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Abstract. Conventional Raman spectroscopy, which is based on the qualitative
or quantitative determination of substances, has been widely utilized in industrial
manufacture and academic research. However, in traditional Raman spectroscopy,
human experience plays a prominent role. Because of the massive amount of com-
parable information contained in the spectrograms of varying concentrationmedia,
the extraction of feature peaks is especially crucial. Although manual feature peak
extraction in spectrograms might reduce signal dimensionality to a certain extent,
it could also result in spectral information loss, misclassification, and underclassi-
fication of feature peaks. This research solves the problem by extracting a feature
dimensionality reduction method based on an auto-encoder-attention mechanism,
applying a deep learning approach to spectrogram feature extraction, and feeding
the features into a neural network for concentration prediction. After rigorous test-
ing, the model’s prediction accuracy may reach a unit concentration of 0.01 with
a 13% error, providing a reliable aid to manual and timely culture medium replen-
ishment. And through extensive comparison experiments, it is concluded that
the self-encoder-based dimensionality reduction method is more accurate com-
pared with the machine learning method. The research demonstrates that using
Raman spectroscopy to deep learning can produce positive outcomes and has great
potential.

Keywords: Raman spectroscopy · Deep learning · Auto-encoder · Attentional
mechanisms

1 Introduction

Raman spectroscopy is currently widely utilized in industry, food, and biotechnology as
an accurate material detection tool with easy data capture, speed, and high accuracy for
qualitative or quantitative study ofmaterial composition. The processing of spectrograms
and the analysis of spectrum data are critical steps in the quantitative measurement of
substances, and the regression algorithms used to do so have a direct impact on the
spectral data’s accuracy. It has been used to analyze substance concentrations in both
qualitative and quantitative ways.

The typical Raman spectroscopy processing technique includes numerous steps, and
many of them, such as de-baseline correction [1] and smooth-denoising, rely on human
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expertise to complete the experiments. To discover the feature peaks in the spectrum
map, start by downscaling the high-dimensional data to get the key features, then use
principal component analysis, random forest, or other approaches to finish particular
tasks. The purpose of dimensionality reduction is to extract the features that are useful
for the regression task and discard those that are of useless. In addition, there is serious
covariance between the wavelength points [2], using all dimensions of the spectrogram
not only increases the complexity of the model computation but also introduces unnec-
essary noise to affect the prediction results. As a result, the selection of feature peaks is
crucial. Traditionally, there are three types of feature peak selection, the first one is to
explore the feature peak intervals one by one, using the statistical information related
to the model, and then decide which feature peak intervals are needed, such as inter-
val partial least squares (IPLS) [3], moving window partial least squares (MWPLS),
etc. [4]. The second type of method is to select the peaks according to their covariance
index, regression index, and other indicators, such as competitive adaptive reweighted
sampling (CARS) [5], partial least squares uninformative elimination (UE-PLS) [6].
The third category is the algorithms for optimization problems. For instance, genetic
algorithm (GA), and simulated annealing (SA) to select feature peaks.

In the past few years, With the evolution of hardware techniques, deep learning has
continued to develop which has been widely used and achieved rich results in image
processing, autonomous driving, speech recognition, etc. A CNN is an important part of
deep learning, which is a kind of feed-forward neural network and has shown powerful
classification and regression ability in many fields. For example, classical convolutional
neural networks: Alexnet [7], VGG [8], Resnet [9], etc. With the advancement of deep
learning, auto-encoder [10] Compared with the traditional classical PCA [11] algorithm,
auto-encoder is an unsupervised deep learning algorithm for dimensionality reduction,
which can learn the nonlinear feature representation that cannot be learned by PCA
and can better learn advanced semantic features for high-dimensional data. This work
utilizes the self-learning feature of neural networks to obtain the corresponding weight
information of each feature peak and achieves the purpose of feature peak selection
by reconstructing the input information to retain the large-weighted feature peaks and
eliminate the small-weighted feature peaks, meanwhile, further improves the exper-
imental effect when predicting the concentration with the attention mechanism. Our
proposed self-encoder-attention mechanism method does not require human manual
feature peak selection, and the prediction results are more stable than some traditional
machine learning methods, and better results are achieved in the experimental results.

