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Abstract. In pattern classification, the geometric method often provides a simple
and intuitive solution. In the case of linear separability, solving the optimization
hyperplane problem can be transformed into solving the nearest point problem of
the convex hulls between classes. In the case of nonlinear separability, the notion
of scaled convex hull (SCH) is employed to reduce the initially overlapping convex
hulls to become separable. Two classic nearest point algorithms, GSK and MDM,
have been used as effective solvers for SCHs. However, their problem-solving
speed is still a bit underperforming. This paper proposes a new solver called SCH-
CDM, in which the CDM (cross distance minimization) algorithm is employed
to calculate the nearest point pair of between-class SCHs. Experimental results
indicate that the SCH-CDM algorithm can achieve faster convergence than the
SCH-GSK algorithm and the SCH-MDM algorithm. In terms of accuracy, it also
shows good competitiveness compared to the baseline methods.

Keywords: Pattern classification · Support vector machine · Geometric method ·
Cross distance minimization

1 Introduction

Geometric methods are proven effective in solving a pattern classification problem if the
problem is itself a geometric problem or can be transformed into a geometric problem
[1, 2]. The obtained solution is usually simple and intuitive. A typical paradigm is that
the convex hull of the training point set is often used to learn a classifier [3, 4]. The well-
known support vector machine (SVM) also follows this paradigm [5]. The geometric
interpretation of SVM in the feature space is a consequence of the dual representation,
i.e., the convexity of each class and finding the respective support hyperplanes that
provide the maximal margin [6, 7].

In the case of linear separability, solving the optimization hyperplane problem can
be transformed into the nearest point problem of finding the convex hull between classes
[8]. Three nearest point algorithms, including Gilbert-Schlesinger-Kozinec (GSK) [9],
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Mitchell-Demyanov-Malozemov (MDM) [10], and cross distance minimization (CDM)
[11] have been developed and have shown good potential in different aspects.

In the case of nonlinear separability, if we start from a purely geometrical point
of view, then a proper convex hull transformation is required. Mavroforakis et al. [12,
13] investigated the geometric properties of reduced convex hull (RCH) and devised a
mathematical framework to support RCH. Under the framework, the GSK algorithm is
rewritten in order to show the practical benefits of the theoretical results that are derived
herewith. In [14], a variant of the GSK algorithm that simultaneously updates pairs of
points has been introduced to reduce the kernel operations. Moreover, López et al. [15]
proposed an alternative clipped extension of the classical MDM algorithm that results
in a simple algorithm with a good generalization ability.

Following the RCH scheme, scaled convex hull (SCH) was presented for improving
the performance of the geometry-class SVM [16]. The main idea is to scale down the
initial convex hulls by means of a parameter λ in such a way that the shape of the original
hull is preserved. Besides, vertices in SCH are easier to calculate compared to RCH,
leading to the easier application of nearest point algorithm to train the non-separable
classifiers because the pair of nearest points depends directly on these vertices.

Under the framework of SCH, the GSK algorithm and the MDM algorithm have
been used as solvers for the nearest point problem [17, 18]. Inspired by the above
practice, we generalize the CDM algorithm into the framework of SCH in this paper.
In our previous publication [19], we have discussed the GSK algorithm and the MDM
algorithm. Although the MDM algorithm starts from a geometrical point of view, it
involves many optimization processes, making the solving process a bit slow. While the
GSK algorithm is geometrically intuitive, and it is significantly different from CDM, as
shown in Fig. 1.
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Fig. 1. Different updates of the GSK algorithm and the CDM algorithm.

