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Preface: Why a Statistics Manual in the Series 
of “Hot Topics in Acute Care Surgery”?

In the last decades we have experienced major medical and surgical advancements. 
The transition from “eminence-based medicine” to “evidence-based medicine” is 
one of the most important pillars of modern medicine. Fortunately, it is now 
extremely rare to hear odious terms reflecting personal opinions like “we have 
always done it that way” or “my mentor taught me that…”. and it is now recognized 
that clinical decisions should be made according to the evidence.

The ability to read and properly understand scientific research articles is vital to 
employ an evidence-based medicine approach. How many times we have blindly 
trusted the results of a paper without critically evaluating it? We find ourselves sur-
prised later on to find that these results were flawed or wrongly interpreted. The 
modern healthcare professionals, including acute care surgeons, must have the 
essential skills to practice evidence-based medicine which includes the ability to 
design a research project and perform statistical analyses.

In the famous Italian novel the Adventures of Pinocchio by C.  Collodi, the 
wooden marionette Pinocchio meets two shady characters, the fox and the cat, who 
try to cheat him by taking advantage of his trust. We think that this is similar to a 
young surgeon who reads a paper trusting its reported p-values without understand-
ing, interpreting, and critically appraising what was reported.
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We therefore have decided to write this concise manual with the goal of helping 
to strengthen the acute care surgeon’s statistical knowledge and to provide the nec-
essary support to face the complexity of evidence-based medicine.

Some acute care surgeons may attempt to use a classical statistical book to inter-
pret and analyze the data from their studies. They might get discouraged when they 
encounter statistical concepts expressed as complex mathematical formulas. This 
makes the surgeon entirely dependent on a statistician who may not have the same 
clinical understanding or the context for the clinical problem.

We have designed this manual to be an easy-to-use reference for acute care sur-
geons. It has been written by surgeons for surgeons with straightforward explana-
tions and examples, without math. It is meant to improve a surgeon’s basic 
understanding of applied statistics, rather than a deep dive into theoretical statistics. 
By doing so, we hope to make statistics more accessible and expect that readers will 
find that fundamental statistical principles can be easy to understand.

Preface: Why a Statistics Manual in the Series of “Hot Topics in Acute Care Surgery”?
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The present manual has three parts. The first covers scientific methods as applied 
to medical research. The second covers basic statistics. The third covers commonly 
used advanced statistical methods such as multivariate analysis, meta-analysis, and 
survival analysis. These chapters will provide practical examples in order to provide 
context and to ease readers into statistical science.

Monza, Italy� Marco Ceresoli  
Abu Dhabi, United Arab Emirates � Fikri M. Abu-Zidan  
Stanford, CA, USA � Kristan L. Staudenmayer  
Cesena, Italy � Fausto Catena  
Pisa, Italy � Federico Coccolini   

Preface: Why a Statistics Manual in the Series of “Hot Topics in Acute Care Surgery”?
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1Study Typology: An Overview

Giacomo Mulinacci and Marco Carbone

1.1	� Introduction

Choosing the right study type is the first, fundamental, and often limiting step in the 
publication of a scientific paper. Before submitting a paper to a scientific journal, 
several factors should be cautiously considered to limit the risk of study failure. This 
chapter represents an overview of different research studies, with a particular focus 
on the indications, major pro and cons of each study type.

G. Mulinacci · M. Carbone (*) 
Division of Gastroenterology, Department of Medicine and Surgery, University of Milano-
Bicocca, Milan, Italy 

Center for Autoimmune Liver Diseases, European Reference Network (ERN) RARE-LIVER 
Center, San Gerardo Hospital, ASST Monza, Monza, Italy
e-mail: g.mulinacci@campus.unimib.it; marco.carbone@unimib.it

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Ceresoli et al. (eds.), Statistics and Research Methods for Acute Care and 
General Surgeons, Hot Topics in Acute Care Surgery and Trauma, 
https://doi.org/10.1007/978-3-031-13818-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13818-8_1&domain=pdf
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1.2	� The Need for Evidence-Based Medicine

Progression of human knowledge is obtained through the continuous generation and 
accumulation of measurable and testable data. This is the basis of scientific research. 
Medical research is a branch of scientific research that embraces various fields, 
including medicine, biology, chemistry, and pharmacology. It aims to improve the 
knowledge about human species and its environment, with the goal to fight diseases 
by developing or repurposing drugs or medical procedures. Research studies should 
be conducted to guarantee the dignity and the well-being of study participants while 
ensuring minimal risks.

The concept of evidence-based medicine (EBM), largely debated in the last 
decades, is now widely recognized as having a fundamental role in research. Its 
definition dates to 1991, when Gordon Guyatt, a Canadian physician and academic, 
coined the term in a short editorial for the ACP Journal Club [1]. EBM was defined 
as “the conscientious, explicit, and judicious use of current best evidence in making 
decisions about the care of individual patients.” The practice of EBM is a continu-
ous combination of scientific research and clinician personal expertise, acquired 
through daily clinical practice.

1.3	� Research Studies

Decades of research in the scientific field led to the development of a broad spec-
trum of study typologies, and the choice of the appropriate experimental design 
represents a critical step. Study quality, accuracy, and likelihood of being published 
are all strongly influenced by the selection of a proper study design. Even if each 
study type contributes to the growth of scientific knowledge, some have a higher 
impact than others (Fig. 1.1).

Strongest

Weakest

RANDOMIZED CONTROLLED TRIALS

CASE REPORTS, SEIRES, NARRATIVE
REVIEWS, EXPERT OPINIONS, EDITORIALS

CASE CONTROL STUDIES

COHORT STUDIES

SYSTEMATIC REVIEWS AND META ANALYSIS

Fig. 1.1  Hierarchy of level of evidence of different study types

G. Mulinacci and M. Carbone
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The main distinction of study designs is between primary vs. secondary study 
types, even if they can be also divided into descriptive vs. analytical and observa-
tional vs. experimental.

When approaching different research studies, the first macroscopic distinction is 
between primary and secondary study types. The major difference between them is 
the active participation of authors in data collection, which is a prerequisite of pri-
mary studies. Secondary research, also known as desk research, gathers information 
and data from already conducted and published studies.

Within descriptive studies, researchers observe and describe the data, with-
out performing any statistical analysis. They report the distribution of diseases 
or health-related concerns in different populations, without seeking the link 
between exposure and outcome. They are observational in nature, and they pri-
marily evaluate features like disease prevalence and incidence. Even if they 
occupy one of the lowest rungs in the hierarchy of clinical studies, they can be 
relevant for the possibility to illustrate novel, unusual features identified during 
medical practice [2]. Despite this, the absence of corroborative data questioned 
their utility, since they often rise scientific questions that are not sustained on 
further research [3].

Analytical studies seek and try to quantify correlations between exposure and 
outcome. Differently from descriptive studies, they can be both observational or 
experimental, depending on whether the exposure is determined by the nature or 
assigned by an investigator. Observational studies are a pure description and collec-
tion of information about populations, diseases, beliefs, or behaviors. Experimental 
studies require human intervention.

1.4	� Primary and Secondary Research Studies

1.4.1	� Primary Studies

Primary research studies can be laboratorial, clinical, and epidemiological, even if 
the distinction is not always well delineated. This chapter mainly focuses on the 
clinical and epidemiological studies that represent the “daily bread” for clinicians.

1.4.1.1	� Laboratorial Research
Laboratorial research, also called basic or experimental, has the aim to acquire 
novel knowledge or principles to better understand natural phenomena. It raises new 
questions and ways of thinking with a revolutionary potential, and it fulfills the 
sense of curiosity, intrinsic of all scientists, through the development of new ideas, 
concepts, and hypothesis, which set the basis for scientific progress. Basic research 
is often carried out on cellular or animal samples, and it represents the starting point 

1  Study Typology: An Overview
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for clinical and epidemiological research. It can be used as a preliminarily assess-
ment of the physio-pathologic mechanisms and/or therapeutic effects of a 
novel agent.

It hardly helps clinicians with daily concerns, since rigorous and long-lasting 
controls are necessary for their knowledge to be concretely accessible. This might 
take up to a few decades [4].

1.4.1.2	� Clinical Studies
Clinical studies consist of the collection of information from patients, diseases, or 
responses to different treatments with the aim of developing novel therapies, meth-
ods, prognostic scores. Differently from basic research, the human being is the tar-
get of clinical research. Clinical studies are further divided into observational 
(non-interventional) and experimental (interventional).

Clinical Observational Studies
Clinical observational studies (COS) are descriptive, retrospective studies charac-
terized by the absence of a direct action from the investigators, who passively 
observe the effect of a risk factor, diagnostic test, or treatment without intervening. 
They can be conducted on small or large populations, and they enable to examine 
the natural course of different diseases. A major advantage of COS is that study 
participants, being retrospectively followed, never alter their behavior. This feature 
enables COS to assess the natural course of several disorders, thus supporting clini-
cians with real-life clinical data, possibly indicating to clinicians how major experi-
mental trials can translate to clinical practice [5].

Case Reports and Case Series
Case reports and series are the simplest and most common among COS since they 
describe clinical phenomena occurring in up to few patients. They usually describe 
an atypical manifestation of a particular disease, an unexpected treatment response, 
unique medical or surgical approaches, or novel findings of a disease which might 
provide a hint on its pathogenesis. Case series are an aggregation of several similar 
cases. Some authors accept three cases to be a case series, therefore the boundary 
between case reports and series is subtle [6].

COS, in particular case series, can help to collect initial information from rare 
diseases, for which is hard to collect large numbers. As case reports and series pre-
dominantly describe rare events or findings, their citation index is inferior to other 
study typologies(Table 1.1). This largely restricts their likelihood to be accepted and 
published in highly impacting international journals.

G. Mulinacci and M. Carbone
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Clinical Experimental Studies
Clinical experimental studies include clinical trials and epidemiological studies. 
Clinical trials are prospective studies primarily aimed at evaluating the efficacy (a 
measure of the success in an artificial setting), effectiveness (a measure of the value 
in the real world), and safety of a medical and/or behavioral intervention on large-
scale groups. They are among the studies with the highest level of evidence avail-
able in research and the most effective study typology to assess the efficacy of a 
novel intervention or treatment, thus enhancing the value of health care provided. 
They require the approval from local ethical committees, after a thorough assess-
ment of the risk-to-benefit ratio of the specific study. They focus on highly specific 
research questions supported by previous evidence. Among clinical trials, a further 
distinction occurs between single-arm, placebo-controlled, crossover, factorial, and 
noninferiority trials [7].

Each patient enrolled in a clinical trial must sign an informed consent that should 
clearly and extensively explain the purpose, duration, risks, and benefits of the inter-
vention. Further, it should be specified that participation in the study is voluntary, 
and that dropout can occur at any time point and would not change the patient’s 
care [8].

A pivotal step in the design of a clinical trial is the selection of study participants, 
both healthy and diseased, that should be representative of the general population. 
Unfortunately, this is often limited by several requirements, scientific and non-
scientific, that might introduce potential selection confounders [9].

Study participants should meet a certain sample size, to successfully address 
study questions with sufficient statistical power, defined as the likelihood of at least 
80% to correctly identify statistically significant differences between outcomes of 
interventions, when it is clinically detectable [10, 11].

Another important momentum in the construction of clinical trials is the choice 
of endpoints that should represent outcomes or events that enable an objective 
assessment of the effect of a medical intervention (drug or other agents). Clinical 
endpoints are generally classified as primary, secondary, or tertiary. Primary end-
points specifically address the research question, towards which the trial is designed. 
They strictly depend upon the population of interest, disease characteristics, and 
treatment aim. They can be single or multiple and often represent hard clinical out-
comes, such as death, survival, or cure. However, some endpoints might be difficult 
to measure (eg. quality of life), expensive, or might require long time and large 
sample sizes, particularly for diseases with a slow progression (e.g., chronic liver 
diseases). In such cases, surrogate endpoints are used, which are a measure of effect 
of a specific treatment that may correlate with a real clinical endpoint but does not 
necessarily have a guaranteed relationship. To be considered reliable, putative sur-
rogate endpoints must undergo a meticulous process of validation, with the aim of 
confirming their association with the primary outcome.

Secondary endpoints are additional events of interest that should be pre-
determined in the study protocol, and towards which the study is not powered. They 
are usually addressed in smaller sub-groups of the entire population, and their anal-
ysis should be cautiously interpreted. Due to their lower statistical relevance, they 

1  Study Typology: An Overview
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PHASE I

Purpose

N° of pts

Duration

Success rate

PHASE II PHASE III PHASE IV

• Long-term safety
• Evaluation of costs
• Assessment of
  rarer SE

Unlimited

Unlimited

70−90%

• Monitoring SE
• Confirm efficacy
• Compare to
  standard treatment

Up to 3000

1 yr to few yrs

25−30%

• Appropriate dosage
• Preliminary efficacy
• Short term SE

50−300

Few months-2 yrs

33%

• Safety evaluation
• Starting dose
• MTD
• PD, PK

10−80

Few months-1 yr

70%

Fig. 1.2  Main features of different phases of randomized controlled trials. MTD minimum toler-
ated dose, PD pharmacodynamics, PK pharmacokinetics, SE side effects

are generally used to support results from primary endpoints or to provide informa-
tion for future research. Tertiary endpoints are rarely assessed and usually describe 
rarer outcomes.

Clinical trials are generally divided into 4 phases, designed with the primary aim 
of ensuring the safety of study participants. The major characteristics of each phase 
are represented in Fig. 1.2.

Phase I clinical trials estimate, for each novel agent, the safety, starting dose, 
maximum tolerated dose, dose-escalation method, pharmacological and metabolic 
properties, and eventual interactions with other drugs. Being the first approach of a 
new drug or intervention to patients, phase I clinical trials are designed with a lim-
ited number of healthy or diseased volunteers and are often conducted as open label 
studies, with both investigators and participants aware of the treatment adminis-
tered. The assessment of the maximum tolerated dose of an agent is often difficult 
since the trial should be designed to limit the exposure of too many patients to 
subtherapeutic doses of the drug while preserving safety. This can be achieved 
through different escalation methods.

It is important to limit the patient misperception that the drug tested during phase 
I might lead to direct health improvement. This is particularly true for trials testing 
drugs in refractory or end-stage disorders (i.e., chemotherapeutic agents for onco-
logic patients), and it can be prevented through the distribution of adequate informed 
consent forms.

Successful phase I trials are followed by phase II trials. They are exploratory 
trials conducted on few volunteer patients with the disease of interest. The num-
ber of patients can vary, even if it is usually higher than phase I. Phase II trials 
assess the preliminary efficacy and the appropriate dose of the drug, other than 
further deepening the issues of drug safety, pharmacokinetics, and pharmacody-
namics. In other words, they evaluate whether it has sufficient activity to warrant 
further development and access to phase III.  They might also tackle essential 
questions for phase III trials (i.e., drug dosages, posology, and route of 
administration).

G. Mulinacci and M. Carbone
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Phase III clinical trials test a potential treatment on a large scale and represent 
the best tool to consolidate new treatment approaches. They confirm the efficacy 
and estimate the incidence of common adverse effects, defined as those occurring 
at a rate not lower than 1 over 100 people [12]. Among type III clinical trials, the 
comparative trial is the most common. It compares the targeted drug with a pla-
cebo or a conventional treatment. To calculate the sample size of a comparative 
trial, several design parameters must be considered. Saad et al. summarized them 
within the ABCDE rule [13], where “A” stands for “α” and it represents the sig-
nificance level, or type I error rate (the probability that the trial will show a treat-
ment effect when it does not have any), which is usually below 5%; “B” stands 
for β, and it represents the type II error (the probability that the trial will not 
show an effect of a treatment that actually has an effect), usually ≤20%; “C” and 
“E” represent the outcome of control and experimental groups, respectively. 
Both groups rely on disease type, trial endpoint, and patient selection; the out-
come in the experimental group also depends on treatment efficacy. Finally, “D” 
stands for the dropout rate.

Interim analysis, both planned and unplanned, can be performed during phase III 
trials to evaluate the possibility of early declaration of success or unsuccess of an 
intervention. They can also suggest modification in sample size or study design. 
They are often conducted by an Independent Data Monitoring Committee.

Prior to enter phase IV, Food and Drug Administration (FDA) approval must 
occur. It is often required that several phase III trials are conducted prior to entering 
phase IV, which represents the terminal step of drug approval, and it is often required 
by regulatory authorities or by sponsoring companies. The aim of phase IV trials is 
to identify rarer side effects, long-term safety surveillance, and to evaluate cost of 
the intervention. Negative side effects during phase IV trials may lead to drug 
removal from the market or to restricted use.

An exception to this stepwise authorization process occurs when the benefits of 
a rapid approval outweigh the risks, as it occurs for rare disorders with unmet 
clinical needs or for emergency situation, with a recent example of the SARS-
CoV-2 pandemic. In such cases, the European Medicine Agency (EMA) can 
release a conditional marketing authorization to speed up drug approval [14]. 
Conditionally approved agents still require phase IV trials to assess for long-term 
side effects.

1.4.1.3	� Epidemiological Research
Epidemiological research deals with disease patterns, causes, incidence, prevalence, 
and control within a population. It often involves large populations, with good 
chances to determine the eventual association between exposure and outcomes. 
Epidemiological studies include case–control, cross-sectional, cohort, and ecologi-
cal studies.

Cross-Sectional Studies
Cross-sectional studies are retrospective studies that can fit both into the descriptive 
and analytical group, depending on whether they provide estimates of prevalence of 

1  Study Typology: An Overview
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Exposed case

Unexposed case

Exposed control

Unexposed control

Time

Single time point

Fig. 1.3  Cross-sectional studies: a snapshot is taken of a particular group of people at a given 
point in time

disease, or evaluate associations between different parameters. Most commonly, 
they simultaneously measure exposure and outcome of determined health-related 
phenomena among the study participants, and patient selection follows previously 
established inclusion and exclusion criteria. Cross-sectional studies often compare 
differences of outcomes between exposed and unexposed patients, by taking a one-
time snapshot of exposure and outcome (Fig. 1.3). The ability to collect information 
of a large number of patients in a small amount of time confers them a major role in 
the evaluation of disease burden of a specific population, thus aiding the description 
of disease prevalence (either point prevalence or period prevalence), incidence, and 
geographic or temporal variation of diseases in clinic-based samples. As it occurred 
for case reports and case series, they can raise scientific hypothesis to be verified 
with more complex study types. Being a real-life snapshot, cross-sectional studies 
are prone to several biases, both derived from inappropriate patient selection and 
physician/laboratory measurement errors. Another limit of these study designs 
includes the impossibility to determine causal and temporal associations between 
exposure and outcomes since several intercurrent factors might have influenced this 
relationship.

Case–Control Studies
Case–control studies are retrospective, observational studies in which two groups 
with different outcomes are compared based on some supposed causal attribute. 
They are indeed commonly used to look at factors associated with diseases or 
outcomes. The selection of study participants in case–control studies is based on 
the outcome status (Fig. 1.4). Investigators address the past exposure to suspected 
etiological factors among selected patients and compare it with that of healthy 
controls. A difficult step in this type of study is the choice of adequate cases and 
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controls. A “case” is a set of criteria used to decide if an individual has a particular 
disease. Selection of cases should be done to reduce as possible the risk of bias, 
and choosing the same source (hospitals, clinics, registers, or population) might 
be of help.

Cohort Studies
Participants of cohort studies are selected and followed up upon the exposure status 
to something (i.e., a noxious agent, drug, etc.) that the investigator considers as 
being a potential cause for an outcome. Cohort studies are usually prospective even 
if they can also be retrospective. At baseline, a population of healthy patients is 
divided into “exposed” and “unexposed” to a determined risk factor (Fig.  1.4). 
During the follow-up, each enrolled patient might develop the outcome of interest, 
irrespective of the exposure status. The investigator will then compare both groups, 
to search for relationships between exposure and outcome, thus assessing whether 
that specific risk factor has impact on a determined outcome. Overall, this study 
methodology is easy, rapid to perform, and costless. Other strengths of cohort stud-
ies include the possibility to determine multiple outcomes from single exposures; to 
assess the temporal relationship between exposure and outcome and to study rare 
exposures (Fig. 1.5).

ExposedControls

Unexposed

Time

Cases

Present: study onset Past: risk factor exposure

Fig. 1.4  Case–control studies: at day 0 (study onset) patients with a determined condition (cases) 
are compared with patients without that determined condition (controls) to retrospectively recog-
nize factors that may contribute to the outcome

1  Study Typology: An Overview
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Cases

Controls

Exposed

Unexposed

Study population

Cases

Controls

Time

Future: risk factor exposurePresent: study onset

Fig. 1.5  Prospective cohort studies: Healthy patients considered “at risk” upon a specific expo-
sure are followed up in time to identify incident cases

Ecological Studies
An ecologic study focuses to compare groups of people, rather than single individu-
als. It therefore assesses the overall disease frequency in a population, and it consid-
ers the eventual correlation with its average exposure to an agent. The term 
“ecological” derives from the common use of geographical areas to define the units 
of analysis. Ecological studies had an important role in the determination of occu-
pational exposure to noxious agents, and they have been used to understand the 
association of exposure as outcome, as it occurred for selected industrial chemicals 
with breast cancer incidence in Texas [14].

Other than being cheap and easy to perform, advantages of ecological studies 
include the possibility to map different pathologies with their risk factors. This is 
eased by the large number of people possibly included that helps the examination of 
risk-modifying factors.

1.4.2	� Secondary Studies

1.4.2.1	� Narrative Reviews
Narrative reviews are among the most frequent type of scientific works in the medi-
cal literature. They summarize, describe, and critically analyze the available 
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literature about a topic of interest. As such, they often help clinicians in seeking 
information about patients care by assembling a great amount of information into a 
few pages.

Narrative reviews are unstructured, have no pre-set research questions, analysis 
approach, or protocols. They might be conducted using search words within scien-
tific databases, but without specifying the methods used for selecting and reviewing 
the literature retrieved [15].

Due to the absence of a-priori protocols and standardized methodologies, authors 
of narrative reviews freely decide which research works to include. This creates a 
study selection bias and exposes narrative reviews to large criticisms from experts. 
Several attempts were made to facilitate the authors to build more valid reviews 
[16], and a brief scale for quality assessment of narrative review articles has been 
recently developed, with potential benefits.

1.4.2.2	� Systematic Reviews and Meta-Analysis
The worldwide diffusion of Internet led to a rapid surge of scientific information 
that are made available to everyone. This led to a steep increase in the overall knowl-
edge, but it also made difficult the distinction of high from low quality information.

Systematic reviews assemble the knowledge on a specific topic derived from 
other study types conducted until that moment, evaluate their reliability and quality, 
and synthesize their results. The PICO (patient, intervention, comparison, outcome) 
system is a technic used to start with a clear question to be answered or hypothesis 
to be tested; perform a comprehensive description of inclusion criteria to limit the 
bias related to study selection; and attempt to consider the most relevant published 
and unpublished studies.

They are generally written by experts after a meticulous review of the informa-
tion gained from both published and unpublished studies.

Meta-analyses are subsets of systematic reviews and can be performed to evalu-
ate the pooled data from two or more different studies to obtain more precise aver-
age results. However, if it is not possible to form a pooled estimate, a meta-analysis 
cannot be performed. As such, all meta-analyses are included in systematic reviews, 
but the opposite does not always occur.

Both study designs, if well conducted, can be of help to overcome the difficulties 
associated with the construction of large-scale clinical trials. Appropriate study 
selection is therefore fundamental, and the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) statement became an important tool for 
standardization and improvement of the quality of both systematic reviews and 
meta-analyses [17, 18].

Notwithstanding the use of PRISMA, a major issue of meta-analysis and system-
atic reports is still linked to publication bias, as often positive and optimistic results 
are published earlier and on higher impacted journals as compared to unexpected or 
unpopular ones. This results in the increase of type I errors (high false positive 
results) in meta-analysis, thus lowering their validity. Efforts are made to limit these 
biases [19].

1  Study Typology: An Overview
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Overall, systematic reviews and meta-analysis, together with clinical trials, rank 
at the top in the hierarchy of evidence (Fig. 1.1) and represent the basis of decision-
making in evidence-based medicine.

Third-Party Content  No third-party content or material was included in this chapter.

References

1.	Guyatt GH. Evidence-based medicine. ACP J Club. 1991:A-16.
2.	Aggarwal R, Ranganathan P. Study designs: part 2—descriptive studies. Perspect Clin Res. 

2019;10(1):34–6.
3.	Hoffman JR. Rethinking case reports. West J Med. 1999;170(5):253–4.
4.	Shimomura O. Discovery of green fluorescent protein (GFP) (Nobel lecture). Angew Chem Int 

Ed Engl. 2009;48(31):5590–602.
5.	Ligthelm RJ, Borzì V, Gumprecht J, Kawamori R, Wenying Y, Valensi P. Importance of obser-

vational studies in clinical practice. Clin Ther. 2007;29(6 Pt 1):1284–92.
6.	Hennekens CH, Buring JE, Mayrent SL.  Epidemiology in medicine. Boston, MA: Little, 

Brown; 1987.
7.	Evans SR. Clinical trial structures. J Exp Stroke Transl Med. 2010;3(1):8–18.
8.	Gupta UC. Informed consent in clinical research: revisiting few concepts and areas. Perspect 

Clin Res. 2013;4(1):26–32.
9.	Weng C. Optimizing clinical research participant selection with informatics. Trends Pharmacol 

Sci. 2015;36(11):706–9.
10.	Lieber RL. Statistical significance and statistical power in hypothesis testing. J Orthop Res. 

1990;8(2):304–9.
11.	Umscheid CA, Margolis DJ, Grossman CE. Key concepts of clinical trials: a narrative review. 

Postgrad Med. 2011;123(5):194–204.
12.	Eypasch E, Lefering R, Kum CK, Troidl H. Probability of adverse events that have not yet 

occurred: a statistical reminder. BMJ. 1995;311(7005):619–20.
13.	Saad ED. The ABCDE of sample size calculation. Personal Communication. 2014.
14.	Coyle YM, Hynan LS, Euhus DM, Minhajuddin ATM. An ecological study of the association 

of environmental chemicals on breast cancer incidence in Texas. Breast Cancer Res Treat. 
2005;92(2):107–14.

15.	Baethge C, Goldbeck-Wood S, Mertens S. SANRA—a scale for the quality assessment of nar-
rative review articles. Res Integr Peer Rev. 2019;4(1):5.

16.	Green BN, Johnson CD, Adams A. Writing narrative literature reviews for peer-reviewed jour-
nals: secrets of the trade. J Chiropr Med. 2006;5(3):101–17.

17.	Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et al. The PRISMA 
statement for reporting systematic reviews and meta-analyses of studies that evaluate health 
care interventions: explanation and elaboration. PLoS Med. 2009;6(7):e1000100.

18.	Willis BH, Quigley M. The assessment of the quality of reporting of meta-analyses in diagnos-
tic research: a systematic review. BMC Med Res Methodol. 2011;11:163.

19.	Greco T, Zangrillo A, Biondi-Zoccai G, Landoni G. Meta-analysis: pitfalls and hints. Heart 
Lung Vessels. 2013;5(4):219–25.

G. Mulinacci and M. Carbone



17

2Diagnostic Studies Made Easy

Fikri M. Abu-Zidan, Marco Ceresoli, and Saleh Abdel-Kader

2.1	� Introduction

Diagnostic methods are one of the major pillars of our daily surgical practice. We 
routinely encounter a young lady who visits the clinic because she has noticed a 
breast mass and she is worried that it is malignant, or an elderly man who noticed a 
change in his bowel habit associated with bleeding per rectum and he is worried that 
he has colonic malignancy. Alternatively, we may admit a boy to the hospital with 
suspected appendicitis and we need to decide whether to operate on him or not. To 
properly solve these problems and to answer patients’ concerns, we routinely use 
diagnostic studies to help us. Whether these methods are radiological, laboratory, 
endoscopic, or interventional, the main objective of these studies is to guide our 
clinical decision in finding whether the patient has that suspected disease or not, or 
occasionally to predict their clinical outcome. Understandably, the benefit of these 
diagnostic studies should overweigh their side effects especially for invasive proce-
dures. The results of a diagnostic test can be dichotomous (either negative or posi-
tive, for example, a SARS-CoV2 PCR test), categorical (like the type of the breast 
tumor), ordinal (like staging), or continuous values (like the C-reactive protein 
level). These types of data are explained in more detail in Chap. 13. We aim to lay 
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the principles of using these diagnostic tests in our clinical practice. This will help 
to critically appraise a diagnostic study, to design a diagnostic study, and to analyze 
its data.

Learning Objectives

•	 Understand the basic components of a diagnostic study.
•	 Recognize the criteria of a good diagnostic test.
•	 Define the predictor and outcome of a diagnostic study.
•	 Understand and be able to calculate the sensitivity, specificity, and predictive 

values of a test.
•	 Appreciate the importance of predictive values and likelihood ratios in clinical 

practice.
•	 Comprehend that the prior priority of a disease affects both the results and appli-

cation of a diagnostic test.
•	 Highlight the most common mistakes encountered in submitted diagnostic study 

articles.

2.2	� Nature of a Diagnostic Study

In principle, diagnostic studies are similar to the observational studies. Nevertheless, 
observational studies are usually designed to investigate the epidemiology of a 
disease, explore its etiology, or define its outcome. In contrast, diagnostic studies 
are commonly designed to answer the question whether the patient has a dis-
ease or not.

2.3	� The Need for a Gold Standard

How can we reach the disease real status? It can only be reached by using a gold 
standard having a definitive outcome. Ideally the gold standard should be positive 
in almost all patients with the disease and negative in almost all patients without 
the disease. This may be an excisional biopsy of a breast mass or an appendectomy 
with proven histopathology for positive cases. Is this the same for negative cases? 
Definitely not. We will not operate on negative cases to prove that they were nega-
tive but we reach that conclusion mainly with follow-up of the patients. It some-
times gets a little tricky. Let us say that we want to study the diagnostic ability of 
ultrasound in detecting free intraperitoneal fluid in blunt abdominal trauma. We 
may decide to consider CT scan as our gold standard although it is not perfect. 
Occasionally, we may consider the gold standard as CT scan or laparotomy because 
laparotomy is more accurate than the CT scan. The gold standard is usually used to 
rule in the disease than to rule it out. The definition of the disease outcome based 
on a selected gold standard is the most important pillar of a successful diagnos-
tic study.

F. M. Abu-Zidan et al.
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2.4	� Components of Diagnostic Studies

Let us consider the scenario of a male patient presenting with pain in the right 
iliac fossa. Once you examined his abdomen, you found that it was tender but soft. 
You are not sure clinically whether the patient has appendicitis or not, so you 
decided to perform an abdominal CT scan with intravenous contrast to help you 
in your surgical decision. The result of the CT scan (test result whether diagnostic 
of appendicitis or not) is the predictor, and your outcome is the disease (whether 
present or absent). You may decide to observe the patient or operate on him 
depending on the result. If you have already decided to operate before performing 
the study, then there is no value of performing the study. This actually may delay 
your management.

Let us say that the CT scan result showed acute appendicitis (positive result) and 
then you operated on the patient, removed the appendix, and sent it for histopathol-
ogy. The appendix can be inflamed (true positive) or normal (false positive). 
Conversely, the CT scan was normal and you decided to observe the patient. The 
patient may improve so the result of the CT scan is true negative. In comparison, the 
patient may develop a frank picture of localized peritonitis and once you operate on 
the patient, he had an acute perforated appendicitis. Then the result of the CT scan 
is false negative. This is demonstrated in Fig. 2.1.

Disease

D
ia

gn
os

tic
 s

tu
dy

Positive

a

c

b

d

a + b

a + c b + d a + b +
c + d

c + d

Positive

Negative

Negative

Total

Total

Fig. 2.1  A diagram showing the four cells stemming from the possibilities of the diagnostic study 
results depending on the disease status of the patient. a = true positive result (TP), b = false positive 
result (FP), c = false negative result (FN), and d = true negative result (TN)
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Table 2.1  Criteria of an ideal diagnostic test

Criteria
Accurate
Simple
Safe
Non-expensive
Non-invasive
Fast
Painless
Has point-of-care option
Reliable
Easy to learn
Generalizable

Let us look at Fig. 2.1 carefully and take some time to digest it. That is the key 
for understanding, designing, and analyzing a diagnostic study. The real disease 
status is presented by the columns whether it is positive or negative. The results of 
the test are presented by the rows. Again, it is important to have this mental picture, 
status of the disease is in the vertical columns, while the results of the diagnostic 
study are in the horizontal rows. Just to simplify the idea, we will use the term nor-
mal for those who do not have the specific disease (although they may have another 
pathology). Accordingly, we will have four cells: (1) a cell for the positive tests in 
the diseased patients (a) which are the true positive (TP) results; (2) a cell for the 
positive tests in the normal patients (b) which are the false positive (FP) results; (3) 
a cell for the negative tests in the diseased patients (c) which are the false negative 
(FN) results; and (4) a cell for the negative tests in the normal patients (a) which are 
the true negative (TN) results.

The next step is to add the cells of each column and each row to have their total. 
This will give the number of real diseased patients (a + c), the number of normal 
patients (b + d); the total number of positive studies (a + b), the total number of 
negative studies (c + d), and the total number (n) of study population (a + b + c + d).

The third step is to pause, think, and look into the table again. This table can give 
us two important sides of the diagnostic study: the test and the patient. There are two 
important criteria that are related to the test which are sensitivity and specificity. 
Test sensitivity measures the ability of a test to detect presence of the disease. It can 
be calculated from the first column. It is the percentage of the true positive results in 
those having the disease. This can be calculated by a/a  + c, in other words TP/
TP + FN.  In contrast, test specificity measures the ability of a test to detect the 
absence of the disease. This specificity can be calculated from the second column. 
The specificity is the percentage of the true negative results in those patients not 
having the disease which is d/b + d, in other words TN/TN + FP. It is very common 
that clinicians concentrate mainly on the sensitivity and specificity of a test. A good 
test should have high sensitivity and specificity (almost always positive in persons 
with the disease and negative in persons without the disease, preferably above 90%) 
but these are only two criteria of other important criteria of an ideal diagnostic test 
which are shown in Table 2.1.
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2.5	� Predictive Values

Kindly note that we have looked only at one side of a diagnostic study which is the 
test. But that is not the way we clinically practice surgery. Figure 2.2 shows the 
normal process of using a diagnostic test in our practice. Once we meet a patient 
with a specific complaint, we listen to him/her, examine the patient, decide whether 
we need a diagnostic test, ask for one if deemed necessary, wait for the results, and 
finally get the results. The result can be conclusive being positive or negative or may 
not even give an answer (non-conclusive). In that case, we may need to select 
another test which can give the answer.

The clinical reality is that a clinician gets a test result (positive or negative) and 
ponders how accurate this result is in predicting the real disease status of the 
patient. These are actually the predictive value of a positive test and the predictive 
value of a negative test. These can be calculated from the horizontal rows 
(Fig. 2.1).

History and clinical examination

Request the diagnostic study

Get the result

Positive result Negative result

Non conclusive

Another test

True False True False Is the result true?

Fig. 2.2  A diagram demonstrating the natural process of the encounter between the doctor and the 
patient and the usual process for requesting a diagnostic study
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The predictive value of a positive test in a study is the probability that a patient 
with a positive result actually has the disease. This can be calculated from the first 
row of Fig. 2.1 which is a/a + b, in other words TP/TP + FP. The predictive value 
of a negative test in a study is the probability that a patient with a negative result 
actually does not have the disease. This can be calculated from the second row of 
Fig. 2.1 which is d/c + d, in other words TN/TN + FN. Just to remember, if you 
evaluate the sensitivity or specificity of a test, calculate vertically. If you evaluate 
the predictive value of a positive or a negative result, calculate horizontally. 
Remember that we read horizontally not vertically, and attach that mentally to the 
clinical importance of the predictive values which is more important than the sensi-
tivity and specificity.

2.6	� Prior Probability of the Disease (Prevalence)

There is a need to define the prior probability of the disease in the studied popu-
lation because the predictive values and the clinical implications of the test 
when using the likelihood ratios in decision-making will differ depending on the 
prior probability of the disease. The predictive value of a positive test (PPV) 
will increase with the increased prior probability. The prior probability of the 
disease (prevalence) is defined as the percentage of patients who have the dis-
ease out of those tested for the disease. In other words, TP + FN/total number of 
patients (n).

2.7	� The Likelihood Ratio (LR)

It is the likelihood that a patient having the disease would have a certain test result 
divided by the likelihood that a patient without the disease would have the same 
result. In other words, it is the ratio of the true positive rate to the false positive rate. 
Sensitivity is the true positive rate, while 1 − specificity is the false positive rate. 
Accordingly, LR can be calculated as sensitivity/(1 − specificity).

The likelihood ratio is very useful in clinical practice when it is high because 
of its discriminating power. Figure  2.3 shows the Fagan nomogram. It is a 
graph which is used to estimate the extent of change in the probability that a 
patient has a disease depending on the likelihood ratio. The figure gives a theo-
retical comparison between two diagnostic tests (A and B) that were used to 
diagnose the disease in the same population having a prevalence of the disease 
(pre-test probability) of 50%. The diagram enabled us to define the post-test 
probability when the test was positive. In the A diagnostic test, having LR of 5, 
the post-test probability of the disease increased to 82% while for the B diag-
nostic test having LR of 1 the post-test probability of the disease stayed the 
same at 50%.

F. M. Abu-Zidan et al.



23

A

B

0.1

0.5
2000

99

95

90

80

70

50

30

10

5

2

0.5

0.1

500

100

20

5

1
0.5

0.1

0.02

0.005

0.001

2

10

30

50

70

80

90

95

99

Pre-test
probability (%)

Likelihood
Ratio

Post-test
probability (%)

Fig. 2.3  A Fagan nomogram is used to estimate the extent of change of the probability that a 
patient has a disease depending on the likelihood ratio. The figure compares two diagnostic tests 
(A and B) that were used to diagnose the disease in the same population having a prevalence of the 
disease of 50%. For the A diagnostic test, having LR of 5, the post-test probability of the disease 
increased to 82% while for the B diagnostic test having LR of 1 the post-test probability of the 
disease stayed the same at 50%
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2.8	� Receiver Operating Characteristics (ROC) Curves

The characteristics of a diagnostic test can be demonstrated graphically using the 
ROC curves. They were developed from the analysis of radar receivers during 
WWII from which they were called receiver operating characteristics curves. ROC 
curves and their analysis can compare diagnostic performances of different tests and 
evaluate the best cut-off value for a diagnostic test. They are the graphical represen-
tation of diagnostic characteristics of a test having an ordinal or continuous outcome 
at each possible cut-off point of the test result.

