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Abstract. In this survey, we discuss accepting and generating networks
of evolutionary processors in their various characteristics as presented in
the literature over the years. We show several research directions with
respect to reducing the resources needed for still being computationally
complete and gather results obtained in these areas so far.
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1 Introduction

Based on the idea of processing languages in a distributed and parallel manner
by a system of simple agents,several models of language generating or accepting
devices have been developed (for instance, grammar systems, evolutionary sys-
tems, networks of language processors, networks of splicing systems, networks
of Watson–Crick D0L systems). Here, we focus on networks of evolutionary pro-
cessors.

Starting from networks of language processors which have been introduced
in [6] by E. Csuhaj-Varjú and A. Salomaa, networks of evolutionary pro-
cessors have been developed in [4] by J. Castellanos, C. Mart́ın-Vide, V.
Mitrana, and J. M. Sempere inspired by biological processes.

Such a network can be considered as a graph where the nodes represent pro-
cessors which apply production rules to the words they contain and the edges are
considered as communication channels for exchanging words between processors.

The computation consists of alternating derivation (evolutionary) and com-
munication steps. In an evolutionary step, any node derives from its language all
possible words according to its production rules as its new language (any word
is assumed to exist in an arbitrary number such that there are enough words
for the application of rules; only one rule is applied in one step at one place at
most; if no rule is applicable, then the word itself will survive this derivation
step, otherwise the original word will not exist anymore after the derivation).
The allowed production rules are that one letter is substituted by a letter, a
letter is inserted, or a letter is deleted; the nodes are then called substitution
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nodes, insertion nodes, or deletion nodes, respectively. In a communication step,
any node sends copies of those words to other nodes which satisfy an output
condition given as a regular language (called the output filter) and any node
adopts (copies of) words sent by the other nodes if the words satisfy an input
condition also given by a regular language (called the input filter). Words not
passing an output filter remain in the node for the next derivation step; words
which have left node but do not pass an input filter to enter some node get lost
(disappear from the network).

In the meantime, also other variants have been introduced and investigated,
e. g., networks where the filters belong to edges not nodes (e. g., [19]) or networks
where the filtering is realized by polarization (e. g., [17]).

Networks of evolutionary processors can be defined as language generating
or language accepting devices. In case of a generating device, the processors
start working with finite sets of axioms and all words which are in a designated
processor at some time form the generated language. In case of an accepting
device, input words are accepted if there is a computation which leads to a word
in a designated processor.

Early results on generating networks of evolutionary processors can be found,
e. g., in [4,5,23]. In [11] and [1], the generative capacity of networks of evolution-
ary processors was investigated where at most two types of rules occur. In [7],
the generative capacity of networks of evolutionary processors was investigated
for cases that all filters belong to a certain subfamily of the set of all regular lan-
guages. In [27], networks of evolutionary processors were investigated where the
filters are restricted by bounded resources, namely the number of non-terminal
symbols or the number of production rules which are necessary for generating
the languages or the number of states of a minimal deterministic finite automa-
ton over an arbitrary alphabet which are necessary for accepting the filters. In
[15], the use of codes and ideals as filters was studied. In [14], the hierarchies of
the language classes obtained before were merged.

Accepting networks of evolutionary processors were introduced in [22]. Fur-
ther results, especially on accepting networks where the filters belong to certain
subclasses of the family of the regular languages, were published in [8] and [20].
In [28], accepting networks of evolutionary processors were investigated where
the filters are restricted by bounded resources (number of non-terminal symbols,
number of production rules necessary for generating the languages or number
of states of a minimal deterministic finite automaton over an arbitrary alphabet
necessary for accepting the filters). In [16], the use of codes and ideals as filters
was studied and compared to the impact of other filters.

In the present paper, we give an overview about classes of generating or
accepting networks of evolutionary processors which generate or accept all recur-
sively enumerable languages.

