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FBMC: A Waveform Candidate
for Beyond 5G

Prem Singh and Ekant Sharma

Recently, offset quadrature amplitude modulation (OQAM)-based filter bank mul-
ticarrier (FBMC), due to its reduced out-of-band (OOB) emission, has attracted
significant research interests for replacing orthogonal frequency division multiplex-
ing (OFDM) in future wireless communication systems. This chapter analyses and
designs FBMC-OQAM waveform-based multiple-input multiple-output (MIMO)
and multi-user massive MIMO systems. It begins by describing key features
and differences of FBMC waveform over the widely popular OFDM waveform,
followed by the discussion over key challenges in designing FBMC-based MIMO
and massive MIMO systems. A semi-blind (SB) channel state information (CSI)
estimation scheme, which enhances the performance with a limited pilot overhead,
is developed for MIMO-FBMC system along with its Cramer-Rao lower bound
(CRLB) for benchmarking the performance. To compare the performance of
FBMC and OFDM waveforms in the uplink transmission, the achievable sum rates
are derived for multi-user (MU) massive MIMO technology relying on FBMC
waveform with maximum ratio combining (MRC) and zero-forcing (ZF) receivers.
The corresponding power scaling laws for MU massive MIMO-FBMC are also
found. It is shown that in practical impairments such as carrier frequency offset,
massive MIMO-FBMC systems significantly outperform their OFDM counterparts.
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3.1 Introduction

From the past two decades, orthogonal frequency division multiplexing (OFDM)
has enjoyed its widespread dominance in broadband wired [1] and wireless [2]
communication systems. OFDM waveform has been widely embraced in digital
subscriber lines (DSL) standards, as well as wireless standards such as the third-
generation partnership program long-term evolution (3GPP-LTE), IEEE 802.16,
IEEE 802.11, LTE-Advanced and 5G-New Radio (NR). The key advantages of
OFDM signalling are (i) orthogonality among subcarriers allows synthesis and anal-
ysis of the transmit and receive signals using computationally efficient inverse fast
Fourier transform (IFFT) and FFT blocks, respectively; (ii) the use of cyclic prefix
(CP) guarantees one-tap equalization; and (iii) trivial amalgamation with multiple-
input multiple-output (MIMO) and massive MIMO technologies. Fifth-generation
(5G) communications systems are characterised by a wide range of use cases such
as enhanced Machine Type Communications (eMTC), Ultra-Reliable Low latency
Communications (URLLC) and enhanced Mobile BroadBand (eMBB) [3]. In order
to cope with a large number of applications, future communication systems require
a flexible time-frequency resource allocation. The 3GPP body has yet again adopted
OFDM (with some minor changes) for 5G wireless communication systems. OFDM
shapes each of its subcarrier using a rectangular window, which results in a sinc-
shaped frequency localization. As soon as the synchronization in OFDM is lost,
the time-domain rectangular pulse shape associated with synthesised subcarriers at
the transmitter and analysed subcarriers at the receiver, due to its relatively higher
out-of-band (OOB) emission, results in significant leakage of signal power among
the band of neighbourhood users [4]. Thus, OFDM-based systems are sensitive to
practical impairments such as carrier frequency offset and timing offset, especially
in vehicular scenarios where tracking Doppler shifts of different user equipments
is challenging. For instance, achieving perfect synchronization in the uplink of
orthogonal frequency division multiple access (OFDMA) may not be possible. This
happens because each of the users transmits independently from different locations.
Attaining synchronization in OFDM-based cognitive radio systems is even more
challenging, because primary and secondary users transmit independently and may
be operating on distinct standards [5, 6].

In view of the above observations, researchers are motivated to investigate
new multicarrier modulation schemes for future wireless communication systems.
Such schemes, while outperforming existing solutions in terms of OOB emission,
should also ensure similar efficiency and robustness as OFDM. In this context,
engineers in Alcatel-Lucent Bell Laboratories have investigated a waveform called
universal filtered multicarrier (UFMC) [7], wherein a set of subcarriers assigned to
a node are processed through a filter to minimize the multi-node interference. This
technique, due to degraded orthogonality among the subcarrier in the existence of
multipath fading, results in a performance loss [8]. The second popular waveform is
generalized frequency division multiplexing (GFDM), proposed in [9]. In GFDM,
each subcarrier is shaped using a well frequency-time (FT) localized filter in circular
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fashion such that one CP is attached to a block of Nd information bearing symbols
that are dispersed over N subcarriers and Nd/N symbol instants [9].

Another potential waveform candidate for future wireless communication sys-
tems is based on filter bank multicarrier (FBMC) operation [10]. Contrary to the
time-domain rectangular pulse with sinc-shaped frequency localization in OFDM,
subcarriers in FBMC are synthesised and analysed using a bank of well FT
localized modulated and demodulated filters, respectively. There are several variants
of FBMC in the existing literature, namely, staggered multi-tone (SMT), filtered
multi-tone (FMT) and cosine-modulated multi-tone (CMT) [10]. FMT, which has
been evolved particularly for DSL [11], is designed using the classic frequency
division multiplexing (FDM) operation, wherein the subcarriers band are made
unconnected by introducing guard bands. Thus, FMT is a bandwidth inefficient
signalling scheme. In contrast, both SMT and CMT, by allowing overlapping of
adjacent subcarriers, offer maximum bandwidth efficiency [10]. To carry pulse
amplitude modulated (PAM) symbols, overlapped vestigial side-band (VSB) mod-
ulated signals are staggered in CMT. On the other side, signalling in SMT is
designed using staggering of overlapping double side-band modulated format to
carry quadrature amplitude modulated (QAM) symbols, whose real and imaginary
parts are time-offset by one half of a symbol duration. A formal mathematical
relationship between CMT and SMT has been derived in [12]. Since the VSB
modulation in CMT requires Hilbert transform, its implementation is more complex
than SMT. In the literature, SMT is popularly known as offset quadrature amplitude
modulation (OQAM)-based OFDM (OFDM-OQAM) or FBMC-OQAM.

Figure 3.1a,b show a section of OFDM and FBMC-OQAM filter banks, respec-
tively. The subchannel index therein corresponds to the frequency axis with unity
subcarrier spacing. The subcarrier orthogonality for the OFDM filter bank in
Fig. 3.1a can be observed through the zero crossings at the integer multiple of
subcarrier spacing where only one subchannel is non-zero. As shown in Fig. 3.1a,
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Fig. 3.1 Section of a filter bank. (a) OFDM and (b) FBMC-OQAM relying on Phydyas filter [13]
with a overlapping factor 4
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OFDM filter bank has significantly higher OOB emission due to the sinc-shaped
spectrum of the rectangular prototype filter. Therefore, performance of OFDM-
based systems degrades severely in the presence of synchronization error due
to carrier frequency offset (CFO) and timing offset. On the other hand, as can
be observed from Fig. 3.1b, only adjacent subcarriers are overlapping in FBMC-
OQAM due to the associated well frequency-time localized prototype filter. Thus,
one can separate the adjacent bands by inserting an empty subcarrier between them.
Furthermore, the sharp prototype filter in FBMC-OQAM significantly lowers down
the OOB emission and relaxes the stringent synchronization requirement in such
systems [14]. Additionally, these sharp filters also avoid the need for CP that is oth-
erwise required in OFDM to remove inter-symbol-interference (ISI). This increases
the spectral efficiency of FBMC-OQAM-based systems. The implementation of
FBMC-OQAM can be realised using a computationally efficient polyphase structure
[15]. Furthermore, for relatively low frequency-selective channels, FBMC-OQAM
can be efficiently coupled to MIMO technology [16]. Additionally, the concept of
GFDM can also be extended to FBMC-OQAM [17, 18]. The resulting signalling
format from this amalgamation is called circular FBMC (C-FBMC). The references
[19] and [4], respectively, show the benefits of FBMC-OQAM waveform over
its OFDM counterpart in the uplink of multi-user (MU) networks and cognitive
radios. In the light of the above-listed benefits of FBMC-OQAM, and its ability
to address the shortcomings of OFDM by using sharp pulse shaping, FBMC-
OQAM has recently received significant research interests [16, 20–23], which
reflect that FBMC-OQAM is a compelling signalling technique for future wireless
communication systems. The aim of this chapter is, therefore, to analyse and
design FBMC-OQAM-based multiple-input multiple-output (MIMO) and multi-
user massive MIMO systems. For brevity, FBMC-OQAM is referred to as FBMC
in the sequel.