In each iteration, the GSK algorithm updates only one point, either x* or y*, whereas
the CDMalgorithm updates both of them. In addition, theymay pick different data points
for updating the nearest pair due to their different calculation ways. In Fig. 1, the GSK
algorithm chooses x3 to update x*, while the CDM algorithm chooses x2 to update x*.
This paper introduces the CDM algorithm into the framework of SCH, which aims to
speed up finding the nearest point pair between classes.
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The rest of the paper is organized as follows: In Sect. 2, we give a brief introduction to
the SCH notion. In Sect. 3, we present the SCH-CDM algorithm for solving the nearest
point problem. Also, the corresponding algorithm is described with detailed comments.
In Sect. 4, we evaluate the proposed SCH-CDM algorithm by comparative experiments.
In Sect. 5, we give the concluding remarks with a brief discussion.

2 Preliminary on SCH

Let Rn be the n-dimensional Euclidean space. For a finite point set S in Rn, its convex
hull can be denoted as follows:

CH (S) = {s|s =
∑

1≤i≤|S|
αisi,

∑

1≤i≤|S|
αi = 1, si ∈ S, αi ≥ 0, αi ∈ R} (1)

where |S| represents the cardinality of S. For two point sets X and Y in Rn, if they are
linearly separable, the task of an SVM is to find the maximal margin hyperplane:

f(x) = w∗x + b∗ (2)

where (w*, b*) is an optimal solution of the following quadratic model:

min
1

2
||w||2

s.t. w · xi + b ≥ 1, i ∈ |X |;w · yj + b ≤ −1, j ∈ |Y | (3)

It is well known that solving (3) is equivalent to solving a nearest point problem:

min ||x − y||s.t.x ∈ CH (X ), y ∈ CH (Y ) (4)

If X and Y are nonlinearly separable (i.e., CH(X) ∩ CH(Y ) �= Φ), it is not feasible to
directly compute the nearest point pair between their convex hulls because they are over-
lapping. In this case, the SCH notion is introduced to transform the nonlinear separable
problem into a separable one.

SCH (X , λ) = {x|x =
∑

1≤i≤|X | αi(λxi + (1−λ)m+),
∑

1≤i≤|X | αi = 1, xi ∈ X } (5)

SCH (Y , λ) = {y|y =
∑

1≤j≤|Y | βj(λyj + (1−λ)m−),
∑

1≤j≤|Y | βj = 1, yj ∈ Y } (6)

where m+ = ∑|X |
i=1 xi/|X | and m− = ∑|Y |

j=1 yj/|Y | are the mean values (also called
centroids) of all points of X and Y, respectively.

For any point x′
i ∈ SCH (X , λ), it is a linear combination of the point xi ∈ X and the

centroid m+. Figure 2 shows the geometric interpretation of SCH. xi is an original point
in X, and x′

i is a point on SCH(X, λ). Apparently, x′
i lies on the line connecting xi and the

centroid m+, i.e., x′
i = λxi + (1−λ)m+. Similarly, we can get y′

j = λyj + (1−λ)m−. λ
is a scaled reduction factor between 0 and 1. One advantage of SCH is that after scaled
reduction, SCH(X, λ) and X have the same number of vertices and these vertices are in
a one-to-one correspondence.
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Fig. 2. Geometric interpretation of SCH.

If X and Y are nonlinearly separable in the initial state, as λ gradually becomes
larger, SCH(X, λ) and SCH(Y, λ) will gradually reduce and eventually become linearly
separable. In [16], the author gives the criterion for judging separability. Assume that
r+ = maxi∈|X | ||xi −m+||, r− = maxj∈|Y | ||yj −m−||, and r = ||r+ + r−||, SCH(X, λ)
and SCH(X, λ) will be considered linearly separable when λr+ + λr− ≤ r. However,
this criterion is somewhat rigid, as shown in Fig. 3. In practice, we can give a moderate
value of λ.

r+
r
-

Fig. 3. Illustration on the moderate choice of λ.