2 Definitions

We assume that the reader is familiar with the basic concepts of formal language
theory (see, e. g., [25]). and recall here only some notations used in the paper.
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Let V be an alphabet. By V ∗ we denote the set of all words (strings) over the
alphabet V (including the empty word λ). The cardinality of a set A is denoted
by |A|.

A phrase structure grammar is a quadruple G = (N,T, P, S) where N is a
finite set of non-terminal symbols, T is a finite set of terminal symbols, P is a
finite set of production rules which are written as α → β with α ∈ (N ∪T )∗ \T ∗

and β ∈ (N ∪ T )∗, and S ∈ N is the axiom. A grammar is right-linear if, for
any rule α → β, the left-hand side α consists of a non-terminal symbol only
and the right-hand side β contains at most one non-terminal symbol and this
is at the right end of the word: α ∈ N and β ∈ T ∗ ∪ T ∗N . A special case
of right-linearity is regularity where each rule contains exactly one terminal
symbol (with the only possible exception S → λ). Let G = (N,T, P, S) be a
grammar. A word u ∈ (N ∪ T )∗ is derived in one step to a word v ∈ (N ∪ T )∗

by the grammar G, written as u =⇒ v, if there are a rule α → β ∈ P and two
subwords x and y of u such that u = xαy and y = xβy. By =⇒∗, we denote the
reflexive and transitive closure of the derivation relation =⇒. The language L(G)
generated by the grammar G is the set of all words which consist of terminal
symbols and which are derivable from the axiom S:

L(G) = { w | w ∈ T ∗ and S =⇒∗ w }.

Regular and right-linear grammars generate the same family of languages (the
regular languages). Therefore, also right-linear grammars are often called regu-
lar. In the context of descriptional complexity, when the number of non-terminal
symbols or the number of production rules which are necessary for generating a
language are considered then there is a difference whether a language is gener-
ated by means of regular or right-linear rules. We use in this paper right-linear
grammars.

By REG and RE , we denote the families of languages generated by regular
and arbitrary phrase structure grammars, respectively.

A finite automaton is a quintuple A = (V,Z, z0, F, δ) where V is an alphabet
called the input alphabet, Z is a non-empty finite set of elements which are
called states, z0 ∈ Z is the so-called start state, F ⊆ Z is the set of accepting
states, and δ : Z × V → P(Z) is a mapping which is also called the transition
function where P(Z) denotes the power set of Z (the set of all subsets of Z). A
finite automaton is called deterministic if every set δ(z, a) for z ∈ Z and a ∈ V
is a singleton set.

The transition function δ can be extended to a function δ∗ : Z ×V ∗ → P(Z)
where δ∗(z, λ) = {z} and

δ∗(z, va) =
⋃

z′∈δ∗(z,v)

δ(z′, a).

We will use the same symbol δ in both the original and extended version of the
transition function.

Let A = (V,Z, z0, F, δ) be a finite automaton. A word w is accepted by the
finite automaton A if and only if the automaton has reached an accepting state
after reading the input word w:
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L(A) = { w | δ(z0, w) ∩ F �= ∅ }.

The family of the languages accepted by finite automata is also the family of the
regular languages.

In the sequel, let V be an alphabet. For a language L over V , we set

Comm(L) = { ai1 . . . ain | a1 . . . an ∈ L, n ≥ 1, {i1, i2, . . . , in} = {1, 2, . . . , n} },

Circ(L) = { vu | uv ∈ L, u, v ∈ V ∗ },

Suf (L) = { v | uv ∈ L, u, v ∈ V ∗ }.

