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Abstract. Computer-aided drug design with high performance is a promising
field, and the pre-diction of drug target affinity is an important part in computer-
aided drug design. As a kind of deep learning model algorithm, graph neural
network series model algorithm has been gradually applied in drug and protein
research due to its excellent performance in structural feature learning. In the new
field of drug target affinity prediction, graph neural network also has great poten-
tial. In this paper, a novel approach for drug target affinity prediction based on
multi-channel graph convolution network is proposed. The method encodes drug
and protein sequences into corresponding node adjacency matrix. The adjacency
matrix together with the physical and chemical characteristics of drug and pro-
tein sequences are used as the inputs of the model to construct a multi-channel
graph convolution network that aggregates the information of nodes at different
distances. The drug feature and target feature vectors are concatenated, and then
through the full connection layer, the concatenated vector is converted to the pre-
dicted value. The experiment results on Davis dataset and KIBA dataset show that
the proposed method outperforms most relevant methods. While the experimental
results is Slightly worse than GraphDTA, it shows that the proposed method can
improve the prediction of drug-target affinity to a certain extent and aggregate
more information from other nodes of higher order proximity in the graphs.

Keywords: Prediction of drug target affinity · Graph convolutional neural
network · Nodes of high order proximity · Multichannel graph convolutional
networks

1 Introduction

It takes a lot of money and development time to develop new drugs. According to
statistics, FDA-approved drugs cost about $2.6 billion and take 17 years to develop.
Finding new uses for approved drugs can avoid the expensive and time-consuming
drug development process [1–3]. To effectively change the use of approved drugs, it
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is necessary for researchers to understand which proteins are targets for which drugs.
High-throughput screening tests can detect drug target affinity, but these tests are costly
and time-consuming [4, 5]. Moreover, the presence of a large number of drug-like com-
pounds and potential protein targets makes thorough screening difficult [6–8]. However,
the computational model based on the existing drug target experiments can effectively
estimate the interaction intensity of new drug target pair, so this kind of method is
gradually popular.

At present, many methods have been used to predict drug target interaction, which
greatly promotes the development of drug target interaction research. Pahikkala et al.
used the Kronecker Regularized Least Squares (KronRLS) algorithm to calculate the
paired nuclear K from drug-drug and protein-protein Kronecker products [9]. He et al.
Proposed SimBoost method to predict the affinity between the unknown drug and the
targetwhichused affinity similarities betweendrugs and targets to construct new features.
All the methods mentioned above are traditional machine learning methods [10]. With
the improvement of the accuracy of neural network and the continuous improvement of
the high precision requirements of drug design, deep learning methods are also applied
to the scoring and prediction of protein ligand interactions. Hakime Öztürk et al. showed
DeepDTAmethods to predict the affinity of the drug to the protein target [11]. They used
SMILES [12], simplified molecular input line entry specification of drug molecules, and
the protein sequence expression as the input of the model, respectively constructing two
convolutional neural networks to extract the expressions of drugs and proteins, andfinally
combined the two expressions to predict the affinity between drugs and protein targets.
Hakime Öztürk [13] proposed WideDTA method which was further improved based on
DeepDTA. Themodel takes ligand SMILES (LS), ligandmax common substructure [14]
(LMCS), protein sequence [15] (PS), protein motifs and domains (PMD) as input, after
convolution neural network training, then the representation vectors are concatenated
and through full connection layerswe can get the predicted values. Although themethods
mentioned above are significantly better than traditional machine learning methods in
predicting results, the representation of drug molecules and protein sequences as strings
is not a natural way to express. Recently, graph neural network has been widely used
in different fields. It has no restriction on the size of input graph and can express the
structure of drug molecules and proteins more truly than the way of using string as input
expression, so it can extractmore deepmolecular information in amoreflexible form.The
PADAMEmodel designed by Q. Feng [16] utilizes molecular graph convolution in drug
target interaction prediction, demonstrating the potential of graph convolutional neural
networks in drugdiscovery.LikePADAMET.Nguyen et al. proposedGraphDTAmethod
which took atoms as graph nodes and chemical bonds as graph edges to construct a drug
molecule graph [17]. The drug molecule graphs, and protein sequences are inputs of the
network, then through training and concatenation, the predicted affinity values of drugs
and targets can be obtained. Compared with other methods, GraphDTA has an obvious
improvement in the prediction performance of drug-target interaction. However, the
model has only three-layer graph convolution, which is difficult to aggregate information
of similar but distant node. Although increasing the number of graph convolution layers
can realize the information aggregation of similar but distant nodes, the expression of
nodes will gradually be projected to a stable state. Therefore, the number of graph



