
Jérôme Durand-Lose
György Vaszil (Eds.)

LN
CS

 1
34

19

Machines, Computations,
and Universality
9th International Conference, MCU 2022
Debrecen, Hungary, August 31 – September 2, 2022
Proceedings

Lecture Notes in Computer Science 13419

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558

Jérôme Durand-Lose · György Vaszil (Eds.)

Machines, Computations,
and Universality
9th International Conference, MCU 2022
Debrecen, Hungary, August 31 – September 2, 2022
Proceedings

Editors
Jérôme Durand-Lose
Université d’Orléans
Orléans, France

György Vaszil
University of Debrecen
Debrecen, Hungary

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-13501-9 ISBN 978-3-031-13502-6 (eBook)
https://doi.org/10.1007/978-3-031-13502-6

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-6506-074X
https://orcid.org/0000-0003-1213-8616
https://doi.org/10.1007/978-3-031-13502-6

Preface

This volume contains the papers presented at MCU 2022, the 9th Conference on
Machines, Computations and Universality, held during August 31 – September 2, 2022,
at the Faculty of Informatics of the University of Debrecen, Hungary. This edition was
co-located with the 24th International Conference on Descriptional Complexity of
Formal systems (DCFS 2022) and the 12th International Workshop on Non-Classical
Models of Automata and Applications (NCMA 2022).

The MCU series of international conferences traces its roots back to the mid-1990s,
and has since been concerned with gaining a deeper understanding of computation
through the study ofmodels of general purpose computation.MCUexplores computation
in the setting of various discrete models (Turing machines, register machines, cellular
automata, tile assembly systems, rewriting systems,molecular computingmodels, neural
models, concurrent systems, etc.) and analog and hybrid models (BSSmachines, infinite
time cellular automata, real machines, quantum computing, etc.). There is a particular
(but not exclusive) emphasis given to the following:

– The search for frontiers between decidability and undecidability in the variousmodels.
(For example, what is the smallest number of pairs of words for which the Post
correspondence problem is undecidable, or what is the largest state-symbol product
for which the halting problem is decidable for Turing machines?)

– The search for the simplest universalmodels (such as small universal Turingmachines,
universal rewriting systems with few rules, universal cellular automata with small
neighborhoods and a small number of states, etc.).

– The computational complexity of predicting the evolution of computations in the
various models. (For example, is it possible to predict an arbitrary number of time
steps for a model more efficiently than explicit step by step simulation of the model?)

– Universality and undecidability in continuous models of computation.

Previous MCU conferences took place in Fontainebleau, France (2018), Famagusta,
North Cyprus (2015), Zürich, Switzerland (2013), Orléans, France (2007), Saint
Petersburg, Russia (2004), Chisinǎu, Moldova (2001), Metz, France (1998), and Paris,
France (1995).

There were 18 papers submitted to this edition of MCU, all in the scope of the
conference, and each submission was reviewed by three Program Committee members.
The committee decided to accept 10 papers for presentation and publication in these
proceedings.

The program included four invited talks.

– Enrico Formenti from the University of Côte d’Azur, France, presented in “Com-
plexity of local, global and universality properties in finite dynamical systems” some
complexity bounds for the case when such systems are presented as their evolution
graph. Some results of universality for simulation on some classes were provided.

vi Preface

– Mika Hirvensalo from the University of Turku, Finland, presented how quantum
computation can be improved by taking advantage of wave-particle dualism in “Using
Interference to Boost Computing”.

– Hava T. Siegelmann from the University of Massachusetts at Amherst, USA,
explainedhow tohandle andbenefit fromever learningAI in “SuperTuringComputing
Enables Lifelong Learning AI”.

– Bianca Truthe from the University of Gießen, Germany, provided “A Survey on
Computationally Complete Accepting and Generating Networks of Evolutionary
Processors”. In this model, each processor is assigned the fixed task to add, remove,
or change a single symbol on strings which move from one processor to another
according to filters.

The conference was held in hybrid mode with the possibility of in-person and online
presentation. More information on MCU 2022 can be found at https://konferencia.uni
deb.hu/en/mcu-2022.

We would like to thank everybody in the organizing committee who worked hard to
make this edition successful.

Partial financial support for the conference was provided by the Department of
Computer Science and by the Faculty of Informatics of the University of Debrecen.

The editors warmly thank the Program Committee, the organizers, the invited
speakers, the authors of the papers, the external reviewers, and all the participants for
their contribution to the success of the conference.

June 2022 Jérôme Durand-Lose
György Vaszil

https://konferencia.unideb.hu/en/mcu-2022

Organization

Program Committee

Artiom Alhazov Academy of Sciences of Moldova, Moldova
Pablo Arrighi University of Paris-Saclay, France
Nathalie Aubrun CNRS and University of Paris-Saclay, France
Péter Battyányi University of Debrecen, Hungary
Erzsébet Csuhaj-Varjú Eötvös Loránd University, Hungary
Jérôme Durand-Lose (Co-chair) University of Orléans, France
Henning Fernau University of Trier, Germany
Rudolf Freund Technical University of Vienna, Austria
Kaoru Fujioka Fukuoka Women’s University, Japan
Christine Gaßner University of Greifswald, Germany
Daniela Genova University of North Florida, USA
Peter Leupold University of Bremen, Germany
Maurice Margenstern University of Lorraine, France
Kenichi Morita Hiroshima University, Japan
Benedek Nagy Eastern Mediterranean University, North Cyprus
Agustín Riscos-Núñez University of Seville, Spain
Shinnosuke Seki University of Electro-Communications, Japan
Petr Sosík Silesian University in Opava, Czech Republic
Kumbakonam Govindarajan

Subramanian
University of Science Malaysia, Malaysia

György Vaszil (Co-chair) University of Debrecen, Hungary
Sergey Verlan University of Paris-Est Créteil, France

Steering Committee

Jérôme Durand-Lose (Chair) University of Orléans, France
Erzsébet Csuhaj-Varjú Eötvös Loránd University, Hungary
Nataša Jonoska University of South Florida, USA
Maurice Margenstern University of Metz, France
Kenichi Morita Hiroshima University, Japan
Benedek Nagy Eastern Mediterranean University, Cyprus
Kumbakonam Govindarajan

Subramanian
University of Science Malaysia, Malaysia

Sergey Verlan University of Paris-Est Créteil, France

viii Organization

Additional Reviewers

Giovanni Pighizzini University of Milan, Italy
Sang-Ki Ko Kangwon National University, South Korea
Antonio E. Porreca University of Aix-Marseille, France
Zornitza Prodanoff University of North Florida, USA
Kostia Chardonnet University of Paris-Saclay, France

Organizing Committee

Péter Battyányi University of Debrecen, Hungary
Bence Hegedűs University of Debrecen, Hungary
Arnold Pintér University of Debrecen, Hungary
György Vaszil University of Debrecen, Hungary

Invited Abstracts

Using Interference to Boost Computing

Mika Hirvensalo

Department of Mathematics and Statistics, University of Turku, Finland
mikhirve@utu.fi

Abstract. In the nature, interference [4] occurs almost everywhere in
the presence of undulating motion. Water waves, sonic waves, as well as
electromagnetic waves may interfere, meaning that sometimes the wave
crests amplify each other, but sometimes the wave crest and trough annul
each other. This mechanism may create patterns which a single wave
propagation can never form [3].

In the smallest level, the physical world is depicted by using quantum
mechanics, which involves so-called wave-particle dualism [1]. This
principle signifies that the physical objects can be described as particles,
but as waves, as well. It is possible, not only in principle, but also in
practice, to regard physical systems carrying information as quantum
waves and design algorithms that utilize interference as a computational
resource [2]. This is actually rather generally regarded as the source of
the efficiency of quantum computing [3].

We will underline some notable interference patterns used to imple-
ment famous quantum algorithms, but also to point out that interference-
like effect has been used to design computational procedures already long
before quantum computing [5, 6].

References

1. de Broglie, L.: Recherches sur la théorie des quanta. Ann. Phys. 10(3), 22–128 (1925)
2. Hirvensalo, M.: Quantum Computing, 2nd edn. Springer, Berlin, Heidelberg (2004).
10.1007/978-3-662-09636-9

3. Hirvensalo, M.: Interference as a computational resource: a tutorial. Nat. Comput.
(2018)

4. Kipnis, N.: History of the Principle of Interference of Light. Birkhauser Verlag, Basel,
Boston and Berlin (1991)

5. Turakainen, P.: On probabilistic automata and their generalizations. Annales
Academiae Scientiarum Fennicae. Series A 429 (1969).

6. Turakainen, P.: On languages representable in rational probabilistic automata. Annales
Academiae Scientiarum Fennicae. Series A 439 (1969).

https://springerlink.bibliotecabuap.elogim.com/book/10.1007/978-3-662-09636-9

Super Turing Computing Enables Lifelong Learning AI

Hava Siegelmann

University of Massachusetts Amherst, USA
hava@cs.umass.edu

Abstract. State of the art AI systems demonstrate great capabilities in
playing computer games and classifying images, as long as these operate
on a computer screen. But once AI systems are embedded in autonomous
technology and require to classify on the go and act efficiently and safely
in the real world, they show a significant reduction in capabilities. This
difference may be explained by the way state of the art AI is prepared,
being trained in advance, typically on large datasets (and great amount of
energy waste). Once fielded, the AI is frozen: It is unable to use its real-
world experience to improve expertise, neither to note that situations
move away from what it was originally trained on; and worse, since
datasets cannot cover all possible real-world situations, systems with
such frozen intelligent control are likely to fail.

A main reason that the field has developed an AI which is frozen
once it is fielded, is that it was designed on the Turing machine founda-
tions, where a fixed program is loaded to the universal machine which
then follows the program’s instructions. But—another theory of com-
putation—the Super Turing computation enables more advanced type
AI, one that can lifelong learn from its environment and experience, is
not dependent solely on its training set, and interleave computing and
learning to increase expertise.

LifelongLearning is the cutting edge of artificial intelligence - encom-
passing computationalmethods that allow systems to learn in runtime and
incorporate learning for application in new, unanticipated situations. Our
presentation will introduce Super-Turing Computation from the point of
view of AI, and follow with a number of state-of-the-art approaches that
achieve lifelong learning intelligent systems.

Contents

Complexity of Local, Global and Universality Properties in Finite
Dynamical Systems . 1

Enrico Formenti

A Survey on Computationally Complete Accepting and Generating
Networks of Evolutionary Processors . 12

Bianca Truthe

Prescribed Teams of Rules Working on Several Objects . 27
Artiom Alhazov, Rudolf Freund, Sergiu Ivanov, and Sergey Verlan

From Networks of Reaction Systems to Communicating Reaction Systems
and Back . 42

Bogdan Aman

A Characterization of Polynomial Time Computable Functions
from the Integers to the Reals Using Discrete Ordinary Differential
Equations . 58

Manon Blanc and Olivier Bournez

Languages of Distributed Reaction Systems . 75
Lucie Ciencialová, Luděk Cienciala, and Erzsébet Csuhaj-Varjú

PSPACE-Completeness of Reversible Deterministic Systems 91
Erik D. Demaine, Robert A. Hearn, Dylan Hendrickson, and Jayson Lynch

From Finite Automata to Fractal Automata – The Power of Recursion 109
Benedek Nagy

Closure Properties of Subregular Languages Under Operations 126
Viktor Olejár and Alexander Szabari

P Systems with Evolutional Communication and Separation Rules 143
David Orellana-Martín, Luis Valencia-Cabrera,
and Mario J. Pérez-Jiménez

Computational Universality and Efficiency in Morphogenetic Systems 158
Petr Sosík and Jan Drastík

xiv Contents

Adaptive Experiments for State Identification in Finite State Machines
with Timeouts . 172

Aleksandr Tvardovskii and Nina Yevtushenko

Author Index . 189

Complexity of Local, Global
and Universality Properties in Finite

Dynamical Systems

Enrico Formenti(B)

Université Côte d’Azur, CNRS, I3S, Sophia Antipolis, France

enrico.formenti@unice.fr

Abstract. In this paper we study the complexity of the decision prob-
lems about generic properties on the dynamics of finite discrete dynami-
cal systems (fDDS). Properties are grouped into two main classes : local
and global. Local properties are at most in NPY coNP, while global ones
are at most in PSPACE. We also investigate universality (w.r.t. simula-
tion) and we provide a constructive example of universal fDDS for the
family of additive fDDS having a unique global attractor. The question
of the complexity of deciding universality for a given family of fDDS is
left open.

Keywords: (Finite) Discrete dynamical systems · Computational
Complexity · Universality

1 Introduction

Finite discrete dynamical systems (fDDS for short) are a convenient formalism
used to model phenomena evolving in discrete time units which run through a
finite number of states. Applications of the theory of fDDS range from biol-
ogy, chemistry, up to computer science, mathematics and physics. They are
particularly useful for studying complex systems [1,2,5,12,14]. The literature
about the formal theory of fDDS is really huge and dozens of papers on the
subject appear each year. Most of them focus on specific classes (reaction sys-
tems, cellular automata, Boolean automata networks, etc.) with many deep and
interesting results. A long streamline of results focus on the computational com-
plexity of deciding properties on the dynamics of such systems; without any
claim of exhaustiveness one can list [3,4,6,7], for instance. However, in this
paper we would like to take a more generic approach. We would like to study
the complexity of deciding properties for the whole class of fDDS. In this way,
we provide an upper bound for all classes seen so far. In order to achieve this,
we adopt a descriptive complexity point of view and characterize the questions
using adapted logics and signatures [11]. All dynamical properties are divided
into three groups: local, global and local&global. Among local properties one
can list: having a periodic point of a prescribed period; having an attractor; etc.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Durand-Lose and G. Vaszil (Eds.): MCU 2022, LNCS 13419, pp. 1–11, 2022.
https://doi.org/10.1007/978-3-031-13502-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13502-6_1&domain=pdf
http://orcid.org/0000-0002-1007-7912
https://doi.org/10.1007/978-3-031-13502-6_1

2 E. Formenti

Global properties include: having a unique attractor; having at least k distinct
attractors; being indecomposable; etc. Finally, among the local&global prop-
erties one finds, for example: having a single fixed point or having a global
attracting cycle of prescribed size.

We prove that the problem of deciding a generic local (resp., global or
local&global) property of a fDDS is at most in NP(resp., PSPACE).

An other property that is investigated is universality that here is intended
with respect to the notion of strict simulation between fDDS. The problem of
deciding if a fDDS simulates another one is NP-complete but in order to have
universality one has to consider families of fDDS characterized by some sort of
uniformity. At this point, we lost the initial purpose of genericity. We considered
the family of additive fDDS having a unique global attractor and we showed
how to build universal fDDS for this family (using size of the simulated fDDS as
a uniformity criterion). The question of establishing the complexity of deciding
universality for a family of fDDS is left open.

This paper is structured as follows. The next section introduces all basic
notions about fDDS used in the paper. Section 3 precisely defines what we mean
by property and provides the complexity results about the connected decision
problems. Section 4 introduces the notion of strict simulation between fDDS and
discusses about universality. An example of universal fDDS for a family of fDDS
is given in Sect. 5. In the last section we draw our conclusions and provide some
perspectives.

2 Basic Notions

A finite discrete dynamical system is a structure 〈X, f〉 where X is a finite
set called the set of states and f Ď X ˆ X is the update relation (or next
state relation) and provides the new state/s f({x}) P P (X) when the system
is started on {x} Ď X. For the sake of readability, when no confusion is possible,
we will often confuse a fDDS 〈X, f〉 with its next state function f .

Any fDDS f can be identified with its transitions graph Tf which is a
digraph 〈V,E〉 where V “ X and @a, b P V , (a, b) P E iff b P f(a). In other
words, Tf is the graph of the relation f .
Important. In all this work, when it is not differently specified, we consider
that two fDDS having isomorphic TGs are the same fDDS.

We stress that Tf contains all the information about the dynamics of the
system, however, this information is rarely given as in the for of TG in practice.
Indeed, in practical applications one has a short description of the system and
in most cases the size of the transitions graph is exponential in the size of that
description. We leave this issue for a forthcoming paper.

We are interested in investigating the complexity of various properties on the
dynamics when f is a function. In this case we will use x in place of {x} for the
states and f(x) in place of f({x}).

We briefly recall here the main properties on the dynamics of a SDD that we
are going to explore in the sequel. A point x P X is a periodic point of f if there
exists an integer p such that fp(x) “ x, the smallest p with the previous property

Complexity in Finite Dynamical Systems 3

is the period of x. A fix point of f is a periodic point with period p “ 1; fk

is the k-fold composition of f with itself. A sequence of points x0, x1, . . . , xn is
a cycle of size n if f i`1(xi) “ xi`1 mod n and x0 “ xn. A cycle x0, x1, . . . , xn

is an attractor iff there exists y P X such that @k P [0, n ´ 1], y �“ xk and
∃i P [0, n ´ 1] such that f(y) “ xi. An attractor x0, x1, . . . , xn is global if for
all x P X, there exists k P IN and i P [0, n ´ 1] such that fk(x) “ xi. In other
words, an attractor is global whenever all iterations eventually terminate in the
attractor. A SDD f is decomposable if it has not a unique attractor.

3 fDDS Properties and Their Complexity

A fDDS property is a (finite) graph P “ 〈VP , EP 〉. A fDDS 〈X, f〉 has the
local property P iff ∃̃φ : P → Tf such that φ is injective and @a, b P Vp,
(a, b) P EP implies that (φ(a), φ(b)) is an edge of Tf . Here, the notation ∃̃φ
stands for either ∃φ or �∃φ. In other words, a local property P is a kind of mask
and a fDDS has P if the mask is a subgraph of its transition graph. In the tables
below, when ∃̃φ when it is interpreted as �∃φ, the corresponding property is
surrounded by parenthesis and prefixed by the symbol �. A fDDS 〈X, f〉 has
the global property P iff ∃̃φ : Tf → P such that φ is surjective and @a, b P VP ,
(a, b) P EP implies that (φ´1(a), φ´1(b)) is an edge of Tf . A pair 〈P1, P2〉 where
P1 is a local property and P2 is a global one for the same fDDS 〈X, f〉 is said to
be a local&global property iff 〈X, f〉 possesses both.

Proposition 1. The problem of deciding a local property of a fDDS is at most
in NP Y coNP.

Proof. The problem takes in input the TG of a fDDS 〈X, f〉, while the local
property P “ 〈VP , EP 〉 is part of the problem. Hence, testing if 〈X, f〉 has P
can be rewritten using the following formulas (where a → b means that (a, b) is
an edge of the corresponding graph) (Table 1):

AllDiff[x1, x2, . . . , xk] ” �Eq(x1, x2) ∧ �Eq(x1, x2) ∧ . . . ∧ �Eq(xk´1, xk)

AllCons[g1, g2, . . . , gk, x1, x2, . . . , xk] ” @gi P VP @gj P VP (gi → gj) ⇒ (xi → xj)

Ψ [g1, g2, . . . , gk, x1, x2, . . . , xk] ” AllCons[g1, g2, . . . , gk, x1, x2, . . . , xk] ∧
∧AllDiff[x1, x2, . . . , xk]

The idea behind the formula is that one need to non-deterministically guess
the targets in Tf of the monomorphism; then verify that all these points are
distinct i.e. we can build an injection—this is the AllDiff part; finally we have
to verify that edges in P correspond to edges in Tf—this is the role of AllCons.

Therefore the question of the problem is logically equivalent to the formula
∃x1,∃x2, . . . ,∃xkΨ [g1, g2, . . . , gk, x1, x2, . . . , xk] and hence by Fagin’s theorem
the problem in NP [15, Th. 8.3, pag. 173]. We proceed similarly for proving
that the problem is in coNP when existential quantifiers are replaced by �∃ in
the previous formula. ��

Proposition 2. The problem of deciding a global property of a fDDS is at most
in PSPACE.

4 E. Formenti

Table 1. Examples of local properties.

