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Abstract. In the context of the era of big data, hybrid data are multimodality,
including numerical, images, audio, etc., and even attribute values may have
unknown values. Multikernel fuzzy rough sets can effectively solve large-scale
multimodality attributes. At the same time, the decision attribute values may have
hierarchical structure relationships, and the multikernel fuzzy rough sets based on
hierarchical classification can solve the hierarchical relationships among decision
attribute values. In real life, data often change dynamically. The article discusses
the updating method when one object changes in the multimodality incomplete
decision system based on hierarchical classification, and according to the variation
of the tree-based hierarchical class structure, the upper and lower approximations
are updated. Finally the deduction is carried out through relevant examples.

Keywords: Multikernel fuzzy rough sets · Hierarchical classification ·
Multimodality incomplete decision system · Variation of object set

1 Introduction

Fuzzy rough sets skillfully combined the rough sets that deal with classification uncer-
tainty and the fuzzy sets that deal with boundary uncertainty to handle various classes of
data types [1]. Subsequently, many scholars expanded and developed fuzzy rough sets
[2–7]. To deal with multimodality attributes, Hu proposed multikernel fuzzy rough sets
[8], different kernel functions used to process multimodality attributes.

Actually, there are semantic hierarchies among most data types [9]. Chen and others
constructed a decision tree amongclasseswith a tree-like structure [10]. Inspired by fuzzy
rough sets theory, Wang proposed deep fuzzy trees [11]. Zhao embed the hierarchical
structure into fuzzy rough sets [12]. Qiu proposed a fuzzy rough sets method using the
Hausdorff distance of the sample set for hierarchical feature selection [13].

The expansion and updating of data information will also cause data loss. Therefore,
in the multimodality incomplete information system, the incremental updating algo-
rithm of the approximations is particularly important, Zeng proposed an incremental
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updating algorithm for the variation of object set [14] and the attribute value based
on the hybrid distance [6]. Dong L proposed an incremental algorithm for attribute
reduction when samples and attributes change simultaneously [15]. Huang proposed a
multi-source hybrid rough set (MCRS) [16], under variation of the object, attributes set
and attribute values, a matrix-based incremental mechanism studied. However, multik-
ernel fuzzy rough sets incremental algorithm based on hierarchical classification is not
considered now.

This paper is organized as follows: Sect. 2 introduces the basic knowledge. In Sect. 3,
the hierarchical structure among decision attribute values is considered into the multi-
kernel fuzzy rough sets, the tree-based hierarchical class structure is imported, and the
upper and lower approximations of all nodes is proposed. In Sect. 4, an incremental
updating algorithm of upper and lower approximations for the immigration and emmi-
gration of single object. Finally a corresponding example is given for deduction. The
paper ends with conclusions and further research topics in Sect. 5.

2 An Introduction of Fuzzy Rough Sets

In this section, some related content of fuzzy rough sets will be briefly introduced.

Definition 1 [17]. Given an fuzzy approximate space {U ,R},∀x, y, z ∈ U . IfR satisfies:
Reflexivity: R(x, x) = 1;
Symmetry: R(x, y) = R(y, x);
Min-max transitivity: min(R(x, y),R(y, z)) ≤ R(x, z).
Then R is said to be a fuzzy equivalence relation on U.

Definition 2 [4]. Given a fuzzy approximate space {U ,R}, R is a fuzzy equivalence
relation on theU, and the fuzzy lower and upper approximations are respectively defined
as follows:

⎧
⎪⎨

⎪⎩

RsX (x) = inf
y∈u

S(N (R(x, y)),X (y))

RTX (x) = sup
y∈u

T (R(x, y),X (y))
(1)

T and S are the triangular mode. N is a monotonically decreasing mapping function.
In a multimodality information system, the attributes of samples are multimodality,

and multikernel learning is an effective method, often using different kernel functions
to extract information from different attributes [8]. At the same time, there may also be
unknown value in the attribute values. In this paper, the case where the attribute values
exist unknown value is considered into the multimodality information system.

Definition 3 [6]. Given a multimodality incomplete information system {U ,MC},MC
is a multimodality conditional attribute, ∀x, y ∈ U , ∀M ∈ MC, and it exists unknown
value. M (x), M (y) are the M attribute values of x and y, respectively. Unknown values
are marked as “?”. The similarity relationships extracted from this data using a matching
kernel.