2 Related Work

2.1 Raman Spectra of Single Component Glucose Medium

A total of 17 concentrations of glucose medium concentrations were selected, and their
Raman spectra ranged from 0 to 3400 cm−1, as the concentrations were different, the
corresponding characteristic peaks were different, which led to different Raman spec-
trograms for each concentration. With a total of 170 samples, the key to effective iden-
tification of the spectrograms of different concentrations lies in the selection of the
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characteristic peaks. As shown in Fig. 1, which shows the Raman spectra of the single-
component medium samples, it is easy to see that in some regions, the curves of different
concentrations are nearly overlapping, and the features in these overlapping regions are
not useful for the experiment, i.e., they are features to be discarded when performing
feature extraction. In other regions, the curves do not overlap, and the features in these
regions are the features that are useful for the experiments, which are also called feature
peaks, and it is critical to make the most of these usable features for feature extraction.

Fig. 1. Raman spectra of single component glucose medium samples.

2.2 Spectrograms of Multi-component Mixtures

In the previous section, we introduced the Raman spectrogram of single-component
glucose medium, based on which we extended the original data and used a Raman spec-
troscopy detector to obtain multi-component Raman spectroscopy data. In this batch of
data, besides containing glucose, bacterial substances were also added. As the exper-
iment proceeded, the glucose concentration in the medium was gradually decreasing
while the bacterial content was showing an increasing trend. The Raman spectrometer
is real-time detection of component concentrations in the medium, generating seven
spectral data per minute, and we selected the spectral data every 30 min and recorded
the concentration of each component. As shown in Fig. 1(b), the spectra of the mixtures
overlap less, indicating that the diversity of the components has a greater impact on the
spectra and the multi-component data is more challenging for the model, while at the
same time there may be interactions between the components, resulting in some noise
characteristic peaks.

2.3 Auto-encoder

The encoder’s job is to convert the high-dimensional input x into a low-dimensional
implied variable, which allows the network to learn the most valuable characteristics out
of the many available. As for the decoder, the role of the decoder is to reduce the implied
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variable a to the initial dimension, i.e., to obtain the reconstruction xR. A good self-
encoder is one in which the output of the decoder is almost a complete approximation of
the original input. A 3-layer stacked self-encoder is utilized in this study, as illustrated
in Fig. 2, with 128, 64, and 128 neuron connections in the hidden layer, respectively.

Fig. 2. The hidden layer is a 3-layer Auto-encoder model

The original data x is encoded from the input layer to the hidden layer during the
encoding process.

a = σ(w1x + b1) (1)

Decoding process: from the intermediate layer, i.e. the hidden layer, to the output
layer.

xR = σ(w2a + b2)x (2)

whereW1,W2 is the weight parameters, b1, b2 are the bias terms, and σ is the activation
function, here Relu is chosen as the activation function.

Optimization objective function.

MinimizeLoss = 1

N

N∑

n=1

∥∥∥x − xR
∥∥∥
2

(3)

Adding a nonlinear activation function to the encoded linear combination to recon-
struct the input data using the new features obtained after encoding is a very effective
and practical means of feature extraction.

2.4 Attention Mechanism

An attentionmechanism is commonly known as a resourceweightingmechanism, which
reallocates resource weights based on the importance of data in different dimensions,
and is centered on recalculating to highlight certain important features based on the cor-
relation between the original data. Many kinds of attention mechanisms have emerged,
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such as the latest attention algorithm [19] and applying self-attention from natural lan-
guage processing (NLP) [15] Applied to computer vision tasks, the feature map with
attention is obtained byweighting and summing the values of the Query, Key vector after
similarity calculation with the Value vector. Spatial attention [16] and channel attention
[17]. The former retains the key spatial information of the original image while trans-
forming it into another space to focus on the important regions, while the latter assigns
weights to the image channel dimensions. Based on this, CBAM emerges [18] to obtain
the attentional feature map by tying together the channel attention and spatial attention
mechanisms. We provide an attention mechanism in this paper that is comparable to
Senet [16], with the variations outlined in Sect. 3.

3 Algorithm Design

Algorithm 1 illustrates the flow of our algorithm design. The original data is the spectral
data acquired every minute by the Raman spectroscopy detection probe instrument, and
while saving the spectrogram, the concentration of single-component substances and
the concentration of individual multi-component substances are recorded. Since our
algorithm model cannot read the .spc file format, the .spc spectral file is processed by
obtaining and storing the coordinates of each data point of the spectrogram in a two-
dimensional array and adding the previously recorded substance concentration values
as labels to the two-dimensional array where the spectral data are stored.
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In the same way, this paper adds the attention mechanism in deep learning to the
model inspired by Senet, which assignsweights to different features based on the channel
dimension for the purpose of weight assignment, thus making the neural network pay
more attention to the features with higher weights. The original Senet is used for image
processing, where the image is usually composed of length, width, and channel. After
several layers of convolution, the number of channels increases, and the size becomes
smaller, at which point the Senet adaptively pools the length and width to 1 and only
weights the channel dimension. Our data does not have the attributes of length and
width, so the pooling process is omitted, the weights are directly weighted, and the
obtained weights are spliced with the original data to get the weighted data, which will
be beneficial for the subsequent prediction or classification tasks.