Description Property

There exists a fixed point

There exists a fixed point local attractor

There exists a cycle of period 6

There exists an attracting cycle of per. 6

Proof. First of all, remark that NSPACE(s(n)) “ co-NSPACE(s(n)) by
Immerman-Szelepcsényi theorem [15, Cor. to Th. 7.6, pag. 153]. Moreover, by
Savitch’s theorem [15, Cor. to Th. 7.5, pag. 150], we have PSPACE=NPSPACE.
Hence, we can focus in proving just the existential form of the definition of global
property (Table 2). Similarly to what done for local properties, the problem takes
in input the TG of a DDS 〈X, f〉 and a property P “ 〈VP , EP 〉. Testing if 〈X, f〉
has P can be rewritten using the following formulas (AllCons has been defined
in the proof of Proposition 1):

AllCons�[x1, x2, . . . , xk, g1, g2, . . . , gk] ”transitive closure of AllCons
Φ[i, j, x, y, gi, gj] ”(i �“ j) ⇒ AllCons�[x, y, gi, gj]
Part[U1, . . . , Uk] ”@x P X∃j P {1, . . . , k} x P Uj

Therefore the question of the problem is logically equivalent to the formula

∃U1 Ď X . . . ∃Uk Ď X@i P {1, . . . , k} @j P {1, . . . , k} @x P Ui@y P Uj

Φ[i, j, x, y, gi, gj] ∧ Part[U1, . . . , Uk]

which belongs to SO(TC) “ PSPACE [11]. Let us spend a few words to explain
the formula. The idea is that first of all, one has to non-deterministically extract
from X a certain number (as many as the set of vertices of P in fact) of subsets
U1, . . . , Uk and verify that they form a partition of X—this is the role of Part.
Each Ui targets a single vertex gi of P (recall that we want an epimorphism) so
if we have two vertices x, y in Tf (coming from distinct Ui and Uj) and these
vertices are connected by a path, then it must hold the same for gi and gj in
P—and this is checked by Φ. ��

Complexity in Finite Dynamical Systems 5

Table 2. Examples of global properties. Recall that when a property is prefixed with
the symbol �, it means that ∃̃ is interpreted as �∃φ in the definition of the property.

Description Property

The fDDS is undecomposable �()

There exists a unique attractor �()

There are at least three attractors

Proposition 3. The problem of deciding a local&global property of a fDDS is
at most in PSPACE.

Proof. In this case, one just can verify the two properties separately and hence
the upperbound is PSPACE (Table 3). ��

Table 3. Examples of local&global properties. Recall that when a property is prefixed
with the symbol �, it means that ∃̃ is interpreted as �∃φ in the definition of the
property.

Description Property

There exists a single fixed point and �()

There exists a global attracting cycle
of per. 6

and �()

4 Universality

Similarly to what we have done for properties of fDDS, we want to provide a
generic view of the property of universality in fDDS. Here universality is intended
with respect to simulation. Therefore the first thing to define is the notion of
simulation between fDDS.

We say that B “ 〈Z, g〉 strictly simulates A “ 〈Y, f〉 if there exists a
monomorphism φ : Y → Z such that φ ◦ f “ g ◦ φ. In other words, B strictly

6 E. Formenti

simulates A if Tf is a subgraph of Tg. Remark that here we speak about strict
simulation since the simulation is one-to-one in the sense that a step in the
simulated system corresponds to one step in the simulating system. The term of
non-strict simulation or simply simulation is reserved to the situation in which
the simulator is allowed to perform several steps for producing a single step of
the simulated system.

Proposition 4. Given two fDDS A “ 〈Y, f〉 and B “ 〈Z, g〉, the problem of
deciding if B strictly simulates A is NP-complete if |Y | < |Z|. It is GI-complete
if |Y | “ |Z| and |f(Y)| “ |g(Z)|.

Proof. When |Y | < |Z|, this is the classical subgraph isomorphism problem
between Tf and Tg which is known to be NP-complete [9, Problem GT48]. If
|Y | “ |Z| and |f(Y)| “ |g(Z)|, this is the isomorphism problem for directed
graphs which is known to be GI-complete [13]. ��

It is not difficult to see that the relation of strict simulation is a pre-order on
fDDS. Given a family of fDDS F , it is therefore natural to define a fDDS A “
〈Y, f〉 strictly universal for F if A simulates all the fDDS in F . Without bounds
on F , it is clear that strictly universal are not likely to exist. One constraint that
we may impose on F is finiteness. If F is finite, then a strictly universal system
trivially always exists, one has just to take the TG consisting of disjoint copies
of all TGs in F . In order to avoid trivial cases and to have tighter bounds we
consider strict universality up to some bound. Let Fn denote the subset of fDDS
in the family F which have exactly n states. Then, we are interested to find a
strictly universal fDDS for Fn which shares the same dynamical properties at
the fDDS in F . The following section provide an example of universal fDDS for
the family of additive fDDS with a unique global attractor.

5 Additive fDDS

An intree is a directed tree in which the orientation of the edges has been
reversed i.e. edges are oriented towards the root. A p-adic intree is an intree in
which all nodes have indegree p except for the leaves (which have indegree 0).
Intrees are typical subgraphs of TGs of additive fDDS. Let us briefly recall some
facts about additive fDDS.

A fDDS 〈Y, f〉 is additive when Y is a group and f a group homomorphism.
Here only, cyclic groups like ZZp for p prime are considered. In [8], the following
particular notation is adopted for additive fDDS when Y is (IFp)n with p prime
and n > 0: Xn

p denotes the dynamical system 〈IFp[x]/xn, σ〉, where σ is the shift
map on IFp[x]/xn (i.e. the multiplication by x mod xn). The same symbol Xn

p

will also denote the TG of 〈IFp[x]/xn, σ〉, when no confusion is possible.
We also denote by X0

p or 1 the TG made by a single loop. According to [8],
the TG of Xn

p (n > 0) is a complete p-adic intree of height n ´ 1 with a loop
at the root. We also recall here an important operation between fDDS. The
Kronecker product between a fDDS A “ 〈Y, f〉 and B “ 〈Z, g〉, denoted

Complexity in Finite Dynamical Systems 7

A � B, is a new fDDS 〈Y ˆ Z, h〉 where @(y, z) P Y ˆ Z, h(y, z) “ (f(y), g(z)).
Practically speaking, the Kronecker product of A�B is the parallel evolution of
A and B. From the point of view of TGs, the Kronecker product is the classical
Kronecker product of graphs. In the sequel we are going to use the following
result.

Lemma 1. The Kronecker product of fDDS preserves additivity.

Proof. Consider two additive fDDS A “ 〈Y, f〉 and B “ 〈Z, g〉. Let H “ A�B “
〈Y ˆ Z, h〉 and denote 〈Y, `〉 and 〈Z, `〉 the groups on the states of A and B,
respectively. Then, we can equip Y ˆ Z with the group structure induced by
〈Y, `〉 and 〈Z, `〉 that is to say for any y1, y2 P Y and z1, z2 P Z, (y1, z1)`(y2, z2)
in Y ˆ Z is given by (y1 ` y2, z1 ` z2). Now, it remains to prove that h is a
homomorphism. For any y1, y2 P Y and z1, z2 P Z, we have

h((y1, z1) ` (y2, z2)) “ h(y1 ` y2, z1 ` z2) “ (f(y1 ` y2), g(z1 ` z2))
“ (f(y1) ` f(y2), g(z1) ` g(z2))
“ (f(y1), g(z1)) ` (f(y2), g(z2))
“ h(y1, z1) ` h(y2, z2)

Finally, just remark that h(0, 0) “ (f(0), g(0)) “ (0, 0). ��

For any prime p and any n P IN, denote Tpn the class of fDDS having a
unique global attractor and such that the pn states have the structure of an
abelian group and the update rule is a homomorphism of this group.

Now, for any prime p and n P IN, consider the set of fDDS Sp,n defined as
follows:

Sp,n “
⋃

u1`u2`...`uk“n

Xu1
p � Xu2

p � · · · � Xuk
p

Lemma 2. For all prime p and n P IN, Tpn ⊇ Sp,n.

Proof. Fix u1, u2, . . . , uk such that
∑k

i“1 ui “ n. By the definition of Kronecker
product, the number of states of U “ Xu1

p � Xu2
p � · · · � Xuk

p is
∏k

i“1 pui “
p

∑k
i“1 ui “ pn. By Lemma 1, we known that U is additive. Moreover, it is clear

that U has a unique fixed point. Hence, U P Tpn and Sp,n Ď Tpn . ��

Lemma 3. Let A,B and C be three fDDS belonging to Sp,i, Sp,j and Sp,k,
respectively, for i, j, k P IN. If A � C, then A � C � B � C, where � is graph
non-isomorphism.

Proof. Denote Å, B̊ and C̊ the TG of A,B and C with orientation removed.
Remark that C̊ has a loop and by the hypothesis Å � B̊, then by [10, Proposition
9.6, pag. 109], we have that Å� C̊ � B̊ � C̊. Now adding orientation to all edges
towards the loop in Å � C̊ and B̊ � C̊ provides the result (Fig. 1). ��

8 E. Formenti

Fig. 1. The transition graphs of the fDDS in S2,3.

Just by examining how the class Sp,n is defined and by using Lemma 3, one finds
the following.

Proposition 5. For any prime p and any n P IN, |Sp,n| “ P (n) where P (n) is
the number of the partitions of n.

Lemma 4. Let p be a prime number and n,m P IN. Assume to have two non-
void fDDS A P Tpn and B P Tpm , then the fDDS A � B strictly simulates both
A and B.

Proof. The TG of A can be identified in A � B by considering the product of
the nodes of the TG of A with the loop of B. The reasoning for B is similar. ��

Theorem 1. For any prime p and n P IN, any fDDS in Sp,n can be simulated
by

Up,n “
n⊙

k“1

(Xk
p)�n

k �

where the notation (Xi
p)

j is the j-times application of the Kronecker product of
Xi

p with itself.

Proof. For � > 0, consider a set of integers u1, u2, . . . , u� P IN such that n “∑�
i“1 ui, then

⊙�
i“1 Xui

p P Sp,n. Using the commutativity of the Kronecker prod-
uct, rewrite the previous fDDS as

⊙s
j“1(X

j
p)vj by collecting the Xi

p with the
same exponent i. It is clear that s ≤ �. For 1 ≤ j ≤ s, consider (Xj

p)vj . Remark
that vj is the number of ui “ j that occur in the sequence u1, u2, . . . , uk. Hence
vj ≤ �n

j �. By Lemma 4, (Xj
p)vj is simulated by Up,n. The rest of the proof follows

by finite induction and Lemma 4. ��

Remark that by Lemma 1, Up,n is additive. It is also pretty clear that it has a
unique global fixed point.

Complexity in Finite Dynamical Systems 9

Fig. 2. The graph U2,3 which is universal for the familiy S2,3.

6 Conclusions and Perspectives

In this paper we defined local and global properties for fDDS by means of
the TGs. Moreover, the corresponding computational complexity of the deci-
sion problems considered take in input TGs. Remark that this is not always
the case in practical situations. Indeed, in many contexts, one has a succinct
description of the fDDS and not the full TG. For example, call parsimonious
a fDDS whose update rule can be expressed by a FO formula on some signature.
Examples of parsimonious fDDS are reaction systems, (finite) cellular automata,
boolean automata networks, Turing machines (with finite tape), etc. It would be
an interesting research direction to study the succinct version of the complexity
problems addressed in this paper. Indeed, we expect a complexity blow-up.

The notion of strict universality and of universal fDDS for a given family is
tightly connected to the idea of universal graphs but the addition here is that
only graphs of functions are considered and that some underlaying semantics are
associated (e.g. the TGs of additive fDDS) which make these classes somewhat
peculiar. It would be interesting to investigate the main characteristics and the
growth parameters of universal graphs for these peculiar classes.

For example, Theorem 1 says that Up,n is universal for the family Sp,n. How-
ever, the number of states in Up,n is rather huge (see Fig. 2 to have an idea for

10 E. Formenti

a small value of p and n). Can we find a smaller universal fDDS for Sp,n and
having the same dynamical characteristics, namely it has a global fixed point
attractor and it is additive?

Another interesting research direction which also concern universality con-
sists in relaxing the fact that the simulation performed is one-to-one. One could
imagine to allow the simulator to run through more than one step to perform
the simulation of a transition of the simulated system. How complex would be
to decide the universality in this case?

Acknowledgments. The author warmly thanks the italian gang : Luca Manzoni
(Univ. of Trieste, Italy), Antonio E. Porreca (Aix-Marseille Univ., Marseille, France)
and Alberto Dennunzio (Univ. of Milano-Bicocca, Milan, Italy) for many fruitful dis-
cussions and ideas which were at the basis of the present work.

I also warmly thank François Doré for having provided me with the picture of U2,3.

References

1. Adamatzky, A., Goles, E., Mart́ınez, G.J., Tsompanas, M.I., Tegelaar, M., Wosten,
H.A.B.: Fungal automata. Complex Syst. 29(4), 455–483 (2020)

2. Alonso-Sanz, R.: Cellular automata and other discrete dynamical systems with
memory. In: Smari, W.W., Zeljkovic, V. (eds.) Proceedings of HPCS, p. 215. IEEE
(2012)

3. Barrett, C.L., Hunt, H.B., Marathe, M.V., Ravi, S., Rosenkrantz, D.J., Stearns,
R.E.: Complexity of reachability problems for finite discrete dynamical systems. J.
Comput. Syst. Sci. 72(8), 1317–1345 (2006)

4. Bridoux, F., Durbec, A., Perrot, K., Richard, A.: Complexity of fixed point count-
ing problems in Boolean networks. J. Comput. Syst. Sci. 126, 138–164 (2022)

5. Chaudhuri, P., Chowdhury, D., Nandi, S., Chattopadhyay, S.: Additive Cellular
Automata Theory and Applications, vol. 1. IEEE Press (1997)

6. Dennunzio, A., Formenti, E., Manzoni, L., Porreca, A.E.: Complexity of the dynam-
ics of reaction systems. Inf. Comput. 267, 96–109 (2019)

7. Formenti, E., Manzoni, L., Porreca, A.E.: On the complexity of occurrence and
convergence problems in reaction systems. Nat. Comput. 14(1), 185–191 (2014).
https://doi.org/10.1007/s11047-014-9456-3

8. Formenti, E., Papazian, C., Richard, A., Scribot, PA.: From additive flowers to
additive automata networks. In: Adamatzky, A. (eds.) Automata and Complexity.
Emergence, Complexity and Computation, vol. 42. Springer, Cham (2022). https://
doi.org/10.1007/978-3-030-92551-2 18

9. Garey, M.R., Johnson, D.S.: Computers and intractability, vol. 174. freeman San
Francisco (1979)

10. Hammack, R.H., Imrich, W., Klavžar, S.: Handbook of Product Graphs, vol. 2.
CRC Press, Boca Raton (2011)

11. Immerman, N.: Descriptive Complexity. Texts in Computer Science. Springer, New
York (2012). https://doi.org/10.1007/978-1-4612-0539-5

12. Marañón, G.Á., Encinas, L.H., del Rey, Á.M.: A multisecret sharing scheme for
color images based on cellular automata. Inf. Sci. 178(22), 4382–4395 (2008)

https://doi.org/10.1007/s11047-014-9456-3
https://doi.org/10.1007/978-3-030-92551-2_18
https://doi.org/10.1007/978-3-030-92551-2_18
https://doi.org/10.1007/978-1-4612-0539-5

Complexity in Finite Dynamical Systems 11

13. Miller, G.L.: Graph isomorphism, general remarks. In: Proceedings of the Ninth
Annual ACM Symposium on Theory of Computing, pp. 143–150. STOC 1977,
Association for Computing Machinery, New York, NY, USA (1977). https://doi.
org/10.1145/800105.803404

14. Nandi, S., Kar, B.K., Chaudhuri, P.P.: Theory and applications of cellular
automata in cryptography. IEEE Trans. Comput. 43(12), 1346–1357 (1994)

15. Papadimitriou, C.: Computational Complexity. Addison-Wesley, Theoretical com-
puter science (1994)

https://doi.org/10.1145/800105.803404
https://doi.org/10.1145/800105.803404

A Survey on Computationally Complete
Accepting and Generating Networks

of Evolutionary Processors

Bianca Truthe(B)

Institut Für Informatik, Universität Giessen, Arndtstr. 2, 35392 Giessen, Germany

bianca.truthe@informatik.uni-giessen.de

Abstract. In this survey, we discuss accepting and generating networks
of evolutionary processors in their various characteristics as presented in
the literature over the years. We show several research directions with
respect to reducing the resources needed for still being computationally
complete and gather results obtained in these areas so far.

Keywords: Network · Evolutionary Processor · Computational Power

1 Introduction

Based on the idea of processing languages in a distributed and parallel manner
by a system of simple agents,several models of language generating or accepting
devices have been developed (for instance, grammar systems, evolutionary sys-
tems, networks of language processors, networks of splicing systems, networks
of Watson–Crick D0L systems). Here, we focus on networks of evolutionary pro-
cessors.

Starting from networks of language processors which have been introduced
in [6] by E. Csuhaj-Varjú and A. Salomaa, networks of evolutionary pro-
cessors have been developed in [4] by J. Castellanos, C. Mart́ın-Vide, V.
Mitrana, and J. M. Sempere inspired by biological processes.

Such a network can be considered as a graph where the nodes represent pro-
cessors which apply production rules to the words they contain and the edges are
considered as communication channels for exchanging words between processors.

The computation consists of alternating derivation (evolutionary) and com-
munication steps. In an evolutionary step, any node derives from its language all
possible words according to its production rules as its new language (any word
is assumed to exist in an arbitrary number such that there are enough words
for the application of rules; only one rule is applied in one step at one place at
most; if no rule is applicable, then the word itself will survive this derivation
step, otherwise the original word will not exist anymore after the derivation).
The allowed production rules are that one letter is substituted by a letter, a
letter is inserted, or a letter is deleted; the nodes are then called substitution

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Durand-Lose and G. Vaszil (Eds.): MCU 2022, LNCS 13419, pp. 12–26, 2022.
https://doi.org/10.1007/978-3-031-13502-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13502-6_2&domain=pdf
http://orcid.org/0000-0003-0031-5275
https://doi.org/10.1007/978-3-031-13502-6_2

Computationally Complete Networks of Evolutionary Processors 13

nodes, insertion nodes, or deletion nodes, respectively. In a communication step,
any node sends copies of those words to other nodes which satisfy an output
condition given as a regular language (called the output filter) and any node
adopts (copies of) words sent by the other nodes if the words satisfy an input
condition also given by a regular language (called the input filter). Words not
passing an output filter remain in the node for the next derivation step; words
which have left node but do not pass an input filter to enter some node get lost
(disappear from the network).

In the meantime, also other variants have been introduced and investigated,
e. g., networks where the filters belong to edges not nodes (e. g., [19]) or networks
where the filtering is realized by polarization (e. g., [17]).

Networks of evolutionary processors can be defined as language generating
or language accepting devices. In case of a generating device, the processors
start working with finite sets of axioms and all words which are in a designated
processor at some time form the generated language. In case of an accepting
device, input words are accepted if there is a computation which leads to a word
in a designated processor.

Early results on generating networks of evolutionary processors can be found,
e. g., in [4,5,23]. In [11] and [1], the generative capacity of networks of evolution-
ary processors was investigated where at most two types of rules occur. In [7],
the generative capacity of networks of evolutionary processors was investigated
for cases that all filters belong to a certain subfamily of the set of all regular lan-
guages. In [27], networks of evolutionary processors were investigated where the
filters are restricted by bounded resources, namely the number of non-terminal
symbols or the number of production rules which are necessary for generating
the languages or the number of states of a minimal deterministic finite automa-
ton over an arbitrary alphabet which are necessary for accepting the filters. In
[15], the use of codes and ideals as filters was studied. In [14], the hierarchies of
the language classes obtained before were merged.

Accepting networks of evolutionary processors were introduced in [22]. Fur-
ther results, especially on accepting networks where the filters belong to certain
subclasses of the family of the regular languages, were published in [8] and [20].
In [28], accepting networks of evolutionary processors were investigated where
the filters are restricted by bounded resources (number of non-terminal symbols,
number of production rules necessary for generating the languages or number
of states of a minimal deterministic finite automaton over an arbitrary alphabet
necessary for accepting the filters). In [16], the use of codes and ideals as filters
was studied and compared to the impact of other filters.

