
Pattern Recognition Using Graph Edit
Distance

Shri Prakash Dwivedi and Ravi Shankar Singh

1 Introduction

The graph is a fundamental and ubiquitous mathematical structure in mathematics,
engineering, and computer science. Its strength lies in the flexibility to represent
itself as a structural model in the various domains of science and engineering. Graph
edit distance (GED) can be stated as the least number of modifications needed to
convert one graph into another. The edit operations can add, delete, and substitute
nodes and edges. The edit operations were initially used as string edit operations for
converting one string into another using the lowest count of edit operations, such
as addition, deletion, or substitution of alphabets. Later on, the idea of string edit
distance was applied to tree edit distance and further generalized to GED. Due to its
flexibility, the edit distance approach is powerful, and it can be applied to different
problems.

One of the significant applications of GED is inexact graph matching. In graph
matching (GM), we measure the similarity between two objects represented in the
form of graphs. It is mainly categorized into two classes, exact and inexact GM. In
exact GM, a strict correspondence must be there between the vertices and edges of
the two graphs. In the error-tolerant GM, also known as inexact GM, some flexibility
or tolerance is allowed during the matching between the two graphs. The limitation
of exact GM is that it can be only used to find the strict matching between the two
graphs, and therefore, it cannot take into account distortion incurred to the graph

S. P. Dwivedi (�)
Department of Information Technology, G.B. Pant University of Agriculture & Technology,
Pantnagar, India
e-mail: shriprakashdwivedi@gbpuat-tech.ac.in

R. S. Singh
Department of Computer Science & Engineering, Indian Institute of Technology (BHU),
Varanasi, India

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Awasthi et al. (eds.), Sustainable Computing,
https://doi.org/10.1007/978-3-031-13577-4_21

335

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13577-4_21&domain=pdf
http://orcid.org/0000-0002-7810-0859

 885 52970 a 885 52970
a

mailto:shriprakashdwivedi@gbpuat-tech.ac.in

 -2016
61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-13577-4_21

336 S. P. Dwivedi and R. S. Singh

due to the existence of noise in the process of matching. Error-tolerant GM offers
flexibility during the process of GM [2]. There are many approaches to error-tolerant
GM but GED being very adaptable is one of the most crucial techniques for the GM
problem. A comprehensive review of diverse GM methods is described in [4] and
[14].

In [15], the authors introduced an approach to present patterns by trees instead
of strings. As a tree is a more general high-dimensional structure than string,
its use will lead to an efficient description of a higher-dimensional pattern. Then
tree system representation of patterns is used for syntactic pattern recognition. A
distance measure for attributed relational graph [29] using the computation of the
least number of modifications required to change an input graph to the output one is
described in [27]. This chapter also considers the costs of recognizing the vertices in
the distance computation. In [3], the authors proposed using heuristic information
inexact GM of attributed graphs derived from a state-space search. The matching
process is generalized to arbitrary graphs, and the edit cost functions are designed
so that the GED satisfies the properties of metrics in some situations.

GED is applicable in a broad range of applications as it allows specific edit
cost functions to be defined for various applications. A significant limitation of
GED is that its computation becomes too costly. It uses exponentially ample
execution time to compute GED concerning the number of vertices in the input
graph. Graph edit distance problem is shown to be NP-hard in [30]. Since a fast
deterministic algorithm is unavailable for this problem, many approximate and
suboptimal algorithms have been proposed recently.

The paper [17] proposed an efficient algorithm for GED computation of
attributed planar graphs by iteratively matching small subgraphs to optimize
structural correspondence. Then it applied the above technique to the fingerprint
classification problem. In [19], the authors describe the fast suboptimal algorithm
for the GED by reducing the space essential for computing the GED usingA∗ search
technique[16]. They describe the different variants of A∗, such as A∗-beamsearch
and A∗-pathlength, to reduce the search space that may not be pertinent to particular
classification tasks. The computation of approximate GED by considering only local
instead of global edge structure through the optimizing process is given in [23]. In
[28], the authors represent the GED as a basis in the label space and use it to
define a class of GED cost. They also describe the various characteristics and
use of this GED cost. An improvement over the above method by manipulating
the initial assignment of the approximation algorithm so that the assignment is
ordered based on the individual confidence is provided in [13]. Estimating exact
GED considering lower and upper bounds of bipartite approximation utilizing
regression analysis is described in [25]. Different search strategies for improving
the approximation of bipartite GED computation using the beam search, iterative
search, and greedy search, etc., are provided by Riesen and Bunke [24]. The book
[21] provides a detailed description of structural pattern recognition and describes
various algorithms for structural pattern recognition by using GED.