Drug-Target Affinity Prediction Based on Multi-channel Graph Convolution 535

convolution layers is limited, and it is difficult to aggregate high-order similar nodes.
Therefore, it is necessary to develop a convolutional architecturewith high computational
efficiency to utilize the information of high-order neighboring nodes through appropriate
aggregators while maintaining the heterogeneity of nodes. Zhou et al. proposed a multi-
channel graph convolutional network (MCGCN) model to achieve the aggregation of
high-order information by enriching the number of input channels [18]. In this paper,
the multi-channel graph convolutional neural network was applied to the prediction of
drug target affinity to further optimize the experimental results. Compared with other
methods, the proposed method solves the problem caused by too many convolution
layers by aggregating the node information of different distances in each channel and
learns more comprehensive graph data. Secondly, the proportion of aggregated node
information of each channel is adjusted by parameters to make the model more rational.

2 Methods

In this experiment, we referred to a variety of methods for predicting drug target affinity
based on deep learning and obtained the prediction results by extracting the expressions
of drug molecules and proteins respectively and then splicing them together. Compared
with other methods, the innovation of this experiment lies in the introduction of multi-
channel graph convolution into the training of drug molecular graph data. Compared
with traditional graph convolution, multi-channel graph convolution can better obtain
the structural information with different distances in drug molecular graph.

2.1 Molecular Representation

In the experimental dataset, we obtained the model input expression using the Simplified
Molecular Linear Input Specification (SMILES). Smiles enables molecular data to be
read by computers for efficient applications such as fast retrieval and substructure search.
The compound SMILES strings of the Davis dataset are extracted from the PubChem
compound database according to their PubChem CIDs. The KIBA dataset needs to first
convert the ChemBL ID to PubChem CID, and then extract the SMILES string through
the corresponding CID. Expressed by SMILES, molecular graphs can be constructed
with atoms as nodes and chemical bonds as edges. In the experiment, the atomic number
of the drug molecule, the set of atomic pairs at both ends of the chemical bond and the
physical and chemical characteristics of each atom were taken as the input expression
of the drug molecule. To ensure that the node features are fully considered in the graph
convolution process, self-loop is added into the graph convolution structure to improve
the performance of drug molecules. The graph construction for molecular features is
shown in Fig. 1. The molecular features are illustrated in Table 1, which are the same as
those in DGraphDTA.

Contact map is one of the outputs of structure prediction method, usually in matrix
form. Assume that the length of the protein sequence is L, then the predicted contact map
M is a matrix of L rows and L columns, where each elementmij of M represents whether
the corresponding residue pairs, namely residues I and J, are contacted. In general, two
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Fig. 1. Graph construction for molecular graph

Table 1. Node features (atom)

Feature Dimesion

One-hot encoding of the atom element 44

One-hot encoding of the degree of the atom in the molecule, which is the number
of directly-bonded neighbors (atoms)

11

One-hot encoding of the total number of H bound to the atom 11

One-hot encoding of the number of implicit H bound to the atom 11

Whether the atom is aromatic 1

residues are in contact if the Euclidean distance between theCβ atoms (in glycine’s case,
the Cα atoms) is less than a specified threshold.

