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Abstract. This paper proposed a multi-scale feature fusion image dehazing net-
work by incorporating a contiguous memory mechanism (MFFDN-CM). Specif-
ically, the pixel attention mechanism, continuous memory strategy and residual
dense blocks are integrated into the dehazing model with a prevalent encoder-
decoder structure (U-Net). Firstly, our model obtains multiscale feature maps by
subsampling operations, and further employs skip connections between the cor-
responding network layers to connect the feature maps between the encoder and
the decoder for good feature fusion. Then, we introduce a continuous memory
residual block to strengthen the information flows for feature reuse. Moreover, to
leverage detail representation and accomplish adaptive dehazing according to the
haze density, MFFDN-CM adopts a pixel attention module on the skip connec-
tions to combine the residual dense block module of the corresponding decoding
layers. Finally, multiple residual blocks are exploited on the bottleneck in encoder-
decoder structure to prevent network performance degradation due to vanishing
gradients. Experimental results demonstrate the proposed model can achieve bet-
ter hazing performance than the state-of-the-art methods based on deep neural
network.

Keywords: Image dehazing - Attention mechanism - Continuous memory
mechanism - Residual dense block module - U-Net

1 Introduction

Scene detection and enhancement under special weather have become a representative
task for robust machine vision systems. As shown in Fig. 1, images captured in hazy days
are easily affected by fog or haze, resulting in blurred image details, low contrast, and
loss of meaningful textures. To solve these problems, image dehazing algorithms emerge
as a solution to improve the quality of recorded images. Aiming to obtain high-quality
images, it is necessary to perform dehazing restoration on the images. Following this
effort, image dehazing has been explored for many years [2, 4-6] and many algorithms
has been developed for image dehazing. To the best of our knowledge, these researches
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usually simulate a hazy image by atmospheric scattering and attenuation model, as
formulated in (1).

1(x) = J ()t (x) + A(1—1(x)) (D

where x is the pixel position, J(x) is the latent hazy-free image, #(x) is the medium
transmission map, and A is the global atmospheric light which indicates the intensity of
ambient light.

Fig. 1. Examples of realistic hazy images

Based on the physical model, given a captured hazy image, the haze-free image can
be generated by estimating the transmission map and global atmospheric light values.
To recover haze-free images J(x) from hazy images /(x), end-to-end deep learning
methods have shown their promising capability. Some early methods [1, 2] tried to
use convolutional neural networks (CNN) to predict the transmission map, and then
other methods [3] were used to estimate the value of atmospheric light. However, the
estimation of transmission maps or atmospheric light values from a single hazy input is
not an easy task, due to the uncertainty of atmospheric light values [7] and the difficulty
of capturing ground truth data of transmission maps. Furthermore, inaccurate estimates
of transmission maps or atmospheric light values can seriously affect the recovery of
haze-free mages. To solve this problem, several algorithms [8—10] estimate latent images
directly or iteratively [11] based on deep CNNs. However, these methods mainly adopt
universal network architectures (e.g., GDN [12], PFFNet [13], GFN [14], GCANet [8]),
which are not well optimized for some typical problems that arise during image dehazing.
Although these networks can represent multi-scale features, as the network goes deeper,
spatial information will be lost, thereby reducing the feature representation capability
of the network. It is also worth noting that most image dehazing networks treat the
characteristics of pixels equally, which is unsuitable for dealing with images with uneven
distribution of haze, and it is prone to appear the phenomenon of uneven image dehazing
or artifacts. In response to the above problems, we creatively add residual dense module
[15] and pixel attention [16] to the multi-scale network to enrich feature representation
and guide the network to process different feature information adaptively. Following this
motivation, this paper proposes a multi-scale feature fusion image dehazing deep model
with a continuous memory mechanism (MFFDN-CM), which is achieved by aggregating
residual dense modules and pixel attention modules into U-Net. In summary, the main
contributions are as follows:
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(1) We introduce Residual Dense Block (RDB) module to extract hierarchical features
from convolutional layers via local and global feature fusion for stable training and
preservation of global features. Moreover, because of information flow interaction
between RDB modules, all information is fully utilized through global residual
learning.

(2) Considering the uneven distribution of haze on different image pixels, we integrate
a pixel attention module (PA) to make the network pay more attention to useful fea-
tures, such as thick haze pixels and high-frequency image regions, thereby achieving
adaptive dehazing operation.