The subcarrier in FBMC waveform, unlike OFDM, is orthogonal in the real
domain only [15]. The resulting intrinsic interference challenges amalgamation
of FBMC signalling with future mobile communication systems. Furthermore, the
overlapping of FBMC symbols in the time-domain poses additional challenges. For
example, FBMC channel state information (CSI) estimation needs the placement
of zeros between the adjacent training symbols [24]. Thus, one has to carefully
compute the intrinsic interference for constructing the virtual training symbols at
the receiver. Moreover, one also needs to find the optimal number of zeros required
to avoid overdesign/underdesign of FBMC systems. In light of the above challenges,
it is not always feasible to use the existing solutions or corresponding analysis for
OFDM-based systems, while designing FBMC aided future wireless systems.

3.2 Organization of Chapter

The next section discusses single-input single-output (SISO) and MIMO-FBMC
system models and the key differences between OFDM and FBMC waveforms.
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Section 3.4 demonstrates a semi-blind channel estimator for MIMO-FBMC sys-
tems. Section 3.5 demonstrates and compares the performance of FBMC and OFDM
waveforms in the uplink transmission of MU massive MIMO systems. Section 3.6
concludes the chapter and provides future directions.

3.3 FBMC System Model

The continuous-time baseband FBMC transmitted signal is expressed as [15, 25]

s(t) =
N−1∑

m=0

∑

n∈Z
dm,nχm,n(t), (3.1)

where dm,n are real-valued OQAM symbols at themth subcarrier and the nth symbol
instant. The parameter N symbolises the number of subcarriers. The FBMC basis
function χm,n(t) is defined as

χm,n(t) = p(t − nT/2)ej2πmFteφm,n , (3.2)

where T is the QAM symbol duration, F = 1/T is the spacing between two
consecutive subcarriers, T/2 is the offset between the in-phase and quadrature parts
of a QAM symbol and p(t) is the symmetrical real-valued pulse, which is different
from the rectangular pulse in OFDM. The phase factor φm,n is defined as modulo π ,
for example, φm,n = (π/2)(m + n) [15]. The real OQAM symbols dm,n are drawn
from the spatially and temporally independent and identically distributed (i.i.d.) in-
phase and quadrature components of a QAM symbol cm,n as follows:

dm,2n = �(cm,n) =
{�(cm,n), m even
�(cm,n), m odd

(3.3)

dm,2n+1 = �(cm,n) =
{�(cm,n), m even
�(cm,n), m odd.

(3.4)

Each component OQAM symbols dm,2n and dm,2n+1 is of duration T/2. Let
E[cm,nc

∗
m,n] = 2Pd , which implies that E[dm,nd

∗
m,n] = Pd . In the presence of ideal

channel without noise, the FBMC demodulation at subcarrier index m̄ and symbol
instant n̄ is performed using the matched filtering operation as shown below [15]

d̂m̄,n̄ = �
{∫ +∞

t=−∞
s(t)χ ∗̄

m,n̄(t)dt

}
=

N−1∑

m=0

∑

n∈Z
dm,n�

{∫ +∞

t=−∞
χm,n(t)χ

∗̄
m,n̄(t)dt

}
.

(3.5)
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Thus, in order to recover OQAM symbols dm,n at the receiver, the basis functions
χm,n(t) satisfy the following real-field orthogonality condition

�
{∫ +∞

−∞
χm,n(t)χ

∗̄
m,n̄(t)dt

}
= δm,m̄δn,n̄, (3.6)

where δm,m̄ is the Kronecker delta with δm,m̄ = 1 if m = m̄ and zero otherwise.
SinceN complex valued symbols are transmitted in T time interval, Ts = T/N is

the critical sampling interval. The discrete-time FBMC baseband transmitted signal
is obtained by sampling s(t) with the sampling rate 1/Ts . The causal discrete-time
prototype pulse p[k] of length Lp is obtained by truncating p(t) from −(Lp/2)Ts

to (Lp/2)Ts and delaying it by ((Lp − 1)/2)Ts . The discrete-time baseband signal
is obtained by sampling s(t) at t = kTs as

s[k] =
N−1∑

m=0

∑

n∈Z
dm,nχm,n[k]. (3.7)

The discrete-time basis function χm,n[k] is defined as

χm,n[k] = p[k − nN/2]ej 2π
N

m
(
k− Lp−1

2

)

ejφm,n . (3.8)

The equivalent real-field orthogonality in the discrete domain for reconstructing real
OQAM symbols dm,n is given as

�
{ +∞∑

k=−∞
χm,n[k]χ ∗̄

m,n̄[k]
}

= δm,m̄δn,n̄. (3.9)

Figure 3.2a,b shows the discrete-time baseband model for the FBMC transmitter
and receiver, respectively. The main dissimilarities between FBMC and OFDM
waveforms lie (i) in the selection of pulse-shaping filter p[k] and (ii) in the property
the former accepted OQAM symbols instead of QAM symbols. The function �(·)
in Fig. 3.2a performs the operations described in (3.3) and (3.4) for the even
and odd indexed subcarriers. This operation is reversed at the receiver using the
function �−1(·). The other blocks are self-explanatory. Let the quantity ξ

m̄,n̄
m,n =∑+∞

k=−∞ χm,n[k]χ ∗̄
m,n̄[k]. Thus, it follows from (3.9) that

ξ m̄,n̄
m,n =

{
1, if (m, n) = (m̄, n̄)

j 〈ξ 〉m̄,n̄
m,n, if (m, n) 	= (m̄, n̄),

(3.10)

where 〈ξ 〉m̄,n̄
m,n = �{∑+∞

k=−∞ χm,n[k]χ ∗̄
m,n̄[k]} extracts the imaginary part of the cross

correlation between the basis functions [26]. The signal received at the SISO-FBMC
receiver is
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(a) (b)

Fig. 3.2 Discrete-time equivalent baseband model for FBMC: (a) transmitter and (b) receiver

y[k] = (s[k] ∗ h[k]) + η[k], (3.11)

where h[k] denotes impulse response of an Lh-tap channel. The scaler quantity η[k]
is an additive white Gaussian noise (AWGN) with mean zero and variance σ 2

η . At the
receive, the FBMC signal is demodulated at frequency index m̄ and symbol instant
n̄ by matching it with the basis function χm̄,n̄[k] as [15]

ym̄,n̄ =
+∞∑

k=−∞
y[k]χ ∗̄

m,n̄[k]. (3.12)

By substituting s[k], χm̄,n̄[k] and y[k] from (3.7), (3.8) and (3.11), respectively, in
the above expression, ym̄,n̄ is expanded as

ym̄,n̄ =
N−1∑

m=0

∑

n∈Z
dm,n

Lh−1∑

l=0

h[l]e−j2πml/N
∑

k

p
[
k − l − nN/2

]
p
[
k − n̄N/2

]

× ej (φm,n−φm̄,n̄)e
j 2π

N
(m−m̄)

(
k− Lp−1

2

)

+ ηm̄,n̄, (3.13)

where ηm̄,n̄ = ∑+∞
k=−∞ η[k]χ ∗̄

m,n̄[k] is the demodulated noise which obeys Gaussian
distribution with mean

E
[
ηm̄,n̄

] = E

[ +∞∑

k=−∞
η[k]χ ∗̄

m,n̄[k]
]

= 0 and

Var
[
ηm̄,n̄

] = σ 2
η

+∞∑

k=−∞
χm̄,n̄[k]χ ∗̄

m,n̄[k] = σ 2
η .
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The covariance between ηm̄,n̄ and ηm,n is computed as

Cov
[
ηm,n, η

∗̄
m,n̄

] = E
[
ηm,nη

∗̄
m,n̄

] = σ 2
η ξ m̄,n̄

m,n . (3.14)

The noise at FT index (m̄, n̄) is thus correlated. This correlation, however, is
negligible because of the associated sharp prototype filters for pulse shaping in
FBMC [24]. The duration of the prototype pulse p[k] in FBMC is typically chosen
as an integer multiple of the symbol time T . Thus, the pulse duration is significantly
larger than the channel delay spread, i.e. Lp = k0N >> Lh. For example,
references [24, 26] set k0 to be 4. This implies that the bandwidth of the pulse-
shaping filter p[k] is significantly lower than the channel coherence bandwidth. As a
result, the impulse response p[k] of prototype filter in time has negligible variations
over the channel delay spread. Therefore, as described in [24, 26]

p[k − l − nN/2] ≈ p[k − nN/2], for l ∈ [0, Lh]. (3.15)