In this study, Pconsc4 open source method was used to predict contact maps effi-
ciently and quickly. Pconsc4 uses the U-NET [19] architecture, which operates on 72
features calculated from each position in a multi-sequence alignment. Pconsc4 takes
the probability of the attachment of residue pairs as the output, and then takes 0.5 as
the threshold to obtain the contact map of size (L, L), which also corresponds to the
adjacency matrix of protein sequences.

PSSM [20] (position-specific scoringmatrix) is a common protein expression pattern
in proteomics. In PSSM, each residue position can be scored according to the sequence
alignment results and used to represent the residue node features. In this experiment,
PSSMand the physicochemical properties of each residue nodewere taken as the features
of protein sequences. The specific features of these nodes are shown in Table 2 (Fig. 2).

Fig. 2. Graph construction for protein graph
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Table 2. Node features (residue)

Feature Dimension

One-hot encoding of the residue symbol 21

Position-specific scoring matrix (PSSM) 21

Whether the residue is aliphatic 1

Whether the residue is aromatic 1

Whether the residue is polar neutral 1

Whether the residue is acidic charged 1

Whether the residue is basic charged 1

Residue weight 1

The negative of the logarithm of the dissociation constant for the -COOH group 1

The negative of the logarithm of the dissociation constant for the -NH3 group 1

The negative of the logarithm of the dissociation constant for any other group in 1

The pH at the isoelectric point 1

Hydrophobicity of residue (pH = 2) 1

2.2 Multichannel Graph Convolution Structure

In recent years, the success of convolutional neural networks in computer vision, speech
recognition and natural language processing has stimulated researchers to study the
field of graph neural networks. Graph neural network solves two main problems when
convolutional neural network is extended to graphs: (1) forming receptive fields in graphs
where data points are not arranged according to Euclidean grids; (2) Pool the graph under
sampling. After years of rapid development, Graph Neural Network has derived many
powerful variants, such asGraphConvolutionNetwork (GCN)GraphAttentionNetwork
(GAT) Graph Isomorphism Network (GIN), these models are very effective for graph
feature extraction.

For GCN, each layer will perform the convolution operation through (1):

Hl+1 = f
(
Hl,A

)
= σ

(
D
∧ −1

2 A
∧

D
∧ −1

2 HlW l+1
)

(1)

In the equation, A is the adjacency matrix of the protein graph of shape (n, n), n
is the number of nodes in the graph, A

∧

= A + I , where I is the identity matrix, D
∧

is
the diagonal node degree matrix calculated by A and its shape is the same as matrix A,
Wl+1is the weight matrix of l + 1 layer, Hl is the output of the last layer of shape (n, Fl),
Fl is the number of output channels in layer l, H0 = X, where X is the input eigenvector
of the node.

In essence, graph convolutional networks treat the network structure as a compu-
tational graph and train the entire neural network model in an end-to-end manner. By
adopting an appropriate message passing mechanism in each convolution layer of the



538 H. Zhang et al.

graph convolutional network, each node can aggregate attribute information from adja-
cent nodes in the network. However, as the depth of the graph convolutional network
increases, the nodeswill aggregate information from other nodes of higher order proxim-
ity. During this process, the node representation is projected to a steady state after several
aggregation steps. Therefore, the number of existing graph convolutional network layers
should not be too large. In practical applications, nodes with the same/similar structural
roles may be far away from each other in the network, and graph convolutional net-
works with limited depth cannot aggregate the information of nodes with similar roles
but far away from each other. Therefore, this paper does not increase the depth of
graph neural network, but chooses rich information channel, that is, uses multi-channel
graph convolutional network to support any order of information aggregation through
the network.

Like graph convolution, multi-channel graph convolutional network uses (2) to
implement message delivery:

Hk =
{
X k = 0

σ
(
ÂHk−1Wk−1

)
k = [1, l]

(2)

Specifically, the number of layers of multi-channel graph convolutional neural net-
work is l. In the current k layer, H0 = X represents the eigenmatrix X as the input of the
model. In addition, Hk ∈ RN×dk is the output node expression of layer K and the input
node expression of layer K + 1, so the node information will be aggregated through the
message passing model. σ represents the message propagation function that aggregates
information through the network, A

∧

represents the renormalized adjacency matrix, and
Wk-1 is the weight matrix of the kth layer.