K(M (x),M (y)) = 1 (2)
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It is easy to prove that the kernel function satisfies Definition 1. Therefore, the
similarity relation calculated is fuzzy equivalence relation.

Definition 4 [8]. Given a {U ,MC}, MC divides the multimodality information system
into p subsets with different attributes, referred to asMC/U = {M1,M2, ...,MP},Mi ∈
MC, Ki is a fuzzy similarity relation computed with single attribute. ∀x, y ∈ U , the
fuzzy similarity relation based on combination kernels is defined as follows:

KTcos(x, y) = max

( p∏

i=1

Ki(x, y) −
p∏

i=1

√

1 − Ki(x, y)2, 0

)

(3)

Example 1. Given a {U ,MC,D}, there are seven objects, MC = {K1,K2,K3,K4},
D = {d1, d2, d3, d4, d5}, The details are shown in Table 1.

Table 1. Dataset used in the example

X K1 K2 K3 K4 D

x1 26 1.56 102 Yes d4

x2 25 1.83 121 ? d2

x3 27 1.80 87 No d3

x4 22 1.78 89.8 No d1

x5 26 1.85 105 ? d5

x6 27 1.93 102 Yes d1

x7 52 1.69 87 Yes d4

x8 25 1.6 105 Yes d4

In Table 1, there are three types of conditional attributes, numerical type, categorical
type, and unknown values. It can be regarded as a multimodality incomplete decision
system, and different kernel functions is used to extract the fuzzy similarity relationships
of different attributes.

x1 and x2 as an example, calculating the fuzzy similarity relationships based on
combination kernels:

K1(x1, x2) = 0.990,K2(x1, x2) = 0.930,K3(x1, x2) = 0.965,K4(x1, x2) = 1.

KTcos(x1, x2) = max(
4∏

i=1

Ki(x1, x2) −
4∏

i=1

√

1 − Ki(x1, x2)2, 0) = 0.888.

In the same way, the fuzzy similarity relationships based on combination kernels
among other objects can be obtained, and the fuzzy similarity relationships matrix
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KTcos(x, y) can be obtained as follows:

KTcos(x, y) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0.888 0 0 0.918 0.863 0.001 0.973
0.888 1 0.855 0.824 0.965 0.918 0.001 0.956
0 0.855 1 0.779 0.956 0 0 0
0 0.824 0.779 1 0.827 0 0 0

0.918 0.965 0.956 0.827 1 0.983 0.001 0.965
0.863 0.918 0 0 0.983 1 0.002 0.906
0.001 0.001 0 0 0.001 0.002 1 0.001
0.973 0.956 0 0 0.965 0.906 0.001 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

3 Multikernel Fuzzy Rough Sets Based on Hierarchical
Classifification

Given a multimodality incomplete decision system, in addition to multimodality
attributes of objects, there may be hierarchical relationships among decision attribute
values. The hierarchical classification is mostly based on a tree structure. A multikernel
fuzzy rough sets based on hierarchical classification takes the hierarchical relationships
of decision attribute values into account in the fuzzy rough sets.

Definition 5 [4]. Given a {U ,MC}.KTcos is a fuzzy equivalence relation based on combi-
nation kernels, X is a fuzzy subset ofU, and the approximations are respectively defined
as as follows:

⎧
⎪⎨

⎪⎩

KTX (x) = inf
y∈u

S
(
N

(
KTcos(x, y)

)
,X (y)

)

KTX (x) = sup
y∈u

T
(
KTcos(x, y),X (y)

) (4)

Definition 6 [12]. {U ,MC,Dtree} is a multimodality decision system based on hierar-
chical classification, DTree is decision attribute based on hierarchical classification, and
divides U into q subsets, referred to as U/DTree = {

d1, ......, dp
}
, sib(di) represents

the sibling node of di.∀x ∈ U , if x ∈ sib(di), then di(x) = 0, else di(x) = 1. The
approximations of decision class di is defined as follows:

⎧
⎪⎨

⎪⎩

KT sibling
di(x) = inf

y∈{sib(di)}
{
√
1 − K2

Tcos
(x, y)}

KT siblingdi(x) = sup
y∈di

{KTcos(x, y)}
(5)