We consider the following restrictions for regular languages (which yield so-
called subregular families of languages). Let L be a language and V = alph(L)
the minimal alphabet of L. We say that the language L, with respect to the
alphabet V , is

– monoidal if L = V ∗,
– combinational if it has the form L = V ∗A for some subset A ⊆ V ,
– definite if it can be represented in the form L = A ∪ V ∗B where A and B are

finite subsets of V ∗,
– nilpotent if L is finite or V ∗ \ L is finite,
– commutative if L = Comm(L),
– circular if L = C irc(L),
– suffix-closed if the relation xy ∈ L for some words x, y ∈ V ∗ implies that also

the suffix y belongs to L or equivalently, L = Suf (L),
– non-counting (or star-free) if there is an integer k ≥ 1 such that, for any three

words x, y, z ∈ V ∗, the relation xykz ∈ L holds if and only if also the relation
xyk+1z ∈ L holds,

– power-separating if for any word x ∈ V ∗ there is a natural number m ≥ 1
such that either the equality Jm

x ∩ L = ∅ or the inclusion Jm
x ⊆ L holds

where Jm
x = { xn | n ≥ m },

– ordered if the language L is accepted by a finite automaton A = (Z, V, δ, z0, F )
where (Z,�) is a totally ordered set and, for any a ∈ V , the relation z � z′

implies the relation δ(z, a) � δ(z′, a),
– union-free if L can be described by a regular expression which is only built

by product and star.

Among the commutative, circular, suffix-closed, non-counting, and power-se-
parating languages, we consider only those which are also regular.

By FIN , MON , COMB , DEF , NIL, COMM , CIRC , SUF , NC , PS , ORD ,
and UF , we denote the families of all finite, monoidal, combinational, defi-
nite, nilpotent, regular commutative, regular circular, regular suffix-closed, reg-
ular non-counting, regular power-separating, ordered, and union-free languages,
respectively.

In several papers, also regular languages have been considered which are
based on some kind of random context: A language over an alphabet V is defined
by two subsets P ⊆ V and F ⊆ V and a mode (strong or weak) as the set of all
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words w ∈ (V \ F )∗ which contain every symbol of the permitting set P (in the
strong mode) or at least one symbol (in the weak mode, if P is not empty) but,
in any case, no symbol of the forbidding set F .

Additionally, families of languages are considered which are defined by
bounding the resources which are necessary for accepting or generating these
languages.

Let RLG be the set of all right-linear grammars and DFA the set of all
deterministic finite automata. Further, let

G = (N,T, P, S) ∈ RLG and A = (V,Z, z0, F, δ) ∈ DFA.

Then we define the following measures of descriptional complexity:

Var(G) = |N |, Prod(G) = |P |, State(A) = |Z|.

For these complexity measures, we define the following families of languages (we
abbreviate the measure Var by V , the measure Prod by P , and the measure
State by Z):

RLV
n = { L | ∃G ∈ RLG : L = L(G) and Var(G) ≤ n } ,

RLP
n = { L | ∃G ∈ RLG : L = L(G) and Prod(G) ≤ n } ,

REGZ
n = { L | ∃A ∈ DFA : L = L(A) and State(A) ≤ n } .

We now introduce the notion of an ideal in V ∗ from the theory of rings and
semigroups.

A non-empty language L ⊆ V ∗ is called a right (left) ideal if and only if, for
any word v ∈ V ∗ and any word u ∈ L, we have uv ∈ L (vu ∈ L, respectively).
It is easy to see that the language L is a right (left) ideal if and only if there is
a language L′ such that L = L′V ∗ (L = V ∗L′, respectively).

We now present some notions from coding theory, especially some special
codes. For details, we refer to [18] and [26].

For a word x ∈ V ∗, let

E(x) = { y | y ∈ V +, vyv′ = x for some v, v′ ∈ V ∗ },

(i. e., E(x) is the set of all non-empty subwords of x).
A language L ⊆ V ∗ is called

– a code if and only if, for any numbers n ≥ 1, m ≥ 1, and words

x1, x2, . . . , xn, y1, y2, . . . ym ∈ L

such that
x1x2 . . . xn = y1y2 . . . ym,

we have the equalities n = m and xi = yi for 1 ≤ i ≤ n (i. e., a word of L∗

has a unique decomposition into code words.
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– a solid code if and only if, for any numbers n ≥ 1, m ≥ 1, words