Fig. 3. Multi-channel convolution architecture
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The multi-channel convolution architecture is shown in Fig. 3. The model takes
the feature matrix X ∈ RN×d as input, each row of which represents the features of
a node, and the node information can be aggregated in different channels respectively.

Specifically, the propagation network in channel k corresponds to a specific matrix A
∧k

,
which is the k power of the normalized adjacency matrix A

∧

. The forward propagation
expression of the model is shown in (3):

H = AGG
(
A
∧

XW1,A
∧2

XW2,A
∧3

XW3, ...
)

(3)

In the equation, A
∧i
XWi represents a high-order GCN channel that gets information

from the ith order neighbor, and AGG is used to aggregate node information from all
channels. In this paper, we considered using the summation operator as aggregation func-
tion from two aspects: first of all, the general schemes of GCN polymerization can be
viewed as functions on a set of domain nodes, and in the different aggregation functions
only the summation operator can get the complete set, so the summation operator more
than other operators will be able to distinguish between different network structure [21];
Secondly, the implementation of the summation operator can obtain the weighted sum-
mation over different convolution channels, which can amplify the relatively important
information. Therefore, the forward propagation model can be calculated as (4):

H =
∑k

i=1

(
A
∧i
XWi

)
(4)

In the equation, k represents the total number of channels of the model, and Wi
represents the learnable weight.Wi can be also regarded as a pre-processing operation on
node characteristics in each channel. To reduce model parameters and avoid overfitting,
the experiment uses shared weight Ws for different channels of the model. At the same
time, the nonlinear function σ was used in the experiment to improve the expression
ability of the model, and the parameter α was used for appropriate adjustment between
different channels. Finally, the equation of the forward propagation process of the model
is rewritten as following:

H = σ

[∑k

i=1

(
αA

∧)i
XWS

]
(5)

2.3 Model Structure

Figure 4 shows the complete structure of the model. Through experiments, we found that
when the drug data was 3-channel graph convolution and the protein data was 3-layer
graph convolution, the experimental results were the best. The drug molecule graph data
and protein graph data are input into the convolutional layer of the model. After that,
the characterization vectors of drug molecules and protein sequences are respectively
obtained through a pooling layer and two layers of full-connection layers. Finally, vector
concatenated is conducted to obtain the predicted value of the model through the two
full-connection layers.
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Fig. 4. The complete model structure

3 Results and Discussion

3.1 Dataset

To compare with other drug target affinity prediction models such as GraphDTA, Wid-
eDTA and DeepDTA, Davis [22] and KIBA [22] were selected for training and testing.
The Davis dataset contains selected entities from the kinase protein family and related
inhibitors, in addition to their respective dissociation constants. The Davis dataset con-
tains 442 kinase proteins and 68 related inhibitors, as well as the dissociation constants
for 30056 interactions. The KIBA dataset differs from the Davis dataset in that it con-
tains bioactivity of kinase inhibitors from different sources, including Ki, Kd, and IC50,
which are processed as scores for the model to train and predict in the KIBA dataset.
The KIBA data set initially contained 467 targets and 52,498 drugs, which was filtered
by He et al. to contain only drugs and at least 10 interacting targets, resulting in 299
unique proteins and 2111 unique drugs. Table 3 shows two datasets of protein and drug
molecules and their interactions.

Table 3. Dataset

Dataset Proteins Compounds Binding entities

Davis 442 68 30056

KIBA 229 2111 118254
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For the Davis dataset, the dissociation constant was converted to the exponential
space to obtain pKd as the affinity prediction, with the specific expression shown in (6):

pKd = −log

(
Kd

109

)
(6)

He et al. took the negative value of each KIBA score and then selected the minimum
value among the negative values and added the absolute value of the minimum value to
all the negative values to construct the final form of KIBA score.