Figure 2.4 shows the ROC of the WSES sepsis severity score in predicting mortal-
ity (Sartelli et  al., World J Emergency surgery 2015). The X axis represents the 
1 − Specificity value (false positive rate), while the Y axis represents the sensitivity 
value (true positive rate). Table 2.2 is the SPSS output of the coordinates from which 
this graph was drawn. Each point of the score (1 − 15) will dichotomize the data. The 
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Fig. 2.4  Receiver operating characteristics (ROC) curve for the best WSES sepsis severity score 
that predicted mortality in patients having complicated intra-abdominal infection, global study of 
132 centers (n = 4553). The best cut-off point for predicting mortality was 5.5. (Reproduced from 
the study of Sartelli M et al. Global validation of the WSES Sepsis Severity Score for patients with 
complicated intra-abdominal infections: a prospective multicenter study (WISS Study). World J 
Emerg Surg 2015; 10: 61 which is distributed under the terms of the Creative Commons Attribution 
4.0 International License)
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Table 2.2  SPSS outcome for the WSES sepsis severity score study with the coordinates of the 
data which were used to produce the ROC so as to define the best cut-off point of the score that 
predicts death

Positive if more than or equal 
to Sensitivity 1 − Specificity
−1 1 1
0.5 0.986 0.766
1.5 0.986 0.725
2.5 0.978 0.653
3.5 0.964 0.395
4.5 0.942 0.323
5.5 0.896 0.221
6.5 0.802 0.101
7.5 0.757 0.081
8.5 0.598 0.043
9.5 0.436 0.019
10.5 0.335 0.013
11.5 0.159 0.004
12.5 0.101 0.001
13.5 0.024 0
15 0 0

Note that 5.5 had the best sensitivity and specificity

test will be considered true positive if death occurred at the WSES severity score 
which is greater than or equal to that point. It will be considered true negative if sur-
vival occurred if the score was less than that point. The test will be considered false 
positive if survival occurred at a score which is greater than or equal to that point and 
will be considered false negative if death occurred at a score less than that point. These 
dots draw a curve that describes the diagnostic accuracy of the WSES sepsis severity 
score in predicting mortality. A perfect test is the one which can vertically reach the 
left upper corner and then becomes horizontal. This would have a sensitivity of 100% 
and specificity of 100%. The diagonal line represents the reference line and is the 
result of a test that has 50% of specificity and 50% of sensitivity (like a coin tossing). 
The best cut-off point is usually where the curve turns with a corner, which was 5.5 in 
this case.

Another important element of the graph is the area depicted by the curve, called 
area under the curve (AUC): the higher this value, the higher is the diagnostic accu-
racy. The area under the reference line is 0.5 and represents a test with no diagnostic 
abilities. A test with good sensitivity and specificity will have a higher AUC: the 
maximum is 1. The AUC of the WSES sepsis severity score in predicting mortality 
was 0.92.

Let us take our trauma registry as another example. We want to evaluate the diag-
nostic performances of age and injury severity score (ISS) in predicting mortality of 
trauma patients. Figure 2.5 shows the diagnostic performances of age (blue line) 
and ISS (green line) in predicting trauma death. The AUC of age was 0.687 and the 
AUC of ISS was 0.92. ISS shows a better diagnostic performance in predicting 
mortality with a higher AUC compared with age.
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Fig. 2.5  Receiver operating characteristic (ROC) curve comparing the ability of age (blue line) 
and ISS (green line) in predicting trauma mortality. The area under the curve (AUC) of age was 
0.687 and of ISS was 0.92 indicating that ISS had a much better predictor ability

2.8.1	� Choosing a Cut-off Point: The Youden Index

What cut-off value can we choose to predict mortality in our clinical practice? 
According to the cut-off point chosen, the test will have different diagnostic abili-
ties. A high cut-off point will produce a very specific test (low false positive rate 
because patients having an ISS above the chosen cut-off point will have a very high 
probability of death) but also a low sensitive test (high false negative rate because 
mortality may occur with ISS less than the chosen cut-off point).

On the contrary if we choose a low cut-off point we will have a very sensitive test 
(low false negative rate because death is unlikely if the ISS is less than the chosen 
cut-off point) but a poorly specific test (high false positive rate). Choosing the best 
cut-off point of a diagnostic test is not straightforward and should take into consid-
eration the clinical contest. For example, some diseases require high sensitivity 
(screening tests) and others require high specificity. It is clear that the cut-off point 
plays a pivotal role in balancing diagnostic characteristic of a test (sensitivity and 
specificity).

F. M. Abu-Zidan et al.
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To evaluate the best cut-off point, we can adopt the Youden’s J statistics of 
Youden’s index. For each cut-off point we can calculate the Youden’s index as “Sen
sitivity + Specificity − 1.” This index could assume values between 0 and 1, where 
value 1 indicates the perfect diagnostic test. The cut-off value with the highest 
Youden’s index indicates the value with the maximum available sensitivity and 
specificity.

2.9	� Common Errors Encountered in Submitted 
Diagnostic Studies

We hope that by highlighting common errors of diagnostic studies,  we will educate 
young researchers to avoid them when submitting their articles to journals. This will 
possibly reduce the chance of rejection of their papers. Other common errors encoun-
tered in research design are detailed in Chap. 3. Those that we have encountered when 
reviewing diagnostic studies submitted to acute care surgical journals include:

	1.	 No clear gold standard: Using a gold standard is pivotal to assure the validity of 
the study. Missing the gold standard indicates that you cannot be sure of your 
results.

	2.	 Lack of definition of the test results: The definition of each of the results (true 
positive, true negative, false positive, and false negative) should be clearly 
defined in the protocol and should be followed through the whole study.

	3.	 Not reporting the predictive values or likelihood ratio: These important clinical 
values should be calculated and reported. Reporting only sensitivity and speci-
ficity is not enough.

	4.	 Ignoring the learning curve of the operator: This is a common problem in diag-
nostic tests that need high technical skills. If the results of the study depend on 
the skill of the operator like laparoscopy or ultrasound, then the operator should 
have passed the learning curve stage so the poor results of the test are not attrib-
uted to the operator.

	5.	 Improper study population: This can be a fatal mistake. The studied population 
should be that which will benefit from the study. An example for that is selecting 
a population that has a very high prior probability of the disease like studying the 
role of C-reactive protein in diagnosing acute appendicitis in those who were 
already operated. Those who were operated will have a prior probability of 
almost 90% of acute appendicitis which may be even higher than the sensitivity 
of the diagnostic test.

	6.	 Not addressing the generalizability: Diagnostic studies should be useful in the 
real clinical situation for a particular setting. For example, the excellent results 
of diagnosing acute appendicitis by ultrasound experts may not be reproducible 
in other hospitals without proper training or expertise.

	7.	 Ignoring the non-conclusive findings: The percentage of the non-conclusive 
results should be reported because it may affect the practical usefulness of the 
test. It is very interesting to note that many diagnostic studies ignore the 
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non-conclusive studies. These should be minimum to have a test which is useful. 
Let us assume that a study was done in a population and it was not conclusive in 
50% of the patients, do you consider this as a good test!

Do and Don’t

•	 Think about the components of the diagnostic studies you use.
•	 Use the predictive values and likelihood ratios in your clinical practice.
•	 Value the impact of prior priority of the disease on the results of diagnostic 

studies.
•	 Understand the structure of a diagnostic study. This will help to avoid common 

errors encountered in designing diagnostic studies.
•	 Do not concentrate only on the sensitivity and specificity of a study and know 

their limitations.

Take Home Messages

•	 There are two major components of a diagnostic study: The method and the 
population in which it was used.

•	 Calculate the sensitivity and specificity vertically and calculate the predictive 
values of a test horizontally.

•	 Overusing unnecessary diagnostic methods can be sometimes misleading.

Conflict of Interest  None declared by the author.
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3Common Pitfalls in Research Design and 
Its Reporting

Fikri M. Abu-Zidan

3.1	� Introduction

Being involved in reviewing articles for high impact surgical journals for more than 
25 years, I have repeatedly encountered certain errors in research methodology and 
statistical analysis regardless of the origin of the manuscripts, whether stemming 
from developed or developing countries. These errors can be easily avoided by ask-
ing for advice and proper planning. Some of these errors, although seem trivial, can 
be fatal because they cannot be saved retrospectively. Occasionally researchers may 
concentrate so much on the details, technicality, and complexity while missing the 
overall picture. That is similar to visualizing a sky tower or reading a chest X-ray. 
Details can be missed either because you are so far from it, or alternatively so close 
to it. Taking care of the overall aim and structure of a research project is as impor-
tant as looking into the small details. This chapter aims to highlight some common 
research design and reporting errors, hoping that they will be avoided when per-
forming a research project.

Learning Objectives

•	 Highlight the importance of properly defining a focused research question.
•	 Stress the importance of involving a research methodologist in the research 

project.
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•	 Recognize that fatal errors in research design include using invalid measurement 
tools and testing the wrong population.

•	 Recognize the difference between correlation and prediction.
•	 Understand the difference between clinical and statistical significance.
•	 Report the data properly and describe how to deal with missing data.

3.2	� Unclear Research Question

The main research question is “What do you want to find in your study?” If this 
question is not focused, it will be difficult to have a proper plan (map) to reach that 
aim. I think that a proper research question is the most important component for a 
research project. Let us give a practical example. We know that road traffic colli-
sions cause death. We may ask ourselves what causes this death. This may be caused 
by speed, slipping of a car in a rainy weather, distraction of the driver when using a 
cell phone, or not using a seatbelt. Real life situations are complex, and we will not 
be able to answer all these questions at the same time in a single study. You have to 
define exactly what you want to study. Selecting a wrong research question makes 
the whole study flawed. This is similar to horse racing in which the eyes of the horse 
are covered by eye blinkers so the horse can go only in one direction (forward) to 
win the race (Fig. 3.1). If the blinkers are removed, the horse will look around and 
slow down. Accordingly, the researcher should spend significant time to define the 
aim of the study and concentrate on answering it. After reaching the first aim, then 
the researcher can remove the eye blinkers, look around, and think of his/her next 
target, and so on. Each question will generate multiple new questions. It is then the 
duty of a good researcher to define the next important, relevant, and feasible ques-
tion to answer. I personally aim at answering one question in each study. I discour-
age my research students to have a multifactorial design in which they try to answer 
more than one question because this approach has the risk of not being able to 

Fig. 3.1  Researchers 
should be like racing 
horses in their research in 
which the eyes of horses 
are covered by eye blinkers 
so that they can follow the 
racing track in one 
direction (forward) to win 
the race without being 
distracted. (Illustrated by 
Mohammad F. Abu-Zidan)
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answer any of the questions. That is logical because having multiple questions to 
answer at the same time needs extreme care in the methods to be able to answer all 
questions. Making the aim more focused makes the methods simpler, direct, and 
more precise.

3.3	� Lack of Planning (Failing to Plan Is Planning to Fail)

Genuine time should be spent in designing and planning a study before it starts. 
Involving a methodologist at this early stage will avoid errors and improve the 
chance of accepting a scientific paper. Submitted papers without involvement of a 
methodologist are more likely to be directly rejected without sending them to the 
reviewers. Even if they were sent for review, they are more likely to be rejected 
[1]. Inappropriate statistics and overinterpretation of the results are the most com-
mon causes for paper rejections [2]. Methodologists can be involved in the whole 
process of research including formulating the research question, research design, 
research audit, analyzing the data, participating in writing the manuscript, criti-
cally reading it, and finally approving it [3]. I will give a personal practical exam-
ple highlighting this important point. Twenty years ago, I developed an 
experimental animal model for training Focused Assessment Sonography of 
Trauma (FAST) [4]. Designing and planning this study took 2 months, while per-
forming the animal experiments and collecting the data took only 2  days. The 
paper was reviewed and accepted in less than 3  weeks. The ratio between the 
design/planning: performing the study in this example was 30:1. Although this 
may be an extreme example, it highlights the importance of thinking deeply and 
discussing the study with a methodologist to finalize the research design and plan 
for executing it.

3.4	� Using the Wrong Research Tool

When measuring outcome variables in a research study, you need the proper tools 
to accurately measure these variables. Let us assume that you want to measure the 
mean arterial pressure in a critically ill septic patient in the intensive care unit. 
There are important characteristics in the measurement tool that have to be ful-
filled. These are: (1) The tool should be valid, which means that it can measure the 
mean arterial pressure. Using a thermostat to measure the mean arterial pressure is 
not valid; (2) It should be accurate, this means that it will measure the real value; 
(3) It should be reliable, this means that it will give the same result if the measure-
ments are repeated. Kindly note that accuracy is different from reliability. You may 
get the same result when the tool is reliable but this may cause a systematic error 
if it is not accurate. The most serious error in the study is using an invalid tool. This 
error cannot be corrected after finishing the study or experiment and will spoil the 
whole experiment.

3  Common Pitfalls in Research Design and Its Reporting
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It is common that acute care surgeons use surveys in their research. Although 
surveys look easy to perform and collect information about needs assessment, they 
are very tricky. They are not simply sending few questions and collecting the 
answers. It is important that these surveys should be valid and reliable. A lot of 
attention should be taken to have simple, clear, useful, well understood, and precise 
questions in these questionnaires [5].

3.5	� Selecting the Wrong Population

This is a very fatal mistake that should be avoided. Any experiment or interven-
tion should be tested in the population that are expected to benefit from it. I 
have repeatedly encountered clinical studies that aim to investigate a diagnos-
tic test for a certain disease and then studied it in a population that has the final 
diagnosis of that disease (prior probability of almost 100%). An example of 
that is studying the role of ultrasound in diagnosing acute appendicitis. The 
authors studied ultrasound only in those operated (prior probability of 90%). 
That is the wrong population to be studied because ultrasound should be tested 
in those suspected to have appendicitis and not those already decided to be 
operated on. What is the value of ultrasound if you have already decided for 
surgery?

Let us have another example of an interventional procedure. Assume that we 
are going to study the role of Resuscitative Endovascular Balloon Occlusion of 
the Aorta (REBOA) in trauma abdominal bleeding patients. Figure  3.2 shows 
what is called the therapeutic window of an intervention. If REBOA was used in 
those having very mild disease, then it will be harmful (line is horizontal, no 
benefit). Similarly, if severity is above a certain limit (the line is also horizontal 
with severe injury), then it may not be useful. It is then very important to care-
fully select the population that may benefit from an intervention to be prop-
erly tested.
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Fig. 3.2  An illustration 
showing the principle of 
the therapeutic window 
when using Resuscitative 
Endovascular Balloon 
Occlusion of the Aorta 
(REBOA). REBOA will be 
harmful if used in mild 
injured patients (lower 
horizonal line). It will not 
be useful if used above a 
certain limit (upper 
horizontal line)
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3.6	� Addressing the Missing Data

The authors have to be transparent regarding handling their missing data [3]. 
Prospective studies should generally have missing data of less than 10%. 
Retrospective studies usually have more missing data (up to 30%). Missing data are 
usually not random in high risk situations (like death) and may affect the analysis. 
Patients who die especially in the Emergency Department tend to have more miss-
ing data.

If imputations are used to replace the missing data (usually for retrospectively 
collected data), the authors have to justify this approach and demonstrate that miss-
ing data were random. This can be addressed by demonstrating that: (1) the groups 
have the same percentage of missing data before imputation for each studied vari-
able and (2) they were statistically similar before the imputation. Our Trauma Group 
follows a school that does not replace missing data because this depends on assump-
tions which may increase the uncertainty in our statistical findings. We found that 
the best approach in establishing our trauma registry is to collect data prospectively 
by trained researchers and regularly audit the data which increased the trust in our 
data [6, 7].

3.7	� Correlation and Prediction

There is great difference between correlation and prediction which should be clear. 
Correlation addresses the relationship between two variables regardless of whether 
one of them depends on the other. The correlation (association) does not imply a 
cause–effect relationship or the sequence in which they happen [8]. In comparison, 
prediction tries to define the outcome of one variable (dependent factor) depending 
on one or more factors (independent factors). The size of the p value does not reflect 
the strength of the correlation. Statistical significance having a small p value can 
occur when the sample size is large despite a weak correlation [9, 10]. Although 
there may be a statistically significant correlation, this may not be a strong correla-
tion and the variable cannot be used as a predictor (Fig. 3.3). Predictors for impor-
tant clinical outcomes, which can affect serious decisions, should be strong and 
simple to be useful in clinical practice.

The test for defining the correlation depends on whether the data have a normal 
distribution or not. When the data have a normal distribution, then Pearson’s corre-
lation test can be done. If the data are ordinal or do not have a normal distribution 
then Spearman’s rank correlation test should be performed [8]. Figure 3.4 demon-
strates this point. Spearman’s rank correlation was used because the Likert type 
scale has ordinal data of 1–7. This analysis correlates the ranks and not the actual 
numbers. The scatterplot clearly shows that Pearson’s correlation cannot be used in 
this scenario.

3  Common Pitfalls in Research Design and Its Reporting



34

10

10

20

30

40

50a

20

C

D

30 40 50

10

10

20

30

40

50b

20

E

F

30 40 50

Fig. 3.3  This figure illustrates two situations of significant correlations; one of them has a strong 
correlation (a) that may be used for prediction, while the other has a weak correlation (b). Kindly 
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Fig. 3.4  The shown figure 
of the data of a Likert type 
scale has ordinal data of 
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3.7.1	� Statistical and Clinical Significance

It is very important to be aware of the difference between statistical and clinical 
significance. We should not look through the pinhole of the p value but concentrate 
on the clinical implications of the statistical findings (Fig. 3.5). The “p” value esti-
mates the probability that the reported result occurred by chance. It does not show 
the difference in the mean nor its direction. In contrast, confidence intervals can 
show the effect size, the direction of the change, the precision of the findings besides 
the statistical significance [11, 12].

Although statisticians can perform advanced analysis, clinicians may have more 
in-depth understanding of what do the findings mean because they are aware of their 
clinical importance and implications. Clinical significance depends on its effect on 
the existing clinical practice. When the sample size is large, there may be highly 
statistically significant findings but these may not translate to an effect size that can 
change clinical practice [13]. Occasionally when statisticians lead the clinical 
research, they may not appreciate the difference between dependent and indepen-
dent factors if they do not have a clinical background or have close interactions with 
clinicians. I have personally reviewed articles in which the analysis tried to predict 
a clinically independent factor from a dependent factor which should be the oppo-
site. Statisticians and clinicians should work together as one team before starting the 
clinical studies in designing the research protocol, during the study, and after com-
pletion of the study up to its publication. Team work is very important for acute care 
surgery including its research.

Do not look
through

the p pinhole

p

Look at clinical
significance

Statistical
significance

Clinical
significance

Fig. 3.5  We should not look through the pinhole of the “p” value but concentrate on the clinical 
implications of the statistical findings. The “p” value only estimates the probability that the 
reported result occurred by chance. It does not show the effect size nor its direction. (Illustrated by 
Mohammad F. Abu-Zidan)
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3.8	� Reporting of the Data

Accuracy and completion of the published statistical data will have long term impli-
cations in the future. Michalczyk and Lewis found that nearly half of the studies 
published in the Journal of Medical Education did not report enough statistical data 
[14]. Other researchers may need to compare the data with their own or pool the 
results in future systematic reviews. For example, it is not enough to report the mean 
alone without its variation (the standard deviation). In 2011, I had a disappointing 
personal experience trying to perform a systematic review on internal fixation of 
flail chest. After performing a lengthy detailed search, we could locate only two 
randomized controlled trials which were ready for the analysis [15, 16]. The paper 
of Granetzny et al. [15] reported only the mean without the standard deviation. We 
tried to contact the authors to get this data but we failed. Missing this simple data 
aborted the systematic review. When the mean and standard deviation of an inde-
pendent variable of a group is given with the sample size, then it is possible to 
compare it or pool it with other studies [11]. It is becoming now a requirement in 
some highly ranked journals to publish the set of data that generated the results.

Do and Don’t

•	 Define a focused, relevant, important, and feasible research question to answer.
•	 Plan your study properly with the help of a methodologist before you start data 

collection.
•	 Use valid tools to measure the outcome variables in the proper population.
•	 Report your data accurately.
•	 Concentrate on the clinical significance of your findings.
•	 Don’t interpret a correlation relationship as a predictor.
•	 Don’t ignore the missing data of your study.

Take Home Messages

•	 The research question is the most important pillar of a study.
•	 Failing to plan is planning to fail.
•	 Be transparent and accurate in using your research tools and reporting your 

results.
•	 Use your clinical sense.

Conflict of Interest  None declared by the author.
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4Introduction to Statistical Method

Luca Gianotti

4.1	� Introduction

Medical statistics (or biostatistics) is fundamental for the study of human health and 
disease. Its applications range from biomedical laboratory research, to clinical med-
icine, to health promotion, to national and global systems of health care to medicine 
and the health sciences, including public health, forensic medicine, epidemiology, 
and clinical research. It is the science of summarizing, collecting, presenting, and 
interpreting data in medicine and using this data estimate the magnitude of associa-
tions and test hypotheses.

Two fundamental ideas in the field of statistics are uncertainty and variation. 
There are many situations that we encounter in science in which the outcome is 
uncertain. In some cases, the uncertainty is because the outcome in question is not 
determined yet, while in other cases the uncertainty is because although the out-
come has been determined already we are not aware of it.

Probability is a mathematical language used to discuss uncertain events and 
probability plays a key role in statistics. Any measurement or data collection is sub-
ject to a number of sources of variation. It means that if the same measurements are 
repeated, then the answers would likely change. Statistics attempt to understand and 
control (where possible) the sources of variation in any situation and measure the 
probability.
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4.2	� The Hypothesis

A scientific hypothesis is the initial building block in the scientific method. The 
basic idea of a hypothesis is that there is no pre-determined outcome. Thus, when a 
study or a protocol is designed, the hypothesis is your “best guess” about the effect 
of a treatment based on biological plausibility and previous literature results. A 
hypothesis can be formulated only in randomized controlled trials testing a treat-
ment or in prospective observational studies challenging, for example, the prognos-
tic or diagnostic ability of a test or a variable on a specified outcome.

Hypothesis testing requires the construction of a statistical model, meaning to 
test whether the data of an experiment follow a chance or casual processes or are 
truly responsible for the results obtained.

There are two types of hypothesis: the null hypothesis and the alternative hypoth-
esis. The null hypothesis and the alternative hypothesis are types of conjectures 
used in statistical tests, which are formal methods of reaching conclusions or mak-
ing decisions on the basis of data.

•	 The null hypothesis is the default hypothesis, also called zero hypothesis (H0) 
because it implies that the difference to be measured is zero (null). It means that 
there is no difference between two or more observed measures or groups. 
Therefore, the main statistical assumption is the null hypothesis.

•	 The alternative hypothesis, also defined as H1 hypothesis, is the opposite of the 
H0 meaning that there is a significant difference between experimental groups or 
samples.

Very roughly, the procedure for deciding goes like this: Take a random sample 
from a population. If the sample data are consistent with the null hypothesis, then 
do not reject the null hypothesis; if the sample data are inconsistent with the null 
hypothesis, then reject the null hypothesis and conclude that the alternative hypoth-
esis is true.

Example
Uncomplicated appendicitis may be treated conservatively with antibiotic therapy 
even though a 40% recurrence rate is described. A new antibiotic Z might reduce 
the probability of having an operation for uncomplicated appendicitis. Possible 
null hypotheses are “this antibiotic Z does not reduce the chances of having sur-
gery” or “this antibiotic Z has no effect on the chances of having surgery.” The 
test of the hypothesis consists of administering the new antibiotic Z to half of the 
population with uncomplicated appendicitis (study group) as compared to the 
other half of the population (control group) receiving antibiotic B which repre-
sents the standard of care. If the data show a statistically significant change in the 
people receiving antibiotic A, the null hypothesis is rejected and the H1 hypothesis 
is accepted.

According to the study design with one, two, or more samples, comparing means, 
variances, or proportions, paired or unpaired data, with different distributions, or 
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large and small sample size, there are many types of significance tests that can be 
used to test the hypotheses. The appropriate significant test to be used depends on 
the type of data you are handling.

As stated above a hypothesis may be formulated also in prospective observa-
tional studies.

Example
I wish to test if a certain level of C-reactive protein (CRP), measured at the first 
day after a major abdominal operation, is predictive of infectious complications 
occurring later on in the postoperative course. From literature review, but in a 
different population (cardiac surgery), the best threshold is > 5 mg/dL. A possible 
null hypothesis is “A CRP > 5 is not capable of predicting the occurrence of an 
infection.” The test of the hypothesis consists of comparing the group of patients 
with CRP ≤ 5 with the group of patients with CRP > 5. If the data show a non-
statistically different proportion of infections in the two groups, the null hypoth-
esis is accepted.

4.3	� The Aim

Much easier to apply and describe is the aim of a study that typically applies to 
retrospective research. Alternative terms for aim are goal, purpose, or objective 
of a study. As the hypothesis, the aim should be formulated based on “hole/s” in 
the previous knowledge of a research topic and put in the contest of the available 
literature. The aim/s should establish the scope, depth, and direction that a 
research will ultimately take. An effective set of aims will give the research focus 
and clarity for the readers. Therefore, the aims indicate what is to be achieved 
with the study and describe the main goal or the main purpose of the research 
project.

In doing so, it acts as a focal point for your research and should provide the read-
ers with clarity as to what the study is all about. Because of this, research aims are 
almost always located within its own subsection under the introduction section of a 
research document.

A research aim is usually formulated as a broad statement of the main goal of the 
research and can range in length from a single sentence to a short paragraph. 
Although the exact format may vary according to preference, they should all 
describe why the research is needed (i.e. the context), and possibly what it sets out 
to accomplish.

Example
The use of preoperative biliary stenting (PBS) in jaundice patients with periampul-
lary malignancy is debated. Current guidelines recommend to avoid routine biliary 
stenting and to limit the procedure to symptomatic jaundice, cholangitis, or planned 
neoadjuvant treatment. Despite delaying surgery by 4–6 weeks having been sug-
gested, the time needed for recovery after biliary drainage is undefined, and no gold 
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standard tests have been recognized to quantify the recovery of liver functions 
after PBS.

The aim of this study was to evaluate the potential association between the dura-
tion of PBS and the occurrence and severity of postoperative morbidity in patients 
undergoing pancreatoduodenectomy.

4.4	� The Errors

A type I error [or alpha (α)] is a false positive conclusion, while a type II error [or 
beta (β)] is a false negative conclusion. Statistical planning always involves uncer-
tainties, so the risks of making these errors are unavoidable in hypothesis testing. 
These risks can be minimized through careful planning in your study design. Using 
hypothesis testing, you can make decisions about whether your data support or 
refute your research predictions.

4.4.1	� Type I Error

A type I error means rejecting the null hypothesis when it is actually true. It means 
concluding that results are statistically significant when, in reality, they came about 
purely by chance or because of unrelated factors.

The risk of committing this error is the significance level (or α) you choose. That 
is a value that you set at the beginning of your study to assess the statistical proba-
bility of obtaining your results (in other words, the p value). The significance level 
is usually set at 0.05 or 5%. This means that your results only have a 5% chance of 
occurring, or less, if the null hypothesis is actually true.

If the p value of your test is lower than the significance level, it means your 
results are statistically significant and consistent with the alternative hypothesis. If 
your p value is higher than the significance level, then your results are considered 
statistically non-significant.

Example
It is established that repeated episodes of postoperative hyperglycemia in non-
diabetic subjects increase the risk of having surgery-related infections after major 
abdominal operations and it is also known that preoperative oral carbohydrate 
(CHO) loading blunts insulin resistance and thus decreases the risk of hyperglyce-
mia. Therefore, you design a trial to explore whether preoperative oral CHO load-
ing could achieve a reduction in the occurrence of postoperative infection when 
compared with the occurrence of postoperative infection with placebo. This calcu-
lated sample size equal to 440 patients per group is set to provide an 80% power 
(type II error) with a type I error rate fixed at 5% to detect superiority in a 40% 
reduction (effect size) of the rate of postoperative infection given an overall risk of 
infection equal to 18%. The results are as follows: Postoperative infections occurred 
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Null Hypothesis (H0) distribution

Type I error rate
a

Fig. 4.1  The figure shows the 
distribution of the null hypothesis. If your 
results fall in the red area (alpha) there is 
a less than 5% of probability that the 
results are consistent with the null 
hypothesis

in 16.3% of patients from the CHO group and in the 16.0% patients from the pla-
cebo group (relative risk: 1.019, 95% confidential interval 0.720–1.442; relative 
difference 0.003, 95% confidential interval 0.053–0.059, P = 1.00).

In this case you are very confident in accepting the null hypothesis because the 
risk of a type I error is close to zero.

Let us hypothetically say that instead the results show that the CHO group has a 
rate of infections of 11.2% and in this case the p value is 0.04. Theoretically, you 
should reject the null hypothesis. However, this p value means that there is a 4% 
chance of your results occurring if the null hypothesis is true. Therefore, there is still 
a risk of making a type I error.

To reduce the probability of a type I error, you can simply set a lower signifi-
cance level (i.e. 0.01).

4.4.2	� Type I Error Rate

The null hypothesis distribution curve (shown below) displays the probabilities of 
obtaining all possible results if the study is repeated with new samples and the origi-
nal null hypothesis holds true.

At the tail end, the shaded area represents alpha. If your results fall in this area of 
this curve, they are considered statistically significant and the null hypothesis is 
rejected (Fig. 4.1).

4.4.3	� Type II Error

A type II error means not rejecting the null hypothesis when it is actually false. 
Thus, a type II error means failing to conclude there was an effect when there actu-
ally was. In reality, your study may not have had enough statistical power to detect 
an effect of a certain size. Statistical power is the extent to which a test can correctly 
detect a real effect when there is one. A power level of 80% or higher is usually 
considered acceptable.

The risk of a type II error is inversely related to the statistical power of a study. 
The higher the statistical power, the lower the probability of making a type 
II error.
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Example
You may consider the same case used to elucidate type I error. You run a subset 
analysis of that trial results and the rate of infections in women (representing half 
of the entire population) is 15% in the placebo group vs. 11% in the CHO group 
with a p value of 0.08. Though, by analyzing this subgroup (women) you have 
reduced the sample size. In this case you should accept the null hypothesis and con-
cluding that the CHO treatment does not affect the outcome even in this specific 
subgroup of subjects. However, this may represent a type II error and the effect of 
treatment is not significant only because you have reduced the sample. In other 
words, you are failing to conclude there is an effect when there actually is.

A type II may occur if an effect is smaller than this size. A smaller effect size is 
unlikely to be detected in your study due to inadequate statistical power.

4.4.4	� Statistical Power

The statistical power of a hypothesis test is the probability of detecting an effect if 
there is a true effect present to detect.

Statistical power is determined by:

•	 Effect size: Larger effects are more easily detected.
•	 Sample size: Larger samples reduce sampling error and increase power.
•	 Significance level: Increasing the significance level (alpha) increases power.

To (indirectly) reduce the risk of a type II error, you can increase the sample size 
or the significance level.

4.4.5	� Type II Error Rate

The alternative hypothesis distribution curve (shown below) depicts the probabili-
ties of obtaining all possible results if the study is repeated with new samples and 
the original alternative hypothesis holds true. Type II error rate (β) is represented by 
the blue area on the left side. The remaining area under the curve represents statisti-
cal power, which is 1—β.

Increasing the statistical power of your test directly decreases the risk of making 
a type II error (Fig. 4.2).

Alternative hypothesis (H1) distribution

Statistical Power
(1-β)

Type II error rate
β

Fig. 4.2  The figure shows the distribution 
of the alternative H1 hypothesis. The blue 
area indicates type II error rate probability
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Alternative hypothesis (H1)
distribution

Type II error rate   β

Null Hypothesis (H0)
distribution

α   Type I error rate

Fig. 4.3  The error trade-off. The distribution of the two hypothesis are always intersected

4.4.6	� Trade-Off between Type I and Type II Errors

Type I and type II error rates influence each other. That is because the significance 
level (type I error rate) affects statistical power, which is inversely related to type II 
error rate.

This means there is an important trade-off between type I and II errors:

•	 Setting a lower significance level decreases a type I error risk, but increases a 
type II error risk.

•	 Increasing the power of a test decreases a type II error risk, but increases a type 
I error risk.

This trade-off is visualized in the graph below. Hypothesis distributions are 
not distant but are always intersected with an overlapping area. This overlapping 
area is the error area and it is divided into type I and type II errors. By setting 
type I error rate, you indirectly influence the size of type II error rate as well. 
Reducing the alpha always comes at the cost of increasing beta and vice versa 
(Fig. 4.3).

4.4.7	� Is a Type I or Type II Error Worse?

There is no worse error, but both may have important consequences. A type I error 
means mistakenly going against the null hypothesis. This may lead to new policies, 
practices, or treatments that are inadequate or a waste of resources. In contrast, a 
type II error means failing to reject a null hypothesis. It may result in missed oppor-
tunities for new treatments or innovations.
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4.5	� Sample Size Calculation

One of the pivotal aspects of planning a clinical study is the calculation of the sam-
ple size. It is naturally neither practical nor feasible to study the whole population 
in any study. Hence, a set of participants is selected from the population, which is 
less in number (size) but adequately represents the population from which it is 
drawn so that true inferences about the population can be made from the results 
obtained. This set of individuals is known as the “sample.”

In a statistical context the “population” is defined as the complete set of people 
(e.g. people of Italy with cholelithiasis). The “target population” is a subset of indi-
viduals with specific clinical and demographic characteristics in whom you want to 
study your intervention (e.g. symptomatic cholelithiasis), and “sample” is a further 
subset of the target population which we would like to include in the study (e.g. 
symptomatic cholelithiasis with signs of inflammation). Thus a “sample” is a por-
tion, piece, or segment that is representative of a whole.

To calculate the sample of a study, four components are needed: type I error, type 
II error, the incidence of an event, and the relative variation. The calculation of the 
sample, from a mathematical and statistical point of view, will be not discussed in 
this chapter. However easy tool for sample size calculation is available online.

Examples
I want to study the effect in preventing wound infection of an antibiotic X versus an 
antibiotic Z for preoperative prophylaxis in colorectal surgery.

	A.	 I choose a type I error of 5% and a type II error of 80%, the recognized inci-
dence of wound infection is 20%, and I expect a superior effect of antibiotic 
X with a relative reduction of incidence of 30% (absolute reduction to 14%). 
The sample size calculation is 1228 (614 for antibiotic X and 614 for anti-
biotic Z).

	B.	 I choose a type I error of 1% and a type II error of 90%, the recognized inci-
dence of wound infection is 20%, and I expect a superior effect of antibiotic X 
with a relative reduction of incidence of 30% (absolute reduction to 14%). The 
sample size calculation is 2328 (1164 for antibiotic X and 1164 for antibiotic Z).

	C.	 I choose a type I error of 5% and a type II error of 80%, the recognized inci-
dence of wound infection is 20%, and I expect a superior effect of antibiotic X 
with a relative reduction of incidence of 50% (absolute reduction to 10%). The 
sample size calculation is 398 (199 for antibiotic X and 199 for antibiotic Z).

How do I decide on these 4 parameters? By convention it is acceptable to set a 
type I error at 5% (but not higher) and a type II error at 80% (but no lower). However, 
the value to attribute to the errors remains a free choice. The incidence of an event 
should be based on the existing literature or from previous observational study in 
your setting. The relative or absolute variation between study groups is your hypoth-
esis and should be based on previous studies, biologic plausibility, or clinical 
relevance.
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4.6	� The P Value

The America Statistical Association (ASA) panel defined the P value as “the prob-
ability under a specified statistical model that a statistical summary of the data (for 
example, the mean or median difference between two compared groups) would be 
equal to or more extreme than its observed value” [1].

What does it mean for us (mortal human being) who read a scientific paper 
and want to get information on changing or not our routine clinical practice? It 
means that a P value ≤0.05 of any statistical test is not enough to accept or reject 
the null hypothesis. Therefore, part of the problem lies in how people interpret P 
values. According to the ASA statement, “A conclusion does not immediately 
become ‘true’ on one side and ‘false’ on the other.” Valuable information may be 
lost because researchers may not pursue “insignificant” results. Conversely, 
small effects with “significant” P values may be biologically or clinically unim-
portant. At best, such practices may slow scientific progress and waste resources. 
At worst, they may cause harm when adverse effects go unreported or underesti-
mated [2].

For a given dataset, researches can always find some group comparisons that 
eventually result in the magic number of P value ≤0.05 and then convince them-
selves that what turns to be “significant” is the key hypothesis and it has a lot of 
plausibility to the investigator.

How can we partially overcome the misinterpretation of the P value? For 
example, by looking at confidence intervals, effect sizes, or risks ratios which 
convey what a P value alone does not: the magnitude and relative importance of 
an effect.

Example
On April 26, 2021 it was published the largest randomized clinical trial comparing 
laparoscopic pancreatoduodenectomy (LPD) to open pancreatoduodenectomy 
(OPD) [3].

This trial was designed because the benefit and safety of LPD for the treatment 
of pancreatic or periampullary tumors remain controversial. Studies have shown 
that the learning curve plays an important role in LPD, yet there are no randomized 
studies on LPD after the surgeons have surmounted the learning curve. The aim of 
this trial was to compare the outcomes of OPD with those of LPD, when performed 
by experienced surgeons.

The researches set as primary endpoint of the trial the length of hospital stay 
assuming that LPD would confer benefit and thus reduce the duration of the hospi-
talization by almost 3 days. They calculated the sample size as follows: In a previ-
ous study, a mean reduction of 2.95 days was observed for patients undergoing LPD 
versus OPD, with a standard deviation of 12.3 days. Assuming that the length of 
stay in the OPD group would be 12 days, for a two-sided test with a power (1–β) of 
80% and a significance level (α) of 5%, the minimum number of patients required in 
each group was 274.
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4.6.1	� Results and Interpretation

In the intention to treat statistical analysis, the median length of stay (Interquartile) 
was 15.0 (11.0–21.0) days for the LPD group versus 16.0 (13.0–21.0) days in the 
OPD with a difference of −1.8 day and relative 95% confidential interval of −3.3/0.3 
and a P value of 0.02.

So, the P value was “significant” and a rushed interpretation should be: the lapa-
roscopic procedure is better than the open procedure and therefore the null hypoth-
esis is rejected. Is it really so? Is this a potential type I error? Is the P value alone 
reliable? If you look more deeply to the results, I may interpret this “significant” P 
value in a different way. First, the actual length of stay was higher than was postu-
lated during the hypothesis generation. Second, the difference was smaller than 
what expected with a large confidential interval. Third and more important, is this 
difference so clinically important or for the patient well-being, or for the health 
care system?