A novel category of structural pattern recognition using GED is recently pro-
posed [5] that decreases the graph size, reducing search space by ignoring the less

Pattern Recognition Using Graph Edit Distance 337

relevant vertices using some measure of importance. In [8], the authors presented
homeomorphic GED for topologically equivalent graphs and used to perform GM
by measuring the structural similarity between two graphs. The proposed technique
utilizes the path contraction to remove the vertices having degree two to construct
simple paths of input graphs in which every node except first and last has degree
two. An extension to GED utilizing the notion of node contraction in which a graph
is changed into another by contracting the lesser degree vertices is given in [9]. In
[12], the authors proposed centrality GED to perform inexact GM using the various
centrality measures for removing the vertices having the least centrality value in the
graph. Some other recent works are given in [6, 7, 10, 11, 26].

This chapter is outlined as follows. Section 2 introduces basic concepts and
definitions related to GED. Section 3 presents essential algorithms and techniques
to compute GED. Section 4 shows some experimental results, and at last, Sect. 5
includes the conclusion.

2 Basic Concepts and Definitions

A description of fundamental concepts and definitions associated with GED is
provided in this section. To get an in-depth description, the reader can refer to the
texts such as [1, 5, 18].

In computer science, a graph is commonly defined as G = (V ,E), where V is
the vertex set andE is the edge set in which every edge connects the two vertices. To
define a graph in pattern recognition field, we use two additional parameters, node
label mapping and edge label mapping, to identify the vertices and links in a graph.

We define a graph G as a tuple G = (V ,E,μ, ν); here, V and E are defined as
above, μ : V → LV , and ν : E → LE . Here, μ is a function that assigns each
vertex v ∈ V a unique label lv ∈ LV . Similarly, ν is a function that assigns each
vertex e ∈ E a unique label le ∈ LE .

A graph may be directed or undirected based on its edges; if ν(u, v) = ν(v, u),
then the graph is undirected since from both directions, edges have the same value,
whereas for undirected graphs, ν(u, v) �= ν(v, u). When LV = LE = ε, i.e., vertex
label and edge label sets are empty, the graph G is called an unlabeled graph.

A graph can be converted into another graph using a set of edit operations. A
set of edit operations are inserting, deleting, and substituting nodes and edges. A
chain of edit operations that convert an input graph into the output one is defined as
an edit path from the input graph to the output one. To insert a node u, we denote
ε → u; to delete a node u, we represent u → ε; to substitute the vertex u by vertex
v, we represent u → v. Likewise, to insert an edge e, we denote by ε → e, e → ε

represents deletion of the edge e, and e → f defines substitution of the edge e by
edge f .

In the following definitions, for simplicity, we denote a graph Gi by Gi =
(Vi, Ei, μi, νi).

338 S. P. Dwivedi and R. S. Singh

Definition 1 The GED from G1 to G2 is stated by

GED(G1,G2) = min(e1,...,ek)∈ϕ(G1,G2)

k∑

i=1

c(ei);

here c(ei) represents the costs of corresponding edit operations of ei , and ϕ(G1,G2)

denotes the sequence of edit path to convert G1 into G2.

Two graphs are homeomorphic when both graphs are a subdivision of another
graph. Subdivision of an edge is the process of inserting an additional vertex along
an edge. The subdivision on graph G creates another graph after performing the
subdivision on the edges of this graph.We can observe that the subdivision operation
on a graph only changes the number of nodes of degree two.