Upon employing the above result, the expression for y[k] in (3.13) can be simplified
as

ym̄,n̄ ≈
N−1∑

m=0

∑

n∈Z
dm,nHmξm̄,n̄

m,n + ηm̄,n̄, (3.16)

where

Hm =
Lh−1∑

l=0

h[l]e−j2πml/N (3.17)

symbolises channel frequency response (CFR) for the mth subcarrier. The channel
h[k] is considered to be quasi-static throughout the chapter. Separating the desired
and undesired terms in (3.16), one obtains

ym̄,n̄ = Hm̄

(
dm̄,n̄ + j

∑

(m,n) 	=(m̄,n̄)

dm,n

Hm

Hm̄

〈ξ 〉m̄,n̄
m,n

︸ ︷︷ ︸
Interference

)
+ ηm̄n̄. (3.18)

3.3.1 Data Detection

To begin with, let the transmission channel be ideal, i.e. h[k] = δ[k]. Thus, the CFR
Hm̄ = 1, and it follows from (3.18) that

ym̄,n̄ =
(

dm̄,n̄ + j
∑

(m,n) 	=(m̄,n̄)

dm,n〈ξ 〉m̄,n̄
m,n

)
+ ηm̄n̄. (3.19)
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It follows from (3.10) that the quantity
∑

(m,n) 	=(m̄,n̄) dm,n〈ξ 〉m̄,n̄
m,n is real in nature.

Consequently, OQAM symbol dm̄,n̄ at the receiver can be estimated as

d̂m̄,n̄ = �{
ym̄,n̄

} = dm̄,n̄ + �{
ηm̄n̄

}
. (3.20)

In practice, channel h[k] is not ideal. Therefore, as shown in Fig. 3.2b, equalization
operation is performed before detecting OQAM symbols. By performing the ZF
equalization in (3.18), the estimate of OQAM symbol at the subcarrier m̄ and
symbol instant n̄ is

�
{

ym̄,n̄

Hm̄

}
= dm̄,n̄ + �{

j Ĩm̄,n̄

} + �{
ηm̄n̄

}
, (3.21)

where the quantity

Ĩm̄,n̄ =
∑

(m,n) 	=(m̄,n̄)

dm,n

Hm

Hm̄

〈ξ 〉m̄,n̄
m,n (3.22)

is called the intrinsic interference in FBMC systems. Since the quantity Hm

Hm̄
is

complex, �{
jIm̄,n̄

} 	= 0. The term �{
jIm̄,n̄

}
characterises the ISI and inter-carrier-

interference (ICI) between the transmitted OQAM symbols. This is unlike OFDM
systems wherein the former is suppressed using the CP and the latter is mitigated
using the orthogonality among the subcarriers. It sounds difficult to obtain a reliable
estimate of the OQAM symbol dm̄,n̄ at this stage. However, introduction of few
approximations by exploiting the inherent properties of FBMC systems leads to
a reliable estimate of OQAM symbols as follows. The interference evaluation in
(3.22) can be recast as

Ĩm̄,n̄ =
∑

(m,n)∈
m̄,n̄

dm,n

Hm

Hm̄

〈ξ 〉m̄,n̄
m,n +

∑

(m,n) 	∈
m̄,n̄

dm,n

Hm

Hm̄

〈ξ 〉m̄,n̄
m,n, (3.23)

where the symbol 
m̄,n̄ symbolises the neighbourhood of the desired symbol at
subcarrier-symbol time index (m̄, n̄) by excluding the index (m̄, n̄). Since prototype
filter p[k] in FBMC is well localized both in frequency and time, the interfer-
ence due to the FT points (m, n) outside the neighbourhood 
m̄,n̄ is negligible
since 〈ξ 〉m̄,n̄

m,n

∣∣
(m,n) 	∈
m̄,n̄

≈ 0 [26]. Furthermore, since the subcarrier bandwidth is
significantly smaller than the coherence bandwidth of channel, the CFR is well
approximated by a constant over the neighbourhood 
m̄,n̄ [26]. Typically, due to the
associated sharp pulse-shaping filters in FBMC, the interference mainly arises from
the first-order neighbourhood 
m̄,n̄ = {(m̄±1, n̄±1), (m̄, n̄±1), (m̄±1, n̄)}. Upon
using the above inherent properties of FBMC systems, the intrinsic interference in
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(3.23) is well approximated as

Ĩm̄,n̄ ≈ Im̄,n̄ =
∑

(m,n)∈
m̄,n̄

dm,n〈ξ 〉m̄,n̄
m,n, (3.24)

which also implies that �{j Ĩm̄,n̄} ≈ 0. Employing the above result in (3.18), the
received symbol ym̄,n̄ at the FT index (m̄, n̄) can be recast as

ym̄,n̄ ≈ Hm̄bm̄,n̄ + ηm̄n̄. (3.25)

Here the term bm̄,n̄ = dm̄,n̄ + jIm̄,n̄ is known as virtual symbol, which is
the summation of the desired symbol dm̄,n̄ and the corresponding interference
component Im̄,n̄. The model in (3.25) is widely popular with the name interference
approximation model (IAM) [26], because it utilizes the property that each FBMC
symbol interferes with the symbols in its small FT neighbourhood, over which the
CFR can be approximated to a constant. With zero mean i.i.d. OQAM symbols, each
of power Pd , Im̄,n̄ has a mean zero and power E[|Im̄,n̄|2] ≈ Pd [27]. Furthermore,
the OQAM symbol dm̄,n̄ and the interference term Im̄,n̄ are zero mean independent.
The virtual symbol bm̄,n̄ thus has mean zero and power

E[|bm̄,n̄|2] = E[|dm̄,n̄|2] + E[|Im̄,n̄|2] ≈ 2Pd. (3.26)

Following Fig. 3.2b, one can obtain a reliable estimate of OQAM symbols using the
model in (3.25) as follows:

d̂m̄,n̄ = �
{

ym̄,n̄

Hm̄

}
≈ dm̄,n̄ + �{

ηm̄n̄

}
. (3.27)

The function �−1(d̂m̄,n̄) in Fig. 3.2b at the m̄th subcarrier, by combining the
estimated OQAM symbols d̂m,2n and d̂m,2n+1, obtains the estimate ĉm,n of complex-
valued QAM symbol as follows

ĉm,n =
{
d̂m,2n + j d̂m,2n+1, m even
d̂m,2n+1 + j d̂m,2n, m odd.

(3.28)

The SISO-FBMC system model discussed above can be easily extended to MIMO
with Nt transmit and Nr receive antennas. Similar to (3.7), the FBMC baseband
signal st [k] at the t th transmit antenna is expressed as

st [k] =
N−1∑

m=0

∑

n∈Z
dt
m,nχm,n[k], (3.29)
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where 1 ≤ t ≤ Nt , and dt
m,n is an OQAM symbol transmitted by t th antenna at

the frequency-time point (m, n). The signal at the rth antenna of FBMC receiver is
expressed as

yr [k] =
Nt∑

t=1

(
st [k] ∗ hr,t [k]

)
+ ηr [k], for 1 ≤ r ≤ Nr. (3.30)

The scaler hr,t [k] above symbolises an Lh-tap channel impulse response between
the t th transmit and the rth receive antenna pair. The noise ηr [k] at the rth receive
antenna obeys CN(0, σ 2

η ). Following the procedure described in the SISO-FBMC
system, the received signal on the rth antenna at subcarrier m̄ and symbol instant
n̄th, after passing through the receive filter bank, is obtained as

yr
m̄,n̄ ≈

Nt∑

t=1

H
r,t
m̄ bt

m̄,n̄ + ηr
m̄,n̄, (3.31)

where the complex quantity H
r,t
m̄ symbolises the CFR between the t th transmit

and the rth receive antenna pair at the m̄th subcarrier and is computed as H
r,t
m̄ =∑Lh−1

l=0 hr,t [l]e−j2πm̄l/N . The demodulated noise ηr
m̄,n̄ = ∑+∞

k=−∞ ηr [k] χ ∗̄
m,n̄[k]

obeys CN(0, σ 2
η ). The term bt

m̄,n̄ = dt
m̄,n̄ + jI t

m̄,n̄ is the virtual symbol for the t th
transmit antenna, where the associated intrinsic interference I t

m̄,n̄ is given as

I t
m̄,n̄ =

∑

(m,n)∈
m̄,n̄

dt
m,n〈ξ 〉m̄,n̄

m,n. (3.32)

