66.49 0.0625 66.68 0.0625 71.01 0.0625 NA 0.0625

ProQHA MP 68.80 0.0625 71.48 0.06 72.39 0.0625 68.88 0.0625

PACT [3] 4/4 70.68 0.1250 71.98 0.1250 73.63 0.125 9.93 0.1250

ProQHA MP 70.26 0.1077 73.40 0.1215 73.69 0.1253 72.54 0.1231

PACT [3] 6/6 70.46 0.1875 72.73 0.1875 73.90 0.1875 50.29 0.1875

ProQHA MP 70.87 0.1746 73.49 0.1810 74.25 0.1828 74.61 0.1717

PACT [3] 8/8 70.48 0.2500 72.60 0.2500 73.73 0.2500 68.21 0.2500

ProQHA MP 70.94 0.2064 73.72 0.2311 74.05 0.2349 74.56 0.2356

Baseline 32 71.05 1.000 74.34 1.000 74.68 1.000 69.61 1.000

4.2 CIFAR-100

This paper further conducts experimental verification on CIFAR-100. Table 1 shows that
the performance of the algorithm proposed in this paper is higher than that based on the
uniform precision quantization algorithm. Compared with PACT [3], the quantization
algorithm based on progressive optimization achieves higher model compression rate
and higher computational speedup ratio. In particular, the size of the mixed-precision
model obtained based on the algorithm in this paper is 1 of the original floating-point
model, but it achieves similar performance to the original model. Such as: ResNet-50
(18.18%) v.s. MobileNetV2 (17.17%). For a more compact model (MobileNetV2), the
traditional method cannot obtain effective accuracy when the quantization accuracy is
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2, while the quantization algorithm based on asymptotic optimization can still obtain
better accuracy on the compact model under the condition of lower accuracy.

Table 2. Based on ImageNet [12], the quantization algorithm comparison of uniform precision
setting with ResNet-18 as the model skeleton. “Parameter Accuracy/Activation Accuracy” repre-
sents the accuracy used for the quantization of neural network model parameters and activation
values. Based on a single 1080Ti GPU, each iteration of ProHQA takes one day.

Model Parameter
accuracy/Activation
accuracy

Model
performance

Performance
drop

Parameter
compression

Activate
compression

Baseline 32/32 70.20 0.00 1.00 1.00

ABC-Net
[16]

5/5 65.00 −5.20 6.40 6.40

Dorefa [29] 5/5 68.40 −1.80 6.40 6.40

ProQHA MP/MP 70.01 −0.10 6.46 7.01

ABC-Net
[16]

3/3 61.00 −9.20 10.67 10.67

Dorefa [29] 3/3 67.50 −2.70 10.67 10.67

PACT [3] 3/3 68.10 −2.10 10.67 10.67

LQ-Nets
[27]

3/3 68.20 −2.00 10.67 10.67

ProQHA MP/MP 68.34 −1.86 10.67 10.04

Dorefa [29] 2/2 62.60 −7.60 16.00 16.00

PACT [3] 2/2 64.40 −5.80 16.00 16.00

LQ-Nets
[27]

2/2 64.90 −5.30 13.84 12.19

DSQ [6] 2/2 65.20 −5.00 16.00 16.00

QIL [10] 2/2 65.70 −4.50 11.20 1.00

ProQHA MP/MP 66.18 −4.02 13.87 11.90

4.3 ImageNet

In order to further verify the effectiveness of the algorithm, this paper also conducts
comparative experiments on the ImageNet dataset. The results are shown in Table 2.
Based on a single 1080Ti GPU, each iteration of ProHQA takes one day. For example, a
total of 12 iterations are used to obtain the result 65.72 in the following table. It is easy
to know that while ProQHA obtains a higher compression rate, it obtains performance
similar to that of the floating-point model. For example, compared with floating-point
ResNet-18, the model generated by ProQHA achieves better model performance with a
smaller model cost. That is: ProQHA can effectively improve the performance of lower
precision models. It is easy to know that the stability of ProQHA is better than other
algorithms. It is worth noting that random searchmay induce suboptimalmixed precision
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settings. But ProQHA still achieves the best model performance. For example, compared
with BRECQ [14], ProQHA can obtain more stable model performance with a similar
compression rate. This proves from the experimental point of view that the quantization
algorithmbased on asymptotic optimization canoptimize the low-precisionmodelwithin
the bounded error, which greatly improves the effect of search stability and demonstrates
the superiority of ProQHA over other mixed-precision quantization algorithms.

5 Conclusion

In the field of mixed-precision quantization, the method proposed in this paper is the first
algorithm to simultaneously optimize the search space and performance estimation. A
novel automatic mixed-precision quantization framework is proposed, which includes
a progressive optimization-based mixed-precision quantization (ProQ) algorithm and
a Hessian matrix information-aware-based model performance evaluation metric. The
algorithm performs a progressive quantization algorithm on randomly sampled layers
to reduce the mixed-precision search space. At the same time, the theory demonstrates
the stability of asymptotic quantization for smaller intervals. In the iterative process of
incremental optimization, the model performance evaluation criteria based on Hessian
matrix information perception are incorporated to select the current optimal mixed-
precision strategy. Finally, this paper proves the rationality and effectiveness of ProQHA
with a large number of experiments, and finally achieves the goal of optimization based
on the quantization precision algorithm.
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