3 The Proposed Method

The CDM algorithm was proposed to calculate a nearest point pair between two point
setsX and Y in the linearly separable case [11]. It chooses any two points x∗ ∈ X , y∗ ∈ Y
as the initial nearest point pair. Then, y* is fixed and a point x∗∗ ∈ CH (X ) nearest to y*

is found, i.e.,

x∗∗ = argmin
x

{||x − y∗||, x ∈ CH (X }) (7)

Next, x* is fixed and a point y∗∗ ∈ CH (Y ) nearest to x* is found, i.e.,

y∗∗ = argmin
y

{||x∗∗ − y||, y ∈ CH (Y }) (8)
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This process iterates until the stopping condition is satisfied:

||x∗ − y∗|| − ||x∗∗ − y∗∗|| < ε (9)

where ε is a pre-determined precision parameter for controlling the convergence. If the
nearest point pair (x**, y**) is found at a certain moment, the classification discriminant
function f (z) is constructed as follows:

f (z) = (x∗∗ − y∗∗)z + ||y∗∗||2 − ||x∗∗||2
2

(10)

The geometric interpretation of the CDM algorithm is shown in Fig. 4. When δ = 1,
x** = x1 is a point in X. When 0 < δ < 1, x** = x1 + λ(x2-x1) is actually the vertical
point from y* to the line segment connecting x1 and x2. This indicates if x* is not the
nearest point from y* to CH(X), there must exist another point x** such that dist(x**,
y*) < dist(x*, y*).

CH(X) CH(X)

CH(Y) CH(Y)

y* y*
x**=x1 x**=x1+λ(x2-x1)

(a) δ =1 (b) 0<δ<1

Fig. 4. The geometric interpretation of the CDM algorithm

In the nonlinearly separable case, the CDM algorithm will no longer work. As men-
tioned above, we can generalize it to the SCH framework for converting nonlinearly
separable problem into a linearly separable one. By introducing reduction factor λ, the
scaled point sets can be denoted as X ′ = {x′

i, i = 1, 2, …, |X|} and Y ′ = {y′
i, j = 1, 2, …,

|Y |}, where x′
i = λxi + (1− λ)m+ and y′

i = λyj + (1− λ)m−. We present the SCH-based
CDM algorithm (SCH-CDM for short) in Algorithm 1.
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Algorithm-1. SCH-CDM
Input: Two scaled sets X’ and Y’, precision parameter ε.
Step1: x**∈X, y**∈Y;
Step2: x*= x**, y*= y**;
Step3: x**=argmint{dist(t, y*)|t= x*+δ1(x2- x*)}, where x2≠x*, x2∈X, and δ1=

* * *
2

* *
2 2

( )( )
min{1, } 0

( )( )
x x y x
x x x x
− −

>
− −

Step4: y**=argmint{dist(x*, t)|t= y*+δ2(y2- y*)}, where y2≠y*, y2∈Y, and δ2=

* * *
2

* *
2 2

( )( )
min{1, } 0

( )( )
y y x y
y y y y

− −
>

− −

Step5: If dist(x*, y*)-dist(x**-y**)≥ε, goto Step2;
Step6: w**=x**-y**, b**=(||y**||2-||x**||2)/2;
Output: f(z)=w**z+b**.

It should be noted that the scaled reduction factor λ does not appear in Algorithm 1
because we take X ′ and Y ′ as inputs, which have an implicit scaling factor. The SCH-
CDM algorithm has a rough time complexity O(I(ε)(|X ′| + |Y ′|)), where I(ε) represents
the number of total iterations related to ε. Furthermore, if we want to use kernel function
in the SCH-CDM algorithm, then we can take the same strategy as in [19].

Table 1. Datasets used for experiments.