Definition 2 The homeomorphic GED HGED from graph G1 to G2 is defined as

HGED(G1,G2) = GED(H1,H2) = min(e1,...,ek)∈ϕ(H1,H2)

k∑

i=1

c(ei),

where G′
1 is the graph obtained from G1 by doing path contraction from every

vertex. Similarly, G′
2 is the graph got from G2 by performing path contraction from

each vertex.

Path contraction is the technique of removing every intermediate vertex having
degree 2, except first and last nodes. Node contraction is the method of removing
vertices along with the incident edges, given that it is not an articulation point or cut
vertex [9].

A brief explanation of the essential centrality measures [20] follows. Centrality
indicates the importance of a node in a network or graph. A node with high centrality
will be more significant concerning other nodes in the graph. The degree centrality
denotes the degree of a node in the graph. When a graph is a directed graph, it will
have both the indegree and outdegree centrality. The betweenness centrality denotes
the number of times a node occurs between other two nodes on their shortest path.
The eigenvector centralitymeasures the node’s influence using the count of its links
to other vertices in the graph. The PageRank centrality considers the importance of
a vertex proportional to the influence of its neighboring vertices divided by their
outdegree.

Definition 3 r-CentralityNodeContraction is the operation to contract the r ratio of
vertices fromG having minimum centrality scores of a specified centrality identifier.

Definition 4 r-CentralityGraphEditDistance computation between G1 and G2 is
defined as the GED between these two graphs, where r.G1 nodes of G1 and r.G2
nodes of G2 having minimum centrality value are contracted.

Pattern Recognition Using Graph Edit Distance 339

Definition 5 In the t-CentralityNodeContraction, t nodes having the minimum
centrality score of a specified centrality measure are removed, given that these nodes
are not the cut vertex.

Definition 6 t-CentralityGraphEditDistance is the method of computing GED from
G1 to G2 after deleting the t nodes from both the graphs having the minimum
centrality score of a given centering measure.

3 Algorithms

The computation of GED is generally accomplished utilizing tree-search-based
algorithms. Tree-search-based techniques will be able to traverse the entire search
space for the assignments of vertices and edges from the one graph to another for
finding the optimal edit transformation. A commonly used technique is based on
A∗ search method using an ordered tree to explore the complete search space. The
tree’s root node will start with the initial solution. Intermediate nodes denote the
subsequent partial solution, whereas the leaf nodes represent the complete edit path.
A heuristic function is used for selecting the next successor node to be explored at
the given level.

Algorithm 1 describes to compute the GED. The inputs to the GraphEditDistance
algorithm are G1 and G2, where graph G1 has n vertices and graph G2 has m

vertices. The outcome of this algorithm is the least-cost GED from graph G1 to
graph G2. The algorithm starts with the empty set A in line 1. Set A includes all
the partial edit paths created so far. During the for loop of lines 3–4, every vertex
of the second graph is substituted by the u1 vertex of the first graph. Each of these
substitutions is then inserted into the set A. Deletion of node u1 is also appended
to the set A. The while loop of lines 6–25 computes the minimum cost edit path
Cmin from A. The algorithm uses a heuristic function g(C) + h(C) to select the
minimum cost edit path. g(C) represents the cost of optimal edit path from the top
root vertex to the current vertex C. h(C) is used to denote the estimated cost from
the current node C to the leaf node. The sum g(C) + h(C) provides the total cost
assigned to a vertex in the search tree. Here the optimal edit path from root vertex to
a leaf vertex will be computed. The if loop of line 8 tests to know if the constructed
Cmin is one of the complete edit paths. If this is the case, the algorithm returns the
corresponding complete edit path in line 9. If all nodes of first graph G1 are visited
(line 11), then the remaining unvisited nodes of graph G2 (line 12) are inserted in
to the graph (line 13) and A is updated in line 16. Similarly, in the for loop of lines
18–22, all the unvisited nodes of G1 are substituted by each node of G2 along with
the deletion of each node of G1 in line 19, and finally A is updated in line 22.

