
A Novel Algorithm for Reconfigurable
Architecture for Software-Defined Radio
Receiver on Baseband Processor for
Demodulation

H. D. Nataraj Urs, R. Venkata Siva Reddy, Raveendra Gudodagi,
K. M. Sudharshan, and B. N. Aravind

1 Introduction

The wireless communication industry is facing new challenges due to constant evo-
lution of new standards (2.5G, 3G, 4G and 5G), existence of incompatible wireless
network technologies in different countries inhibiting deployment of global roaming
facilities and problems in rolling out new services/features due to widespread
presence of legacy subscriber handsets. Software-defined radio (SDR) technology
promises to solve these problems by implementing the radio functionality on
a generic hardware platform. Further, multiple modules, implementing different
standards, can be present in the radio system, and the system can take up different
personalities depending on the module being used [2] (Fig. 1).

2 Background

2.1 Baseband Demodulation

In the current implementation, algorithms for demodulation are implemented on
GPP (general purpose processor) hardware [3], and the analog front end of
SDR is already made to be flexible and reconfigurable [4]. This work focuses

H. D. Nataraj Urs (�) · R. Venkata Siva Reddy · R. Gudodagi · K. M. Sudharshan
School of Electronics & Communication Engineering, REVA University, Bengaluru, India
e-mail: natarajurs.hd@reva.edu.in; venkatasivareddy@reva.edu.in; raveendra.g@reva.edu.in;
sudharshankm@reva.edu.in

B. N. Aravind
Department of Electronics and Communication Engineering, Rajeev Institute of Technology,
Hassan, India

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Awasthi et al. (eds.), Sustainable Computing,
https://doi.org/10.1007/978-3-031-13577-4_11

187

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13577-4_11&domain=pdf

 885
51863 a 885 51863 a
 
mailto:natarajurs.hd@reva.edu.in


11268 51863 a 11268 51863 a
 
mailto:venkatasivareddy@reva.edu.in

 23288 51863 a 23288 51863 a
 
mailto:raveendra.g@reva.edu.in

 -2016 52970 a -2016 52970
a
 
mailto:sudharshankm@reva.edu.in

 -2016
61494 a -2016 61494 a
 
https://doi.org/10.1007/978-3-031-13577-4_11


188 H. D. Nataraj Urs et al.

Fig. 1 SDR architecture

Fig. 2 Functional architecture of the receiver

on the hardware implementation of digital baseband part of the receiver (PHY
(physical layer) only). Input data is coming in the BB receiver after the analog
front end (including ADC (analog-to-digital converter)) at the rate of 80 MSPS
(megasamples-per-second). The digital baseband part consists of a sample rate
reduction block followed by digital demodulator block. The output from sample
rate reduction block is fed to the digital demodulator part which demodulates the
data stream digitally.

2.2 OFDM

After frequency offset correction, the first step is the inverse OFDM as shown in
Fig. 2. The inverse OFDM is same as fast Fourier transform (FFT) operation. An
OFDM symbol has a duration of 80 complex samples. Only 64 samples of them are
needed for the FFT operation. The remaining 16 samples are used as cyclic prefix to
reduce inter-symbol interference (ISI) and synchronization. So the first step in the
receiver is to pass the data through 64-point FFT block. After examining various
FFT algorithms [1, 5], we chose to use radix-2 FFT in our implementation. Radix-
2 FFT is performed using radix-2 butterflies and requires 64 × log2(64) complex
multiplications.



A Novel Algorithm for Reconfigurable Architecture for Software-Defined. . . 189

2.3 Channel Equalization

After FFT, the channel equalizer block has to compensate the channel for the
carriers. The estimation of the channel is done by comparing the known preamble
and the received subcarrier values. This equalization should be done for 52
subcarriers. So it will require 52 complex multiplications per OFDM symbol [6].

2.4 Phase Offset Correction

At the front end of the receiver, frequency offset correction is implemented by
calculating only the values of the frequency offset for the first symbol, and these
values are subsequently reused for other symbols. This saves (computational-
intensive) instructions (cos and sin) but also introduces a phase offset. This phase
offset can be corrected by using the pilot carriers in the OFDM symbol. This requires
48 complex multiplications.

2.5 QAM (Quadrature Amplitude Modulation) Demapping

The final step in demodulation is demapping. There are four constellations available:
BPSK (binary phase-shift keying), QPSK (quadrature phase-shift keying), 16-QAM
and 64-QAM. Each of these constellations has a different number of bits per
complex symbol. Demapping can be done using lookup table. In the lookup table,
all possible subcarrier values for a certain mapping scheme are defined [7]. For
BPSK, two subcarrier values are stored in the lookup table; for QPSK, 16-QAM and
64-QAM, there are 4, 16 and 64 subcarrier values stored, respectively. The largest
constellation used is 64-QAM (Table 1).