Last but not least, let us have a look at additional results:
In the intention to treat statistical analysis the rate of major postoperative com-

plications was 29% in the LPD versus 23% in the OPD group, with a risk ratio (95% 
confidential interval) of 1.23 (0.94–1.62) and a P value of 0.13. In the per-protocol 
analysis the rate of major complications was 30% in the LPD versus 21% in the 
OPD with a risk ratio of 1.42 (1.05–1.93) with a P value of 0.06. The comprehensive 
complication index (an overall measure of the burden of morbidly) followed the 
same trend.

So, the P value was “not significant” and a rushed interpretation should be: the 
laparoscopic procedure generates a similar risk of major postoperative complica-
tions than the open procedure and therefore the null hypothesis is accepted. Is it 
really so? How do I interpret the risk ratio? A risk ratio of 1.42 means that the LPD 
is associated with a 42% increased risk of having major complications when com-
pared to OPD which although is “not significant” (P = 0.06). Is this a potential type 
II error? And more, is this difference (not statistically speaking) clinically impor-
tant, or for the patient well-being, or for the health care system?

Last but not least, how I do interpret a significant reduction of the length of stay 
as opposite to a non-significant but substantial increase in major morbidity in the 
LPD groups?

The above is a reasonable example of how the results of the study may be misin-
terpreted by looking only at the P value.

4.7	� Bias

A bias can be defined as “any process at any stage of inference which tends to 
produce results or conclusions that differ systematically from the truth” [4]. 
Therefore, a bias is a systematic error, or deviation from the truth, in results. 
Biases can lead to underestimation or overestimation of the true intervention 
effect. It is usually impossible to know to what extent biases have affected the 
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results of a particular study or analysis. For these reasons, it is more appropriate 
to consider whether a result is at risk of bias rather than claiming with certainty 
that it is biased.

Bias should not be confused with imprecision. Bias refers to systematic error, 
meaning that multiple replications of the same study would reach the wrong answer 
on average. Imprecision refers to random error, meaning that multiple replications 
of the same study will produce different effect estimates because of sampling varia-
tion, but would give the right answer on average. Precision depends on the number 
of participants and the number of events in a study and is reflected in the confidence 
interval around the intervention effect estimate. The results of smaller studies are 
subject to greater sampling variation and hence are less precise. A small trial may 
be at low risk of bias yet its result may be estimated very imprecisely, due to a wide 
confidence interval. Conversely, the results of a large trial may be precise (narrow 
confidence interval) but also at a high risk of bias.

Bias should also not be confused with the external validity of a study, that is, the 
extent to which the results of a study can be generalized to other populations or set-
tings. For example, a study may enroll participants who are not representative of the 
population who most commonly experience a particular clinical condition. The 
results of this study may have limited generalizability to the wider population, but 
will not necessarily give a biased estimate of the effect in the highly specific popula-
tion on which it is based.

Biases can arise at three steps of the study: during initial enrollment of the par-
ticipants, during implementation of the study, and during analysis of the findings.

The first source of bias arises from the absence of a control group in descriptive 
studies. Descriptive studies, such as cross-sectional studies and case series, select a 
group of patients based on a particular characteristic (e.g. a type of disease or treat-
ment) and describe their evolution, for example, the disease course with a new treat-
ment. Contrary to analytic studies, such, there is no control group for comparison. 
Thus, if a certain recovery rate is observed, it not only can be related to the treatment 
effect but also to several other parameters. For example, initial characteristics of the 
patients, natural evolution of the disease, placebo effect and, in the case of a com-
parison between pretreatment and post-treatment values, regression toward the 
mean could partially or totally explain the recovery.

Among analytic studies (such as case–control studies, cohorts, and randomized 
controlled trials) three major categories of bias can be recognized: selection bias, 
classification bias, and confounding bias.

4.7.1	� Selection Bias

Selection bias occurs if the study population does not reflect a representative 
sample of the target population. Thus, the conclusion drawn by the study may 
not be extended to other patients. In randomized trials, proper randomization 
minimizes differential selection bias, although it is frequent in observational 
studies.

4  Introduction to Statistical Method



52

Example
I want to test whether oral antibiotics may avoid unnecessary surgery for Hinchey I 
stage diverticulitis and I compare patients under observation in hospital with a 
cohort of subjects that received the same antibiotics but they are suitable for home 
therapy. This is a clear selection bias since certain risk factors may be overrepre-
sented in hospitalized subjects compared with the general population, and these risk 
factors may confound the findings independently of the disease in question.

In contrast, the following is not a selection bias. Let us imagine that I designed a 
RCT to compare two surgical techniques for elective laparoscopic cholecystectomy 
and some inclusion criteria are set: female patients with no comorbidities, BMI less 
than 25, and with less than 50 years of age. In this case the results cannot be simply 
generalized to the entire population with an indication to cholecystectomy.

Selection bias also can arise during implementation of the study. In observational 
studies, when losses or withdrawals are uneven in outcome categories. Such selec-
tion bias attributable to losses of follow-up is called attrition bias.

4.7.2	� Classification Bias

Classification bias, also called measurement or information bias, results from 
improper, inadequate, or ambiguous recording of individual factors (either exposure 
or outcome variables). If the misclassifications occur randomly, the bias is said to be 
non-differential. On the contrary, if misclassifications are related to exposure, out-
come, or treatment allocation, the classification bias is differential. In clinical trials, 
blinding prevents differential classification bias. Therefore, observational studies, 
and in particular, case–control retrospective studies are at major risk of classifica-
tion bias. Classification bias also can occur if different methods of diagnosis are 
used for the patients.

Example
With a prospective observational study, I would like to find an association between 
preoperative muscle mass and risk of surgery-related morbidity after major onco-
logic operations. Muscle mass is measured in some patients by a CT-scan dedicated 
software, in others by bioimpedance analysis or dual-energy X-ray absorptiometry. 
The results of these three groups cannot be pulled if not at risk of manifest classifi-
cation bias.

4.7.3	� Confounding Bias

Confounding bias is a false association made between the outcome and a factor that 
is not itself causally related to the outcome and occurs if the factor is associated with 
a range of other characteristics that do increase the outcome risk. Thus, for a char-
acteristic to be a confounder, it must be related to the outcome in terms of prognosis 
or susceptibility and be unequally distributed among the compared groups.
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Confounding bias may mask an actual association or, more commonly, falsely 
demonstrate an apparent association between the treatment and outcome when no 
real association between them exists.

Example
I wish to study the association between the use of surgical sutures coated with an 
antimicrobial material to close the abdominal wound and surgical site infections. In 
a retrospective analysis, I compare a group receiving the coated sutures with a 
group that received the wound closure with a standard suture and I find a significant 
reduction in the wound infection rate in the patients that were treated with the 
coated suture. The two groups are well-balanced for several risk factors for wound 
infection such as age, sex, BMI, etc. However, the proportion of patients with intra-
operative contamination of the surgical field is significantly higher in the control 
group. Since contamination is an acknowledged risk factor for the outcome (wound 
infection), the association may be false. By stratifying the results for the confounder, 
it is possible to confirm or reject the association.

By balancing the different prognosis factors across the groups, randomization 
partially prevents confounding bias. Randomization is not completely effective, 
however, because a certain amount of imbalance attributable to chance may occur. 
Confounding bias is a major risk in observational studies, especially owing to con-
founders that either are known but not considered or are unknown. Among all 
biases, confounding bias is the only one which can be partially corrected after com-
pletion of the study by statistical adjustment.

4.7.4	� Other Types of Bias

In addition to the three types of bias described above, more specific biases exist that 
are related only to certain types of studies.

Diagnostic studies can have spectrum bias, a subtype of selection bias. The sen-
sitivity and specificity of a diagnostic test can depend on who exactly is being tested. 
If only a section of the disease range is included in the study, for example, only the 
severe type, one may get a biased impression of how well a diagnostic test performs.

A final type of bias is not related to the study but to publication of the results. 
Numerous articles document the existence of “publication bias”: studies with sig-
nificant results are more easily published than those with negative (non-significant) 
findings. This bias, perhaps more appropriately called “negative-outcome bias,” can 
occur at several levels: authors do not submit negative-outcome studies as often, 
reviewers do not recommend acceptance of negative-outcome studies as often, and 
editors may not accept negative-outcome studies as often. Even when published, 
negative studies are cited less frequently than positive studies. Publication and lan-
guage biases can affect the results of literature reviews and meta-analyses.

There is a common misconception about biases: Retrospective studies are more 
biased than every other type of study, whereas randomized controlled trials do not 
experience bias owing to randomization. In retrospective studies, data on exposition 
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and history often have been collected before the study was performed (i.e. in medi-
cal records) and therefore might be poorly standardized and more prone to classifi-
cation bias. Nevertheless, a case–control study using well-standardized data or 
statistical methods to balance groups (i.e. propensity-matching analysis) should not 
experience more bias than a randomized study. Further, randomization does not 
totally prevent bias. Some biases do not depend on randomization, for example, 
attrition and classification biases which can be addressed by intent to treat analysis 
and blinding, respectively. Randomization only partially prevents selection and con-
founding biases; even if it usually produces comparable groups, a certain amount of 
covariate imbalance can still occur, especially when the sample size is small.
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5Analyzing Continuous Variables: 
Descriptive Statistics, Dispersion 
and Comparison

Marco Ceresoli and Luca Nespoli

5.1	� Introduction

A huge number of data, available every day in medical practice, can be collected 
and analyzed for various purposes such as observing the results of our practice, 
evaluating the impact of a technology, testing a new hypothesis. These data consti-
tute only a limited sample from which we can try to obtain valid information about 
the entire population.

The aim of the chapter is to acquire some basic concepts regarding different 
types of data and variables we may encounter. The first important difference is 
between qualitative and quantitative variables.

We will discuss how to summarize and describe data and how to perform the 
appropriate analyses in order to reach the correct conclusions.

5.2	� Qualitative Variables

Qualitative variables are non-numeric variables that describe an observation (not a 
measure) allocating it in several predetermined descriptive categories. Qualitative 
data are further divided into nominal and ordinal data. Ordinal data are divided into 
categories that could be ordered following some scale. The American Society of 
Anesthesiologists (ASA) score is an example of ordinal data: each patient could be 
classified into five fixed categories ordered from 1 to 5. It should be noticed that, 
despite represented by numeric values, ordinal variables are labels and should not 
be considered as numeric variables during statistical analysis. Another example is 
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the tumor stage: patients can be allocated in four categories, that could be ordered, 
according to the tumor burden (stage I, stage II, stage III, stage IV).

Nominal data are data that can be allocated in categories, not necessarily numeri-
cal, that cannot be ordered, such as gender or surgical approach. These kind of 
variables (categorical) will be discussed in Chap. 6.

5.3	� Quantitative Variables

Quantitative variables, also called numerical variables, are data measured and rep-
resented by a number. They are divided into discrete and continuous variables.

5.3.1	� Discrete Variables

Discrete variables are data that could assume only a limited number of values and 
are represented by integers. An example is the injury severity score (ISS) in trauma 
patients, which could assume only an integer value between 0 and 75.

5.3.2	� Continuous Variables

Continuous variables are data, derived from direct measurements, that can assume 
infinite values and may include decimals. Examples include weight and blood loss 
during surgery.

5.4	� Describing Data

5.4.1	� Data Distribution

A very important step in data description is the evaluation of their distribution. Data 
distribution represents the frequency on which each measure is recorded and it is 
considered when choosing the appropriate statistical test. There are two alternative 
scenarios: normally distributed data where data distribution follows predictable rules 
and non-normally distributed data, which are the most common in clinical practice.

Let us consider our hypothetical trauma register: we want to evaluate hemoglo-
bin concentration in registered patients, a quantitative continuous variable.

The evaluation of data distribution could be easily done by a graphical represen-
tation through a histogram (see Fig. 5.1).

On the X axis the measures of Hb concentration are grouped in 0.5 g/dL intervals 
and ordered; on the Y axis is shown the frequency of observations for each group. In 
the example we can see that low and high values of Hb are observed less frequently 
and that the majority of observations are near “normal level” (between 12 g/dL and 
16 g/dL). The distribution of observations is nearly symmetrical and the shape of 
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Fig. 5.1  Histogram of observed Hb concentration
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Fig. 5.2  Histogram of observed injury severity scores

the curve depicted by the histograms is “bell-shaped”: this is a normal or Gaussian 
distribution.

We now want to assess the distribution of the injury Severity Score (ISS), a quan-
titative discrete variable, collected in our trauma register.

In this case (Fig. 5.2) the distribution of observations represented by the histo-
grams is very different from a normal distribution as the majority of observations 
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are located on the left side of the graph (low ISS). The shape of the curve traced 
along the histograms is not symmetric and there is a skewness, so that it is a non-
normal distribution.

5.4.2	� Test for Normality Assessment

The “normality” of data distribution, visually assessed with a histogram, can be 
evaluated through some statistic tests:

•	 The Shapiro–Wilk test is the most common test for normality assessment. It is 
based on the null hypothesis (H0) that our data have a normal distribution and it 
gives the probability that our data differ from the null hypothesis. With a low 
p-value (p < 0.05) we will reject the null hypothesis and conclude that our data 
do not follow a normal distribution. A p > 0.05 indicates normal distribution.

•	 The Kolmogorov–Smirnov normality test is a non-parametric test adopted for 
data comparison; it can be also adopted for evaluating the distribution of data. 
Similar to the Shapiro–Wilk test it tests the null hypothesis (H0: data normally 
distributed). With a p-value < of our alpha level (usually p < 0.05) we will reject 
the null hypothesis and we will conclude that our data are non-normally distrib-
uted. A p > 0.05 indicates normal distribution.

5.4.3	� Descriptive Measures

The main purpose of descriptive statistics is to summarize all the observations into 
single measures. The most adopted descriptive measures are:

•	 Mean: This is the arithmetic mean and it is the value obtained from the sum of all 
the observed measures divided by the number of observations. It represents the 
average value of the observations and it is influenced by extremely large or small 
values of data. In Table 5.1 descriptive statistics of our example are reported. 
When data are normally distributed and are symmetrical such as hemoglobin 
concentration (Fig. 5.1), the mean is near equal to the median. In non-normally 
distributed data such as the ISS (Fig. 5.2) the mean value is 10.86 being influ-
enced by some observations of large values. In this case the mean does not 

Table 5.1  Example of descriptive and dispersion measures

Normal distribution Non-normal distribution
Hemoglobin ISS

Descriptive measures Mean 14.25 10.86
Median 14.60 5.00

Dispersion measures Standard deviation 2.05 13.32
25th percentile 13 2
75th percentile 15.6 14
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represent the “middle” value of data (the median ISS is 5) because the distribu-
tion of data and it is not symmetrical. The mean is the preferred and appropriate 
measure when data are normally distributed while it may be misleading when 
distribution of data is not symmetrical.

•	 Median: It corresponds to the “value in the middle” of our distribution of data, 
dividing the lower from the upper half of observations. In normally distributed 
data the median is equal to the mean. In our example the median ISS is 5: it 
means that 50% of the patients have an ISS equal or lower than the value 5. The 
mean in this case is very different (10.86) since it is influenced by the large val-
ues. In case of non-normally distributed data, the median is the preferred and 
appropriate measure to adopt.

5.4.4	� Dispersion Measure

Mean and median are not sufficient to properly describe our data. For example, the 
two sets of data in Fig. 5.3 have the same mean but in one case data distribution is 
much narrower.

Therefore, for a complete description of our data we have to provide also a 
description of their dispersion, a measure that describes how much data differ from 
the mean. There are several measures to describe data dispersion. In this section we 
would briefly analyze the most commonly adopted:

•	 Variance: It is the arithmetic mean of the sum of the squares of the distance 
between each variable and the mean. It is not commonly adopted in scientific 
paper but is necessary to calculate the standard deviation and in other tests.

•	 Standard Deviation (also represented as SD or with the Greek letter σ): It is the 
commonest adopted measure of data dispersion and it is obtained by calculating 
the root square of the variance. It is expressed in the same unit of measure of the 
variable and it indicates how much data spread from the mean value. A high SD 
indicates a great dispersion with high variability, while a low SD represents a 
narrow distribution. It is the appropriate measure of data dispersion in case of 
normally distributed data. Since the distribution is normal and symmetrical we 

Fig. 5.3  An example of two sets of data 
with the same mean
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2,5% 2,5%95%

68%

mean

−2 SD −1 SD +1 SD +2 SD

Fig. 5.4  A normal distribution, the mean and standard deviation (SD). 68% of the results are 
contained between the mean ± 1 SD; 95% of the results are contained between mean ± 2 SD

can indicate the mean followed by the standard deviation with the ± sign 
(mean ± SD). In normally distributed data 95% of the results are “contained” 
between ±2 SD (see Fig. 5.4).

•	 Interquartile Range (IQR): This is the preferred measure in case of non-normally 
distributed data and it is showed after the median (median (IQR)). It is obtained 
calculating the data distribution and percentiles, values below which a given per-
centage falls. The median is the 50th percentile (the value below which stays 
50% of the observed values). The interquartile range is the range between the 
first quartile (25th percentile) and the third quartile (75th percentile). In our 
example (Table 5.1) the median ISS is 5 with an IQR (2–14).

5.4.5	� Graphical Representations

Graphical representation is a very useful method to visualize and understand data 
and also to show results. Data distribution and descriptive statistics help in identify-
ing the appropriate graph.

Continuous variables may also be resumed in tables with the abovementioned 
descriptive measures and dispersion measures. The most adopted graphs are:

•	 Histogram: It describes the distribution of data. On the X axis there are all the 
observations, often grouped, and for each one on the Y axis is shown the fre-
quency of observation. Histograms provide useful information about data char-
acteristics but they do not directly show descriptive and dispersion measure.
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•	 Boxplot or Box and Whiskers Plot: It is the preferred graph to show continuous 
variables, especially if non-normally distributed. The height of the box, delimi-
tated by the first and third quartiles (25th and 75th percentiles) represents the 
IQR.  Inside the box is represented the median value. The two vertical lines 
beyond the box represent the minimum and maximum values contained within 
the limit of 1.5 IQR, while values outside this limit are defined as outliers and 
represented as dots. Figure 5.5 shows the boxplot of the injury severity score 
(ISS) in our trauma register (Table 5.1). Maximum and minimum in this graph 
do not correspond to the real maximum and minimum data but they are the maxi-
mum and minimum values contained within the limit of 1.5 IQR. All the other 
values are defined as “outlier” and are depicted as dots. In our example we can 
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Fig. 5.5  Boxplot of the injury severity score
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see how the data distribution is not symmetrical: the median value is not equidis-
tant from the first and third quartiles.

5.5	� Data Comparison: It Is All About Probability

In the previous section we have understood how continuous data may distribute and 
how they can be properly described. The majority of researches and studies have the 
aim to demonstrate the difference (superiority or inferiority) or the absence of dif-
ference (non-inferiority) between two or more samples of data such as patients’ age 
or BMI, results of interventions, outcomes, etc. As explained in this chapter, it is all 
about probability. Statistical tests are based on hypothesis testing between the null 
(H0) hypothesis, which states that the two (or more) samples are equal, and the H1 
hypothesis, which states that the samples are different. The concept is not immedi-
ate to understand and we have to make a “reductio ad absurdum (reduction to absur-
dity)”: the test assumes that the H0 hypothesis is true and it gives us the probability 
to make an error in refusing the H0 hypothesis (concluding that samples are differ-
ent each other) when it is correct (type 1 error − α). Usually an error up to 5% 
(α = 0.05) is tolerated. A p-value of 0.01 represents a 1% probability of type 1 error; 
a p-value of 0.15 represents a 15% probability to refuse the H0 hypothesis when it 
is true.

From a practical point of view, when we observe two samples and we find a dif-
ference between them, the p-value gives us the probability that the observed differ-
ence is caused by a sampling imprecision and not because a true difference between 
the two samples exists. A low p-value means that this probability is very low and we 
can conclude (with a reasonable certainty) that the observed difference is true. A 
high p-value (generally >0.05, more than 5%) means that the probability that the 
observed difference is caused by a sampling problem is too high to conclude that it 
is true; therefore, we have to accept the null hypothesis and conclude that the two 
samples are similar.

For example: we want to compare the age between men and women admitted to 
our trauma center. We observed that mean age of men is 46.98 ± 19.08 years and 
women’s mean age is 48.78 ± 18.45 years. The test gives us as result, a p-value of 
0.354. The correct interpretation of this result is that the observed difference in 
terms of age has a 35.4% probability to be caused by a sampling problem and not 
by real difference among data. We cannot assume a real difference between the 
samples and we have to refuse the H1 hypothesis (ages are different) and to accept 
the null hypothesis.

5.5.1	� Paired Data vs. Independent Data

Observed data can be classified into paired and independent data; this distinction is 
very important to choose the correct test to compare them.
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We define paired data all the observations made in the same group of patients in 
two different time points (before and after an event), comparative statistics test the 
hypothesis of a difference between paired data. An example of paired data is the 
mean arterial pressure of trauma patients on the scene of trauma and at the arrival at 
the emergency department. Comparative statistics test the hypothesis of a difference 
between the sample of data before and after the treatment in the same group of 
patients.

Independent data are data collected from two or more different groups of 
patients, comparative statistics test the hypothesis of a difference between the 
groups. An example is the mean arterial pressure at the arrival at emergency 
department of patients with head trauma compared with patients without 
head trauma.

To compare the effect of a specific treatment before and after its application 
(paired data) in two different groups of patients (unpaired data) we have to adopt 
specific techniques such as “difference in difference” techniques that will be dis-
cussed in Chap. 13.

5.5.2	� Parametric vs. Non-Parametric Statistics

Statistics tests are based on several assumptions. On the base of the assumptions 
needed we can describe two groups of tests: parametric and non-parametric tests.

Parametric tests imply the assumption that data have a normal distribution, they 
usually are more powerful and precise than non-parametric tests but they can be 
applied only if data follow a normal distribution (a relatively rare circumstance in 
clinical research).

Non-parametric tests are indicated when data do not follow a parameterized dis-
tribution (non-normal distribution): they do not need the assumption of normal dis-
tribution and they are generally widely usable but less powerful.

5.5.3	� Commonest Tests

The following are the most common tests in clinical practice; they are based on 
hypothesis testing (H0 vs. H1) and provide a p-value as result to be interpreted. 
Table 5.2 contains the indications of the tests.

Table 5.2  Summary of statistics and their indications

Data distribution
Descriptive 
statistics Data dispersion Comparison test

Normal (parametric) Mean Standard deviation 
(±SD)

Student t test

Non-normal 
(non-parametric)

Median Interquartile range 
(IQR)

Mann–Whitney U 
test
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Table 5.3  Example of continuous variable comparison

Variable Women Men p-value
Hemoglobin (normal 
distribution)

13.20 (±2.17) 
(mean ± SD)

14.50 (±2.12) 
(mean ± SD)

<0.001 (Student’s t 
test)

ISS (non-normal 
distribution)

11.5 (5–19) (median 
(IQR))

12 (6–21) (median 
(IQR))

0.213 (Mann–
Whitney U test)

•	 Student’s t Test: This is the most known test for means comparison. Student’s t 
test is a parametric test and it is appropriate when data follow a normal distribu-
tion. Student’s t test applies on independent data (independent t test) and paired 
data (paired t test).

•	 Mann–Whitney’s U Test: It compares two samples and it is indicated for non-
parametric data.

•	 ANOVA: The term “anova” is the acronym of “ANalysis Of Variance.” This is a 
very large and complex group of statistics based on the analysis of variance (a 
measure of data dispersion) that allows to make multiple comparisons (two or 
more groups, two or more hypothesis). This is an advanced statistics and we will 
not describe more deeply.

For example: We want to compare and evaluate if there is any difference between 
men and women admitted at our trauma center in age and injury severity score 
(ISS). Table 5.3 shows the characteristics of our population divided by patient sex.

In Table 5.3 the appropriate descriptive statistics for the two variables are shown. 
Hemoglobin concentration has a normal distribution (Fig. 5.1), therefore is repre-
sented with mean and standard deviation (SD). Data are compared with a paramet-
ric test, the Student’s t test and the p-value show us that the difference observed is 
true with a probability >99% (1 − pvalue). Despite the statistical significance in the 
difference observed the interpretation of the test should take in count also the clini-
cal significance: is a difference of 1.3 g/dL of Hb clinically significant?

The second line show data about the injury severity score, a non-normally dis-
tributed variable (see Fig.  5.2) that is described with the appropriate descriptive 
measure: the median along with interquartile range (IQR). In this case the non-
parametric test for comparative data is the Mann–Whitney’s U test that resulted in a 
p-value of 0.213. In this case the (slight) difference observed in ISS between men 
and women does not reach the statistical significance and we can conclude that in 
our trauma center men and women have similar ISS.

5.6	� Linear Correlation

Continuous variables may be evaluated through linear correlation, the presence of 
linear relationship between two variables when data are graphically represented in 
a scatter graph where each variable is represented as a dot.
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ρ=0.985  p<0.001

ρ= −0.885  p<0.001

a

c

ρ= −0.115  p=0.579

d

ρ=0.539  p=0.02

b

Fig. 5.6  (a–d)Four examples of linear correlations

5.6.1	� Pearson Correlation

This relationship between two continuous variables is described by Pearson’s cor-
relation coefficient (or Pearson’s ρ or correlation coefficient) that depends on the 
data dispersion (covariance and standard deviation). The Pearson’s coefficient can 
assume a value between −1 and + 1. The value +1 corresponds to a positive per-
fectly linear relation, the value −1 to a negative perfectly linear relation, and a value 
0 means no linear relation. Figure  5.6 shows different scenarios of linear 
correlation.

In example “a” data have a near perfectly positive linear relation and the ρ coef-
ficient is approximatively 1. In example “C” there is a similar linear relationship but 
negative and ρ is negative. In example “b” the linear relation is less perfect than 
example “A” and the ρ coefficient is 0.539. In example “d” it is evident that there is 
no linear relation between data and the ρ coefficient is near zero.

5.6.2	� Pearson Coefficient Interpretation

As stated before, the Pearson’s correlation coefficient can assume values between 
+1 and −1. As a rule of thumb the correlation coefficient can be interpreted as 
follows:

5  Analyzing Continuous Variables: Descriptive Statistics, Dispersion and Comparison
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Positive correlation Negative correlations Strength
0.7–1 −0.7 to −1 Strong correlation
0.3–0.7 −0.3 to −0.7 Moderate correlation
0.1–0.3 −0.3 to 0.1 Weak correlation

The coefficient is followed by the significance level (p-value) that indicates the 
certainty or uncertainty of the relationship observed.

It is to notice that the correlation coefficient does not indicate the slope of the 
linear relation: in example “a” the coefficient is near 1 that indicates a near perfect 
linear relationship. Looking to the slope of the identified linear relation, in example 
“b” the slope is higher than in example “a,” but the correlation coefficient is lower. 
Pearson’s correlation is influenced by the data dispersion and not by the slope of the 
correlation (it will be evaluated with linear regression, Chap. 9).

5.6.3	� Spearman’s Rank Correlation Coefficient

Spearman’s rank correlation is the statistical method used to evaluate the linear cor-
relation between two discrete or continuous ordinal set of data. Its interpretation is 
very similar to the interpretation of Pearson’s linear correlation.

Further Reading
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6Analyzing Categorical Variable: 
Descriptive Statistics and Comparisons

Alessandro Cucchetti

6.1	� Introduction

In general, categorical data provides information on frequency, information on the 
proportion, or the presence or absence of a particular result in an observation. Before 
explaining the descriptive and comparative approaches for categorical variables, it 
is necessary to explain three terms: categorical variable, categories, and categorical 
data [1]. Suppose there are both boys and girls in a class. In this case, gender is a 
categorical variable with two categories under the gender variable, namely male 
and female. The frequencies associated with each category are categorical data. 
According to Stevens’ theory of measurement (1946), categorical variables are 
measured at the nominal level. The nominal level is a measurement scale in which 
numbers serve as labels to classify an object. However, also variables measured at 
the ordinal level can be considered categorical variables. For example, in a class-
room about 3% of students receive an A, 15% a B, 64% a C, 15% a D, and the 
remaining 3% an E (Table 6.1). The rating scale conveys an ordinal type of infor-
mation but it can also be treated as a categorical variable of nominal level for 
which the frequency of students who receive one of these five grades is tabulated 
and analyzed.

To deal with nominal and ordinal data, it is useful to tabulate frequencies of 
occurrences in each category while simultaneously converting frequencies into pro-
portions. A one-way table refers to a display of frequencies based on a single 
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Table 6.1  The rating scale conveys an ordinal type of information ranging from A to E but it can 
also be treated as a categorical variable, thus observed proportions are calculated

Rate
Number of 
cases

Observed 
proportions (%)

Expected 
proportions (%)

(Expected − observed)2/
expected

A 3 3 20 289/20
B 15 15 20 25/20
C 64 64 20 1936/20
D 15 15 20 25/20
E 3 3 20 289/20
Total 100 100 100 128.2

Under the assumption that proportions would be equal, each rate would contain 20 cases. The chi-
squared test for goodness of fit relies on the comparison between observed and expected propor-
tions. The degrees of freedom are the number of categories minus 1 (df = 4). Having known the χ2 
and the df, p-value can be derived from conversion tables [2]

categorical variable. A two-way table is a tabulation of joint frequencies of two 
variables. Usually, a two-way table uses one dimension, such as columns, to repre-
sent one variable and another dimension, such as rows, to represent the second vari-
able. Similarly, a multi-way table involves three or more categorical variables and 
its commonly presented on the output as several two-way tables segregated by the 
third variable (or vice versa).

A one-way table displays categorical data in the form of frequency counts and/or 
relative frequencies. It has a descriptive purpose only but statistical analysis can be 
performed through the comparison of the observed versus expected proportions. 
Considering that the classroom receiving rates are formed by 100 students, it would 
be useful in some instances to verify if observed versus expected proportions fulfill 
the equal distribution of proportions. If this latter condition is theoretically present, 
each category (five categories) should have 100/5 = 20 cases each. However, we 
know that this is not true, and the chi-square test provides a measure of such a dif-
ferent distribution. In this specific case, the chi-square test of equal proportions 
(namely chi-squared test for goodness of fit) is statistically significant (χ2 = 128.2, 
degree of freedom [df] = 4, p < 0.001). Therefore, the null hypothesis of equal pro-
portions of students in each of the rating categories is rejected at α = 0.05.

6.2	� Confidence Interval of Proportions

Another important descriptive data for categories is the calculation of confidence 
intervals (CI) for proportions. This informs you the statistical probability that a 
characteristic is likely to occur within the population. For example, consider that the 
percentage of students receiving a C is 64% (p  =  0.640) among 100 students 
(n = 100). The CI for this proportion is calculated with two bounds: the lower bound 
is 0.546 and the upper bound is 0.734.

This means that if the rating of students is repeated over and over again, the 
results would fall within 54.6% and 73.4% 95% of the time. Larger the sample size, 
narrow the confidence range.
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6.3	� Absolute Risk Reduction and Number Needed-to-Treat

When dealing with a two-way table, other considerations should be made. Suppose 
that your study, comparing treatment A versus treatment B, finally shows that 20% 
treated with A developed bad outcomes, whereas only 10% of those receiving treat-
ment B developed bad outcomes. It appears that treatment B can reduce some of the 
bad outcomes of the disease and this difference can be quantified using different 
measures [3]. The absolute risk reduction (ARR) is also called risk difference 
(RD) and it is simply calculated as the difference among two proportions, that is, the 
ARR of B over A is 20% −  10% = 10%. This means that, if 100 patients were 
treated, 10 would be prevented from experiencing bad outcomes if treatment B is 
adopted. Another way of expressing this is the number needed-to-treat (NNT). 
This is simply = 1/ARR so that in this hypothetical scenario NNT = 1/0.10 = 10, that 
is, every 10 patients treated with treatment B, one additional would benefit from B 
rather than A.  Conventionally, an NNT <5 rules in therapies with high gains, 
whereas an NNT > 15 rules out therapies with low health gain [4].

6.4	� Relative Risk and Relative Risk Reduction

Some other measures are commonly used. The relative risk (RR) of a bad outcome 
in a group given treatment A is a proportional measure which estimates the size of 
the effect of treatment A compared with treatment B.  It is the proportion of bad 
outcomes in the intervention group divided by the proportion of bad outcomes in the 
control group. In the above hypothetical case, the RR is 0.5 (10%/20% = 0.5). When 
a treatment has an RR > 1, the risk of a bad outcome is increased by the treatment; 
when RR < 1, the risk of a bad outcome is decreased, meaning that the treatment is 
likely to do good. For example, when the RR is 2.0 the chance of a bad outcome is 
twice as likely to occur with a specific treatment as without it. In the present hypo-
thetical scenario, the RR was 0.5 meaning that the chance of a bad outcome is 
halved with treatment B compared to treatment A. A value of RR = 1.2 means that 
exposed people are 20% more likely to have bad outcome, RR = 1.4 means 40% 
more likely. When the RR is exactly 1, the risk is unchanged.

Relative risk reduction (RRR) informs about how much the treatment reduced 
the risk of bad outcomes relative to the control group who did not have that specific 
treatment. In the previous example, the RRR of bad outcomes can be calculated as 
(20% − 10%)/10% = 100%. This means that treatment B decreases bad outcomes 
with a magnitude of 100% with respect to treatment B.

6.5	� Odds Ratio

Odds of a specific outcome is the ratio between the probability of the outcome and 
the probability of not occurring in this outcome [5]. Thus, differently from RR, 
odds ratio (OR) considers the number of subjects without the specific outcome of 

6  Analyzing Categorical Variable: Descriptive Statistics and Comparisons



70

interest. Rare diseases yield similar risk and odds since the number of non-cases is 
close to the number of subjects but for common diseases, risk and odds can differ 
considerably. Consider that treatment A produced a bad outcome in 20% out of 100 
patients, and that treatment B produced a bad outcome in 10% out of 100 patients, 
this means that:

a = number of exposed to treatment A cases = 20.
b = number of exposed to treatment A non-cases = 80.
c = number of non-exposed to treatment A cases = 10.
d = number of non-exposed to treatment A cases = 90.

Odds ratio derives from (a/c)/(b/d), that is, the ratio between cases and non-
cases of exposed and non-exposed. In the present hypothetical example, OR can be 
calculated as follows:

	
20 10 80 90 2 0 889 2 25/ / / / . . .( ) ( ) = = 	

As can be noted OR is different from the previous RR = 2.0 because it answers 
to a different question. Relative risk gives you the ratio among proportions, whereas 
OR gives you the ratio of a probability but the interpretation is similar, that is, the 
probability (odds) of bad outcome is 2.25 times higher among patients exposed to 
treatment A compared to treatment B.  Odds ratio is more informative than RR 
because it considers the sample size of the population.

6.6	� Chi-Squared Test and Fisher’s Exact Test

When we try to compare proportions of a categorical outcome according to differ-
ent independent groups, we can consider several statistical tests such as chi-
squared test and Fisher’s exact test [6]. The chi-squared test and Fisher’s exact test 
can assess the independence between two variables when the comparing groups 
are not correlated, thus independent of each other. The chi-squared test applies an 
approximation assuming the sample is large, while the Fisher’s exact test runs an 
exact procedure. The difference is simply related to the elaboration required to 
compute the Fisher’s exact test. When modern calculators were still not available, 
Fisher’s exact test was time-consuming, so that a good approximation was 
obtained through Pearson’s chi-squared test. To date, Fisher’s exact test should be 
preferred over chi-squared, especially when more than 20% of cells of a 2 × 2 
contingency table have expected frequencies <5, because applying approximation 
method is inadequate.

Requirements for computing chi-squared test are: that the sample is picked at 
random, that observations must be independent of each other (so, for example, no 
matched pairs), and that cell count must be 5 or above for each cell in a 2 × 2 con-
tingency table. For the previous hypothetical case of treatment A versus treatment 
B, all cells (a, b, c, d) contain >5 cases, and data are not matched so that chi-squared 
can be applied. The chi-square statistic is = 3.9216 with a p-value = 0.047. To reduce 

A. Cucchetti



71

the error in approximation, Frank Yates suggested a correction named Yates correc-
tion that adjusts the Pearson’s chi-squared test formula by subtracting 0.5 from the 
difference between each observed value and its expected value in a 2 × 2 contin-
gency table. In the previous case, the chi-square statistic with Yates correction is 
3.176 and the p-value is 0.074. Applying the Fisher’s exact test, the p-value is 0.073. 
It becomes clear that Fisher’s exact test and Yates correction of the chi-squared are 
more conservative approaches to verify a hypothesis about difference, but Fisher’s 
has to be preferred because it is an exact test and not an approximation.

6.7	� Matched Data

The chi-squared test and Fisher’s exact test require that observations must be inde-
pendent of each other. If data are not dependent, another approach must be adopted. 
The McNemar test is used to determine if there are differences in a dichotomous 
dependent variable between two related groups. It can be considered to be similar to 
the paired-samples t-test, but for a dichotomous rather than a continuous dependent 
variable. The McNemar test is particularly useful when dealing with propensity 
score match, since due to the matched nature of propensity score approach, this 
should be considered as the most appropriate statistical analysis to adopt.

6.8	� Chi-Squared Test for Trend

When dealing with more than two groups, one can have interest in verifying if a 
specific outcome has an association with the different groups considered, ranked in 
a pre-specified order. In the example of student rating, there was not any trend in 
proportion moving from A to E. Suppose now to have four groups (Table 6.2). The 
first is formed by patients treated with treatment A between 2006 and 2009, the 
second is formed by those treated between 2010 and 2013, the third is formed by 

Table 6.2  Odds ratio values are calculated for each stratum against the first period (2006–2009)

Period
Number of 
patients

Observed 
events/n

Frequency 
(%)

Observed 
non-events

Odds 
ratio

2006–2009 25 8 32 17 1
2010–2013 25 6 24 19 0.67
2014–2017 25 4 16 21 0.40
2018–2021 25 2 8 23 0.18
Total 100 20 20 80 –

The Mantel–Haenszel test of trend highlights if there is a linear association among OR variations. 
As can be noted, in comparison to the first period, ORs progressively decreased with the passing 
of time, and this is the trend detected by the test
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those treated between 2014 and 2017, and the last is formed by those treated between 
2018 and 2021. Bad outcomes occurred in 20% among 100 patients between 2006 
and 2021, but the proportion was 32% in the first period (i.e. 8/25), decreased to 
24% in the second period (i.e. 6/25), then further decreased to 16% (i.e. 4/25) in the 
third period and was finally 8% in the most recent period (i.e. 2/25). The simple 
application of a chi-squared test will verify if that proportions are equal or not 
among different period considered. For this specific example, the chi-square statis-
tic is 5 with a p-value = 0.172. This did not consider the trend over time. This is 
accomplished by the Mantel–Haenszel test of trend among chi-squared test statis-
tics [7]. This test returns a chi-square statistic extended for trend of 5.46 with a 
p-value = 0.019.