In the present paper, we give an overview about classes of generating or
accepting networks of evolutionary processors which generate or accept all recur-
sively enumerable languages.

2 Definitions

We assume that the reader is familiar with the basic concepts of formal language
theory (see, e. g., [25]). and recall here only some notations used in the paper.

14 B. Truthe

Let V be an alphabet. By V ∗ we denote the set of all words (strings) over the
alphabet V (including the empty word λ). The cardinality of a set A is denoted
by |A|.

A phrase structure grammar is a quadruple G = (N,T, P, S) where N is a
finite set of non-terminal symbols, T is a finite set of terminal symbols, P is a
finite set of production rules which are written as α → β with α ∈ (N ∪T)∗ \T ∗

and β ∈ (N ∪ T)∗, and S ∈ N is the axiom. A grammar is right-linear if, for
any rule α → β, the left-hand side α consists of a non-terminal symbol only
and the right-hand side β contains at most one non-terminal symbol and this
is at the right end of the word: α ∈ N and β ∈ T ∗ ∪ T ∗N . A special case
of right-linearity is regularity where each rule contains exactly one terminal
symbol (with the only possible exception S → λ). Let G = (N,T, P, S) be a
grammar. A word u ∈ (N ∪ T)∗ is derived in one step to a word v ∈ (N ∪ T)∗

by the grammar G, written as u =⇒ v, if there are a rule α → β ∈ P and two
subwords x and y of u such that u = xαy and y = xβy. By =⇒∗, we denote the
reflexive and transitive closure of the derivation relation =⇒. The language L(G)
generated by the grammar G is the set of all words which consist of terminal
symbols and which are derivable from the axiom S:

L(G) = { w | w ∈ T ∗ and S =⇒∗ w }.

Regular and right-linear grammars generate the same family of languages (the
regular languages). Therefore, also right-linear grammars are often called regu-
lar. In the context of descriptional complexity, when the number of non-terminal
symbols or the number of production rules which are necessary for generating a
language are considered then there is a difference whether a language is gener-
ated by means of regular or right-linear rules. We use in this paper right-linear
grammars.

By REG and RE , we denote the families of languages generated by regular
and arbitrary phrase structure grammars, respectively.

A finite automaton is a quintuple A = (V,Z, z0, F, δ) where V is an alphabet
called the input alphabet, Z is a non-empty finite set of elements which are
called states, z0 ∈ Z is the so-called start state, F ⊆ Z is the set of accepting
states, and δ : Z × V → P(Z) is a mapping which is also called the transition
function where P(Z) denotes the power set of Z (the set of all subsets of Z). A
finite automaton is called deterministic if every set δ(z, a) for z ∈ Z and a ∈ V
is a singleton set.

The transition function δ can be extended to a function δ∗ : Z ×V ∗ → P(Z)
where δ∗(z, λ) = {z} and

δ∗(z, va) =
⋃

z′∈δ∗(z,v)

δ(z′, a).

We will use the same symbol δ in both the original and extended version of the
transition function.

Let A = (V,Z, z0, F, δ) be a finite automaton. A word w is accepted by the
finite automaton A if and only if the automaton has reached an accepting state
after reading the input word w:

Computationally Complete Networks of Evolutionary Processors 15

L(A) = { w | δ(z0, w) ∩ F �= ∅ }.

The family of the languages accepted by finite automata is also the family of the
regular languages.

In the sequel, let V be an alphabet. For a language L over V , we set

Comm(L) = { ai1 . . . ain | a1 . . . an ∈ L, n ≥ 1, {i1, i2, . . . , in} = {1, 2, . . . , n} },

Circ(L) = { vu | uv ∈ L, u, v ∈ V ∗ },

Suf (L) = { v | uv ∈ L, u, v ∈ V ∗ }.

We consider the following restrictions for regular languages (which yield so-
called subregular families of languages). Let L be a language and V = alph(L)
the minimal alphabet of L. We say that the language L, with respect to the
alphabet V , is

– monoidal if L = V ∗,
– combinational if it has the form L = V ∗A for some subset A ⊆ V ,
– definite if it can be represented in the form L = A ∪ V ∗B where A and B are

finite subsets of V ∗,
– nilpotent if L is finite or V ∗ \ L is finite,
– commutative if L = Comm(L),
– circular if L = C irc(L),
– suffix-closed if the relation xy ∈ L for some words x, y ∈ V ∗ implies that also

the suffix y belongs to L or equivalently, L = Suf (L),
– non-counting (or star-free) if there is an integer k ≥ 1 such that, for any three

words x, y, z ∈ V ∗, the relation xykz ∈ L holds if and only if also the relation
xyk+1z ∈ L holds,

– power-separating if for any word x ∈ V ∗ there is a natural number m ≥ 1
such that either the equality Jm

x ∩ L = ∅ or the inclusion Jm
x ⊆ L holds

where Jm
x = { xn | n ≥ m },

– ordered if the language L is accepted by a finite automaton A = (Z, V, δ, z0, F)
where (Z,�) is a totally ordered set and, for any a ∈ V , the relation z � z′

implies the relation δ(z, a) � δ(z′, a),
– union-free if L can be described by a regular expression which is only built

by product and star.

Among the commutative, circular, suffix-closed, non-counting, and power-se-
parating languages, we consider only those which are also regular.

By FIN , MON , COMB , DEF , NIL, COMM , CIRC , SUF , NC , PS , ORD ,
and UF , we denote the families of all finite, monoidal, combinational, defi-
nite, nilpotent, regular commutative, regular circular, regular suffix-closed, reg-
ular non-counting, regular power-separating, ordered, and union-free languages,
respectively.

In several papers, also regular languages have been considered which are
based on some kind of random context: A language over an alphabet V is defined
by two subsets P ⊆ V and F ⊆ V and a mode (strong or weak) as the set of all

16 B. Truthe

words w ∈ (V \ F)∗ which contain every symbol of the permitting set P (in the
strong mode) or at least one symbol (in the weak mode, if P is not empty) but,
in any case, no symbol of the forbidding set F .

Additionally, families of languages are considered which are defined by
bounding the resources which are necessary for accepting or generating these
languages.

Let RLG be the set of all right-linear grammars and DFA the set of all
deterministic finite automata. Further, let

G = (N,T, P, S) ∈ RLG and A = (V,Z, z0, F, δ) ∈ DFA.

Then we define the following measures of descriptional complexity:

Var(G) = |N |, Prod(G) = |P |, State(A) = |Z|.

For these complexity measures, we define the following families of languages (we
abbreviate the measure Var by V , the measure Prod by P , and the measure
State by Z):

RLV
n = { L | ∃G ∈ RLG : L = L(G) and Var(G) ≤ n } ,

RLP
n = { L | ∃G ∈ RLG : L = L(G) and Prod(G) ≤ n } ,

REGZ
n = { L | ∃A ∈ DFA : L = L(A) and State(A) ≤ n } .

We now introduce the notion of an ideal in V ∗ from the theory of rings and
semigroups.

A non-empty language L ⊆ V ∗ is called a right (left) ideal if and only if, for
any word v ∈ V ∗ and any word u ∈ L, we have uv ∈ L (vu ∈ L, respectively).
It is easy to see that the language L is a right (left) ideal if and only if there is
a language L′ such that L = L′V ∗ (L = V ∗L′, respectively).

We now present some notions from coding theory, especially some special
codes. For details, we refer to [18] and [26].

For a word x ∈ V ∗, let

E(x) = { y | y ∈ V +, vyv′ = x for some v, v′ ∈ V ∗ },

(i. e., E(x) is the set of all non-empty subwords of x).
A language L ⊆ V ∗ is called

– a code if and only if, for any numbers n ≥ 1, m ≥ 1, and words

x1, x2, . . . , xn, y1, y2, . . . ym ∈ L

such that
x1x2 . . . xn = y1y2 . . . ym,

we have the equalities n = m and xi = yi for 1 ≤ i ≤ n (i. e., a word of L∗

has a unique decomposition into code words.

Computationally Complete Networks of Evolutionary Processors 17

– a solid code if and only if, for any numbers n ≥ 1, m ≥ 1, words

x1, x2, . . . , xn, y1, y2, . . . ym ∈ L,

and words
v1, v2, . . . , vn+1, w1, w2, . . . , wm+1

with E(vi) ∩ L = ∅ for 1 ≤ i ≤ n + 1, and E(wj) ∩ L = ∅ for 1 ≤ j ≤ m + 1
such that

v1x1v2x2 . . . vnxnvn+1 = w1y1w2y2 . . . wmymwm+1,

we have n = m, xi = yi for 1 ≤ i ≤ n, and vj = wj for 1 ≤ j ≤ n + 1;
– uniform if and only if L ⊆ V n for some n ≥ 1 (all words have the same

length);
– prefix if and only if, for any words u ∈ L and v ∈ V ∗ such that uv ∈ L, we

have v = λ (i. e., any proper prefix of a word in L is not in L);
– suffix if and only if, for any words u ∈ L and v ∈ V ∗ such that vu ∈ L, we

have v = λ (i. e., any proper suffix of a word in L is not in L);
– bifix if and only if it is prefix as well as suffix;
– infix if and only if, for any u ∈ L, and v, v′ ∈ V ∗ such that vuv′ ∈ L, we have

v = v′ = λ (i. e., any proper subword of a word in L is not in L).

Note that uniform, prefix, suffix, bifix, and infix languages are codes.
A code L ⊆ V ∗ is called

– outfix if and only if, for any words u ∈ V ∗ and v, v′ ∈ V ∗ such that vv′ ∈ L
and vuv′ ∈ L, we have u = λ;

– reflective if and only if, for any words u, v ∈ V ∗ such that uv ∈ L, we have
vu ∈ L.

By rId , lId , C , SC , PfC , SfC , BfC , IfC , OfC , RC , and UC , we denote
the families of regular right ideals, regular left ideals, regular codes, regular
solid codes, regular prefix codes, regular suffix codes, regular bifix codes, regular
infix codes, regular outfix codes, regular reflective codes and uniform codes,
respectively.

We now present networks of evolutionary processors. We call a produc-
tion α → β a substitution if |α| = |β| = 1 and deletion if |α| = 1 and β = λ.
The productions are applied like context-free rewriting rules. We say that a
word v derives a word w, written as v =⇒ w, if there are words x, y and a
production α → β such that v = xαy and w = xβy.

We introduce insertion as a counterpart of deletion. We write λ → a, where a
is a letter. The application of an insertion λ → a derives from a word w any
word w1aw2 with w = w1w2 for some (possibly empty) words w1 and w2.

If the applied rule p should be mentioned, we write v =⇒p w. For a set P
of rules, we write v =⇒P w if and only if v =⇒p w for some rule p ∈ P .
The reflexive and transitive closure of the relation is denoted by =⇒∗

P : we
write x =⇒∗

P y if there are rules p1, . . . , pn (n ≥ 0) in P and words w0, . . . , wn

18 B. Truthe

such that x = w0, wi =⇒pi+1 wi+1 for i = 0, . . . , n − 1, and wn = y. If at least
one rule is applied, we write x =⇒+

P y. For an alphabet V , we denote by SUBV ,
DELV , and INSV the sets of all substitution, deletion, or insertion rules, respec-
tively, over the alphabet V .

We first define networks of evolutionary processors for generating languages.
In the literature, they are abbreviated as NEPs but in order to better distiguish
them from accepting networks, for say here GNEPs.

Definition 1.

1. A generating network of evolutionary processors (of size n) is an (n+3)-tuple
N = (V,N1, N2, . . . , Nn, E, no) where
– V is a finite alphabet (the working alphabet of the network),
– for 1 ≤ i ≤ n, there is a processor Ni = (Mi, Ai, Ii, Oi) where

• Mi is a set of evolution rules of a certain type, i. e., Mi ⊆ SUBV or
Mi ⊆ DELV or Mi ⊆ INSV ,

• Ai is a finite subset of V ∗ (the language of axioms, from where the
processing starts in this processor),

• Ii and Oi are regular sets over V (called the input and output filter,
respectively),

– E is a subset of {1, 2, . . . , n} × {1, 2, . . . , n}, and
– no is a natural number from the set {1, 2, . . . , n}; the processor Nno is

called the output node of the network.
2. A configuration C of N is an n-tuple C = (C(1), C(2), . . . , C(n)) where C(i)

is a subset of V ∗ for 1 ≤ i ≤ n.
3. Let C = (C(1), C(2), . . . , C(n)) and C ′ = (C ′(1), C ′(2), . . . , C ′(n)) be two

configurations of N . We say that C derives C ′ in one
– evolution step (written as C =⇒ C ′) if, for 1 ≤ i ≤ n, the set C ′(i)

consists of all words w ∈ C(i) to which no rule of Mi is applicable and of
all words w for which there are a word v ∈ C(i) and a rule p ∈ Mi such
that v =⇒p w holds,

– communication step (written as C � C ′) if, for 1 ≤ i ≤ n,

C ′(i) = (C(i) \ Oi) ∪
⋃

(k,i)∈E

C(k) ∩ O(k) ∩ I(i).

The computation of N is a sequence of configurations

Ct = (Ct(1), Ct(2), . . . , Ct(n)), for t ≥ 0,

such that
– C0 = (A1, A2, . . . , An),
– for any t ≥ 0, C2t derives C2t+1 in one evolution step:

C2t =⇒ C2t+1,

Computationally Complete Networks of Evolutionary Processors 19

– for any t ≥ 0, C2t+1 derives C2t+2 in one communication step:

C2t+1 � C2t+2.

4. The language L(N) generated by N is defined as

L(N) =
⋃

t≥0

Ct(no)

where Ct = (Ct(1), Ct(2), . . . , Ct(n)) with t ≥ 0 is the computation of N .

Before we define accepting networks, we briefly describe how such a network
works. The underlying structure of a GNEP is a graph consisting of some, say n,
nodes N1, N2, . . . , Nn (called processors) and edges given by E such that there is
a directed edge from Nk to Ni if and only if (k, i) ∈ E. Any processor Ni consists
of a set Mi of evolution rules (also called mutation rules), a set Ai of start
words, an input filter Ii and an output filter Oi. We say that Ni is a substitution
node or a deletion node or an insertion node if Mi ⊆ {a → b | a, b ∈ V }
or Mi ⊆ {a → λ | a ∈ V } or Mi ⊆ {λ → b | b ∈ V }, respectively. The
input filter Ii and the output filter Oi control the words which are allowed
to enter and to leave the node, respectively. With any node Ni and any time
moment t ≥ 0, we associate a set Ct(i) of words (the words contained in the
node Ni at time t). Initially, Ni contains the words of Ai. In an evolutionary
step, we derive from Ct(i) all words by applying rules from the set Mi (each word
occurs in a sufficiently large number, each rule is applied at an arbitrary possible
position in a word, but only one rule at one place is applied in one step, if no rule
can be applied to a word, then it remains unchanged, if a rule can be applied, then
the original word will be consumed). In a communication step, any processor Ni

sends out all words Ct(i) ∩ Oi (which pass the output filter) to all processors to
which a directed edge exists (only the words from Ct(i) \ Oi remain in the set
associated with Ni) and, moreover, it receives from any processor Nk such that
there is an edge from Nk to Ni all words sent by Nk and passing the input filter Ii

of Ni, i. e., the processor Ni gets in addition all words of (Ct(k) ∩ Ok) ∩ Ii. The
computation starts with an evolutionary step and then communication steps and
evolutionary steps are alternately performed. The language generated consists
of all words which are in the output node Nno at some moment t with t ≥ 0.

We now define networks of evolutionary processors for accepting languages
(ANEPs for short).

Definition 2. 1. An accepting network of evolutionary processors (of size n)is
a (n + 5)-tuple N = (V,U,N1, N2, . . . , Nn, E, ni, no) where
– V is a finite alphabet, called the input alphabet of the network,
– U is a finite alphabet with V ⊆ U , called the working alphabet of the

network,
– Ni = (Mi, Ii, Oi) for 1 ≤ i ≤ n are the processors where

20 B. Truthe

• Mi is a set of rules of a certain type: Mi ⊆ SUBU or Mi ⊆ DELU or
Mi ⊆ INSU ,

• Ii and Oi are regular sets over U (called the input and output filter,
respectively),

– E is a subset of {1, 2, . . . , n} × {1, 2, . . . , n}, and
– ni and no are two natural numbers from the set {1, 2, . . . , n}; the processor

Nni is called the input node and Nno the output node of the network.
2. Configuration, evolutionary steps, and communication steps are defined as for

generating networks.
The computation of an evolutionary network N on an input word w ∈ V ∗

is a sequence of configurations Cw
t = (Cw

t (1), Cw
t (2), . . . , Cw

t (n)) with t ≥ 0,
such that
– Cw

0 (ni) = {w} and Cw
0 (j) = ∅ for j ∈ {1, . . . , n} \ {ni},

– for any t ≥ 0, Cw
2t derives Cw

2t+1 in one evolutionary step,
– for any t ≥ 0, Cw

2t+1 derives Cw
2t+2 in one communication step.

The computation of an evolutionary network N on an input word w ∈ V ∗ is
said to be accepting if there exists a step t ≥ 0 in which the component Cw

t (no)
of the configuration representing the content of the output node is not empty.

3. The language L(N) accepted by N is defined as

L(N) = { w | w ∈ V ∗ and the computation of N on w is accepting }.

An accepting network of evolutionary processors works in the same manner as
a generating one. The differences are, that, in an ANEP, only one processor has
a word in the beginning (called the input word) and that a word in the output
processor in an ANEP indicates the acceptance of the input word whereas in
a GNEP it belongs to the generated language.

For a language class X, we denote the class of languages accepted by networks
of evolutionary processors where all filters belong to the class X by A(X) and
the class of languages generated by networks of evolutionary processors where
all filters belong to the class X by E(X). We consider the filters independently
from the environment. A filter language belongs to some family X if it belongs
to it with respect to its smallest alphabet, not necessarily to the the alphabet of
all letters which might occur in the node or even in the entire network. A word
passes a filter if it is an element of the language representing the filter otherwise
it does not pass the filter.

In the literature, also other definitions have been used. In the first paper [4]
and subsequent ones, the underlying graph was a complete one and the inser-
tion and deletion rules were allowed only to be applied at the end of a word
(substitution was allowed everywhere). Later, the so-called hybrid networks of
evolutionary processors were introduced (generating HNEPs in [24] and accept-
ing HNEPs in [22]) where each processor is equipped also with a position where
its rules must be applied (either all to the left end of a word or all to the right
end of a word, or at an arbitrary place). Another difference regards what hap-
pens with words to which not all rules or even no rule can be applied in an
evolutionary step. Consider, for instance, the word a. If it is in a processor with

Computationally Complete Networks of Evolutionary Processors 21

the deletion rule a → λ and only this rule, then the word is derived to λ. If
further a deletion rule b → λ is present, then this rule does not change the word.
Hence, the words obtained are a (by the b-rule) and λ (by the a-rule). In [2], a
variant has been introduced, called obligatory HNEPs, where only the evolved
words belong to the derived language (in this example, only λ because a together
with the b-rule yields the empty set). Hence, in OHNEPs, the original words dis-
appear in an evolutionary step (their evolution is obligatory). In [11], a weaker
variant has been introduced where in an evolutionary step a word survives if no
rule can be applied to it but if a rule can be applied, then the original word
will not be present any longer (after all rules have been applied at every possible
position). In all these cases, computational completeness was obtained (for every
recursively enumerable language, there is a network of evolutionary processors
generating or accepting it, no matter what details have been used).

In the sequel, we refer here to papers where the same definition as above has
been used. Some results appeared already earlier in other publications but based
on another definition.

The following theorem is known (see [7] and [20]).

Theorem 1 ([7], [20]). We have E(REG) = A(REG) = RE.

As usual for powerful models, one asks what can be reduced to what extend
without leaving this power.

3 Restrictions Without Decreasing Computational Power

The size of a system is always interesting since smaller systems need fewer
resources (space, time for the construction). Regarding resources, the size is not
only the number of components but also the sum of the sizes of the components.
So, there are many aspects to consider.