GraphEditDistance algorithm is an exact algorithm that explores the complete
search space to find the optimal edit path to transform G1 into G2. This algorithm
is exact, but it is computationally very expensive; therefore, this algorithm may

340 S. P. Dwivedi and R. S. Singh

Algorithm 1 GraphEditDistance (G1,G2)

Require: Two Graphs G1, G2, where V1 = {u1, . . . , un} and V2 = {v1, . . . , vm}
Ensure: A minimum cost GED between G1 and G2
1: A ← ∅
2: for each (vj ∈ V2) do
3: A ← A ∪ {u1 → vj }
4: end for
5: A ← A ∪ {u1 → ε}
6: while (True) do
7: Compute minimum cost edit path Cmin = minC∈A{g(C) + h(C)} from A

8: if (Cmin is a complete edit path) then
9: return Cmin

10: else
11: if (all vertices (ui ∈ V1) are visited) then
12: for all unvisited (vj ∈ V2) do
13: Cmin ← Cmin ∪ {ε → vj }
14: end for
15: A ← A ∪ {Cmin}
16: else
17: for (all unvisited vertices (ui ∈ V1)) do
18: for (each (vj ∈ V2)) do
19: Cmin ← Cmin ∪ {ui → vj } ∪ {ui → ε}
20: end for
21: end for
22: A ← A ∪ {Cmin}
23: end if
24: end if
25: end while

not be feasible for the graphs having large sizes. To overcome this disadvantage,
several approximate and suboptimal algorithms have been proposed. One of the
approximate algorithms for GED is outlined in Algorithm 2. The basic idea of
the suboptimal algorithm is to prune the search space using some optimizing and
heuristic techniques so that the resulting search space is reduced, thereby reducing
the computation time. The steps of ApproximateGraphEditDistance algorithm are
the following. The inputs to the ApproximateGraphEditDistance algorithm are G1
and G2. The output of this algorithm is the minimum cost approximate GED from
graphs G1 to G2. The steps of this algorithm are similar to the GraphEditDistance
algorithm except for the while loop of lines 6–26. Before selecting the next node
for consideration, set A is pruned using some optimizing techniques such as beam
search in which a fixed number of nodes known as beam width are only explored
for selecting the next candidate. Since the heuristic methods view only the partial
set of edit operations in the complete search space, this results in an approximate
but comparatively efficient solution.

Pattern Recognition Using Graph Edit Distance 341

Algorithm 2 ApproximateGraphEditDistance (G1,G2)

Require: Two Graphs G1, G2, where V1 = {u1, . . . , un} and V2 = {v1, . . . , vm}
Ensure: A minimum cost GED between G1 and G2
1: A ← ∅
2: for each (vj ∈ V2) do
3: A ← A ∪ {u1 → vj }
4: end for
5: A ← A ∪ {u1 → ε}
6: while (True) do
7: Prune A using an optimizing/heuristic technique
8: Find min. cost edit path Cmin from A

9: if (Cmin is a complete edit path) then
10: return Cmin

11: else
12: if (all vertices (ui ∈ V1) are visited) then
13: for all unvisited (vj ∈ V2) do
14: Cmin ← Cmin ∪ {ε → vj }
15: end for
16: A ← A ∪ {Cmin}
17: else
18: for (all unvisited vertices (ui ∈ V1)) do
19: for (each (vj ∈ V2)) do
20: Cmin ← Cmin ∪ {ui → vj } ∪ {ui → ε}
21: end for
22: end for
23: A ← A ∪ {Cmin}
24: end if
25: end if
26: end while

3.1 Homeomorphic Graph Edit Distance

As discussed before, we say two graphs to be homeomorphic when both graphs are
a subdivision of another graph. During the homeomorphic GED, first, all the nodes
of degree 2 are deleted except the first and last nodes along all the simple paths of
the graphs, and after that, GED is computed.