For mathematical ease, (3.31) can be written in vector form as

ym̄,n̄ = Hm̄bm̄,n̄ + ηm̄,n̄, (3.33)

where the vector ηm̄,n̄ = [η1m̄,n̄, η
2
m̄,n̄, . . . , η

Nr

m̄,n̄]T ∈ C
Nr×1 comprises noise with

the covariance matrix E[ηm̄,n̄η
H
m̄,n̄] = σ 2

η INr and ym̄,n̄ = [y1
m̄,n̄, y

2
m̄,n̄, . . . , y

Nr

m̄,n̄]T ∈
C

Nr×1 is the observation symbol vector across Nr receive antennas. The vir-
tual symbol vector bm̄,n̄ = [b1m̄,n̄, b

2
m̄,n̄, . . . , b

Nt

m̄,n̄]T ∈ C
Nt×1 has a covariance

matrix E[bm̄,n̄bH
m̄,n̄] ≈ 2PdINt . The (r, t)th element of the MIMO CFR matrix

Hm̄ ∈ C
Nr×Nt at the m̄th subcarrier is given as H

r,t
m̄ . The observed symbols

y1
m,n, y

2
m,n, · · · , y

Nr
m,n are equalized, followed by the operation �(·), which pulls

out the estimate of OQAM symbols from the estimated virtual data vector b̂m,n =
[b̂1m,n, b̂

2
m,n, · · · , b̂

Nt
m,n]T . Finally, the vectors d̂m,2n = [d̂1

m,2n, d̂
2
m,2n, · · · , d̂

Nt

m,2n]T
and d̂m,2n+1 = [d̂1

m,2n+1, d̂
2
m,2n+1, · · · , d̂

Nt

m,2n+1]T on each subcarrier are clubbed
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together for constructing QAM symbol vector as

ĉm,n =
{
d̂m,2n+1 + j d̂m,2n, m odd
d̂m,2n + j d̂m,2n+1, m even.

(3.34)

3.4 MIMO-FBMC Semi-Blind CSI Estimation

Channel state information (CSI) at receiver is typically acquired using pilot sym-
bols, which do not carry information, and therefore, transmission of pilot symbols
results in spectral efficiency loss. Due to the diversity gain offered by MIMO
technology, the required signal-to-noise-ratio (SNR) for the desired bit-error-rate
performance decreases. In such low SNR regimes, pilot-based CSI estimation
methods demand large overheads for providing a reliable CSI estimate. Therefore,
this section aims to develop a semi-blind channel estimation scheme for FBMC-
based MIMO technology by exploiting the pilot symbols along with statistical
properties of the information symbols. This results in a significant reduction in the
mean square error (MSE) in comparison to its conventional pilot-based counterpart.

3.4.1 Review of Existing Works

There has been a significant research progress in the area of channel estimation
for MIMO-FBMC systems. Reference [28] extended the concept of IAM model-
based CFR estimation for FBMC-aided MIMO systems and proposed least squares
(LS) estimator. Rottenberg et al. in [29] investigated a linear minimum mean
square error (MMSE) CFR estimation approach for the downlink of a distributed
MIMO-FBMC technology. Reference [30] described a method for pilot sequence
design for the IAM model-based CSI estimation by employing zero-correlation
zone sequences in MIMO-FBMC systems. Javaudin et al. designed a scattered
pilot-based CSI estimator for MIMO-FBMC systems in [31]. The authors in [32]
analysed the performance of the IAM model-based MMSE and LS CSI estimations
for MIMO-FBMC waveform in the existence of imperfect channel correlations.
Reference [24] provided a comprehensive review on training-based approaches for
CSI estimation in FBMC-based SISO and MIMO systems. References [16, 33–35]
designed training-based time-domain CSI estimation algorithms for MIMO-FBMC
systems over a high frequency selective channel. Lin et al. in [36] designed a pilot-
based compressive sensing technique in the time domain for MIMO-FBMC CSI
estimation by utilising the generalized approximate message passing algorithm.

A key drawback of the above treatises is to employ only pilot symbols for
CSI estimation, which leads to a decrease in the spectral efficiency. To avoid this
shortcoming, the FBMC literature has developed blind CSI estimation schemes,
which do not need pilot symbols for estimation [37, Chapter 11]. Blind schemes,
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however, are usually computationally expansive and affected by poor convergence.
For example, the authors in [38] investigated a blind CSI estimation technique for
SISO-FBMC systems by utilising the cyclostationarity induced by the overlapping
nature of pulse-shaping filters. The proposed technique therein demands a large
number of data symbols to provide a reliable CSI estimate, and its performance
deteriorates with an increase in the pulse-shaping filters’ length. Savaux et al. in
[39] designed blind equalization for FBMC-based SISO waveform by utilizing
the concept of constant norm. The technique therein is restricted for square QAM
constellations, and similar to [38], its convergence needs a large data length.

In presence of the above observations, semi-blind schemes, which significantly
improve CSI estimation accuracy by utilising both statistical characteristics of the
underlying system and a small training overhead, present a viable alternative to
both pilot-based and blind CSI estimation methods. Authors in [40] conceived
a semi-blind CSI estimation scheme for FBMC-based SISO systems, wherein
the CSI magnitude and phase are estimated blindly by exploiting the subcarrier
power and the spatial-sign covariance matrix, respectively, and pilot symbols are
utilised to mitigate the sign ambiguity arising from the blind CSI estimation
algorithm. The MSE of the blind estimation in [40] is sensitive to frame length,
and therefore, its performance deteriorates as the frame length decreases [41].
Kofidis et al. in [42] proposed a tensor-based scheme for semi-blind CSI estimation
and data detection for FBMC-based MIMO systems by using canonical polyadic
decomposition (CPD). The results presented therein are restricted to a single-input
multiple-output (SIMO)-FBMC system, because the CPD model is not always
identifiable. Due to the effectiveness and improved performance of semi-blind
schemes, this section develops a different semi-blind technique for CSI estimation in
FBMC-based MIMO systems by exploiting both pilot and the statistical properties
of data symbols. Contrary to the pilot-based CSI estimation schemes in [24, 26, 28–
31, 33, 36, 43–46], the semi-blind MIMO-FBMC scheme leverages the pilot
symbols along with blind data symbols for estimating the unitary and whitening
components of the channel matrix Hm. It is thus offered significantly lower MSE
than the existing IAM model-based LS CSI estimation scheme that utilises only
pilot symbols. The Cramer-Rao lower bounds (CRLBs) are derived to quantify the
MSE gain of the semi-blind method over the pilot-based techniques.

3.4.2 Semi-Blind MIMO-FBMC Channel Estimator

Let the t th antenna transmit L0 symbols on each of the subcarriers, as shown
in the frame in Fig. 3.3. Each frame consists of M pilot symbols to be utilised
for estimating CSI. The Nd symbols at the end of the frame carry data. Unlike
OFDM, adjacent time-domain FBMC symbols interfere with each other because
of the overlapping of the pulse-shaping filters. Thus, z zeros are placed between
the adjacent pilot symbols to mitigate the ISI [24, 26]. Due to the inter-frame time
gap commonly used in wireless systems, one does not need to insert zeros in the
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Fig. 3.3 Placement of symbols in the frame for the t th antenna at the FBMC transmitter. Here ,
© and

⊗
, respectively, represent the pilot, zero and data symbols

beginning of the frame [24]. The effect of varying z on the MSE of the semi-
blind and conventional pilot-based CSI estimation schemes is shown later using
simulations, which demonstrates that employing z = 1 is sufficient for reducing
the ISI to a tolerable level. This implies that MIMO-FBMC frame with zeros
employs 2M OQAM symbols on each of the subcarriers for CSI estimation, which
is equivalent to M QAM symbols [24]. The channel estimation pilot overhead in
MIMO-FBMC is therefore same as that of MIMO-OFDM systems [47].