(3) Inspired by [17], we incorporate continuous memory residual blocks into the
encoder and decoder, which not only can reduce the occupied memory and training
time but also increase the information flows through feature reuse, aiming at further
improving the network feature representation ability.

Experimental results show that our proposed method can achieve the best perfor-
mance on the benchmark SOTS dataset [18].

2 Related Works

Recent years witnessed the dramatically progress on image dehazing researches. Gener-
ally speaking, dehazing methods can be roughly divided into two categories: traditional
feature engineer-based algorithms and deep learning-based methods.

As for traditional feature engineer-based algorithms, image dehazing mostly explore
hand-crafted features to predict haze-free images. These features are mainly extracted
based on some image priors or assumptions [3]. It can be found that most patches in
realistic images contain several pixels with very low brightness which is close to zero
in at least a color channel, called the dark channel prior (DCP). Early methods used
DCP as the original image before estimating the transmission map of image dehazing,
and obtained relatively good results. However, there are obvious artifacts in the output
dehazed image due to inaccurate estimation of the transmission map. Subsequently, many
works have been devoted to improve DCP methods via using boundary constraints [19]
or non-local total variation [20]. Although the artifact problem is resolved, these methods
lead to severe color distortion in the sky area, since the DCP assumption is based on the
outdoor clear image that excludes the sky area. Briefly, the traditional methods based on
priors are not robust against diverse scenes.

On the other hand, with the advance in convolutional neural networks (CNNs) and
the availability of large-scale synthetic datasets, deep learning-based approaches for
image dehazing have received significant attention in recent years. MSCNN [1] and
DehazeNet [2] are the earliest methods to utilize CNN for image dehazing. Both methods
use a CNN to estimate the transmission map, which is then used to obtain a haze-free
image based on Eq. (1). In addition, there is AOD [6], which uses traditional prior
methods to reformulate Eq. (1) to build an end-to-end model. Whereas, Gated Fusion
Network (GFN) [14] derives three augmented versions from hazy images, then treats
them as inputs and performs gated fusion on their results. UR-Net [21] is a recently
proposed model, which is based on an encoder-decoder network with bottleneck residual
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blocks. The model achieves good results on some standard dehazing datasets. Shao et al.
[27] developed a domain adaptation network (DA) with two image translation modules
between synthesized and real hazy images and two image dehazing modules to alleviate
the domain shift problem. However, the image dehazing modules of DA [27] learned
CNN features from input hazy image to predict only one factor (i.e., the latent haze-free
image), thereby hindering the dehazing performance.

Although the existing single-image dehazing algorithms can remove the haze from
hazed images to a certain extent, it is difficult to obtain the perfect high-quality haze-
free image. To be specific, compared with several existing state-of-the-art single-image
dehazing methods, PFFNet [13] exhibits ideal dehazing performance on the RESIDE
[18] dataset, which can recover most of the outdoor haze images as expected. Meanwhile,
it will produce certain artifacts and color distortions when applied to indoor haze images.
To address the poor performance of PFFNet on indoor hazy images, the main motivation
of this paper is focused on improvements on the PFFNet baseline to make our method
perform better on indoor and outdoor haze images.

3 Proposed Dehazing Method

In this paper, we propose a multi-scale feature fusion image dehazing network incorpo-
rating a contiguous memory mechanism (MFFDN-CM). This is an end-to-end trainable
CNN model, which develops a deep model equipped with multi-scale feature fusion
driven by continuous memory, attentional module and residual-dense block for image
dehazing.

3.1 Network Architecture

Figure 2 shows the entire architecture of the proposed MFFDN-CM. As can be seen from
Fig. 2, MFFDN-CM is evolved from U-Net [22] and ResNet [23]. Specifically, MFFDN-
CM inherits the basic encoder-decoder structure of U-Net, and we embed 18 residual
blocks (resblocks) at the junction of the encoder module and the decoder module (i.e.,
the bottleneck structure). In addition, MFFDN-CM inherits the main idea of ResNet
(that is, learning the residual image instead of directly learning the image dehazing
result), and adds the residual image and the original haze image to obtain the final
image dehazing result. MFFDN-CM consists of four parts: an encoder module (Ggy.),
a bottleneck recovery module (Gges), Pixel attention based skip connection module
(PA), and a decoder module (Gp,.). Specifically, the goal of the encoder module is to
extract shallow feature maps of images and enhance the preservation of local information
through convolution and residual dense blocks. The decoder module obtains the depth
feature map of the image through deconvolution. Considering that subsampling shallow
features will be partially lost, this paper adds continuous memory residual blocks in both
the encoder and the decoder, which can increase the information flow through feature
reuse and further enhance the feature expression ability of the network.