The next step is the construction of the algorithmmodel. In selecting the self-encoder,
we choose the encoder and decoder based on the Dense layer, and the number of codec
layers is all 3 layers, with 128, 64, and 64 neurons per layer, respectively. We also
choose the Dense layer-based attention mechanism, with the number of layers set to 2.
The model is then back-propagated to update the parameters, using the fully connected
layer for prediction, and the predicted value is lost in mean square error with the real
value.

4 Experiment

The experimental part of this paper will use multiple algorithms and deep learning
methods to compare the results of the algorithmic models by selecting single- and multi-
component Raman spectral data of glucose culture media, calculating the root mean
square error of each algorithm, by analyzing the fitted curves of the true and predicted
values, and by comparing the convergence speed of the neural network model with the
fully connected layer and the convolutional layer neural network model.

4.1 Traditional Methods and Neural Networks

To reflect the advantages of the proposed method in this paper, firstly, some classical
algorithms from machine learning methods were selected separately for comparison on
the Raman spectral data obtained from a single-component glucose medium. As shown
in Fig. 3, the results were obtained by CARS, PCA, and NCA [12] by reducing the
dimensionality of Raman spectral data to 117, 68, and 49 dimensions, respectively. The
overall trend of the basic fitted curves may be noticed is roughly the same despite the
different dimensionality of feature extraction, except that there is a lack of inaccuracy,
so the fitting effect of the algorithm needs to be further improved. Figure 4(a) shows
the same single-component data as Fig. 3, and Fig. 5 shows the fitting results obtained
by the self-coding-attention mechanism, and the results are marked enhancement over
conventional algorithms.

From the results obtained by the above machine learning method, we added deep
learning into it for improvement. Figure 4 shows the fitting curves of multi-component
mixtures obtained by machine learning and deep learning algorithms, and it can be
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Fig. 3. (a)(b)(c) are the fitted curves of predicted and true values of CARS, PCA, and NCA in
order (single component).

Fig. 4. Fitting curves (multicomponent mixtures) for PCA conventional method (a) and self-
encoder (b).

seen that the fitting curves obtained by the deep learning self-encoder method in multi-
component glucose medium are better and more accurate. In the experiments, we also
found that the conventional PCA method is less stable, the fitting effect is sometimes
good and bad, and it is not suitable to handle the real-time Raman spectroscopy detection
task, while the deep learning method is not only better but also more stable.

4.2 Self-encoder and Attention Mechanism

In Sect. 4.2, we predicted the concentration of culture-basedRaman spectral data, and the
results proved that the self-encoder method using deep learning is better than machine
learning and traditional neural network methods, but at the same time, it is easy to
see that the results obtained by using the self-encoder alone are still lacking in fitting
accuracy, so to further improve the fitting effect. In order to further improve the fit, we
add the attention mechanism to the self-encoder model, and the selection of the attention
mechanism is described in Sect. 3. To demonstrate the reliability and robustness of the
model, we also compared the fitting curves of single- and multi-component glucose
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Fig. 5. Self-encoder-attention mechanism fitting curve, single-component (a) multi-component
(b).

medium concentrations: Fig. 5 shows that the results of feature extraction based on the
self-encoder with the attention mechanism are better than those of the traditional method
mentioned above, and after several experiments, we observed that the fitting curves of
our method are more stable and there is no model collapse. The predicted and true values
are basically on the same curve. Figure 5(b) shows a significant improvement in the fitted
curve using the self-encoder-attention mechanism compared to the experimental results
in Fig. 4 and Fig. 5. In addition to this, it can be observed that although the fitted curve
is intuitively better for the single component, the concentration values for the single
component span from 0 to 50 units of concentration, while the multi-component is from
0 to 4 units of concentration.

For further illustration, we compared the results with the real sample concentrations
by random sampling: as can be seen from Table 1, among the 10 different concentrations
selected for comparison, the results of AE-Attention are the closest to the real values,
with errors in the range of 0.3% to 1.7%, and similarly, for the six different concentration
species in Table 2, the error can be as small as 0.01 concentration units, which satisfies
the error in the practical, Therefore, the experiment has reliable practicality.