A 64-QAM symbol has 23 = 8 possible values for both the real and imaginary
parts. Demapping can be implemented by generating an index for a table. So demap-
ping requires two comparisons (border checking), one addition, one multiplication
and one lookup table.

Table 1 Computational requirements for receiver

Function Data rate Number of multiplications Number of additions

64-point FFT 16 153.6e6 76.8e6
Channel equalization 13 20.8e6 10.4e5
Phase shift correction 12 19.2e6 10.4e6
64-QAM demapping 12 9.6e6 9.6e6



190 H. D. Nataraj Urs et al.

3 Algorithm Analysis

The algorithm domain of the SDR includes baseband demodulation algorithms. In
this work, we are dealing with the hardware implementation of the channel selection
block of receiver and OFDM block. (The halfband filter block and matched filter
block are combined together into one channel selection block in the receiver.)
For this purpose, our first step is to perform the dataflow analysis in various
computations of these algorithms.

3.1 Dataflow for Channel Selection/FFT

The first block in the baseband demodulation receiver is a 64-point FFT block. This
block is used for OFDM demodulation. The data from the sample rate reduction
block is coming at 20 MSPS. This data is arranged in blocks of 80 samples each.
Due to OFDM scheme, last 16 samples are same as the first 16 samples in each
block. So we need to take 64 samples out of these 80 samples.

The first block in the baseband demodulation receiver is a channel selector/low-
pass filter (LPF). This is required to select the desired 1 MHz bandwidth (BW)
channel. As we analysed, the complexity and data computation unit of FFT block
are similar to LPF section [8]. So in our implementation, we propose to combine
FFT with LPF. But direct implementation of LPF is computationally intensive. The
input data is first passed through two linear phase halfband filters. Each halfband
filter decimates data by factor 2. These halfband filters help in reducing the order of
matched filter. Also matched filter can be designed to be linear phase. In this way,
the number of computations can be reduced further. A simple schematic for channel
selector section is shown in Fig. 3.

3.2 Signal Flow Graph for FIR/FFT

The signal flow graphs and basic building blocks corresponding to halfband filter,
matched filter and FFT (butterfly) are described below.

Fig. 3 Channel selector section of Bluetooth



A Novel Algorithm for Reconfigurable Architecture for Software-Defined. . . 191

Fig. 4 Direct form FIR filter

Halfband Filter
Input data stream is filtered through halfband filters before doing low-pass filtering.
There are two halfband filters. Each halfband filter is of seventh order. To simplify
the computations, main points to remember about this building block are linear
phase, halfband and decimation. By using linear phase property, we can reduce the
number of multiplications by a factor 2. Halfband property means that the number
of multiplications (corresponding to the amount of zeros in filter coefficient) can be
reduced further. Also, using a polyphase representation, decimation can be used to
reduce the speed of computation. A basic seventh-order FIR filter can be represented
as in equation:

H(z) = a0 + a1z
−1 + a2z

−2 + a3z
−3 + a4z

−4 + a5z
−5 + a6z

−6 (1)

Its critical path contains one multiplier and six adders. A direct form implemen-
tation of such filter is shown in Fig. 4.

The transposed form of above filter is shown in Fig. 4. Its critical path contains
one multiplier and one adder only.

The halfband property of the filter implies that a1 and a5 have zero value and can
be omitted to reduce the number of multiplications required. Also, the linear phase
property implies that a2 = a4 and a0 = a6. So the multiplications in first half of the
filter are identical to the multiplications in other half. Thus, Eq. 1 can be rewritten
as follows:

H(z) = a0 + a2 z−2 + a3 z−3 + a2 z−4 + a0 z−6 (2)

By using polyphase representation, decimation by 2 can be used to reduce the
speed of computations (if needed). Thus, Eq. 2 can be written in polyphase form as
follows:

H(z) =
(
a0 + a2 z−2 + a2 z−4 + a0 z−6

)
+ Z−1

(
a3 z−2

)
(3)

The simplified structure, which is computationally most efficient in terms of
speed of operation and in terms of the amount of data path computations, is shown
in Fig. 5.



