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Abstract. Using fuzzy systems to deal with high-dimensional data is still a chal-
lenging work, even though our recently proposed adaptive Takagi-Sugeno-Kang
(AdaTSK) model equipped with Ada-softmin can be effectively employed to
solve high-dimensional classification problems. Facing high-dimensional data,
AdaTSK is prone to overfitting phenomenon, which results in poor performance.
While ensemble learning is an effective technique to help the base learners to
improve the final performance and avoid overfitting. Therefore, in this paper, we
propose an ensemble fuzzy classifier integrating an improved bagging strategy
and AdaTSK model to handle high-dimensional classification problems, which is
named as Bagging-AdaTSK. At first, an improved bagging strategy is introduced
and the original dataset is split into multiple subsets containing fewer samples and
features. These subsets are overlapped with each other and can cover all the sam-
ples and features to guarantee the satisfactory accuracy. Then, on each subset, an
AdaTSKmodel is trained as a base learner. Finally, these trained AdaTSKmodels
are aggregated together to conduct the task, which results in so-called Bagging-
AdaTSK. The experimental results on high-dimensional datasets demonstrate that
Bagging-AdaTSK has competitive performance.

Keywords: Ensemble learning · Ada-softmin · Adaptive Takagi-Sugeno-Kang
(AdaTSK) · Classification · High-dimensional datasets

1 Introduction

1.1 A Subsection Sample

Fuzzy system is an effective technique to address nonlinear problems, which has been
successfully employed in the areas of classification, regression, and function approxi-
mation problems [3–5]. Takagi-Sugeno-Kang (TSK) fuzzy classifier with interpretable
rules has attracted many research interests of the scholars and obtained its significant
success [13, 21, 22].

In the fuzzy system, the triangular norm (T-norm) is used to compute the firing
strengths of the fuzzy rules,where the product andminimumare twopopularly-employed
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ones [9]. When solving high-dimensional problems, the former most likely causes
numeric underflow problem that the result is too close to 0 to be represented by the
computer [20]. While the latter is not differentiable, which brings big difficulties to the
optimization process. Therefore, using fuzzy systems to solve high-dimensional prob-
lems is still a challenging task [15]. Although many of approaches of dimensionality
reduction are used and introduced in the design of fuzzy systems [8, 18], this can not
tackle the challenge fundamentally.

The approximator of the minimum T-norm, called softmin, is often used to replace
it in fuzzy systems since softmin is differentiable [2, 6, 11]. Based on softmin, we
proposed an adaptive softmin (Ada-softmin) operator to compute the firing strengths in
[20]. Then, the Ada-softmin based TSK (AdaTSK) model was developed, which can
be effectively used on high-dimensional datasets without any dimensionality reduction
method. Nonetheless, it is prone to overfitting phenomenon when dealing with high-
dimensional problems.

Ensemble learning is an effective technique to avoid overfitting phenomenon, which
combines some base learners together to perform the given task [23]. It is known to all
that the ensemble model outperforms single base learner even though the base learners
are weak [12]. Bagging is a representative ensemble method which has been widely
used in many real-world tasks [7, 16, 19], in which the base learners are built on boot-
strap replicas of the training set. Specifically, a given number of samples are randomly
drawn, with replacement, from the original sample set, which are repeated several times
to obtain some training subsets. A classifier is trained as a base learner on each training
subset. These trained base learners are integrated together using combination method to
classify the new points. Obviously, it is possible for some original samples that they are
not selected for any subset, which means some information is not used in the classifica-
tion task. On the other hand, ensemble diversity, that is, the difference among the base
learners, is one of the fundamental points of the ensemble learning [1, 14]. However,
different bootstrap replicas generated by the aforementioned method may have the same
sample, which limits the diversity among the base learners.

In order to enhance the performance of AdaTSK model on dealing with the clas-
sification problems, we propose an improved bagging strategy and develop Bagging-
AdaTSK classifier by integrating the proposed bagging strategy on AdaTSK. The main
contributions are summarized as follows:

– Based on both sample and feature split, an improved bagging strategy is introduced.
The subsets partitioned by this improved bagging strategy are capable of covering all
the samples and features. On the other hand, each subset contains different samples,
which guarantees that the diversity of the base learners is satisfactory.

