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Abstract. The study of Protein-DNA binding sites is one of the fundamental
problems in genome biology research. It plays an important role in understanding
gene expression and transcription, biological research, and drug development. In
recent years, language representation models have had remarkable results in the
field of Natural Language Processing (NLP) and have received extensive atten-
tion from researchers. Bidirectional Encoder Representations for Transformers
(BERT) has been shown to have state-of-the-art results in other domains, using
the concept of word embedding to capture the semantics of sentences. In the
case of small datasets, previous models often cannot capture the upstream and
downstream global information of DNA sequences well, so it is reasonable to
refer the BERT model to the training of DNA sequences. Models pre-trained with
large datasets and then fine-tuned with specific datasets have excellent results on
different downstream tasks. In this study, firstly, we regard DNA sequences as sen-
tences and tokenize them using K-mer method, and later utilize BERT to matrix
the fixed length of the tokenized sentences, perform feature extraction, and later
perform classification operations. We compare this method with current state-of-
the-art models, and the DNABERT method has better performance with average
improvement 0.013537, 0.010866, 0.029813, 0.052611, 0.122131 in ACC, F1-
score, MCC, Precision, Recall, respectively. Overall, one of the advantages of
BERT is that the pre-training strategy speeds up the convergence in the network
in migration learning and improves the learning ability of the network. DNABER
model has advantageous generalization ability on other DNA datasets and can be
utilized on other sequence classification tasks.
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1 Introduction

Protein-DNA binding site refers to a fragment of a protein macromolecule that specif-
ically [1] binds to a DNA sequence of approximately 4–30 bp [2–4] in length. And
transcription factors, as a common type of protein macromolecule, are an important
issue for Protein-DNA binding site prediction, and when transcription factors bind to
these specific regions, the sites are called transcription factor binding sites (TFBS) [5,
6]. During the transcription of a gene, transcription factor binds specifically to a segment
of DNA sequence as a protein macromolecule, and the region forms the transcription
factor binding site. Transcription factors are of great importance in gene regulation, tran-
scription, and biological research and drug design [7–9]. Therefore, accurate prediction
of Protein-DNA binding sites is very important for genomic understanding, description
of gene specific functions, etc. [10, 11].

In the past decades, sequencing operations were performed using traditional biolog-
ical methods, especially ChIP-seq [12] sequencing technology, which greatly increased
the quantity and quality of available sequences and laid the foundation for subse-
quent studies. With the development of sequencing technology, the number of genomic
sequences has increased dramatically, and traditional biological sequencing techniques
are costly and slow, therefore, machine learning [13] ideas have been applied to Protein-
DNA binding site prediction, such as, Wong et al. proposed the kmerHMM [14] model
based on Hidden Markov (HMMs) and belief propagations, and Li et al. [15] proposed
the fusion pseudo nucleic acid composition (PseNAC) model based on SVM. However,
with the gradual accumulation of sequences, traditional machine learning methods can-
not meet the requirements in terms of prediction accuracy and computational speed, and
deep learning has performed well in other fields such as machine vision [2, 16, 17]. so
researchers have gradually applied deep learning to bioinformatics [4, 18–20], Deep-
Bind has applied convolutional neural networks to Protein-DNA binding site prediction
for the first time, and Zeng et al. further explored the number of convolutional layers
and pooling methods to validate the value of Convolutional Neural Network (CNN) for
Protein-DNA binding sites. KEGRU is a framework model that is fully based on RNN
using Bidirectional Gated Recurrent Unit (Bi-GRU) and K-mer embedding. DanQ uti-
lizes a hybrid neural network combining CNN and Recursive Neural Network (RNN)
with the addition of Bi-directional Long-Short Term Memory (Bi-LSTM) layers for
better long distance dependencies in sequence relations for learning.

In our work, we utilized DNABERT for feature extraction of the dataset and clas-
sification by fully connected layers. First, we segment the DNA sequences using the
K-mer representation, as opposed to the One-hot encoding commonly utilized in pre-
vious deep learning, we only segment it, and later utilize the processed data add the
location information as the input to BERT. Then feature extraction is performed using
BERT based on the Multi-headed Self-attention mechanism, with 101x768 dimensions
for the input data and no change in the dimensionality of the output data. Finally, the
input is fed into the fully connection and activated using the softmax function for binary
classification prediction. In order to verify the generalization ability of the model, we
utilized fine-tuning model to predict different cell line transcription factor datasets and
verified the effectiveness of the model.
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2 Materials and Methods

2.1 Benchmark Dataset

To better evaluate the performance of the model, we selected 45 public transcription
factor ChIP-seq datasets of Broad cell lines from the ENCODE dataset, which were
previously utilized in DeepBind, CNN-Zeng, and DeepSEA model frameworks, each
with a DNA sequence sample length of 101 bp and a positive to negative sample number
ratio of approximately 1:1. These data can be found in http://cnn.csail.mit.edu/motif_
discovery/.