Given two graphs G1 and G2, homeomorphic edit cost function ∀ vertices u ∈
V1, v ∈ V2 and ∀ edges e ∈ E1, e′ ∈ E2 is defined as:

c(u → ε) = xnode

c(ε → v) = xnode

c(u → v) = ynode.||μ1(u) − μ2(v)||
c(e → ε) = xedge

c(ε → e′) = xedge

c(e → e′) = yedge.||ν1(e) − ν2(e
′)||

c((u1, . . . , un) → (u1, un)) = zpath.||μ1(u1) − μ1(un)||

342 S. P. Dwivedi and R. S. Singh

Here xnode, xedge, ynode, yedge, and zpath are positive values, and c(u → ε) and
c(ε → v) are the costs of deleting vertex u and inserting vertex v, respectively,
c(u → v) is the charge of substituting vertex u by vertex v, c(e → ε) and
c(ε → e′) are the costs of deleting edge e and inserting edge e′, respectively,
and c((u1, . . . , un) → (u1, un)) is the charge of performing path contraction from
(u1, . . . , un) to (u1, un).

The computation of homeomorphic GED is outlined in Algorithm 3. Input
to this algorithm is the two input graphs, G1 and G2, and the outcome of this
algorithm is the least-cost homeomorphic GED from G1 to G2. The steps to
perform HomeomorphicGraphEditDistance algorithm are follows. The first for loop
performs the path contraction operations over all the simple paths of graph G1 to
delete all the intermediate nodes of degree 2 except the first and last nodes along the
path. The if loop checks for all the candidate paths that are eligible for the process
of path contraction. Similarly, the second for loop performs the path contraction
operations over all the simple paths of graph G2 to delete all the intermediate nodes
of degree 2 except the first and last nodes along the path. After performing the path
contraction operation, both input graphs G1 and G2 are updated along with their
modified number of vertices and edges. Finally, the ApproximateGraphEditDistance
algorithm is called on the updated G1 and G2 to compute the GED.

Algorithm 3 HomeomorphicGraphEditDistance (G1,G2)

INPUT: Two Graphs G1, G2, where Gi = (Vi, Ei, μi, νi) for i = 1, 2
where V1 = {u1, . . . , un} and V2 = {v1, . . . , vm}
OUTPUT: A min. cost homeomorphic GED between G1 and G2
for each (ui ∈ V1) do

if (there is a path (ui , ui+1, . . . , ui+k) such that
deg(ui+1) = deg(ui+2) = . . . = deg(ui+k−1) = 2) then

(ui , ui+1, . . . , ui+k) → (ui , ui+k)

V1 ← V1 \ {ui+1, . . . , ui+k−1}

end if
end for
for each (vj ∈ V2) do

if (there is a path (vj , vj+1, . . . , vj+k) such that
deg(vj+1) = deg(vj+2) = . . . = deg(vj+k−1) = 2) then

(vj , vj+1, . . . , vj+k) → (vj , vj+k)

V2 ← V2 \ {vj+1, . . . , vj+k−1}

end if
end for
Update G1,G2, n ← n′,m ← m′
ApproximateGraphEditDistance (G1,G2)

Pattern Recognition Using Graph Edit Distance 343

3.2 GED Utilizing Centrality Information

To decrease the computing time of GED, first we remove the vertices from the
graphs having lower centrality scores prior to computing the GED between the
input graphs. r-CentralityGraphEditDistance is an extension to GED to compute
the approximate value of GED by ignoring the r fraction of nodes from the input
graphs using the specific centrality measure.

Definition 7 r-DegreeCentralityNodeContraction is a process of deleting r.|G|
vertices with lowest degree from G, provided these nodes are not cut vertices.

Definition 8 r-BetweennessCentralityNodeContraction is a task of deleting r.|G|
vertices having minimum betweenness value from G, provided these nodes are not
cut vertices.

Definition 9 r-EigenvectorCentralityNodeContraction is a task of deleting r.|G|
vertices having least eigenvector value from G, provided these nodes are not cut
vertices.

Definition 10 r-PageRankCentralityNodeContraction is a task of deleting r.|G|
vertices having minimum PageRank value from G, provided these nodes are not
cut vertices.