192 H. D. Nataraj Urs et al.

Fig. 5 Transposed form FIR filter

Fig. 6 Filter structure simplification

In this way, the number of multiplications can be reduced by a factor of 3/7
from direct form halfband filter. Also, each computation unit can work at half of the
incoming data rates.

Moreover, it is important to notice that the filter structure above has a basic
computation unit (shown in Fig. 6). The repetitive use of this unit realizes the filter.
The basic operation can be described as multiply and add (Fig. 7).

FIR (Matched Filter)
After halfband filtering, the input data (decimated by 4) is fed to matched filter
block. The output of this block is the data corresponding to desired channel. The
matched filter used here is of 17th order. The transposed form representation is
shown in Fig. 8. The basic computation unit is the same as the one for halfband
filters. Polyphase decomposition for efficient decimation and halfband properties
are not applicable for this stage. So filter structure is corresponding to transposed
form structure with linear phase. This means that the number of multiplications can
be reduced by 2.

FFT
An OFDM demodulator consists of a FFT block. An FFT represents set of
algorithms to compute discrete Fourier transform (DFT) of a signal efficiently. An



A Novel Algorithm for Reconfigurable Architecture for Software-Defined. . . 193

Fig. 7 Filter calculation unit

Fig. 8 Transposed form LPF for matched filtering

N-point DFT corresponds to the computation of N samples of the Fourier transform
at N equally spaced frequencies, ωk = 2πk/N, that is, at N-points on the unit circle
in the z-plane. The DFT of a finite-length sequence of length N is

X [k] =
N−1∑
n=0

x [n]WN
kn · · · ∀ k ∈ {0, 1, . . . N − 1} (4)

where WN
kn = e−j2π /N . The idea behind almost all FFT algorithms is based upon

divide and conquer strategy and establishes the solution of a problem by working
with a group of subproblems of the same type and smaller size.

An objective choice for the best DFT algorithm cannot be made without knowing
the constraints imposed by the environment in which it has to operate. The main cri-
teria for choosing the most suitable algorithm are the amount of required arithmetic
operations (costs) and regularity of structure. Several other criteria (e.g. latency,
throughput, scalability, control) also play a major role in choosing a particular FFT
algorithm. We have chosen radix-2 DIF FFT implementation for our system because
it has advantages in terms of regularity of hardware, ease of computation and
number of processing elements. Also, the basic butterfly corresponding to radix-2
can be combined easily with filter processing element (of our implementation). This
facilitates the similar data path computations in two receivers and simple control
structure for receiver.



194 H. D. Nataraj Urs et al.

4 Architecture Design Approach

In this work, we propose a solution which is optimized for our specific algorithmic
domain. Our algorithm domain is limited to the DSP (digital signal processing)
algorithms for each stage of SDR receiver. In the proposed architecture, the basic
approach is to limit the flexibility of design to the algorithms of interest (OFDM
and channel selection) [9]. This limited flexibility requirement will result in only
moderate degradation of the ASIC performance. This is in contrast to various
designs discussed in previous chapter, where the approach is to incorporate the
sufficient flexibility to support the application domain. So our approach is to design
a flexible ASIC-like system for specific algorithms only. Our design approach has
four main steps as follows:

(a) In the first step, we are identifying the dominant kernels of our algorithm
domain. This step is similar to any domain-specific design mentioned previ-
ously and requires careful reviewing of the tailored application’s area require-
ments.

(b) In the second step, we have designed the optimal control hardware for our
algorithm domain. This is in contrary to various regular available hardware
design approaches that put their attention towards the dominant data processing
operations only.

(c) In the third step, we have identified the communication patterns in our
algorithm domain as recommended. This has helped us in designing the optimal
communication network in the system. Only those parts of communication are
programmable which are really needed. As far as possible, global buses are
minimized to reduce capacitance and crosstalk effects. So point-to-point and
local communication is preferred in our proposed architecture.

(d) In the fourth step, we have identified the memory requirements for our systems.
In this step, we have identified things like how much RAM (random-access
memory) and ROM (read-only memory) are needed, what are the memory
bandwidth requirements, is it better to reuse the memory by using in-place
computations, etc.

The proposed architecture comprises of nine homogenous data processing tiles,
two 128 × 16-bit memory (RAM) tiles, one 64 × 16-bit ROM, a configuration
unit to configure the data and communication network and a control section in the
form of a state machine to execute algorithm steps sequentially. The control section
also controls the data transfer from data path elements to memories through the
communication network. It also generates the control signals for the configuration
unit. The architecture view of the system is shown in Fig. 9.