3.1 Number of Processors

While in the introductory paper to GNEPs [4] the size of the constructed net-
work was still unbounded (depending on the size of the problem), it has been
shown in [5] that for any recursively enumerable language, there is a GNEP with
five processors generating the language. Already between these two papers, the
definition changed (in the first one, deletion and insertion rules were allowed
to be applied only at the ends of a word whereas in the second paper, they
could be applied everywhere in a word). In [3], the number was reduced to four
(if one takes only terminal words of the generated language (the intersection
of the language with a monoid), then even three processors are sufficient). In
the same paper, it was shown that, with again another definition (any type of
rule is allowed in any processor), any recursively enumerable language can be
generated by a network with two processors (even one with intersection with a
monoid). Back to processors specialized in one type of rules only, the network
with four/three nodes used each type of rules. Hence, a natural question was

22 B. Truthe

whether the number of rule types could be reduced. This question was investi-
gated in [1] where it was shown that any recursively enumerable language can
be generated by a network which has one node for insertion rules, one node for
deletion rules, and one node without rules (which is for collecting the terminal
words) only. If one allows intersection with a monoid, the node without rules can
be omitted. This yielded also an optimal result for the total number of processors
needed to be still computational complete.

Regarding accepting NEPs, any recursively enumerable language can be
accepted by a network with three nodes: one substitution or deletion node, one
insertion node and one without rules [10].

3.2 Number of Production Rule Types

As mentioned above, in [1], it was shown that any recursively enumerable lan-
guage can be generated by a network which has one node for insertion rules
one node for deletion rules, and one node without rules. In the same paper, it
was shown that networks with an arbitrary number of deletion and substitution
nodes only generate finite languages (and, for each finite language, one deletion
node or one substitution node is sufficient) and networks with an arbitrary num-
ber of insertion and substitution nodes only generate context-sensitive languages
(and, up to an intersection with a monoid, every context-sensitive language can
be generated by a network with one substitution node and one insertion node).
So, one type alone would not suffice for computational completeness.

Also ANEPs do not need all three types of rules for being computationally
complete; two types are sufficient: one node with substitution or deletion rules,
one node with insertion rules, and one node without rules [10]. In [9], it has been
shown that networks with only substitution and deletion rules accept context-
sensitive languages only (and that every context-sensitive language is accepted
by such a network). So, insertion rules are essential for being computational
complete.

3.3 Restrictions to the Filters

In several papers, generating or accepting networks haven been investigated
where the filters are not arbitrary regular languages but special ones like finite,
union-free, suffix-closed languages or languages which are codes or languages
which can be generated with a certain number of variables or rules in their gen-
erating right-linear grammarsor accepted by deterministic finite automata with a
certain number of states. Also networks where the filters are given by permitting
and forbidding sets (random-context filters) belong to this area.

For generating NEPs, we refer to the papers [7] and [14] for overviews about
hierarchies where the language classes obtained are put into set theoretic rela-
tions.

In [7], it was shown that the use of filters from the class of ordered, non-
counting, power-separating, circular, suffix-closed regular, union-free, definite,

Computationally Complete Networks of Evolutionary Processors 23

and combinational languages is as powerful as the use of arbitrary regular lan-
guages and yields networks that can generate all the recursively enumerable
languages. On the other hand, the use of filters that are only finite languages
allows only the generation of regular languages, but not every regular language
can be generated. If filters are used which are monoids, nilpotent languages, or
commutative regular languages, we obtain one and the same family of languages
which contains non-context-free languages but not all regular languages.

In [12] and [13], generating networks have been investigated where the min-
imal determinstic finite automata accepting the filter languages are restricted
with respect to the number of their states. It was shown that if the number of
states is bounded by two, then every recursively enumerable language can be
generated by such a network. If the number of states is bounded by one, then
not all regular languages but non-context-free languages can be generated.

In [27], other restrictions on the resources needed for the filters, namely
the number of variables or production rules which are needed by a right-linear
grammar generating a filter were investigated and set into relation with the
restrictions of the papers [12] and [13].

In [15], the generative capacity of GNEPs has been studied where the filters
are codes (arbitrary and special ones) or ideals. The hierarchy of the generated
language classes obtained there has been merged which that one from [27] in the
paper [14].

If the filters are all taken from one of the classes PS , NC , ORD , DEF ,
CIRC , UF , SUF , COMB , lId , rId , (RLV

i)i≥1, (REGZ
i)i≥2, then any recursively

enumerable language can be generated. With filters from the other cosidered
classes, the GNEPs are less powerful.

Theorem 2 ([7,14,15]). We have

RE = E(PS) = E(NC) = E(ORD) = E(DEF) = E(CIRC)
= E(UF) = E(SUF) = E(COMB)

= E(lId) = E(rId) = E((RLV
i)i≥1) = E((REGZ

i)i≥2).

For accepting NEPs, we refer to the papers [21] and [16] for overviews about
hierarchies where the language classes obtained are put into set theoretic rela-
tions.

In [21], it was shown that the use of filters from the class of non-counting,
ordered, power-separating, suffix-closed regular, union-free, definite and combi-
national languages is as powerful as the use of arbitrary regular languages and
yields networks that can accept all the recursively enumerable languages. On the
other hand, by using filters that are only finite languages, monoids, nilpotent lan-
guages, commutative regular languages, or circular regular languages, one cannot
generate all recursively enumerable languages. Hence, for such filters, the only
difference between generating and accepting NEPs is the class CIRC . Networks
with circular filters only can still generate every recursively enumerable language
whereas they cannot accept every such language.

24 B. Truthe

In [28], the aforementioned restrictions on the resources needed for the fil-
ters, namely the number of variables or production rules which are needed by
a right-linear grammar generating a filter and the number of states which are
needed by a minimal determinstic finite automaton accepting a filter were inves-
tigated and set into relation with the restrictions of the paper [21]. Here, the
results for GNEPs and ANEPs coincide: In both cases, the classes (RLV

i)i≥1

and (REGZ
i)i≥2 yield computationally complete networks whereas filter restric-

tions to the classes REGZ
1 or RLP

i for any number i ≥ 1 are less powerful.
In [16], the generative capacity of ANEPs has been studied where the filters

are codes (arbitrary and special ones) or ideals. The hierarchy of the generated
language classes obtained there has been merged which that one from [28]. For
ideals, the results for GNEPs and ANEPs coincide: In both cases, the classes lId
and rId yield computationally complete networks. For codes, the situation is
different: Whereas filter restrictions to the classes C , PfC , SfC , BfC , IfC , or SC
do not decrease the computational power of accepting networks (such filters are
equally powerful as arbitrary regular languages), generating networks with filters
from such classes are less powerful.

Summarizing, for accepting networks with filters from subregular language
classes, we have the following results.

Theorem 3 ([16,21]). We have

RE = A(PS) = A(NC) = A(ORD) = A(DEF)
= A(UF) = A(SUF) = A(COMB)

= A(lId) = A(rId) = A((RLV
i)i≥1) = A((REGZ

i)i≥2)
= A(C) = A(PfC) = A(SfC) = A(BfC) = A(IfC) = A(SC).

4 Further Research

Various kinds of generating and accepting networks of evolutionary processors
have been developed. Every kind has its own motivation (for instance, biological
background). However, from the theoretical point of view, it would be interesting
to close the gaps such that networks and their properties are better comparable.

Further, there are still open questions about the computational power of
certain networks (e. g., networks with insertion processors only or where the
filters belong to a class such that not every recursively enumerable language
can be generated or accepted by such a network). Also other restrictions could
be considered (other subregular language classes for the filters) or restrictions
regarding other resources or combinations thereof.

References

1. Alhazov, A., Dassow, J., Mart́ın-Vide, C., Rogozhin, Y., Truthe, B.: On networks
of evolutionary processors with nodes of two types. Fundam. Informaticae 91, 1–15
(2009)

Computationally Complete Networks of Evolutionary Processors 25

2. Alhazov, A., Enguix, G.B., Rogozhin, Y.: Obligatory hybrid networks of evolu-
tionary processors. In: Filipe, J., Fred, A.L.N., Sharp, B. (eds.) ICAART 2009 -
Proceedings of the International Conference on Agents and Artificial Intelligence,
Porto, Portugal, 19–21 January 2009, pp. 613–618. INSTICC Press (2009)

3. Alhazov, A., Mart́ın-Vide, C., Rogozhin, Y.: On the number of nodes in univer-
sal networks of evolutionary processors. Acta Informatica 43(5), 331–339 (2006).
https://doi.org/10.1007/s00236-006-0024-x

4. Castellanos, J., Mart́ın-Vide, C., Mitrana, V., Sempere, J.M.: Solving NP-complete
problems with networks of evolutionary processors. In: Mira, J., Prieto, A. (eds.)
IWANN 2001. LNCS, vol. 2084, pp. 621–628. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-45720-8 74

5. Castellanos, J., Mart́ın-Vide, C., Mitrana, V., Sempere, J.M.: Networks of evolu-
tionary processors. Acta Informatica 39(6–7), 517–529 (2003). https://doi.org/10.
1007/s00236-003-0114-y

6. Csuhaj-Varjú, E., Salomaa, A.: Networks of parallel language processors. In: Păun,
G., Salomaa, A. (eds.) New Trends in Formal Languages. LNCS, vol. 1218, pp.
299–318. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-62844-4 22

7. Dassow, J., Manea, F., Truthe, B.: Networks of evolutionary processors: the power
of subregular filters. Acta Informatica 50(1), 41–75 (2013). https://doi.org/10.
1007/s00236-012-0172-0

8. Dassow, J., Mitrana, V.: Accepting networks of non-inserting evolutionary proces-
sors. In: Petre, I., Rozenberg, G. (eds.) Proceedings of NCGT 2008 - Workshop
on Natural Computing and Graph Transformations, Leicester, United Kingdom, 8
September 2008, pp. 29–41. University of Leicester (2008)

9. Dassow, J., Mitrana, V.: Accepting networks of non-inserting evolutionary proces-
sors. In: Priami, C., Back, R.-J., Petre, I. (eds.) Transactions on Computational
Systems Biology XI. LNCS, vol. 5750, pp. 187–199. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04186-0 9

10. Dassow, J., Mitrana, V., Truthe, B.: The role of evolutionary operations in accept-
ing hybrid networks of evolutionary processors. Inf. Comput. 209(3), 368–382
(2011)

11. Dassow, J., Truthe, B.: On the power of networks of evolutionary processors. In:
Durand-Lose, J., Margenstern, M. (eds.) MCU 2007. LNCS, vol. 4664, pp. 158–169.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74593-8 14

12. Dassow, J., Truthe, B.: On networks of evolutionary processors with state limited
filters. In: Bordihn, H., Freund, R., Hinze, T., Holzer, M., Kutrib, M., Otto, F.
(eds.) Second Workshop on Non-Classical Models of Automata and Applications
(NCMA), Jena, Germany, 23–24 August 2010, Proceedings. books@ocg.at, vol.
263, pp. 57–70. Österreichische Computer Gesellschaft, Austria (2010)

13. Dassow, J., Truthe, B.: On networks of evolutionary processors with filters accepted
by two-state-automata. Fundam. Informaticae 112(2–3), 157–170 (2011)

14. Dassow, J., Truthe, B.: Generating networks of evolutionary processors with
resources restricted and structure limited filters. J. Automata Lang. Comb. 25(2–
3), 83–113 (2020)

15. Dassow, J., Truthe, B.: Networks with evolutionary processors and ideals and codes
as filters. Int. J. Found. Comput. Sci. 31(1), 73–89 (2020)

16. Dassow, J., Truthe, B.: Accepting networks of evolutionary processors with
resources restricted and structure limited filters. RAIRO Theor. Inform. Appl.
55, 8 (2021)

https://doi.org/10.1007/s00236-006-0024-x
https://doi.org/10.1007/3-540-45720-8_74
https://doi.org/10.1007/3-540-45720-8_74
https://doi.org/10.1007/s00236-003-0114-y
https://doi.org/10.1007/s00236-003-0114-y
https://doi.org/10.1007/3-540-62844-4_22
https://doi.org/10.1007/s00236-012-0172-0
https://doi.org/10.1007/s00236-012-0172-0
https://doi.org/10.1007/978-3-642-04186-0_9
https://doi.org/10.1007/978-3-540-74593-8_14

26 B. Truthe

17. Freund, R., Rogojin, V., Verlan, S.: Variants of networks of evolutionary processors
with polarizations and a small number of processors. Int. J. Found. Comput. Sci.
30(6–7), 1005–1027 (2019)

18. Jürgensen, H., Konstantinidis, S.: Codes1. In: Rozenberg, G., Salomaa, A. (eds.)
Handbook of Formal Languages, pp. 511–607. Springer, Heidelberg (1997). https://
doi.org/10.1007/978-3-642-59136-5 8

19. Loos, R., Manea, F., Mitrana, V.: Small universal accepting networks of evolu-
tionary processors with filtered connections. J. Automata Lang. Comb. 15(1–2),
155–174 (2010)

20. Manea, F., Truthe, B.: Accepting networks of evolutionary processors with sub-
regular filters. Theory of Computing Systems 55(1), 84–109 (2014)

21. Manea, F., Truthe, B.: Accepting networks of evolutionary processors with subreg-
ular filters. Theor. Comput. Syst. 55(1), 84–109 (2013). https://doi.org/10.1007/
s00224-013-9502-z

22. Margenstern, M., Mitrana, V., Pérez-Jiménez, M.J.: Accepting hybrid networks
of evolutionary processors. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA
2004. LNCS, vol. 3384, pp. 235–246. Springer, Heidelberg (2005). https://doi.org/
10.1007/11493785 21

23. Mart́ın-Vide, C., Mitrana, V.: Networks of evolutionary processors: results and
perspectives. In: Molecular Computational Models: Unconventional Approaches,
pp. 78–114 (2005)

24. Mart́ın-Vide, C., Mitrana, V., Pérez-Jiménez, M.J., Sancho-Caparrini, F.: Hybrid
networks of evolutionary processors. In: Cantú-Paz, E. (ed.) GECCO 2003. LNCS,
vol. 2723, pp. 401–412. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-45105-6 49

25. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer, Hei-
delberg (1997). https://doi.org/10.1007/978-3-642-59136-5

26. Shyr, H.J.: Free Monoids and Languages. Hon Min Book Company, Taichung,
Taiwan (1991)

27. Truthe, B.: Networks of evolutionary processors with resources restricted filters.
In: Freund, R., Hospodár, M., Jirásková, G., Pighizzini, G. (eds.) Tenth Work-
shop on Non-Classical Models of Automata and Applications (NCMA), Košice,
Slovakia, 21–22 August 2018, Proceedings. books@ocg.at, vol. 332, pp. 165–180.
Österreichische Computer Gesellschaft (2018)

28. Truthe, B.: Accepting networks of evolutionary processors with resources restricted
filters. In: Freund, R., Holzer, M., Sempere, J.M. (eds.) Eleventh Workshop on
Non-Classical Models of Automata and Applications (NCMA), Valencia, Spain,
2–3 July 2019, Proceedings. books@ocg.at, vol. 336, pp. 187–202. Österreichische
Computer Gesellschaft (2019)

https://doi.org/10.1007/978-3-642-59136-5_8
https://doi.org/10.1007/978-3-642-59136-5_8
https://doi.org/10.1007/s00224-013-9502-z
https://doi.org/10.1007/s00224-013-9502-z
https://doi.org/10.1007/11493785_21
https://doi.org/10.1007/11493785_21
https://doi.org/10.1007/3-540-45105-6_49
https://doi.org/10.1007/3-540-45105-6_49
https://doi.org/10.1007/978-3-642-59136-5

Prescribed Teams of Rules Working
on Several Objects

Artiom Alhazov1, Rudolf Freund2(B), Sergiu Ivanov3, and Sergey Verlan4

1 Vladimir Andrunachievici Institute of Mathematics and Computer Science,
Academiei 5, 2028 Chişinău, Moldova

artiom@math.md
2 Faculty of Informatics, TU Wien,

Favoritenstraße 9–11, 1040 Vienna, Austria
rudi@emcc.at

3 IBISC, Univ. Évry, Paris-Saclay University,
23, boulevard de France, 91034 Évry, France

sergiu.ivanov@ibisc.univ-evry.fr
4 Univ. Paris Est Creteil, LACL, 94010 Creteil, France

verlan@u-pec.fr

Abstract. In this paper we consider prescribed sets of rules working
on several objects either in parallel – in this case the rules have to take
different objects – or else sequentially in any order – in this case several
rules may take the same object to work on.

We show that prescribed teams of size two, i.e., containing exactly
two rules, are sufficient to obtain computational completeness for strings
with the simple rules being of the form aIR(b) – meaning that a symbol
b can be inserted on the right-hand side of a string ending with a –
and DR(b) meaning that a symbol b is erased on the right-hand side
of a string. This result is established for systems starting with three
initial strings. Using prescribed teams of size three, we may start with
only two strings, ending up with the output string and the second string
having been reduced to the empty string. We also establish similar results
when using the generation of the anti-object b− on the right-hand side
of a string instead of deleting the object b, i.e. bIR(b−) inserts the anti-
object b− and the annihilation rule b b− assumed to happen immediately
whenever b and b− meet deletes the b.

Keywords: Computational completeness · Insertion-deletion systems ·
Prescribed teams · Anti-objects

1 Introduction

Cooperation in its different forms is a feature which has attracted a lot of
research in formal languages and theory of computation. Indeed, the family of
context-free languages is quite well studied, and it is folklore that some easy to
describe languages are not context free, e.g. {anbncn | n ∈ N}, the copy language
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Durand-Lose and G. Vaszil (Eds.): MCU 2022, LNCS 13419, pp. 27–41, 2022.
https://doi.org/10.1007/978-3-031-13502-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13502-6_6&domain=pdf
https://doi.org/10.1007/978-3-031-13502-6_6

28 A. Alhazov et al.

{ww | w ∈ V ∗}, for some alphabet V , etc. On the other hand, it is just as well-
known that full cooperation – classically expressed by allowing multiple symbols
in the left-hand side of the rewriting rules – yields computational completeness
in many situations. We refer to [7] for a comprehensive overview of the multiple
facets of cooperation.

This situation aroused interest in the expressive power of intermediate forms,
in which some cooperation is allowed, but full cooperation is avoided. One of the
possible implementations is by forcing some rules to only be applied together,
a classic example being matrix grammars, in which the rules are grouped into
sequences, and must be applied one after another, in order. Here, we focus on a
less strict variant, in which the rules of a group must be applied together, but
the order of their application is not imposed. This control mechanism is known
as prescribed teams and was introduced in [1].

In this paper, we define prescribed teams in a general framework for rewriting
as a control mechanism over abstract rules. In order to study the computational
power of this device, we specialize the rules to string insertion and deletion
operations. More concretely, we focus on insertions and deletions which are only
allowed to occur at the right end of a string and which may depend on a finite
context. We show that by allowing computation to happen on two strings at
the same time, such insertion and deletion rules grouped in prescribed teams
containing three rules can simulate any Turing machine (Theorem 1). We remark
that even though insertion-deletion operations with matrix control have been
quite extensively investigated (e.g., [3–6]), the power of insertion and deletion
operations restricted to the right of the string and equipped with matrix control
has never been studied to the best of our knowledge.

2 Definitions

For an alphabet V , by V ∗ we denote the free monoid generated by V under
the operation of concatenation, i.e., containing all possible strings over V. The
empty string is denoted by λ. Given a string w = w1 . . . wn over V , with wi ∈ V ,
1 ≤ i ≤ n, its mirror image is wR = wn . . . w1. Moreover, instead of w = w1 . . . wn

we may also write w = w(1) . . . w(n).
The cardinality of a set M is denoted by |M |. For further notions and results

in formal language theory we refer to textbooks like [2] and [7].

2.1 Systems with Prescribed Teams of Rules

The main model we consider in this paper is a system of arbitrary objects which
starts on a finite set of such objects and has prescribed teams of rules to work
on these objects until no such team can be applied any more.

Definition 1. A system with prescribed teams of rules is a construct

G = (O,OT , P,R,A) where

Prescribed Teams of Rules Working on Several Objects 29

– O is a set of objects;
– OT ⊆ O is a set of terminal objects;
– P is a finite set of rules, i.e., P = {pi | 1 ≤ i ≤ m}, for some m ≥ 0, and

pi ⊆ O × O;
– R = {T1, . . . , Tn} is a finite set of sets of rules from P called prescribed

teams, i.e., Ti ⊆ P, 1 ≤ i ≤ n;
– A is a finite set of initial objects in O.