As shown in Fig. 3.3, the pilot symbols are located at n = i(1 + z) for 0 ≤ i ≤
M − 1. Evaluating (3.33) at these instants and stacking the resulting observations,
one gets

Ym̄ = Hm̄Bm̄ + ηm̄. (3.35)

Here the virtual pilot matrix Bm̄ = [bm̄,0,bm̄,(1+z), . . . ,bm̄,(M−1)(1+z)] ∈ C
Nt×M ,

the observation matrix Ym̄ = [ym̄,0, ym̄,(1+z), . . . , ym̄,(M−1)(1+z)] ∈ C
Nr×M and the

noise matrix ηm̄ = [ηm̄,0, ηm̄,(1+z), . . . , ηm̄,(M−1)(1+z)] ∈ C
Nr×M . Let the elements

of the CFR matrix Hm̄ obey CN(0, σ 2
h ). The t th component of the pilot vector

bm̄,i(1+z) ∈ C
Nt×1 is obtained as bt

m̄,i(1+z) = dt
m̄,i(1+z) + jI t

m̄,i(1+z), where the
interference I t

m̄,i(1+z) is obtained as

I t
m̄,i(1+z) =

∑

m	=m̄

dt
m,i(1+z)�

{ +∞∑

l=−∞
p2[l]ej (φm,0−φm̄,0)ej2π(m−m̄)l/N

}
. (3.36)

The MIMO-FBMC channel matrix Hm̄ of size Nr × Nt with Nr ≥ Nt can be
decomposed as

Hm̄ = Wm̄QH
m̄ , (3.37)
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where Qm̄ ∈ C
Nt×Nt andWm̄ ∈ C

Nr×Nt , and for 0 ≤ m̄ ≤ N − 1, are referred to as
unitary (complex rotation) and the whitening (decorrelating) matrices, respectively.1

Being a unitary matrix, Qm̄ satisfies the constraint Qm̄QH
m̄ = QH

m̄Qm̄ = INt . Thus,
it follows from (3.37) that

Hm̄HH
m̄ = Wm̄WH

m̄ . (3.38)

The semi-blind CSI estimation scheme works on the principle that the whitening
matrix Wm̄ can be estimated by exploiting the second-order statistical character-
istics of Nd = L0 − M(1 + z) data symbols in Fig. 3.3, and the unitary matrix
Qm̄ can be estimated using the M pilot symbols in the frame. The matrix Qm̄ is
parameterized by a few parameters. It can therefore be estimated accurately with a
limited pilot overhead. On the other side, estimation ofWm̄ blindly using statistical
properties of data symbols significantly enhances accuracy of the CSI estimation.

The covariance matrix Rym̄ym̄
∈ C

Nr×Nr = E
[
ym̄,n̄yH

m̄,n̄

]
of the observation

vectors ym̄,n̄ in (3.33) is calculated as

Rym̄ym̄
= 2PdHm̄HH

m̄ + σ 2
η INr . (3.39)

The above results follow from the identities E[bm̄,n̄bH
m̄,n̄] = 2PdINt and

E[ηm̄,n̄η
H
m̄,n̄] = σ 2

η INr . One can rewrite (3.39) as

Hm̄HH
m̄ = Rym̄ym̄

− σ 2
η INr

2Pd

= Wm̄WH
m̄ . (3.40)

The whitening matrixWm̄ can now be estimated blindly as

Ŵm̄ = Ûm̄�̂
1/2
m̄ . (3.41)

The matrices �̂m̄ and Ûm̄ are calculated using SVD as given below:

Ûm̄�̂m̄ÛH
m̄ = SVD

(
R̂ym̄ym̄

− σ 2
η INr

2Pd

)
. (3.42)

The matrix R̂ym̄ym̄
above, which represents the estimate of Rym̄ym̄

, is obtained
by using the observation vectors ym̄,n̄ for M(1 + z) ≤ n ≤ L0 as R̂ym̄ym̄

=
1

Nd

∑L0
n̄=M(1+z) ym̄,n̄yH

m̄,n̄. Note that the estimate R̂ym̄ym̄
→ Rym̄ym̄

with high
probability as Nd increases [48]. After obtaining the estimate of Wm̄, the estimate

1 Let the singular value decomposition (SVD) ofHm̄ be expressed as SVD(Hm̄) = Sm̄�m̄QH
m̄ . It is

clear that one possible choice forWm̄ = Sm̄�m̄ and the unitary matrix can be set as Qm̄. It implies
that the whitening unitary decomposition in (3.37) is guaranteed to exist.
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of the unitary matrix Qm̄ is obtained as a solution of the following optimization
problem:

min
Qm̄

∥∥∥Ym̄ − Ŵm̄QH
m̄Bm̄

∥∥∥
2

s.t. Qm̄QH
m̄ = INt . (3.43)

For an orthogonal pilot matrix Bm̄ (Bm̄BH
m̄ = 2PdMINt ) [49], the solution of the

optimization problem above is expressed as [50]

Q̂m̄ = V̂Qm̄
ÛH
Qm̄

. (3.44)

The matrices ÛQm̄
and V̂Qm̄

above are obtained using the SVD as follows:

ÛQm̄
�̂Qm̄

V̂H
Qm̄

= SVD
(
ŴH

m̄Ym̄BH
m̄

)
. (3.45)

Upon employing the estimate of whitening and unitary matrices, the semi-blind
estimate of CSI matrix Hm̄ is obtained as

ĤSB,m̄ = Ŵm̄Q̂H
m̄ = Ûm̄�̂

1/2
m̄ ÛQm̄

V̂H
Qm̄

. (3.46)

Let H ∈ C
Nr×NNt be the MIMO channel matrix, which is obtained as

H = [H0,H1, . . . ,HN−1] . (3.47)

The semi-blind estimate of H can be calculated as

ĤSB = [
ĤSB,0, ĤSB,1, · · · , ĤSB,N−1

]
. (3.48)

The algorithmic form of the semi-blind scheme is given in Algorithm 1.

3.4.3 MSE Gain of the Semi-Blind Estimate over the LS
Estimate

From (3.35), the pilot-based LS estimate of the CSI matrix Hm̄ is given as

ĤLS,m̄ = argmin
Hm̄

‖Ym̄ − Hm̄Bm̄‖2 .

One can obtain the LS estimate of the MIMO CSI matrix Hm̄ as [24]

ĤLS,m̄ = Ym̄B
†
m̄ = Hm̄ + ηm̄B

†
m̄. (3.49)
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Algorithm 1: Algorithmic form of the semi-blind estimator
Input: Virtual pilot matrix Bm̄, Observation matrix Ym̄, Observation vectors ym̄,n̄ for

M(1 + z) ≤ n ≤ L0, Noise variance σ 2
η and power Pd

Output: Estimate Ĥm̄

1 Obtain the estimate R̂ym̄ym̄
= 1

Nd

∑L0
n̄=M(1+z) ym̄,n̄yH

m̄,n̄

2 Compute Ûm̄�̂m̄ÛH
m̄ = SVD

(
R̂ym̄ym̄

− σ 2
η INr

2Pd

)

3 Obtain the estimate Ŵm̄ = Ûm̄�̂
1/2
m̄

4 Compute ÛQm̄
�̂Qm̄

V̂H
Qm̄

= SVD
(
ŴH

m̄Ym̄BH
m̄

)

5 Obtain the estimate Q̂m̄ = V̂Qm̄
ÛH
Qm̄

6 Obtain the estimate Ĥm̄ = Ŵm̄Q̂H
m̄

7 return: The estimate Ĥm̄

Here the operation B†
m̄ = BH

m̄

(
Bm̄BH

m̄

)−1 gives the pseudo-inverse of Bm̄ [51]. As
shown in [52], the MSE of the LS CSI estimator is

E

[ ∥∥ĤLS,m̄ − Hm̄

∥∥2
F

]
= σ 2

η NtNr

4PdM
. (3.50)

It is worth mentioning that the CRLB of the LS estimator equals the channel
estimation error covariance, because ĤLS,m̄ is the minimum variance unbiased
estimate. The LS estimate of the MIMO CSI matrix in (3.47) is

ĤLS = [
ĤLS,0, ĤLS,1, · · · , ĤLS,N−1

]
. (3.51)

The MSE in HLS is calculated as

E

[∥∥ĤLS − H
∥∥2

F

]
= σ 2

η NNtNr

2PdM
.