The proposed design is based on tiled architecture. A tiled architecture in which
various tiles are connected by an on-chip network has a very modular design [10].
The design of a single processing tile is relatively simple and allows extra effort for
power optimizations at physical level. To increase or decrease processing power of



A Novel Algorithm for Reconfigurable Architecture for Software-Defined. . . 195

Fig. 9 Tiled architecture

our system, we can easily add or remove tiles. A simplified view of our tiled network
is shown in Fig. 9.

4.1 Reconfigurability

The proposed design is reconfigurable within one clock cycle and supports the
chosen subset of the SDR algorithms. So the algorithm domain of our design
includes FIR filter, halfband filters and radix-2 FFT. These algorithms are also
the most common algorithms used to benchmark a DSP system [9]. The dynamic
reconfigurability allows time-sharing of hardware resources by pipelining the
algorithms. This minimizes the total hardware resources required to implement
the complete system. Also, almost all of the WLAN (wireless local area network)
systems use either phase modulation or OFDM-based modulation [11]. So the
suitability of our system for phase-modulated and OFDM-based receivers implies
that our design can be used in number of WLAN systems.

4.2 Data Path

In the proposed design, data path consists of nine homogeneous 16-bit data
processing tiles called data processing units (DPUs). The detailed view of our data
path is shown in Fig. 10. A single DPU is depicted in Fig. 10. The design of a DPU
can be divided into four parts: the processing part, the storage part, the configuration
part and the communication interface. These parts are shown as arithmetic unit,
registers, configuration part and various input/output ports, respectively, in Fig. 10.



196 H. D. Nataraj Urs et al.

Fig. 10 A data processing unit (DPU)

4.3 The Communication Interface

The communication interface of each DPU supports the use of heterogenous
processing occupying one or more tiles. This interface manages the communication
through each tile and synchronizes the global communication. Each DPU has three
sets of 16-bit inputs:

• Input 1 set is used to read data either from left or from right neighbour into the
registers. The ports corresponding to these inputs are named as ‘LHS’ and ‘RHS’.

• Input 2 set (bus 2) is used to read data from global bus of the system. There are
two global buses in our system. Each global bus is providing the input to one row
of DPUs.

• Input 3 set is connected to two point-to-point buses of the system. The ports
corresponding to these inputs are named as ‘FFT bus’ and ‘global bus’.

Each DPU has the following two 16-bit outputs:

• First output (‘sideout’) is used to communicate with the adjacent left and right
side neighbours.



A Novel Algorithm for Reconfigurable Architecture for Software-Defined. . . 197

Fig. 11 Arithmetic unit (AU) of DPU

• Second output (‘out’) is used to communicate data over the system communica-
tion buses. To avoid bus arbitration output, ‘out’ is a tri-state output.

4.4 The Processing Part

The data processing capabilities of DPU are attributed to a 16-bit arithmetic unit
(AU). A functional representation of the AU is shown in Fig. 11. An AU is
purely combinational and is capable of doing the basic 16-bit arithmetic operations,
namely, add, subtract, multiply, multiply and add, and multiply and subtract. The
input to AU is from internal registers, and outputs are provided on the output ports.



198 H. D. Nataraj Urs et al.

4.5 The Storage Part

Each DPU comprises a set of 11 local data registers of 16 bits each. These registers
can be used to store intermediate data variables as required in FIR data structure.
This way of having local registers is far more efficient than one centralized set of
registers [15]. These registers are used to read data from input ports and to provide
data to ALU. In this way, inputs are always registered, thus minimizing the excessive
glitches. Another reason for having registered inputs is to allow pipelining between
various data path units. This not only allows the reduction of critical path delay but
also allows a straightforward implementation of transposed form FIRs.

4.6 The Configuration Part

Each DPU has a local configuration section called ‘configuration part’, which pro-
vides the configuration signals to various entities within the DPU. This configuration
section is part of the control hierarchy of the system to reduce the control overhead
significantly [12]. The input to this section comes from the main configuration unit
of the architecture.

4.7 Control Section

In the proposed architecture, the control section is implemented as a state machine
corresponding to each algorithm. This is motivated by the fact that dataflow is
determined at the design time itself. In the normal operation, the control system
loops through the set of algorithms steps called a schedule. To compute an
algorithm, first the control section is activated with the corresponding wake-up
call. The control section responds by generating the series of control signals to
memory and to the configuration part, thus controlling the data operations in
the system. In this way, we avoid the common bottleneck (correspondingly to
fetch and decode an instruction before execution) found in normal processor-like
architecture. This scheme has obvious disadvantage that each new algorithm needs
to be implemented separately. So if algorithm is subject to change, one should
incorporate the programming facility in the control.