2.2 Model

Tokenization
We utilize K-mer for DNA sequences, and for each deoxyribonucleic acid base con-
catenate it with subsequent bases, integrating better contextual information for each
deoxyribonucleic acid. Different K values correspond to different tokenization of DNA
sequences, and we set the value of K to 6, i.e. {ACGTACGT} can be tagged as {ACG-
TAC, CGTACG, GTACGT}. In the utterance, in addition to all permutations indicated
by K-mer, five other special tokens are included, the categorical CLS token inserted
into the head, the SEP token inserted after each sentence, the MASK token that masks
the words, the placeholder pad token, and UNK token that stands for unknown in the
sequence, when K = 6, there are 46 + 5 token.

The DNABERT Mode
Bert is a transformer-based pre-trained language representationmodel that is a milestone
in NLP. It introduces an idea of pre-training and fine-tuning, where after pre-training
with a large amount of data, an additional output layer is added for fine-tuning using
small task-specific data to obtain state-of-the-art performance in other downstream tasks.
The innovation of BERT is the use of a new technique of masked language model
(MLM), which uses a bi-directional Transformer for language modeling, where the bi-
directional model will outperform the uni-directional model in language representation.
BERT models can also be used in question-and-answer systems, language analysis,
document clustering, and many other tasks. We believe that BERT can be applied to
Protein-DNA binding site prediction to better capture the hidden information in DNA
sequences, as shown in Fig. 1.

http://cnn.csail.mit.edu/motif_discovery/
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Fig. 1. DNABERT framework.

3 Result and Discussion

3.1 Competing Methods

In order to ensure the fairness of the experiment, we used three deep learning-based
models to compare performance with DNABERT model, namely DeepBind, DanQ and
WSCNNLSTM. Through comparison, it is found that DNABERT model has better per-
formance in the evaluation indexes we used. Table 1 shows the performance comparison
of DNABERT in the data set of each cell line we selected. As can be seen from the Table
1, DNABERT is higher than existing models in the evaluation indexes ACC, F1-Score,
MCC, Precision and Recall. ACC is 0.013537 higher than other methods on average,
and F1-score increases by 0.010866. MCC increased by 0.029813, Precision and Recall
increased by 0.052611 and 0.122131, respectively. Experimental results show that our
method is superior to existing networks. Table 1 is the setting of hyper-parameters in the
experiment.
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Table 1. Comparison of performance on datasets of cell lines.

BERT ACC AUC F1 MCC Precision Recall

Dnd41 0.89524 0.94062 0.89501 0.79390 0.89867 0.89524

Gm12878 0.88167 0.92133 0.88121 0.76934 0.88769 0.88167

H1sec 0.77026 0.81595 0.76376 0.57290 0.80364 0.77024

Helas3 0.84735 0.88263 0.84583 0.70885 0.86164 0.84735

Hepg2 0.89043 0.93070 0.89013 0.78514 0.89473 0.89043

Hmec 0.88357 0.91528 0.88316 0.77254 0.88900 0.88357

Hsmm 0.89062 0.93426 0.89031 0.78579 0.89518 0.89062

Huvec 0.83400 0.86503 0.83225 0.68245 0.84860 0.83400

K562 0.61842 0.62076 0.57777 0.30206 0.69262 0.61842

Nha 0.87029 0.90167 0.86962 0.74823 0.87798 0.87029

Nhdfa 0.87213 0.91073 0.87149 0.75176 0.87967 0.87213

Nhek 0.80832 0.83796 0.80481 0.64008 0.83221 0.80832

Nhlf 0.84788 0.87823 0.84663 0.70735 0.85957 0.84788

Oste 0.88605 0.92901 0.88565 0.77758 0.89155 0.88605

4 Conclusion

In recent years, transformer-based series models have had state-of-the-art performance
in the field of NLP. As the research gradually progressed, researchers migrated it to
other fields and achieved equally desirable results. In our work, we demonstrate that the
performance of DNABERT for Protein-DNA binding site prediction greatly exceeds that
of other existing tools. Due to the sequence similarity between genomes, it is possible
to transfer data of biological information to each other using the DNABERT pre-trained
model. DNA sequences cannot be directly translated on the machine, and DNABERT
gives a solution to the problem of deciphering the language of non-coding DNA, cor-
rectly capturing the hidden syntactic semantics in DNA sequences, showing excellent
results. Although DNABERT has excellent performance in predicting Protein-DNA
binding sites, there is room for further improvement. CLS token represents the global
information of the sequence, and the rest token represents the features of each part of the
sequence, we can consider separation processing to better capture the sequence features
and achieve better results. However, so far, the BERT pre-training method for Protein-
DNA binding site prediction has the most advanced performance at present, and the use
of DNABERT introduces the perspective of high-level language modeling to genomic
sequences, providing new advances and insights for the future of bioinformatics.
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