3.2 Metrics

Concordance index [23] (CI) and mean square error [24] (MSE) are both applied in the
experiment which are also used in other state of the art methods.

Concordance index (CI) is obtained through (7), which is mainly used to calculate
the difference between the predicted value and the actual value. The greater the value,
the more consistent the predicted value is with the actual value.

CI = 1

Z

∑
dx>dy

h
(
bx − by

)
(7)

In the equation, bx is the predictor of the larger affinity dx, by is the predictor of the
smaller affinity dy, Z is a normalized constant, h(x) is the step function, and the equation
is shown in (8).

h(x) =
⎧⎨
⎩
1 x > 0
0.5 x = 0
0 x < 0

(8)

The mean square error (MSE) is also a common measure of the difference between
the predicted value and the actual value. The smaller the value, the closer the predicted
value is to the true value. For n samples, the mean square error is the average of the sum
of squares of the difference between the predicted values of Pi (i = 1, 2,…, n) and the
true values of yi, as shown in (9).

MSE = 1

n

∑n

i=1
(pi − yi)

2
(9)

In WideDTA, another new evaluation index, namely Pearson correlation coefficient
[25], was introduced into the standard set, which was also used to compare the perfor-
mance of experimental results. The higher the value, the better the performance of the
model. Its expression is shown in (10).

Pearson = cov(p, y)

σ (p)σ (y)
(10)

In the equation, cov is the covariance between the predicted value and p and the
actual value y, where σ represents the standard deviation.
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3.3 Performance of Various Channels

Multi-channel graph convolution is an important step in drug feature extraction. Selecting
the appropriate number of graph convolution channels can effectively improvedrug target
interaction prediction results. In this experiment, 1, 2 and 3 channels were selected for
testing, and the evaluation indexes obtained in different situations were put together for
comparison. The Davis dataset was selected as the model data in the experiment, and
the results are shown in Table 4.

Table 4. Performance of various channels

Number of channels CI MSE Pearson

1 0.760 0.577 0.540

2 0.776 0.575 0.554

3 0.763 0.620 0.526

As can be seen from the results in the table, when the number of channels is 2, the
result obtained by multi-channel graph convolution is the best, and the performance of
the three evaluation indexes is better than that of the number of channels is 1 and 3. If
the number of channels is too small, it may be difficult to aggregate distant nodes, and
if the number of channels is too large, the model calculation may be too large and the
model effect may be reduced due to over-fitting.

3.4 Performance of Various Activation Functions

The activation function adds nonlinear factors to the model and solves problems that
can’t be solved by the linear model. Selecting the appropriate activation function can
significantly improve the expression ability of the model. In this experiment, ReLU,
PReLU and LeakyReLU activation functions were selected for testing, and Davis data
set was used as the model data in the experimen. The results are shown in Table 5.

As can be seen from the table, the PReLU activation function is the best, followed
by the LeakyReLU function and the ReLU function. LeakyReLU and PReLU functions
have improved on the negative area compared to ReLU function, solving the Dead ReLU
problem, so the results of the former two are close to and better than ReLU function.

Table 5. Performance of various activation functions

Activation function CI MSE Pearson

ReLU 0.774 0.575 0.547

PReLU 0.778 0.574 0.549

LeakyReLU 0.769 0.587 0.531
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3.5 Performance of Various Pooling Methods

Pooling function plays the role of down sampling, which can reduce the number of data
and feature parameters and ensure the consistency of experimental data length. In this
experiment, the max pooling function, the mean pooling function and the sum pooling
function are selected to test, and the experimental results are shown in Table 6.

Table 6. Performance of various pooling functions

Pooling function CI MSE Pearson

Global max pooling 0.770 0.576 0.538

Global mean pooling 0.757 0.592 0.514

Global sum pooling 0.765 0.587 0.520

As can be seen from the table, the max pooling function results are the best among
the three, slightly better than the mean pooling function and significantly better than the
sum pooling function. It may be that there are great differences between the input of
drug and protein target data. The global max pool can better preserve main features.