Then, a skip connection module based on pixel attention (PA) is used to assign
weights to the input feature maps according to their importance, so that the fusion
of the shallow feature map and the deep feature map is more effective. In addition,
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Fig. 2. The schematic illustration of the MFFDN-CM

the bottleneck recovery structure consists of 18 residual blocks to prevent the network
performance degradation caused by vanishing gradients. Simply speaking, MFFDN-CM
adopts an encoder-decoder structure to learn residual images, and adds the original haze
image to the residual image to generate the final image dehazing result. Furthermore, the
activation functions and normalization operations used in MFFDN-CM are Parametric
Rectified Linear Unit (PReLU) [24] and Group Normalization (GN) [25].

3.2 Continuous Memory Residual Block

Inspired by [17], a continuous memory residual block is utilized in both the encoder and
the decoder, which can increase the information flow through feature reuse and further
enhance the feature expression ability of the network. The Continuous Memory Residual
block (CMres) consists of two ordinary residual blocks (with a kernel size of 3 x 3) and
a convolutional layer (with a kernel size of 1 x 1). As shown in Fig. 3, a contiguous
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memory mechanism is realized by the operation similar to dense block which increas-
ing the information flow through feature reuse. To reduce memory usage and runtime,
connections are only used between each normal resblock rather than each convolutional
layer. Let F,,_1 and F}, be the input and output of the nth CMres respectively, then the
output of the nth CMres can be expressed as

Fn:Hn[Fn—l’Fn,lan,Z] (2)

where H is the bottleneck layer. F), | and F), > are the feature maps generated by ordinary
residual blocks 1st and 2nd on nth layers.

<,

<,
Concat
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Fig. 3. Contiguous memory residual blocks

3.3 Pixel Attention Module

According to [16], we adopted a pixel attention (PA) module in skip connection, which
assigned weight to each pixel of the shallow feature map that still retained the texture
information of the original image, so that the final restored image was closer to the
pixel distribution of the original image in detail texture. In addition, the distribution of
haze on each pixel is usually uneven. The addition of pixel attention module also makes
the network model pay more attention to the density information of haze, providing
flexibility for the model to deal with haze of different density.

As shown in Fig. 4, we directly feed the input F (the output of the previous layer)
into two convolutional layers with ReLu and sigmoid activation functions. The shape
changes fromC x Hx Wto1l x H x W.

PA = o(Conv(§(Conv(F)))) 3)

where o is the sigmoid function, 8 is the ReLu function, and F** is the output of the pixel
attention module. Finally, we perform element-wise multiplication of the weights of the
input F and pixel PA.

F*=FQ®PA “)
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3.4 Residual Dense Block (RDB)

To take full advantage of the hierarchical nature of all convolutional layers, as shown in
Fig. 5, we employ [15] Residual Dense Blocks (RDB) to extract rich local features by
densely connecting convolutional layers. RDB can realize the direct connection from
the previous RDB state to all layers of the current RDB, and then use the local feature
fusion of RDB to adaptively learn more effective feature information from the previous
and current local features, which is conducive to stability wider network training and
improved network stability and performance. The final output of the d-th RDB can be
formulated as

Fo=Fq1+FqrF &)

This module introduces a 1 x 1 convolutional layer to adaptively control the output
information. We name this operation as local feature fusion formulated as

Farr =HY((F4—1,Fa1, ... Fac .. Facl (6)

where H¢ denotes the function of the 1 x 1 Conv layer in the d-th RDB.

Fd,LF Fd

|
Concat

Fig. 5. Residual dense block

3.5 Loss Function

To effectively train the proposed network, MSE loss is exploited as the loss function,
which is a pixel-based loss. MSE loss is defined as:

1 N 3
Luse = 5 > > IMi() = jioll? (7)

x=1 i=1
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where J;(x) and j;(x) are the value of pixel x in the i-th color channel in the output
dehazed image and the ground truth respectively, and N is the total number of pixels.