A rule p ∈ P is called applicable to an object x ∈ O if and only if there
exists at least one object y ∈ O such that (x, y) ∈ p; in this case we also write
x =⇒p y.

|Ti| is called the size of the prescribed team Ti. If all prescribed teams have
at most size s, then G is called a system (with prescribed teams) of size s. If all
prescribed teams have the same size s, then G is called a homogenous system
(with prescribed teams) of size s. The number of initial objects in A is called the
degree of the system.

Computations in a System with Prescribed Teams of Rules. We may
consider different variants of applications of the prescribed teams of rules as
already indicated above when working on several objects, starting with the initial
objects in A; in any case, at the beginning of a computation step we first have
to choose a suitable team Tk:

parallel each rule in Tk is applied to a different object in the current set of
objects; Tk can only be applied if every rule in Tk can be applied; we observe
that in the parallel case the number of rules in any prescribed team must not
exceed the number of initial objects;

sequential the rules in Tk are applied sequentially in any order – in this case
several rules may take the same object to work on in several sequential deriva-
tion steps, yet again each rule is to be applied exactly once.

Tk can only be applied if every rule in Tk can be applied in the given derivation
mode.

We mention that we do not consider the case where several rules from Tk

may be applied to the same object at the same moment in parallel.
In case the mode of application is not clear from the context, we may specify

it in the definition of the system, i.e., we then write

G = (O,OT , P, T1, . . . , Tn, A, d)

where d ∈ {parallel, sequential}.
A derivation step in G using Tk in the mode d then can be written as

{O1, . . . , Om} =⇒Tk,d {O′
1, . . . , O

′
m}

where {O1, . . . , Om} is the current set of objects and {O′
1, . . . , O

′
m} is the set of

objects obtained after the application of Tk in mode d.

30 A. Alhazov et al.

The derivation relation =⇒G,d of the system G in mode d then is the union
of all derivation relations =⇒Tk,d, 1 ≤ k ≤ n. Given two objects u, v ∈ O,
we write u =⇒d v (u =⇒Tk,d v) to indicate that v can be obtained from u in
one derivation/computation step from u (using the prescribed team Tk) in the
derivation mode d. The reflexive and transitive closure of =⇒G,d is denoted by
=⇒G,d∗. If the derivation mode d is obvious from the context, d is omitted in
all these notations.

For arbitrary systems working in the sequential mode, we can prove the
following complexity result:

Lemma 1. Given a homogenous system

G = (O,OT , P, T1, . . . , Tn, A, sequential)

of size 1, its computations are the union of the computations of the m systems

Gk = (O,OT , P, T1, . . . , Tn, Ak, sequential),

1 ≤ k ≤ m, where A = {Ak | 1 ≤ k ≤ m}.
Proof. In the sequential mode, a prescribed team can only work on one of the m
subjects. Hence, the computations on the initial objects are independent of each
other. Therefore also the terminal objects must be obtained from one of these
initial objects Ak by the corresponding system Gk. �	

2.2 Matrix Grammars Working on Several Objects

A model quite closely related to systems with prescribed teams of rules is the
model of matrix grammars usually only considered to work on one object:

Definition 2. A matrix grammar working on several objects is a construct

G = (O,OT , P,M,A) where

– O is a set of objects;
– OT ⊆ O is a set of terminal objects;
– P is a finite set of rules, i.e., P = {pi | 1 ≤ i ≤ n}, for some n ≥ 0, and

pi ⊆ O × O;
– M is a finite set of sequences of the form (p1, . . . , pn), n ≥ 1, of rules in P ;

an element of M is called a matrix;
– A is a finite set of initial objects in O.

A derivation step in the matrix grammar consists of choosing a matrix and
applying the sequence of rules in the matrix in this order, yet allowing several
rules to be applied to the same object.

Lemma 2. Any system with prescribed teams of rules G = (O,OT , P,R,A)
working in the sequential mode can be simulated by a matrix grammar G =
(O,OT , P,M,A).

Prescribed Teams of Rules Working on Several Objects 31

Proof. From a prescribed team T in R we immediately get the corresponding
set of matrixes for M by taking every possible sequence of the rules in T , i.e.,

M = {[p1. . . . , pn] | {p1. . . . , pn} ∈ R, |{p1. . . . , pn}| = n}.

Hence, matrix grammars are at least as powerful as systems with prescribed
teams of rules working in the sequential mode. �	

2.3 Turing Machines

The computational model we will simulate for showing computational complete-
ness for the systems with prescribed teams of rules defined above are Turing
machines with one tape with left boundary marker Z0:

Definition 3. A Turing machine is a construct

M = (Q,V, T1, T2, δ, q0, q1, Z0, B)

where

– Q is a finite set of states,
– V is the tape alphabet,
– T1 ⊂ V \ ({Z0, B}) is the input alphabet,
– T2 ⊂ V \ ({Z0, B}) is the output alphabet,
– δ ⊂ (Q × V) → (Q × V × {L,R}) is the transition function,
– q0 is the initial state,
– q1 is the final state,
– Z0 ∈ V is the left boundary marker,
– B ∈ V is the blank symbol.

A configuration of the Turing machine M can be written as Z0uqvBω, where
u ∈ (V \ ({Z0}))∗, v ∈ (V \ ({Z0}))+ ∪ {λ}, and Bω indicates the remaining
empty part of the tape, offering an unbounded number of tape cells initially
carrying the blank symbol B; moreover, the current state q ∈ Q is written to
the right of the tape cell on which the read-write head of the Turing machine
currently stands.

A transition between configurations is carried out according to the transition
function δ in the following way for (q,X; p, Y,D) ∈ δ:

– the state changes from q to p,
– the symbol X currently read is replaced by the symbol Y ,

and for
D = R the read-write head goes one step to the right; i.e.,

Z0uXqUvBω =⇒ Z0uY UpvBω;
D = L the read-write head goes one step to the left, i.e.,

Z0uXqvBω =⇒ Z0upY vBω;
observe that the read-write head can never go to the left of Z0.

32 A. Alhazov et al.

For the derivation relation =⇒ as defined above, its reflexive and transitive
closure is defined by =⇒∗.

Turing machines are well-known automata which can compute any partial
recursive relation f : T1

∗ → T2
∗:

A successful computation of the Turing machine M starts with the input
string winput on its tape with the configuration

Z0winputq0B
ω

and ends up with the output string woutput on its tape with the configuration

Z0woutputq1B
ω,

i.e.,
Z0winputq0B

ω =⇒∗ Z0woutputq1B
ω.

A successful computation halts in the final state q1; without loss of generality,
we may assume that from the final state q1 no transition is possible.

The generation of a language L ⊆ T2
∗ can be seen as computing a partial

recursive relation gL : {λ} → T2
∗, acceptance of a language L ⊆ T1

∗ as comput-
ing a partial recursive function hL : T2

∗ → {λ}.

In order to show that another (string) computing device is computationally
complete, an option is to simulate Turing machines, which is exactly what we
will do in the next section.

3 Prescribed Teams of Rules on Strings

In this section we consider the objects to be strings. Moreover, we will restrict
ourselves to special variants of insertion and deletion rules to be applied to
strings.

3.1 Definitions for Prescribed Teams of Insertion and Deletion
Rules on Strings

We are going to use the following notations:

Definition 4.
Right insertions and deletions with contexts:

uIR(v) to a string ending with u, v is appended;
uDR(v) from a string ending with uv, the end v is deleted.

left insertions and deletions with contexts:

uIL(v) to a string beginning with u, v is added as prefix;
uDL(v) from a string beginning with vu, the prefix v is deleted.

right and left substitutions

Prescribed Teams of Rules Working on Several Objects 33

SR(u, v) in a string ending with u, u is replaced by v;
SL(u, v) in a string beginning with u, u is replaced by v.

Both insertions and deletions can easily be replaced by substitutions:

Lemma 3. Right and left insertions and deletions can be replaced by right and
left substitutions, respectively.

Proof. Right and left insertions and deletions are replaced by right and left
substitutions, respectively, in the following way:

– uIR(v) by SR(u, uv);
– uIL(v) by SL(u, vu);
– uDR(v) by SR(uv, u);
– uDL(v) by SL(vu, u).

We remark that contexts need not be considered with substitutions as they can
be deleted and re-inserted immediately. �	
Example 1. Consider the system

G = (T ′∗{c′c}T ∗, T ′∗{c′c}T ∗, P, T1, . . . , Tn, {c′c})

working in the sequential derivation mode, where T is an arbitrary alphabet,
T ′ = {a′ | a ∈ T}, c /∈ T , cc′ is the only initial string, the set P consists of two
disjoint sets of rules R and R′,

R = {aIR(b) | a ∈ T ∪ {c}, b ∈ T} ,
R′ = {a′IL(b′) | a ∈ T ∪ {c}, b ∈ T} ,

i.e., for each rule p = aIR(b) in R we have the corresponding rule p′ = a′IL(b′).
The set of prescribed teams then is formed by all possible couples p, p′, i.e.,

⋃

1≤i≤n

Ti =
⋃

p∈R

{p, p′}.

As both sets of rules work with disjoint alphabets, we get the derivations

{c′c} =⇒{cIR(b1),c′IL(b′
1)} {b′

1c
′cb1} . . .

=⇒{bm−1IR(bm),b′
m−1IL(b′

m−1)} {b′
m . . . b′

1c
′cb1 . . . bm}

Hence, for the language generated by G we obtain (the context-free, but
non-regular) language

{(w′)Rc′cw | w ∈ T ∗}.

We observe that we have started with only one string and only used left and
right insertion of one symbol in the context of another symbol.

We now are going to show that right insertion rules inserting just one symbol
at the end of a string in the left context of just another single symbol together
with right deletion rules eliminating the last symbol of a string, even without
using any context, are already sufficient to obtain computational completeness.
A similar result holds for the corresponding variants of left insertion and deletion
rules.

34 A. Alhazov et al.

3.2 Results for Prescribed Teams of Insertion and Deletion Rules
on Strings

We first establish a result for systems of degree 2 and size 3.

Theorem 1. The computations of a Turing machine M can be simulated by a
homogenous string system with prescribed teams of size 3 and degree 2 using only
rules of the form aIR(b) and DR(b).

Proof. Let
M = (Q,V, T1, T2, δ, q0, q1, Z0, B)

be a Turing machine. In order to represent the configurations of M as finite
strings, we use a right end marker Z1 to mark the end of a finite representa-
tion Z0uqvBmZ1 of the configuration Z0uqvBω, where m may be any natural
number ≥ 0; m depends on how far on the tape the read-write head has already
proceeded during a computation.

We now construct a system G with prescribed teams using only rules of
the form aIR(b) and DR(b) which can simulate the computations of the given
Turing machine M . The basic idea is folklore – a configuration Z0uqvBmZ1 is
represented by two strings Z0uq and (vBmZ1)R = Z1B

mvR, which like stacks
are only affected at the end of the strings. A special technical detail is that when
we reach a situation where the second string is Z1, no transition to the right
is possible immediately, we first have to insert an additional blank B to then
continue with the second string Z1B. Moreover, in order to allow the rules to
distinguish between the two strings, the second string is written in the primed
alphabet V ′ = {X ′ | X ∈ V }.

The system with prescribed teams using only rules of the form aIR(b) and
DR(b) is constructed with only two strings being processed, which represent
these two parts of the configuration; the size of the teams can be restricted to be
exactly three. Moreover, the system is constructed in such a way that the teams
have to be applied in a sequential way, but the sequence of the application of
the rules does not matter, yet the sequence in which the rules are given in the
sets indicates in which sequence the rules are to be applied to obtain the desired
result.

The main idea is that in every derivation step using a prescribed team of
size 3 we only simulate one right insertion or deletion on one of the two strings
in the second step, whereas the first step eliminates the symbol representing the
current state and the third step inserts the symbol representing the next state.
The state symbols always are placed at the end of the first string. Moreover, the
three rules always must be applied exactly in this order, and each of the rules is
applied exactly once.

G = ((V ∪ Q) ∪ (V ∪ Q)′ ∪ Q′′)∗, {Z0}T2
∗, P,R,A, sequential),

A = {Z0winputq0, Z1
′}.

The set of rules P can be collected from the prescribed teams of rules
described in the following for the transitions given by δ, and the intermediate
states defined below are collected in Q′′:

Prescribed Teams of Rules Working on Several Objects 35

(q,X;p,Y,L) With the first prescribed team the symbol X at the end of the
first string is eliminated remembering the rule to be applied and the symbol
W to the left of X in the intermediate state [W ; q,X; p, Y, L;U], where U is
the first symbol at the end of the second string. Then the new symbol Y in
its primed version is inserted to the second string using the second prescribed
team.
Observe that the two teams must be applied exactly in this order, as the inter-
mediate state [W ; q,X; p, Y, L;U] carrying all necessary information cannot
be used otherwise:
1. {DR(q),DR(X),WIR([W ; q,X; p, Y, L;U])}, W,U ∈ V ;

the symbol W to the left of X and the symbol U at the end of the second
string have to be guessed in a non-deterministic way.
The rule DR(X) cannot be applied before the rule DR(q), as the deletions
can only happen in the order the symbols appear at the end of the first
string.
WIR([W ; q,X; p, Y, L;U]) cannot be applied before the other two rules,
as these then would not be applicable any more.

2. {DR([W ; q,X; p, Y, L;U]), U ′IR(Y ′),WIR(p)}.
The rule DR([W ; q,X; p, Y, L;U]) must be applied before the rule
WIR(p), because W is not a state symbol.
The rule U ′IR(Y ′) on the second string can be applied at any moment.
With these two teams, we obtain the following derivation:
{uWXq,Z1

′B′mv′RU ′} =⇒
{uW [W ; q,X; p, Y, L;U], Z1

′B′mv′RU ′} =⇒
{uWp,Z1

′B′mv′RU ′Y ′}
(q,X;p,Y,R) With the first prescribed team the symbol X at the end of the

first string is eliminated, then the new symbol Y is inserted to the first string
instead of X; with the third prescribed team the last symbol U (in its primed
version) of the second string is deleted and remembered in the intermediate
state [q,X; p, Y, L;U ′]; finally, using the fourth prescribed team, this symbol
U ′ is inserted at the end of the first string.
Observe that the four teams must be applied exactly in this order, as the
intermediate states

[W ; q,X; p, Y, L;U], [W ; q,X; p, Y, L;U ′], and[W; q,X; p,Y,L;U′′]

carrying all necessary information cannot be used otherwise.
1. {DR(q),DR(X),WIR([W ; q,X; p, Y, L;U])}, W,U ∈ V ;

the symbol W to the left of X and the symbol U at the end of the second
string have to be guessed in a non-deterministic way.
The rule DR(X) cannot be applied before the rule DR(q), as the deletions
can only happen in the order the symbols appear at the end of the first
string.
WIR([W ; q,X; p, Y, L;U] cannot be applied before the other two rules, as
these rules then would not be applicable any more.

36 A. Alhazov et al.

2. {DR([W ; q,X; p, Y, L;U]),WIR(Y), Y IR([q,X; p, Y, L;U ′])};
The rule DR([W ; q,X; p, Y, L;U]) must be applied first, i.e., before the
other two rules, as these rules require a left context not being a state.
Using the same argument it follows that the rule WIR(Y) must be applied
before the rule Y IR([q,X; p, Y, L;U ′]).

3. {DR([W ; q,X; p, Y, L;U ′])),DR(U ′), Y IR([q,X; p, Y, L;U ′′])};
The rule DR([W ; q,X; p, Y, L;U ′]) must be applied before the rule
Y IR([q,X; p, Y, L;U ′′]), because Y is not a state symbol. The rule DR(U ′)
on the second string can be applied at any moment.

4. {DR([W ; q,X; p, Y, L;U ′′]), Y IR(U), UIR(p)}.
The rule DR([W ; q,X; p, Y, L;U ′′]) must be applied first, i.e., before the
other two rules, also working on the first string, as these rules require a
left context not being a state. Using the same argument it follows that
the rule UIR(p) must be applied after the rule Y IR(U).
With these four teams, we obtain the following derivation:
{uWXq,Z1

′B′mv′RU ′} =⇒
{uW [W ; q,X; p, Y, L;U], Z1

′B′mv′RU ′} =⇒
{uWY [W ; q,X; p, Y, L;U ′], Z1

′B′mv′RU ′} =⇒
{uWY [W ; q,X; p, Y, L;U ′′], Z1

′B′mv′R} =⇒
{uWY Up,Z1

′B′mv′R}
insertion of B If one more blank is needed in front of the right end marker Z1

′,
an intermediate step for any state q being part of a rule (q,B; p, Y,R) to be
applied must be carried out:
{DR(q), Z1

′IR(B′),WIR(q)}, W ∈ V ;
the symbol W at the end of the first string has to be guessed in a non-
deterministic way.
Derivation:
{uWq,Z1

′} =⇒ {uWq,Z1
′B′}

final cleaning First the remaining blanks are removed:
{DR(q1),DR(B′), aIR(q1)}, a ∈ T2 ∪ {Z0}.
The rule DR(q1) must be applied before the rule aIR(q1), because a is not a
state symbol. The rule DR(B′) on the second string can be applied at any
moment.
Moreover, observe that with the final state q1 of the Turing machine no tran-
sitions are defined any more, i.e., with q1 the Turing machine has halted.
Applying this team of rules m times, we obtain the following derivation:
{Z0woutputq1, Z1

′B′m} =⇒m {Z0woutputq1, Z1
′}

When all the blank symbols on the second string have been erased, finally,
the second string is completely eliminated, at the same time also the final
state at the end of the terminal string is erased; in order to have exactly
teams of size 3 we insert one blank again in an intermediate step using the
intermediate state q1

′:
{DR(q1), Z1

′IR(B′), aIR(q1′)}, a ∈ T ∪ {Z0};
The rule DR(q1) must be applied before the rule aIR(q1′), because a is not a
state symbol. The rule Z1

′IR(B′) on the second string can be applied at any
moment.

Prescribed Teams of Rules Working on Several Objects 37

Finally, we use the following prescribed team of rules:
{DR(q1′),DR(B′),DR(Z1

′)};
When using this final team, the only restriction on the sequence how they are
to be applied is that DR(B′) must be applied before DR(Z1

′).
Derivation:
{Z0woutputq1, Z1

′} =⇒ {Z0woutputq1
′, Z1

′B′} =⇒m {Z0woutput, λ}

In sum, we observe that every computation of the Turing machine M

Z0winputq0B
ω =⇒ Z0woutputq1B

ω

can be simulated in G by a computation

{Z0winputq0, Z1
′} =⇒ {Z0woutput, λ}.

A result Z0woutput obtained in G represents the string woutput. Observe that Z0

cannot be avoided as only non-empty strings can be handled on the first string
of the system. �	

We now show the somehow symmetric case using three initial strings, but
only teams of size two:

Theorem 2. The computations of a Turing machine M can be simulated by
a homogenous string system with prescribed teams of size 2 and degree 3 using
only rules of the form aIR(b) and DR(b), either working in the sequential or the
parallel derivation mode.

Proof. For d ∈ {sequential, parallel}, we construct the system

G′ = ((V ∪ Q) ∪ (V ∪ Q)′ ∪ Q′′)∗, {Z0}T2
∗, P,R,A′, d),

A′ = {Z0winputq0, Z1
′, p0}.

and follow the constructions given in the proofs of Theorem 1.
The initial set of strings now contains a third string which step by step will

collect the (labels of) the rules applied in the computation steps. Except for the
last cleaning step, the prescribed teams in the proof of Theorem 1 all are of the
form {DR(p), rule,WIR(q)}, where W is an arbitrary symbol, but not a state
symbol, and rule is an insertion or deletion rule on the first or second string.
With the help of the third string, the two rules {DR(p),WIR(q)} now can be
replaced by one single insertion rule pIR(q).

In contrast to the final cleaning established in the proof of Theorem 1, the
final team now is the following:

{q1IR(q1′),DR(Z1
′)}.

At the end, the result of a successful computation is given by the first string
and the second string has been reduced to the empty string as in the preceding
proof, but the third string remains as a kind of garbage.