6.9	� Standardized Differences

This measure overcomes problems related to the sample of the population analyzed 
[8]. Considering bad outcomes of treatment A versus treatment B, that is, 20% ver-
sus 10%. The ARR is 10%. Until now we considered 100 patients per group so that 
applying the Fisher’s exact test, the p-value was 0.073. Suppose to increase the 
sample to 1000 patients per group, maintaining fixed 20% and 10% of bad out-
comes. Under this last circumstance, Fisher’s exact test returns a p-value <0.001. 
Thus, the larger the sample, the lower the p-value but the ARR remains as 10%, as 
well as RR and OR. The question is not if treatment A is superior to treatment B, 
but what is the magnitude of this difference. This can be assessed by standardized 
difference, commonly abbreviated as d-value, a dimensionless measure that is inde-
pendent from the sample size.

The standardized difference was proposed in the psychological literature, where 
it has been referred to as Cohen’s Effect Size Index [9]. Cohen suggested that Effect 
Size Indices of 0.2, 0.5, and 0.8 can be used to represent small, medium, and large 
effect sizes, respectively [9]. When the two populations being considered are nor-
mally distributed with equal variance and are of the same size, Cohen derived rela-
tionships between the d-value and the percentage of overlap cases and the probability 
of superiority of one treatment over the alternative [10]. In the present hypothetical 
case the % of overlap was 88.9% and the probability of superiority was 57.8%. A 
treatment without any effect will have a % of overlap of 100% and a probability of 
superiority of 50% (the toss of a coin).
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7Multivariate Analysis

Niccolò Allievi and Marco Ceresoli

7.1	� Introduction

7.1.1	� Statistical Models

Describing reality essentially means building statistical models of observed biologi-
cal events and processes. For clinicians, the prediction of outcomes depends on our 
capacity of establishing accurate models on observed data and therefore inferring 
information regarding the general population (the real world). The fit of our model 
to the observed data represents the accuracy to which the model represents the col-
lected data and is of paramount importance for the overall validity of the description.

As surgeons, one of our aims is understanding the relationships between the 
characteristics of our patients and their outcomes. In order to do so, we build models 
describing a small proportion (i.e. the patients included in a trauma register) and we 
imply that our model also fits the “general population” (i.e. all patients who sustain 
a traumatic injury). The smaller the error intrinsic to the model, the higher the fit of 
the model: this is a key concept when building and evaluating statistical models.

Predicting outcomes with statistical models will contemplate three main steps:

•	 Building the model.
•	 Assessing the fit of the model.
•	 Interpreting the model.
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7.1.2	� Different Types of Regressions and Multiple Regression

Running a regression essentially means building a model to assess how one of the 
variables (the “outcome” variable) is associated with the other available variables 
(the “predictor” variables). Depending on the outcome variable, we need to choose 
among different types of regression:

•	 If the outcome variable is continuous, we will choose linear regression;
•	 If the outcome variable is binary, we will choose binary logistic regression;
•	 For categorical variables multinomial logistic regression would be the correct 

choice, but the statistical concepts are the same as for binary logistic regression.
•	 For other type of outcome variables exists specific regression models, for exam-

ple, the ordinal regression for ordinal outcomes or the Poisson regression for 
frequency outcomes. These models are advanced and not frequent in surgical 
studies and will not be discussed in this chapter.

Depending on the number of predictors, we will have different kinds of regres-
sion. If there is one predictor in the model, this would be a “univariate” regression, 
while if more than one predictor is included in the model, we would build a “multi-
variable” or “multiple” regression.

Different (and somehow confusing) terms are used:

–– Univariate regression: one outcome variable, one predictor;
–– Multivariable (or multiple) regression: one outcome variable, several predictors;
–– Multivariate (or multinomial) regression: several outcome variables (that will not 

be discussed in this chapter).

7.1.3	� Example: The Dataset

To help clarify the concepts exposed in the chapter, we will refer to a practical 
example. Table 7.1 contains observed data of an imaginary database of patients who 
sustained traumatic injuries.

If we were to predict the length of stay as our outcome variable, notwithstanding 
the characteristics of the predictors, we would use a linear regression; on the 

Table 7.1  Example dataset

ID Age Sex ISS Length of stay Shock ICU admission
1 80 Male 48 65 1 1
2 60 Male 29 30 1 1
3 55 Female 41 50 0 1
4 16 Male 5 4 0 0
5 20 Female 9 5 0 0
6 78 Female 14 10 1 1
... ... ... ... ... ... ...
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contrary, if we wanted to predict ICU admission (0 = no admission versus 1 = admis-
sion), we would use a logistic regression model.

7.2	� Linear Regression Models

7.2.1	� Building a Linear Regression Model: It All Comes Down 
to the Straight Line Equation

Considering our example dataset, we can create a scatterplot of our observations, 
where the ISS is on the X-axis and the length of stay on the Y-axis. Our outcome is 
the length of stay, which is a continuous variable, and we want to study its relation-
ship to another continuous variable, the burden of injury (the Injury Severity Score, 
namely ISS).

We can see there is a linear relationship between the predictor variable and the 
outcome variable, as the distribution of each value on the graph depicts a line. This 
line is the regression line.

All statistical models built to predict an outcome (Yi) are made of variables (Xi) 
and parameters (bi). Variables represent measurable elements in our population, 
while parameters are estimated from the data itself and describe the relationships 
between variables within the model. From a mathematical point of view our model 
will be similar to the equation of the straight line (line = intercept + slope × predic-
tor). This in fact justifies the name “linear models.” The intercept (b0) and the slope 
(b1) are the regression coefficients and they estimate the relationship between each 
of the parameters and the outcome:

•	 The intercept or constant (b0) represents the value of Yi where the line crosses 
the Y-axis; in other words, it is the value of the outcome when the predictor is 
equal to 0.

•	 The slope (gradient) of the line (b1) is the parameter estimate of the predictor and 
shows a positive or negative relationship between Xi and Yi.

When multiple predictors are used, multiple regression takes place: Each predic-
tor variable (Xi) has a parameter (b) or regression coefficients. The parameters will 
describe the shape of the model in a geometrical space. When one predictor is used, 
we could represent our data as a scatterplot on a Cartesian 2D space; the result of a 
simple linear regression would be a straight line (a “fit line”). When two predictors 
are used (multiple linear regression), the data might be outlined in a 3D scatterplot 
and the model would fit with a “regression plane.” If we add more predictors, it 
would be more difficult to represent the model geometrically.

7.2.2	� Interpreting the Linear Regression Model

The interpretation of the model should be systematic. Let us see our example in 
Fig. 7.1.
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Fig. 7.1  A scatterplot showing the relationship between ISS and length of stay in the example

7.2.2.1	� Interpreting the Parameters of the Model
•	 b0 is often reported as Beta0 (β0) and represents the value of the outcome vari-

able when all variables are equal to zero (Xi = 0). Although this is often omitted, 
with b(0) it is possible to estimate the outcome variable giving the explanatory 
variables a specific value. In our example Beta0 is 1, which means that the pre-
dicted length of stay when the ISS is 0 is 1 day.

•	 b or Beta are usually reported for each predictor. Each b value gives an idea of 
the direction (positive or negative) and strength of the relationship between the 
predictor (Xi) and the outcome variable (Yi). Beta or b is a number and it could 
assume every value from −∞ to +∞. A value equal to zero represents no effect. 
A positive value (beta > 0) means a positive relationship between the dependent 
variable and the predictor with an increment equal to beta for each increment in 
the value of the predictor. A beta below 0 (beta < 0) represents a negative rela-
tionship between the dependent variable and the predictor, with a decrease equal 
to beta for each increment in the value of the predictor. The higher the value of 
beta, the greater the effect.
–– Continuous variable predictor: The beta number tells us that for every single 

increase in the predictor variable Xi, there is an increase equal to beta in the 
outcome variable. In our example b(ISS) = 1.22 (95% CI 1.05–1.40, p-value 
0.001): for every increase of 1 in the ISS, the length of stay has an increment 
of 1.2 days; b(ISS) also represents the slope of the line in Fig. 7.1.

–– Categorical variable predictor: In case that predictor is a categorical variable, 
b indicates that cases expressing the predictor have, on average, b units of the 
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outcome variable in excess (or defect, depending on the sign of b), as com-
pared to cases not expressing the predictor. In a hypothetical example 
b(men)  =  1.9 (95% CI 1.45–2.37, p-value 0.001) means that men have a 
length of stay 1.9 longer compared to women.

7.2.2.2	� Interpreting 95% Confidence Intervals
•	 Each parameter is reported along with the 95% confidence intervals that will 

estimate the interval for that single parameter of the slope; if the 95% CI crosses 
the value 0, this would impair statistical and clinical significance. An associated 
p value will give the degree of statistical significance. The degree of clinical 
significance will also be judged on the magnitude of the effect. The 95% CI for 
b(ISS) and b(men) does not cross 0 and the p-values are <0.05; we can state that 
the associations between ISS and sex with the length of stay are statistically 
significant.

Furthermore, it should be reminded that the interpretation of data should be kept 
within the range of values of the independent variable (ISS). It is not directly pos-
sible to extrapolate values of the dependent variable, when outside the “sown field” 
of observed explanatory variables (for instance, in our dataset our maximum ISS 
was 48 and we cannot comment on patients with a higher ISS).

Finally, regression coefficients are “just” slopes: their magnitude depends on the 
unit used to measure the outcome variable and the predictor variable(s). We can 
appreciate this if we change the measure unit for our length of stay to hours or min-
utes: the results of the slopes would be macroscopic.

7.2.3	� Assumptions of Linear Regression

We now outline the main assumptions of linear regression. Without these assump-
tions being fulfilled a linear regression would be not appropriate. All of these aspects 
are advanced statistics and will not be described exhaustively.

•	 Linearity: The predicted variable (Yi) should be linearly related to the predictor(s) 
(Xi). This can be verified visually on a scatterplot of observed data. If linearity is 
violated, the variables might be transformed (e.g. logarithmic transformation) 
before proceeding with the analysis.

•	 Normally distributed errors: Residuals in the model are normally distributed.
•	 Independent observations: Each case needs to have a single observation for the 

dependent variable and a single observation for the independent variable for each 
analysis that is performed.

•	 Homoscedasticity: Residuals at every level of the dependent variable(s) should 
have the same variance, i.e. the variance of the residuals is the same for every 
value of X. Looking at the scatterplot will give a glimpse regarding the constancy 
of variation within observed Y values throughout the “X spectrum.” When this is 
violated, possible solutions are: transformation of the outcome variable; stratifi-
cation of data on the predictor variable or on the outcome variable.
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7.3	� Multiple Regression

Simple linear regression evaluates the relation between a single predictor and the 
outcome. It could be repeated for each predictor, giving results of “univariate” anal-
ysis. In fact these (univariate) analyses do not take count of the possible relations 
between predictors.

Multiple regressions are indicated to evaluate also the possible relations among 
predictors and give a stronger evidence, adjusted for possible confounders.

Multiple regression models require a careful and accurate choice of predictors to 
be inserted in the model. This is a crucial step since the results will depend on the 
predictors.

7.3.1	� Choice of Predictors

When running a multiple regression, the choice of the dependent variables (X) is 
extremely important. Regarding the numerosity of the variables, as a rule of thumb we 
need at least 10 outcomes events or cases for every predictor variable and 10 for the 
intercept, although the sample size depends mainly on the effect size we are trying to 
detect and on the statistical power. If too many predictors are fitted into the model, the 
result would be overfitting of the model: one of the possible complications is that the 
model is going to detect idiosyncrasies, which are not truly present in the observed data.

As another rule of thumb, it is quite accepted among researchers to include in the 
multiple regression model all the predictors resulted associated with the outcome at 
the univariate phase of the analysis: all the variables with p-values <0.05 at univari-
ate analysis should be included; furthermore, the variables that resulted to have a 
satisfactory clinical significance at univariate analysis, also with a borderline statis-
tical significance (e.g. p-values around 0.1), should be considered for inclusion in 
the multiple regression. In general, it is believed that parsimony is key when choos-
ing predictors. If a biological event can be explained by several models, the simpler 
one would probably be preferable. While developing multivariable models, we 
should select explanatory variables by the degree of contribution they give to explain 
reality. It is also worth mentioning that, whenever an interaction between two 
explanatory variables is reported, this interaction should be included in the model, 
whatever the level of contribution.

Several approaches to variable selection are described:

•	 Stepwise approach:
–– Forward method: To an initial model only containing b0 (the constant), pre-

dictors are added one by one and the model fit is evaluated repeatedly, until a 
good model is found. Some software may run an automated forward linear 
regression: the criterion used to select the variables to include is to maximize 
R2 (a measure of the fit of the model). This method might be flawed by the 
absence of clinical significance and by potentially detrimental correlation 
between the variables.

N. Allievi and M. Ceresoli



83

–– Backward method: an initial model containing as many predictors as possible 
is created and the model fit is maximized removing single predictors in sev-
eral steps.

•	 Hierarchical approach: The initial model includes significant predictors that 
were previously included in research studies with sound methodology or that 
carry known clinical relevance (a priori decision regarding the essential selection 
of variables). Single predictors may be added to this model and model fit can be 
re-evaluated serially. This is, in general, the preferred approach by many 
researchers.

•	 Forced entry approach: The predictor variables are added all in one model and its 
validity is tested.

Finally, apart from the variable of interest of the study, established confounders 
for the outcome of interest should always be included in the study.

7.3.1.1	� Example: Inclusion of Predictors for Multivariable Analysis
We are now interested in exploring the association between our outcome variable 
(length of stay) and other possible predictors in the dataset, such as the ISS, age, 
sex, and shock condition. We therefore run linear univariate analysis for each pre-
dictor and the results are as follows (Table 7.2): b(ISS) = 1.22 (95% CI 1.05–1.40, 
p-value 0.001); b(age) = −0.8 (95% CI −1.2 to 0.4, p-value 0.002); b(man) = 1.9 
(95% CI 1.45–2.37, p-value 0.001), and b(shock)  =  1.16 (95% CI −1.5 to 2.6 
p-value 0.087). The regression coefficients for age, sex, and ISS are clinically and 
statistically significant, while we can see that the 95% CI for shock condition 
crosses 0 and that the associated p-value is >0.05. We will therefore include only 
age, sex, and ISS in the multivariable analysis.

Table 7.2 shows the results of the univariate analysis (for each predictor, left side 
of the table) and the results of the multivariable linear regression in the right side of 
the table. We can notice that beta coefficients, 95% confidence intervals, and p-value 
are shown only for predictors included in the multiple analysis. The multiple linear 
regression shows us that only ISS and sex are related with the length of stay.

Table 7.2  Essential elements to report results of a univariate and a multivariable linear regression, 
using results from the example dataset

Independent 
variables

Dependent variable (length of 
stay)—univariate regression

Dependent variable (length of 
stay)—multiple regression

b (or Beta) 95% CI p-value b (or Beta) 95% CI p-value
Constant (b0) 0.98 – – 1.07 – –
ISS 1.22 1.05–

1.40
0.001 1.21 0.80–

1.41
0.001

Age −0.8 −1.2 to 
0.4

0.002 −0.6 −1.2 to 
1.12

0.465

Sex (men) 1.9 1.45–
2.37

0.001 1.4 1.2–1.8 0.02

Shock 1.16 −1.5 to 
2.6

0.087 –
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If we consider the ISS as the main predictor being investigated in the study, 
we can state that the correlation between the ISS and the length of stay remained 
true also after correction for confounders, i.e. the age and the sex. For each incre-
ment in the ISS we would observe an increment of 1.21 days in the length of stay; 
men would experience a longer length of stay of 1.4  days when compared 
with women.

7.3.2	� Adjustment for Confounders

Another way of looking at multivariable analysis is the following: the aim of mul-
tiple regression is to determine an independent relationship of a variable of interest 
with an outcome, by accounting for other factors that may influence the association, 
which are known as “confounders.” A confounder is a variable that is associated 
with the main variable of interest (the main risk factor), without being affected by 
the risk factor itself, and is associated with the outcome. Multivariable analysis is a 
method of adjusting for confounders, by including them in the model along with the 
risk factor (or variable of interest). In our example the age could be considered as a 
confounder, since length of stay could be influenced by the age of the patient, while 
age does not influence the injury severity score that could be influenced instead, for 
example, by the trauma mechanism. From a technical point of view a confounder 
and a parameter are the same thing, it only varies their interpretation.

7.4	� Logistic Regression Models

7.4.1	� The Logistic Regression Model

When the outcome variable is not continuous (it can be categorical or binary) the 
linearity assumption is not fulfilled since there is no linear association between the 
outcome variable and the predictor. In this case we have to adopt a logistic regression.

Logistic regression explores the association between a categorical outcome vari-
able and one or more explanatory variables; the basic principles are similar to those 
explained for linear regression. Even in this case the predictors can be continuous, 
categorical, or binary. If the outcome variable is binary, we would name the regres-
sion “binary logistic regression,” while if the outcome variable is categorical, the 
regression would be called “multinomial logistic regression.”

From a mathematical point of view (that we will only cite briefly) in the logis-
tic regression model our data are transformed in probability and then in loga-
rithms, obtaining a linear association between the independent variable and the 
log transformation (or logit) of the outcome variable. After the logit transforma-
tion the logistic regression is very similar to a linear regression. Fortunately we do 
not have to care about these transformations since all statistics software calculate 
them. The majority of statistics software gives us two effect measures of the logis-
tic regression:
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•	 Coefficient B: is very similar to the beta coefficient of the linear regression, it 
gives us the measure of the change in logit for each change in the independent 
variable. Its interpretation is very difficult since it is expressed in a logarithmic 
scale. For this reason it is always omitted in scientific papers.

•	 Odd ratio (OR): often expressed also as Exp(B) is the transformation of the coef-
ficient B in an odd ratio. The OR explains the association between the outcome 
variable and each of the predictors. The measure is a number between 0 and 
infinity, where the value 1 corresponds to no effect (same odds in the two groups).
–– For binary explanatory variables, the OR is the probability that the outcome 

variable is present if the explanatory variable is expressed against the proba-
bility that the outcome variable is present if the independent variable is absent 
(see Chap. 8). One of the groups is used as “reference” and the OR will give 
the increase/decrease in the odds for the corresponding group as compared to 
the reference group. The reference group for each variable should be clearly 
stated in the table description. Values between 0 and 1 denote a protective 
effect of the explanatory variable toward the outcome variable, while values 
above 1 indicate a positive association between the independent and the 
dependent variables. For instance, if OR = 2 cases who express the predictor 
have a twofold increase in the odds of having the outcome variable, as com-
pared to cases who do not express the predictor.

–– For continuous variables the OR represents the increase or decrease in the 
probability of the outcome event for each increment in the independent vari-
able. An OR > 1 means that for each increment in the independent variable 
(for example, for each +1 in years of age) the probability of the outcome vari-
able will increment according to the OR. Since continuous variable has a wide 
range of variable the magnitude of the effect measure is often very reduced, 
making the interpretation of the real magnitude of the effect less immediate.

–– An alternative way to assess the relationship between a continuous variable 
and the binary outcome variable is to transform our continuous variable (age) 
in a grouped (categorical) variable. This transformation is usually adopted to 
obtain results more immediate and easy to understand with the comparison 
between several groups. However the choice of the age cut-off is a possible 
source of bias and it should be taken into account.

The OR should be always reported along with its 95% confidence intervals: for 
the predictor to be clinically and statistically significant the 95% CI should not cross 
the value 1. After the 95% CI is reported also the p-value for significance test.

7.4.2	� Interpreting the Logistic Regression Model: An Example

We now want to study factors associated and related with ICU admission, a binary 
outcome variable. In this case we have to use a logistic regression. As for the linear 
regression the first step is to run univariate logistic regressions for each independent 
variables. The OR we will obtain will be an unadjusted OR, since it comes from an 
univariate analysis. Let us see Table 7.3 with the example of our trauma dataset:
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Table 7.3  Results of the univariate and multiple logistic regression analysis from our exam-
ple dataset

Independent 
variable Dependent variable: ICU admission

Univariate logistic regression 
(unadjusted ORs)

Multiple logistic regression 
(adjusted ORs)

OR 95% CI p-value OR 95% CI p-value
Sex
Women (ref) 1 – –
Men 2.31 0.65–

4.16
0.236 –

Age 1.11 1.02–
1.20

0.012 –

Age group
16–30 years (ref) 1 – – 1
30–60 years 0.65 0.41–

0.80
0.001 0.47 0.12–1.08 0.075

>60 years 21.5 16.1–
23.1

0.001 7.65 4.46–9.92 0.001

ISS 1.65 1.2–2.5 0.001 1.74 1.54–2.31 <0.001
Hemodynamic
Stable (ref) 1 – – 1
Shock 14.20 1.25–

56.2
0.023 9.89 6.43–

12.73
<0.001

Univariate analysis (left side of the table, yellow) shows us that age, injury sever-
ity score (ISS), and shock at admission are associated with ICU admission, while 
sex is not associated with ICU admission. In detail:

•	 Men have an OR of 2.31 that means that the probability of ICU admission is 2.31 
higher compared to women (reference category). However the 95% confidence 
interval is wide and it crosses the no effect value (value 1); therefore, this result 
is not significant from a statistical point of view. This is confirmed also by the 
p-value that is >0.05 (p-value = 0.236).

•	 For every increment in the age the probability of ICU admission increment by 
1.11 times. This result is statistically significant since the 95% CI does not cross 
the value 1.

•	 As an alternative, to evaluate the association between age and ICU admission the 
age (continuous variable) was grouped and considered as a categorical variable: 
Age category 1: age 16–30, category 2: age 30–60 and category 3: age > 60. In 
our example patients with age 30–60 have ~35% lower probability to be admit-
ted in ICU (OR 0.65 95% CI 0.41–0.80) when compared with the chosen refer-
ence category (age group 1, 16–30), while patients in >60 years group have a 
21.5-fold higher probability when compared with the reference group. This 
transformation allows us a better understanding of the effect of the age as we see 
the evident difference with the OR of the age considered as a continuous variable.
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•	 For every increase in the injury severity score the probability of ICU admission 
increases by 1.65 (95% CI 1.2–2.5). Even there we can notice the significance 
since the 95% confidence interval does not cross the 1 value.

•	 Unstable hemodynamics at presentation (shock) is associated with ICU admis-
sion with an OR 14.29 (95% CI 1.25–56.2) when compared with stable patients.

The obtained ORs from the univariate analysis are presented as unadjusted odds 
ratio, i.e. OR not adjusted for potential confounders. In order to evaluate the effect 
of confounders and evaluate the relationship among the independent variables we 
have to run multiple logistic regression.

As for the linear regression the choice of the predictors to be included in the 
model is crucial. Similarly, in order to have a solid model, we have to include in the 
model a restricted number of covariates (the independent variable): as a rule of 
thumb, we can include a covariate every ten events in the dependent variable (out-
come variable). Another general rule is the choice to include in the model only 
predictors associated with the outcome variable at the univariate analysis. However 
the choice of the covariates could be modified (clinical significance at univariate 
analysis or borderline statistical significance).

In our example we have a very large dataset (<1000 patients) with a large number 
of events (ICU admission, >150 events). In this case we can run a multiple logistic 
regression with up to 15 covariates; we therefore will include all the variables asso-
ciated with ICU admission at the univariate analysis. We must have to notice that we 
run two univariate analyses for the same variable, the age, once as a continuous 
variable and once as a categorical variable. In the multiple logistic regression model 
we will include age only one time. In Table 7.3 the results of the multiple regression 
are shown on the right side of the table, the pink one. The analysis shows us that 
age > 60 years, ISS, and shock condition, after adjusting for confounders, are inde-
pendently related to the ICU admission.
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8Survival Analysis

Simone Famularo and Davide Bernasconi

Most of the activities we make in clinical practice have a single, simple aim: fight-
ing the disease to increase survival. Typically, although several medical conditions 
do not require to face the risk of mortality, the general intellect during the centuries 
has been captured by the medicine’s potential to change the natural history of a 
disease, tearing a great number of people from a destiny already written. Let us 
think of cancer, probably the leading cause of death worldwide: in recent years, we 
made exciting steps forward, changing completely the outcomes for those who are 
affected. No more than 15 years ago, for example, a diagnosis of metastatic colorec-
tal cancer was a death sentence, while now several therapies and combined 
approaches are available, reducing sensibly the rate of patients who are condemned. 
Moreover, the integration of new knowledge derived from molecular medicine, 
oncology, and surgery is leading us to a new scenario where cancer may become a 
sort of chronic disease.

Clinical studies play a key role in the continuous development of the treatment 
of cancer to improve the survival of patients. Thus, a solid knowledge regarding 
how to collect and analyze survival data is crucial for medical researchers involved 
in such studies. How can we understand the impact of a treatment in modifying the 
survival probability of our patients? How can we account for the sequence of events 
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that occurred at different time points? How can we be sure that an eventual survival 
benefit is intrinsically connected to the treatment, and not to a more benevolent 
disease, not so much aggressive? In this chapter, we will focus our attention on these 
topics through some clinical examples that may better explain how to manage time-
to-event data.

8.1	� Generalities About Time-to-Event Data

Time-to-event reflects the time elapsed from an initial event (e.g. diagnosis of the 
disease, surgery, start of treatment) to an event of interest: death, cancer recurrence, 
a second episode of diverticulitis after conservative treatment, and so on. The event 
of interest should not be the death in any case: in fact, despite the name commonly 
used to refer to the statistical methodology, all kinds of events that can occur in a 
predetermined time-span can be considered in the analysis.

Generally speaking, these techniques are applicable both in randomized clinical 
trials and in cohort studies (typically prospective but also when data are collected 
retrospectively).

The most important aspect for the analysis of this type of data is the planned 
minimum follow-up time of patients. When we set a prospective study, for example, 
we may plan to enroll patients for 1 year (e.g. at the time they undergo surgery) and 
to subsequently follow them for further 2 years. The very first patients enrolled at 
the start of the study will be followed up for almost 3 years, while people enrolled 
at the end of the study will be followed up for at most 2 years before the study will 
be closed. Even if we think about a homogeneous cohort of patients sharing very 
similar treatment and baseline characteristics, it is quite obvious that the probability 
to observe the event of interest will be different among these two types of patients: 
let us think about cancer relapse.

The first enrolled patient has been treated and discharged at home, and now we 
have started the follow-up period: as previously mentioned, our study will last 
2 years since end of enrollment, so he has 36 months of time to develop our event of 
interest, the recurrence. Depending on the type of cancer we are studying, this time 
period may be enough to observe the event. For the last patient enrolled, however, 
we will have only 24 months before the study ends to observe the recurrence. This 
time may also be enough to observe the event but it is much shorter than the follow-
up time of the first patient. Both patients may be classified as no-recurrence; how-
ever, this may not be because of the treatment we have administered, but because we 
have observed them for too little time: their recurrence might have occurred when 
the study was already closed. How can we manage this situation where different 
follow-up times are present? Moreover, how can we account for the fact that for 
some patients we may not observe the event of interest (and thus the time of event 
occurrence)? Should we exclude these patients from our analysis? Obviously not: 
survival analysis methods have been thought specifically to address these issues, 
allowing us to manage patients observed for different timespans and that may be 
still event-free at the end of the study. Another issue that may occur is the patients’ 
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drop-out. In fact, a patient may be enrolled in the very early phase of the study, 
however, for some reason, he may decide to stop his participation in the study before 
the end of the planned follow-up (he stops to come at the outpatient visits, or he 
goes to live in another district or country, or simply he changes his mind on the 
participation at our study). In this latter case, we will have a shorter follow-up, as in 
the case of those who are enrolled at the end of the study period. For these patients 
(dropped-out or late enrolment), we surely have an incomplete follow-up. To sum 
up, we usually have to deal with patients enrolled at different moments and thus 
with different potential follow-up times who may quit the study before the end. 
However, as long as the reasons for these differences in the observation time of 
patients depend only on study logistics and not on the clinical status of patients, we 
can say the following: for the patients that do not develop the event of interest dur-
ing the study, we only know that their survival (i.e. event) time is longer than their 
last observed follow-up: we call these times censored.

Box 8.1: What Is Censoring?
Have a look at Fig. 8.1. We have depicted a situation as the last described: in 
the Y-axis, we have the patients enrolled, while in the X-axis we have the cal-
endar time. Each patient has a different story: #1 has been enrolled at the 
study start and has been followed up for the duration of the study without 
observing a recurrence. Patient #2 has been enrolled on the 4th year and fol-
lowed up until the end without a recurrence. Patients #3 and #5 have been 
enrolled at different times, but before the study ended they withdrew: #3 
moved to another city and preferred to be followed for his disease in the new 
location, while #5 did not come to the planned visit, and she did not answer 
anymore to the phone. Patients #4 and #6 experienced the event of interest 
(recurrence) at different time points. Thus, since we have observed only two 
events of interest (patients #4 and #6), our outcome (i.e. the time of event 
occurrence) is known only for these two subjects. The information we have on 
the other subjects should not be thrown away! In fact, we have a partial knowl-
edge of the outcome also for censored subjects: we know that their event time 
is higher than their observed follow-up time. This means that these patients 
may have a recurrence in the future but we will never observe it. This is true 
both for patients #1 and #2 who arrived at the end of the study period without 
experiencing a recurrence as well as for patients #3 who dropped out from the 
study and patient #5 who was lost to follow-up. Survival analysis methods 
were designed to account for all these issues, thanks to the following crucial 
assumption: occurrence of censoring is independent of the likelihood of 
developing the event of interest. This is certainly true for subject #1 and #2 
(the study end is obviously independent from patients survival) and for sub-
ject #3 (censoring is due to patient migration so it is again independent from 
survival), while for patient #5 is not granted: we should speculate what is the 
reason for loss to follow-up (if the reason is related to the patient status, then 
independence of censoring assumption may not hold).
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Fig. 8.1  Graphical representation of survival data as they are collected

8.2	� The Variables We Need to Make Analysis: Event 
and Time

Now, we can start to explain how to prepare our data in order to perform a sur-
vival analysis. First, for each patient we need a time variable, which should be 
a continuous variable in which the time (measured in months, days, years, or 
any other time unit) of observation is expressed. This variable represents the 
time between the observation start (the first day of a RCT, or the day of surgery, 
or the day of the diagnosis, depending on the study purpose) and the time of the 
event or the last time we have notices about the patient. One way to manage 
this information during data collection is to add two columns in our database, 
in which we will record the date of the follow-up start, and the date in which 
the event of interest (e.g. the death) occurred. In case the patient does not 
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experience the event, we will record the last date we have news about him, for 
example, the date of the last visit. To increase the accuracy and the effective-
ness of our analysis, it may be better to have a complete follow-up for all 
patients: in this sense, it is strongly recommended to update the follow-up at 
the same time for each patient (this is why, typically, you can find lots of resi-
dents that are busy at the phone, making very strange conversation in which 
they try to gently understand if the patient who has been treated 10 years ago 
and then has never been seen anymore is still alive or not). When we are mak-
ing retrospective studies, this could be difficult and challenging and missing 
data may occur. Recommended methods to manage the missing data (e.g. mul-
tiple imputation) are really too advanced for the purpose of this book. A prag-
matic solution is to do all the best to find the data: we know about consultants 
who required their residents to write letters to the registry offices, generating 
hatred and frustration which ultimately result in abandoning all ambitions of 
research in the future.

Once we have the two dates, we can simply calculate the difference, in the time 
unit we prefer, between the two dates, to obtain a continuous variable measuring the 
time-span and becoming our time variable.

Second, we need for each patient a categorical variable that indicates whether 
the observed time just calculated represents the time to an event (e.g. death, recur-
rence, development of a symptom) or to the last follow-up (i.e. censored observa-
tion: the patient did not develop the event of interest during the follow-up period). 
For the analysis we do not need to distinguish among the possible causes for 
censoring (e.g. study end, loss to follow-up), provided that the independent cen-
soring assumption holds (see the previous paragraph). Thus, this event indicator 
variable should always be a dichotomous variable (e.g. dead/alive, recurrence/
recurrence-free, yes/no). A little recommendation: the event indicator should be 
coded as a binary variable assuming value 0 for censored observations and value 
1 for observed events. This choice is convenient because it corresponds to the 
default values in many software which will automatically understand this classifi-
cation. However, some software (such as STATA) always requires to specify 
which level of the variable indicates who is censored and which level indicates 
who has the event.

Now our data will look like those represented in Fig. 8.2, while in Fig. 8.3 we 
can see our toy dataset ready to be loaded into our favorite software to start the 
analysis.
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Fig. 8.2  Graphical representation of survival data after they are prepared for being analyzed. The 
event indicator variable is d and takes value 1 for subjects #4 and #6 who developed an event dur-
ing follow-up and takes value 0 for the others (censored subjects)

Fig. 8.3  A screenshot of 
our toy dataset once ready 
to be analyzed

8.3	� The Survival Curve and Life Tables:  
The Kaplan–Meier Method

The main goal of survival analysis is to assess the probability that patients from a 
certain population can survive (or remain event-free) until some time. We want to 
compute this probability for every time unit (e.g. every year, month, or day) up to a 
fairly distant time horizon. Once we have prepared the data as mentioned, we can 
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Table 8.1  Kaplan–Meier estimation of the survival probability over time in our toy dataset

Time 
index

Time 
(years)

Number at 
risk, Nt

Number of 
deaths, Dt

Number of 
censored, Ct

Survival probability
St + 1 = St × ((Nt + 1 − Dt + 1)/Nt + 1)

t = 0 0 6 0 0 1 (by definition)
t = 1 3.7 6 0 1 1 = 1 × (6 − 0)/6
t = 2 4.6 5 0 1 1 = 1 × (5 − 0)/5
t = 3 4.7 4 1 0 0.75 = 1 × (4 − 1)/4
t = 4 6.2 3 0 1 0.75 = 0.75 × (3 − 0)/3
t = 5 8.3 2 1 0 0.375 = 0.75 × (2 − 1)/2
t = 6 10 1 0 1 0.375 = 0.75 × (1 − 0)/1

proceed to estimate this quantity. The result will typically be presented as a survival 
curve, in which the X-axis shows the follow-up time, and the Y-axis the probability 
to survive (the proportion of people surviving) until that moment.

The estimation of the survival probability used to generate the curve is typically 
done using the Kaplan–Meier method, which can be described by the following 
formula:

	
S S N D Nt t t t t+ + + += ´ -( )( )1 1 1 1/ 	

This means that if we know the survival at time t (St) we can compute the survival 
at next time t + 1 (St + 1) by multiplying St with the probability of surviving in the 
next time unit t + 1. The last one is computed as the proportion of patients NOT died 
at t + 1 (i.e. patients alive at t + 1 minus patients died at t + 1: Nt + 1 − Dt + 1) over 
patients alive at t + 1 (Nt + 1). The first value of the survival S0 is by definition equal 
to 1 since at time 0 all patients are alive. How does the method account for censored 
subjects? At time t  +  1 the number of subjects still alive is obtained by taking 
patients alive at t (Nt) and subtracting patients who died at t (Dt) but also subjects 
censored at t (Ct), thus Nt + 1 = Nt − Dt − Ct.

With this formula, we can create a table like the following (Table 8.1):
In the first column only times when something happens (i.e. at least one patient 

died or censored) are reported in increasing order. The number at risk reported in the 
second column represents the patients that have not yet experienced the event of 
interest at that time point and that have not yet been censored. This number will 
decrease as time passes and give us a very important piece of information regarding 
how reliable the survival estimate is (see Box 8.2 to better understand why this is 
very important). In the third column, we find the number of deaths: in this example, 
we are measuring the overall survival but in other examples here we can find the 
number of patients who experienced the event of interest, at the time it occurred. 
Then we have a column for censored observations. Finally, for all the relevant time 
points, the survival probability is computed. As time increases, the value of the sur-
vival can only remain the same or decrease and the value is updated only at times 
when at least one patient has the event (for this reason, the plotted curve has a “stair” 
shape). To know the estimated survival probability at a certain time (e.g. 5 years), 
we need to find in the time column the maximum time lower than the time of inter-
est and read the corresponding survival value. For instance, the estimated survival at 
5 years is 0.75 (we should look at the row where time = 4.7).
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Fig. 8.4  Kaplan–Meier survival curve estimated on toy data

Looking at Fig.  8.4, we can easily understand the survival probability of our 
cohort at different time points. Finding the intersection among X and Y axis, we can 
estimate that after 5 years of follow-up, 75% of our patients are survivors. By defini-
tion, to estimate the median survival of our cohort, we need to follow the Y-axis at 
0.50 and find the intersection on the X-axis: in this example, the median survival 
time of our cohort is a bit higher than 8 years. As expected, patients are 100% alive 
at time 0 (the X-axis origin): this obvious assumption conditions the figure of the 
curve, which is always decreasing to the right, that is the direction in which the time 
increases. The slower the curve decreases, the higher will be the survival of patients, 
even after a long time. When the curve decreases sharply, we are facing a disease 
that is very aggressive, with a high probability of death. When we compare two 
survival curves, for example, estimated on two groups of patients under two differ-
ent treatments, the higher one will belong to the treatment with the best prognosis 
(we will reconsider this theme after).

We can also provide information about the censoring: a proper figure, in fact, 
should report the presence of patients censored at each time point. This is usually 
visualized by a sign on the curve (in our example, a small vertical line is present 
when there is a censored case). Remember that the aim of your graphic representa-
tion is not to hide data, but to summarize the highest quantity of information and to 
make it easy to be understood by other physicians. Depending on the sample size, 
the survival curve can be more of a staircase rather than a proper curve: the higher 
the number of patients, the more the survival line becomes similar to a smooth curve.
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Another consideration should be made about the direction of the curve which can 
provide a description of the natural history of a disease. For example, if the survival 
curve tends to flatten after a certain time point, this suggests that patients who are 
still event-free at that time point are not anymore at risk of developing the event. In 
contrast, if the curve falls down to zero this means that after the time the curve 
reaches the horizontal axis no patient survives.

Be careful about extrapolating the results of a curve beyond a certain time 
point! The Kaplan–Meier curve could be artificially projected up to very far time 
points that we do not really observe. For example, one could be tempted to draw 
the survival curve until 15 years, even if patients in the cohort were observed for 
a maximum of 5 years. This is very speculative and should be avoided. A good 
practice is to report the median follow-up time of the study (together with inter-
quartile range), allowing readers to know which survival times have been really 
observed (see Box 8.2 to know how to calculate appropriately the median follow-
up time of your study).