– We adopt the improved bagging strategy on our recently proposed AdaTSK model
and develop an ensemble classifier, Bagging-AdaTSK, which is able to effectively
solve high-dimensional datasets. Comparing the original AdaTSK, Bagging-AdaTSK
achieves definite improvement on the accuracy.

– The proposedBagging-AdaTSKmodel demonstrates superior performance on 7 high-
dimensional datasets with feature dimensions varying from 1024 to 7129.
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The remainder of this paper is structured as follows. The AdaTSK classifier is
reviewed in the first subsection of Sect. 2. Subsections 2.2 and 2.3 introduce the improved
bagging strategy and the proposed Bagging-AdaTSK classifier, respectively. Subsec-
tion 2.4 analyses the computational complexity of Bagging-AdaTSK. The performance
comparison and sensitivity analysis are described in Sect. 3. The Sect. 4 concludes this
study.

2 Methodology

In this section, we first review AdaTSKmodel for classification problems. Secondly, the
improved bagging strategy is elaborated. At last, the proposed Bagging-AdaTSK model
is introduced.

2.1 AdaTSK Classifier

Consider a classification problem involving D features and C classes. Let a specific
sample or data point be represented by x = (x1, x2, · · · , xD) ∈ R

D. The number of
fuzzy sets defined each feature is denoted by S. In this investigation, we adopt so called
compactly combined fuzzy rule base (CoCo-FRB) [20] to construct the fuzzy system. As
a result, the number of rules, R, is equal to S. In general, the r th (r = 1, 2, · · · ,R) fuzzy
rule of the first-order TSK model with C-dimensional output is described as below:

Ruler : IF x1 isAr,1 and · · · and xD isAr,D,

THEN y1r (x) = p1r,0 + ∑D
d=1 p

1
r,d xd , · · · ,

yCr (x) = pCr,0 + ∑D
d=1 p

C
r,d xd ,

(1)

where Ar,d (d = 1, 2, · · · ,D) is the fuzzy set associated with the d th feature used in
the rth rule, ycr (x)(c = 1, 2, · · · ,C) means the output of the rth rule for the cth class
computed from x and pcr,d represents the consequent parameter of the rth rule associated
with the d th feature for the cth class. As R = S, Ar,d is also the rth (r = 1, 2, · · · , S)

fuzzy set defined on the d th feature.
Here, the fuzzy set Ar,d is modeled by the simplified Gaussian membership function

(MF) [5, 20],

μr,d (x) = e−(xd−mr,d )
2
, (2)

where μr,d (x) is the membership value of x computed on Ar,d , xd is the d th (d =
1, 2, · · · ,D) component of x and mr,d represents the center of the rth MF defined on
the d th input variable. Note that the function only uses the d th component of x, even
though the argument of μr,d is shown as x.

In AdaTSK, the firing strength of the rth rule, fr(x), is computed by Ada-softmin,
which is defined as

fr(x) =
⎛

⎝
μ
q
∧

r,1(x) + μ
q
∧

r,2(x) + · · · + μ
q
∧

r,D(x)

D

⎞

⎠

1

q
∧

, (3)
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where

q̂ =
⌈

690

ln
(
min

{
μr,1(x), μr,2(x), · · · , μr,D(x)

})

⌉

, (4)

and �·� is the ceiling function. Note that q∧ is adaptively changed according to the current
membership values. Since (3) satisfies the following formula:

lim
q̂→−∞

⎛

⎝
μ
q̂
r,1(x) + μ

q̂
r,2(x) + · · · + μ

q̂
r,D(x)

D

⎞

⎠

1
q̂

= mind
{
μr,d

}
, (5)

Ada-softmin is an approximator of the minimum operator, in which (4) is used to
acquire a proper value of q

∧

to help (3) to get the minimum of a group of membership val-
ues. Following [20], the lower bound of q

∧

is set to −1000 in the simulation experiments.
If the q

∧

calculated by (4) is less than −1000, we let q
∧

be −1000.
The cth (c = 1, 2, · · · ,C) component of the system output on x is

yc(x) =
∑R

r=1
f r(x)y

c
r (x), (6)

where

f r(x) = fr(x)
∑R

i=1fi(x)
, (7)

and

ycr (x) = pcr,0 +
∑D

d=1
pcr,d xd , (8)

Fig. 1. The neural network structure of the first-order TSK fuzzy system.
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f r(x) is the normalized firing strength of the rth rule on x. As described in (1), ycr (x)
is the output of the rth rule associated with the cth class computed from x.