The CRLB for the channel estimation per parameter using the LS CSI estimator

is determined as
σ 2

η NNtNr

2PdM

( 1
NtNr

)
, which can be seen to remain unchanged with Nt

and Nr .
Coming to the semi-blind estimator, the unitary matrix Qm̄ constrained as

QH
m̄Qm̄ = INt . Thus, one can utilize the constrained CRLB framework in [53] for

benchmarking the MSE of the semi-blind estimator. To begin with, the whitening
matrix Wm̄ can be assumed to be known at the receiver. This assumption, as shown
in [52], holds well with the transmission of a few hundred OQAM data symbols,
because the accuracy for estimating the matrix Wm̄ is sufficiently high. It follows
from [52] that CRLB for the MSE of the semi-blind estimator for (l, k)th element
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Hm̄(k, l) of the CSI matrix Hm̄ is expressed as

E
[|ĤSB,m̄(k, l) − Hm̄(k, l)|2] ≥ σ 2

η

2PdM

Nt∑

i=1

Nt∑

j=1

σ 2
m̄,i

σ 2
m̄,j + σ 2

m̄,i

|Sm̄(k, i)|2|Qm̄(l, j)|2,

(3.52)

where Qm̄(l, j) and Sm̄(k, i), respectively, represent the (l, j)th element of Qm̄ the
(k, i)th element of Sm̄. It is important to note that the weighting factor σ 2

m̄,i/(σ
2
m̄,j +

σ 2
m̄,i ) gives the net reduction in the CSI estimation error in comparison to that of the

pilot-aided LS CSI estimator. Furthermore, it follows from [50] that the minimum
error for estimating Hm̄ by using the semi-blind technique is bounded as

E

[∥∥ĤSB,m̄ − Hm̄

∥∥2
F

]
≥ σ 2

η

4PdM
Nθ = σ 2

η N2
t

4PdM
, (3.53)

where Nθ = N2
t gives the number of real parameters required to parameterize

Qm̄ [54]. It also implies that when the estimation of the whitening matrix Wm̄ is
performed accurately by using the blind information of data symbols, the CSI matrix
Hm̄ = Wm̄QH

m̄ also requires estimation of only N2
t parameters. These parameters

can be estimated with high degree of accuracy by using a limited pilot overhead.
The constraint CRLB for the estimation of the CSI matrix in (3.48) is given as

E

[∥∥ĤSB − H
∥∥2

F

]
=

N−1∑

m̄=0

E

[∥∥ĤSB,m̄ − Hm̄

∥∥2
F

]
≥ σ 2

η NN2
t

4PdM
.

The CRLB for CSI estimation per parameter is ≥ σ 2
η NN2

t

4PdM

( 1
NtNr

)
, which reduces

with increasing the number of receive antennas Nr . Upon using (3.53) and (3.50),
the MSE gain of the semi-blind technique over the pilot-based LS technique is

G ≤ E

[ ∥∥ĤLS,m̄ − Hm̄

∥∥2
F

]/
E

[ ∥∥ĤSB,m̄ − Hm̄

∥∥2
F

]
= 2Nr

Nt

. (3.54)

Since Nr ≥ Nt , it is immediately clear that 2Nr

Nt
≥ 2. It follows from (3.54)

that for square MIMO-FBMC system that has Nr = Nt , the semi-blind technique
outperforms the LS technique up to 3 dB. Furthermore, the MSE gain G can be
increased by increasing the number of receive antennas Nr .

Figure 3.4a shows numerical results to verify MSE gain of the semi-blind (SB)
technique over the conventional LS scheme quantified in (3.54). For this study,
an Nt × Nr MIMO-FBMC system with the number of subcarriers N = 128 is
considered over a type A Rayleigh fading channel for vehicular scenarios that
has Lh = 6 taps, with the delay profile (in ns) 0, 310, 710, 1090, 1730, 2510 and
power profile (in dB) 0.0,−1.0,−9.0,−10.0,−15.0,−20.0 between the (t, r)th
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Fig. 3.4 (a) MSE gain of the semi-blind (SB) CSI estimator (perfectWm̄) over the pilot-aided LS
CSI estimator with N = 128, z = 3 and M = Nt = 2 and (b) MSE comparison of the SB (perfect
and imperfect Wm̄) and LS CSI estimators with Nr = 4, M = Nt = 2 and Nd = 320

transmit-receive antenna pair. The isotropic orthogonal transform algorithm (IOTA)
prototype pulse [15] of duration 4T is used for pulse shaping in FBMC system. Pilot
and data symbols are drawn from the real and imaginary parts of 4-QAM symbols.
The SNR on each subcarrier is calculated as 2Pd/σ 2

η . It can be seen from Fig. 3.4a
that the semi-blind CSI estimation technique for 2 × 4 and 2 × 6 MIMO-FBMC
systems can be observed to provide MSE gain of 6 dB and 7.78 dB over the pilot
only LS CSI estimator, respectively. This happens because the MSE per parameter
for the latter does not change with Nr , whereas it decreases with Nr for the former.
This NMSE trend validates the CRLB analysis presented in Section 3.4.3. It is also
seen that both SB and LS techniques achieve their respective CRLBs.

Figure 3.4b shows the NMSE as a function SNR for the SB and LS CSI
estimators. The graphs in the presence of perfect and imperfect knowledge of
whitening matrix are marked as Perf Wm and Imperf Wm, respectively. For the
Perf Wm case, Wm̄ = Sm̄�m̄, where Sm̄�m̄QH

m̄ is obtained using the SVD of
the CSI matrix Hm̄. For the Imperf Wm̄ case, Wm̄ is estimated using the second-
order statistical characteristics of Nd = 320 OQAM data symbols. The SB CSI
estimator in the presence of imperfect Wm̄ can be seen to perform close to its
perfect Wm̄ counterpart. It can also be seen that the NMSE of both the LS and SB
techniques with z = 1 floors at high SNR. This happens because the ISI between
the pilot symbols dominates at the high SNR. As z increases to 3, both the CSI
estimation methods receiver NMSE improvement due to the reduced effect of the
ISI. Furthermore, the SB CSI estimator in the presence of imperfect Wm̄ achieves
a performance close to its CRLB. This shows that fixing z = 3 gives the ideal
spectral efficiency versus NMSE trade-off, because the CRLB is nothing but the
best possible estimation performance of an estimator.



108 P. Singh and E. Sharma

3.5 Performance of FBMCWaveform in Uplink of Massive
MIMO

In recent years, massive MIMO technology has received widespread popularity
because of its ability to support a large number of users with high throughput [55].
By using a few hundred antennas at the base station, the massive MIMO technology
achieves the favourable propagation, which mitigates the co-channel interference
by employing linear receivers, namely, ZF, MMSE and maximum ratio combining
(MRC). This leads to a significant enhancement in spectral efficiency. OFDM is
being used with massive MIMO technology for 5G deployment. However, OFDM-
based systems are susceptible to practical impairments associated with carrier and
timing offsets, particularly in the uplink wherein it is difficult to track the Doppler
spreads experienced by different users [5, 6]. The aim of this section is to analyse
the uplink performance of FBMC waveform in the context of MU massive MIMO
technology.

3.5.1 Review of Existing Works

Reference [56] showed that the signal-to-interference-plus-noise ratio (SINR)
of FBMC waveform-based massive MIMO technology over frequency-selective
channel saturates to a deterministic value that depends on the correlation between
the channel impulse responses and weights of multi-antenna combining taps.
Aminjavaheri et al. in [21] developed an equalizer to mitigate the SINR saturation
in [56]. References [57, 58] compared OFDM and FBMC waveforms in the massive
MIMO setup and highlight the benefits of the latter over the former in terms of (i)
sensitivity to CFO; (ii) peak-to-average power ratio; and (iii) increased bandwidth
efficiency. The work in [22] used the FBMC waveform for the uplink transmission
in massive MIMO technology and derived the MSE of the estimated symbols for
the MMSE, ZF and matched filtering receivers. Reference [49] derived the uplink
achievable rate for FBMC-based multi-user multi-cell massive MIMO systems
relying on the ZF and MRC receivers. The pertinent power scaling laws in the
existence of perfect and imperfect receiver CSIs have also been derived therein.
Recently, reference [59] investigated the uplink sum rate performance of multi-cell
massive MIMO-FBMC systems over Rician fading channels. The studies reviewed
above show that FBMC waveform in the context of massive MIMO technology has
got significant attention. This section analyses the performance of FBMC waveform
in the uplink of MU massive MIMO technology, in terms of uplink sum rates of
the MRC and ZF receivers in the existence of perfect and imperfect CSIs. The
lower bounds on the uplink sum rates of the MRC and ZF receivers are also
derived, followed by the corresponding power scaling laws. Numerical examples
are presented to (i) verify the analysis and (ii) compare the performance of OFDM-
and FBMC-based MU massive MIMO technologies.
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3.5.2 Massive MIMO-FBMC System Model

An uplink of FBMC waveform-based single-cell MU massive MIMO technology
is considered that has N subcarriers, U single-antenna users and a BS comprising
L antennas with 1 � U � L. The U users communicate to the BS using the
same time-frequency resources. An OQAM symbol transmitted by the uth user
at FT index (m, n) is denoted by du

m,n. The OQAM symbols are generated from
QAM symbols as per the rules given in (3.3) and (3.4). The in-phase and quadrature
components of QAM symbol cu

m,n are assumed to be spatially and temporally i.i.d.
with power Pd . This implies that E