Proposition 1. This paper extends the lower approximations algorithm of the decision
class to any node. When the decision class is a non-leaf node, the upper approximations
is obtained by finding the least upper bound of the upper approximations of its child
nodes. Leaf(d) represents no child node, the child node of di is marked as dich =
{di1, di1, ..., dik}, where k is the number of child nodes, there are:

KT sibling
di(x) =

⎧
⎨

⎩

inf
y∈{sib(di)}

{√
1 − K2

Tcos
(x, y)

}
sib(di) �= ∅

0 else
(6)



An Incremental Approach Based on Hierarchical Classification 7

KT siblingdi(x) =
⎧
⎨

⎩

sup
y∈di

{
KTcos(x, y)

}
di ∈ leaf (d)

sup
{
KT siblingdich(x)

}
else

(7)

Given a {U ,MC,Dtree}, the algorithm for the lower and upper approximations is
designed in Algorithm 1.

Algorithm 1: The algorithm for the lower and upper approximations based  on 
hierarchical classification
Input:{ }treeU ,MC,D and combination kernels ( )

cosTK x, y

Output: The approximations T sibling
K  and T siblingK

for each i Treed U / D∈ ψdo
for each Treed U / D∈ ψdo

if ( )d leaf d∈ then
for each x U∈ do

( ) ( )( )cosTT siblingK d x max K x, y=

end 
//Calculate the upper approximations of leaf nodes.

end
end

( ) ( )( )T T chsibling siblingK d x max K d x=

//Calculate the upper approximations of non-leaf nodes.
for each x U∈ ψdo

for each ( )y sib d∈ do

( ){ }21
cosTT sibling

K inf K x, y= −

//Calculate the lower approximations.
end

end
end

Example 2. On the basis of Example 1, the decision attributes are divided into five
subsets, namely d1, d2, d3, d4, d5. FromFig. 1, d1 = {x4, x6}, and fromTable 1, sib(d1) =
d4 = {x1, x8}, according to Proposition 1, the lower and upper approximations of the
decision class are calculated as follows:

KT sibling
d1(x2) = inf

y∈{x1,x8}

{√

1 − K2
Tcos

(x2, y)

}

= min{0.475, 0.293} = 0.293

KT sibling
d1(x1) = 0,KT sibling

d1(x3) = 0,KT sibling
d1(x4) = 0,KT sibling

d1(x5) = 0.262.

KT sibling
d1(x6) = 0.423,KT sibling

d1(x7) = 1,KT sibling
d1(x8) = 0.
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Because d1 is a non-leaf node, according to Proposition 1 there are:

KT siblingd1(x1) = sup
y∈d3

{
KT siblingd3(x1)

} = sup
{
KTcos(x1, x3)

} = 0

KT siblingd1(x2) = 0.855,KT siblingd1(x3) = 1,KT siblingd1(x4) = 0.778.

KT siblingd1(x5) = 0.956,KT siblingd1(x6) = 0,KT siblingd1(x7) = 0,KT siblingd1(x8) = 0.

So the lower and upper approximations of d1 are:

KT sibling
d1 = {0.293/x2, 0.262/x5, 0.423/x6, 1/x7}

KT siblingd1 = {0.885/x2, 1/x3, 0.778/x4, 0.956/x5}
On the basis of Table 1, the tree-based hierarchical class structure is established in

Fig. 1.

3
d

4d

0
d

1
d

2
d

5
d

Fig. 1. The tree of decision class

4 Incremental Updating for Lower and Upper Approximations
Under the Variation of Single Object

A {U ,MC,Dtree} at time t is given. K (t)
Tsibling

X represents lower approximations, and

K
(t)
TsiblingX represents upper approximations. Given

{
U ,MC,Dtree

}
represents a multi-

modality decision system based on hierarchical classification at time t + 1, x+, x− rep-
resents immigration and emmigration of one object, respectively. The fuzzy upper and

lower approximations at time t + 1 are denoted by K
(t+1)
TsiblingX and K (t+1)

Tsibling
X , respectively.