Datasets Key n d Source λ

Australian aus 690 14 Libsvm 0.9

Autistic Spectrum Disorder aut 104 21 UCI 0.95

Breast Cancer bre 683 10 Libsvm 0.7

Coronary Artery Disease cor 303 59 UCI 0.6

Fourclass fou 862 2 Libsvm 0.95

German.numer ger 1000 24 Libsvm 0.9

HCC Survival hcc 165 49 UCI 0.75

Immunotherapy imm 90 8 UCI 0.9

Ionosphere ion 351 34 Libsvm 0.85

Chronic Kidney kid 400 25 UCI 0.85

Mammographic Mass mam 961 6 UCI 0.85

Mushrooms mrs 8124 112 Libsvm 0.95

Musk (Version 1) mus 476 166 UCI 0.95

(continued)
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Table 1. (continued)

Datasets Key n d Source λ

Pima Indians Diabetes pim 768 8 UCI 0.65

Sonar son 208 60 Libsvm 0.8

4 Experiments

In this section, we evaluate the proposed SCH-CDMalgorithm by experiments on fifteen
benchmark datasets. These datasets are from UCI repository [20] and LIBSVM [21],
and their details are listed Table 1. n is the number of total points. d is the dimensionality
of a dataset. For convenience, we use a key to abbreviate a dataset.

We compare the SCH-CDM algorithm with the SCH-GSK algorithm and the SCH-
MDM algorithm, which are two other classical nearest point algorithms and are used
as baselines. We randomly split each dataset into two halves for 10 times, one half for
training, and the other for testing. The RBF kernel is employed for each algorithm.

K(x, y) = e||x−y||2/2σ 2
(11)

Two parameters, C and γ respectively from the candidate sets {2i |−4, −3, …, 3, 4}
and {2i |−7, −6, …, 4, 5}, are determined by 5-fold cross-validation on the training set.
The precision parameter ε is set to 0.0001. All experiments are conducted on a PC with
I7-8700 3.20 GHz CPU, 8 GB memory, and Windows 10 operating system.

Table 2. Accuracy comparison of SCH-CDM with SCH-GSK and SCH-MDM (%)

Datasets SCH-GSK SCH-MDM SCH-CDM

aus 87.14 ± 0.77 87.17 ± 0.75 86.79 ± 1.49

aut 91.70 ± 2.21 91.70 ± 2.21 92.83 ± 1.95

bre 96.43 ± 0.94 96.43 ± 0.94 96.58 ± 1.01

cor 99.28 ± 1.87 96.91 ± 7.47 99.28 ± 1.87

fou 99.63 ± 0.22 99.63 ± 0.22 99.61 ± 0.27

ger 75.14 ± 2.28 75.08 ± 1.92 74.54 ± 2.40

hcc 72.17 ± 4.59 71.69 ± 4.55 73.37 ± 4.83

imm 77.39 ± 4.83 77.61 ± 3.56 78.91 ± 4.81

ion 92.67 ± 2.68 92.44 ± 2.48 93.18 ± 1.54

kid 99.65 ± 0.67 99.65 ± 0.67 99.65 ± 0.67

mam 79.61 ± 1.69 79.52 ± 1.72 79.38 ± 1.71

mrs 99.99 ± 0.02 99.99 ± 0.02 99.89 ± 0.09

mus 89.21 ± 1.95 89.46 ± 2.22 89.41 ± 1.54

pim 75.39 ± 1.54 75.68 ± 1.44 75.16 ± 2.37

son 83.71 ± 3.25 83.71 ± 3.25 84.10 ± 2.62
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Table 2 shows the accuracy comparison of the SCH-CDM algorithm with the SCH-
GSK algorithm and the SCH-MDM algorithm. The SCH-CDM algorithm obtains the
highest accuracies on eight datasets (aut, bre, cor, hcc, imm, ion, kid, and son). In pairwise
comparisons, it has the similar win-loss ratios with the SCH-GSK algorithm (7:6) and
the SCH-MDM algorithm (7:7).

Table 3 provides the training time in seconds and the testing time inmilliseconds. The
SCH-CDMalgorithm has obvious advantages compared to the SCH-GSK algorithm and
the SCH-MDM algorithm. For example, on the mam dataset, it executes a training pro-
cess consuming 7.59 s, whereas the SCH-GSK algorithm and the SCH-MDM algorithm
take 2796.12 and 84.62 s, respectively. In terms of testing.