[
du
m,n

(
du
m,n

)∗ ] = Pd and E
[
cu
m,n

(
cu
m,n

)∗ ] =
2Pd . The signal on the lth BS antenna at frequency index m̄ and symbol instant n̄ is
obtained as

yl
m̄,n̄ =

U∑

u=1

G
l,u
m̄ bu

m̄,n̄ + ηl
m̄,n̄, (3.55)

where the complex quantity G
l,u
m̄ = ∑Lh−1

k=0 gl,u[k]e−j2πm̄k/N , between the uth user
in the cell and the lth antenna of the base station, represents the CFR at subcarrier
m̄. The term gl,u[k] is the corresponding Lh-tap channel impulse response. The
demodulated noise ηl

m̄,n̄ at the lth BS antenna obeys CN(0, σ 2
η ). The quantity

bu
m̄,n̄ = du

m̄,n̄ + jIu
m̄,n̄ is the virtual symbol for the uth user. The interference Iu

m̄,n̄ is
expressed by (3.24). For convenience, (3.55) can be expressed in vector form as

ym̄,n̄ = Gm̄bm̄,n̄ + ηm̄,n̄, (3.56)

where ym̄,n̄ = [y1
m̄,n̄, y

2
m̄,n̄, . . . , y

L
m̄,n̄]T ∈ C

L×1 comprises observed symbols

across L antennas of the BS, while ηm̄,n̄ = [η1m̄,n̄, η
2
m̄,n̄, . . . , η

L
m̄,n̄]T ∈ C

L×1

is the noise vector such that E[ηm̄,n̄η
H
m̄,n̄] = σ 2

η IL. The vector bm̄,n̄ =
[b1m̄,n̄, b

2
m̄,n̄, . . . , b

U
m̄,n̄]T ∈ C

U×1 consists of virtual symbol of the U users such

that E[bm̄,n̄bH
m̄,n̄] ≈ 2PdIU . The matrix Gm̄ = [g1m̄, g2m̄, . . . , gU

m̄] ∈ C
L×U is the

CSI matrix between the U users in the cell and the base station. The matrix Gm̄ is
commonly modelled as [60]

Gm̄ = Hm̄

{
diag[β1, β2, · · · , βU ]}1/2 = Hm̄D1/2, (3.57)

where the diagonal matrix D = diag(β1, β2, · · · , βU ) ∈ R
U×U with βu being the

large-scale fading coefficient for the uth user. The quantity βu, which remains same
for many coherence time intervals, can be assumed to be known at the base station.
Also, it is assumed to be independent from BS antennas and subcarriers. The matrix
Hm̄ = [h1m̄,h2m̄, . . . ,hU

m̄] ∈ C
L×U consists of small-scale fading factors from the U

users in the cell to the base station. The entries of Hm̄ are i.i.d. as CN(0, 1).
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3.5.3 Uplink Sum Rate for Massive MIMO-FBMC with
Imperfect CSI

The combiner matrix Am̄ for the ZF and MRC receivers, which are widely used due
to their low complexity and linear nature, is

Am̄ =
{
Gm̄ for MRC

Gm̄

(
GH

m̄Gm̄

)−1 for ZF.
(3.58)

OQAM symbols at output of the combinerAm̄ are obtained as d̂u
m̄,n̄ = � {

AH
m̄ym̄,n̄

}
.

The CSI matrix Gm̄, in practice, is estimated at the BS using pilot symbols.
Reference [49] derived the uplink achievable rate for FBMC-based multi-user multi-
cell massive MIMO systems by considering the effect of pilot contamination. This
chapter considers single-cell multi-user massive MIMO-FBMC systems, wherein
users transmit orthogonal pilot symbols for channel estimation at the base station.
Thus, there is no pilot contamination. Let each user in the cell transmit M pilot
symbols on each subcarrier for uplink channel estimation, as shown in Fig. 3.3. As
explained in [49], the pilot-aided MMSE estimate of channel at subcarrier m̄ from
the uth user to the BS is obtained as

ĝu
m̄ = βu

Ppβu + σ 2
η

yu
m̄,

where yu
m̄ is the L × 1 observed pilot vector at the subcarrier m̄ of the uth user and

Pp = 2PdM represents the pilot power. Let eu
m̄ = gu

m̄−ĝu
m̄ be the channel estimation

error vector for the uth user. One can show that

E[ĝu
m̄(ĝu

m̄)H ] = Pp(βu)2

Ppβu + σ 2
η

IL (3.59)

E[eu
m̄(eu

m̄)H ] = βuσ 2
η

Ppβu + σ 2
η

IL. (3.60)

3.5.3.1 MRC Receiver

Employing gu
m̄ = ĝu

m̄ + eu
m̄, the expression in (3.56) can be expanded as

ym̄,n̄ = ĝu
m̄bu

m̄,n̄ +
U∑

j=1,j 	=u

ĝj
m̄b

j
m̄,n̄ +

U∑

j=1

ej
m̄b

j
m̄,n̄ + ηm̄,n̄.

The OQAM symbol estimate at subcarrier m̄ and symbol index n̄ for the uth user at
the output of MRC receiver can be formulated as
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d̂u
m̄,n̄ = �{

(ĝu
m̄)Hym̄,n̄

} = ∥∥ĝu
m̄

∥∥2 du
m̄,n̄ + v

u,mrc
m̄,n̄ .

Here the noise-plus-interference v
u,mrc
m̄,n̄ is

v
u,mrc
m̄,n̄ = �

{ U∑

j=1,j 	=u

(ĝu
m̄)H ĝj

m̄b
j
m̄,n̄ +

U∑

j=1

(ĝu
m̄)H ej

m̄b
j
m̄,n̄ + (ĝu

m̄)H ηm̄,n̄

}
.

Upon employing (3.34), the QAM symbol estimate at the MRC receiver output is

ĉu
m̄,n̄ = ∥∥ĝu

m̄

∥∥2 cu
m̄,n̄ + ṽ

u,mrc
m̄,n̄ , (3.61)

where we have cu
m̄,n̄ = du

m̄,2n̄ + jdu
m̄,2n̄+1 and ṽ

u,mrc
m̄,n̄ = v

u,mrc
m̄,2n̄ + jv

u,mrc
m̄,2n̄+1 when m̄

is even, and for odd m̄, cu
m̄,n̄ = du

m̄,2n̄+1 + jdu
m̄,2n̄ and ṽ

u,mrc
m̄,n̄ = v

u,mrc
m̄,2n̄+1 + jv

u,mrc
m̄,2n̄ .

As shown in [49], the uth user SINR at subcarrier m̄ in the existence of imperfect
knowledge of channel is determined as

ϒ
u,mrc
m̄,IP = 2Pd

∥∥ĝu
m̄

∥∥2

2Pd

(∑U
j=1,j 	=u

∣∣g̃j
m̄

∣∣2 + ∑U
j=1

βj σ 2
η

Ppβj +σ 2
η

)
+ σ 2

η

,

where the random variable g̃j
m̄ obeys g̃j

m̄ = (ĝu
m̄)H ĝj

m̄/
∥∥ĝu

m̄

∥∥. The uplink rate for the
uth user is determined as

Ru,mrc
m̄,IP = E

[
log2(1 + ϒ

u,mrc
m̄,IP )

]
.

Upon utilizing Jensen’s inequality E[f (x)] ≥ f (E[x]) along with the convexity of
log(1 + 1

x
), as shown in [49], the uplink rate of the uth user is lower bounded as

Ru,mrc
m̄,IP ≥ R̃u,mrc

m̄,IP = log2

⎛

⎜⎜⎜⎜⎜⎝
1 + Pp(L − 1)(βu)2

(Ppβu + σ 2
η )

( U∑

j=1,j 	=u

βj + σ 2
η

2Pd

)
+ βuσ 2

η

⎞

⎟⎟⎟⎟⎟⎠
.

(3.62)

By setting 2Pd = Eu/
√

L for a fixed Eu, and L → ∞, one obtains

R̃u,mrc
m̄,IP → log2

(
1 + ME2

u(β
u)2/σ 4

η

)
. (3.63)
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3.5.3.2 ZF Receiver

The estimated OQAM symbol vector at the output of ZF receiver in the existence of
imperfect channel knowledge is given as

d̂m̄,n̄ = �{
Ĝ†

m̄ym̄,n̄

} = dm̄,n̄ + vzfm̄,n̄.