38 A. Alhazov et al.

We finally remark that this construction, in contrast to the one given in the
proof of Theorem 1, now not only works in the sequential derivation mode, but
as well in the parallel derivation mode, as the rules in each prescribed team work
on different strings. �	
Remark 1. As outlined in the preceding proof, the prescribed teams of rules of
size 2 only work on one the two strings representing the left and right part of
the Turing tape by either deleting or inserting one symbol. The left context of
the insertion rules is only needed to indicate to which string the new symbol has
to be added.

In that sense, instead of simulating the computations of a Turing machine
we could also have simulated the computations of a 2-stack automaton which
also used the operations of deleting (pop) one symbol oder inserting (push) one
symbol on one of its two stacks, together with changing state.

Whereas the preceding proof might have become even easier when just sim-
ulating pop and push actions on the two stacks, the intuition what these two
stacks in fact represent would have got lost, especially why we need to insert a
blank symbol when reaching the bottom of the second stack.

Remark 2. The third string remaining in the construction of the system G′ con-
structed in the proof of Theorem 2 can be interpreted as the Szilard word of
the computation in the system, hence, it is not only garbage, but carries useful
information.

We now use the idea of anti-objects to replace the deletions of a symbol b by
the insertion of the corresponding anti-symbol b−, where in addition we assume
that b and b− immediately annihilate each other immediately before the next
rules are applied. Therefore, any deletion rule DR(b) can be replaced by the
corresponding insertion rule bIR(b−). Hence, based on the preceding results, we
immediately obtain the following ones:

Corollary 1. The computations of a Turing machine M can be simulated by
a homogenous string system with prescribed teams of size 3 and degree 2 using
only rules of the form aI(b) and bI(b−).

Corollary 2. The computations of a Turing machine M can be simulated by
a homogenous string system with prescribed teams of size 2 and degree 3 using
only rules of the form aI(b) and bI(b−).

3.3 Complexity Considerations for Prescribed Teams of Rules
on Strings

In the preceding subsection we have already seen that there seems to be a trade-
off between the size and the degree of string system with prescribed teams using
only rules of the form aIR(b) and DR(b), where one parameter has to be three
and the other one can be restricted to two. We now especially consider the
generating case.

Prescribed Teams of Rules Working on Several Objects 39

– According to Lemma 1, having only systems of size 1, we only can get finite
unions of languages generated by systems of size 1 and degree 1.

– Moreover, as matrix grammars according to Lemma 2 are at least as powerful
as string systems with prescribed teams, an upper bound for string systems
with prescribed teams of degree 1 are usual matrix grammars working on one
string with the same rules.

– According to Lemma 3, insertions and deletions on the right can be replaced
by substitutions on the right.

The proof of the following lemma is left to the interested reader.

Lemma 4. The effect of a matrix using right substitution rules on one string
can be simulated by just one right substitution rule, i.e., for any matrix grammar
using right substitution rules on one string we can construct a standard sequential
grammar using right substitution rules.

In order to show that systems of either size 1 or degree 1 cannot generate
more than regular languages, it therefore suffices to prove the following result:

Lemma 5. Sequential grammars using only right substitution rules can only
generate regular languages.

Proof. Let us start with a sequential grammar using right substitution rules

G = (N,T, P, S) where

– N is a set of nonterminal symbols;
– T is a set of terminal symbols;
– P is a finite set of right substitution rules over V , where V = N ∪ T ;
– S ∈ V + is the axiom.

Now let n := max{|uv| | SR(u, v) ∈ P)}. Moreover, let A0 be the set of all
terminal strings of lengths k, 0 ≤ k ≤ 2n that can be derived in G, and A be the
set of all strings of lengths k with n ≤ k ≤ 2n which can be derived in G. The
language generated by G then is the union of the (terminal) strings in A0 and
the languages generated by the sequential grammars G(A′) = (N,T, P (A′), A′)
for A′ ∈ A. In P (A′) we will only allow the substitutions in P which do not
decrease the lengths of sentential forms any more:

Those strings in the language generated by G of lengths at most 2n are
already contained in A0, therefore we only need to aim at terminal strings of
lengths bigger than 2n.

Starting from a string w with u at the end, |u| = n, there can only be a
finite number of derivations from w, not decreasing the length, but increasing
the length by at most n symbols, which can be captured by right substitution
rules SR(u, v) with |u| ≤ |v| ≤ |u| + n. For all possible u, we now collect all the
possible right substitution rules fulfilling these conditions, which in sum yields
P (A′).

40 A. Alhazov et al.

We remark that this part of the proof is not constructive – we are only
interested in the result itself.

For every such system G(A′) = (N,T, P (A′), A′) we now can easily construct
an extended regular grammar G′(A′) = (N ′, T, P ′(A′), A′) with extended regular
rules of the forms A → wC and A → w, w ∈ T ∗, A,C ∈ N ′.

The nonterminals in N ′ \ {S} are of the form [X] where X ∈ (N ∪ T)n. We
start with the rule

S → A′(1) . . . A′(|A′| − n)[A′(|A′| − n + 1) . . . A′(|A′|)]

in P ′(A′). Observe that A′(1) . . . A′(|A′| − n) must be a terminal string, as oth-
erwise nonterminals there will remain forever, hence, L(G′(A′)) = ∅. If A′ only
consists of terminal symbols, we also take S → A′(1) . . . A′(|A′|) into P ′(A′).

Now let SR(u, v) be a rule in P (A′) with |u| = n and |u| ≤ |v| ≤ |u| + n:

– If |u| = |v|, then we take the rule [u] → [v] into P ′(A′).
– If |u| = |v| and v is a terminal string, then we also take the rule [u] → v into

P ′(A′).
– If |u| < |v|, we take the rule [u] → v(1) . . . v(|v| − n)[v(|v| − n + 1) . . . v(|v|)]

into P ′(A′), but only if v(1) . . . v(|v| − n) is a terminal string.
– If |u| < |v| and v is a terminal string, then we also take the rule [u] → v into

P ′(A′).

The extended regular grammar G′(A′) = (N ′, T, P ′(A′), S) now exactly simu-
lates all possible terminal derivations in G(A′) = (N,T, P (A′), A′), which obser-
vation completes the proof. �	

As the family of regular languages are closed under union, putting together
all the lemmas mentioned above, we obtain the following result:

Theorem 3. String systems of either size 1 or degree 1 using only right inser-
tion and deletion rules of the forms aIR(b) and DR(b) cannot generate more
than regular languages.

In sum, the main complexity question left open is the characterization of
the languages which can be generated by string systems of size 2 and degree 2,
homogenous or not. A thorough investigation of such systems will be given in
an extended version of this paper.

4 Conclusion

In this paper we have considered the concept of applying prescribed teams of
rules to a bounded number of initially given objects, with the rules to be applied
either in parallel to different objects or sequentially to these objects. Each rule
in a team has to be applied exactly once with a successful application of a team.

When using prescribed teams for string objects either two initial strings and
teams with three rules or else three initial strings and teams with two rules are

Prescribed Teams of Rules Working on Several Objects 41

sufficient to obtain computational completeness. As string operations we use very
simple insertion and deletion rules, i.e., inserting one object in the left context of
another symbol or the deletion of a symbol on the right-hand side of a string. It
remains an open question for future research how computational completeness
can be obtained with even less ingredients, i.e., with only two initial strings and
teams with two rules.

Moreover, we have shown that systems with either only one initial string or
else with teams of only one rule can generate only regular languages.

We have also considered the insertion of anti-symbols which annihilate the
corresponding symbols instead of deleting a symbol.

Similar results can be obtained when using these operations of insertion and
deletion on the left-hand sides of the strings.

Acknowledgements. The authors gratefully thank the three referees for their useful
comments.

Artiom Alhazov acknowledges project 20.80009.5007.22 “Intelligent information
systems for solving ill-structured problems, processing knowledge and big data” by
the National Agency for Research and Development.

References

1. Csuhaj-Varjú, E., Dassow, J., Kelemen, J.: Grammar Systems: A Grammatical App-
roach to Distribution and Cooperation. Topics in Computer Mathematics, Gordon
and Breach (1994)

2. Dassow, J., Păun, Gh.: Regulated Rewriting in Formal Language Theory. Springer,
Cham (1989)

3. Fernau, H., Kuppusamy, L., Raman, I.: Investigations on the power of matrix
insertion-deletion systems with small sizes. Nat. Comput. 17(2), 249–269 (2017).
https://doi.org/10.1007/s11047-017-9656-8

4. Fernau, H., Kuppusamy, L., Raman, I.: On the computational completeness
of matrix simple semi-conditional grammars. Inf. Comput. 284, 104688 (2022).
https://doi.org/10.1016/j.ic.2021.104688

5. Fernau, H., Kuppusamy, L., Verlan, S.: Universal matrix insertion grammars with
small size. In: Patitz, M.J., Stannett, M. (eds.) UCNC 2017. LNCS, vol. 10240, pp.
182–193. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58187-3 14

6. Petre, I., Verlan, S.: Matrix insertion-deletion systems. Theor. Comput. Sci. 456,
80–88 (2012). https://doi.org/10.1016/j.tcs.2012.07.002

7. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer, Hei-
delberg (1997). https://doi.org/10.1007/978-3-642-59136-5

https://doi.org/10.1007/s11047-017-9656-8
https://doi.org/10.1016/j.ic.2021.104688
https://doi.org/10.1007/978-3-319-58187-3_14
https://doi.org/10.1016/j.tcs.2012.07.002
https://doi.org/10.1007/978-3-642-59136-5

From Networks of Reaction Systems
to Communicating Reaction Systems

and Back

Bogdan Aman1,2(B)

1 Alexandru Ioan Cuza University of Iaşi, Iaşi, Romania
bogdan.aman@info.uaic.ro, bogdan.aman@iit.academiaromana-is.ro

2 Romanian Academy, Institute of Computer Science, Iaşi, Romania

Abstract. A network of reaction systems is a graph such that each of its
nodes contains a reaction system, and the context of each such reaction
system is achieved by considering the products obtained at the previous
step from all the enabled reactions of its neighbours. On the other hand,
communicating reaction systems with direct communication are networks
of reaction systems without context but each of the reaction systems
is able to communicate products or reactions to its neighbours. In this
paper we prove that these variants of networks of reaction systems can be
related by establishing translations of networks of reaction systems into
communicating reaction systems with direct communication and back.

1 Introduction

Reaction systems [14] are a formal framework for modelling the interactions of
biochemical entities. Two major assumptions are made in order to define the
reaction systems:

(i) threshold assumption: an available resource can be used by any number
of reactions without causing conflicts between them (mathematically, this
amounts to consider that each resource has an infinite multiplicity);

(ii) no permanency assumption: only resources created by the enabled rules in
one state are available in the next one.

The reaction systems were extended to take into account also aspects as time [10],
context [6,7], structure [8,16] and reversibility [2,3,5]. While in standard reac-
tion systems, the set of reactions remains unchanged for the entire evolution,
a different approach is considered in [13] where the set of reactions can change
over time. Also while in standard reaction systems, there are no constraints
between rules, in [4] is defined a priority relation between rules using a directed
graph encoded in the rules of the reaction system and in [3] is defined a relation
between rules that forbids two rules to be used in parallel in the same step.

A network of reaction systems [8] is a (un)directed graph such that each of
its nodes contains a reaction system. While the behaviour of reaction systems is
influenced by an arbitrary context, in networks of reaction systems the context

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Durand-Lose and G. Vaszil (Eds.): MCU 2022, LNCS 13419, pp. 42–57, 2022.
https://doi.org/10.1007/978-3-031-13502-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13502-6_3&domain=pdf
https://doi.org/10.1007/978-3-031-13502-6_3

Relating Various Types of Networks of Reaction Systems 43

of each reaction system is achieved by considering the products obtained at the
previous step from all the enabled reactions of its neighbours. In networks of
reaction systems, all edges of the graph act as communication channels and
the behaviours of all reaction systems (residing in the nodes of the graph) are
synchronized (a global clock is used).

Recently, communicating reaction systems with direct communication (cdcR
systems) [11,12] were introduced as variants of networks of reaction systems. A
cdcR system consists of several components defined over the same background
set, each of them containing several extended reactions of the same type. Besides
performing reactions, the components communicate with some of their neigh-
bours by sending products or even reactions.

In this paper we prove that these variants of networks of reaction systems
can be related by establishing mappings from networks of reaction systems to
communicating reaction systems with direct communication and back.

The paper is structured as follows. In Sect. 2 we recall general mathemati-
cal notions used throughout the paper and provide specific notions for reaction
systems. In Sect. 3 we present networks of reaction systems, while in Sect. 4 we
present two variants of communicating reaction systems with direct communi-
cation. In Sect. 5 we investigate how to simulate the behaviour of networks of
reaction systems using communicating reaction systems with direct communi-
cation, and the other way around. In Sect. 6 we conclude, suggesting also some
future research lines.

2 Reaction Systems

Reaction systems (abbreviated as RS) are a formal framework for modelling the
interactions of biochemical entities; the main idea is that these interactions are
based on facilitation and inhibition [9]. Thus, a reaction is a triplet of sets of:
reactants, inhibitors and products. A reaction is enabled in a state that contains
all its reactants but none of its inhibitors. Applying a reaction, means that
its reactants are consumed and its products are created. Next, we present the
notions of notations of reaction systems as given in [9].

An empty set is denoted by ∅, while an empty sequence is denoted by ε.
Given a finite set X, its cardinality, set of subsets and set of (nonempty) finite
sequences over X are denoted by |X|, 2X and (X+) X∗ respectively. Given two
sets X and Y , their difference, union, intersection, Cartesian product and (not
necessarily strict) inclusion are denoted by X\Y , X ∪ Y , X ∩ Y , X × Y and
X ⊆ Y , respectively. Given a sequence τ = (x1, . . . , xk), its length is denoted
by |τ |, while its tail of length n is defined using the function tail : X+×N → X∗,
where tail(τ, n) = (xn+1, . . . , xk) if n < k and tail(τ, n) = ε if n ≥ k.

A reaction over a background set S of symbols (or molecules) is given as
a triple a = (R, I, P), where R, I, P are the sets of reactants, inhibitors and
products, respectively, such that ∅ �= R, I, P ⊆ S and R ∩ I = ∅. If one wants
to stress that the sets R, I and P belong to reaction a, then the used notations
are Ra, Ia and Pa, respectively. Also, the set of all reactions in S is denoted
rac(S). According to [9], since every reaction with I = ∅ can be simulated by

44 B. Aman

a reaction with I �= ∅ containing a dummy variable that is never consumed or
produced by other reactions, in what follows we consider that I can be also the
empty set ∅.

A reaction a ∈ rac(S) is enabled in a configuration T ⊆ S (denoted by a en T)
if Ra ⊆ T and Ia∩T = ∅, while the result of applying the reaction is resa(T)=Pa.
The effect of reaction a on configuration T can be written as T

a−→ resa(T).
If a en T does not hold, then resa(T) = ∅; the fact that reaction a is not
enabled in configuration T and cannot be applied is written as T � a−→.

The previous notations can be extended to a finite set A of reactions. A set
of reactions from A that is enabled in a configuration T is en(A, T) = {a ∈
A | a en T}, while the result of applying the reaction from A is resA(T) =⋃

a∈A resa(T). The effect of the set A of reactions on configuration T can be

written as T
A−→ resA(T). Since resa(T) = ∅ for any reaction a ∈ A not enabled

in configuration T , it holds that resA(T) = resen(A,T)(T). According to [15], if
RA ∩ IA = ∅ then the set A of reactions is said to be consistent.

A reaction system is denoted by A and is given as an ordered pair (S,A),
where the set of reactions A is built over the background set S, namely A ⊆
rac(S). In order to capture the dynamic behaviour of the reaction systems the
notion of an interactive process is defined as follows.

Definition 1 ([9]). Let A = (S,A) be a reaction system. An interactive pro-
cess π in A is a pair (γ, δ) of finite sequences such that γ = C0, C1, . . . , Cn,
δ = D1, . . . , Dn with n ≥ 1, where C0, . . . , Cn, D1, . . . , Dn ⊆ S, D1 = resA(C0),
and Di = resA(Di−1 ∪ Ci−1) for each 2 ≤ i ≤ n.

For an interactive process π the sequences γ and δ are called the context
and result sequence, respectively. The initial state of the interactive process π
is represented by the context C0, while the influence of the environment in the
step i ≥ 1 of the computation is represented by the context Ci. If Ci �= ∅ for
some i ≥ 1, then the reaction system A is open [17] as its behaviour is influenced
by the environment. If Ci = ∅ for all i ≥ 1, then the reaction system A is closed as
its behaviour is not influenced by the environments after C0 is initially provided.

The state sequence of interactive process π is sts(π) = W0, . . . , Wn, where
the initial state is W0 = C0, and Wi = Di ∪ Ci for all 1 ≤ i ≤ n. Then the
distribution sequence of interactive process π is θ(π) = H0, . . . , Hn, where Hi =
(Ci,Di) for all 0 ≤ i ≤ n. Also, the activity sequence of the interactive process π
is act(π) = E0, . . . , En−1, where Ei = en(A,Wi) ⊆ A for all 0 ≤ i ≤ n−1. Thus,
the effect of the activity sequence on the state sequence can be written as:

W0
E0−−→ W1

E1−−→ . . .
En−1−−−→ Wn.

Note that the threshold assumption allows each molecule to appear in several
reactions as reactant or inhibitor, while the no permanency assumption allows
to use at each step of the computation only molecules produced at the previous
step and those received from the environment.

In what follows for a reaction system A the set of all its interactive (n-
step) processes is denoted by (Procn(A)) Proc(A), while the set of the state
sequences of all interactive processes in Proc(A) is denoted by STS(A).

Relating Various Types of Networks of Reaction Systems 45

3 Networks of Reaction Systems

A network of reaction systems [8] is a (un)directed graph such that each of its
nodes contains a reaction system. While the behaviour of reaction systems is
influenced by an arbitrary context, in networks of reaction systems the con-
text of each reaction system is achieved by considering the products obtained
at the previous step from all the enabled reactions of its neighbours. As we are
interested in the behaviour of all reaction systems we omit the notion of cen-
tral reaction system from [8]. In what follows a finite graph G is an ordered
pair (V,E), where V and E are finite sets of nodes and edges, respectively. An
undirected graph is said to be connected if there exists a path between every
two nodes, while a directed graph is weekly connected if its undirected version
is connected; also in(v) denotes the set of incoming neighbours of a node v.

Definition 2 ([8]). A network of reaction systems (abbreviated RS network) is
a tuple N = (G,F , μ), where:

– G = (V,E) is a finite graph;
– F is a nonempty finite set of reaction systems;
– μ : V → F is a location function, assigning reaction systems to nodes.

Moreover, if G is undirected, then it is connected and if G is directed, then G is
weakly connected.

Given a network of reaction systems N , G is its graph, while (V,F , μ) its reac-
tion structure. We assume that V is totally ordered; thus V = (v1, . . . , vm), for
some m ≥ 1. For a node vi ∈ V , reaction system residing at it is obtained through
the function μ such that μ(vi) = Ai = (Si, Ai), where the background and reac-
tion sets of the reaction system Ai are denoted by Si and Ai, respectively. Also,
the background set of a network of reaction systems N is S(N) =

⋃m
j=1 Sj .

Note that a network of reaction systems N such that m = 1, is in fact a closed
reaction system A1.

Definition 3 ([8]). Let N = (G,F , μ) be a RS network with |V | = m for
some m ≥ 1. For n ∈ N

+, an interactive (n-step) network process is a tuple
Π = (π1, . . . , πm), where, for j ∈ {1, . . . , m}, πj = (γj , δj) ∈ Procn(Aj), and
γj = (Cj

0 , . . . , C
j
n), δj = (Dj

0, . . . , D
j
n), are such that:

(1) Cj
k = Sj ∩ (⋃{Di

k−1|vi ∈ in(vj)}
)
, for k ∈ {1, . . . , n}, and

(2) Dj
k = resAj (Dj

k−1 ∪ Cj
k−1) for k ∈ {1, . . . , n}.

(3) Moreover, if in(vj) = ∅, then Cj
0 = ∅.