4.8 Configuration Unit

In the proposed architecture, reconfigurability is achieved by reconfiguration of the
data path and reconfiguration of the communication network.



A Novel Algorithm for Reconfigurable Architecture for Software-Defined. . . 199

Fig. 12 Configuration unit
block diagram

These configuration signals are generated in the configuration unit (CU). The
input of the CU comes from control section in the form of control signals. The CU
decodes these control signals and provides input to local configuration sections of
various DPUs. The configuration of the data path and communication network is
achieved within one clock cycle. This allows dynamic and static reconfigurations
in the proposed architecture. To compute an algorithm, the first step is to activate
the centralized control section. This control section then activates the CU on a per-
clock-cycle basis. The CU provides the input to local configuration of each DPU.
Each local configuration part responds by configuring the corresponding subsection
of data path. This way, distributed control is achieved in the proposed architecture.

This is shown in Fig. 12. This facilitates high operating speeds and time-
sharing of data and communication network. The low-overhead and dynamic
reconfiguration allows time multiplexing of the processing part.

5 Algorithm Mapping

5.1 Mapping of Matched FIR Filter

The input data after halfband filtering and decimation is processed into 17th-order
matched FIR filter. This means that we need 17 basic computations equivalent to a
MAC operation (shown in Fig. 13). For each sample, our implementation can range



200 H. D. Nataraj Urs et al.

i=1 to 8
Globalbus
reg1

Globalbus
reg1

coef1 coef1
L L
H HS R S R

E E
G G
4 4

DPU- (i) DPU- (i+1)

Fig. 13 First clock cycle in FIR mapping

from using 1 DPU, that is, 17 clock cycles for 1 computation, to 17 DPUs, that is,
1 clock cycle computation. We propose to use an intermediate solution which uses
two clock cycles for one computation of real or imaginary data. Data processing
of real and imaginary parts is done in alternate cycles. This means that there will
be four clock cycles of computation for each data input. For this solution, we need
nine DPUs. This decision is the main determining factor for choosing nine DPUs
in the proposed architecture. Scheduling corresponding to real part is discussed in
next few lines. Imaginary part will be calculated in the same way:

• Load data sample from memory into the global bus connecting DPU1–DPU4 and
into global bus connecting DPU5–DPU9.

• Each AU is configured for multiply and add.
• Read data from global bus input into a data register.
• Read intermediate data value from LHS input into a data register.
• Configure multiplier inputs of the AU: input 1 is from stored data input

corresponding to global bus input and input 2 is from ‘coef1’ value stored in
another register within the DPU.

• Configure adder inputs of the AU: input 1 is from multiplier output and input 2
is from intermediate value corresponding to LHS input stored in a data register.

• Put adder output into ‘sideout’ output (data is flowing from left to right).
• Tri-state the main output of each DPU.

Dataflow in this clock period is shown in Fig. 13.
Similar to the halfband filtering step, in the second clock cycle, only the

following steps are different:

• Read intermediate data value from RHS input into a data register. In all
operations in the first clock cycle, LHS is replaced by RHS.



A Novel Algorithm for Reconfigurable Architecture for Software-Defined. . . 201

• In DPU1, put adder output onto the main output. This is the filtered output from
FIR filter. Store this output into memory for the next stage.

Dataflow in this clock period is shown in Fig. 13. This implementation allows
us to use linear phase property, and hence, a number of multipliers in hardware
are reduced by half. Also, the speed of multiplication and addition in the AU is
corresponding to the critical path delay of the system.

5.2 Mapping of FFT

The heart of the FFT is the butterfly computation. As already discussed, we use
radix-2 butterfly for regularity and ease of computation. This means that we will
have 32 butterflies and 6 stages of computation. The basic butterfly was shown in
Fig. 14. From the figure, it is clear that the real and the imaginary parts of a butterfly
have a similar structure. For hardware mapping, we need two ROMs for storing real
and imaginary parts of twiddle factors (= e−j2πk/N). There are two memory (RAM)
units required for storing real and imaginary parts of data of one stage. In the next
few lines, we will discuss the mapping corresponding to real part of butterfly. This
mapping needs four DPUs each for real and imaginary part of butterfly [12]. So we
will need to use DPU1–DPU8. This means that throughput of our design will be one
butterfly per clock cycle. Therefore, we will need 32 clocks to compute one stage of
FFT. In total, we will need 32 × 6 = 192 clocks of computations. Configuration of
each DPU is described below and is also shown in Fig. 14:

• Configure DPU1 for addition; read data from FFTbus input and bus2 input; put
the AU output into the Are memory.