Here the noise plus interference vector vzfm̄,n̄ = �{
Ĝ†

m̄

∑U
j=1 e

j
m̄b

j
m̄,n̄ + Ĝ†

m̄ηm̄,n̄

}
. It

follows from [49] that the SINR for the uth user can be determined as

ϒ
u,zf
m̄,IP = 2Pd(

2Pd

∑U
j=1

βj σ 2
η

Ppβj +σ 2
η

+ σ 2
η

)[(
ĜH

m̄ Ĝm̄

)−1
]

u,u

.

The operation
[(
ĜH

m̄ Ĝm̄

)−1]
u,u

above extracts the uth diagonal element of the

matrix
(
ĜH

m̄ Ĝm̄

)−1. As given in [49], the uplink rate of the ZF receiver for the uth
user is lower bound as

Ru,zf
m̄,IP ≥ R̃u,zf

m̄,IP = log2

⎛

⎜⎜⎜⎝1 + Pp(L − U)(βu)2

(Ppβu + σ 2
η )
(∑U

j=1
βj σ 2

η

Ppβj +σ 2
η

+ σ 2
η

2Pd

)

⎞

⎟⎟⎟⎠ . (3.64)

Note that for 2Pd = Eu/
√

L and L → ∞, R̃u,zf
m̄,IP → Ru,zf

m̄,IP. It is important to
note that similar to OFDM-based massive MIMO systems, the uplink power scaling
laws also hold for their FBMC counterparts in the existence of imperfect channel
knowledge.

3.5.4 Uplink Sum Rate for Massive MIMO-FBMC with Perfect
CSI

The uplink rate for the ZF and MRC receiver processing at the BS in the existence
of perfect channel knowledge can be derived as special case of their imperfect CSI
counterparts as follows.

3.5.4.1 MRC Receiver

The SINR at the output of the MRC receiver for the uth user is

ϒ
u,mrc
m̄,P = 2Pd

∥∥gu
m̄

∥∥4

2Pd

∑U
i=1,i 	=u

∣∣(gu
m̄)Hgi

m̄

∣∣2 + σ 2
η

∥∥gu
m̄

∥∥2
. (3.65)
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The lower bound on the uplink rate is

Ru,mrc
m̄,P ≥ R̃u,mrc

m̄,P = log2

(
1 + 2Pd(L − 1)βu

2Pd

∑U
i=1,i 	=u βi + σ 2

η

)
.

It is easy to verify that for 2Pd = Eu/L and L → ∞, the lower-bound R̃u,mrc
m̄,P →

Ru,mrc
m̄,P .

3.5.4.2 ZF Receiver

The ZF receiver SINR at the m̄th subcarrier of the uth user is derived as

ϒ
u,zf
m̄,P = 2Pd

σ 2
η

{(
GH

m̄Gm̄

)−1
}

u,u

.

The above rate is lower bound as Ru,zf
m̄,P = E

[
log2(1 + ϒ

u,zf
m̄,P )

]
is

Ru,zf
m̄,P ≥ R̃u,zf

m̄,P = log2

(
1 + 2Pdβu(L − U)

σ 2
η

)
. (3.66)

If 2Pd = Eu/L and L grows large, one obtains R̃u,zf
m̄,P

L→∞−−−→ log2
(
1 + Euβ

u/σ 2
η

)
.

It is observed that similar to the OFDM-based massive MIMO systems, the uplink
power scaling laws also hold for massive MIMO-FBMC systems in the existing of
perfect channel knowledge at the base station.

Figure 3.5a,b demonstrate the performance of FBMC and OFDM waveforms
in the uplink of massive MIMO technology. FBMC waveform with N = 128
subcarriers is considered. Pilot and data symbols are drawn from the in-phase and
quadrature components of 4-QAM constellation. Each of the subcarriers in FBMC is
shaped using the IOTA filter [15] of length 4T . The matrix D comprises large-scale
fading coefficients βu (for 1 ≤ u ≤ U ), which depend on geographical position of
users in the cell as well as radio frequency of EM waves. These coefficients remain
constant for multiple coherence intervals [60]. The coefficients βu, for 1 ≤ u ≤ U ,
are typically modelled as βu = zu/(ru/rh)

ν [60], where zu is a log-normal random
variable for the uth user with a standard deviation σz, ru is the distance between
the uth user and the BS and ν is the path loss exponent. The large-scale fading
matrix D = diag[0.749, 0.045, 0.246, 0.121, 0.125, 0.142, 0.635, 0.256] [61] is
a snapshot of the above model with σz = 8 dB, ν = 3.8, rh = 100 metres and
ru = 1000 metres. The small-scale fading channel from each user to the base
station is considered to be complex Gaussian of length Lh = 6 with uniform power
delay profile. Each user transmits M = U number of OQAM pilot symbols on
each subcarrier for channel estimation. The noise variance σ 2

η is assumed to be 1.
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Fig. 3.5 Uplink performance comparison of FBMC- and OFDM-based massive MIMO tech-
nologies: (a) Uplink sum rate as a function of the number of BS antennas in the existence of
imperfect and perfect knowledge of channel with power per user 2Pd = 10 dB and (b) SER versus
normalized CFO with perfect knowledge of channel, power per user 2Pd = −5 dB, L = 64,
Lh = 2 and βu = 1 for 1 ≤ u ≤ U

With this assumption, the transmit power per user can be interpreted as normalized
transmit SNR, and hence it is dimensionless. There are U = 8 single antenna users
in the cell.

Figure 3.5a shows that the uplink sum rates achieved by the ZF and MRC
receivers agree to their respective lower bounds in the existence of imperfect and
perfect channel knowledge. It can be seen that that the uplink sum rates of the
FBMC-based MU massive MIMO system coincide with their OFDM counterparts.
It is also observed that the ZF receiver outperforms the MRC receiver, especially in
the high SNR regime. However, in comparison to the latter, the former costs more
in terms of computational complexity. The results in Fig. 3.5a are plotted in the
existence of perfect synchronization. However, in the existence of synchronization
errors due to practical impairments such as CFO, as shown in Fig. 3.5b, the symbol
error rate (SER) of an OFDM-based massive MIMO system degrades severely in
comparison to its FBMC counterpart. This happens because the OFDM waveform
experiences significant ICI due to the sinc-shaped frequency localization of the
rectangular pulse shaping, whereas FBMC waveform, due to associated well time-
frequency localized pulse-shaping filter, experience significantly lower ICI, which
makes FBMC waveform robust against practical impairments.

3.6 Conclusions and Future Directions

This chapter designed and analysed FBMC-OQAM-based MIMO and massive
MIMO systems. For improving the accuracy of CSI at the receiver with limited pilot
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overhead, a semi-blind (SB) MIMO-FBMC CSI estimation scheme was developed.
The SB technique exploited both the pilot symbols and the second-order statistical
information of data symbols. The NMSE gain of the SB scheme over the LS
increases with the number of receive antennas. It was also demonstrated that the
SB scheme achieves its CRLB.

This chapter also analysed the uplink performance of FBMC waveform in
multi-user massive MIMO systems in the existence of both perfect and imperfect
knowledge of channel. The uplink sum rates and their corresponding lower bounds
were derived for massive MIMO-FBMC systems relying on the MRC and ZF
receiver processing at the base station with/without perfect CSI. For both the
receivers, the derived lower bounds on the achievable uplink sum rate were seen to
closely agree with their respective simulated rates. Furthermore, the uplink power
scaling laws, similar to OFDM waveform, were seen to exist for FBMC-based
massive MIMO systems. It was also shown that OFDM- and FBMC-based massive
MIMO systems achieve the same uplink performance in the existence of perfect
synchronization. However, in the existence of practical impairments such as CFO,
FBMC-based massive MIMO systems were seen to vastly outperform their OFDM
counterparts.

The future works may investigate semi-blind scheme for highly frequency-
selective and/or time-selective channels. Future research may present an analysis
for characterising the performance of FBMC-based massive MIMO systems in
time-selective channels. Future research may also analyse performance of FBMC
waveform in the downlink of massive MIMO by considering the effect of multi-
user precoding, which poses additional challenges. Future lines of this work can also
investigate performance of FBMC signalling in other state-of-the-art technologies
like millimetre wave, intelligent reflecting surfaces (IRS) and Internet of Things
(IoT).
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