4.1 Immigration of Single Object

The x+ immigrates into the
{
U ,MC,Dtree

}
at time t + 1, in which U = U ∪ {

x+}
. If

no new decision class is generated at time t + 1, tree-based hierarchical class structure
does not need to be updated. Otherwise, the tree will be updated. Next, the incremental
updating is discussed by whether to generate a new decision class.
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Proposition 2. ∀di ∈ U/Dtree, x ∈ U , x+ will generate a new decision class, and the
new class is marked as d

+
n+1. The labeled class d

+
n+1 needs to be inserted into the tree-

based hierarchical class structure. Then the approximations updates of the decision class
is shown:

K (t+1)
Tsibling

di(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

inf
y=x+

{√
1 − K2

Tcos
(x, y),K (t)

Tsibling
di(x)

}
x+ ∈ {sib(di)} and
{sib(di)} �= d

+
n+1

K (t)
Tsibling

di(x) x+ /∈ {sib(di)} and x �= x+

inf
y∈{sib(di)}

{√
1 − K2

Tcos
(x, y)

}
else

(8)

K
(t+1)
Tsibling di(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

K
(t)
Tsibling di(x) x �= x+and di ∈ leaf (d)

sup
y∈di

KTcos
(x, y) x = x+ and di ∈ leaf (d)

sup
{
K
(t)
Tsibling dick(x)

}
else

(9)

Proof. For the lower approximations of di, the approximations at time t + 1 is determined
by the objects belonging to the sibling nodes of di. When x �= x+ and x+ /∈ {sib(di)}, the
lower approximations are the same as time t; when x = x+ or the sibling nodes of at time
t + 1 are newly decision class, calculating its lower approximations directly according
to Proposition 1; when x+ ∈ {sib(di)} and all sibling nodes of di are not newly classes,
∀x �= x+, there is:

K (t+1)
Tsibling

di(x) = inf
y∈{sib(di)}

{√

1 − K2
Tcos

(x, y)

}

= inf
y∈{sib(di)−x+}∪x+

{√

1 − K2
Tcos

(x, y)

}

= K (t)
Tsibling

di(x) ∧ inf
y=x+

{√

1 − K2
Tcos

(x, y)

}

= inf
y=x+

{

K (t)
Tsibling

di(x),
√

1 − K2
Tcos

(x, y)

}

For the upper approximations of di, the upper approximations is determined by the
object that belongs to di. When di is a leaf node and x �= x+ at time t + 1, that is the
newly decision subset not equal to di, and its upper approximations is the same as time
t; When di is a leaf and x = x+ at time t + 1, direct computational approximations
according to Proposition 1; In the tree-based hierarchical class structure, the decision
class with the same parents node belongs to a major class, so di and dich belong to the
same major class, When di is not a leaf node, we directly find the least upper bound for
all child nodes of the decision class di, and obtain updating of the upper approximations.
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Proposition 3. ∀di ∈ U/Dtree, x ∈ U , x+ will not generate a new decision class,
and then the tree-based hierarchical class structure does not need to be updated. The
approximations updating of the decision class is shown:

K (t+1)
Tsibling

di(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

inf
y=x+

{√
1 − K2

Tcos
(x, y),K (t)

Tsibling
di(x)

}
x �= x+ and

x+ ∈ {sib(di)}
K (t)
Tsibling

di(x) x �= x+ and

x+ /∈ {sib(di)}
inf

y∈{sib(di)}

{√
1 − K2

Tcos
(x, y)

}
else

(10)

K
(t+1)
Tsibling di(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K
(t)
Tsibling di(x) x �= x+, x+ /∈ di

and di ∈ leaf (d)

sup
y=x+

{
KTcos

(x, y),K
(t)
Tsibling di(x)

}
x �= x+,x+ ∈ di

and di ∈ leaf (d)
sup
y∈di

{
KTcos

(x, y)
}

x = x+

and di ∈ leaf (d)

sup
{
K
(t)
Tsibling dich(x)

}
else

(11)

Proof . The proof of the lower approximations updating is similar to Proposition 2; for
the upper approximations, at time t + 1, when di is a non-leaf node, directly find the
least upper bound for the child nodes of di, and the approximations updating is obtained.
When di is a leaf node, the upper approximations at time t + 1 is determined by the
object that belongs to di; When x = x+, the upper approximations is directly calculated
according to Proposition 1; When x �= x+ and x+ /∈ {di} the approximations is the same
as time t; when x �= x+ and x+ ∈ {di} , there is:

K
(t+1)
Tsibling di(x) = sup

y∈di

{
KTcos

(x, y)
}

= inf
y∈{sib(di)−x+}∪x+

{√

1 − K2
Tcos

(x, y)

}

= sup
y=x+

{
K
(t)
Tsibling di(x),KTcos

(x, y)
}

Given a
{
U ,MC,Dtree

}
, when immigration of one object, the algorithm for the lower

and upper approximations is designed in Algorithm 2.
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Algorithm 2: Incremental Algorithm Based on Hierarchical Classification For the 
Immigration of single Object

Input:{ }treeU ,MC,D , ( )
sibling

t
TK and 

( )
sibling

t
TK . //Already obtained in Algorithm 1.