4 Experimental Results and Analysis

4.1 Implement Details
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Fig. 6. Training loss curves of different methods

As shown in Fig. 2, the proposed network contains five hierarchical convolutional
layers and five hierarchical deconvolutional layers. According to [13] 18 residual blocks
are also used in our bottleneck recovery module (Gges). In the first convolutional layer of
the encoder module, the filter size is setto 11 x 11 pixels, and in all other convolutional
and deconvolutional layers, the filter size is 3 x 3. We jointly train the MFFDN and CM
modules and use mean squared error (MSE) as the loss function to constrain the network
output and ground truth. The entire training process consists of 40 epochs optimized
by the ADAM solver [26] with B1 = 0.9, 2 = 0.999, and a batch size of 10. The
initial learning rate is set to 0.0001, and the decay rate is 0.5 after every 10 epochs.
All experiments are performed on NVIDIA GeForce RTX 3070 GPU. The training loss
curves are shown in Fig. 6. It can be found that our model has better performance in
terms of loss convergence.
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4.2 Dataset

To learn a general dehazing model for indoor and outdoor scenes, we select 9000 outdoor
hazy/clean image pairs and 7000 indoor hazy/clean image pairs as training from the
resident training dataset [18] by removing redundant images in the same scene set. To
further expand the training data, we randomly flip the images horizontally or vertically.
To evaluate the effectiveness, we use the synthetic objective test set (SOTS) dataset,
which contains 500 indoor and 500 outdoor images. For comparison, all methods are
trained on selected resident training datasets and evaluated on SOTS.

4.3 Evaluation Results

Quantitative Results

We compare our method with single-image dehazing methods based on handcrafted fea-
tures (DCP [3]) and deep convolutional neural networks (AOD [6], GFN [14], GCANet
[8], GDN [12], DA [27], DMT [28]and PFFNet [13]). We use prevalent PSNR and SSIM
metrics to evaluate the quality of each restored image. Higher PSNR and SSIM values
indicate a better image dehazing effect. Since most existing deep model-based methods
are trained on various datasets, for fair comparison, we retrained GFN [14], GDN [12],
DA [27], DMT [28], GCANet [8] and PFFNet [13] model on the same training dataset.
The quantitative results on the outdoor sets and the indoor sets of the SOTS database are
listed in Table 1 and Table 2, respectively.

In these two tables, the metrics indicating the best performance are marked in bold.
Table 1 lists the average PSNR and SSIM values of the image dehazing results obtained
by applying each method to all the outdoor hazy images from the SOTS dataset. Table
2 lists the average PSNR and SSIM values obtained by applying each method to all the
indoor hazy images from SOTS.

From Table 1, the proposed MFFDN-CM obtains the best outdoor image dehazing
effect with the highest PSNR value of 34.30 and the highest SSIM value of 0.984. Both
the PSRN and SSIM values obtained by the MFFDN-CM are higher than those obtained
by other eight methods. For the eight reference methods, DMT obtains the second-
highest PSNR and GDN gets the second-highest SSIM index. DCP and AOD obtain the
lower PSNR and SSIM values indicating the worst image dehazing effect. Meanwhile,
GFN, GCANet, DA and PFFNet obtain intermediate image dehazing results with middle
PSNR and SSIM values. Moreover, it can be seen in Table 2 that the MFFDN-CM also
obtains the highest PSNR and SSIM values (i.e., 32.98 and 0.980), indicating that it
offers the best image dehazing effect on the indoor hazy images. Both DCP and AOD
obtains the worst image dehazing effect with the lowest PSNR and SSIM. GDN obtains
the second highest PSNR value and the second-highest SSIM value. GCANet obtains the
third-highest PSNR value. DMT and PFFNet obtains an intermediate image dehazing
effect. In a word, the experimental results on the SOTS dataset validate that MFFDN-CM
obtains the best image dehazing effect among the state-of-the-art methods.
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Table 1. Quantitative evaluations on the outdoor sets of the SOTS dataset

Methods | DCP | AOD |GFN | GCANet | PFFNet | GDN | DA DMT | Ours
PSNR 17.54 119.74 |25.02 |26.20 31.11 30.86 |28.48 [31.22 |34.30
SSIM 0.848 | 0.874 | 0916 | 0916 0968 | 0982 | 0942 | 0971 | 0.984