• Configure DPU2 for subtraction; read data from FFTbus input and bus2 input;
and put the AU output onto the FFTbus input of DPU5 and DPU7.

• Configure DPU3 for addition; read data from FFTbus input and bus2 input. Put
the AU output into the Aim memory.

• Configure DPU4 for subtraction; read data from FFTbus input and bus2 input;
and put the AU output onto the FFTbus input of DPU6 and DPU8.

• Configure DPU5 for multiplication; read data from FFTbus input and bus2 input;
and put the AU output onto the sideout.

• Configure DPU6 for multiply and subtract; read data from FFTbus input and
bus2 input into multiplier; and put the multiplier output and LHS input into the
subtractor. Put the AU output into the Bre memory.

• Configure DPU7 for multiplication; read data from FFTbus input and bus2 input;
put the AU output onto the sideout.

• Configure DPU8 for multiply and add; read data from FFTbus input and bus2
input into multiplier; and put the multiplier output and LHS input into the adder.
Put the AU output into the Bim memory.

• Configure DPU9 for sleep mode.



202 H. D. Nataraj Urs et al.

Fig. 14 One butterfly mapping

This implementation is slightly different from basic butterfly computation. This
is because we are registering the data output of DPU2. This will cause one clock
latency.

6 Synthesis and Evaluation

This section elaborates the synthesis results and evaluates the design after hardware
realization. The control section discusses the minimum speed requirements that
the design must fulfil to meet the SDR receiver requirements [13]. The synthesis
results for the proposed design are presented, and it summarizes the performance of
Montium TP, when the chosen SDR algorithms are mapped onto it. The performance
of the proposed system is compared with the performance of the Montium TP
system for the chosen SDR algorithms.

6.1 Synthesis Results for the SDR Receiver

The results of synthesis are shown in Table 2. These results indicate that the
proposed system approximately requires 0.6 mm2 of silicon area and has a critical
path length of 5.3 ns. Thus, the maximum operating frequency of the system is
188 MHz, which is well above the minimum operating frequency estimated in the
previous section. This gives us enough room to play with the latency requirements
of the overall system.



A Novel Algorithm for Reconfigurable Architecture for Software-Defined. . . 203

Table 2 Synthesis results for
SDR receiver

Component Area [µm2] Critical path [ns]

DPU (x9) 510,000 5.3
Control 26,000 3.8
CU 1300 –
Wiring 62,700 –
Resultant 600,000 5.3

The results of synthesis are used as an indicator to evaluate the performance of
our system. It is important to note that we have not included the area required due
to various memories (RAM, ROM, buffer) in the system [7, 14]. In the proposed
design, we need two RAMs of 128 × 16 size each and one ROM of 64 × 16 size.
From the above results, it is clear that the majority of area is consumed by the data
path of the system. The control part consumes less than 5% of the total area.

6.2 Comparison of Proposed Design with Montium TP

It is clear from the previous section that it will be very difficult for a single Montium
TP to satisfy the real-time requirement of the parts of HiperLAN2 receiver we
chose to implement. In the case of Bluetooth receiver, even if we use the Montium
TP with maximum operating frequency, still we will need two TPs to realize the
various filter stages [15]. It is very difficult to exploit the linear phase property of
the filters because FIR matched filter requires four clock cycles. Also, the more
general bus network in Montium TP implies more energy wastage in charging and
discharging of redundant capacitances. The configuration time of a Montium TP
varies depending on the algorithm, for example, a 64-point FFT needs 473 clock
cycles and an FIR filter of 20th order needs 270 clock cycles.

The Montium TP occupies 2 mm2 area in CMOS12 process from Philips. The
maximum clock frequency for Montium TP is according to the synthesis tool, about
40 MHz. It is estimated that the Montium TP ASIC realization can implement an
FIR filter at about 140 MHz and an FFT at about 100 MHz. The CMOS12 process
has a gate density of 200 kgate/mm2. So if we normalize our synthesis results to this
process, our implementation will need 0.24 mm2 area (approximately eight times
smaller than one Montium TP). But it is important to notice that in the Montium
TP, approximately 0.5 mm2 area is occupied by RAM memory. In our system, we
need a RAM of 256 × 16 size and a ROM of 64 × 16 size, which will occupy an
additional area of approximately 30,000 µm2 in our system.