Output: The approximations ( )1
sibling

t
TK + and  

( )1
sibling

t
TK

+

( ) ( )
cos cosT TK x, y K x , y+⇐

for each Treed U / D∈ ψdo

for each x U∈ ψdo

if ( ) ( ){ } ( ){ }1nd sib d  and x sib d  or x x  and x sib d
+ + + +

+ ≠ ∈ ≠ ∈ then

( ) ( ) ( ) ( ) ( ){ }1 21
sibling siblingcos

tt
TT T

y x
K d x inf K x, y ,K d x

+

+

=
= −

end
if  ( )x x  and x sib d+ +≠ ∉ then

( ) ( ) ( ) ( )1
sibling sibling

t t
T TK d x K d x+ =

end
else  

( ) ( )
( ){ }

( ){ }1 21
sibling cos

t
T T

y sib d
K d x inf K x, y+

∈
= −

end
//Low approximations.

if  1nd
+

+ then
if  +d leaf  and x = x∈ then

( ) ( ) ( )1
sibling Tcos

t
T

y d
K d x sup K x, y

+

∈
=

end
if  +d leaf  and x x∈ ≠ then

( ) ( ) ( ) ( )1
sibling sibling

t t
T TK d x K d x

+
=

end
else

( ) ( ) ( ) ( ){ }1
sibling sibling

tt
TT i ickK d x sup K d x

+
=

end
//Upper approximations when new decision classes are generated.

end
else

if  +d leaf  and x x∈ = then
( ) ( ) ( )1

sibling Tcos

t
T

y d
K d x sup K x, y

+

∈
=
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end
if   , ++d leaf  x d and x x∈ ∉ = then

( ) ( ) ( ) ( )1
sibling sibling

t t
T TK d x K d x

+
=

end
if   , ++d leaf  x d and x x∈ ∈ = then

( ) ( ) ( ) ( ){ }1
sibling siblingTcos

t ( t )
TT

y x
K d x sup K x, y ,K d x

+

+

=
=

end
else

( ) ( ) ( ) ( ){ }1
sibling sibling

tt
TT i ickK d x sup K d x

+
=

end
end
//Upper approximations when no new decision classes are generated

end
end

Table 2. Information about immigration of single bject

X K1 K2 K3 K4 D

x+
9 17 1.58 50 no Normal_Weight

Example 3. On the basis of Table 1, one object x+
9 immigrates into system, and its

information is shown in Table 2. A new decision class d6 is generated. first the fuzzy
similarity relationships with other objects based on combination kernels are calculated
according to Definition 6, as follows:

KTcos

(
x+
9 , x

) = (
0 0.299 0.306 0.643 0.306 0 0 0 1

)

On the basis of Fig. 1, inserting the newly decision class d6 into the tree, the tree is
update as follows:
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0
d

6
d

3
d

2
d

5
d

4
d

1
d

Fig. 2. The tree of decision class

As shown in Fig. 2, d6 ∈ leaf , sib(d1) = {d4, d6} = {
x1, x8, x

+
9

}
.

According to Proposition 2:

K (t+1)
Tsibling

d1(x1) = inf
y=x+

9

{√

1 − K2
Tcos

(x1, y),K
(t)
Tsibling

d1(x1)

}

= min(0, 0) = 0

K (t+1)
Tsibling

d1(x2) = 0.293,K (t+1)
Tsibling

d1(x3) = 0,K (t+1)
Tsibling

d1(x4) = 0,K (t+1)
Tsibling

d1(x5) = 0.263.

K (t+1)
Tsibling

d1(x6) = 0,K (t+1)
Tsibling

d1(x7) = 0,K (t+1)
Tsibling

d1(x8) = 0,K (t+1)
Tsibling

d1(x9) = 0.