x1, x2, . . . , xn, y1, y2, . . . ym ∈ L,

and words
v1, v2, . . . , vn+1, w1, w2, . . . , wm+1

with E(vi) ∩ L = ∅ for 1 ≤ i ≤ n + 1, and E(wj) ∩ L = ∅ for 1 ≤ j ≤ m + 1
such that

v1x1v2x2 . . . vnxnvn+1 = w1y1w2y2 . . . wmymwm+1,

we have n = m, xi = yi for 1 ≤ i ≤ n, and vj = wj for 1 ≤ j ≤ n + 1;
– uniform if and only if L ⊆ V n for some n ≥ 1 (all words have the same

length);
– prefix if and only if, for any words u ∈ L and v ∈ V ∗ such that uv ∈ L, we

have v = λ (i. e., any proper prefix of a word in L is not in L);
– suffix if and only if, for any words u ∈ L and v ∈ V ∗ such that vu ∈ L, we

have v = λ (i. e., any proper suffix of a word in L is not in L);
– bifix if and only if it is prefix as well as suffix;
– infix if and only if, for any u ∈ L, and v, v′ ∈ V ∗ such that vuv′ ∈ L, we have

v = v′ = λ (i. e., any proper subword of a word in L is not in L).

Note that uniform, prefix, suffix, bifix, and infix languages are codes.
A code L ⊆ V ∗ is called

– outfix if and only if, for any words u ∈ V ∗ and v, v′ ∈ V ∗ such that vv′ ∈ L
and vuv′ ∈ L, we have u = λ;

– reflective if and only if, for any words u, v ∈ V ∗ such that uv ∈ L, we have
vu ∈ L.

By rId , lId , C , SC , PfC , SfC , BfC , IfC , OfC , RC , and UC , we denote
the families of regular right ideals, regular left ideals, regular codes, regular
solid codes, regular prefix codes, regular suffix codes, regular bifix codes, regular
infix codes, regular outfix codes, regular reflective codes and uniform codes,
respectively.

We now present networks of evolutionary processors. We call a produc-
tion α → β a substitution if |α| = |β| = 1 and deletion if |α| = 1 and β = λ.
The productions are applied like context-free rewriting rules. We say that a
word v derives a word w, written as v =⇒ w, if there are words x, y and a
production α → β such that v = xαy and w = xβy.

We introduce insertion as a counterpart of deletion. We write λ → a, where a
is a letter. The application of an insertion λ → a derives from a word w any
word w1aw2 with w = w1w2 for some (possibly empty) words w1 and w2.

If the applied rule p should be mentioned, we write v =⇒p w. For a set P
of rules, we write v =⇒P w if and only if v =⇒p w for some rule p ∈ P .
The reflexive and transitive closure of the relation is denoted by =⇒∗

P : we
write x =⇒∗

P y if there are rules p1, . . . , pn (n ≥ 0) in P and words w0, . . . , wn
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such that x = w0, wi =⇒pi+1 wi+1 for i = 0, . . . , n − 1, and wn = y. If at least
one rule is applied, we write x =⇒+

P y. For an alphabet V , we denote by SUBV ,
DELV , and INSV the sets of all substitution, deletion, or insertion rules, respec-
tively, over the alphabet V .

We first define networks of evolutionary processors for generating languages.
In the literature, they are abbreviated as NEPs but in order to better distiguish
them from accepting networks, for say here GNEPs.

Definition 1.

1. A generating network of evolutionary processors (of size n) is an (n+3)-tuple
N = (V,N1, N2, . . . , Nn, E, no) where
– V is a finite alphabet (the working alphabet of the network),
– for 1 ≤ i ≤ n, there is a processor Ni = (Mi, Ai, Ii, Oi) where

• Mi is a set of evolution rules of a certain type, i. e., Mi ⊆ SUBV or
Mi ⊆ DELV or Mi ⊆ INSV ,

• Ai is a finite subset of V ∗ (the language of axioms, from where the
processing starts in this processor),

• Ii and Oi are regular sets over V (called the input and output filter,
respectively),