On the other hand, the Montium TP has much more flexibility and is suitable
to implement a number of DSP algorithms [10]. In the design space, our system
is closer to the ASIC implementation than the Montium TP (which is a domain-
specific reconfigurable accelerator for the chameleon SoC).



204 H. D. Nataraj Urs et al.

Table 3 Comparison of different architectures for butterfly computation

Architecture Architecture Area Speed

Type name [mm2] [MHz]

ASIP FASRA (ASIC) 0.63 120
DSRA Avispa 6.5 150
DSRA Montium TP 2 100
GPP ARM920T 4.7 12
Reconfigurable ASIC Our design 0.24 188

(excl. RAM and ROM)

6.3 Comparison of Different Implementations

Table 3 depicts a quick comparison (for butterfly computation) of different designs
mentioned above. We have chosen to compare FFT (butterfly), because we know
that in FFT, we have about 50% of redundant hardware in our implementation.

It is important to note that all these designs, except ours, have lot of data
memories to store data operands and intermediate and final results. For example, in
the FASRA-ASIC, approximately 0.5 mm2 area is occupied by the RAM memory.
For our system, we need an additional area corresponding to RAM (256 × 16) and
ROM (64 × 16). This area will approximately be equal to 0.03 mm2 in CMOS12
Philips process.

7 Conclusions

This section concludes the work and summarizes the achievements and lessons
learnt through this project:

• In our SDR receiver, the Bluetooth channel selection algorithm requires more
data path resources than the HiperLAN2 OFDM demodulation. On the other
hand, HiperLAN2 demodulation needs more memory and memory bandwidth.

• By incorporating limited flexibility in our system, we are able to reduce the total
hardware required to implement the SDR receiver compared to the implementa-
tion in which each receiver is implemented individually. This is shown in Table
3. It can be concluded that an area reduction of about 25–30% can be made in
the combined implementation compared to the individual implementations of the
two receivers.

• Dynamic reconfiguration in our system allows time-sharing of hardware
resources by pipelining algorithms, thus increasing the performance of overall
system at the cost of some latency.

• For state-of-the-art designs, an ASIC implementation with minimal flexibility
can easily outperform the flexible implementation. The results of our ASIC-



A Novel Algorithm for Reconfigurable Architecture for Software-Defined. . . 205

Table 4 Area requirements of SDR receiver

Component Sum of separate implementations Combined implementation

Computation area [µm2] 840,000 600,000
RAM 352x16 256 × 16
ROM 64x16 64 × 16

like implementation were shown to be superior to the implementation on more
flexible systems.

• A GPP (ARM920T)-based implementation requires 20 times more area and
computes 15 time slower than our ASIC-like implementation. A domain-specific
processor like Montium TP requires 15 times more area than our implementation
to meet the SDR computational requirements.

• On the other hand, flexible solutions like the Montium TP and GPP are superior
to our design in terms of suitability for different algorithms and ease of
implementation.

• So a design decision based on the performance requirements and implementation
costs needs to be taken before deciding on the platform and methods for the final
implementation of a DSP system.

• It can be concluded that the performance of ASIC > ASIP, ASIP > DSRA and
DSRA > GPP, while the flexibility of ASIC < ASIP, ASIP < DSR and DSRA <
GPP.

• By introducing pipelining in the data path, we are able to perform computations
at higher speed than a non-pipelined data path (Table 4).

The 16-bit data path performs satisfactorily for the chosen SDR algorithms.
A high-level description language, like SystemC, can be used to design VLSI

(very large-scale integration) systems. The benefits are in timely and easily realiza-
tion of a design. The main drawback is that efficiency of synthesized code is largely
dependent on the tools.

Almost all of the systems use either phase modulation or OFDM modulation [5].
So the suitability of our system for phase-modulated and OFDM receivers implies
that our design can be used in a number of systems.

8 Future Work

In our FFT implementation, we have not performed the bit reversing operation on
the output. This should be taken into consideration in the next stage of the receiver
implementation while reading the data from the memory. Also, the data path may
be changed to heterogenous DPUs to reduce the area. The control section can
be optimized further. The butterfly computations in the last stage of FFT can be
simplified to simple addition-subtraction operations. The overflow and underflow
conditions need to be incorporated in the complex multiplication and addition



206 H. D. Nataraj Urs et al.

functions. Also, extensive power consumption analysis in the system still needs to
be done.

The computational complexity of receiver can be simplified by reducing the
order of filters or increasing the decimation. Currently, the decimation factor is
4, which gives data rate of 5 MSPS for 1 MHz Bluetooth channel. If we change
the decimation factor to 6, the data rate will be 3.33 MSPS for 1 MHz channel (a
theoretically sufficient number). Also, the sample rate reduction block after ADC
block may also be modified.