From Fig. 2, d1 can be obtained as a non-leaf node, according Proposition 2:

K
(t+1)
Tsibling d1(x1) = sup

y∈d3

{
K
(t+1)
Tsibling d1ch(x1)

}
= sup

y∈d3

{
K
(t)
Tsibling d3(x1)

}
= 0

K
(t+1)
Tsibling d1(x2) = 0.855,K

(t+1)
Tsibling d1(x3) = 1,K

(t+1)
Tsibling d1(x4) = 0.778.

K
(t+1)
Tsibling d1(x5) = 0.956,K

(t+1)
Tsibling d1(x6) = 0,K

(t+1)
Tsibling d1(x7) = 0,K

(t+1)
Tsibling d1(x8) = 0.

K
(t+1)
Tsibling d1(x9) = 0.306.

So the lower and upper approximations of d1 are:

K (t+1)
Tsibling

d1 = {0.293/x2, 0.262/x5}

K
(t+1)
Tsibling d1 = {0.885/x2, 1/x3, 0.778/x4, 0.956/x5, 0.306/x9}

From Example 3, obviously, when immigration of one object in the multimodality
decision system based on hierarchical classification, it will affect the upper and lower
approximations of other decision classes. Only a small amount of update operations
need to be performed according to properties 2 and 3, which greatly reduces the amount
of calculation and time cost.
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4.2 Emmigration of Single Object

x− emmigrates from the
{
U ,MC,Dtree

}
at time t + 1, in which U = U − {

x−}
. If no

decision class is removed at time t + 1, the tree-based hierarchical class structure does
not need to be updated, otherwise, the tree is updated. Next, the incremental updating
will be discussed by whether to remove a decision class.

Proposition 4. ∀di ∈ U/Dtree, x ∈ U , x− emmigrates form system, which leads to the
decision class is removed, marked as dl . The tree-based hierarchical class structure will
be updated, and the dl will be removed from the tree. Then the approximations updating
of the decision class is shown:

K (t+1)
Tsibling

di(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

inf
y∈sib(di)

{√
1 − K2

Tcos
(x, y),K (t)

Tsibling
di(x)

}
x− ∈ sib(di)and

sib(di) �= ∅
K (t)
Tsibling

di(x) x− /∈ sib{di}
0 else

(12)

K
(t+1)
Tsibling di(x) = K

(t)
Tsibling di(x) (13)

Proof . At time t+1, the removed decision class has no upper and lower approximations,
but x− will have the impact on the upper and lower approximations of other decision
classes. If x− is the closest object to the sibling node to which the object x belongs,
the lower approximations need to be recalculated, otherwise, the lower approximations
remains unchanged; if the sibling node of di does not exist after x− emmigrates, the lower
approximations is 0. For a decision class, the upper approximations is only related to the
objects belonging to the decision class.At time t+1, x− /∈ di, so the upper approximations
remains the same.

Proposition 5. ∀di ∈ U/Dtree, x ∈ U , x− will not cause the decision class to be
removed, and then the tree-based hierarchical class structure does not need to be updated.
Then the approximations updating of the decision class is shown:

K (t+1)
Tsibling

di(x) =

⎧
⎪⎨

⎪⎩

inf
y∈sib(di)

{√
1 − K2

Tcos
(x, y),K (t)

Tsibling
di(x)

}
x− ∈ sib(di)

K (t)
Tsibling

di(x) else
(14)

K
(t+1)
Tsibling di(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

sup
y=x−

{
KTcos

(x, y),K
(t)
Tsibling di(x)

}
x− ∈ di and di ∈ leaf (d)

K
(t)
Tsibling di(x) x− /∈ di and di ∈ leaf (d)

sup
{
K
(t)
Tsibling dich(x)

}
else

(15)

The proof process is similar.
Given a

{
U ,MC,Dtree

}
, when one object emmigrates from system, the algorithm

for the lower and upper approximations is designed in Algorithm 3.
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Algorithm 3: Incremental Algorithm Based on Hierarchical Classification For the 
Emmigration of single Object

Input:{ }treeU ,MC,D , ( )
sibling

t
TK and 

( )
sibling

t
TK . //Already obtained in Algorithm 1..