– E is a subset of {1, 2, . . . , n} × {1, 2, . . . , n}, and
– no is a natural number from the set {1, 2, . . . , n}; the processor Nno is

called the output node of the network.
2. A configuration C of N is an n-tuple C = (C(1), C(2), . . . , C(n)) where C(i)

is a subset of V ∗ for 1 ≤ i ≤ n.
3. Let C = (C(1), C(2), . . . , C(n)) and C ′ = (C ′(1), C ′(2), . . . , C ′(n)) be two

configurations of N . We say that C derives C ′ in one
– evolution step (written as C =⇒ C ′) if, for 1 ≤ i ≤ n, the set C ′(i)

consists of all words w ∈ C(i) to which no rule of Mi is applicable and of
all words w for which there are a word v ∈ C(i) and a rule p ∈ Mi such
that v =⇒p w holds,

– communication step (written as C � C ′) if, for 1 ≤ i ≤ n,

C ′(i) = (C(i) \ Oi) ∪
⋃

(k,i)∈E

C(k) ∩ O(k) ∩ I(i).

The computation of N is a sequence of configurations

Ct = (Ct(1), Ct(2), . . . , Ct(n)), for t ≥ 0,

such that
– C0 = (A1, A2, . . . , An),
– for any t ≥ 0, C2t derives C2t+1 in one evolution step:

C2t =⇒ C2t+1,
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– for any t ≥ 0, C2t+1 derives C2t+2 in one communication step:

C2t+1 � C2t+2.

4. The language L(N ) generated by N is defined as

L(N ) =
⋃

t≥0

Ct(no)

where Ct = (Ct(1), Ct(2), . . . , Ct(n)) with t ≥ 0 is the computation of N .

Before we define accepting networks, we briefly describe how such a network
works. The underlying structure of a GNEP is a graph consisting of some, say n,
nodes N1, N2, . . . , Nn (called processors) and edges given by E such that there is
a directed edge from Nk to Ni if and only if (k, i) ∈ E. Any processor Ni consists
of a set Mi of evolution rules (also called mutation rules), a set Ai of start
words, an input filter Ii and an output filter Oi. We say that Ni is a substitution
node or a deletion node or an insertion node if Mi ⊆ {a → b | a, b ∈ V }
or Mi ⊆ {a → λ | a ∈ V } or Mi ⊆ {λ → b | b ∈ V }, respectively. The
input filter Ii and the output filter Oi control the words which are allowed
to enter and to leave the node, respectively. With any node Ni and any time
moment t ≥ 0, we associate a set Ct(i) of words (the words contained in the
node Ni at time t). Initially, Ni contains the words of Ai. In an evolutionary
step, we derive from Ct(i) all words by applying rules from the set Mi (each word
occurs in a sufficiently large number, each rule is applied at an arbitrary possible
position in a word, but only one rule at one place is applied in one step, if no rule
can be applied to a word, then it remains unchanged, if a rule can be applied, then
the original word will be consumed). In a communication step, any processor Ni

sends out all words Ct(i) ∩ Oi (which pass the output filter) to all processors to
which a directed edge exists (only the words from Ct(i) \ Oi remain in the set
associated with Ni) and, moreover, it receives from any processor Nk such that
there is an edge from Nk to Ni all words sent by Nk and passing the input filter Ii

of Ni, i. e., the processor Ni gets in addition all words of (Ct(k) ∩ Ok) ∩ Ii. The
computation starts with an evolutionary step and then communication steps and
evolutionary steps are alternately performed. The language generated consists
of all words which are in the output node Nno at some moment t with t ≥ 0.

We now define networks of evolutionary processors for accepting languages
(ANEPs for short).