Table 1. Comparison of samples and predicted for different concentrations (single components)

Label 0 0.1 5 15 50

CARS [5] 0.35 ± 0.13 0.33 ± 0.18 4.25 ± 0.64 14.65 ± 1.28 49.24 ± 1.83

PCA [11] 0.7 ± 0.22 0.16 ± 0.09 4.45 ± 1.66 14.55 ± 1.87 48.47 ± 2.21

NCA [12] 1.02 ± 0.37 0.80 ± 0.23 5.48 ± 1.89 15.97 ± 1.65 49.26 ± 0.91

GBR [13] 0.30 ± 0.10 0.37 ± 0.18 5.82 ± 2.37 15.63 ± 2.67 48.93 ± 3.43

RFR [14] 0.18 ± 0.11 0.56 ± 0.35 5.30 ± 2.28 16.50 ± 3.11 49.63 ± 3.03

AE-Attention 0.11 ± 0.05 0.08 ± 0.04 5.06 ± 0.53 15.34 ± 0.66 50.12 ± 0.38
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Table 2. Comparisonof samples andpredicted for different concentrations (multiple components)

Label 0.27 0.57 1.158 1.708 3.79

CARS [5] 0.22 ± 0.11 0.38 ± 0.14 1.30 ± 0.23 1.55 ± 0.61 3.67 ± 0.27

PCA [11] 0.35 ± 0.20 0.07 ± 0.58 0.87 ± 0.31 1.48 ± 0.27 3.57 ± 0.38

AE-Attention 0.24 ± 0.08 0.62 ± 0.04 1.26 ± 0.13 1.71 ± 0.04 3.78 ± 0.02

Comparing the convergence speed and the number of parameters and accuracy of
fully connected layer neural network (NN) and convolutional neural network (CNN)
in the prediction task: In the classification stage after extracting the features, we used
CNN and NN for comparison experiments, Fig. 6 illustrates that the accuracy obtained
by using N is higher than that obtained by using convolutional neural network (CNN)
for classification, and the corresponding convergence speed is As the parameters of NN
are more than those of CNN, the accuracy of NN is also a little higher than that of CNN,
and in the context of accuracy, we prefer to use NN to complete the task.

Fig. 6. Comparison of convergence speed of NN (left panel) and CNN (right panel).

The root means square error (MSE) is a measure that responds to the degree of
difference between the predicted and true values, and the actual effect of the model
can be visualized by calculating the root mean square error of different algorithms. As
shown in Table 3, comparing the five algorithms for extracting features and the use of
fully connected layer neural networks (NN) and convolutional neural networks (CNN)
for comparison in prediction, it can be seen that the method based on the self-encoder
+ attention mechanism is the best in both NN and CNN conditions. The same Table 4
for the multicomponent MSE error yields the same experimental results as Table 3. At
the same time, also from Table 5, the results obtained without dimensionality reduction
feature extraction are poor because the presence of many noisy and useless features has
an impact on the results.
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Table 3. Root mean square error values of different algorithms for a single component

MSE CARS [5] PCA [11] NCA [12] Select-Percentile AE-Attention

NN 0.272 ± 0.12 0.67 ± 0.14 0.539 ± 0.22 4.464 ± 2.43 0.19 ± 0.08

CNN 0.4 ± 0.18 0.76 ± 0.26 1.609 ± 0.89 3.55 ± 2.02 0.18 ± 0.072

Table 4. Root mean square error values of different algorithms for multi-component

MSE error PCA [11] NCA [12] AE-Attention

NN 0.060 ± 0.021 0.053 ± 0.014 0.019 ± 0.008

CNN 0.065 ± 0.014 0.058 ± 0.011 0.026 ± 0.010

Table 5. MSE metrics for GBR and RGR

GBR [13] RFR [14]

MSE error 0.642 ± 0.38 0.433 ± 0.27

5 Results and Discussion

The deep learning approach in this paper is done in the TensorFlow framework based
on Python, using an Intel(R) Core(TM) i5-8500 CPU.

In this work, we propose a Raman spectral processing algorithm based on a self-
encoder-attention mechanism, which transforms some methods of total deep learning
image processing applied to regression modeling in several different concentrations
of culture media, comparing with several commonly used traditional algorithms, and
applying deep learning methods in which the consumption of substances in glucose
medium can be observed in time in biological fermentation experiments. In order to
facilitate timely replenishment and recording of data, yielding practically meaningful
results. The method can next be used to predict or classify Raman spectrograms of more
complex multi-component mixtures or other substances in the medium, which has good
research value.
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