The edit cost of r-centrality GED can be defined utilizing an extra cost c(a →
ε) = 0, for r.|G| nodes of the G with the least value of the specified centrality
indicator.

r-GED uses the Euclidean’s distances to assign a fixed cost for inserting,
deleting, and substituting the nodes and edges. Suppose graphs G1 and G2 have
nodes a ∈ V1, b ∈ V2 and links e ∈ E1, f ∈ E2, the modified edit cost function can
be specified as given below:

c(a → ε) = pnode.
c(ε → b) = pnode.
c(a → b) = qnode.||μ1(a) − μ2(b)||.
c(e → ε) = pedge.
c(ε → f) = pedge.
c(e → f) = qedge.||ν1(e) − ν2(f)||.
c(a → ε) = 0, when a is one of the r.|G| vertices with minimum centrality score,

and it is not an articulation point.

pnode, qnode, pedge, qedge are positive constants.
The steps to perform r-CentralityGraphEditDistance (G1,G2) are outlined in

Algorithm 4. The r-CentralityGraphEditDistance algorithm’s inputs are G1 and
G2 and the parameter r . The outcome of this algorithm is minimum cost r-
CentralityGraphEditDistance between G1 and G2. Line 1 of the algorithm calls
the procedure r-CentralityNodeContraction that removes r.|G| vertices of minimum

344 S. P. Dwivedi and R. S. Singh

Algorithm 4 r-CentralityGraphEditDistance (G1,G2)

Require: Two Graphs G1, G2, where |V1| = n and |V2| = m, a constant r
Ensure: A min. cost r-GED between G1 and G2
1: G′

1 ← r-CentralityNodeContraction (G1, �r.n�)
2: G′

2 ← r-CentralityNodeContraction (G2, �r.m�)
3: ApproximateGraphEditDistance (G′

1,G
′
2)

4: procedure r-CentralityNodeContraction(G, �r.|G|�)
5: for (i ← 1 to �r.|G|�) do
6: Choose the node v having least centrality value
7: if (v is not an articulation point) then
8: V ← V \ {v}
9: E ← E \ {(u, v)|(u, v) ∈ E for every u ∈ G}
10: end if
11: end for
12: return G

13: end procedure

centrality value from G1. Similarly, line 2 of the algorithm calls the procedure r-
Centrality node contraction that removes r.|G| nodes of least centrality value from
G2. The procedure r-CentralityNodeContraction is described in lines 4–13. This
procedure uses for loop in lines 5–11 to delete �r.|G|�) vertices from a G with
minimum centrality value of specified centrality criteria. It selects the node u with
minimum centrality value (line 6), verifies that it is not a cut vertex (line 7), after that
the corresponding node is deleted in line 8, and the associated edges are removed
in line 9. The preprocessed graph is returned in line 12. Finally, line 3 executes
ApproximateGraphEditDistance and computes minimum cost edit path that also
satisfies for complete edit path.

4 Results and Discussion

Pattern recognition is among the significant applications of GED. Especially in
structural pattern recognition, where the underlying pattern has structures that
fixed dimensional vectors cannot represent, graphs can be utilized to represent
such structures. When a pattern represents a graph, pattern recognition is usually
known as GM. GED is a crucial technique for GM. In Sect. 3, we discussed
a few important algorithms for computing the GED between two graphs. Since
Algorithm 1 explores the complete search space to find the optimum edit path, it
takes an exponential amount of time to output this GED. Due to its computationally
exponential complexity, this algorithm cannot be used for the graph exceeding
10–15 nodes. Algorithm 2 computes the inexact approximate GED between two
graphs by pruning the search space using some heuristic function for finding the
successive node at every levels of the search tree. Algorithm 3 uses the inexact
GED after performing the path contraction of every simple path of both input
graphs. Algorithm 4 also uses the idea of Algorithm 2 to prune the search space

Pattern Recognition Using Graph Edit Distance 345

Fig. 1 Computation time for letter A datasets

after performing the node contraction on both input graphs using a given centrality
measure.

In this section, r-CentralityGraphEditDistance algorithm’s computation time
and accuracy to perform the GM are observed. This section utilizes letters and
AIDS datasets from IAM graph database [22] to perform the GM. Compu-
tation time is the execution time of the algorithm to perform the GM using
r-CentralityGraphEditDistance for a given centrality measure. Accuracy of the
algorithm is described in terms of classification accuracy on the test set after
performing training of the algorithms using a training set of the given datasets.