Table 3. Comparison on training time (seconds) and testing time (milliseconds)

Datasets SCH-GSK SCH-MDM SCH-CDM

aus 1328.28 (17.71) 27.92 (9.53) 6.74 (7.40)

aut 23.15 (8.32) 0.39 (0.89) 0.30 (0.12)

bre 921.68 (6.58) 8.17 (6.03) 3.42 (1.94)

cor 153.61 (2.79) 2.30 (1.14) 1.22 (0.15)

fou 2315.36 (24.17) 32.09 (4.77) 5.24 (1.01)

ger 2233.18 (23.99) 67.00 (20.95) 20.74 (10.10)

hcc 107.63 (6.48) 1.90 (2.41) 1.28 (0.70)

imm 21.82 (0.63) 0.33 (0.45) 0.17 (0.08)

ion 526.89 (6.35) 7.20 (3.79) 3.38 (0.89)

kid 404.25 (2.98) 5.03 (3.16) 3.06 (0.58)

mam 2796.12 (10.28) 84.62 (9.35) 7.59 (2.45)

mrs 2.84 × 104 (3705.91) 7389.71 (3649.70) 1271.85 (594.92)

mus 1251.68 (60.55) 47.84 (34.39) 24.23 (9.79)

pim 2113.51 (10.26) 27.19 (9.41) 5.89 (2.94)

son 213.23 (11.41) 3.72 (4.28) 2.04 (0.81)

Table 4. Comparison on the number of support vectors

Datasets SCH-GSK SCH-MDM SCH-CDM

aus 330 330 313

aut 39 39 36

bre 148 147 96

cor 30 27 23

fou 115 103 78

(continued)
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Table 4. (continued)

Datasets SCH-GSK SCH-MDM SCH-CDM

ger 404 404 297

hcc 69 69 61

imm 36 35 35

ion 92 92 65

kid 53 51 41

mam 318 313 154

mrs 3988 3994 746

mus 186 185 144

pim 245 242 154

son 74 73 62

time, it takes about 594 ms on the mrs dataset, which is far less than the 3705 ms
spent by the SCH-GSK algorithm and the 3649 ms spent by the SCH-MDM algorithm.
It should be noted that the training time includes the time to perform 5-fold cross-
validation for choosing optimization parameters. Less running time indicates faster
decision response, thus in some real-time systems, the SCH-MDM algorithm can be
considered for prioritization.

Table 4 summarizes the numbers of support vectors. On all 15 datasets, the SCH-
CDM algorithm obtains fewer support vectors than the SCH-GSK algorithm and the
SCH-MDM algorithm. On the bre dataset, the SCH-CDM algorithm obtains 96 support
vectors, whereas the SCH-GSK algorithm and the SCH-MDM algorithm obtains 148
and 147 support vectors, respectively. More remarkably, on the mrs dataset, SCH-CDM
obtains only 746 support vectors, which is far less than 3988 by the SCH-GSK algorithm
and 3994 by the SCH-MDM algorithm. In general, less support vectors indicates the
corresponding method has a simple decision model, which may be more effective in the
complicated task, meeting the criterion of Occam’s razor.

5 Conclusion

Following the notion of SCH, we proposed a geometric method called SCH-CDM to
solve the nearest point problem. By introducing a scaled reduction factor, it can trans-
form the nonlinearly separable case into a linearly separable one. It builds on the CDM
algorithm and has a pretty good iterative update strategy.

Experimental results on benchmark datasets show that the proposed SCH-CDM
algorithm achieves faster training and faster testing than the other two nearest point
algorithms, i.e., the SCH-GSK algorithm and the SCH-MDM algorithm. In terms of
support vectors, it obtains the least number among the three comparison methods. In
some real-time systems, it has the potential to be prioritized.
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However, there is one issue that deserves attention. For the scaled reduction factor, the
moderate setting of its value needs further study. Somework related to convex hull-based
classification may be used as references.
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