Box 8.2: Patient-At-Risk and Median Follow-Up Time: How to Interpret
We now want to focus our attention on two important aspects both con-
nected to the correct interpretation of a survival curve: the number of 
patients at risk in the right tail of the curve and the calculation of the median 
follow-up time.

All statistical estimators are subject to some variability which reflects our 
uncertainty on the point estimate we calculate and this variability depends 
also on the inverse of the sample size: the higher is the number of subjects on 
which the estimate is calculated, the lower is our uncertainty around that 
value. This is true also for Kaplan–Meier curves with one additional caveat: 
the sample size decreases through time. The number of patients at risk is in 
fact eroded for two reasons: patients who die (or have the event of interest) 
and patients who are censored. As a consequence, even if our initial sample 
size is particularly high, as we move towards the right tail of the curve the 
number of patients at risk becomes smaller and smaller. This means that also 
the precision of our Kaplan–Meier survival estimates decreases through time 
and, from a certain time onwards, may become unreliable because its updated 
value could be based on a very small number of patients still at risk. In Fig. 8.5 
we show a Kaplan–Meier curve together with 95% confidence interval 
(shaded area). As you can see, the amplitude of the confidence interval 
increases through time suggesting that the estimate becomes less and less 
precise. At time 4.5 we have only 10 patients still at risk: the curve is thus 
updated based on the mortality observed on that restricted group of patients. 
Reading survival probability estimates on the right tail of the curve must be 
considered with caution.

Providing a summary measure of follow-up time is always requested 
when reporting the results of a cohort study. A typical measure is the median 
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which can be easily calculated directly on the observed follow-up time of 
patients. However, with survival times we may get in trouble even for this 
simple task. In fact, if our end-point is death or if our observation ends as 
patients experience the event of interest, simply calculating the median of the 
observed times would lead to an underestimation of the follow-up time. The 
survival time of patients who died is obviously shorter than their potential 
follow-up time (especially for those who died early). The question is: for 
how long would we have followed patients if they did not die? How can we 
obtain a more accurate estimate of this quantity? Surprisingly, the solution is 
again Kaplan–Meier but… reversed! In this case, censored times are those 
we are really interested in, while survival times represent a lower limit for the 
true follow-up time of a patient; thus, we can simply estimate the curve con-
sidering censored observation as events and death as censorings (Fig. 8.6). 
The time where this curve reaches 50% is about 4.2 and this is the best esti-
mate of the median follow-up time we can get. On the same data, if we cal-
culated the simple median of the observed times, we would get 1.55, a clear 
underestimation.
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Fig. 8.5  Kaplan–Meier survival curve with 95% confidence interval (shaded area) on a made-
up dataset
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Example Box: Part 1
DISCLOSURE: The following data are completely created, and the results 
obtained do not depict a real scenario. The example is completely invented, 
and the conclusion does not want to suggest anything. The comparisons are 
made reliable to better highlight the management a clinician should employ 
to make survival analysis; however, the setting and all the data are not taken 
from reality.

We are surgical oncologists, and after a few years we have started a laparo-
scopic program to treat HCC patients. We would like to know if the long-term 
survival of those patients treated by laparoscopy is longer, similar, or shorter 
than the classical open approach. For this purpose, we decide to set up a ret-
rospective study, to compare the overall survival among the two surgical 
approaches.

We know from the literature and the guidelines that the overall survival 
for liver tumors is conditioned not only by the surgical technique but also by 
the tumor burden (number and size of the nodules), the comorbidities and 
the age of patients, their underlying liver function, and some histological 
characteristics: since the retrospective nature of the study, we want to col-
lect all this information to adjust the risk and be sure about the treatment 
effect on survival. We start to create a data-sheet in Excel where we collect 
all the data we need to make our analysis. Likewise, we decide to collect all 
the following variables: patient’s ID, age (continuous variable, years), sex 
(categorical variables, levels: male and female), number of nodules (con-
tinuous variable), size of the nodules (continuous variable, cm), presence of 
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Fig. 8.6  Reverse 
Kaplan–Meier applied to 
the same data of Fig. 8.5. 
Events and censored 
observations are 
flipped over
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cirrhosis (categorical variable, levels: yes and no), MELD score (continuous 
variable), HBV or HCV infections (categorical variables, levels: yes or not), 
type of procedure executed (categorical variable, levels: open, laparoscopy), 
date of the procedure, presence of microvascular invasion (categorical vari-
able, levels: yes and no), and satellitosis (categorical variable, levels: yes 
and no). To simplify the software job, we transform all the categorical vari-
ables in no = 0 and yes = 1, female = 0 and male = 1. After this, we also need 
to collect the variables we need for survival analysis: the event status (alive 
or dead) and the follow-up time. Since our primary end-point is overall sur-
vival, we start checking in our hospital management software all the last 
visits of our patients, to know if our enrolled patients are still alive or not at 
the present date. In case we did not visit the patient recently, we decide to 
call by phone number to speak directly with the patients or the parents to 
know about their follow-up. We want to know their status at the present day, 
so we create a column in which we insert the date of the last contact (if the 
patient is alive) or the death date. Although we want to do the maximum to 
find the most updated news about the patients’ follow-up, for a few of them 
we won’t be able to have any news after a certain period: to don’t lose 
patients, we decide to insert the date of the last available contact, with the 
event status at that time. Those patients will be considered as censored, but 
they will still contribute to our analysis, although differently if compared 
with patients with completed follow-up.

To create our time variable (called OS in this study), we simply make a 
subtraction between the date of surgery and the date of last follow-up or the 
date of death (see Fig. 8.7).

After this screening, between 2008 and 2020 we have enrolled 464 
patients treated by surgery in our center for HCC. Of them, 65 (14.0%) have 
been treated by laparoscopy. On a first look, we know that 301 patients 
(64.8%) died during the follow-up period, 294 in the open surgery group, 
and 7 in the laparoscopy one. Now we would like to know if this difference 
is significant and if there is an overall survival advantage with one tech-
nique or not.

Fig. 8.7  An example of a dataset managed with one of the most popular software. All the vari-
ables appear as number (and no free text), with only one data per each cell
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8.4	� Comparing Survival Curves: The Log-Rank Test

During our clinical research, most of the time we are more interested in comparing 
the effect of two (or more) treatments on survival, rather than knowing the survival 
of the whole cohort. The Kaplan–Meier estimator can simply be applied separately 
to groups defined by a categorical variable to evaluate the survival probability (as 
well as the median survival) observed in each group (provided that enough patients 
are present in all groups). For example, in a clinical trial with a survival outcome, 
we might be interested in comparing survival between participants receiving a new 
drug as compared to a placebo (or standard therapy). In an observational study, we 
might be interested in comparing survival between men and women, or between 
persons with and without a particular risk factor (e.g. hypertension or diabetes). 
However, rather than simply looking at the curves observed in the samples, one 
might also be interested in assessing the association of treatment or another variable 
with survival using a statistical hypothesis test.

Facing this issue could seem very simple, after all the knowledge acquired in the 
previous chapters of this book. In fact, once we know the total number of deaths for 
each treatment, we could imagine simply making a Chi-square test to compare the 
proportion of events among the groups. Another approach that we could regard as 
feasible after reading this book may be to perform a T test to compare the mean of 
time-to-event among groups. Both the ideas are wrong. Let us think again to the first 
paragraph of this chapter: when we face survival data, we have several issues: 
patients are observed for different periods, the event of interest can be observed dur-
ing the follow-up time or occur later, and finally patients may not have completed 
the predetermined follow-up time. In a few words: we need to account for censor-
ing! Censored observations carry information that we do not want to lose. The log-
rank test was designed to tackle these issues, providing us a tool that accounts for 
the occurrence of events in time and for censoring. There are other types of proce-
dures we can employ to test the hypothesis of equal survival among groups; how-
ever, in this chapter we will discuss only the log-rank test, which is undoubtedly the 
most popular in clinical applications.

The log-rank test considers the null hypothesis (H0) of equal survival between 
two or more independent populations. In other words, the test helps to judge whether 
the survival curves we observe on the sample groups are compatible with the pos-
sibility that the “true” survival curves (i.e. the curves in the whole populations of 
interest from which samples are drawn) are identical (overlapping) between groups 
or not. The log-rank test is actually a particular kind of stratified chi-square test as 
it compares observed vs. expected numbers of events at each time point over the 
follow-up period (the stratification variable is time). Analogously to the other statis-
tical tests, we simply obtain a p-value which should be compared with the chosen 
level of significance to assess whether the treatment groups are significantly differ-
ent or not in terms of survival. If we are comparing more than two treatments, it may 
be useful to make several pairwise log-rank test, which means comparing the treat-
ments one-by-one: this will provide us a better explanation of where the differences 
are, because, for example, two treatments could have similar survival probability, 
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but different from a third treatment. Some correction of the p-value (e.g. Bonferroni 
or more advanced methods) should then be applied to account for the multiple test-
ing problem (similarly to what is done, for example, by ANOVA post-hoc tests).

Box 8.3: OS, DFS, RFS: Defining the Outcomes
A clear definition of the end-point of interest is fundamental, and this is why 
in the methodology section of research papers, it is mandatory to specify this 
aspect. Here we provide for you some standard definition of the most popular 
end-points in surgical oncology, for your convenience.

–– Overall survival (OS): The time from the date of treatment (surgery, drug 
delivery, etc.) to the date of any cause of death.

–– Disease free survival (DFS): The time from the date of treatment to the 
date of the first event among death for any cause or recurrence of the tumor. 
Consequently, this is a combined end-point that considers together both 
types of “failures”, deaths and recurrence. This is also sometimes called 
recurrence-free survival (RFS).

–– Time to recurrence (TTR): The time from the date of treatment to the date 
of recurrence after the treatment. In this case, patients who died during the 
follow-up are censored at the date of death or, perhaps more properly, 
death is considered as a “competing risk” (this would require ad hoc ana-
lytical methods rather than Kaplan–Meier and log-rank test).

However, be aware that these terms can be used to refer to slightly different 
end-points. So, besides names you may want to use for your end-points, it is 
highly recommended to always report each event of interest you included in 
the analysis.

Example Box: Part 2
Now we have prepared our data, and we want to compare survival among the 
two surgical groups. We launch our statistical software (we can use, for exam-
ple, R, version 4.0.6) and we upload the database. First, we calculate the 
median follow-up time, using the reverse Kaplan–Meier method: in our 
cohort, the median FU was 69.93 months (IQR 39.44–110.10).

Then, we launch a Kaplan–Meier. Here below is the life table obtained (we 
kept only the rows of 12, 36, and 60 months).

Laparoscopy = No
Time N. risk N. event Survival Std. err Lower 95% CI Upper 95% CI
12 322 70 0.823 0.0192 0.786 0.861
36 211 83 0.599 0.0252 0.552 0.651
60 124 47 0.448 0.0270 0.398 0.504
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Laparoscopy = Yes

Time N. risk N. event Survival Std. err
Lower 95% 
CI

Upper 95% 
CI

12 51 2 0.965 0.0241 0.919 1.000
36 14 5 0.822 0.0646 0.705 0.959
60 5 0 0.822 0.0646 0.705 0.959

Then we create a survival curve, where we also insert the p-value obtained 
by the log-rank test (when you create these figures, it is always recommend-
able to add the p-value).

If we focus on the survival curve, we can immediately understand the 
survival differences between the two treatments. At the bottom left, we 
visualize the p-value obtained by the log-rank test. As commonly a 
p < 0.05 is accepted for significance, here the two treatments are signifi-
cantly different, and laparoscopy (the light blue line) is superior to open 
surgery (the red line) in terms of overall survival. In our sample, we can 
conclude that the two treatments are different observing the curves, which 
showed a large spread between each other. In fact, the spread among the 
two curves indicates the effect of treatment on survival in our sample, 
allowing to visualize how “large” is the difference (Fig. 8.8). The figure 
can give us other important information The little crosses on the two sur-
vival curves are the censored patients: the density on the curve of the 
crosses gives us information about how many patients we have followed 
for all the period. Another important information derives from the table 
“number at risk”: in fact, patients in the laparoscopic group are few, and 
approximately after 30 months of observation, the survival curve becomes 
flattened, with only some crosses on it. This means that no death event has 
been recorded in that group after that time, and the reduction of the num-
ber of patients at risk is conditioned by the censoring. When there is so 
little data, we should carefully evaluate the meaning of those results at 
least at that specific time points: it is unrealistic that those who were 
treated by laparoscopy stop to die at a certain time point. Probably, enlarg-
ing the sample size, and completing the follow-up, we will note other 
death events that could better represent the real survival tendency of these 
patients. Thus, always carefully consider the table of number at risk, 
because it can give you important information on how realistic the sur-
vival prediction is, particularly far in time.

8  Survival Analysis



104

1.00

0.75

0.50

O
ve

ra
ll 

 S
u

rv
iv

al

0.25

0.00

399

65

322

51

270

33

211

14

160

5

p = 0.00016

Months

Months

Number at risk

0 12 24 36 8

0 12

Open Surgery Laparoscopic surgery

24 36 48

4

Fig. 8.8  Kaplan–Meier curves and log-rank test p-value of overall survival between surgical 
techniques

8.5	� A Regression Model to Assess the Association 
of Multiple Predictors with a Survival Outcome: The Cox 
“Proportional Hazards” Model

The comparison of survival curves between two (or more) treatments is a sort of 
univariate survival analysis, in which we assess the association of a single risk factor 
(the treatment) with the outcome. However, we may desire to study several factors 
simultaneously, as when we perform linear or logistic regressions. We need a regres-
sion model, suitable for time-to-event data, that allows us to assess independently the 
impact of a risk factor in the occurrence of the event of interest in time and conse-
quently to assess if the effect we may have recognized with the Kaplan–Meier 
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method is real or is driven by some other factors (possible confounders). However, 
directly modeling the survival function is statistically challenging (although some 
possible solutions have been proposed). It turns out that it is much more convenient 
to focus on another quantity of time called “hazard rate.” This can be viewed as an 
“instantaneous velocity” of the event occurrence at each time or, in other words, as 
the risk for a patient alive at a certain time to develop the event in the next instant.

One of the most popular regression methods in survival analysis is the Cox pro-
portional hazards model. It is composed of two parts which are multiplied together: 
one is the “baseline hazard,” the hazard of patients with reference level of all covari-
ates; the other is the effect of each covariate on the baseline hazard, showing how 
the hazard modifies when covariates change. The first part can be difficult to esti-
mate properly (although suitable estimators have been proposed) but what we really 
care about is the second part: Sir David Cox invented a method to estimate the effect 
of covariates without taking care of the baseline hazard (that is why this method is 
still so popular!). In the end, in a Cox model, the measure of effect is the hazard 
ratio (HR), which tells us how many times we have to multiply the baseline hazard 
to obtain the hazard of another level of a covariate. For example, if the HR between 
treatment A and B is 2, this means that patients treated with A develop the event two 
times faster than patients treated with B. We can also say that the HR between B and 
A is 0.5, meaning that the velocity of occurrence of the event is halved for patients 
treated with B with respect to those treated with A. People tend to interpret HR as a 
risk ratio (similarly to what happens for the odds ratio). This is not totally correct as 
we should always bear in mind that the hazard is not a simple risk but a sort of “risk 
in time.” However, as with risk ratio and odds ratio, an HR approaching 1 suggests 
no effect of that covariate, an HR > 1 means that the covariate is probably a risk 
factor and an HR < 1 indicates a protective role.

Another analogy with risk ratio and odds ratio is that also HR is usually shown 
with its (95%) confidence interval and possibly the p-value. A statistically signifi-
cant effect is considered when the confidence interval does not include 1 (the null 
value) or when the p-value is lower than a nominal level (typically 5%). Beyond 
statistical significance it is always important to look also at the clinical relevance of 
the estimated effect, especially in observational studies where no a priori sample 
size calculations were made.

Have a look at Table 8.2:

Table 8.2  Cox regression analysis

HR
95% CI

pLower limit Upper limit
Age > =75 (versus <75) 1.012 0.990 1.034 0.282
Charlson comorbidity index (per unit) 1.040 0.905 1.195 0.581
Presence of cirrhosis (versus not) 1.966 1.161 3.328 0.012
Number of nodules (per unit) 1.151 0.815 1.627 0.424
Microvascular invasion (versus not) 1.830 1.202 2.786 0.005
Post-operative complication (versus not) 1.221 0.736 2.023 0.440
Laparoscopy (vs. open approach) 0.754 0.654 0.987 0.043
Post-op liver complication (versus not) 2.524 1.344 4.739 0.004
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0
(N=316)

0
(N=298)
1
(N=163)

1
(N=102)

# Events: 261; Global p-value (Log-Rank): 8.0378e-09
A/C: 2545.77; Concordance Index: 0.66

0
(N=355)

1
(N=97)

(N=464)

(N=464)

0
(N=85)

3.35
(1.57 - 7.2)

1.02
(1.00 - 1.0)

1.19
(0.89 - 1.6)

1.77
(1.21 - 2.6)

1.10
(1.04 - 1.2)

1.08
(0.82 - 1.4)

0.93
(0.66 - 1.3)

1.15
(0.93 - 1.4)

1.17
(0.88 - 1.6)

1.60
(1.18 - 2.2)

1.02
(0.98 - 1.1)

0.002 **

0.237 

0.01 **

0.003 **

0.002 **

0.001 **

0.587

0.648

0.197

0.351

0.293

laparoscopy

age

sex

cirrhosis

MELD

hcv

hbv

N_nodules

size

1 2 5

mvi

Satellitosis

Fig. 8.9  Forest plot depicting the results of a multivariate Cox regression as per our example

This is how to report the results of a Cox regression in a table. You will notice 
that each variable is followed by brackets, which contain the reference value against 
which the level of interest of each covariate was compared. It is very important to 
always declare what we are comparing! The width of the CI is a measure of preci-
sion of our estimates: the sharper the CI is, the more precise the obtained estimate 
is. As already said, the HR may take values from 1 to infinity for risk factors or may 
take a decimal value between 0 and 1 for protective factors.

To make things clearer, just have a look at one of the variables, e.g. post-op liver 
complication: the HR is 2.524, 95% CI: 1.344–4.739, p = 0.004.

In this example, we expect that experiencing a post-operative liver complication 
increases the hazard of death by 2.54-fold when compared with patients who did not 
experience such complications. The result is statistically significant because 1 is not 
included in the confidence interval, as evident also by the p-value that is <0.05. In 
case we are analyzing a continuous variable, the interpretation of the HR is slightly 
different: the HR represents the multiplicative factor of the hazard for a 1 unit 
increase in our covariate. In our example, the number of tumor nodules has an HR 
of 1.151: this means that we expect that the hazard increases by a factor of 1.151 for 
each additional nodule (the result is not statistically significant). Remember also 
that, as with other regression tools, we should also explore the assumption of linear-
ity in the effect of continuous covariates (we cannot hereby explain this issue 
in detail.
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To calculate the “excess of hazard” caused by a factor, we may subtract 1 to the 
HR (HR-1) and then multiply the result per 100. For example, when microvascular 
invasion is present, we expect the hazard of patients without this problem to increase 
by 83% (thus, to almost double). In case the HR is below 1, we need to remember 
to invert the subtraction (1-HR). For example, laparoscopy is associated with a haz-
ard decrease of 25% with respect to patients treated with open surgery.

Another consideration should be made about the number of variables we can 
insert in a Cox regression. This is a very tricky issue; however, a very simple rule to 
take home is the so-called one to ten rule: to create a reliable model with valid 
parameter estimates, we can add an explanatory variable for every ten events that 
occurred in our cohort. So, if we are investigating the risk of mortality and in our 
cohort we observe 56 events, we may simultaneously include no more than five to 
six covariates in our model.

A final consideration should be made to clarify one important limit of the Cox 
regression. This technique relies on a crucial assumption: the hazard proportionality 
assumption. Namely, Cox model assumes that the hazards in levels of each covariate 
(for example, between treatment A and B) are proportional over time, which implies 
that the effect of a risk factor should be constant over time. So, if HR of A vs. B is 2 
we are assuming that patients treated with A die twice more quickly than those 
treated with B at the beginning of the follow-up, as well as after some time, till the 
end of follow-up. This assumption is not always tenable as some treatments may 
have an early efficacy which is lost during time or may show only a late efficacy. We 
can verify this assumption by several tools, using statistical tests, or graphically. One 
of the most popular methods is based on scaled Schoenfeld residuals. Otherwise, we 
can try to figure out whether the assumption may hold directly by looking at the 
survival curves obtained with the Kaplan–Meier method: if the curves of the two 
treatments cross each other, then the assumption is definitively violated. This sug-
gests that the hazards are not proportional over time, and the Cox regression is not 
appropriate: some adjustment must be made to account for non-proportionality. One 
simple approach is to run a stratified Cox model for the variable for which the 
assumption is violated (again, refer to more advanced references for details).

Example Box: Part 3—Estimating the Association of Many Variables with 
Mortality
To complete our survival analysis, we would be sure that the survival advan-
tage we have recorded for laparoscopic patients is not linked to other factors 
that could have justified the significant difference observed. For example, the 
laparoscopic advantage may be driven by the fact that patients submitted to 
laparoscopy presented themselves with a more favorable disease, more little, 
with a reduced number of nodules, less patient’s comorbidities, younger age, 
or whatever other medical reason that could modify the risk of mortality.

Moreover, now we know that a laparoscopic approach may increase sur-
vival, but we would like to quantify how much the risk is modified when 
compared with the open technique.
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In this condition, we definitely need to perform a multiple Cox Regression 
analysis. There are several ways to decide which variables should be inserted 
in the multivariate model, but this is not the point of this paragraph. We will 
run a model with all the confounders we have at disposal in our dataset. Just 
note that the total number of deaths is 301, so following the “one to ten” rule 
of thumbs we can insert in the model up to 30 variables: such a great number 
of confounders can be explored with this cohort!

As a result of the Cox regression (Fig. 8.9), we can now estimate that per-
forming an open approach independently increases the hazard of mortality by 
235% (HR 3.35, 95% CI: 1.5–7.2, p: 0.002) when compared to the laparo-
scopic one, fixing all the other confounders we have investigated. This is a 
strong confirmation of the effect of the treatment because now we could be 
sure that, at least for all the variables investigated (remember that, particularly 
in the retrospective studies, there could be always other confounders that we 
did not record that could justify the risk variation), there is an independent and 
significant survival difference linked to the treatment we are investigating. 
There are also other factors that, alone and independently, modify the hazard 
of mortality according to our analysis: the age (an increase of mortality by 2% 
per each year), the presence of cirrhosis, the MELD score (10% of increase 
per each point of MELD), and the presence of satellitosis. Now we can con-
clude satisfactorily our survival analysis and we can discuss the results we 
have measured!
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9Meta-Analysis

Marco Ceresoli, Fikri M. Abu-Zidan, and Federico Coccolini

9.1	� Introduction

Meta-analysis is one of the cornerstones of evidence-based medicine. A meta-
analysis is a statistical method allowing to combine the results of two or more stud-
ies, giving a pooled estimate result as much closer as possible to the truth, trying to 
minimize errors. Moreover, the meta-analysis allows to identify differences among 
the results of the included studies [1].

The rationale to perform meta-analysis is the possibility to collect the results of 
all the existing studies on a topic and to combine them in a more precise and power-
ful statistical analysis, based on a higher sample size.

Several types of research data can be analyzed using meta-analysis like compar-
ing an intervention versus another intervention or multiple interventions (random-
ized controlled studies or case–control studies), results of diagnostic studies, and 
prognostic data.

Generally meta-analysis is used to combine results of randomized controlled tri-
als, giving the highest level of evidence available, according to the principles of the 
evidence-based medicine; however, since meta-analysis is only a statistical method, 
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it can also be used to combine results of non-randomized studies: in that case the 
level of evidence of the obtained results is lower. The present chapter describes the 
fundamental steps needed to (1) perform a meta-analysis and to (2) critically 
appraise a meta-analysis study.

9.2	� The Question

The first step is the definition of the question: This is the fundamental node. The 
question should follow the PICO model, according to the principles of evidence-
based medicine [2]: This stands for (1) P: patients/population, who are the patients 
or population that you will study? (2) I: intervention: what is the intervention that 
you are studying? (3) C: control: what is your control? (4) O: outcomes, what are 
your outcome variables?. This acronym reassumes the fundamental characteristics 
that a good question should have: a clear definition of the patients/population (the 
disease, for example) in which the investigated intervention is compared with a 
defined control for a specific outcome.

Once the question is well defined, then the further steps will be a systematic 
search of the literature with retrieval of all eligible studies, the evaluation of the 
quality of the studies, and data extraction from each included study. The results of 
the studies can be pooled and the result of the meta-analysis can be demonstrated by 
a forest plot.

In this chapter we will use a hypothetical meta-analysis and we will follow it 
through all the steps. Data are completely invented. Our question is the comparison 
of laparoscopic appendectomy (intervention) versus open appendectomy (control) 
in adult patients with acute appendicitis (patients) in postoperative complications 
and operative time (outcomes). The first step will be the systematic review of the 
literature.

9.3	� Systematic Review of the Literature

A systematic review of the literature is an essential prerequisite before performing 
the meta-analysis. Once the PICO question is clear, a fundamental step is to define 
which databases and resources to systematically search and the inclusion and exclu-
sion criteria of these studies. Defining the search protocol with the help of a search 
methodologist (expert librarian) before starting the systematic review helps to be 
able to reproduce the results. An inaccurate literature review, without a clear proto-
col that finds all available relevant data, will lead to biased results. This could hap-
pen as a result of an inaccurate review or for the inclusion of “cherry-picked” studies 
to support a personal viewpoint. For example, if we exclude (accidentally or delib-
erately) some large sample studies with negative results, we may have a pooled 
estimate effect influenced by our selection bias. The search, exclusion, and selection 
process should be described in detail and shown in a flow chart diagram, as recom-
mended by the PRISMA guidelines [3] (Fig. 9.1).
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Records identified from:
   Databases (n=248)
   Registers (n=2)

Records screened (n=240) Records excluded (n=215)

Reports not retrieved (n=2)Reports sought for retrieval
(n=25)

Reports assessed for eligibility
(n=23)

Studies included in review
(n=10)

Records removed before screening:
Duplicate records removed (n = 5)
Records marked as ineligible by
automation tools (n=1)
Records removed for other
reasons (n=4)

Reports excluded:
Different outcome (n=5)
Different patient population (n=3)
High risk of bias (n=5)

Identification of studies via databases and registers

Identification

Screening

Included

Fig. 9.1  An example of the PRISMA flow diagram

Let us look at our hypothetical example. The flow diagram describes our review-
ing process.

The first level contains information about the identifications of studies address-
ing our topic, based on the criteria adopted and described in the methods section.

The first box describes the number of retrieved records, and the right lateral box 
contains the number of excluded articles before the screening: we retrieved a total 
of 250 studies and 10 were initially excluded because duplicate records or other 
reasons (for example, a study written not in English).

The second level contains information about the screening process and its steps.
The first box describes the first screening (generally made with title and abstract 

analysis: Titles are first screened and then those of interest have their abstracts 
screened) with the indication of the number of excluded studies and reports indi-
cated in the lateral box: among the remaining 240 studies after a screening of title 
and abstract 215 were excluded. Two more records were not available giving a total 
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of 23 studies. The final step of the screening process consists of the assessment for 
eligibility of the retrieved studies: this process needs an accurate evaluation of the 
full text of each study; if a study is excluded, we must indicate the reasons for the 
exclusion. Among the remaining 23 studies we excluded another 13 studies accord-
ing to the chosen criteria and we indicated the reasons for the exclusion in the lateral 
box (and in the results section of the meta-analysis). Finally, we have the remaining 
10 studies that will be included in the analysis.

9.4	� Meta-analysis Appropriateness: Study Inclusion

Another important requirement for a meta-analysis is the absence of considerable 
clinical or methodological heterogeneity among the selected studies, i.e. the simi-
larity of study design, treatments, and outcomes. Ideally all included studies must 
have the same design, the same treatment investigated in the same patient’s popula-
tion, and the same endpoint.

There are no statistical tests that could assess and measure clinical heterogene-
ity and great attention should be given to its description: too precise and narrow 
inclusion criteria will reduce heterogeneity to the minimum but at the same time 
they may lead to exclusion of some important studies; conversely, too permissive 
inclusion criteria will lead to a greater number of included studies but also to a 
higher clinical or methodological heterogeneity with possible biased results. In 
case of great clinical heterogeneity, a meta-analysis will not be appropriate. 
Inclusion and exclusion criteria (on which heterogeneity depends) should be accu-
rately described; You should give great attention to this section when reading a 
meta-analysis!

Here are some examples of clinical heterogeneity not appropriate for study 
inclusion:

•	 the inclusion of a study comparing laparoscopic appendectomy (intervention) 
versus robotic appendectomy in patients with acute appendicitis when other 
studies have open appendectomy as the control group.

•	 the inclusion of a study comparing laparoscopic appendectomy (intervention) 
versus open appendectomy (control) in only pediatric patients with acute appen-
dicitis (different population) when the other studies evaluate adults.

•	 the inclusion of a retrospective study comparing laparoscopic appendectomy 
(intervention) versus open appendectomy (control) in patients with acute appen-
dicitis (population) when the other studies are randomized trials.

9.5	� Study Quality Assessment and the Risk of Bias

During the process of studies’ evaluation and inclusion in the meta-analysis, it is 
very important to assess the study quality and the possible risk of bias (see Chap. 4). 
The presence of bias may under- or overestimate the value of the outcome. Since 
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the conclusions and the interpretation of the results of a meta-analysis depend on 
the results of the included studies, the presence of biased results of a single 
included study especially with large sample may lead to misleading conclusions. 
Therefore, for each included study, the possible presence of biases should be care-
fully assessed and described. Several tools and scales have been developed for this 
purpose.

For randomized trials, the Cochrane collaboration developed a specific tool for 
bias risk assessment [1]. This tool evaluates six specific domains containing all pos-
sible sources of biases and evaluates the risk of bias in three levels: low risk, some 
concerns, and high risk.

The six domains are:

•	 Bias arising from the randomization process: This domain evaluates if the alloca-
tion sequence is random and adequately concealed and if there are differences 
between the characteristics of the randomized groups.

•	 Bias due to deviations from intended interventions: This domain evaluates if 
participants are aware of their assigned intervention during the trial and if inves-
tigators are aware of participants’ assigned intervention (study blinding).

•	 Bias due to missing outcome data: This domain evaluates if data for this outcome 
were available for all, or nearly all, participants who were randomized.

•	 Bias in measurement of the outcome: This domain evaluates the appropriate-
ness of the method of measuring the outcome in the study and between 
the groups.

•	 Bias in selection of the reported result: This domain evaluates if the trial was 
analyzed in accordance with a pre-specified plan and there is no evidence of 
selection of the results.

•	 Overall risk of bias: This domain contains a summary of the risk of bias given by 
the review’s authors (at least two different) on the base of the risk assessed in the 
previous five domains.

The risk of bias should also be graphically depicted with the dedicated Cochrane 
tool (Fig. 9.2).

For non-randomized studies other qualitative scales have been developed to 
assess the potential risk of bias. For surgical non-randomized studies one of the 
proposed scales is the MINORS (Methodological Index for NOn-Randomized 
Studies) which evaluates 12 items assessing all domains and possible source of 
biases [4].

Among all the possible biases the publication bias can be graphically depicted 
and evaluated with a specific graph: the funnel plot. The funnel plot is a scatter plot 
in which each dot represents a study, and it is allocated in the plot based on the study 
results (effect size on x axis) and the study precision (the inverse standard error or 
the number of cases, on y axis). If there is no publication bias the graph will repre-
sent an inverse funnel; in case a publication bias is present, the distribution of the 
dots will be skewed and asymmetric (Fig. 9.3).
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Fig. 9.3  Two example of funnel plots: on the left the distribution of studies is symmetrical (no 
publication bias); on the right the distribution of the studies is skewed (possible publication bias)

9.6	� Results: Effect Measure

The main result of a meta-analysis is expressed with the effect measure. The effect 
measure is a statistical construct that compares outcome data between two interven-
tion groups (intervention vs. control). The effect measure depends mostly on the 
type of data analyzed. Two general groups of effect measures exist: the ratio mea-
sures (for dichotomous outcomes) and the difference measures (for continuous 
outcomes).

According to the type of the data these are the most commonly adopted effect 
measures.

9.6.1	� Binary Outcomes/Dichotomous Data

•	 Risk ratio (RR): It is the ratio between the risk of an event in the two different 
groups X and Y (see Chap. 8); it can be a number between 0 and infinite where 1 
is the no effect value (same risk in the two different groups). When the risk of the 
event complication is higher in the laparoscopic appendectomy group than open 
appendectomy group, the RR will have value >1; on the contrary when the risk 
of the event is higher open appendectomy group than laparoscopic appendec-
tomy group, the OR will have a value between 0 and 0.99. This is the preferred 
measure for randomized studies’ outcomes. A RR = 1.56 should be interpreted as 
56% higher risk of complications in laparoscopic appendectomy group com-
pared with open appendectomy; RR = 0.56 should be interpreted as a 44% reduc-
tion of complication in laparoscopic appendectomy group.

•	 Odds ratio (OR): Similarly, to the RR this measure is the ratio between the 
odds of the event in the two compared groups (see Chap. 8). The measure is a 
number between 0 and infinity, where the value 1 corresponds to no effect 
(same odds in the two groups). When the probability of complication is higher 
in the laparoscopic appendectomy group than open appendectomy group, the 
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OR will have value >1; on the contrary when the probability of the event is 
higher in open appendectomy group, the OR will have a value between 0 and 
0.99. Odds ratio should be adopted in meta-analysis of case–control studies. 
Differently from RR an OR = 1.56 does not correspond to a 56% increase in 
the risk! Its value could approximate the RR only when the frequency of the 
event is less than 10%.

9.6.2	� Continuous Data (Also Scale Data or Counts of Events)

•	 Mean difference (MD): It measures the absolute difference between the mean 
values of two compared group, giving a numeric value that represents the pooled 
difference. The effect size provides information expressed as a clinical unit (for 
example, the mean difference of operating time, in minutes; Fig. 9.5). It is appro-
priate when all study results are expressed in the same measurement’s unit.

•	 Standardized mean difference (SMD): When study results are available in differ-
ent measurement units, continuous results can be meta-analyzed through the 
standardized mean difference that provides information expressed as statistical 
units. The standardized mean difference measures the effect on the base of data 
dispersion and it represents the effect expressed in number of standard deviations 
(SD) (differently from mean difference that is expressed in clinical unit as min-
utes, days, or milliliters of blood loss). A SMD of 1.1 represents a variation of 1.1 
SD. Generally, the value 0.2 is considered as a small effect, 0.5 as medium, and 
0.8 as large effect. This measure is not easy to be interpreted and it is useful in 
limited cases of surgical studies.

9.7	� Results: The Forest Plot

Forest plots are the preferred graphs for reporting the results of meta-analysis. They 
contain several information about the meta-analysis. In this section we will show 
the forest plot created by the Cochrane RevMan software, the open-source tool pro-
vided by the Cochrane organization for making meta-analysis. Figure 9.4 shows the 
forest plot containing the results of our hypothetical meta-analysis with the com-
parison of a dichotomous outcome, morbidity rate, between laparoscopic and open 
appendectomy.

The forest plot is built as a combination of a table and a graph. On the left side 
are shown the results of each included study: the first line shows data about “Study 
A” with the number of events in the experimental and control treatment groups and 
the respective number of patients in each group. Each study has a “relative” weight 
in the meta-analysis: this weight is based on the study precision: the narrower is the 
95% confidence interval (more precise data, small variance), the higher will be the 
weight; on the contrary, a study with a wide 95% confidence interval (CI) will have 
a lower weight. Finally, for each study is represented the effect estimate (the result 
of the study is represented with the chosen effect measure, along with its 95% CI). 
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Study or Subgroup
Experimental
Events Total Events

Control
Total Weight

Odds Ratio
M-H, Random, 95% Cl

Odds Ratio

0.56 [0.37, 0.85]Total (95% Cl)
Total events 40 80
Heterogeneity: Tau2 = 0.00; Chi2 = 7.07. df = 9 (P = 0.63); I2 = 0%

631 707 100.0%

0.02 0.1 1
Favours [experimental]  Favours [control]

10 50

Effect
Measure

Test for overall effect: Z = 2.75 (P = 0.006)

Overall Effect
Estimate with

95% Cl

Statistical Significance Heterogeneity

M-H, Random, 95% Cl

Study A    2 30 1     32        2.9%   2.21 [0.19, 25.77]
Study B    4 78 6     81      10.2%     0.68 [0.18, 2.49]
Study C  15      140       21   137      34.7%     0.66 [0.33, 1.35]
Study D    4        71 5     70        9.5%     0.78 [0.20, 3.02]
Study E    2        45 7     47        6.6%     0.27 [0.05, 1.36]
Study F    1 52 6     50        3.8%     0.14 [0.02, 1.24]
Study G    3 71      19    140      11.1%    0.28 [0.08, 0.98]
Study H    4 63 7     67       10.7%    0.58 [0.16, 2.09]
Study I       4 32 3     29         6.9%    1.24 [0.25, 6.07]
Study L    1 49 5     54         3.7%    0.20 [0.02, 1.81]

Fig. 9.4  A forest plot showing a comparison of a dichotomous outcome (complications following 
experimental treatment compared with control)

Study A           120      18    30     118    35       32     4.7%     2.00 [−11.73, 15.73]  
Study B           131      17       78     140    19       81   12.9%   −9.00 [−14.60, −3.40]
Study C                      121      27     140     130    28     137   11.5%   −9.00 [−15.48, −2.52] 
Study D           121        7       71     131      9       70   17.5% −10.00 [−12.66, −7.34]
Study E           115      27       45     121    24       47     6.9%   −6.00 [−16.46,   4.46] 
Study F           124      37    52     137    28       50     5.3% −13.00 [−25.70, −0.30]
Study G           119      27       71     120    31     140     9.3%     −1.00 [−9.11,   7.11]
Study H           117      31      63     121    30       67     6.9%   −4.00 [−14.50,   6.50]
Study I           124        9    42     121    14       29   12.6%       3.00 [−2.78,   8.78] 
Study L           131      16    49     137    15       54   12.2%     −6.00 [−12.01, 0.01] 

Total (95% Cl)
Heterogeneity: Tau2 = 15.64; Chi2 = 22.24, df = 9 (P = 0.008); I

2
 = 60%

Test for overall effect: Z = 3.25 (P = 0.001)

641

−20
Favours [experimental] Favours [control]

−10 0 10 20

707 100.0% −5.69 [−9.12, −2.26]

Study or Subgroup
Experimental

Mean Mean Weight IV, Random, 95% ClSD SDTotal Total
Control Mean Difference

IV, Random, 95% Cl
Mean Difference

Fig. 9.5  A forest plot showing a comparison of a continuous outcome (operative time in minutes 
between two groups)

The effect measure is also depicted in the right part of the plot: the effect estimate is 
shown as a box and its dimension varies according to the study’s weight (higher 
weight has bigger dimensions); the line represents the 95% CI.