The neural network structure of the AdaTSK model is shown in Fig. 1. The first
layer is the input layer of features. The second layer is the fuzzification layer of which
the output is computed by (2) for each node. The third layer is the rule layer, in which D
membership values are used together to compute a firing strength by Ada-softmin. The
firing strengths are normalized though (7) in the fourth layer. The lower part with two
fully connected layers represents the consequent parts behind “THEN” described in (1).
Defuzzification process is realized by the last two layers, which is shown in (6).

2.2 The Improved Bagging Strategy

When solving high-dimensional datasets, AdaTSK tends to fall into overfitting dilemma,
which reduces the performance. In order to alleviate this issue, we construct an ensemble
classifier based on AdaTSK in the framework of an improved bagging strategy. In this
section, we introduce this strategy in detail.

As an effective technique in ensemble learning, bagging randomly draws samples,
with replacement, from the original training set to obtain several subsets. Here, we
randomly split the samples and features into a group of subsets. Moreover, for each
subset, part of samples and features are randomly selected from the remaining subsets
to pour into this subset. Consequently, these subsets are overlapped with each other.

Suppose thatN data points along with their target labels are contained in the training
set, which are represented as

U = {(x1, z1), (x2, z2), · · · , (xN , zN )}, (9)

where xn and zn(n = 1, 2, · · · ,N ) are the nth sample and its target label, respectively.
Note that xn is a D-dimensional feature vector. The original training set is divided into
K subsets by the following two steps.

1. The original N training sample with D features are randomly split into K equal
subsets (to the extent possible), i.e., {U1,U2, · · · ,UK }. The kth (k = 1, 2, · · · ,K)

subset, Uk , contains Nk samples with Dk features, where Nk < N and Dk < D.
2. For each Uk , we randomly select a proportion of samples and features from the

remaining subsets, {U1, · · · ,Uk−1,Uk+1, · · · ,UK }, and integrate them into Uk .
Hence, both the number of samples, Nk , and the number of features, Dk , of Uk are
increased.

By doing this, K subsets that overlap each other are obtained. Although the same
original sample is selected by two different subsets, they are not exactly the same as
each subset contains a different set of features. Therefore, the ensemble diversity is
guaranteed.

For example, assume that 10 samples or features are going to be split into 3 folds, of
which the index set is {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Firstly, this index set is randomly
divided into 3 equal subsets to the extent possible, like, {1, 5, 8, 9}, {6, 7, 10} and
{2, 3, 4}. For each subset, such as {1, 5, 8, 9}, 50% elements of the remaining two sub-
sets are randomly selected and incorporated into it. Then, {1, 5, 8, 9} is extended to
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{1, 2, 5, 8, 9, 10}. After random selection, the final three subsets are {1, 2, 5, 8, 9, 10},
{3, 4, 5, 6, 7, 9, 10} and {1, 2, 3, 4, 6, 7, 9}. The index set mentioned in this example is
applicable for sample indices as well as feature indices. Where 50% is explained as the
overlap rate. Using the split strategy, a high-dimensional dataset is divided into sev-
eral low-dimensional subsets. In this investigation, two different overlap rates are set
for samples and features, which are denoted by ρ1 and ρ2, respectively. Assume that ρ
is a overlap rate of the samples or features, the proportion of the samples or features
contained in a subset to the whole training set is

γ = 1

K
+ K − 1

K
ρ = ρ + 1 − ρ

K
(10)

It is obvious that the number of samples or features contained in a subset decreases
as K increases. A smaller K means the number of samples or features divided into a
subset is more. Both the overlap rates are between 0 and 1, to which the sensitivities are
analysed in Sect. 2.