3.6 Performance of Various Methods

To verify the performance of multi-channel graph convolution network in predicting
drug target affinity, the prediction results were compared with the current common drug
target affinity predictionmethods, includingKronRLS, SimBoost, DeepDTA,WideDTA
and GraphDTA. The results testing in Davis dataset are shown in Table 7.

Table 7. Performances of various methods on Davis dataset

Method CI MSE Pearson

KronRLS Error! Reference source not found. 0.871 0.379

SimBoost Error! Reference source not found. 0.872 0.282

DeepDTA Error! Reference source not found. 0.878 0.261

WideDTA Error! Reference source not found. 0.886 0.262 0.820

GraphDTA Error! Reference source not found. 0.893 0.229

MCGraphDTA 0.890 0.250 0.832

As can be seen from the table, MCGraphDTA, our experiment model performs
better than KronRLS, SimBoost, DeepDTA and WideDTA, but worse than GraphDTA.
Compared with KronRLS, SimBoost and DeepDTA models, the mean square error
value of this experiment model decreased by 34%, 11% and 4% respectively, and the
Concordance index value increased by 2%, 2% and 1% respectively. Compared with
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WideDTA, theMSE value decreased by 5% and the CI value was 0.5% higher. However,
compared with GraphDTA, the MSE value of MCGraphDTA is 9% higher and the CI
value of MCGraphDTA is 0.3% lower.

The results testing in KIBA dataset are shown in Table 8. Compared with Kro-
nRLS, SimBoost and DeepDTA models, the mean square error value of this exper-
iment model decreased by 62%, 29% and 19% respectively, and the Concordance
index value increased by 13%, 6% and 2% respectively. Compared with WideDTA,
the MSE value decreased by 12% and the CI value was 0.8% higher. However, com-
pared with GraphDTA, the MSE value of MCGraphDTA is 11% higher and the CI value
of MCGraphDTA is 1% lower.

Table 8. Performances of various methods on KIBA dataset

Method CI MSE Pearson

KronRLS Error! Reference source not found. 0.782 0.411

SimBoost Error! Reference source not found. 0.836 0.222

DeepDTA Error! Reference source not found. 0.863 0.194

WideDTA Error! Reference source not found. 0.875 0.179 0.856

GraphDTA Error! Reference source not found. 0.891 0.139

MCGraphDTA 0.882 0.157 0.876

There is a gap between the test results of the experiment model and the expectation.
Although the parameters of the model have been adjusted for many times according to
the type and value range in the training stage, themodel test results obtained by the “best”
parameters are still worse than GraphDTA. There are two reasons for the failure of the
affinity prediction: firstly, there are correlations between some parameters in the model.
For example, when the value or type of parameter a is adjusted, the optimal value or type
of parameter B will also change. In this case, if the original value or type is still used
for the experiment, it is difficult to obtain the optimal parameter or type. Secondly, there
are discrete and continuous parameters, so it is unreasonable to uniformly sample and
test the continuous parameters, and the best value of these parameters may be between
the sampling points. To solve these two problems, we intend to try to use Algorithms
for Hyper-Parameter Optimization, such as random search, Bayesian Optimization and
hyperband, to adjust the parameters of the model to improve the effect of the model.

4 Conclusions

Predciting drug-target affinity is of great importance to drug development. Applying
computational models to predict the drug-target affinity can not only save cost of drug
development, but also accelerate the drug development cycle. In this paper, we have pro-
posed a multi-channel graph convolution network to predict drug target affinity. To solve
the problem that the number of existing graph convolutional network layers should not be
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too large, multi-channel graph convolution is introduced to aggregate the information of
nodes with similar roles but far away from each other. Evaluation of the model on Davis
and KIBA datasets demonstrates that the proposed method outperforms most relevant
methods, suggesting the effectiveness of the proposed approach in predicting the affinity
of drug and protein pairs. Though the performance of the proposed method is worse than
that of GraphDTA, in the future work, we will further optimize the model parameters
and apply the attention mechanism to get a more rational aggregation proportion for
each channels.
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