Thus, an interactive network process is constructed using the interactive
processes of the m reaction systems placed in the nodes V of the graph G. For
any reaction system Aj with initial distribution (Cj

0 ,D
j
0), the set Dj

i contains
all products of the enabled reactions from Aj , while the set Cj

i contains only
the objects from the set Sj produced, at the previous step, by all the reaction
systems Ai such that vi ∈ in(vj).

46 B. Aman

Given an interactive network process Π, the vector of contexts at step i is
CΠ

i = (C1
i , . . . , Cm

i), the vector of results is DΠ
i = (D1

i , . . . , Dm
i), the vector

of states is WΠ
i = (W 1

i , . . . , Wm
i), and the vector of distributions is HΠ

i =
(H1

i , . . . , Hm
i). In what follows for a RS network N , the set of its interactive

(n-step) network processes is denoted by (PROCn(N)) PROC(N).

4 Communicating Reaction Systems

The communicating reaction systems (cdcR systems) with two variants of direct
communication were introduced and studied in [11,12]. A cdcR system is com-
posed from a finite amount of components over the same background set, where
a finite set of extended reactions is a component. Each component can perform
standard reaction, but also can send to a specified component the obtained prod-
ucts from a reaction or to a set of specified components each used reaction. Note
that the receiving component of the products or reactions can also be the sending
component. Once all components apply the enabled reactions and communicate
the products or reactions, the entire process can be repeated.

Definition 4 ([11]). A cdcR system communicating by products (a cdcR(p) sys-
tem), of degree n, n ≥ 1, is an (n + 1)-tuple Δ = (S,A1, . . . , An), where:

– S is a finite nonempty set, the background set of Δ;
– Ai, 1 ≤ i ≤ n, is the ith component of Δ, where:

• Ai is a finite nonempty set of extended reactions of type pc (pc-reactions).
• Each pc-reaction ρ of Ai is of the form ρ : (Rρ, Iρ,Πρ), where Rρ and Iρ

are nonempty subsets of S, Rρ ∩ Iρ = ∅, and Πρ ⊆ Pρ × {1, . . . , n} is
a nonempty set with Pρ being a nonempty subset of S. Rρ, Iρ, Πρ are
called the set of reactants, the set of inhibitors, and the set of products
with targets. A pair (b, j), 1 ≤ j ≤ n in Πρ means that product b ∈ S is
communicated to component Aj.

A pc-reaction, standing for product communication reaction, is a standard
reaction equipped with a target and that communicates the created prod-
ucts to another component. Just like for standard reactions, a pc-reaction
ρ : (Rρ, Iρ,Πρ) is enabled for the set U ⊆ S (denoted by enρ(U)) if Rρ ⊆ U and
Iρ ∩ U = ∅, while the result of applying the pc-reaction is resρ(U) = {b|(b, i) ∈
Πρ}. If enρ(U) does not hold, then resρ(U) = ∅ otherwise.

For a cdcR(p) system Δ=(S,A1, . . . , An) and a set U ⊆S, the result of apply-
ing the enabled pc-reaction in Ai is resAi

(U) = {b|(b, i) ∈ Πρ, ρ ∈ Ai, enρ(U)},
while if no pc-reaction in Ai is enabled the result is resAi

(U)=∅. The behaviour
of a cdcR(p) system Δ is characterized by transitions between states of the
form (D1, . . . , Dn) where to each component Ai, 1 ≤ i ≤ n, corresponds the
state ∅ ⊆ Di ⊆ S. This means that in each component Ai, 1 ≤ i ≤ n, all
its enabled pc-reactions are applied to the current state Di and the created
products are sent to the corresponding component as indicated by the target of
each pc-reaction. Note that due to the threshold assumption even if the same

Relating Various Types of Networks of Reaction Systems 47

objects is received from several components, only one copy will be available in
the next state.

For a cdcR(p) system Δ starting from an initial state and applying the reac-
tions as described above, the sequence of transitions forms a state sequence.
Note that, for a given cdcR(p) system Δ its state sequence is deterministic as it
depends only on the initial state.

Definition 5 ([11]). Let Δ = (S,A1, . . . , An), n ≥ 1, be a cdcR(p) system. The
sequence D0, . . . ,Dj , . . . is called the state sequence of Δ starting with initial
state D0 if the following conditions are met:

For every Dj, j ≥ 0 where Dj = (D1,j , . . . , Dn,j), 1 ≤ i ≤ n it holds
that Dj+1 = (D1,j+1, . . . , , Dn,j+1) with Di,j+1 =

⋃
1≤k≤n Comk→i(resAk

(Dk,j))
where Comk→i(resAk

(Dk,j)) = {b|(b, i) ∈ Πρ, ρ : (Rρ, Iρ,Πρ) ∈ enAk
(Dk,j)}.

Sequence Di,0,Di,1, . . . is said to be the state sequence of component Ai of Δ,
1 ≤ i ≤ n.

Note that for a component Ai of cdcR(p) system Δ it holds that resAi
(Di,j) = ∅

does not lead to a stop in the state sequence as the component may receive
resources at subsequent steps from other components. A transition in Δ has the
form (Di;Di+1), i ≥ 0 and can also be written as Di → Di+1.

Definition 6 ([11]). A cdcR system communicating by reactions (a cdcR(r) sys-
tem) of degree n, n ≥ 1, is a triplet Δ = (n, S,R) where:

– n is the number of components,
– S is a finite nonempty set, called the background set of Δ,
– R is a finite nonempty set of extended reactions of type rc (rc-reactions),

where:
• each rc-reaction is of the form ρ : (Rρ, Iρ, Pρ); target(ρ),
• Rρ, Iρ, Pρ are nonempty subsets of S, the set of reactants, the set of
inhibitors, and the set of products of the rc-reaction, respectively,

• target(ρ) ⊆ {1, . . . , n} is a nonempty set, the set of indices (labels) of the
target components to which the rc-reaction is communicated.

A rc-reaction, standing for reaction communication reaction, is a standard reac-
tion equipped with at least one target that moves to other components after it
was used. Note that the components are identified by numbers i, 1 ≤ i ≤ n. The
core of an rc-reaction ρ : (Rρ, Iρ, Pρ); target(ρ) is core(ρ) = (Rρ, Iρ, Pρ), while the
core of a nonempty set of rc-reactions R′ ⊆ R is core(R′) = {core(ρ)|ρ ∈ R′}.
If core(ρ) is enabled for a set U ⊆ S, then also the rc-reaction ρ is said to
be enabled for the set U . The result of applying the enables re-reaction ρ on
the set U is the same as applying the reaction core(ρ) on the set U . Given
a rc-reaction ρ and a set of rc-reaction R′ the notations enρ(U), resρ(U),
and enR′(U), resR′(U) are similar with those from standard reaction systems.

As a cdcR(r) system Δ works with configuration containing the sets of reac-
tion and reactants that can change during the evolution, by starting from an
initial configuration and applying the reactions as described above, the sequence
of transitions forms a configuration sequence.

48 B. Aman

Definition 7 ([11]). Let Δ = (n, S,R), n ≥ 1, be a cdcR(r) system
with n components. Let C0 be the initial configuration of Δ where C0 =
((A1,0,D1,0), . . . , (An,0,Dn,0)) with Ai,0 ⊆ R (the initial rc-reaction set of com-
ponent i) and Di,0 ⊆ S (the initial reactant set of component i), 1 ≤ i ≤ n. The
pair (Ai,0,Di,0) is called the initial configuration of component i.

The configuration sequence C0, C1, . . . of Δ, where Cj = ((A1,j ,D1,j), . . . ,
(An,j ,Dn,j)), j ≥ 0, is defined as follows:

For each component i, 1 ≤ i ≤ n, for each j, j ≥ 0 and all subsequent
configurations (Ai,j ,Di,j), (Ai,j+1,Di,j+1) of component i the following hold:

– Ai,j+1 = {ρ ∈ R|i ∈ target(ρ), ρ ∈ Ak,j , encore(ρ)(Dk,j), 1 ≤ k ≤ n} and
– Di,j+1 = rescore(Ai,j)(Di,j).

This means, that unlike cdcR(p) systems where the products obtained from
the enabled reactions were send to other components while the reaction set
remains unchanged, in cdcR(r) systems the products obtained from the enabled
reactions remain while the reaction set is modified. This implies that a reaction
set from one component loses the applied reactions that are communicated to
other components, and gains reactions communicated by other components to it.
In cdcR(r) systems is considered a no permanency assumption: only the reactions
that were communicated at one state are available in the next one.

5 Connections Between RS Networks and CdcR Systems

Next we show that the behaviour of every network of reaction systems can be
expressed through the behaviour of a cdcR(p) system. As it can be seen from
the next result this implies using a double number of components in the cdcR(p)
system with respect to the simulated network of reaction systems. The additional
components in the network of reaction systems are used for filtering purposes.

Theorem 1. Let N = (G,F , μ) be a network of reaction systems with |V |=m
for some m ≥ 1 and initial distribution HΠ

0 . Then there exists a cdcR(p) system
Δ = (S,A′

1, . . . , A
′
m, A1, . . . , Am), m ≥ 1 with initial state D0 such that WΠ

i =
tail(Di,m), for all i ≥ 0.

Proof. Let N = (G,F , μ) be a network of reaction systems such that V =
{v1, . . . , vm}. First we construct the background set S of the cdcR(p) system Δ
as S =

⋃
1≤j≤m Sj , where Sj is the background set of the reaction system

μ(vj) = Aj = (Sj , Aj), with 1 ≤ j ≤ m.
For every node vj in N , with 1 ≤ j ≤ m, we construct two components A′

j

and Aj , such that for any reaction a = (R, I, P) ∈ Aj we add the following
pc-reactions to the component Aj of Δ:

– ρj
a = (R, I, (P, j)) - representing the fact that the created resources remain

in the node vj ;

Relating Various Types of Networks of Reaction Systems 49

– ρj′
a = (R, I, (P, j′)) - representing the fact that the resources created are sent

towards the node v′
j to be available in the next step to be sent to the nodes vk

such that vj ∈ in(vk).

Also, to each component A′
j of Δ we add the following pc-reactions:

– ρk
a = (s, ∅, (s, k)), for all s ∈ Sk if vj ∈ in(vk) - representing the fact that the

resources created at the previous step in node vj are sent towards the node vk.
Note that by defining rules only from the objects from Sk only objects from
Sk will be sent to vk, while the other will vanish as they are not consumed.

Finally, we assume that D0 = (DΠ
0 ,WΠ

0), namely we consider that the first m
components of Δ hold the initial m results of the network of reaction systems N ,
while the last m components of Δ hold the initial m states of the network of
reaction systems N .

We prove that the state sequence of Aj , with 1 ≤ j ≤ m, starting from W j
0

corresponds to the state sequence of component Aj of Δ starting from initial
state Dj,0. The proof is by induction on the last applied step:

– Case i = 0. There was no step applied yet, and the system is in the initial
state. From D0 = (DΠ

0 ,WΠ
0) it follows that W j

0 = Dj,0 as required.
– Case i = 1. This implies that this is the first applied step using the exist-

ing resources. Since W j
1 = Cj

1 ∪ Dj
1, due to Definition 3, it holds that

W j
1 =

(
Sj ∩ (⋃{Dk

0 |vk ∈ in(vj)}
)) ∪ resAj (W j

0). Also, due to Definition 5 it
holds that Dj,1 =

⋃
Comk→j(resAk

(Dk,0)) where Comk→j(resAk
(Dk,0)) =

{b|(b, j) ∈ Πρ, ρ : (Rρ, Iρ,Πρ) ∈ enAk
(Dk,0)}. As the only rules to send

resources from a component Aj to itself are of the form ρj
a = (R, I, (P, j)),

then Comj→j(resAj
(Dj,0)) = resAj

(Dj,0) = resAj
(Dj,0) = resAj (W j

0). Also,
as the only rules sending resources to component Aj are placed in the com-
ponents A′

k and are of the form ρj
a = (s, ∅, (s, j)), for all s ∈ Sk if vk ∈ in(vj),

it implies that Comk′→j(resA′
k
(Dk′,0)) = resA′

k
(Dk′,0) = Dk′,0. As the

resources placed initially in node v′
k are Dk

0 , it implies that Dk′,0 = Dk
0 ∩ Sj ,

and thus W j
1 = Dj,1 as required.

– Case i > 1. Assume the statement holds for i−1, namely W j
i−1 = Dj,i−1. We

show that W j
i = Dj,i holds as well. Since W j

i = Cj
i ∪ Dj

i , due to Definition 3,
it holds that W j

i =
(
Sj ∩ (⋃{Dk

i−1|vk ∈ in(vj)}
)) ∪ resAj (W j

i−1). Also,
due to Definition 5 it holds that Dj,i =

⋃
Comk→j(resAk

(Dk,i−1)) where
Comk→j(resAk

(Dk,i−1)) = {b|(b, j) ∈ Πρ, ρ : (Rρ, Iρ,Πρ) ∈ enAk
(Dk,i−1)}.

As the only rules to send resources from a component Aj to itself are of the
form ρj

a = (R, I, (P, j)), then Comj→j(resAj
(Dj,i−1)) = resAj

(Dj,i−1) =
resAj (W j

i−1). Also, as the only rules sending resources to component Aj

are placed in the components A′
k and are of the form ρj

a = (s, ∅, (s, j)),
for all s ∈ Sj if vk ∈ in(vj), it implies that Comk′→j(resA′

k
(Dk′,i−1)) =

resA′
k
(Dk′,i−1) = Dk′,i−1. But the resources from node v′

j forwarded to
node vj were received from node vk in the previous step by using the rules
of the form ρj′

a = (R, I, (P, j′)), and thus Dk′,i−1 = Sj ∩ resAk
(Dk,i−2) =

Sj ∩ resAk(W k
i−2) = Sj ∩ Dk

i−1. It follows that W j
i = Dj,i as required.

50 B. Aman

Also it holds that the behaviour of every cdcR(p) system can be expressed
through the behaviour of a network of reaction systems. As it can be seen from
the next result this in the network of reaction systems requires a number of com-
ponents equal to the number of components and edges of the simulated cdcR(p)
system. The additional components in the network of reaction systems are used
for filtering purposes.

Theorem 2. Let Δ = (S,A1, . . . , Am), m ≥ 1 be a cdcR(p) system with initial
state D0. Then there exists a network of reaction systems N = (G,F , μ) with G
directed and the initial distribution HΠ

0 such that Di = tail(WΠ
4i ,m), for all

i ≥ 0.

Proof. Let Δ = (S,A1, . . . , Am), m ≥ 1 be a cdcR(p) system. For every
component Aj of Δ, with 1 ≤ j ≤ m, we construct a node vj such that
μ(vj) = Aj = (Sj , Aj), where Sj = S ∪ (⋃

1≤k≤m τk

)
and for any pc-reaction

ρ = (R, I, (P, k)) ∈ Aj we add the following reactions to Aj of N .

– aj
ρ = (R, I, Pτk) - the additional object τk will be used to remove the resources

from system Aj at a subsequent step;
– aj

τ = (a,
(⋃

1≤k≤m τk

)
, a) - these rules are used to remove all resources from

a system Aj if any of the resources τ1, . . . , τm was created in a previous step
by a reaction aj

ρ.

Also, for each edge (k, j) in Δ we construct two nodes vkj and vjk and add to E
the directed edges (k, kj), (kj, j), (j, jk) and (jk, k). Each node vkj is such that
μ(vkj) = Akj = (Skj , Akj), where Skj = S ∪ (⋃

1≤l≤m τl

)
and to Akj we add the

following reactions:

– akj
τj = (aτj , ∅, a) - if the existing resources are meant to be sent to node vj

then the resource τj exists and thus all resources are kept alive.

We assume that V = (. . . , v1, . . . , vm) where on the first places are the nodes vkj

created as above. Thus, using this given order of nodes, we assume that WΠ
0 =

(∅, . . . , ∅,D0), such that Cj
0 = Dj,0 and Dj

0 = ∅.
We prove that the state sequence of component Aj of Δ starting from initial

state Dj,0 corresponds to the state sequence of Aj , with 1 ≤ j ≤ m, starting
from W j

0 . The proof is by induction on the last applied step:

– Case i = 0. There was no step applied yet, and the system is in the initial
state. From WΠ

0 = (∅, . . . , ∅,D0) it follows that Dj,0 = W j
0 as required.

– Case i = 1. This implies that this is the first applied step using the existing
resources. Due to Definition 5 it holds that Dj,1 =

⋃
Comk→j(resAk

(Dk,0))
where Comk→j(resAk

(Dk,0)) = {b|(b, j) ∈ Πρ, ρ : (Rρ, Iρ,Πρ) ∈
enAk

(Dk,0)}. Due to Definition 3 it holds that:
• Cj

1 =
⋃

Dkj
0 = ∅ and Dj

1 = resAj (W j
0);

• Ckj
1 = Dk

0 = ∅ and Dkj
1 = resAkj (W kj

0) = ∅;
• Cj

2 =
⋃

Dkj
1 = ∅ and Dj

2 = resAj (W j
1) = ∅;

Relating Various Types of Networks of Reaction Systems 51

• Ckj
2 = Dk

1 = resAk(W k
0) and Dkj

2 = resAkj (W kj
1) = ∅;

• Cj
3 =

⋃
Dkj

2 = ∅ and Dj
3 = resAj (W j

2) = ∅;
• Ckj

3 = Dk
2 = ∅ and Dkj

3 = resAkj (W kj
2) = resAkj (resAk(W k

0));
• Cj

4 =
⋃

Dkj
3 =

⋃
resAkj (resAk(W k

0)) and Dj
4 = resAj (W j

3) = ∅;
• Ckj

4 = Dk
3 = ∅ and Dkj

4 = resAkj (W kj
3) = ∅;

Since the rules of N were constructed such that the obtained resources are the
same, namely resAk

(Dk,0) = resAkj (resAk(W k
0)), it follows that Dj,1 = W j

4

as required. Also note that Cj
4 �= ∅, while Dj

4 = Ckj
4 = Dkj

4 = ∅.
– Case i > 1. Assume the statement holds for i−1, namely Dj,i−1 = W j

4i−4 and
also Cj

4i−4 �= ∅, while Dj
4i−4 = Cij

4i−4 = Dij
4i−4 = ∅. We show that Dj,i = W j

4i

as well. Due to Definition 5 it holds that Dj,i =
⋃

Comk→j(resAk
(Dk,i−1))

where the communicated resources are Comk→j(resAk
(Dk,i−1)) = {b|(b, j) ∈

Πρ, ρ : (Rρ, Iρ,Πρ) ∈ enAk
(Dk,i−1)}. Due to Definition 3 it holds that:

• Cj
4i−3 =

⋃
Dkj

4i−4 = ∅ and Dj
4i−3 = resAj (W j

4i−4);
• Ckj

4i−3 = Dk
4i−4 = ∅ and Dkj

4i−3 = resAkj (W kj
4i−4) = ∅;

• Cj
4i−2 =

⋃
Dkj

4i−3 = ∅ and Dj
4i−2 = resAj (W j

4i−3) = ∅;
• Ckj

4i−2 = Dk
1 = resAk(W i

4i−3) and Dkj
4i−2 = resAkj (W kj

4i−3) = ∅;
• Cj

4i−1 =
⋃

Dkj
4i−2 = ∅ and Dj

4i−1 = resAj (W j
4i−2) = ∅;

• Ckj
4i−1 = Dk

4i−2 = ∅ and Dkj
4i−1 = resAkj (W kj

4i−2) = resAkj (resAk(W k
4i−4));

• Cj
4i =

⋃
Dkj

4i−1 =
⋃

resAkj (resAk(W k
4i−4)) and Dj

4i = resAj (W j
4i−1) = ∅;

• Ckj
4i = Dk

4i−1 = ∅ and Dkj
4i = resAkj (W kj

4i−1) = ∅;
Since the rules of N were constructed such that the obtained resources are the
same, namely resAk

(Dk,i−1) = resAkj (resAk(W k
4i−4)), it follows that Dj,i =

W j
4i as required.

Next we show that the behaviour of every network of reaction system can be
expressed through the behaviour of a cdcR(r) system. As it can be seen from
the next result this implies using a double number of components in the cdcR(r)
system with respect to the simulated network of reaction systems. The additional
components in the network of reaction systems are used for filtering purposes.