The last line of the forest plot shows the results of the meta-analysis: the overall 
number of events and patients in experimental and control groups and the overall 
effect estimate. The effect estimate is a pooled estimation of the effect of all included 
studies, adjusted according to each study’s weight. On the right it is shown as a 
diamond, having a width which represents the 95% CI.

On the right side, where effects are graphically shown, there is a vertical line: this 
line represents the line of “no effect.” This line corresponds to the value “1” when 
the effect measure is a ratio (odd ratio, risk ratio) and the value “0” when the effect 
measure is a difference (risk difference, mean difference, standardized mean differ-
ence, see Fig. 9.5). The position of the diamond gives a graphical representation of 
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the meta-analysis results: when the diamond lies entirely to one side of the line, 
there is a significant difference between the groups (the “no effect” value is not 
contained in the 95% CI). If the diamond is on the left of the line, the effect measure 
shows a lower frequency of events in the experimental group (a result favoring the 
experimental group in case of bad outcome, as complications or deaths, or favoring 
control group in case of good outcomes as cure, success of the therapy). On the 
contrary, if the diamond lies in the right of the line the result should be interpreted 
as favoring control group in case of bad outcomes.

On the bottom line there are information about the statistical heterogeneity (I2) 
and the statistical significance of the analysis (test of overall effect Z).

In our hypothetical example, in which we analyzed the effect of laparoscopic 
appendectomy (experimental) compared with open appendectomy (control) on the 
complications rate, we included all the ten studies retrieved (from A to L). The over-
all effect showed a significant reduction of complications with laparoscopic appen-
dectomy with an effect measure expressed as odds ratio of 0.56. This means that 
laparoscopic appendectomy reduced the complications by approximately 44% com-
pared with open appendectomy. The confidence interval for the point estimates was 
0.87–0.85.

Figure 9.5 shows the comparison of a continuous outcome (operative time) 
between our two chosen surgical interventions. The mean and the standard devia-
tion for experimental and control groups are represented for each study; the weight 
of each study is calculated based on the data dispersion: higher SD corresponds to a 
lower weight. The chosen effect measure was the mean difference. The meta-
analysis resulted in a significant reduction of operative time of −5.69 min (95% 
confidence interval −9.12; −2.26). We must notice that, despite statistical signifi-
cance, the difference between the two treatments is clinically irrelevant (only 5 min 
difference).

9.8	� Results: Heterogeneity

Heterogeneity is a fundamental aspect to be aware of when reading and performing 
a meta-analysis. It is defined as the presence of differences among studies. There are 
several kinds of heterogeneity:

•	 Clinical heterogeneity: A difference in the clinical setting or intervention of the 
included studies. This should be carefully described. If there was serious hetero-
geneity, then the meta-analysis may not be appropriate. An example, performing 
the same interventions (open versus laparoscopic appendectomy) but in different 
patients’ populations (adult patients versus pediatric patients).

•	 Methodological heterogeneity: A difference in the study design. When present, 
the meta-analysis could be inappropriate. However, occasionally methodological 
heterogeneity can be overcome by using the subgroup analysis. An example for 
that is the presence of randomized and non-randomized studies in the same 
meta-analysis.
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•	 Statistical heterogeneity: This indicates a difference in the results of the included 
studies. This may occur because the confidence intervals are not overlapping or 
because of differences in the direction and the magnitude of the effect of differ-
ent studies. Statistical heterogeneity of the direction of the effect indicates that 
the beneficial or harmful effect of the treatment is not similar across the included 
studies. For example, in Fig. 9.4, in studies A and I the experimental treatment 
resulted in a harmful effect while in all the other studies had a beneficial effect: 
this represents a statistical heterogeneity.

Statistical heterogeneity is evaluated using the Chi squared test for heterogeneity 
with its p-value, indicated in the bottom line of the forest plot. A further evaluation 
is the inconsistency (the measure of incoherence among results), indicated by the I2. 
I2 represents the variation across studies due to heterogeneity. Generally, an I2 value 
of less than 40% can be considered as not important, 40–75% as moderate, while 
more than 75% as substantial.

Heterogeneity conditions the calculation of the meta-analysis results. There are 
two statistical models for the calculation of the overall estimated effect: the fixed 
model and the random model. The fixed model is more accurate (narrower CI) but 
requires an absence of heterogeneity; the random model takes into account statisti-
cal heterogeneity and gives more solid results which avoid misinterpretations.

9.9	� Interpretation of the Results

A meta-analysis is the result of a very complex and tedious work. The forest plot, 
that contains all the essential results, should be considered as “the tip of the iceberg” 
and the interpretation of the results should be a very accurate and cautious. When 
reading a meta-analysis, we must be familiar with the concept of certainty of the 
results, defined as the confidence that the true effect is within a particular range or 
threshold. In other words, certainty is the confidence that the pooled result is true 
and does not depend on heterogeneity and bias.

The point estimate of the measured effect gives us the direction and the magni-
tude of the effect. In Fig. 9.4 for example, the experimental treatment leads to a 
reduction of the outcome (complications) with a measured effect expressed as odd 
ratio of 0.56. This measure does not alone give us all the information we need to 
know. One of the most important information is the width of the confidence interval, 
in which we are 95% confident that the measured effect lies. In our example the 
confidence interval is between 0.37 and 0.85 giving us a reasonable certainty.

Great attention should be directed towards the difference between clinical and 
statistical significance: often, a statistically significant result (with a 95% confi-
dence interval that does not contain the “no effect” value or a p-value <0.05) is not 
clinically significant. Figure 9.5 shows that the experimental treatment resulted in a 
lower operative time with a mean difference of −5.69 min (95% CI −9.12; −2.26). 
Although statistically significant, 5 min mean difference is clinically not important. 
Being expert in the studied area is very important to differentiate between clinical 
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and statistical findings. We should not simply look through the narrow hole of the 
p-value.

The interpretation of the results when there is no significant difference between 
the two groups raises more difficulties. The absence of significant difference does 
not allow us to automatically conclude that the two compared treatments are equiva-
lent. In this case, it is very important to differentiate between “true” no effect and 
uncertainty of the results, based on the evaluation of the width of the CIs.

9.10	� Sensitivity Analysis

Since a meta-analysis is mainly a systematic review of the literature, there are sev-
eral decisions that the researcher must take. Some of these decisions could be arbi-
trary and not objective. For example, the decision to adopt a numerical value as a 
cut-off for age, the decision to consider patients who were lost at follow-up as dead, 
or the decision to include or exclude a study for different reasons. All these elements 
could influence the results of the meta-analysis. Therefore, they should be analyzed 
with a sensitivity analysis, to evaluate their role as a possible source of variability. 
Sensitivity analysis is defined as a repetition of the analysis by changing the included 
elements or changing the arbitrary or unclear decision criteria. Sensitivity analysis 
evaluates the robustness of the results of the meta-analysis. The main factors that 
may implicate a sensitivity analysis are:

•	 the inclusion and exclusion criteria,
•	 the clinical or methodological design of studies (source of heterogeneity),
•	 the model adopted for the analysis,
•	 the effect measure chosen (for example, fixed effect vs. random effect, odd ratio 

vs. risk ratio).

Another example of a sensitivity analysis is the repetition of the analysis exclud-
ing studies by dimension (generally the exclusion of small studies) or by the pres-
ence of heterogeneity.

9.11	� Common Mistakes Encountered in Submitted 
Systematic Review Manuscripts

These are some of the common mistakes we have encountered as reviewers in sys-
tematic review articles submitted to surgical journals that may lead to rejection of 
these papers. Highlighting these errors may help young researchers to avoid them. 
These errors include:

	 1.	 Mixing between a systematic review, scooping review, and a narrative review: 
A narrative review, although searches the literature, has a broad scope and does 
not follow the strict rules of systematic reviews which have a precise protocol 
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and search methods. It is subjective, affected by personal opinion and selection 
bias [5]. A scoping review, similar to systematic review should have a clear 
methodological protocol to reproduce the results [6]. It differs from a system-
atic review in two aspects: (1) including a minimum of one search engine, (2) 
having a broad research question [7], otherwise the methodology is the same.

	 2.	 Unclear or unimportant research question: It is very important to define an 
important focused research question. Systematic reviews may take up to 
18–24 months of continuous work to be properly performed. Systematic reviews 
answering the same question will usually give the same answer if they follow 
the same methodology. Accordingly, it is important to check whether there are 
similar systematic reviews in the literature that answered the same question so 
this major effort can be utilized in the proper direction.

	 3.	 Lack of a clear structured protocol: This protocol should be written to be 
detailed so as to be followed when performing the study. It should define the 
search strategy, terms, outcome variables, and methods of statistical analysis.

	 4.	 Lack of search experience: Systematic reviews depend entirely on the search 
process. The literature search needs both a subject expert and a search method-
ologist to be useful. It should have enough technical details that can reproduce 
the study if done by others. This includes using appropriate truncations like (*) 
and using synonyms to assure retrieving and covering all core keyword varia-
tions and locating all possible evidence. For example, putting words between 
brackets will only search the exact sequence of the words and spaces and not 
individual words.

	 5.	 Not properly following the protocol and inclusion exclusion criteria: Systematic 
reviews by definition are original articles that have detailed methodology that 
can be reproduced by any researcher if methods were followed. The subjects of 
the study are the included articles. The authors should follow exactly the proto-
col of the study.

	 6.	 Not documenting the search procedure: This is a common mistake. The authors 
may really do a systematic review in a specific time using specific search 
engines and specific terms but do not document them. If not fully documented, 
the authors will not be able to reproduce the results. It is very important to docu-
ment each step when doing the search so the PRISMA graph can be accurate 
and reproducible.

	 7.	 Being too narrow in the search: Some authors narrow the search without a jus-
tification to reduce the effort needed in performing a systematic review. They 
may narrow the period of the studies, the geographical location, or the search 
engines. A systematic review needs a minimum of two databases (we recom-
mend at least PUBMED and EMBASE). The more databases are searched, the 
better the systematic review will be.

	 8.	 Lack of critical appraisal and improper evaluation of the quality of the selected 
papers: The authors should evaluate the quality of the studies even if the studies 
were retrospective. It is advised to have a minimum of two research methodolo-
gists who independently critically appraise the selected papers. This is very 
important to exclude papers being published twice either by increasing sample 
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size (in which the first should be excluded) or finding dual publication of the 
same data.

	 9.	 Overusing statistics: It is very important to know when not to do a meta-
analysis. Just to clarify this issue, you cannot mix apples and oranges and count 
them together. Furthermore, adding combing weak studies or heterogenous 
studies does not increase the quality of the evidence.

	10.	 Not acknowledging biases: The authors should recognize all relevant biases of 
a study including geographical bias, language bias, search bias, etc. This indi-
cates that the authors were aware of the limitations of their study. It is advised 
to include this in detail in the limitations section [8].

9.12	� Conclusions

Meta-analysis is a statistical technique that allows to combine the results of two or 
more studies. Meta-analysis cannot exist without a systematic review of the litera-
ture. Reading and understanding a meta-analysis is much more complex than look-
ing at the forest plot. A “check-list” for a correct reading and interpretation of these 
complex studies includes:

•	 Accurate and precise literature review.
•	 Precise definition of inclusion and exclusion criteria.
•	 Description of retrieved studies with reasons for inclusion and/or exclusion.
•	 Assessment of the study quality and the potential risk of bias.
•	 Description of heterogeneity (clinical, methodological, and statistical).
•	 Evaluation of the correct effect measure.
•	 Assessment of statistical significance vs. clinical significance.

One of the commonest errors for the reader is to concentrate and give attention 
only to the forest plot drawing conclusions without critically reading the whole 
study. The robustness of the results should be accurately evaluated (with sensitivity 
analysis, for example). Even in case of statistically significant results (the diamond 
in the forest plot does not cross the no effect line), the presence of important hetero-
geneity could question the certainty of the results, and no definite conclusion can be 
reached. More specific and detailed description of the meta-analysis methodology 
can be found in the Cochrane handbook for systematic reviews and meta-analysis [1].
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10Randomized Trials and Case–Control 
Matching Techniques

Emanuele Russo, Annalaura Montalti, 
Domenico Pietro Santonastaso, and Giuliano Bolondi

10.1	� Introduction to Randomized Trials

This chapter is intended as a general introduction on RCTs, discussing aims, 
strengths, and limitations, helping neophytes to interpret their results, without pro-
viding technical skills to perform them. In this section we will also address some 
issues related to case–control studies as they allow us to answer some questions that 
RCTs cannot answer.

Randomized control trials (RCTs) are considered one of the best and most rigor-
ous clinical study designs available. They play a crucial role in expanding current 
medical knowledge, in reducing biases while experimenting a new treatment or 
approach and evaluating effectiveness and safety.

The history of RCTs is long: some rudimentary fundamentals are even found in 
the Bible: Two groups of youth were assigned to two different dietary regimens: the 
same foods as the King of Babylonia Nebuchadnezzar with a wine ration to one 
group and a teetotal vegan regimen to the other. The outcome was measured by the 
look of the faces at the end of the 10 days. By the way, vegans turn out to have a 
more florid appearance [1].

Initial attempts of structured clinical experiments have been conducted since the 
beginning of the eighteenth century about scurvy and then, more rigorously, during 
the first half of the twentieth century about tuberculosis [2–4].
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In RCTs, individuals are randomly assigned to either the experimental or the 
control groups. Treatment allocation should be blinded during the study and its data 
analysis (allocation concealment) when feasible. The object of the study can be 
clinical maneuvers, administration of drugs, diagnostic tests, surgery, protocol 
implementations, etc. [4].

In some cases, there are even more than two groups, for example, when testing 
different dosages of the same drug.

The enrolled subjects differ, by nature, for a large number of known and unknown 
characteristics, and not just for the experimental variable of interest: this complexity 
makes a crucial difference with lab-based experiments and the following data analy-
sis. If the sample size is large enough, the randomization process ensures that these 
known and unknown variables are randomly distributed between the different 
experimental groups, not influencing the final result. The trial design itself and the 
data analysis techniques developed allow to recognize the presence of unmonitored 
differences between the groups.

Since 2004, a statement from the International Committee of Medical Journal 
Editors requires authors to register their studies and trials in public databases, certi-
fying the respect of clear ethical and study design requirements (i.e.: www.clinical-
trials.gov) [5].

RCTs examine the effects of one or more contemporary interventions. The out-
come variables measured can be clinical (survival, disease recurrence, hospital 
length-of-stay, rate of complications, etc.) or surrogates (physiological data or labo-
ratory tests). Surrogate outcomes do not always prove to be clinically relevant: their 
interpretation can be unlinked to clinical outcomes, leading to uncertain interpreta-
tion, limiting the relevance and applicability of some studies. Surrogate outcomes 
that turn out to be related with clinical outcomes are defined as intermediate 
outcomes.

The “rough” nature of RCTs, merging together extremely different and complex 
individuals and trying to detect the impact of just a few experimentally controlled 
variables, has frequently led to non-significant results. For this reason, advanced 
data analysis methodologies have been developed.

Post-hoc subgroup analysis focuses on specific subsets of patients taking part 
in the RCT (i.e.: younger, sicker, etc.) and then re-runs the data analysis trying 
to identify whether the intervention could be effective in those subgroups. A 
rigorous report of the process and the results should be presented. The frequent 
overuse of post-hoc analysis deviates from the original design of the RCT, gen-
erating numerous problems: lower methodological accuracy, sample size inad-
equacy up to the risk of falsely statistically significant results [6, 7]. Subgroup 
analyses interpretation and their clinical application should be extremely 
cautious.

RCTs are not appropriate for the validation of screening tests and for the study 
of rare outcomes (because of the need for huge sample sizes) or long-term effects 
(unmodified group characteristics and strict follow-up are difficult to guarantee over 
years) [4].
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10.1.1	� Ethical Concerns Are Also Related to RCTs

The World Medical Association Declaration of Helsinki (WMADH) sets the ethical 
principles for medical research involving human subjects.

RCTs must not deprive patients of the best available treatments for their condi-
tions. A strict surveillance for possible adverse effects or futility of the treatments 
must be ensured [8]. Finally, but not less importantly, studies in the emergency set-
ting or about unconscious patients cannot, by definition, collect patients’ informed 
consent.

A patient should be enrolled in a randomized clinical trial only if there is sub-
stantial uncertainty about which treatment is best. The aim is always to shed light on 
the interests of the future patient population.

When ethical questions are not clearly settled from RCTs, observational studies 
(OS) can still play a role [9]. OS have some advantages over RCTs, in particular 
lower costs and, frequently, less ethical concerns (lacking a direct intervention of 
the researchers on the population). However, the highest rate of biases of these stud-
ies places their results at a lower level of scientific relevance [10].

10.1.2	� Placebo Effect

Finally, emotions, expectations, placebo effects, and the setting where the trial is 
performed can be important confounders of the measured outcomes; they might 
conceal the strength and effectiveness of the intervention. As stated in the review of 
Feyes et al., half of the overall effects observed are attributable to contextual effects 
rather than the intervention. The importance of contextual effects alongside the 
treatment should be considered and analyzed by researchers: this allows a deeper 
understanding of the overall benefits to patients [11].

Artificial intelligence and big data have started transforming clinical trials. 
Machine learning algorithms can be trained to select participants and end-points in 
a data-driven fashion. The integration between data science and RCTs is opening 
the doors towards greater efficiency and statistical power, overcoming the described 
limits of RCT [12].

10.2	� Hypothesis Testing and Sample Size Calculation

The scientific method establishes a “hypothesis testing” approach to set up observa-
tional and experimental studies: the hypothesis is declared in advance and should be 
simple and specific. There are two types of hypotheses: the null hypothesis (H0) and 
the one- or two-tailed hypothesis.

The null hypothesis states that there is no association between the predictor (or 
treatment) and the outcome variables in the population: if it is correct, the statistical 
test could predict the occurrence of an event by chance. On the contrary, the finding 
of a statistical association indicates that the alternative hypothesis (H1) is true. The 

10  Randomized Trials and Case–Control Matching Techniques



128

one-tailed hypothesis defines the direction of the association between the predictor 
and the outcome variables in the study population. The two-tailed hypothesis sim-
ply states that an association exists.

Statistical analyses of experimental data are affected by type-I and type-II errors.
A type-I error (alpha) occurs when the examiner erroneously rejects the null 

hypothesis; for instance, it is mistakenly inferred that a treatment has a positive 
effect on a disorder. A type-II error (beta) occurs when the examiner erroneously 
accepts the null hypothesis [13].

Sample size is the number of cases (patients) enrolled in a trial. It should be esti-
mated beforehand by a process known as sample size calculation.

Sample size calculation is a crucial step for the planning and the success of a 
RCT. According to the CONSORT (consolidated standard of reporting trials), in 
clinical research it is fundamental to report and to justify how the sample size is 
calculated [14].

The standard approach is to compute the sample size using four parameters: 
type-I error, power, variability (population variance of a given outcome variable), 
and the smallest treatment effect of interest.

Frequently, by convention, type-I error is set at 5% and the power (1 − type-II 
error) is set at 80–90%. The expected variability of the control group is specified on 
the basis of published results. The smallest treatment effect of interest is based on 
the expectations of the intervention and estimates from preliminary studies and 
explorative trials.

Many reliable sample size calculators are available online nowadays.
Thus, if a researcher wished to initiate a trial on a new suture material, he or she 

would first study the literature and estimate the benefit over the standard material 
used with respect to a predetermined outcome; then calculate the sample size and if 
the study did not reach the calculated size, it would probably be inconclusive.

Big sample sizes are very sensitive in detecting even the smallest differences, but 
may dramatically increase the costs. Underpowered sample sizes may fail to 
describe the effectiveness of a treatment, thus wasting the efforts of a research proj-
ect without detecting any result. The calculation of the sample size helps to make 
clinical studies sustainable and powerful.

The statistical analysis requires, among the first steps, the detection of any sig-
nificant differences in the distribution of covariates between groups (treatment vs. 
control).

The tests performed depend on the characteristics and distribution of the 
variables.

Significant differences in the distribution of outcome-related covariates across 
groups would need to be considered when interpreting trial results.

The hypothetical efficacy of the proposed treatment is tested with multivariate 
analysis techniques in which all possible variables related to the outcome are taken 
into account. The traditional model adopted for dichotomous outcomes is the binary 
logistic regression. Kaplan–Mayer or Cox regression is used for time-dependent 
outcome variables.
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10.3	� Reporting the Trials

Due to their complexity, it is frequently challenging to clearly communicate, through 
short scientific articles, all the relevant information concerning the trial. An expert 
reader (together with editors and reviewers involved in the publication process) 
should be able to make judgments regarding the internal and external validity of the 
trial [14].

To help this process and to set clear international standards, the CONSORT state-
ment is a reference that is periodically updated and is endorsed by over 600 bio-
medical journals and editorial organizations. It provides a 25-topic checklist of 
information to include in a randomized trial report [15].

In accordance with CONSORT, it is mandatory to report data on: scientific back-
ground and explanation of rationale, specific objectives or hypotheses, eligibility 
criteria for participants, setting and allocation, interventions, outcomes, sample 
size, randomization, blinding, statistical method, participants flow, results, ancillary 
analysis, harms, limitations, generalizability, funding, and registration.

10.4	� Randomized Controlled Trials Designs and Techniques

	1.	 RCTs can be designed to test the superiority, noninferiority, or equivalence of 
two different treatments. The different perspective of these RCTs has evident 
consequences in their clinical interpretation.

The superiority, noninferiority, or equivalence RCTs are characterized by dif-
ferent methodological features and statistical analysis.

In superiority trials, the goal is to demonstrate that one treatment is better 
than another; for example, that one antibiotic achieves more clinical responses 
than another in the clinical resolution of ventilator-associated pneumonia from a 
specific bacterium. Sample size should therefore be calculated to test for signifi-
cant differences between the two groups.

In noninferiority trials, the goal is to demonstrate that one treatment is not 
inferior to another, e.g., an antihypertensive is not inferior to previous-generation 
treatments; the new, non-inferior, treatment might be preferred because it 
requires a single administration or has fewer side effects, this strategy may have 
business implications.

From a statistical point of view, it is easier to demonstrate noninferiority than 
superiority.

Equivalence studies aim to demonstrate that differences in the effectiveness 
of two treatments are within a range known as a margin of equivalence [16].

	2.	 Multicenter clinical trials are fundamental in testing medical treatments and 
protocols. Based on the work of different clinical units, they should not be 
affected by local practices and patients’ enrollment is expected to be faster, 
allowing the collection of a larger number of cases. These characteristics increase 
the generalizability of the studies.
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This multicentric approach also shows some pitfalls: inter-site outcome dif-
ferences are crucial to detect unexpected factors that could be unevenly distrib-
uted across clinical sites [17].

In multicenter trials it is therefore essential to verify the possible influence of 
the “center effect.” The remarks on the Crash-2 trial are an interesting example 
for those interested in learning more about the topic [18, 19].

	3.	 Blinding: This widespread technique reduces the information available to inves-
tigators, diminishing the probability of direct interventions and data manipula-
tion due to unconscious expectations about what the tested approach should 
cause [20].

These biases could affect the trial in any phase by any participant. Five cate-
gories involved in the study can be individuated and should be blinded whenever 
feasible: participants, clinicians, data collectors, outcome adjudicators, and data 
analysts. Unblinded participants, knowing the treatment or protocol they 
undergo, may modify their behavior, adherence, perception, or may show some 
placebo effect, altering the measured outcome. Unblinded clinicians are likely to 
influence their attitudes towards patients and data collection. Data collectors, 
outcome adjudicators, and statisticians should also be blinded to prevent biases 
on the analysis of the trial. Scientific, economic, professional, and other interests 
frequently put a significant pressure on the mentioned professionals and it has 
been demonstrated how this could affect results’ accuracy.

It must be specified in the study design and the final scientific report which 
individuals were blinded, how blinding was performed and whether they tested 
the successfulness of this strategy. Sometimes blinding is not physically possible 
(i.e.: testing a surgical versus pharmacological treatment is not hidden to the 
patients and the healthcare workers): it is possible to incorporate other method-
ological precautions, such as standardizing the treatment of the groups, consid-
ering an expertise-based trial design, using objective outcomes or acknowledging 
this limitation [21]. Finally, the study can be blinded to only some of the catego-
ries involved (patients, physicians, statisticians, etc.).

The generic definitions “blind,” “double-blind,” etc. are discouraged because 
there is no homogeneity in their meaning. Instead, the categories undergoing 
blinding must be explicitly mentioned.

	4.	 Different randomization designs are possible.
	 (a)	 The most straightforward scheme for allocating subjects is simple random-

ization, using a single sequence of random assignments. The primordial 
method for simple randomization, adopted by Amberson in 1931, was to 
flip a coin to allocate the participants into two groups (treatment and con-
trol). Obviously, RCT randomization systems have been computerized 
nowadays.

The method is easy and cheap to perform in clinical research. However, 
it could result in unequal numbers of participants in each group (mostly 
when small sample sizes are sufficient) or in groups with uneven covariates 
that make any clinical comparison unreliable [22, 23]. Simple randomiza-
tion could also result in chronological biases if, by chance, one treatment is 
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predominantly assigned earlier and the other later in time. To avoid these 
issues, block randomization can be used [24].

	 (b)	 Block randomization creates blocks of random sequences, each block of 
equal size. This method assures a balance over time in the randomization 
between different groups. The above strategy is interesting for researchers 
managing small samples: being the blocks small, it is possible for the 
researchers to check and keep the number of participants in each group simi-
lar all the time. The blocks are generally composed of a multiple of the 
number of groups (i.e., with two treatment groups, the blocks are composed 
of four, six, or eight participants).

Once all possible balanced combinations of assignments are determined, 
the blocks are randomly chosen to determine the subjects’ assignment into 
the groups.

However, groups are rarely comparable in terms of certain covariates (for 
example, it may be possible to find a higher incidence of a certain disease 
into a group), confounding results, making data analysis more challenging 
and clinical interpretation less reliable. It is recommended to test all those 
covariates that are expected to influence the measured outcome [24].

	 (c)	 Stratified randomization is used to balance the characteristics (covariates) of 
subjects among groups. The researchers must identify the specific covariates 
potentially influencing the measured outcome (dependent variable). The 
method sets up different blocks balancing different combinations of these 
covariates; the subjects are first assigned to the blocks representing their 
characteristics and then randomly assigned to the treatment or control arm 
of the study.

Stratified randomization decreases the probability of type-I error and 
increases the validity of subgroup and internal analysis [24]. It is a manage-
able and powerful tool for small clinical trials, it becomes complex when 
many covariates must be controlled.

A major limitation is that stratified randomization easily works when all 
the subjects have been identified before block assignment. In clinical 
research, subjects are enrolled on a continuous basis: their clinical charac-
teristics are unknown at early stages of the study and the application of this 
method becomes challenging [23].

	 (d)	 Adaptive randomization
Adaptive randomization is a strategy to continuously balance the distri-

bution of covariates across groups based on the previously enrolled cases. 
The probability of a patient to be assigned to any arm of the study is continu-
ously recalculated based on the characteristics of the patients previously 
enrolled.

This method best performs in trials with small sample sizes. It requires 
continuous check of groups’ characteristics and constant determination of 
the assignment of new patients. There are also randomization systems based 
on prior outcomes, but they are affected by a chronological bias and this 
may limit their validity.
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	 (e)	 Expertise-based trials
The expertise of the practitioner about the different procedures tested in 

a trial can cause biases; measured procedural successes or failures might 
depend on the operators’ skills. For instance, it is not appropriate to compare 
a laparoscopic procedure and a laparotomic procedure if the surgeon does 
not have an adequate case history of laparoscopy.

Some RCTs are designed so that the operators are only involved in pro-
cedures in which they can guarantee a predefined standard of care. This 
approach is also commendable from an ethical point of view.

The coordination between the randomization of enrolled subjects and the 
operators available in that precise moment can be a major challenge; more-
over, a continuous check and intervention to balance covariates across 
groups must be guaranteed.

	5.	 Experimental design
RCTs are also classified according to experimental design.
Parallel groups, based on allocation in the control or treatment group. Each 

patient can only receive one of the two treatments tested, e.g., neurosurgery ver-
sus endovascular treatment for a cerebral aneurysm.

Crossover trials: Group A and group B receive different treatments for a pre-
specified time, then it is inverted between the groups.

Cluster trials: Randomization is carried out not by single patient but by groups 
of patients (e.g., geographic area, hospital, school).

The majority of RCTs are studies with two arms of parallel groups [24].
	6.	 Interim analysis

Interim analyses are conducted during the course of a trial, usually by inde-
pendent agencies. Interim analyses are a means of securing ethical rigor of 
the trial.

It may happen that an RCT is stopped early because ongoing results show a 
very clear superiority of one treatment over another or harmful effects of a ther-
apy. In these cases, it would be unethical to continue the study.

Interim analysis sometimes allows the sample size to be recalculated if the 
study design requires it.

10.5	� Strengths of Randomized Trials

To date, RCTs are considered to provide the highest evidences, defining clinical 
decisions and being acknowledged as evidence of level A in current guidelines and 
reviews of the literature.

Randomization reduces the risk of several types of biases, generates comparable 
groups in terms of covariates, reducing the occurrence of not taking into account 
possible confounders. The different types of randomizations described above allow 
uniform groups to be exposed to controlled treatments and protocols (or placebo 
and standard of care).
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Strictly applying standardized procedures, RCTs should ensure a continuous 
control of every step of the study. Scientific and statistical rigor and adherence to the 
experimental design generate univocal outcomes of clear interpretation and the pos-
sibility of generalizing them to similar settings [25].

RCTs are reliable in determining the cause–effect relation between treatment 
and outcome and if the outcome is clinically useful. Overtaking the limits of obser-
vational studies, RCTs ensure a higher control of the covariates that may influence 
the overall outcome [26].

10.6	� Limitation of Randomized Trials

RCTs cannot be freely applied to every medical field. Despite being a “gold stan-
dard” for current research designs, the application of their results to the general 
population should always be very careful.

The randomization might cause the risk of contamination, selecting specific sub-
populations and influencing the final results and their applicability to the general 
populations.

RCTs show limited power and efficacy for the study of complex traits (exces-
sively variable phenotypes) or rare diseases (insufficient recruitable popula-
tion) [27].

RCTs are time- and resource-consuming: possible conflicts of interests should be 
taken into account, forcing positive results or economically advantageous treat-
ments. The conflict of interest is a “set of conditions in which professional judgment 
concerning a primary interest tends to be unduly influenced by a secondary interest” 
[28]. The danger from financial pressures on investigators and institutions is well 
described in the scientific literature [29]. The majority of medical studies are 
financed by private institutions instead of public funds or non-profit organizations: 
Bhandari et al. found that industry-founded trials are more likely to be associated 
with statistically significant findings in medical trials [30].

Considering the long-term effects of some interventions, RCTs definitive results 
are frequently available after a considerable time-span, terribly increasing the costs. 
Long lasting studies might suffer the risk of contamination between the experimen-
tal and the control arms, which increases over time [31].

The techniques used to improve RCTs quality and safety may result in biases and 
unreliable results too. This has been discussed in detail in Sect. 10.4 and is just 
briefly reviewed here.

Imperfect blinding and behavioral issues: The expectation of the trial and the 
placebo effect can influence the behavior of the subjects, investigators, the data 
analysis, and the results claimed [11].

In multicenter studies it is fundamental to check site-specific final differences to 
exclude unexpected confounders due to local clinical practices not addressed by the 
study design influencing the final results [32].

The CRASH-2 study is an example of a multicenter RCT suspected to be marred 
by possible site-specific effect. Moreover, limitations of this study have been raised 
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with regard to some topics discussed in this chapter [18, 19]. Those interested in the 
debates regarding RCT limits can learn more by reading the discussions regarding 
the MERINO trial and CRASH-2 study [18, 19, 33–35].

10.7	� Case–Control Studies and Case–Control 
Matching Techniques

Case–control studies are a sub-type of observational studies which often use match-
ing factors. These research methodologies do not belong to the category of random-
ized trials; however, we consider appropriate to report a brief mention of them 
because this study design, diametrically opposed to RCTs, allows to answer ques-
tions to which trials cannot provide solutions.

Case–control studies compare retrospectively individuals who experience a con-
dition of interest (cases) versus individuals who do not experience the condition 
(controls) with respect to exposure to a potential “risk factor.” Controls must be 
selected from the same population from which cases were drawn.

This epidemiological study approach enables estimates of the relative risk of 
developing a disease or condition when a risk factor is present [36].

Case–control studies are often cheaper in terms of financial, logistical, and 
human resources than RCTs.

Case–control studies are considered efficient means of studying rare diseases 
with a long-term latency period. The best-known and most explanatory examples of 
case–control studies are the ones that have demonstrated the association between 
tobacco smoking and lung cancer in 50s. Furthermore, case–control studies may 
come in handy to investigate specific rare effects of a drug.

In case–control studies, matching techniques are often employed. Matching of 
cases is usually performed to control the effects of known potential confounding 
variables [19]. In small studies, they allow optimization of statistical power. For 
each enrolled case, a person with the same characteristics (age, sex, etc.) deemed 
relevant to the study is recruited into the control group.

Matching by age is suitable when studying risk factors for cancer, as both time 
of exposure and age of onset are relevant.

Therefore, an epidemiologist who wanted to study whether alcohol abuse is a 
risk factor for the development of breast cancer could conduct a case–control study, 
matching patients of the two groups for demographic characteristics, and other risk 
factors, first of all, age.

However, matching cases and control complicates the study, increases its cost, 
and exposes it to pitfalls in assessing the weight of variables.

Matching techniques fall into two main categories:

–– Individual matching: Every case is matched to a control on the base of deter-
mined variables (e.g., age, gender, smoking status, etc.); it is possible also a dif-
ferent ratio (1:2, 1:4 case–control) according to the power analysis. Each case 
pair has identical values on the matching factors.
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–– Frequency matching: Matching occurs on the basis of the frequency distribution 
of the chosen variables within the group of cases. In addition, frequency match-
ing uses multivariate analyses to control confounding [37].

However, if the matching is small, frequency matching can be futile.
Nowadays, computer algorithms are used to provide for the coupling between 

cases and controls.

10.8	� Propensity Score and Inverse Probability

Introduced in 1983, “the propensity score is the conditional probability of assign-
ment to a particular treatment given a vector of observed covariates” [38].

The propensity score (PS) is a coefficient estimating the probability of a case/
patient to receive a specific treatment based on selected pre-existing covariates/
characteristics.

The PS allows to design and analyze an observational (non-randomized) study in 
order to simulate some characteristics of a randomized controlled trial.

The propensity score also enables to calculate the inverse probability of treat-
ment weights (IPTW) for each patient with simple mathematical formulas: 1/PS for 
patients receiving treatment and 1/(1 −  PS) for patients not receiving treatment 
[39, 40].

For example, an observational study designed to test the outcome of severe trau-
matic brain injury patients intubated in the prehospital setting, versus those not 
intubated, could use a propensity score (estimated probability of being intubated 
based on neurologic status) to balance the nonrandomness of treatment.

The PS and IPTW play a balancing score role in observational studies: covari-
ate adjustment, stratification or subclassification, and matching in case–control 
studies.

For example, a study with propensity score matching case–control techniques 
was used to investigate the influence of oral anticoagulation on stroke outcomes. 
The propensity score was used to match cases between different groups on prophy-
lactic therapy with oral anticoagulants prior to the stroke event [41].

However, the use of inverse probability has some limitations. IPTW estimator 
does not perform properly with small samples; it is not yet proven to outperform 
multivariate logistic regression. Finally, the spread of PS and IPTW techniques has 
been increasing rapidly in recent years, but the adopted methodology is not always 
rigorous [39–42].
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11Difference-In-Difference Techniques 
and Causal Inference

Sue Fu, Katherine Arnow, Amber Trickey, 
and Lisa Marie Knowlton

Research questions in medicine often center around measuring the effects of new 
treatments or interventions. We seek to study causal inference, the process of deter-
mining why certain outcomes occur. Randomized control trials, or RCTs, have long 
been considered the gold standard study design to measure the effect of an interven-
tion. In a RCT, the randomization of study participants to a non-intervention and an 
intervention group is intended to eliminate any potential selection biases. By ran-
domizing participation, the two groups should be balanced with regards to baseline 
characteristics, and therefore we can assume any differences in the outcomes 
between the two groups is attributable to the intervention alone. However, there are 
many disadvantages to RCTs. In the field of medicine and particularly in surgery, 
RCTs are often not feasible, from a practical, financial, or ethical perspective. 
Moreover, RCT study groups are typically carefully selected to control for unfore-
seen confounders. For example, researchers may restrict inclusion based on certain 
comorbidities, age, or sex when enrolling participants in a RCT. Therefore, the find-
ings of RCTs may be challenging to generalize to the broader population. To illus-
trate using an actual study, a randomized control trial on operative versus antibiotic 
therapy for patients with appendicitis strictly limited participation in the antibiotic 
group to certain laboratory values and imaging findings, lack of appendicolith or 
leukocytosis within certain limits [1]. Consequently, the researchers cannot draw 
any conclusions on antibiotic therapy for patients outside those somewhat narrow 
parameters.

When randomization is not available or possible, researchers in surgery and 
other medical disciplines frequently conduct investigations using observational 
study methods, also known as quasi-experimental designs. Quasi-experimental 
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designs are empirical interventional studies that do not use randomization to assign 
study groups, but rather other criteria such as exposure to treatment or disease diag-
nosis. Particularly in the era of big data and sophisticated analytical tools, observa-
tional studies can offer considerable statistical power and relative ease of study 
implementation compared to randomized control trials. Large datasets, some of 
which are publicly available and follow thousands or even millions of individuals 
over time, present a rich resource for researchers. However, a disadvantage of quasi-
experimental study designs is that they are subject to concerns of internal validity, 
as eligibility based on certain patient characteristics may impair the ability to draw 
conclusions on the effect of the intervention. How can researchers be sure that the 
intervention caused the change in outcome, rather than the inherent difference in 
patient characteristics that was used to determine participation in the non-
intervention or intervention groups? This chapter will describe a commonly used 
quasi-experimental study design, difference-in-difference or DiD, that aims to 
answer this question and we will briefly discuss other quasi-experimental designs 
such as regression discontinuity, instrument variables, and synthetic controls.