The computation time taken by Algorithm 4 in milliseconds to perform the GM
on the letter A datasets using the four centrality measures, degree, betweenness,
eigenvector, and PageRank, is shown in Fig. 1. This figure shows the difference in
time taken by this algorithm using the various centrality measures.

Figure 2 shows the computation time used by Algorithm 4 in milliseconds to
perform GM for the active AIDS datasets utilizing the various centrality criteria. To
prune the search space and to select the successive node in the search tree, we have
used beam search heuristic technique.

Accuracy of Algorithm 4 on letter A datasets of high distortions utilizing the
given centrality measures for four different values of r = 0, 0.1, 0.3, and 0.5
is provided in Fig. 3. This figure demonstrates that the accuracy ratio using the
eigenvector centrality is usually more than other centrality indicators. From this,
we can infer that eigenvector centrality can be more suitable to perform GM on the
letter datasets.

346 S. P. Dwivedi and R. S. Singh

Fig. 2 Computation time for active AIDS datasets

Fig. 3 Accuracy ratio of letter A datasets

Pattern Recognition Using Graph Edit Distance 347

Fig. 4 Accuracy ratio for active AIDS datasets

Classification accuracy of r-CentralityGraphEditDistance to perform GM for the
active AIDS datasets using the four centrality measures for four different values
of r = 0, 0.1, 0.3, and 0.5 is provided in Fig. 4. This figure indicates that the
classification accuracy utilizing betweenness criteria is generally more than other
centrality indicators.

5 Conclusion

This chapter discussed the GED-based techniques for structural pattern recognition.
GED is a crucial technique to measure the similarity between two graphs. We
presented the important techniques and algorithms to compute the GED. We also
described the various extensions and advancements to compute the GED that can be
used for the trade-off between efficiency and accuracy consideration.

References

1. C.C. Aggarwal, H. Wang, Managing and mining graph data, in Advances in Database Systems
(Springer, Berlin, 2010)

2. H. Bunke, Error-tolerant graph matching: A formal framework and algorithms, in Advances in
Pattern Recognition, International Workshop on Structural, Syntactic and Statistical Pattern
Recognition (S+SSPR). Lecture Notes in Computer Science (Springer, Berlin, 1998)

348 S. P. Dwivedi and R. S. Singh

3. H. Bunke, G. Allerman, Inexact graph matching for structural pattern recognition. Pattern
Recog. Lett. 1, 245–253 (1983)

4. D. Conte, P. Foggia,C. Sansone, M. Vento, Thirty years of graph matching in pattern
recognition. Int. J. Pattern Recog. Artif. Intell. 18(3), 265–298 (2004)

5. S.P. Dwivedi, Some algorithms on exact, approximate and error-tolerant graph matching. PhD
Thesis, Indian Institute of Technology (BHU), Varanasi, 2019. arXiv:2012.15279

6. S.P. Dwivedi, Inexact graph matching using centrality measures (2021). arXiv:2201.04563
7. S.P. Dwivedi, Approximate bipartite graph matching by modifying cost matrix. Lecture Notes

Electr. Eng. 837, 415–422 (2022)
8. S.P. Dwivedi, R.S. Singh, Error-tolerant graph matching using homeomorphism, in 2017 Inter-

national Conference on Advances in Computing, Communications and Informatics (ICACCI)
(2017), pp. 1762–1766

9. S.P. Dwivedi, R.S. Singh, Error-tolerant graph matching using node contraction. Pattern Recog.
Lett. 116, 58–64 (2018)

10. S.P. Dwivedi, R.S. Singh, Error-tolerant geometric graph similarity, in Joint IAPR International
Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic
Pattern Recognition (SSPR). Lecture Notes in Computer Science, vol. 11004 (Springer, Berlin,
2018), pp. 337–344

11. S.P. Dwivedi, R.S. Singh, Error-tolerant geometric graph similarity and matching. Pattern
Recog. Lett. 125, 625–631 (2019)

12. S.P. Dwivedi, R.S. Singh, Error-tolerant approximate graph matching utilizing node centrality
information. Pattern Recog. Lett. 133, 313–319 (2020)