Table 2. Quantitative evaluations on the indoor sets of the SOTS dataset

Methods | DCP | AOD |GFN | GCANet | PFFNet | GDN |DA DMT | Ours

PSNR 19.96 |17.86 |23.20 |30.06 27.32  |32.16 |26.68 |28.92 |32.98
SSIM 0.870 | 0.794 | 0.882 | 0916 0940 | 0978 | 0.922 | 0.951  0.980

Qualitative Results

To further qualitatively compare the image dehazing effect of different methods, Fig. 7
exhibit visual image dehazing results on several representative synthetic indoor hazy
images, synthetic outdoor hazy images. In detail, Fig. 7 show image dehazing results
of applying eight methods (i.e., DCP [3], AOD [6], GFN [14], GCANet [8], PFFNet
[13], DA [27], DMT [28], and MFFDN-CM) to four synthetic hazy images from the
indoor subset and the outdoor subset of SOTS, respectively. In Fig. 7, GT is the ground
truth image and Hazy is the hazing image. To be convenient to compare and analysis,
the places with significant differences after dehazing by different methods are framed in
red. It can be seen from Fig. 7 that the indoor image dehazing results obtained by GFN
and AOD have obvious residual haze. Meanwhile, the indoor image dehazing results
obtained by DCP has obvious color distortion. The indoor image dehazing results about
the second line of Fig. 7 (f—j) obtained by DA retain fewer residual haze than GFN
and AOD. More importantly, the image dehazing results of indoor obtained by GFN,
PFFNet, DA and AOD have various degrees of color distortion. The proposed MFFDN-
CM achieves the best indoor image dehazing performance, since our dehazing images
are more similar to the ground truths (i.e., haze-free images). As a result, qualitatively
demonstrated from the visual aspect, our proposed method significantly improves the
indoor dehazing performance compared to the baseline PFFNet. On the other hand, we
can draw the consent conclusion from the image dehazing results on the two outdoor hazy
images shown in Fig. 7. The first five methods fail to completely remove image haze,
especially DCP and AOD. Besides, GCANet removes haze, but generates an unnatural
image background such as the sky in Fig. 7(g). Additionally, the approach based on
DMT performs well to some extent, while the brightness distortion occurs in the sky
area of the dehazed images. In short, MFFDN-CM obtains the image dehazing results
closest to the ground truths, thus showing the super dehazing efficacy.
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Fig. 7. Qualitative comparisons with state-of-the-art methods on SOTS
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4.4 Ablation Study

In order to figure out the contributions of different components to the dehazing perfor-
mance, we conduct ablation studies by training several variants of the proposed network
on the RESIDE dataset. These variants include baseline PFFNet, PFFNet with CMres
module (Modle-1), PFFNet with PA module (Model-2), PFFNet with RDB module
(Model-3), and our proposed network MFFDN-CM (Modle-4). The ablation results are
reported in Table 3. According to the dehazing performance on the SOTS indoor dataset
from Table 3, MFFDN-CM outperforms other methods, confirming the importance of
the roles played by the CMres module, RDB module and PA module respectively. More-
over, the CMres component contributes to the better improvement in comparison with
the other components.

Table 3. Ablation results on different components in the proposed network. All the models are
trained on the RESIDE dataset with the same hyper-parameters

Modules Baseline Modle-1 Modle-2 Modle-3 Modle-4
CMres N N
PA \ \
RDB \ \
PSNR 27.32 31.56 28.12 30.36 32.98
SSIM 0.940 0.971 0.965 0.967 0.980

5 Conclusions

In this paper, we propose a U-Net like multi-scale deep neural network for single image
dehazing, which aggregates continuous memory residual blocks and residual dense mod-
ules and pixel attention modules. MFFDN-CM uses a pixel attention module at the skip
connection, by combining the residual dense block module of the corresponding decod-
ing layers, it helps to extract detail information fully and accomplish adaptive dehazing
according to the haze density. Our encoder-decoder network enhances the features for
dehazing and refines the dehazing results using a new continuous memory mechanism
in the encoder and the decoder. This design not only enables spatial consistency but also
reduces information dilution by feature reuse. Extensive ablation studies have verified
the effectiveness of the incorporated components in our dehazing network. Experiment
results on synthetic images also indicate that our method outperforms state-of-the-art
methods quantitatively and qualitatively. Since it is difficult to obtain hazy/clean image
pairs in the real world, unsupervised/self-supervised learning methods may be more
suitable for image dehazing, and we will focus on this topic in the future.
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