Definition 2. 1. An accepting network of evolutionary processors (of size n)is
a (n + 5)-tuple N = (V,U,N1, N2, . . . , Nn, E, ni, no) where
– V is a finite alphabet, called the input alphabet of the network,
– U is a finite alphabet with V ⊆ U , called the working alphabet of the

network,
– Ni = (Mi, Ii, Oi) for 1 ≤ i ≤ n are the processors where
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• Mi is a set of rules of a certain type: Mi ⊆ SUBU or Mi ⊆ DELU or
Mi ⊆ INSU ,

• Ii and Oi are regular sets over U (called the input and output filter,
respectively),

– E is a subset of {1, 2, . . . , n} × {1, 2, . . . , n}, and
– ni and no are two natural numbers from the set {1, 2, . . . , n}; the processor

Nni is called the input node and Nno the output node of the network.
2. Configuration, evolutionary steps, and communication steps are defined as for

generating networks.
The computation of an evolutionary network N on an input word w ∈ V ∗

is a sequence of configurations Cw
t = (Cw

t (1), Cw
t (2), . . . , Cw

t (n)) with t ≥ 0,
such that
– Cw

0 (ni) = {w} and Cw
0 (j) = ∅ for j ∈ {1, . . . , n} \ {ni},

– for any t ≥ 0, Cw
2t derives Cw

2t+1 in one evolutionary step,
– for any t ≥ 0, Cw

2t+1 derives Cw
2t+2 in one communication step.

The computation of an evolutionary network N on an input word w ∈ V ∗ is
said to be accepting if there exists a step t ≥ 0 in which the component Cw

t (no)
of the configuration representing the content of the output node is not empty.

3. The language L(N ) accepted by N is defined as

L(N ) = { w | w ∈ V ∗ and the computation of N on w is accepting }.

An accepting network of evolutionary processors works in the same manner as
a generating one. The differences are, that, in an ANEP, only one processor has
a word in the beginning (called the input word) and that a word in the output
processor in an ANEP indicates the acceptance of the input word whereas in
a GNEP it belongs to the generated language.

For a language class X, we denote the class of languages accepted by networks
of evolutionary processors where all filters belong to the class X by A(X) and
the class of languages generated by networks of evolutionary processors where
all filters belong to the class X by E(X). We consider the filters independently
from the environment. A filter language belongs to some family X if it belongs
to it with respect to its smallest alphabet, not necessarily to the the alphabet of
all letters which might occur in the node or even in the entire network. A word
passes a filter if it is an element of the language representing the filter otherwise
it does not pass the filter.

In the literature, also other definitions have been used. In the first paper [4]
and subsequent ones, the underlying graph was a complete one and the inser-
tion and deletion rules were allowed only to be applied at the end of a word
(substitution was allowed everywhere). Later, the so-called hybrid networks of
evolutionary processors were introduced (generating HNEPs in [24] and accept-
ing HNEPs in [22]) where each processor is equipped also with a position where
its rules must be applied (either all to the left end of a word or all to the right
end of a word, or at an arbitrary place). Another difference regards what hap-
pens with words to which not all rules or even no rule can be applied in an
evolutionary step. Consider, for instance, the word a. If it is in a processor with
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the deletion rule a → λ and only this rule, then the word is derived to λ. If
further a deletion rule b → λ is present, then this rule does not change the word.
Hence, the words obtained are a (by the b-rule) and λ (by the a-rule). In [2], a
variant has been introduced, called obligatory HNEPs, where only the evolved
words belong to the derived language (in this example, only λ because a together
with the b-rule yields the empty set). Hence, in OHNEPs, the original words dis-
appear in an evolutionary step (their evolution is obligatory). In [11], a weaker
variant has been introduced where in an evolutionary step a word survives if no
rule can be applied to it but if a rule can be applied, then the original word
will not be present any longer (after all rules have been applied at every possible
position). In all these cases, computational completeness was obtained (for every
recursively enumerable language, there is a network of evolutionary processors
generating or accepting it, no matter what details have been used).

In the sequel, we refer here to papers where the same definition as above has
been used. Some results appeared already earlier in other publications but based
on another definition.

The following theorem is known (see [7] and [20]).

Theorem 1 ([7], [20]). We have E(REG) = A(REG) = RE.

As usual for powerful models, one asks what can be reduced to what extend
without leaving this power.