2.3 Bagging-AdaTSK Classifier

In the framework of the improved bagging strategy, K AdaTSK models are indepen-
dently trained as the base learners. After training, these AdaTSK models are aggregated
to predict the target labels. This ensemble classifier is named Bagging-AdaTSK. Several
combination methods are popularly used, such as voting and averaging [23]. Compara-
tively speaking, the final results given by the voting arewithmore logical interpretability,
while the averaging usually achieves better accuracy. Here, the averaging method is used
for Bagging-AdaTSK.

Fig. 2. The framework of Bagging-AdaTSK model.
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Suppose that the predicted output of the kth AdaTSK on the given sample, x, is
ϕk(x). The system output of Bagging-AdaTSK is.

Φ(x) = 1

K

∑K

k=1
ϕk(x), (11)

where both Φ(x) and ϕ(x) are C-dimensional vector. The framework of the Bagging-
AdaTSK is shown in Fig. 2.

Two methods are used to optimize the base learners of the proposed Bagging-
AdaTSK. i.e., the gradient descent (GD) algorithm and least square error (LSE)
estimation. The loss function of an AdaTSK is defined as

L = 1

2Nk

∑Nk

n=1

∑C

c=1

(
yc(xn) − yc(xn)

)2
, (12)

where Nk is the number of training samples in terms of the kth base learner, yc(xn)
and yc(xn) respectively correspond to the cth component of the system output and
the true label vector (transformed by one-hot encoding) for the nth input instance,
xn(n = 1, 2, · · · ,Nk). The gradients of the loss function with respect to the centers
and consequent parameters are

∂L
∂mr,d

= 1
N

∑N
n=1

[
2f r(xn)

(
xn,d − mr,d

)

×∑C
c=1

[
(yc(xn) − yc(xn))

(
ycr (xn) − yc(xn)

)]]
,

(13)

and

∂L

∂pcr,d
= 1

N

∑N

n=1

[(
yc(xn) − yc(xn)

)
f r(xn)xn,d

]
, (14)

respectively, where xn,d is the d th component of the sample xn. We use the following
formula to update them in the tth iteration,

ω(t+1) = ω(t) − η
∂L

∂ω(t)
, (15)

where ω indicates the general parameters of the centers and consequent parts, η > 0 is
the learning rate.

In addition, LSE estimation method is also used to optimize the consequent parame-
ters with fixed antecedents. The elaborate procedure for the LSE estimation is provided
in [10]. Hence, we do not provide the formulas for LSE method here.

2.4 The Computation Complexity of Bagging-AdaTSK Classifier

Here we analyse the increment of the computation complexity of Bagging-AdaTSK
comparing with AdaTSK. For an AdaTSK classifier, the computational cost in terms
of one instance is O(3DR + (2D + 5)R + 2R + 2DCR + (2R − 1)C), i.e., O(DCR), in
the forward propagation. Similarly, we can compute the computational complexity for



Bagging-AdaTSK: An Ensemble Fuzzy Classifier 39

the back-propagation, which is also O(DCR) for each instance. As a consequence, the
overall complexity of the AdaTSK is O(DCR).

In the Bagging-AdaTSK, the input dimension of each base learner is
denoted by Dk(k = 1, 2, · · · ,K) which is smaller than D as the feature space

is split. The computation complexity of Bagging-AdaTSK is O
(∑K

k=1 DkCR
)
,

where Dk = D(ρ2 + (1 − ρ2)/K). Hence, O
(∑K

k=1 DkCR
)

can be rewritten as

O((1 + (K − 1)ρ2)DCR). Note that ρ2 is between 0 and 1 and we set it to a very small
value, say 0.01 and 0.001, in the high-dimensional tasks. On the other hand, K is the
number of base learners defined by the user, of which the value is not big. Therefore,
it can be concluded that the computation complexity increment of Bagging-AdaTSK is
not large comparing with the original AdaTSK.

Table 1. Summary of the 7 classification datasets.