If researchers want to assess the impact of an intervention using already available 
data, they can compare a group of individuals that received the intervention to a 
group that did not. When using retrospective data, it is imperative to account for all 
possible differences that existed before the intervention between the intervention 
and non-intervention groups for the purposes of internal validity. Yet this feat is 
virtually impossible because we lack perfect foresight to collect all possible relevant 
variables before conducting an observational study. Thus, it can be difficult to parse 
differences in the outcome of interest due to the intervention rather than the funda-
mental differences between the intervention and non-intervention groups. For 
instance, individuals in the intervention group may be more healthy or more sick at 
baseline or have greater or worse access to healthcare compared to people in the 
non-intervention group. These factors can significantly affect the outcome of inter-
est and therefore constrain researchers’ ability to meaningfully draw any conclu-
sions regarding the intervention in question.

As a practical example of selection bias, several retrospective cohort studies 
compared two treatments for aortic valve replacement. These studies compared the 
Ross procedure which utilized an autograft to versus mechanical valve replacement 
with optimal anticoagulation therapy and studied the outcome of overall survival. 
Overall the studies found that survival of patients undergoing the Ross procedure 
was better than those who underwent a mechanical valve replacement [2, 3]. 
However, these studies could not rule out bias due to patient selection, as patients 
who received the Ross procedure tended to be younger and in better physical condi-
tion. How could the researchers know that the improvement in survival of patients 
receiving the Ross procedure was attributable to the supposed superiority of the 
Ross procedure to mechanical valve replacement, rather than the patient’s relative 
youth and physical fitness?

Fortunately, there are various statistical methods that can account and control for 
pre-intervention differences between study groups. One technique is the difference-
in-difference method. DiD first originated in economics and is now frequently used 

S. Fu et al.



141

across health and health-related specialties, particularly to measure the effect of a 
health policy change [4]. DiD compares the changes in outcomes over time between 
a cohort which experienced the intervention or exposure and a non-intervention 
cohort which did not receive the intervention or exposure. It is well suited to evalu-
ating the outcomes of health policy changes because it allows researchers to account 
for secular changes, i.e. changes that would have occurred over time sans interven-
tion and therefore isolate the causal effect of the intervention in question. DiD has 
been used to evaluate policies such as the 2011 Accreditation Council for Graduate 
Medical Education resident duty hour reforms in the United States [5], and the 
Affordable Care Act [6]. With resident duty hour reform, safety outcomes were 
compared in teaching hospitals (the intervention group) to non-teaching hospitals 
(the non-intervention group) before and after implementation of the 2011 reform. 
We will delve more deeply into this study as an example later in the chapter. As 
another example, the effect of the Affordable Care Act on access to rehabilitation 
centers for adults after traumatic injury has been studied by comparing outcomes in 
states that expanded Medicaid eligibility to states that did not expand Medicaid 
before and after expansion in 2014 [6].

Figure 11.1 illustrates the DiD approach with a simplified example. The outcome 
of interest before and after the intervention is compared between the non-intervention 
group which does not undergo the intervention (group N) and the intervention group 
which does experience the intervention (group I). The difference in outcomes for 
group I before and after the intervention is represented by I2 − I1, and the difference 
in outcomes for group N after the intervention is represented by N2 − N1. Therefore, 

Intervention

Attributable to intervention

Attributable to pre-intervention
differences between non-
interventional and
interventional groups

Pre-intervention Post-intervention

Differences-in-differences

I2

I1

(I2-I1) − (N2-N1)

N2

N1

Fig. 11.1  Difference-in-differences graph
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the change in outcome that is attributable to the intervention that is separate from 
the change in outcomes based on the inherent differences between groups N and I is 
the difference-in-difference estimate, which is equal to (I2 − I1) − (N2 − N1). The 
dotted line represents the outcomes for group I had been no intervention. If there 
had been no intervention, the difference-in-difference estimate would be equal to 
zero because the difference in group I over time is equal to the difference in group 
N over time.

Imagine that some hospital decided to use a new sterilizing technique, while 
hospital decided to use the old sterilizing method. The infection control committee 
is interested in measuring the rate of surgical site infections after this new steriliza-
tion technique was introduced. For a difference-in-difference study, the researchers 
measure the surgical site infection rate between the hospitals using the new steril-
ization technique and the hospitals using the old technique before and after the new 
sterilization technique was introduced. Figure 11.2 shows a table of the surgical site 
infection rates with this data.

In our simplified example, the difference-in-difference in surgical site infections 
attributable to the new sterilization technique is a decrease of 5%. Therefore the 
infection control committee can conclude that the new sterilization technique is 
associated with a 5% decrease in surgical infection rates.

In practice, regression models are used to produce the DiD estimates, rather than 
these simplified subtraction models. Most statistical software packages have differ-
ence-in-difference commands and programs. DiD studies can use linear or logistic 
regression models, or even more complex regression types. Linear regression is 
used when the outcome variable is continuous, such as financial costs or rates of 
mortality. Logistic regression is used when the outcome is dichotomous, such as 
presence or absence of a complication. In the regression model, the DiD estimate is 
the interaction term between time and the treatment groups. If the interaction term 
is significantly different from zero, then it can be concluded that there is an associa-
tion between the intervention and the outcome of interest. The DiD results can be 
plotted graphically over time, comparing the outcomes between the two groups 
before and after the intervention. Results are also often reported in tables, with the 
actual difference-in-difference estimate, the interaction term between time and 
treatment groups in the regression model. In our made-up example of surgical site 

Before introduction of
new sterilization

technique

After introduction of new
sterilization technique

Surgical site infections in
hospitals using the new

technique
6% 1%

Surgical site infections in
hospitals using the old

technique
3%

Difference-in-difference = (1%–6%)–(2%–3%) = –5%

2%

Fig. 11.2  Simplified example of DiD
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infections after a new sterilization technique, there might be other factors the 
researchers want to adjust for, such as operation type, patient comorbidities, and 
surgical volume. They would need to perform a linear regression model to adjust for 
all these factors. The main dependent variables in the regression model would be 
time, marked as before and after the introduction of the new sterilization technique, 
as well as intervention vs. non-intervention hospitals, and the interaction between 
time and intervention groups. The regression would then adjust for other covariates, 
such as patient comorbidities, operation type, and surgical volume. Ultimately, the 
interaction term between the time variable and the sterilization technique groups is 
the final difference-in-difference estimate.

An actual example of difference-in-difference methodology in practice comes 
from a study from the United States on patient outcomes after the 2011 Accreditation 
Council for Graduate Medical Education (ACGME) resident duty hour reform by 
Rajaram et al. [5]. On July 1, 2011, the ACGME implemented additional resident 
duty restrictions training in the United States, including limiting first year trainees 
to 16 hours of continuous in-hospital clinical duty, 8 hours free between shifts, and 
residents on 24 hour shifts must have 4 hours for transfer of care activities with at 
least 14 hours off between shifts. The duty hour restrictions aimed to reduce pre-
ventable medical errors due to resident exhaustion. However, there were mixed 
opinions regarding the policy’s potential efficacy. Opponents to the reforms believed 
that increased sign-outs and changeovers in care would possibly worsen patient 
outcomes, while proponents believed the duty reform hours would help reduce resi-
dent errors and improve patient safety.

To answer the question of whether patient outcomes were affected by the resi-
dent duty hour reforms, a study was undertaken to measure mortality and serious 
morbidity at 2 years prior and after the 2011 reforms [5]. Patient outcomes at teach-
ing hospitals with residents were compared to non-teaching hospitals. Ultimately, 
over 200,000 patients from 23 teaching hospitals and 31 non-teaching hospitals 
were studied. The mortality and serious morbidity rate was 11.6% in teaching hos-
pitals in 2009–2010 and 9.4% in 2012–2013, whereas it was 8.7% in 2009–2010 
and 7.1% in 2012–2013 in non-teaching hospitals. After logistic regression, which 
adjusted for factors such as patient age, comorbidities, and illness severity, the odds 
ratio (OR) of death or serious morbidity was not statistically significant from 1 (OR 
1.06, confidence interval 0.93–1.20) between teaching hospital and non-teaching 
hospitals. Recall that an odds ratio of 1 means that there is no difference in the like-
lihood of an outcome in the test group compared to the control group. Therefore, the 
study concluded that there was no associated change on patient safety and outcomes 
from resident duty hour reforms.

In the prior example of resident duty hour reforms, the intervention group were 
the patients who were treated at teaching hospitals. The non-intervention group 
were patients who were treated at non-teaching hospitals. The intervention under 
study was the 2011 resident duty hour reforms. The researchers showed their results 
in graphs depicting mortality and serious morbidity complication rates between 
teaching hospitals and non-teaching hospitals at 6-month intervals from January 
2009 to July 2013. Graphs like these are helpful to visualize the overall trend in 
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outcomes between the intervention and non-intervention groups. Additionally, the 
researchers in the Rajaram et al. study also looked at other patient outcomes, such 
as surgical site infections, sepsis or septic shock, as well as resident education out-
comes such as test scores on the American Board of Surgery In-Training 
Examination. They then used tables to report their results of their difference-in-
difference estimates of all the outcomes they studied.

There are certain criteria to conduct a DiD study. For one, longitudinal or panel 
data is required. Longitudinal data follows large groups of people over a long time. 
Panel data is a type of longitudinal data that contains observations of different 
cross-sections across time. For example, the 2011 resident duty reform study used 
panel data of patients who underwent surgery in 2009–2010 and 2012–2013. The 
key is that the same or equivalent cohorts are studied before and after an interven-
tion. Additionally, DiD analysis relies on several assumptions. The main assump-
tion is that the intervention and non-intervention groups must display parallel 
trends in outcome. This means that in the absence of any intervention, the differ-
ence between the intervention and non-intervention groups would be the same over 
time. This cannot be proven empirically, but statistical tests and visual validation 
of pre-intervention data can establish sufficient parallel trends. In the Rajaram et 
al. study, the graphs showing mortality and serious morbidity rates between the 
teaching and non-teaching hospitals stayed relatively parallel, confirming that 
there was no difference in patient outcomes associated with resident duty hour 
reform. Another assumption is called common shocks, which requires that any 
event that occurs during or after the intervention should equally affect both groups. 
The 2011 duty hours did not experience such a shock, but let us suppose that there 
was a world-wide pandemic during the time of the study which would have 
impacted teaching and non-teaching hospitals equally. In addition to these assump-
tions, other limitations of DiD include the necessity to account for spillover effects. 
Spillover occurs when the policy affects other aspects of clinical care which may 
influence the intervention or non-intervention group. For example, in the steriliza-
tion technique example, the sterilization technique might also affect food safety in 
the hospital, which could also affect nutritional status of patients and therefore 
patient outcomes.

There are additional statistical methods that can be used to further reduce con-
founding factors, such as propensity score matching, weighting, or stratification [7]. 
These techniques can be used in combination with DiD or other quasi-experimental 
designs. Other quasi-experimental methods that can be used to deduce causal infer-
ence when randomization is not available include regression discontinuity, instru-
mental variables, and synthetic controls. Regression discontinuity measures the 
effect of an intervention by assigning intervention and non-intervention groups 
based on a threshold cutoff of a continuous variable. An example of this exists in the 
United States with Medicare. Eligibility for Medicare, which is government spon-
sored health insurance occurs at 65 years of age; however, 64-year-old individuals 
are likely quite similar to 65-year-old individuals with the exception of their guar-
antee of health insurance coverage. This provides an opportunity to study how 
access to insurance may affect health outcomes by evaluating the difference between 
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64-year-old individuals and 65-year-old individuals. There was a study that used 
regression discontinuity to measure health outcomes after age 65 based on the 
hypothesis that nearly universal health coverage would be associated with positive 
changes in health outcomes. This study found that certain low-income minorities 
saw significant increases in self-reported health after age 65 [8].

Instrumental variables are another research tool to exploit naturally occurring 
phenomena to circumvent traditional randomized study design. The instrumental 
variable is a proxy for randomization of the explanatory variable but it itself cannot 
be related to the outcome. For example, geographic distance to hospitals or spe-
cialty centers is often used as an instrumental variable. Geographic distance affects 
access to timely and appropriate care but does not, by itself, affect health outcomes. 
In a study of mortality after traumatic injury, researchers used ambulance transport 
time to naturally randomize patients based on injury severity and other patient base-
line characteristics [9]. Other commonly used instrumental variables in medicine 
include genotype, physician or institution preference expressed by patients, or pre-
scribing trends over time.

Synthetic controls are yet another tool to estimate the effect of an intervention or 
treatment in the absence of randomization. With synthetic controls, the comparison 
cohort is constructed from a weighted combination of several non-intervention 
groups, and therefore useful when there is no natural comparison control group. An 
example is a study on pre- and post-bariatric surgery health utilization outcomes 
that used a synthetic control to compare health care utilization between individuals 
who had not undergone bariatric surgery to those who had [10]. The researchers 
used claims data to analyze health care costs of patients who underwent bariatric 
surgery, however their data set did not have a group of untreated patients that they 
could compare to, so they constructed a synthetic control using covariates that were 
related to healthcare costs. Overall they found bariatric surgery was associated with 
decreased costs in medication, especially for cardiovascular and diabetes treatment, 
as well as physician services. However this was offset by increased inpatient ser-
vices after surgery.

In summary, randomized control trials remain the most robust study tool to mea-
sure causal inference, as the randomization process is the best to eliminate patient 
selection bias. However, they are often costly both in time and money and may not 
be ethically feasible. Quasi-experimental designs, such as difference-in-difference, 
have the advantage of being relatively intuitive and comparatively easier to imple-
ment than RCTs because researchers can use already available data. Difference-in-
difference is a particular type of quasi-experimental study that can be used to assess 
the impact of a policy change, such as laws or public health policy or institutional 
reforms. However it requires a robust control group that is well defined and the data 
must meet the assumption that the intervention and non-intervention groups would 
have performed the same in the absence of the intervention. Other quasi-experimen-
tal designs exists, including regression discontinuity, instrumental variables, and 
synthetic controls. All these methods have their advantages and can be used in cer-
tain study scenarios. These techniques can also be limited by their strict criteria. 
Nonetheless, they are powerful tools for researchers for the right question.

11  Difference-In-Difference Techniques and Causal Inference



146

References

1.	CODA Collaborative, et al. A randomized trial comparing antibiotics with appendectomy for 
appendicitis. N Engl J Med. 2020;383:1907–19. https://doi.org/10.1056/NEJMoa2014320.

2.	Andreas M, Wiedemann D, Seebacher G, Rath C, Aref T, Rosenhek R, et al. The Ross proce-
dure offers excellent survival compared with mechanical aortic valve replacement in a real-
world setting. Eur J Cardiothorac Surg. 2014;46:409–14. https://doi.org/10.1093/ejcts/ezt663.

3.	David TE, David C, Woo A, Manlhiot C. The Ross procedure: outcomes at 20 years. J Thorac 
Cardiovasc Surg. 2014;147:85–94. https://doi.org/10.1016/j.jtcvs.2013.08.007.

4.	Dimick JB, Ryan AM. Methods for evaluating changes in health care policy: the difference-in-
difference approach. JAMA. 2014;312:2401. https://doi.org/10.1001/jama.2014.16153.

5.	Rajaram R, Chung JW, Jones AT, Cohen ME, Dahlke AR, Ko CY, et al. Association of the 
2011 ACGME resident duty hour reform with general surgery patient outcomes and with 
resident examination performance. JAMA. 2014;312:2374–84. https://doi.org/10.1001/
jama.2014.15277.

6.	Zogg CK, Scott JW, Metcalfe D, Gluck AR, Curfman GD, Davis KA, et al. Association of 
Medicaid expansion with access to rehabilitative care in adult trauma patients. JAMA Surg. 
2019;154:402–11. https://doi.org/10.1001/jamasurg.2018.5177.

7.	Stuart EA, Huskamp HA, Duckworth K, Simmons J, Song Z, Chernew M, et al. Using propen-
sity scores in difference-in-difference models to estimate the effects of a policy change. Health 
Serv Outcomes Res Methodol. 2014;14:166–82. https://doi.org/10.1007/s10742-014-0123-z.

8.	Card D, Dobkin C, Maestas N. The impact of nearly universal insurance coverage on health 
care utilization: evidence from Medicare. Am Econ Rev. 2008;98:2242–58. https://doi.
org/10.1257/aer.98.5.2242.

9.	Newgard CD, Schmicker RH, Hedges JR, Trickett JP, Davis DP, Bulger EM, et al. Emergency 
medical services intervals and survival in trauma: assessment of the “Golden Hour” in a 
North American Prospective Cohort. Ann Emerg Med. 2010;55:235–246.e4. https://doi.
org/10.1016/j.annemergmed.2009.07.024.

10.	Kurz CF, Rehm M, Holle R, Teuner C, Laxy M, Schwarzkopf L. The effect of bariatric surgery 
on health care costs: a synthetic control approach using Bayesian structural time series. Health 
Econ. 2019;28:1293–307. https://doi.org/10.1002/hec.3941.

S. Fu et al.

https://doi.org/10.1056/NEJMoa2014320
https://doi.org/10.1093/ejcts/ezt663
https://doi.org/10.1016/j.jtcvs.2013.08.007
https://doi.org/10.1001/jama.2014.16153
https://doi.org/10.1001/jama.2014.15277
https://doi.org/10.1001/jama.2014.15277
https://doi.org/10.1001/jamasurg.2018.5177
https://doi.org/10.1007/s10742-014-0123-z
https://doi.org/10.1257/aer.98.5.2242
https://doi.org/10.1257/aer.98.5.2242
https://doi.org/10.1016/j.annemergmed.2009.07.024
https://doi.org/10.1016/j.annemergmed.2009.07.024
https://doi.org/10.1002/hec.3941


147

12Machine Learning Techniques

Jeff Choi, Nima Aghaeepour, and Martin Becker

12.1	� Machine Learning and Artificial Intelligence

Machine learning comprises algorithms that can perform tasks they were not 
explicitly programmed to perform. Explicitly programmed algorithms perform 
tasks according to a predefined sequence of instructions. Conversely, machine 
learning algorithms are programmed to learn to perform tasks using input data. In 
the era of abundant data, affordable data storage, and computational capabilities, 
understanding machine learning algorithms is critical to better explore and answer 
questions that can advance surgical science.

This chapter will introduce machine learning terminology, common algorithms, 
and considerations for applying and fine-tuning algorithms. Our hope is that this 
overview will allow surgeons and surgeon scientists to better interpret machine 
learning algorithms in literature and understand which algorithms may be most 
appropriate to answer their research questions.

12.2	� Machine Learning Terminologies and Concepts

12.2.1	� Algorithms, Models, Inputs, and Outputs

Most machine learning algorithms aim to derive “models” from given data. This 
derivation process is called the “training” phase in which “the model is trained” 
and the data used to derive/train the model is called the “training data.” The result-
ing models are then able to produce an estimated output (e.g. inpatient mortality) 
from inputs (e.g. demographic and hospitalization variables). In the statistical 

J. Choi · N. Aghaeepour (*) · M. Becker 
Stanford University, Stanford, CA, USA
e-mail: jc2226@stanford.edu; naghaeep@stanford.edu; mgbckr@stanford.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Ceresoli et al. (eds.), Statistics and Research Methods for Acute Care and 
General Surgeons, Hot Topics in Acute Care Surgery and Trauma, 
https://doi.org/10.1007/978-3-031-13818-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13818-8_12&domain=pdf
mailto:jc2226@stanford.edu
mailto:naghaeep@stanford.edu
mailto:mgbckr@stanford.edu
https://doi.org/10.1007/978-3-031-13818-8_12


148

learning framework of output = f (input), synonyms for inputs include “independent 
variables,” “predictors,” and “features,” while synonyms for outputs include “depen-
dent variables,” “prediction,” and “outcomes.” Here f represents a model which is 
derived by applying a given machine learning algorithm to given training data. 
Models can solve different problem settings such as classification or regression. 
Classification involves predicting discrete outputs (e.g. surviving vs. not surviving 
hospitalization), while regression involves predicting a continuous output (e.g. hos-
pital length-of-stay).

Each model has model parameters (also called learnable parameters or simply 
parameters) that are derived during the training phase. These model parameters 
specify how the model maps inputs to outputs. For example, in linear regression, 
these model parameters correspond to the model coefficients, and for deep learning 
models model parameters comprise weights (for more details, see Sect. 12.3). Often 
machine learning algorithms have parameters themselves which govern the way 
model parameters are derived from the data (e.g. such a parameter may trade off 
how quickly the training will finish vs. how accurate the model will be). Such 
parameters are called hyperparameters.

Note that in practice, the term “algorithms” and “models” are sometimes used 
interchangeably.

12.2.2	� Dimensions

Most researchers are familiar with clinical data in the tabular form of an N × M 
matrix, where N (number of rows) represents the number of subjects and M (number 
of columns) represents the number of different variables stored per patient. Each 
input variable constitutes a dimension. For example, if data comprises five vari-
ables for 50 patients, the input features encompass five dimensions. To reiterate, 
dimensionality refers to the number of input variables, not the number of subjects.

Overall, more samples are generally better for machine learning algorithms. 
However, while more input variables contain more information and may thus allow 
to build more powerful models, at the same time, the “curse of dimensionality” 
refers to potential issues that arise as the number of input variables grows and can 
make training machine learning models challenging and result in underperforming 
models. To handle large amounts of input variables, feature selection and dimen-
sionality reduction are useful tools which we cover later in this chapter. First, for 
understanding the curse of dimensionality it is important to understand the concepts 
of overfitting vs. underfitting and bias vs. variance as outlined below.

12.2.3	� Overfitting vs. Underfitting

When researchers build an algorithm, the hope is that the algorithm will be used by 
others in “the real world.” Overfitting is a phenomenon when the algorithm has 
good results on the population it was built on, but has poor generalizability to other 
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populations. For example, if a mortality-prediction algorithm accurately predicts 
mortality among patients whose data informed algorithm development (the training 
data), but has poor predictive capacity when used in other hospitals, the algorithm 
lacks generalizability and was overfit.

High-dimensionality (too many input variables) begets overfitting. Consider 
Dataset A, which recorded 5 variables for 100 subjects, and Dataset B, which 
recorded 50 variables for 100 subjects. Compared to Dataset A, Dataset B is much 
more likely to have unique rows (combination of values for 50 variables). And if 
each patient in Dataset B is uniquely identifiable, this would allow a model to learn 
output variables by sample rather than learning a more meaningful relationship 
between the input and output variables. Since the model is then based on identifying 
individual samples, it would not produce accurate predictions on unseen data. Thus 
it is not generalizable to other populations that may have different combinations of 
values for the same 50 variables.

However, for overfitting intrinsically powerful models are required. In contrast, 
if an algorithm is too simplistic to capture the underlying relationship of input and 
output variables, or has to work with too few variables as input that do not capture 
the output, the resulting model may suffer from underfitting. For example, linear 
models (like logistic regression) will never be able to capture non-linear relation-
ships between input and output features, no matter how many subjects are in a 
dataset. Similarly, if the only input variable available is sex, no algorithm could 
accurately predict mortality.

Overfitting suffers from high variance, whereas underfitting suffers from high 
bias as introduced below. Selecting the optimal machine learning algorithm requires 
understanding the tradeoff between overfitting and underfitting and the tradeoff 
between bias and variance.

12.2.4	� Bias vs. Variance Tradeoff

Understanding the bias and variance tradeoff first requires acknowledging that no 
algorithm is built using complete data. Complete data would encompass every 
member of a population of interest, and knowing all variables and variable value 
combinations for every member that could reasonably inform an output. Complete 
data is unobtainable, and all machine learning algorithms are built using incomplete 
data: a limited sample cohort from the population of interest and a limited number 
of variables from all variables that could inform an outcome.

Because algorithms are built using incomplete data, outputs are derived in the 
form, output = f(input) + error. “Error” determines how different the true output is 
from the calculated output. “Error” comprises variance, bias, and irreducible error. 
Irreducible error cannot be reduced by any algorithm and is a limitation of having 
incomplete data (e.g. unknown variables that actually affect how inputs map to 
outputs).

Variance explains how much a model’s predictions vary given small data varia-
tions, e.g. in different data cohorts. For example, as mentioned previously, applying 
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an algorithm of sufficient flexibility to too many input variables may result in over-
fitting, which manifests as high variance. Bias, however, explains how much the 
average prediction of an algorithm differs from the actual result. For example, an 
algorithm that is not flexible enough may not be able to learn the underlying rela-
tionship of inputs and outputs and thus is prone to underfitting, which manifests as 
high bias.

Why is there a tradeoff between bias and variance? As there are more input vari-
ables relative to the number of samples, variance will generally increase, and bias 
will decrease for a sufficiently flexible model. Conversely, when a model with less 
flexibility is applied, variance will generally decrease but bias will increase. 
Remember that a model’s output error comprises variance, bias, and irreducible 
error. The former two are tightly connected to model flexibility, while the irreduc-
ible error is a consequence of data limitations such as missing important variables 
or not enough data. Training an optimal model requires selecting an algorithm of 
appropriate flexibility and selecting the number of input variables that will mini-
mize the total error (minimum combined variance and bias) in the “real-world” 
population.

12.2.5	� Model Flexibility

The bias and variance tradeoff also concerns different types of algorithms and their 
flexibilities. The third section of this chapter (Sect. 12.3)  will explore common 
machine learning algorithms in depth, but we will briefly introduce the concept of 
model flexibility. There are many types of machine learning algorithms. Most read-
ers are likely familiar with linear regression models and may have heard of deep 
neural networks. Linear regressions are much less flexible compared to deep neural 
networks. Without getting into complex mathematics, model flexibility can be con-
ceptualized as the complexity of paths that map inputs to an output. For example, 
linear regression maps a simple, linear relationship from inputs to an output (little 
flexibility), whereas deep neural networks can map more complex relationships 
between inputs and the output.

As such, flexible models are more likely to accurately predict an output that 
matches the truth (low bias), but risk overfitting (high variance), particularly when 
a large number of variables is available. Simpler, less flexible models tend to have 
higher bias, but less variance. Thus, as discussed above, it is important to consider 
the bias–variance tradeoff when choosing the type of machine learning algorithm as 
well as its configuration, in addition to selecting the number of input variables.

12.2.6	� Feature Selection and Dimension Reduction

With ubiquitous omics (e.g. radiomics, transcriptomics) technologies and electronic 
health records, modern medicine produces abundant variables to integrate into mod-
els. In combination with comparably small sample sizes, building optimal models 
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often requires methodically decreasing the complexity of the data by reducing the 
number of input variables in order to prevent overfitting and allow for generaliza-
tion. Reducing the number of variables can be done based on domain knowledge 
before analyzing the data or integrated into the training phase. Two specific strate-
gies to narrow the list of inputs in the training phase are “feature selection” and 
“dimensionality reduction.”

Feature selection involves selecting input variables that will likely inform the 
best model. For example, if the candidate input variables to predict mortality were 
(age, co-morbidity A, co-morbidity B, disease A, disease B), feature selection may 
lead to selecting (age, co-morbidity  A, disease  B) as the final input variables. 
Importantly, since feature selection requires considering the output of the model to 
evaluate its performance as features are selected, feature selection must only be 
applied on the training set explicitly excluding samples from the test set. A brute 
force approach to feature selection may entail fitting models with all possible com-
binations of candidate input variables (e.g. if there are 7 possible input variables, 27 
models would be fit) and selecting the model with the best performance. Several 
performance metrics have been developed to penalize models with a higher number 
of variables and can help to choose optimal models. Examples of such metrics are 
Cp, Akaike information criterion (AIC), and adjusted R2. In brief, lower Cp values, 
lower AIC, and higher adjusted R2 indicate better models.

If a research question has many candidate input variables, feature selection can 
be complex and computationally expensive. There is a wide variety of computa-
tionally more efficient alternatives. For example, features can be selected based 
on univariate analysis of their relation to the output (e.g. based on significant cor-
relation). Other methods consider combinations of variables in a heuristic manner, 
for example, forward, backward, and mixed stepwise selections. In forward selec-
tion, input variables are added one-at-a-time to a model containing no input vari-
ables. The variable that improves model performance the most is added at each 
step, until a predetermined performance threshold is reached (e.g. AIC of x is 
“good enough”). In essence, this allows choosing the smallest model with a pre-
determined acceptable model performance threshold. Backward stepwise selec-
tion follows similar steps, except the initial model is one containing all candidate 
input variables, and the least useful input variable is removed sequentially until a 
performance threshold is reached. Mixed stepwise selection combines forward 
and backward selection.

Conversely, dimension reduction (or dimensionality reduction) transforms 
potential input variables into a set of fewer surrogate variables (lower dimensions). 
For example, dimension reduction may narrow the aforementioned list of candidate 
input variables to three variables (var1, var2, var3). These reduced dimensions may 
be interpretable, e.g. var1 may still represent age, var2 may be derived from a com-
bination of (co-morbidity A, co_morbidity B) and var3 from (disease A, disease B). 
However, generally, the features derived through dimensionality reduction are not 
necessarily interpretable and may represent rather complex concepts.

While feature selection considers the outcome (i.e. supervised), dimension 
reduction generally does not (i.e. unsupervised).
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12.2.7	� Performance Metrics

We have alluded to model performance in the preceding sections: what is an optimal 
algorithm? How can we assess whether the algorithm is performing well? There are 
several ways to assess model performance. We will discuss the most common metrics.

For classification, most are familiar with the 2 × 2 table of predicted vs. actual 
results (true positive/negative, false positive/negative) which derive sensitivity, 
specificity, positive predictive value, and negative predictive value. In machine 
learning terminology, this 2 × 2 table is called the confusion matrix.

There are several synonyms to be familiar with. “Precision” is a synonym for 
positive predictive value (PPV), while “recall” is a synonym for sensitivity. Both 
are commonly reported performance metrics for algorithms. A model with high 
precision is favorable when the cost of false positives is high (e.g. if a positive result 
would lead to an invasive intervention). A model with high recall (or positive pre-
dictive value) is favorable when the cost of false negative is high (e.g. septic shock 
prediction). Precision (or PPV) can be defined in two variants. In its first common 
variant, precision is the ratio of true positives over the number of predicted posi-
tives. The second variant is applied in case–control studies where prevalence in the 
overall population is taken into account. For example, an algorithm with 99% sen-
sitivity and 99% specificity to detect SMA syndrome will have low PPV if the 
prevalence of SMA syndrome in the overall population is low. “F1 score,” the har-
monic mean of precision and recall 

	
F1 =

 (2 precision recall)

 (precision recall)

´ ´
+ 	

is another commonly reported model metric.
Accuracy is also derived from the confusion matrix and reflects the total propor-

tion of correctly classified subjects (true positives and true negatives). Accuracy 
may not be an informative metric when the dataset has heavy class imbalance (e.g. 
many negatives and few positives). For example, consider an algorithm that aims to 
classify patients with and without ischemic bowel. If only ten subjects among 1000 
have ischemic bowel, yet the algorithm always predicts that a patient does not have 
ischemic bowel, this algorithm would have 99% accuracy despite incorrectly clas-
sifying all patients who do have ischemic bowel.

Area under the receiver-operator curve (AUROC) is another commonly reported 
metric. AUROC ranges from 0 to 1 and reflects a model’s discrimination capacity. 
Understanding AUROC requires thorough understanding of several concepts. First, 
classification algorithms can return predictions on a continuous scale (often inter-
preted but not always equivalent to class probabilities). And, discrimination ability 
of that continuous output is reflected by how well these values can distinguish dif-
ferent classes (for example, binary or categorical outcome labels). Since the output 
of the model is continuous, thresholds have to be chosen for making a final decision 
about the predicted class. Second, AUROC reflects the trade-off between true posi-
tive rate (sensitivity) and false-positive rate (1 −  specificity) across all possible 
thresholds. The receiver-operator curve (the ROC in AUROC) is represented on a 
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graph where the y-axis reflects true positive rates, and the x-axis reflects false-
positive rates as the classification threshold is varied. Thus, different points on the 
curve reflect different thresholds for separating two classes (e.g. diseased vs. non-
diseased). As the threshold to belong to the “diseased” class decreases, the sensitiv-
ity increases, while the specificity decreases (if an algorithm classifies all subjects 
as positive [low threshold], the sensitivity would be 100%). The ROC curve can be 
thought of as a series of points that reflects varying model sensitivity and specificity 
with threshold changes (near the origin reflects the highest threshold, near the top-
right corner reflects the lowest threshold). The AUROC is a singular value summa-
rizing sensitivities–specificities across different model thresholds and can be 
interpreted as the probability that if a positive and negative sample were chosen at 
random, the positive sample would be correctly ranked as more likely to be positive 
than the negative sample. For example, AUROC of 1 would mean all patients with 
a disease were ranked as having higher probability of being in the “diseased” class 
than patients without the disease. Of note, AUROC values sensitivity and specificity 
equally, which may be inappropriate for many clinical applications.

Area under the precision recall curve (AUPRC) is similar to AUROC, but may 
be a more informative performance metric when accurately identifying positives is 
important or when the dataset is heavily imbalanced. The AUPRC has the same 
conceptual idea as AUROC, except that the x-axis reflects recall (positive predictive 
value) rather than 1 − sensitivity (true negative rate). While the AUROC of a ran-
dom classifier (e.g. coin flip) is 0.5, the AUPRC of a random classifier is the propor-
tion of positives in the population. The AUPRC ranges from 0 to 1. If a model 
achieves perfect AUPRC (1), this would mean all positives were classified as posi-
tives without accidentally labeling negatives as positive.

For regression, the most common performance metric is the mean squared error 
(MSE). The MSE quantifies how close the predicted value for a particular observa-
tion is to the true value of that observation by averaging the sum of squared differ-
ences between the predicted and observed outcome values. The root mean squared 
error (RMSE) is an extension of the MSE, found by taking the square root of the 
MSE (not the average of sum of root mean squared errors). An advantage of RMSE 
over MSE is that the units equal those of the outcome. Mean absolute error (MAE) 
is a similar metric to quantify how closely predicted outcomes match observed out-
comes, by averaging the sum of absolute differences between predicted and observed 
outcome values. The residual standard error (RSE) and the R2 are two other com-
mon metrics to evaluate accuracy of linear regression models. RSE is positively 
correlated with the residual sum of squares (RSS); small RSE suggests the algo-
rithm fits the data well. The R2, ranging from 0 to 1, quantifies the proportion of 
outcome variability that can be explained by model inputs. For example, R2 value of 
1 would indicate that all changes in the outcome can be fully explained by changes 
in the algorithm’s input variable values. A higher R2 is more favorable.

12.2.8	� Training, Validation, and Test Sets

Algorithms will perform best on samples they have already seen, i.e. on the dataset 
they were built and trained on. But the crucible of an algorithm’s clinical utility is 
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its performance “in the real world,” i.e. its generalizability. Without performing 
expensive multi-center studies, how can we assess how an algorithm may perform 
“in the real world”?

For this, we can evaluate algorithm performance on a dataset distinct from the one it 
was built on. Before building an algorithm, the available data can be divided into train-
ing and test sets. The training set, sometimes called the “development set,” is used to 
build and optimize the algorithm. This includes, for example, selecting the right algo-
rithm and tuning hyperparameters. After the development phase, the constructed algo-
rithm is applied to a test set that was kept separately (no test set subject should inform 
algorithm development). The model performance on this test set then may suggest pos-
sible performance in clinical scenarios. This approach is called the holdout method.

In almost all cases, test set performance will be worse than training set perfor-
mance; this is expected, because by definition, machine learning algorithms are 
trained using the training set, i.e. during the training phase the algorithm has seen 
the corresponding samples. In contrast the samples in the test are novel to the algo-
rithm. If there is a considerable gap between training and test set performance, this 
may indicate model overfitting. If there is little gap between training and test set 
performance, and the performance in both sets is poor, this may indicate model 
underfitting (the model did not “learn” well).

To ensure applicability to real-world scenarios, it is important to appropriately 
choose the training and test set. In particular, it should avoid a so-called selection 
bias (of particular individuals or groups) by reflecting the characteristics of the 
population the algorithm is applied to in practice. For example, both training and 
test sets should contain an appropriate proportion of positive and negative samples, 
have patients with similar overall distribution of input variable values, account for 
possible demographic biases and temporal shifts, etc. Traditionally, the training set 
comprises a higher proportion of the data than the test set (e.g. 80:20 split, 70:30 
split). However, some in the machine learning community would argue that the test 
set should be larger, as larger test sets more accurately reflect expected model per-
formance in real-world scenarios. Conversely, increasing the test set size reduces 
the number of samples in the training set and as such the number of samples the 
algorithm can train on which may result in models with lower predictive power. 
Thus, there is no golden rule for a ratio that should determine training and test set 
splits. When the train-test ratio is set, in practice, data is often split randomly which 
is appropriate for large datasets where we assume that the characteristics of the 
target population are well represented. If datasets are smaller, stratified sampling 
strategies are employed that explicitly balance target variables, and in some cases 
also various other population characteristics. Of note, “randomness” in most statis-
tical software is not truly random, but follows patterns determined by preset “seeds”. 
Thus, to ensure replicability during model development, the random seed number 
can be encoded (e.g. seed “15”) before performing train-test splits.

During development it can be useful to estimate the performance of an algorithm 
on unseen data, in order to estimate and optimize generalizability. For this, since it is 
important to not use metrics and statistics on the test set to develop and tune algo-
rithms, a proportion of the training set is often used as a separate validation dataset, 
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resulting in a three-way spit of the data: a training dataset (excluding the validation 
dataset), the validation dataset (split from the training set), and the test dataset. 
During development, the validation dataset is not used for training the algorithm, 
and, thus, evaluating the resulting model on the validation dataset gives an estimate 
of how the algorithm will perform on unseen samples. This enables better refinement 
of the algorithm by preventing overfitting and optimizing generalizability, without 
employing the test set. Note that in machine learning research, the test set is some-
times called a “validation set,” particularly if the data is only split into two subsets, 
i.e. a training and a test/validation dataset. The three-way split is most often seen in 
the deep learning context (see Sect. 12.3.4) where large datasets are most prevalent.

12.2.8.1	� Cross-Validation
The previous section considers a single split into training (validation) and test set in 
order to estimate the performance of the trained algorithm in real-world applica-
tions, i.e. its generalizability on unseen data. As only a single split is evaluated, the 
estimated performance may be dependent on the particular split that has been cho-
sen and thus may not accurately reflect the actual performance. To prevent this, the 
general notion of cross-validation [1] consists of repeatedly splitting the data into 
train and test splits and calculating an aggregate performance metric across these 
splits. For this, cross-validation comprises several techniques to split the dataset 
into training and test sets (e.g. leave-one-out cross-validation, k-fold cross-
validation). A common variant is k-fold cross-validation. For example, for tenfold 
cross-validation, the dataset is split into ten “folds.” This results in ten steps, one for 
each of the ten folds. In each step, the corresponding fold is used as a test set and the 
nine remaining folds are used as the training set. The model is then trained on this 
training set and the performance metric is evaluated on the corresponding test set 
(similar to the previously introduced holdout method). This is repeated for each fold 
and an average of the performance metric over all folds is reported. As the final 
performance metric is an average over multiple data splits with different training 
and test sets, cross-validation is expected to give a better estimate of the generaliza-
tion capabilities of the algorithm. Commonly, the mean and standard deviation of 
the performance metric across folds are reported.