3 Restrictions Without Decreasing Computational Power

The size of a system is always interesting since smaller systems need fewer
resources (space, time for the construction). Regarding resources, the size is not
only the number of components but also the sum of the sizes of the components.
So, there are many aspects to consider.

3.1 Number of Processors

While in the introductory paper to GNEPs [4] the size of the constructed net-
work was still unbounded (depending on the size of the problem), it has been
shown in [5] that for any recursively enumerable language, there is a GNEP with
five processors generating the language. Already between these two papers, the
definition changed (in the first one, deletion and insertion rules were allowed
to be applied only at the ends of a word whereas in the second paper, they
could be applied everywhere in a word). In [3], the number was reduced to four
(if one takes only terminal words of the generated language (the intersection
of the language with a monoid), then even three processors are sufficient). In
the same paper, it was shown that, with again another definition (any type of
rule is allowed in any processor), any recursively enumerable language can be
generated by a network with two processors (even one with intersection with a
monoid). Back to processors specialized in one type of rules only, the network
with four/three nodes used each type of rules. Hence, a natural question was
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whether the number of rule types could be reduced. This question was investi-
gated in [1] where it was shown that any recursively enumerable language can
be generated by a network which has one node for insertion rules, one node for
deletion rules, and one node without rules (which is for collecting the terminal
words) only. If one allows intersection with a monoid, the node without rules can
be omitted. This yielded also an optimal result for the total number of processors
needed to be still computational complete.

Regarding accepting NEPs, any recursively enumerable language can be
accepted by a network with three nodes: one substitution or deletion node, one
insertion node and one without rules [10].

3.2 Number of Production Rule Types

As mentioned above, in [1], it was shown that any recursively enumerable lan-
guage can be generated by a network which has one node for insertion rules
one node for deletion rules, and one node without rules. In the same paper, it
was shown that networks with an arbitrary number of deletion and substitution
nodes only generate finite languages (and, for each finite language, one deletion
node or one substitution node is sufficient) and networks with an arbitrary num-
ber of insertion and substitution nodes only generate context-sensitive languages
(and, up to an intersection with a monoid, every context-sensitive language can
be generated by a network with one substitution node and one insertion node).
So, one type alone would not suffice for computational completeness.

Also ANEPs do not need all three types of rules for being computationally
complete; two types are sufficient: one node with substitution or deletion rules,
one node with insertion rules, and one node without rules [10]. In [9], it has been
shown that networks with only substitution and deletion rules accept context-
sensitive languages only (and that every context-sensitive language is accepted
by such a network). So, insertion rules are essential for being computational
complete.

3.3 Restrictions to the Filters

In several papers, generating or accepting networks haven been investigated
where the filters are not arbitrary regular languages but special ones like finite,
union-free, suffix-closed languages or languages which are codes or languages
which can be generated with a certain number of variables or rules in their gen-
erating right-linear grammarsor accepted by deterministic finite automata with a
certain number of states. Also networks where the filters are given by permitting
and forbidding sets (random-context filters) belong to this area.

For generating NEPs, we refer to the papers [7] and [14] for overviews about
hierarchies where the language classes obtained are put into set theoretic rela-
tions.

In [7], it was shown that the use of filters from the class of ordered, non-
counting, power-separating, circular, suffix-closed regular, union-free, definite,
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and combinational languages is as powerful as the use of arbitrary regular lan-
guages and yields networks that can generate all the recursively enumerable
languages. On the other hand, the use of filters that are only finite languages
allows only the generation of regular languages, but not every regular language
can be generated. If filters are used which are monoids, nilpotent languages, or
commutative regular languages, we obtain one and the same family of languages
which contains non-context-free languages but not all regular languages.

In [12] and [13], generating networks have been investigated where the min-
imal determinstic finite automata accepting the filter languages are restricted
with respect to the number of their states. It was shown that if the number of
states is bounded by two, then every recursively enumerable language can be
generated by such a network. If the number of states is bounded by one, then
not all regular languages but non-context-free languages can be generated.