Output: The approximations ( )1
sibling

t
TK + and

1
sibling

( t )
TK X

+

for each Treed U / D∈ ψdo

for each x U∈ ψdo
if ld then

if ( ) ( )x sib d and  sib d− ∈ ≠ ∅ then
( ) ( )

( )
( ) ( ) ( ){ }1 21

sibling siblingcos

tt
TT T

y sib d
K d x inf K x, y ,K d x+

∈
= −

end
if ( )x sib d− ∉ then

( ) ( ) ( ) ( )1
sibling sibling

t t
T TK d x K d x+ =

end
else

( ) ( )1 0
sibling

t
TK d x+ =

end
//Lower approximations without decision class removal.

( ) ( )1
sibling sibling

( t ) ( t )
T TK d x K d x

+
=

end
else

if ( )x sib d− ∈ then
( ) ( )

( )
( ) ( ) ( ){ }1 21

sibling siblingcos

tt
TT T

y sib d
K d x inf K x, y ,K d x+

∈
= −

end
else

( ) ( ) ( ) ( )1
sibling sibling

t t
T TK d x K d x+ =

end//Lower approximations with decision class removal.
If ( )x d  and d d− ∈ ∈ l eaf then

( ) ( ) ( ) ( ) ( ){ }1
siblingsibling Tcos

tt
TT

y x
K d x sup K x, y ,K d x

−

+

=
=

end
if ( )x d  and d d− ∉ ∈ l eaf then

( ) ( ) ( ) ( )1
sibling sibling

t t
T TK d x K d x+ =

end
else

( ) ( ) ( ) ( )1
sibling sibling

t t
T TK d x K d x+ =

end
end

end
end
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Example 4. The object x3 emmigrates from the system on the basis of Table 1, which
will cause the decision class d3 to be removed, and the tree will be updated as follows:

3
d

4d

0
d

1
d

2
d

5
d

Fig. 3. The new tree for emmigration of one object x3

It can be seen from Fig. 3 that the child node of d3 has been removed, and d1 is a
leaf node. According to Proposition 4, it can be obtained:

K (t+1)
Tsibling

d1(x1) = 0,K (t+1)
Tsibling

d1(x2) = 0.293,K (t+1)
Tsibling

d1(x3) = 0,K (t+1)
Tsibling

d1(x4) = 0.

K (t+1)
Tsibling

d1(x5) = 0.262,K (t+1)
Tsibling

d1(x6) = 0.423,K (t+1)
Tsibling

d1(x7) = 1,K (t+1)
Tsibling

d1(x8) = 0.

Because d1 become a leaf node, where are:

K
(t+1)
Tsibling d1(x1) = 0,K

(t+1)
Tsibling d1(x2) = 0.855,K

(t+1)
Tsibling d1(x3) = 0,K

(t+1)
Tsibling d1(x5) = 0.956.

K
(t+1)
Tsibling d1(x6) = 0,K

(t+1)
Tsibling d1(x7) = 0,K

(t+1)
Tsibling d1(x8) = 0.

So the lower and upper approximations of d1 are:

K (t+1)
Tsibling

d1 = {0.293/x2, 0.262/x5, 0.423/x6, 1/x7}

K
(t+1)
Tsibling d1 = {0.885/x2, 0.778/x4, 0.956/x5}

From Example 4, it can be seen that when one object emmigrate form the multi-
modality decision system based on hierarchical class, the emmigration of one objects
have an impact on the upper and lower approximations of other decision classes, and
only a small amount of update operations need to be performed according to Proposition
4 and 5, which greatly reduces the calculation and time cost.

5 Conclusions and Further Research

In the multimodality decision system based on hierarchical classification, attributes of
simples are multimodality, decision attribute values often have a hierarchical structure,
and data changes frequently. The paper takes into account the fact that the attribute
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values are not known in the multimodality information system based on hierarchical
classification, and proposes an incremental updating algorithm in multikernel fuzzy
rough sets based on hierarchical classification. The specific process of this algorithm
is demonstrated through relevant examples. This algorithm can effectively reduce the
time cost caused by object set changes. In future work, the approximations updating
algorithm ofmore objects changing inmultikernel fuzzy rough sets based on hierarchical
classification and the performance of the algorithm to test the algorithm using the UCI
dataset will be the focus of the research.
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