Variants  There are multiple variants of cross-validation. For example, in leave-
one-out cross-validation, the dataset is split by sample. That is, one sample is left 
out and the model is trained on all the remaining samples. Consequently, there are 
as many folds as there are samples. As such, leave-one-out cross-validation is an 
exhaustive cross-validation scheme, as all possible testing sets with a single sample 
contribute to the final performance metric. In contrast, k-fold cross-validation is 
non-exhaustive as the k folds can be arbitrarily chosen. To make sure that a particu-
lar split into folds does not randomly return a particular good or bad performance, 
it is also common to employ repeated k-fold cross-validation which refers to repeat-
ing k-fold cross-validation with different splits in order to get a better estimate of the 
performance metric across these splits. Finally, nested cross-validation refers to 
first splitting the data into multiple training and test splits as for the previous cases. 
This first step is referred to as the outer cross-validation layer. Then for each split, 
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another layer of cross-validation is used during training, referred to as the inner 
layer. This inner layer is used to optimize the corresponding model, e.g. using 
hyperparameter tuning or variable selection. This can make the trained models more 
generalizable with regard to the performance in the outer layer.

Practical Considerations  While cross-validation can yield more robust perfor-
mance estimates than the holdout method, it is not always straightforward or appro-
priate to apply. For example, in cases where the data may contain duplicates or very 
similar samples, cross-validation may return too optimistic performance estimates. 
Also, in cases with large discrepancies in the number of cases and controls, strati-
fied cross-validation has to be employed to keep the case/control ratio consistent 
between training and test sets. Similarly, it may be necessary to ensure that particu-
lar groups of samples, e.g. with regard to demographics or sites, are equally distrib-
uted between training and test splits to avoid bias. Additionally, in cases where the 
data changes over time, it may make more sense to employ a holdout approach, 
where we split the data into older data points for training and newer data points for 
testing in order to measure the generalizability of the model across time. A similar 
scenario may be applicable for a study spanning multiple study sites. Thus, it is 
important to keep in mind which aspect of a model we want to test and whether 
cross-validation measures this aspect appropriately.

Finally, it is important to note that models must not be iteratively optimized 
based on cross-validation scores, particularly if that score is the only reported per-
formance metric. That is, while the likelihood of overfitting is decreased, by itera-
tively adjusting models based on a cross-validation score the model is still likely to 
be overfitted on that data. This likely causes too optimistic performance estimates as 
well as a poor performance on an unseen test dataset. To cope with this, either the 
models and their parameters have to be chosen beforehand without involving the 
data and only then be evaluated via cross-validation. Or the performance on a com-
pletely separate test set (often referred to as validation set in this context) should be 
reported. Optimally, if comparability permits, such a separate test set is obtained 
from a different source than the previous dataset used for cross-validation. Note that 
cross-validation does not yield a single best model, but trains a different model for 
each fold (e.g. with different feature importances). As such, to apply the model to 
the separate test set, the model is usually trained again on the complete dataset pre-
viously used for cross-validation.

12.3	� Evolution of a Family of Machine Learning Algorithms: 
From Linear Models to Deep Learning

We have discussed several fundamental concepts applicable to many machine learn-
ing algorithms. This section will provide a practical introduction to common 
machine learning algorithms following the natural progression from logistic and 
linear regression to deep learning models. We skip algorithms like support vector 
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machines, decision trees, as well as meta learners like ensemble or boosting meth-
ods and point the reader to appropriate literature [2].

12.3.1	� Supervised Learning

This chapter will discuss supervised machine learning algorithms. In supervised 
learning, the outcome variable is predefined by the researcher, and the algorithm 
aims to map input variables to the outcome variable. Conversely, in unsupervised 
learning, there is no predefined outcome variable. Unsupervised learning algorithms 
aim to explore relationships between individual variables or subjects, rather than 
mapping how to get from input variables to a predefined output variable. Semi-
supervised learning refers to cases where output variables are only available for a 
subset of the training data.

12.3.2	� Logistic and Linear Regression

Logistic regression is a supervised machine learning algorithm for classification 
problems. Classification problems address how inputs can be mapped to categorical 
outputs (classes). For example, the research question, “is there an association 
between acute cholecystitis Tokyo grade and 30-day mortality,” has a binary output 
(30-day mortality: yes or no). Logistic regression is one of the most commonly used 
methods in surgical health services research. Many surgeons are likely familiar with 
the concept of odds ratios and 95% confidence intervals. But what exactly is the 
logistic regression algorithm doing?

Logistic regression algorithms model the probability the outcome belongs in a 
particular class (e.g. “diseased” class). This probability can be converted to odds by 
the formula, 

	
odds =  probability

1 probability:- 	

odds thus range from 0 to infinity.
When a logistic regression is built using a statistical program, the researcher will 

write code such as (outcome  ~  input_variable1  +  input_variable2  +  …input_vari-
ablen). The program will usually output β coefficients for the intercept and each input 
variable, such as βintercept, β1, β2, ... βn. Specifically, logistic regression with more than 
one input variable (here n variables) is called multiple or multivariable logistic 
regression. Of note, this is different from multivariate logistic regression, which 
refers to regression models with more than one output variable. The β coefficients 
can be transformed into odds ratios by exponentiation (e.g. eβ). A negative β coeffi-
cient will translate to odds ratios <1, while a positive β coefficient will translate to 
odds ratios >1. The “O” odds ratio for a specific input variable, e.g. input_variable_i, 
in a multivariable logistic regression model can be interpreted as, “holding all other 
input variables constant, a 1-unit increase in input_variable_1 will translate to O 
change in odds of the outcome.” Of note, the “unit” refers to the scale under which 
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input variable data entered the model; if “weight” was entered in kg, the unit would 
be kg, and if weight was entered as g, the unit would be g.

Linear regression is a supervised machine learning algorithm for quantitative 
prediction problems (i.e. continuous outcome variable). Similar to logistic regres-
sion, linear regression entails the equation, outcome y = β_intercept + β1  × input_
variable1 + …βn × input_variablen. Linear regression models most commonly choose 
β coefficients that minimize the residual sum of squares (RSS), which is the sum of 
squares of errors between the predicted and the actual outcomes at every given input-
output pair. As with any machine learning algorithm, the linear relationship between 
the inputs and the output is derived from incomplete data, yet seeks to model the 
relationship in the real world. The “standard error” (square root of the sample 
mean’s variance) estimates the average amount the estimated output from incom-
plete data differs from the population output and is inversely proportional with 
sample size. The standard error is used to calculate 95% confidence intervals for β 
coefficients and for hypothesis testing. If an estimated β coefficient is far enough 
from zero (distance as determined by standard error of the β coefficient), the associ-
ated p value would be small and suggest our data is incompatible with the null 
hypothesis (there is no significant difference between specified populations).

Significance of regression coefficients: Many researchers building multiple 
regression may be tempted to look at p values associated with each β coefficient and 
conclude that those with p values <0.05 are “significant predictors of the outcome.” 
This is a common fallacy. Numerous misinterpretations of p values have resulted in 
improper inferences being drawn from logistic regression and other models. A p 
value is not the probability that the study hypothesis is true (e.g. “a difference exists 
between group A and B”), nor is it the probability that the results were produced by 
random chance alone. In hypothesis testing, the p value can be thought of as the 
probability of achieving a more extreme value than the one from the model. In other 
words, rather than a statement about the hypothesis, the p value is a statement about 
the data in relation to a hypothesis: the smaller the p value, the more incompatible 
the data is with the null hypothesis. The 0.05 threshold is a relatively arbitrary 
threshold commonly used in surgical literature; some epidemiologists argue for 
lowering the threshold of significance to 0.005! It is important to note that p values 
depend on three factors: the effect size, sample size, and measurement precision. If 
the population size is large enough, despite little difference in effect size (e.g. evalu-
ating the effect of injury severity score on mortality, group A had ISS of 14 vs. 
group B had ISS of 13, p value was 0.03), the p value may be small. Thus, statistical 
significance does not equal clinical significance. Moreover, if enough input vari-
ables are included within a model, some input variables’ p values will be <0.05 by 
chance. For example, if 100 variables that have absolutely no association with an 
outcome are included in a model predicting an outcome, the p values for approxi-
mately 5 of those variables would be <0.05 by chance alone. In summary, no scien-
tific or clinical decisions should be made solely on the basis of a p value threshold.

Feature interaction and selection for regression models: A research hypothesis 
usually assumes that an input variable x is associated with output y, yet several other 
covariates are included in the multiple regression model. If p values alone should 
not inform variable selection for model inference, how should we choose which 
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variables to include in the multiple logistic regression model? Before considering 
available options, we note that different disciplines refer to these non-primary input 
variables as covariates or confounders. Some disciplines distinguish these two 
terms, but in practice, covariates and confounders are interchangeable terms when 
used as input variables. Confounders are associated with both the main predictor 
and the outcome (but not in the causal pathway). Some non-primary variables may 
be “moderators,” which change the magnitude of the relationship between the pre-
dictor and the outcome. Moderators are coded in most statistical programs in the 
format, outcome  ~  predictor  ×  moderator. “Effect modifiers” and “interaction 
terms” are synonyms for moderators.

Criteria for selecting variables to use in a multiple logistic regression model 
should be determined a priori before conducting analysis. Two general criteria for 
selecting variables are clinical and statistical. Clinical criteria, or the “sanity check,” 
entails selecting covariates that reasonably confound or moderate the association 
between the predictor and outcome, e.g. based on domain knowledge. A common 
statistical criteria may include decision based on how many data points have valid 
values as large amounts of missing data make predictions challenging. Evaluating 
different combinations of input variables that result in the most “significant” out-
come (e.g. highest odds ratio, lowest p value [“p-hacking”]) is scientifically invalid 
and may only be applied on data that is not used in the final study. In addition to 
these criteria, it is possible to integrate variable selection into the training process 
strictly excluding any samples from the data that is used to derive the model perfor-
mance from. Several variable selection and dimensionality reduction techniques are 
discussed in Sect. 12.2.6. Furthermore, a regression specific method is to base vari-
able selection (within the training step) on including covariates that change the β 
coefficient of the main predictor in univariate analysis by a predetermined threshold 
(e.g. 20%). For example, if the β coefficient of the main predictor in the univariate 
regression, outcome ~ predictor is 0.3, but this β coefficient increases to 0.4 (33% 
change) in the regression, outcome ~ predictor + covariate, this covariate would be 
included in the final algorithm. Other considerations and strategies for variable 
selection (must be performed during training), such as multicollinearity and regu-
larization, will be discussed in the next section.

Regularization: Regularization techniques can be applied to both logistic and 
linear regression to mitigate overfitting or address multicollinearity. Lasso (L1) 
regularization is in essence a variable selection technique developed for logistic and 
linear regression which is integrated into the training process. Conceptually, regu-
larization adds a penalty term to decrease the value of β coefficients in regression 
models towards (Ridge, or L2 regularization) or to (Lasso, or L1 regularization) 
zero. Decreasing a β coefficient value reduces the impact the associated input vari-
able has in determining the outcome. Unlike Ridge regularization, Lasso regulariza-
tion can reduce some β coefficients to zero; this removes certain input variables 
from the algorithm (multiplying by a zero coefficient cancels out the input variable 
value). In essence, L1 regularization helps identify the most important input vari-
ables that are associated with the output variable.

Ridge (L2) regularization is not a variable selection technique (does not reduce 
the number of input variables), but is helpful for addressing multicollinearity, 
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another important concept to consider for multiple regression models. 
Multicollinearity occurs when input variables are correlated with each other. For 
example, a model containing both weight and body mass index will have multicol-
linearity. Multicollinearity introduces multiple problems for regression models. In 
brief, multicollinearity makes model coefficients unstable (coefficients can vary 
widely and even change signs depending on which other input variables are 
included) and inflates standard errors of coefficients, which subsequently weakens 
statistical power of the algorithm (ability to detect a difference when a true differ-
ence exists). The most common way to detect multicollinearity in a model is by 
calculating the variance inflation factor (VIF) for each input variable in the model. 
Higher VIF (common thresholds include 5 or 10) suggests greater concern for mul-
ticollinearity with other input variables in the model. Variable selection is one way 
to address multicollinearity. Without delving into mathematical details, ridge regu-
larization helps address multicollinearity by estimating more precise β 
coefficients.

For both Lasso and Ridge regularization, how much β coefficient values are 
reduced is determined by λ (lambda), a hyperparameter (see previous introduction 
of models, Sect. 12.2.1). For example, higher lambda values will reduce β coeffi-
cients of regression models further and lead to less flexible models (lower variance, 
higher bias). Like any hyperparameter, lambda values can be tuned, in order to find 
the model with the best combinations of coefficients resulting in the highest model 
performance (best bias-variance tradeoff). Note that this optimization has to occur 
on the training data only, without considering the performance on the test data.

12.3.3	� Generalized Additive Models

Generalized additive models (GAM) are supervised machine learning algorithms 
that can be used for both categorical and continuous outcomes. The previous section 
detailed several strategies to fine-tune linear regression algorithms. Despite using 
regularization or other techniques, linear regression algorithms are limited by the 
linearity assumption. For some research questions, it may not be impossible to map 
any combination of inputs linearly to an output. Conceptually, GAM replace 
each multiplication with a β coefficient in a linear model with a unique non-linear 
function  f [outcome  ~  f1(input_variable1)  +  f2(input_variable2)…  +  fn(input_vari-
ablen)]. GAM allow more complex relationships between input variables and output 
to be mapped more accurately while maintaining model interpretability (the effect 
of each input variable on the outcome is defined by its responsible function). 
Including non-linear functions yields more complex algorithms that decrease vari-
ance while increasing bias.

There are several strategies to build non-linear functions. A simple strategy is to 
include polynomial input variables (e.g. xn, where n > 1) within the function (polyno-
mial function). Beyond polynomial functions, other non-linear functions include step 
functions and splines. Step functions entail converting a continuous input variable 
into categories and applying different functions to different category values. For 
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example, if age is the input variable of interest, a step function may comprise one 
function to compute an outcome from ages <18 years (e.g. outcome = age × 2) and 
another function to compute the same outcome from ages >18  years (e.g. out-
come = age × 3 + 5). Splines combine polynomial and step functions. Spline func-
tions apply different polynomial functions to different ranges of continuous input 
values. Splines “smooth out” the curves built by different functions, allowing a con-
tinuous, non-linear curve to define the association between an input variable and the 
outcome at all ranges of input variable values. “Knots” indicate threshold input vari-
able values where polynomial functions change; statistical programs can automate 
select the optimal location and number of knots to derive the most optimal splines.

12.3.4	� Deep Learning

Deep learning models extend the capabilities of the previously mentioned models by 
allowing to fit more complex (theoretically arbitrary), non-linear relationships between 
input variables and the output of interest. In theory this can produce more powerful 
models and allows to incorporate data beyond the previously discussed tabular format. 
More complex data formats include, for example, images, text, or time series and even 
arbitrary combinations. However, while it has been shown that deep learning models 
can yield powerful models that may achieve superhuman performance, for example, in 
the context of image recognition, [3] deep learning models often require large amounts 
of training data and careful engineering to perform well, and the resulting predictions 
are often hard to interpret. In the following, we give a brief overview of the terminology 
and anatomy of deep learning models, highlight their flexibility, and discuss the consid-
erations that are important for their application in practice. Note that we concentrate on 
supervised learning and predictive models rather than giving an exhaustive overview of 
all deep learning architectures and variants [4, 5].

Basic terminology: The term “deep learning” summarizes models that are based on 
simplistic computational approximations of neural networks, also called artificial neu-
ral networks (ANN). The term “deep learning model” and “(artificial) neural network” 
are often used interchangeably. In their most simple form (called multi-layer percep-
trons or MLPs), these neural networks are made up of a sequence of connected layers 
which in turn consist of a set of individual neurons. The first layer is called the input 
layer, the last layer is called the output layer. Input variables are mapped to neurons in 
the input layer, then information sequentially passes from the input layer through all 
layers, until the neurons in the output layer represent the output or prediction of the 
neural network. Historically, a neural network is called a “deep” neural network if the 
number of layers is sufficiently large. However, in practice, often any neural network 
architecture is referred to as a deep learning model regardless of its complexity.

Anatomy: On a more detailed level, each layer of a neural network contains a set 
of neurons. In a standard multi-layer perceptron (MLP), all neurons of two subse-
quent layers are connected to each other, while neurons within a layer are not con-
nected. Through these connections, neurons in each predecessor layer can “activate” 
neurons in their subsequent layer. This sequentially propagates the signals provided 
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by the input variables from the input layer to the output layer which then represents 
the predictions of the network. The activation of a single neuron is calculated 
through activation functions (commonly non-linear) that map a set of input signals 
of neurons from the preceding layer to an output signal for that neuron. The input 
signals of a neuron are weighted. These weights represent the model parameters of 
the neural network and allow it to learn the relationship between input variables and 
the desired output. The power of neural networks lies in their flexibility of how lay-
ers are designed, and how the previously described propagation of signals activates 
neurons from layer to layer.

Examples: In their simplest form, neural networks map the input layer with n 
input variables directly to an output layer with only a single output neuron using a 
linear activation function. Mathematically, this can be represented as 
y = β0 + β1 × x1 + …βn × xn, where β0 is a learnable intercept weight, βi are weights 
for each input neuron, and xi are the values of the input variables. Notably, this 
simple neural network is equivalent to linear regression discussed above. More 
advanced instances introduce additional layers, non-linear activation functions, 
more complex connectivity profiles, and more. Concrete examples are, convolution 
neural networks, [6] used for visual tasks like image annotation or video analysis, 
which mimic the biological design of the visual system, and reuse particular layers 
across the neural network and the visual input. Another extension are recurrent neu-
ral networks, which allow layers to propagate their signal back to preceding layers 
which enables the processing of sequences like text or continuously measured bio-
logical signals. These are just two relatively simple examples of deep learning mod-
els, and current deep learning research aims at finding the right architectures based 
on different tasks and the available data. Note that for some applications, recent 
deep learning models consist of billions of neurons and take months and millions of 
dollars to train [7].

Training: Generally, neural networks are trained in an iterative manner. Each 
step is called an epoch. In each epoch the training data is split into batches. For each 
batch, the neural network is then applied to the corresponding subset of training 
data in what is called a forward pass. Then a loss function is applied to calculate a 
loss which specifies how well the neural network performs on that batch (for exam-
ple, the mean squared error to the desired outcome). This loss is then used to update 
the weights of the neural network in a so-called backward pass. The process by 
which this is achieved is called back-propagation, as the loss flows backward from 
the model output to the input. The degree of change throughout the network based 
on this loss is regulated by an optimizer and often a corresponding learning rate. 
This is done for each batch in an epoch and then repeated for several epochs. The 
optimizer, learning rate, the number of batches and epochs, and generally the learn-
ing process can be intricate to tune and have a large influence on the performance of 
the model. In particular, overfitting and underfitting are a more prevalent issue than 
for other approaches. For this reason, in most cases, training deep learning models 
is done using a training, validation, test split (see Sect.  12.2.8 on Training and 
Validation), where the training set is used for training the current configuration, and 
the performance of the model is carefully monitored on the validation set to 
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optimize the model and training procedure. Only after this is done, the test set is 
used to evaluate the final performance of the model. Using this three-way split 
ensures a stable training procedure and prevents overfitting on the test data but 
required relatively large datasets.

Considerations for the application of deep learning: While deep learning has the 
potential to outperform simpler approaches, designing and training deep learning 
models can be challenging. First, due to their inherent flexibility and the ensuing 
plethora of model variants, the number of hyperparameters to tune in order for deep 
learning models to perform well is extraordinarily large. Similarly, the training pro-
cess described previously can be challenging to tune. Thus, often, in-depth knowl-
edge on the behavior of different aspects of neural networks is necessary to train 
well-performing models. Furthermore, due to the flexibility of neural networks and 
their capabilities to learn complex relationships, they need more data to train than 
simpler models like linear regression depending on the application and complexity 
of the model. Current state-of-the-art models train on millions of training samples 
[8]. Nevertheless, while deep learning models only recently can compete with more 
common machine learning models on tabular data [9], the particular strength of 
deep learning lies in directly working on complex data without the need of laborious 
preprocessing. This also enables deep learning models to discover unknown fea-
tures of the data that may be informative for a given task and have previously not 
been discovered. However, this process may also lead deep learning models to find 
“spurious shortcuts” rather than actual signals in the data [10]. Furthermore, in the 
context of multi-modal learning [11], deep learning models can directly train on a 
combination of input modalities simultaneously, e.g. image data, videos or audio, 
allowing them to integrate information that was previously hard to combine. For 
example, medical imaging pixel-based models may integrate contextual data from 
electronic health records [12]. Furthermore, in the context of multi-task learning 
[13], deep learning models are able to improve their performance by predicting 
several outcomes at the same time inherently exploiting the underlying relation of 
the corresponding tasks. Finally, while deep learning approaches can yield powerful 
models, an important consideration for applying neural networks is their inherent 
lack of interpretability. While current research aims at alleviating this issue [14], 
generally, deep learning models learn complex relationships and thus their predic-
tions are often hard to explain.

Overall, deep learning models are a powerful tool to train models that can achieve 
superhuman performance particularly as advancement in technology and monitor-
ing systems allows for large amounts of data to be collected and stored. However 
their design, training, and interpretation is a challenging and potentially time con-
suming process that has to be taken into account when applying deep learning in 
practice.
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13Statistical Editor’s Practical Advice for 
Data Analysis

Fikri M. Abu-Zidan

13.1	� Introduction

Working as a Statistical Editor for international refereed journals for the last 
20 years, I find that the majority of serious statistical errors are easy to avoid if the 
authors take care to follow very basic principles. I hope that this can be achieved if 
attention is taken when reading this short chapter. I will mainly address the basic 
statistical analysis when performed by young researchers. I advise readers who are 
not experts in statistics and want to perform advanced statistical methods like logis-
tic regression, mixed linear models, or general linear models to consult and follow 
the advice of an experienced statistician. These models require specific assumptions 
that have to be fulfilled to be reliable [1]. Nevertheless, the majority of basic uni-
variate analysis can be performed with confidence following the recommendations 
given in this chapter.

Learning Objectives

•	 Understand the importance of building the analysis based on the research 
question.

•	 Simplify the theoretical background to justify the selection of the analysis.
•	 Enable the reader to define the rules in which he/she can select the proper statisti-

cal method.
•	 Have a practical map that can direct the analysis process.
•	 Enforce the learning process through practical applications.
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Table 13.1  Basic questions to be answered before starting the analysis

Sequence Question
Question 1 What is the objective of the analysis?
Question 2 What is the type of data?
Question 3 Are the data normally distributed?
Question 4 How many groups are compared? (two or 

more than two)
Question 5 What is the number of subjects in each group?
Question 6 Are the compared data related or unrelated?

There are six questions that have to be answered in sequence before starting the 
analysis. These are shown in Table 13.1. If answered properly, I hope that the cor-
rect statistical methods will be selected. We will go through these questions in 
sequence.

13.2	� What Is the Objective of the Analysis?

Statistics is only a tool to summarize and compare data in an informative way. It is 
essential to define the research question and the objectives of the analysis before 
even starting it. This is more important when analyzing data retrieved from retro-
spective studies or large clinical registries. Statistics cannot salvage an inadequate 
research question or poorly designed study.

Simple descriptive statistics can sometimes be sufficient in high-quality 
research projects. Collaborators who approach me to perform an advanced statis-
tical analysis get occasionally surprised to see that I used simple descriptive 
statistics instead of comparative statistical methods because that could address 
the aim of the study [2]. Statistics is simply a tool to answer the research ques-
tion, not an aim by itself. Furthermore, the quality of the analysis will depend on 
the quality of the data. Never start any statistical analysis before getting assured 
that the data is of good quality and properly coded. If the objective is well 
defined, the data is accurate, well-understood, and properly coded, you will be 
surprised to see how the statistical analysis is easy, smooth, and straightforward. 
The results should then be accepted regardless of the outcome. I personally aim 
to perform the statistical analysis only once and accept its results even if they 
were negative.

Unfortunately, it is a common practice that some researchers perform 
repeated subgroup analysis, fishing for a significant p value and then retrospec-
tively define the research question to fit the data after the analysis. This is usu-
ally difficult to detect. It is erroneous, non-professional, and may even be a 
research misconduct if not explicitly mentioned in the methods. A clear example 
for that is the interim analysis of randomized controlled trials, if not declared, 
which should be transparent as part of the research protocol. It is more difficult 
in retrospective studies to know whether the results were hypothesis-driven with 
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Table 13.2  Mechanism of injury of hospitalized patients involved with road traffic collisions 
during the pre-COVID-19 and COVID-19 periods, Al-Ain City, United Arab Emirates

Variable
Pre-COVID period
n = 750

COVID period
n = 499 P value

Mechanism of injury <0.0001
Motor vehicle collision 540 (72) 302 (60.5)
Motorcycle 84 (11.2) 116 (23.3)
Bicycle 42 (5.6) 35 (7)
Pedestrian 84 (11.2) 46 (9.2)

This table was reproduced and modified from the study of Yasin et al. [4], which is distributed 
under the terms of the Creative Commons Attribution 4.0 International License

a clear research question to be answered or whether they stemmed from fishing 
for a p value [3]. This will depend on the conscious and integrity of the 
researcher.

Table 13.2 gives an example of how defining the research question clearly 
makes the statistical analysis focused. It shows the mechanism of road traffic col-
lisions in Al-Ain City, United Arab Emirates, before and after the COVID-19 
pandemic in one of our recently published papers [4]. The analysis in this scenario 
will depend on the research question. If the question is: “Is there difference in the 
mechanism of injury of road traffic collisions before and during the COVID-19 
Pandemic?” then Pearson’s Chi-Square test using a 4 × 2 table should be used. 
This will produce only a single p value. The subgroup analysis comparing each 
mechanism alone between the two groups will increase the chance of getting sig-
nificance by multiple testing. This will include four comparisons, each with a type 
I error of 5% of finding statistical significance by chance. Multiple testing can be 
done as post hoc analysis to explain the significance but not to prove it. If the 
overall analysis was not significant, then the post hoc analysis should not be 
performed.

Understandably, the probability of finding statistical significance by chance 
increases with each additional subgroup analysis [3]. Bonferroni correction can be 
used to protect against this error by defining the proper p value to be 0.05 divided 
by the number of subgroup pair comparisons [5].

13.3	� What Is the Type of Data?

The second step is to thoroughly understand the nature and type of the studied vari-
ables (Table 13.3). Categorical (nominal) data (like eye color or race) do not have 
an ordered nature nor a measurement of distance between different categories. Even 
if categorical data are numbered during statistical analysis, these numbers are artifi-
cial and just represent the category [6]. Binary data is a special type of categorical 
data that has only two possible options. These are mutually exclusive where one 
option implies the negation of the other (like dead and alive). If one option is given 
the probability value of 1 (occurring), the other will be given the probability value 
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Table 13.3  Types of data

Type of data Example
Categorical Eye color
Binomial Sex
Ordinal Likert scale
Interval Number of students
Continuous Weight

of 0 (not occurring). This makes it possible to perform logistic regression analysis 
for binary dependent outcome variables. Ordinal data has an order of ranks in its 
nature (like the Likert type questionnaire including very poor, poor, good, very 
good, and excellent). These can be ordered from 1 to 5. Ordinal data have an ordered 
nature of three or more levels. Nevertheless, the distances between these levels are 
not equal. The Anatomical Injury Scale (1–5), Injury Severity Score (1–75), and 
Glasgow Coma Scale (3–15) are examples of ordinal data. Ordinal data should be 
presented as median (range or interquartile range (IQR)). Interval (discrete) data are 
real whole numbers (like number of students in a college or number of road traffic 
collisions). They do not have decimal places. Continuous data are numerical or 
quantitative data that can take any value (like level of serum albumin, height, or 
stroke volume) and can take decimal places [6].

Two common mistakes in statistical analysis are considering ordinal data as con-
tinuous data, or changing the continuous data to ordinal data or categorical data in 
the research protocols. An example is changing the Glasgow Coma Scale to mild, 
moderate, and severe head injuries. Doing so will weaken the nature and strength of 
the analysis. It is advised to collect the actual ordinal or continuous data in the 
research protocols. It is always possible to change the ordinal or continuous data to 
categorical data during the analysis if needed but not the opposite.

13.4	� Are the Data Normally Distributed?

It is essential to check for normality of continuous data before the analysis. This can 
be done by looking into the histograms [6]. Normal distribution should have a bell 
shape. This is important for deciding the form in which the data will be presented. 
If the data has a normal distribution, then it can be presented as mean (standard 
deviation/standard error of the mean) because the mean is the proper point-estimate. 
If the data are ordinal or do not have a normal distribution, then the median (inter-
quartile range (IQR)) is the proper point-estimate as it lies in the middle of the data. 
Figure 13.1, which is in one of our recently published papers [7], highlights this 
point. It compares the New Injury Severity Score (NISS) of two independent groups. 
Since the data are ordinal, data were presented as box-and-whisker plot. The box 
represents the 25th to the 75th percentile IQR. Kindly note that the horizontal line 
within each box, which represents the median, is not in the middle, indicating that 
the data are not normal and skewed to the right.
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Fig. 13.1  Box-and-whisker plot of New Injury Severity Score (NISS) for hospitalized trauma 
patients during the period 2003–2006 (n = 2573) and 10 years later (n = 3519) during the period 
2014–2017, Al-Ain Hospital, Al-Ain, United Arab Emirates. The box represents the 25th to the 
75th percentile IQR. The horizontal line within each box represents the median. ***p < 0.0001, 
Mann–Whitney U test. (Reproduced from the study of Alao et al. [7]), which is distributed under 
the terms of the Creative Commons Attribution 4.0 International License)
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Fig. 13.2  A theoretical example testing a new anti-hypertensive drug. Hypertensive patients were 
randomized into two groups to receive the drug or a placebo. The data of both groups have a nor-
mal distribution and the variance of both groups (the black arrows) is equal. The difference between 
the means is 10  mmHg (gray arrow). The proper statistical test to use in this situation is the 
unpaired-t test (student’s t test)

Comparing the continuous data of two groups using parametric methods requires 
two assumptions: (1) data should have a normal distribution, (2) data should have the 
same variability. Figure  13.2 is a theoretical example of testing a new anti-
hypertensive drug. Hypertensive patients were randomized into two groups to receive 
the drug or a placebo, each having a sample of 200 subjects. Notice that the data of 
both groups have a normal distribution and the variance of both groups (the black 
arrows) is equal. The difference between the means is 10 mmHg (gray arrow). The 
proper statistical test to use in this situation is the unpaired-t test (student’s t test).
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The histogram can demonstrate whether the continuous data is skewed. If the data 
do not have a normal distribution, then there are two solutions: (1) change the data to 
normal distribution and then perform the analysis using a parametric method, define 
the mean of the new data, and then back transform it for reporting or (2) use non-
parametric methods. As an example, Fig. 13.3 is retrieved from our recently published 
paper on the global data of motorcycle related death rates [8]. Kindly observe that the 
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Fig. 13.3  Global data of motorcycle related death rates (a) and its log transformation (b) (crude 
data are from the study of Yasin et al. [8]), which is distributed under the terms of the Creative 
Commons Attribution 4.0 International License

F. M. Abu-Zidan



171

data of death rates are skewed to the right (Fig. 13.3a) with a skewness value of 3.1 
and having a wide peak (kurtosis) of 11.6. The normal values of both Skewness and 
kurtosis should be between −1 and 1 [6]. Log transformation of the data (Fig. 13.3b) 
has a normal distribution with skewness of −0.05 and kurtosis of 0.013. Accordingly, 
the log transformed data was used as the outcome variable in the mixed linear model. 
The outcome variable of mixed linear model should have a normal distribution.

13.5	� How Many Groups Are Compared?

This question looks easy to answer but is sometimes tricky. We need to decide 
whether the data represent one group, two groups, or more than two groups in order 
to define the proper statistical method to be used. You should be careful differentiat-
ing between studied groups of patients and groups of data. You may measure a vari-
able in one group of patients, give the same group a medication, and then measure 
the variable again after giving the medication. If the values of the variable are com-
pared before and after the medication, these are two dependent groups of data 
although they were measured in the same group of patients.

13.6	� What Is the Number of Subjects in Each Group?

Defining the size of subjects in each group is important to define the statistical meth-
ods of analysis. If the number of subjects is less than 20 in each group, it is advised 
to use non-parametric methods. Non-parametric methods compare the ranks, do not 
need a normal distribution, are useful in small samples, are more strict than paramet-
ric methods, and will not accept significance easily. One approach is to use non-
parametric methods all the time, which I practice. There is a risk of missing statistical 
significance with this approach if parametric methods are not used in normal distrib-
uted data (type II statistical error). This may be important when trying to prove harm 
but not benefit. Kindly note that a significant p value in comparisons and correlations 
can be achieved when the sample size is very large. This may not translate to a clini-
cally significant finding as the correlation may be weak or the effect size is small.

13.7	� Are the Compared Data Related or Unrelated?

This question is very important and needs deep thinking to address. When compar-
ing the weight of patients who died and those who survived following road traffic 
collisions, it is clear that these two groups are completely independent because each 
subject will be only in one group. In comparison, if we study the effect of bypass 
surgery on the weight of morbid obese patients, we will measure the weight before 
surgery and after surgery which enables us to measure weight change in each 
patient. Weight before surgery and after surgery are related (dependent) data. In the 
first example the two groups are independent and the weight of the two groups can 
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Fig. 13.4  A theoretical animal experiment comparing two groups of anesthetized rats, each con-
sists of eight rats. One group is a control laparotomy group (white diamonds), while the other 
group is a bowel-ischemia reperfusion group (black square). The data presented are the mean 
systolic pressure (standard error of the mean) of each group over time. The proper method of sta-
tistical analysis in this situation is the repeated measurement analysis of variance

be compared using unpaired t-test if other assumptions of using this test were met. 
In the second example the two groups are dependent and the weight of the two 
groups can be compared using paired t-test. The paired t-test has the advantage of 
comparing each subject with itself which standardizes all variation within the sub-
ject and makes it easy to find the statistical significance. This analysis can be used 
in natural pairs like twins or selected matched pairs of patients.

Let us look into another common example. Figure 13.4 shows a theoretical ani-
mal experiment over time comparing two groups of anesthetized rats, each consists 
of eight rats. One group is a control laparotomy group (white diamonds), while the 
other group is a bowel-ischemia reperfusion group (black square). Systolic blood 
pressure (SBP) directly dropped following the small bowel reperfusion. Kindly note 
the relationship between the collected data of SBP. The data within each group are 
dependent as it is repeatedly measured in the same animal. In contrast, the data 
between the two groups are independent as each animal is located within a specific 
group. The proper method of statistical analysis in this situation is the repeated 
measurement analysis of variance. This analyzes three components: (1) difference 
within each group, (2) difference between groups, and (3) the interaction between 
the two groups to evaluate the direction of change. Each of these factors should have 
only a single reported p value [9–11].

F. M. Abu-Zidan



173

13.8	� Which Test to Use?

Table 13.4 shows the summary of the recommended statistical methods to be used 
for analyzing the continuous or ordinal data after answering the previous questions. 
We have now defined the type of data, number of the groups to be compared, num-
ber of the subjects within each group, whether the data have a normal distribution or 
not, and whether the data are related or not. Non-parametric statistical methods are 
the proper method when the number of the subjects of the groups are small, data do 
not have a normal distribution, or data are ordinal in nature. Non-parametric meth-
ods are advised in these conditions because they compare the ranks of the groups 
and a normal distribution is not needed [12, 13].

Let us assume that we are comparing the New Injury Severity Score (NISS) of 
trauma patients who were admitted during the last year in four different trauma 
centers in our state. Their numbers range between 750 and 1200 patients. The data 
are ordinal, the groups are independent, the number of the groups are more than 2. 
Then, the proper test to use is Kruskal–Wallis test. If the analysis was not signifi-
cant, then we stop at this stage, and accept that the injury severity of the hospitalized 
trauma patients is the same between these four hospitals. If we find that there was 
statistical significance between the hospitals then we proceed with comparisons 
between each two hospitals using Mann–Whitney U test, just to explain the finding 
and not prove it, because the overall test will not be able to show that.

Beware that you should always use two tailed tests which indicate that the differ-
ence can go in any direction. This is the standard accepted way for comparison. Do 
not use a one tailed test. I have never used it in my three decades of intense research 
activities. One tailed test indicates that the difference between the groups can go 
only in one direction. This should be decided before the analysis is started, clearly 
mentioned and justified in the methods section, and clearly reported in the results 
section.

When comparing categorical data of two or more independent groups, then 
Pearson’s Chi-square can be used. Nevertheless, if the sample size of the groups is 
small (less than 20), any of the cells is 0, or any of the expected cells is less than 5, 
then Fisher’s Exact test should be used. Advanced Statistical packages (like SPSS, 
SPSS Inc, Chicago, IL, USA) will give a warning and advise which test is to be 
used. McNemar’s test should be used when comparing matched (related) categori-
cal data [14].

Table 13.4  Selection of statistical tests for comparison of continuous or ordinal data

Parametric Non-parametric
2 groups >2 groups 2 groups >2 groups

Independent Unpaired 
t-test

ANOVA with multiple 
comparison Bonferroni 
correction

Mann–Whitney 
U test

Kruskal–
Wallis test

Dependent Paired 
t-test

Repeated measurement ANOVA Wilcoxon Signed 
rank test

Friedman test
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Do and Don’t

•	 Understand the research question and the type of data thoroughly before starting 
the analysis.

•	 Define the number of groups to be compared, number of subjects in each group, 
and the relationship between the groups.

•	 Use parametric methods only for normally distributed data. Alternatively use 
non-parametric methods.

•	 Do not overuse statistics.
•	 Do not fish for a p value.
•	 Ask for help when needed.

Take Home Messages

•	 Basic statistics is easy to perform if well understood.
•	 There are two main types of statistical comparisons: parametric and 

non-parametric.
•	 The correct statistical method will be selected by following the roadmap 

explained in this chapter.

Conflict of Interest  None declared by the author.
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