In [27], other restrictions on the resources needed for the filters, namely
the number of variables or production rules which are needed by a right-linear
grammar generating a filter were investigated and set into relation with the
restrictions of the papers [12] and [13].

In [15], the generative capacity of GNEPs has been studied where the filters
are codes (arbitrary and special ones) or ideals. The hierarchy of the generated
language classes obtained there has been merged which that one from [27] in the
paper [14].

If the filters are all taken from one of the classes PS , NC , ORD , DEF ,
CIRC , UF , SUF , COMB , lId , rId , (RLV

i )i≥1, (REGZ
i )i≥2, then any recursively

enumerable language can be generated. With filters from the other cosidered
classes, the GNEPs are less powerful.

Theorem 2 ([7,14,15]). We have

RE = E(PS ) = E(NC ) = E(ORD) = E(DEF ) = E(CIRC )
= E(UF ) = E(SUF ) = E(COMB)

= E(lId) = E(rId) = E((RLV
i )i≥1) = E((REGZ

i )i≥2).

For accepting NEPs, we refer to the papers [21] and [16] for overviews about
hierarchies where the language classes obtained are put into set theoretic rela-
tions.

In [21], it was shown that the use of filters from the class of non-counting,
ordered, power-separating, suffix-closed regular, union-free, definite and combi-
national languages is as powerful as the use of arbitrary regular languages and
yields networks that can accept all the recursively enumerable languages. On the
other hand, by using filters that are only finite languages, monoids, nilpotent lan-
guages, commutative regular languages, or circular regular languages, one cannot
generate all recursively enumerable languages. Hence, for such filters, the only
difference between generating and accepting NEPs is the class CIRC . Networks
with circular filters only can still generate every recursively enumerable language
whereas they cannot accept every such language.
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In [28], the aforementioned restrictions on the resources needed for the fil-
ters, namely the number of variables or production rules which are needed by
a right-linear grammar generating a filter and the number of states which are
needed by a minimal determinstic finite automaton accepting a filter were inves-
tigated and set into relation with the restrictions of the paper [21]. Here, the
results for GNEPs and ANEPs coincide: In both cases, the classes (RLV

i )i≥1

and (REGZ
i )i≥2 yield computationally complete networks whereas filter restric-

tions to the classes REGZ
1 or RLP

i for any number i ≥ 1 are less powerful.
In [16], the generative capacity of ANEPs has been studied where the filters

are codes (arbitrary and special ones) or ideals. The hierarchy of the generated
language classes obtained there has been merged which that one from [28]. For
ideals, the results for GNEPs and ANEPs coincide: In both cases, the classes lId
and rId yield computationally complete networks. For codes, the situation is
different: Whereas filter restrictions to the classes C , PfC , SfC , BfC , IfC , or SC
do not decrease the computational power of accepting networks (such filters are
equally powerful as arbitrary regular languages), generating networks with filters
from such classes are less powerful.

Summarizing, for accepting networks with filters from subregular language
classes, we have the following results.

Theorem 3 ([16,21]). We have

RE = A(PS ) = A(NC ) = A(ORD) = A(DEF )
= A(UF ) = A(SUF ) = A(COMB)

= A(lId) = A(rId) = A((RLV
i )i≥1) = A((REGZ

i )i≥2)
= A(C ) = A(PfC ) = A(SfC ) = A(BfC ) = A(IfC ) = A(SC ).

4 Further Research

Various kinds of generating and accepting networks of evolutionary processors
have been developed. Every kind has its own motivation (for instance, biological
background). However, from the theoretical point of view, it would be interesting
to close the gaps such that networks and their properties are better comparable.

Further, there are still open questions about the computational power of
certain networks (e. g., networks with insertion processors only or where the
filters belong to a class such that not every recursively enumerable language
can be generated or accepted by such a network). Also other restrictions could
be considered (other subregular language classes for the filters) or restrictions
regarding other resources or combinations thereof.
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6. Csuhaj-Varjú, E., Salomaa, A.: Networks of parallel language processors. In: Păun,
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