Datasets #Features #Classes Dataset size

ORL 1024 40 400

Colon 2000 2 62

SRBCT 2308 4 83

ARP 2400 10 130

PIE 2420 10 210

Leukemia 7129 2 72

CNS 7129 5 42

3 Simulation Results

To demonstrate the effectiveness of Bagging-AdaTSK, it is tested on 7 datasets with
feature dimensions varying from 1024 to 7129, which are regarded as high-dimensional
datasets according to [20]. Table 1 summarizes the information of these datasets, which
includes the number of features (#Features), the number of classes (#Classes) and, the
size of dataset.

3.1 The Classification Performance of Bagging-AdaTSK

In our experiments, three fuzzy sets are definedon each feature for all these 7 datasets, i.e.,
R = S = 3. The centers of the membership functions are evenly placed on the interval[
xmin, xmax

]
for each feature, where xmin and xmax are the minimum and maximum value

of a feature on the input domain. Specifically, the centers are initialized by

mr,d = xmind +
(
xmaxd − xmind

) r − 1

R − 1
, (16)
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Table 2. The classification results of RF, SVM, BLS, AdaTSK, and three Bagging-AdaTSK
models with different optimization strategies.

Datasets RF SVM BLS AdaTSK Bagging-AdaTSK

GD, p LSE, p GD, m + p

ORL (1024) 0.9120 0.9440 0.9555 0.9300 0.8768 0.9133 0.8975

Colon (2000) 0.7938 0.7819 0.7062 0.6000 0.7652 0.8155 0.7726

SRBCT (2308) 0.9629 0.9261 0.9703 0.8747 0.9760 0.9772 0.9744

ARP (2400) 0.8608 0.9892 0.9615 0.9754 0.9131 0.9577 0.9469

PIE (2420) 0.9824 0.9886 0.9905 0.9800 0.9914 1.0000 0.9971

Leukemia (7129) 0.9339 0.8546 0.9189 0.8000 0.9384 0.9443 0.9418

CNS (7129) 0.6360 0.7980 0.7730 0.6060 0.8135 0.8125 0.8030

where r = 1, 2, · · · ,R, d = 1, 2, · · · ,D, xmind and xmaxd represent the minimum and
maximum value of the d th feature on the input domain. Since three fuzzy sets are
defined on each feature, the values of the centers initialized for the d th feature is{

xmind ,
xmind +xmaxd

2 , xmaxd

}

. All consequent parameters are initialized to zero.

We build 10 base learners in Bagging-AdaTSK, i.e., K = 10. In other words, 10
AdaTSKclassifiers are trained in the framework of the improved bagging strategy.On the
other hand, two overlap rates, ρ1 and ρ2, need to be set in Bagging-AdaTSK. According
to (10), if bigger ρ is used, the proportion of the samples or features contained in a subset
to thewhole training set is bigger.Wewish that each subset has enough, but not toomany,
samples or features to help AdaTSK classifier to achieve satisfactory performance. For
the datasets listed in Table 1, their sample sizes are small and the feature dimensions of
them are high. Therefore, ρ1 and ρ2 are artificially set to 0.5 and 0.01, respectively. The
sensitivity of Bagging-AdaTSK to the overlap rates is analysed in the next subsection.
Ten-fold cross-validation mechanism [3, 17] is employed in the simulations, which is
repeated 10 times to report the average classification performance of Bagging-AdaTSK.

The classification results of Bagging-AdaTSK are compared with those of four algo-
rithms, i.e., Random Forest (RF), Support Vector Machine (SVM), Broad Learning Sys-
tem (BLS) andAdaTSK, on the 7 high-dimensional datasets listed inTable 1. Three fuzzy
sets or rules are used in AdaTSKmodel and each base leaner of Bagging-AdaTSK. Since
10 base learners are contained in Bagging-AdaTSK, which means total 30 rules are used
in Bagging-AdaTSK. Correspondingly, 30 trees are adopted for RF. The comparison
results are reported in Table 2, where the best results are marked in bold.