13. M. Ferrer, F. Serratosa, K. Riesen, Improving bipartite graph matching by assessing the
assignment confidence. Pattern Recog. Lett. 65, 29–36 (2015)

14. P. Foggia, G. Percannella, M. Vento, Graph matching and learning in pattern recognition in the
last 10 years. Int. J. Pattern Recog. Artif. Intell. 28, 1450001.1–1450001.40 (2014)

15. K.S. Fu, B.K. Bhargava, Tree systems for syntactic pattern recognition. IEEE Trans. Comput.
22, 1087–1099 (1973)

16. P.E. Hart, N.J. Nilson, B. Raphael, A formal basis for heuristic determination of minimum cost
paths. IEEE Trans. Syst. Sci. Cyber. 4, 100–107 (1968)

17. M. Neuhaus, H. Bunke, An error-tolerant approximate matching algorithm for attributed planar
graphs and its application to fingerprint classification, in International Workshop on Structural,
Syntactic and Statistical Pattern Recognition (SSPR and SPR). Lecture Notes in Computer
Science, vol. 3138 (Springer, Berlin, 2004), pp. 180–189

18. M. Neuhaus, H. Bunke, Bridging the Gap Between Graph Edit Distance and Kernel Machines
(World Scientific, Singapore, 2007)

19. M. Neuhaus, K. Riesen, H. Bunke, Fast suboptimal algorithms for the computation of graph
edit distance, in Proceedings of the 11th International Workshop on Structural and Syntactic
Pattern Recognition. Lecture Notes in Computer Science, vol. 4109 (Springer, Berlin, 2006),
pp. 163–172

20. M.E.J. Newman, Networks–An Introduction (Oxford University Press, Oxford, 2010)
21. K. Riesen, Structural Pattern Recognition with Graph Edit Distance, Approximation Algo-

rithms and Applications (Springer, Berlin, 2015)
22. K. Riesen, H. Bunke, IAM graph database repository for graph based pattern recognition and

machine learning, in International Workshop on Structural, Syntactic and Statistical Pattern
Recognition (S+SSPR). Lecture Notes in Computer Science, vol. 5342 (Springer, Berlin, 2008),
pp. 287–297

23. K. Riesen, H. Bunke, Approximate graph edit distance computation by means of bipartite graph
matching. Image Vision Comput. 27(4), 950–959 (2009)

24. K. Riesen, H. Bunke, Improving bipartite graph edit distance approximation using various
search strategies. Pattern Recog. 48(4), 1349–1363 (2015)

25. K. Riesen, A. Fischer, H. Bunke, Estimating graph edit distance using lower and upper bounds
of bipartite approximations. Int. J. Pattern Recog. Artif. Intell. 29(2), 1550011 (2015)

Pattern Recognition Using Graph Edit Distance 349

26. A. Robles-Kelly, E. Hancock, Graph edit distance from spectral seriation. IEEE Trans. Pattern
Analy. Mach. Intell. 27(3), 365–378 (2005)

27. A. Sanfeliu, K.S. Fu, A distance measure between attributed relational graphs for pattern
recognition. IEEE Trans. Syst. Man Cyber. 13(3), 353–363 (1983)

28. A. Sole-Ribalta, F. Serratosa, A. Sanfeliu, On the graph edit distance cost: properties and
applications. Int. J. Pattern Recog. Artif. Intell. 26(5), 1260004.1–1260004.21 (2012)

29. W.H. Tsai, K.S. Fu, Error-correcting isomorphisms of attributed relational graphs for pattern
analysis. IEEE Trans. Syst. Man Cyber. 9, 757–768 (1979)

30. Z. Zeng, A.K.H. Tung, J. Wang, J. Feng, L. Zhou, Comparing stars: on approximating graph
edit distance. PVLDB 2, 25–36 (2009)

	Pattern Recognition Using Graph Edit Distance
	1 Introduction
	2 Basic Concepts and Definitions
	3 Algorithms
	3.1 Homeomorphic Graph Edit Distance
	3.2 GED Utilizing Centrality Information

	4 Results and Discussion
	5 Conclusion
	References