In the broader context, the design was made as a subsystem of SDR transceiver
system. Also, the other blocks of the SDR receiver need to be implemented in
hardware. The SDR transmitter needs to be designed and implemented as well.

References

1. A. Kapoor, A Reconfigurable Architecture of Software-Defined-Radio for Wireless Local Area
Networks, 2005

2. A. Kumar Kaushik, A Comparative Study of Software Defined Radio and Cognitive Radio
Network Technology Security, pp. 104–110

3. M.B. Blanton, An FPGA software-defined ultra wideband transceiver. Master Sci. (2006)
4. X. Zhang, J. Ansari, M. Arya, P. Mähönen, Exploring parallelization for medium access

schemes on many-core software defined radio architecture. Proc. Second Work. Softw. Radio
Implement. Forum - SRIF 13, 37 (2013)

5. F. Buchali, F. Steiner, G. Böcherer, L. Schmalen, P. Schulte, W. Idler, Rate adaptation and reach
increase by probabilistically shaped 64-QAM: An experimental demonstration. J. Lightwave
Technol. 34(7), 1599–1609 (2016)

6. C. Zhang, Dynamically reconfigurable architectures for real-time baseband processing, no.
May. 2014

7. L. Zhao, H. Shankar, A. Nachum, 40G QPSK and DQPSK modulation, Inphi Corporation,
2008

8. P. Dong, C. Xie, L. Chen, L.L. Buhl, Y.-K. Chen, 112-Gb/s monolithic PDM-QPSK modulator
in silicon. Opt. Express 20(26), B624–B629 (2012)

9. H.D. Nataraj Urs, V.S. Reddy, Implementation and analysis of low frequency transceiver for
SDR platforms. J. Adv. Res. Dyn. Control Syst. 10(04–Special Issue), 1–9 (2018)

10. C.Y. Chen, F.H. Tseng, K. Di Chang, H.C. Chao, J.L. Chen, Reconfigurable software defined
radio and its applications. Tamkang J. Sci. Eng. 13(1), 29–38 (2010)

11. P. Suarez-Casal, A. Carro-Lagoa, J. A. Garćia-Naya, L. Castedo, A multicore SDR architecture
for reconfigurable WiMAX downlink, in Proceedings of 13th Euromicro Conference on Digital
System Design: Architectures, Methods and Tools (DSD) 2010, no. Cc, pp. 801–804, 2010

12. H. Goyal, J. Saxena, S. Dewra, Performance evaluation of OWC using different modulation
techniques. J. Opt. Commun. 37(4), 33–35 (2016)

13. V. Kumar, H.D. Nataraj Urs, R.V.S. Reddy, Software defined radio: Advancement to cognitive
radio and basic challenges in spectrum sensing. Asian J. Eng. Technol. Innov. 4(7), 166–169
(2016)

14. C. Chaitra, H.D. Nataraj Urs, Performance of SDR transceiver using different modulation
techniques. Int. J. Adv. Eng. Res. Sci. 3(5) (2016). ISSN: 2349-6495

15. M.S. Karpe, A.M. Lalge, S.U. Bhandari, Reconfiguration challenges & design techniques in
software defined radio. Int. J. Adv. Comput. Res. (2013)


	A Novel Algorithm for Reconfigurable Architecture for Software-Defined Radio Receiver on Baseband Processor for Demodulation
	1 Introduction
	2 Background
	2.1 Baseband Demodulation
	2.2 OFDM
	2.3 Channel Equalization
	2.4 Phase Offset Correction
	2.5 QAM (Quadrature Amplitude Modulation) Demapping

	3 Algorithm Analysis
	3.1 Dataflow for Channel Selection/FFT
	3.2 Signal Flow Graph for FIR/FFT

	4 Architecture Design Approach
	4.1 Reconfigurability
	4.2 Data Path
	4.3 The Communication Interface
	4.4 The Processing Part
	4.5 The Storage Part
	4.6 The Configuration Part
	4.7 Control Section
	4.8 Configuration Unit

	5 Algorithm Mapping
	5.1 Mapping of Matched FIR Filter
	5.2 Mapping of FFT

	6 Synthesis and Evaluation
	6.1 Synthesis Results for the SDR Receiver
	6.2 Comparison of Proposed Design with Montium TP
	6.3 Comparison of Different Implementations

	7 Conclusions
	8 Future Work
	References