Using different optimization strategies for Bagging-AdaTSK, three groups of results
are obtained. In Table 2, the results listed in the first two columns of Bagging-AdaTSK
are acquired by only optimizing the consequent parameters, for which GD and LSE
method are used, respectively. As for the third column under Bagging-AdaTSK in Table
2, both the centers and consequent parameters are updated by GD method.
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From Table 2, it is easy to conclude that Bagging-AdaTSK outperforms both RF
and AdaTSK classifier no matter which aforementioned optimization strategy is used.
Therefore, the proposed bagging strategy is effective andhelpsAdaTSKmodel to achieve
better results. Among three groups of results in terms of Bagging-AdaTSK, the second
one is the best. In other words, fixing the antecedents and using LSE to estimate the
consequent parameters is the best optimization strategy for Bagging-AdaTSK when
solving high-dimensional data. Comparing the first group of result with the third group
of result of Bagging-AdaTSK, the conclusion that optimizing the centers improves the
classification performance is drawn. However, optimizing the antecedents increases the
computational burden. How to efficiently optimize the antecedents needs to be further
studied.

Fig. 3. The sensitivity of Bagging-AdaTSK to the overlap rates.

3.2 Sensitivity of Bagging-AdaTSK to the Overlap Rates

Since the sample and feature overlap rates, i.e., ρ1 and ρ2, are the specific parameters
to Bagging-AdaTSK, we investigate the sensitivity of the model to them in this section.
As described in Subsect. 3.1, the second optimization strategy of Bagging-AdaTSK is
the best. Therefore, the analysis of the sensitivity to these two overlap rates is based on
LSE method.

Both sample and feature overlap rates are set to the values of

{0, 0.05, 0.1, 0.15, · · · , 0.95}.
When we observe the sensitivity to the sample overlap rate, the feature overlap rate

is set to 0.01. On the other hand, ρ1 is set to 0.5 when the sensitivity to the sample
overlap rate is investigated. The average classification testing accuracies on 10 repeated
experiments are shown in Fig. 3, where Fig. 3 (a) and Fig. 3 (b) correspond to the sample
overlap rate and feature overlap rate, respectively.
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As shown in Fig. 3 (a), Bagging-AdaTSK is not sensitive to the sample overlap rate
whenρ1 is greater than 0.3.While in the interval, the classification performance increases
appreciably, especially on ORL, ARP and PIE datasets. An interesting observation is
that each dataset among these three ones contains more classes than the others of four
datasets listed in Table 1. Perhaps, when we conduct the classification task involving
more classes, more samples are needed, which deserves further study. Additionally, if
the sample overlap rate is set to 0, the classification accuracies are not very satisfactory
on most of the datasets. This means that it is necessary to let the subsets overlap each
other so that each subset contains more samples.

From Fig. 3 (b), it can be seen that the classification performance of Bagging-
AdaTSK does not vary greatly with ρ2. Hence, Bagging-AdaTSK is not sensitive to the
feature overlap rate. Moreover, on the ORL and ARP datasets, the accuracy is lower
with ρ = 0 than with other values, which denotes that the feature overlap rate is helpful.
Since the datasets used here are with thousands of features, a small value of ρ2, say 0.01
and 0.05, is recommended in order to reduce the computational burden.

4 Conclusion

Focusing on improving the classification performance of AdaTSK model, we propose
an ensemble classifier called Bagging-AdaTSK. Firstly, an improved bagging strategy is
introduced, in which the original dataset is split into a given number of subsets from the
view of the samples and features. These subsets contain different samples and features
which are overlapped with each other. Then, an AdaTSK classifier is trained on each
subset. After training, theseAdaTSKclassifiers are combined by the averagingmethod to
obtain the final predicted labels. Bagging-AdaTSK classifier is suitable for solving high-
dimensional datasets as they can be divided into several of low-dimensional datasets to
be handled. In our experiments, Bagging-AdaTSK are tested on 7 datasets with feature
dimensions varying from 1024 to 7129. The simulation results demonstrate that our
proposed Bagging-AdaTSK is very effective and outperforms its four counterparts, RF,
SVM, BLS and AdaTSK classifier. In addition, we analyse the sensitivity of Bagging-
AdaTSK to the sample and feature overlap rates. The investigation results claim that the
proposed model is not sensitive to the them. How to adaptively determine the optimal
values of the two overlap rates depending on different problems is going to be further
studied in the future work. Besides, we plan to develop more efficient algorithm to
optimize the antecedent parameters to improve the performance of Bagging-AdaTSK.
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