In order to express the translation we will use objects of the form (x, y, z)
(their meaning will be explained in the following proof) and functions ↓t such
that ↓z (x, y, t) = x if z = t and ↓z (x, y, t) = ∅ if z �= t.

Theorem 3. Let N =(G,F, μ) be a network of reaction systems with |V |=m
for some m ≥ 1 and initial distribution HΠ

0 . Then there exists a cdcR(r) sys-
tem Δ = (n, S,R), where n ≥ 1, with initial state C0 such that WΠ

i (j) =↓j

(tail(Ci,m)(j)), for all i ≥ 0 and all 1 ≤ j ≤ m, where j represents the position
in the tuple tail(Ci,m).

Proof. Let N = (G,F , μ) be a network of reaction systems such that V =
{v1, . . . , vm}. First we construct the background set S of the cdcR(r) system Δ
as S =

⋃
1≤j≤m{(x, d, j), (x, c, j) | x ∈ Sj} , where Sj is the background set

of the reaction system μ(vj) = Aj = (Sj , Aj), with 1 ≤ j ≤ m. An object

52 B. Aman

(x, d, j) will represent an object x of the reaction system Aj that belongs to
the result set Dj

k, where k ≥ 0. In a similar manner, an object (x, c, j) will
represent an object x of the reaction system Aj that belongs to the context
set Cj

k, where k ≥ 0.
For every node vj in N with initial distribution (Cj

0 ,D
j
0), where 1 ≤ j ≤ m,

we construct two components; a component Aj = (Aj ,Dj) with initial configu-
ration (Aj,0,Dj,0) such that:

– Dj,0 =
(⋃

1≤k≤m{(x, c, k) | x ∈ Ck
0 }) ∪ (⋃

1≤k≤m{(x, d, k) | x ∈ Dk
0})

;
– for any reaction a = (R, I, P) ∈ Ak, where 1 ≤ k ≤ m, we add to Aj,0 the

rc-reaction

ρa :
((⋃

x∈R,y=c∨y=d
(x, y, k)

)
,
(⋃

x∈I,y=c∨y=d
(x, y, k)

)
,
(⋃

x∈P
(x, d, k)

))
; {j′};

– for every vk such that vj ∈ in(vk) and for every x ∈ Sk we add to Aj,0 the
rc-reaction ρj→k : ((x, d, j), ∅, (x, c, k)); {j′}.

Since the unused rules from Aj,0 will not be available for the next computational
steps, we need components that will provide to the component Aj the rules
from Aj,0 at every step of the computation. Thus, we construct a component
A′

j = (A′
j ,D

′
j) with initial configuration (A′

j,0,D
′
j,0) such that:

–D′
j,0 = S;

–A′
j,0={ρ : (R, I, P); {j, j′}|ρ : (R, I, P); {j′}∈Aj,0}∪ {ρz : (z, ∅, z); {j′}|z∈S}.

Thus, in Δ, the number of components is n = 2m, while the set of rules is
R =

(⋃
1≤j≤m Aj,0

) ∪ (⋃
1≤j≤m A′

j,0

)
.

Finally, we assume that

C0 = ((A′
1,0,D

′
1,0), . . . , (A

′
m,0,D

′
m,0), (A1,0,D1,0), . . . , (Am,0,Dm,0)).

We prove that the state sequence of Aj , with 1 ≤ j ≤ m, starting from W j
0

corresponds to the reactant sequence ↓j Dj of component Aj of Δ starting from
initial reactant set Dj,0. The proof is by induction on the last applied step:

– Case i = 0. There was no step applied yet, and the system is in the initial
state. Applying ↓j to initial reactant set Dj,0 it holds that: ↓j Dj,0 = ↓j((⋃

1≤k≤m{(x, c, k) | x ∈ Ck
0 }) ∪ (⋃

1≤k≤m{(x, d, k) | x ∈ Dk
0}))

= {x | x ∈
Cj

0} ∪ {x | x ∈ Dj
0} = Cj

0 ∪ Dj
0 = W j

0 as required.
– Case i = 1. This implies that this is the first applied step using the existing

resources and rules from each component. Since W j
1 = Cj

1 ∪Dj
1, due to Defini-

tion 3, it holds that W j
1 =

(
Sj ∩(⋃{Dk

0 |vk ∈ in(vj)}
))∪resAj (W j

0). Also, due
to Definition 7 it holds that Dj,1 = rescore(Aj,0)(Dj,0) and Aj,1 = {ρ ∈ R|j ∈
target(ρ), ρ ∈ Ak,0, encore(ρ)(Dk,0), 1 ≤ k ≤ m} ∪ {ρ ∈ R|j ∈ target(ρ), ρ ∈
A′

k,0, encore(ρ)(D′
k,0), 1 ≤ k ≤ m}. As the rules ρa of Aj,0 transform the sets

Relating Various Types of Networks of Reaction Systems 53

{(x, c, j) | x ∈ Cj
0} and {(x, d, j) | x ∈ Dj

0} into the set {(x, d, j) | x ∈ Dj
1},

while the rules ρk→j transform the set {(x, d, k) | x ∈ Dk
0 , x ∈ Sj , vk ∈ in(vj)}

into the set {(x, c, j) | x ∈ Cj
1 , x ∈ Sj , vk ∈ in(vj)}, it results that

↓j Dj,1 =↓j

((⋃
1≤k≤m{(x, d, k) | x ∈ Dk

1}) ∪ (⋃
1≤k≤m{(x, c, k) | x ∈

Ck
1 , x ∈ Sk, vk ∈ in(vj)}

))
= Dj

1 ∪ (⋃
1≤k≤m{Cj

1 ∩ Sj | vk ∈ in(vj)}
)

=
Dj

1 ∪ (⋃
1≤k≤m{Dk

0 ∩ Sj | vk ∈ in(vj)}
)

= W j
1 , as required.

Also note that Aj,1 = {ρ ∈ R|j ∈ target(ρ), ρ ∈ A′
k,0, encore(ρ)(D′

k,0), 1 ≤
k ≤ m} = {ρ : (R, I, P); {j, j′} | ρ : (R, I, P); {j′} ∈ Aj,0} = Aj,i, namely for
any step i ≥ 1 the set of rules Aj,i contains the same rules as Aj,0 except that
the target j is replaced now by the targets j and j′, just to keep the rules
alive in the component A′

j .
– Case i > 1. Assume the statement holds for i − 1, namely ↓j Dj,i−1 = W j

i−1.
We show that ↓j Dj,i = W j

i holds as well. Since W j
i = Cj

i ∪ Dj
i , due to

Definition 3, it holds that W j
i = (Sj∩(⋃{Dk

i−1|vk ∈ in(vj)}
))∪resAj (W j

i−1).
Also, due to Definition 7 it holds that Dj,i = rescore(Aj,i−1)(Dj,i−1). As the
rules ρa of Aj,i−1 transform the sets {(x, c, j) | x ∈ Cj

i−1} and {(x, d, j) | x ∈
Dj

i−1} into the set {(x, d, j) | x ∈ Dj
i }, while the rules ρk→j transform the set

{(x, d, k) | x ∈ Dk
i−1, x ∈ Sj , vk ∈ in(vj)} into the set {(x, c, j) | x ∈ Cj

i , x ∈
Sj , vk ∈ in(vj)}, it results that ↓j Dj,i =↓j

((⋃
1≤k≤m{(x, d, k) | x ∈ Dk

i }) ∪
(⋃

1≤k≤m{(x, c, k) | x ∈ Ck
i , x ∈ Sk, vk ∈ in(vj)}

))
= Dj

i ∪(⋃
1≤k≤m{Cj

i ∩Sj |
vk ∈ in(vj)}

)
= Dj

i ∪ (⋃
1≤k≤m{Dk

i−1 ∩Sj | vk ∈ in(vj)}
)

= W j
i , as required.

Also it holds that the behaviour of every cdcR(r) system can be expressed
through the behaviour of a network of reaction systems. As it can be seen from
the next result this implies using in the network of reaction systems a number
of components equal to the number of components and edges of the simulated
cdcR(r) system. The additional components in the network of reaction systems
are used for filtration purposes.

Theorem 4. Let Δ = (m,S,R), where m≥1, be a cdcR(r) system with initial
state C0. Then there exists a network of reaction systems N = (G,F , μ) with G
directed and initial distribution HΠ

0 such that Di = tail(WΠ
5i ,m)∩S, for all i≥0.

Proof. Let Δ = (m,S,R), where m ≥ 1, be a cdcR(r) system with initial con-
figuration C0 = ((A1,0,D1,0), . . . , (Am,0,Dm,0)). For every component Aj of Δ,
with 1 ≤ j ≤ m, we construct a node vj such that μ(vj) = Aj = (Sj , Aj),
where Sj = {x, x′, x′′, x′′′} | x ∈ S} ∪ {τρ, τ

′
ρ, τρ | ρ ∈ R} and for any rc-reaction

ρ : (R, I, P); target{ρ} ∈ R we add the following reactions to Aj of N :

– aρ = (R, Iτρ, P
′τρτ

′
ρ) - the object τρ will be use to block the application of

rule ρ in the current node in the next step;
– aτ

ρ = (τρ, τρ, τρ) - the object τρ is kept alive till an object τρ arrives in
the node;

– a′
x = (x′, ∅, x′′) - such a rule is added for each x ∈ S;

– a′′
x = (x′′, ∅, x′′′) - such a rule is added for each x ∈ S;

– a′′′
x = (x′′′, ∅, x) - such a rule is added for each x ∈ S.

54 B. Aman

Also, for each edge (k, j) in Δ we construct two nodes vkj and vjk and add to E
the directed edges (k, kj), (kj, j), (j, jk) and (jk, k). Each node vkj is such that
μ(vkj) = Akj = (Skj , Akj), where Skj = {τ ′

ρ, τρ | ρ ∈ R} and to Akj we add the
following reactions for every ρ ∈ R:

– akj
ρ = (τ ′

ρ, ∅, τρ) - the object τρ is used to activate a rule blocked by an
existing τρ object in node vj .

We assume that V = (. . . , v1, . . . , vm) where on the first places are the nodes vkj

created as above. Thus, using this given order of nodes, we assume that WΠ
0 =

(∅, . . . , ∅,W 1
0 , . . . , Wm

0), such that W j
0 = Cj

0 ∪ Dj
0 where Cj

0 = Dj,0 and Dj
0 =

⋃
ρ∈R\Aj,0

τρ. Thus, the objects τρ added initially in Dj
0 inhibit the application

of the rules, except for the ones from Aj,0.
We prove that the state sequence of component Aj of Δ starting from initial

state Dj,0 corresponds to the state sequence of Aj , with 1 ≤ j ≤ m, restricted
to the elements of S and starting from W j

0 . The proof is by induction on the
last applied step:

– Case i = 0. There was no step applied yet, and the system is in the initial
state. From WΠ

0 = (∅, . . . , ∅,W 1
0 , . . . , Wm

0) it follows that W j
0 ∩ S = (Cj

0 ∪
Dj

0) ∩ S =
(
Dj,0 ∪ (⋃

ρ∈R\Aj,0
τρ

)) ∩ S = Dj,0 as required.
– Case i = 1. This implies that this is the first applied step using the existing

resources. Due to Definition 7 it holds that Dj,1 = rescore(Aj,0)(Dj,0) and
Aj,1 = {ρ ∈ R|j ∈ target(ρ), ρ ∈ Ak,0, encore(ρ)(Dk,0), 1 ≤ k ≤ m}. Due to
Definition 3 it holds that:

• Cj
1 =

(⋃
Dkj

0

) ∩ Sj = ∅ and Dj
1 = resAj (W j

0);
• Ckj

1 = Dk
0 ∩ Skj = ∅ and Dkj

1 = resAkj (W kj
0) = ∅;

• Cj
2 =

(⋃
Dkj

1

) ∩ Sj = ∅ and Dj
2 = resAj (W j

1) = resAj (Dj
1);

• Ckj
2 = Dk

1 ∩ Skj = resAk(W k
0) ∩ Skj =

⋃
a∈en(Ak,Wk

0) τ ′
a and

Dkj
2 = resAkj (W kj

1) = ∅;
• Cj

3 =
(⋃

Dkj
2

) ∩ Sj = ∅ and Dj
3 = resAj (W j

2) = resAj (Dj
2);

• Ckj
3 = Dk

2 ∩ Skj = ∅ and Dkj
3 = resAkj (W kj

2) = resAkj (resAk(W k
0)) =

resAkj (
⋃

a∈en(Ak,Wk
0) τ ′

a) =
⋃

a∈en(Ak,Wk
0) τa;

• Cj
4 =

(⋃
Dkj

3

) ∩ Sj =
⋃(⋃

a∈en(Ak,Wk
0) τa

)
and

Dj
4 = resAj (W j

3) = resAj (Dj
3);

• Ckj
4 = Dk

3 ∩ Skj = ∅ and Dkj
4 = resAkj (W kj

3) = ∅;
• Cj

5 =
(⋃

Dkj
4

) ∩ Sj = ∅ and Dj
5 = resAj (W j

4);
• Ckj

5 = Dk
4 ∩ Skj = ∅ and Dkj

5 = resAkj (W kj
4) = ∅.

Since the rules of N were constructed such that resAk
(Dk,0) = Dkj

5 ∩ S, it
follows that Dj,1 = W j

5 ∩ S as required. Also note that Cj
5 = Ckj

5 = Dkj
5 = ∅.

– Case i > 1. Assume the statement holds for i−1, namely Dj,i−1 = W j
5i−5 ∩S

and also Cj
5i−5 = Cij

5i−5 = Dij
5i−5 = ∅. We show that Dj,i = W j

5i ∩ S holds
as well. Due to Definition 7 it holds that Dj,i = rescore(Aj,i−1)(Dj,i−1) and

Relating Various Types of Networks of Reaction Systems 55

Aj,i = {ρ ∈ R|j ∈ target(ρ), ρ ∈ Ak,i−1, encore(ρ)(Dk,i−1), 1 ≤ k ≤ m}. Due
to Definition 3 it holds that:

• Cj
5i−4 =

(⋃
Dkj

5i−5

) ∩ Sj = ∅ and Dj
5i−4 = resAj (W j

5i−5);
• Ckj

5i−4 = Dk
5i−5 ∩ Skj = ∅ and Dkj

5i−4 = resAkj (W kj
5i−5) = ∅;

• Cj
5i−3 =

(⋃
Dkj

5i−4

) ∩ Sj = ∅ and Dj
5i−3 = resAj (W j

5i−4) = resAj (Dj
5i−4);

• Ckj
5i−3 = Dk

5i−4 ∩ Skj = resAk(W k
5i−5) ∩ Skj =

⋃
a∈en(Ak,Wk

5i−5)
τ ′
a and

Dkj
5i−3 = resAkj (W kj

5i−4) = ∅;
• Cj

5i−2 =
(⋃

Dkj
5i−3

) ∩ Sj = ∅ and Dj
5i−2 = resAj (W j

5i−3) = resAj (Dj
5i−3);

• Ckj
5i−2 = Dk

5i−3 ∩ Skj = ∅ and Dkj
5i−2 = resAkj (W kj

5i−3) =
resAkj (

⋃
a∈en(Ak,Wk

5i−5)
τ ′
a) =

⋃
a∈en(Ak,Wk

5i−5)
τa;

• Cj
5i−1 =

(⋃
Dkj

5i−2

) ∩ Sj =
⋃(⋃

a∈en(Ak,Wk
5i−5)

τa

)
and

Dj
5i−1 = resAj (W j

5i−2) = resAj (Dj
5i−2);

• Ckj
5i−1 = Dk

5i−2 ∩ Skj = ∅ and Dkj
5i−1 = resAkj (W kj

5i−2) = ∅;
• Cj

5i =
(⋃

Dkj
5i−1

) ∩ Sj = ∅ and Dj
5i = resAj (W j

5i−1);
• Ckj

5i = Dk
5i−1 ∩ Skj = ∅ and Dkj

5i = resAkj (W kj
5i−1) = ∅.

Since the rules of N were constructed such that resAk
(Dk,5i−5) = Dkj

5i ∩ S,
it follows that Dj,i = W j

5i ∩ S as required.

6 Conclusion

In this paper we considered, on one hand, networks of reaction systems that
are graphs such that in each node resides a reaction system, and the context of
each reaction system is obtained from all its neighbours. On the other hand, we
considered communicating reaction systems with direct communication that are
networks of reaction systems without context but able to send products or reac-
tions between neighbours. We proved that these types of networks of reaction
systems can be related by establishing mappings from network of reaction sys-
tems to communicating reaction systems with direct communication and back.

Membrane computing [18] and reaction systems [14] represent two well-
known research fields in natural computing; both were created by modelling
various aspects from the behaviour of living cells. While the networks of reac-
tion systems consider sets of resources placed in the components, membrane
systems consider multisets rather than sets. By considering the thresholds and
no permanency assumptions from reaction systems in the context of membrane
systems, a connection between these two fields was studied in [19]. Also mem-
brane systems were used to simulate reaction systems in [1]. Starting from these
existing connections, we intend to establish other connections between the vari-
ous classes of networks of reaction systems and various classes of P systems.

56 B. Aman

References

1. Alhazov, A., Aman, B., Freund, R., Ivanov, S.: Simulating R systems by P systems.
In: Leporati, A., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) CMC 2016. LNCS,
vol. 10105, pp. 51–66. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
54072-6 4

2. Aman, B., Ciobanu, G.: Controlled reversibility in reaction systems. In: Gheorghe,
M., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) CMC 2017. LNCS, vol. 10725,
pp. 40–53. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73359-3 3

3. Aman, B., Ciobanu, G.: Mutual exclusion and reversibility in reaction systems.
J. Memb. Comput. 2(3), 171–178 (2020). https://doi.org/10.1007/s41965-020-
00043-1

4. Azimi, S., Iancu, B., Petre, I.: Reaction system models for the heat shock response.
Fund. Inform. 131(3–4), 299–312 (2014). https://doi.org/10.3233/FI-2014-1016

5. Bagossy, A., Vaszil, G.: Simulating reversible computation with reaction systems.
J. Memb. Comput. 2(3), 179–193 (2020). https://doi.org/10.1007/s41965-020-
00049-9

6. Barbuti, R., Gori, R., Levi, F., Milazzo, P.: Generalized contexts for reaction sys-
tems: definition and study of dynamic causalities. Acta Inform. 55(3), 227–267
(2017). https://doi.org/10.1007/s00236-017-0296-3

7. Bottoni, P., Labella, A., Rozenberg, G.: Reaction systems with influence on envi-
ronment. J. Memb. Comput. 1(1), 3–19 (2019). https://doi.org/10.1007/s41965-
018-00005-8

8. Bottoni, P., Labella, A., Rozenberg, G.: Networks of reaction systems.
Int. J. Found. Comput. Sci. 31(1), 53–71 (2020). https://doi.org/10.1142/
S0129054120400043

9. Brijder, R., Ehrenfeucht, A., Main, M.G., Rozenberg, G.: A tour of reaction sys-
tems. Int. J. Found. Comput. Sci. 22(7), 1499–1517 (2011). https://doi.org/10.
1142/S0129054111008842

10. Brijder, R., Ehrenfeucht, A., Rozenberg, G.: Reaction systems with duration. In:
Kelemen, J., Kelemenová, A. (eds.) Computation, Cooperation, and Life. LNCS,
vol. 6610, pp. 191–202. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-20000-7 16

11. Csuhaj-Varjú, E., Sethy, P.K.: Communicating reaction systems with direct com-
munication. In: Freund, R., Ishdorj, T.-O., Rozenberg, G., Salomaa, A., Zandron,
C. (eds.) CMC 2020. LNCS, vol. 12687, pp. 17–30. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-77102-7 2

12. Csuhaj-Varjú, E., Sethy, P.K.: Properties of communicating reaction systems. In:
Brejová, B., et al. (eds.) 21st Conference Information Technologies - Applications
and Theory (ITAT 2021). CEUR Workshop Proceedings, vol. 2962, pp. 217–221.
CEUR-WS.org (2021)

13. Ehrenfeucht, A., Kleijn, J., Koutny, M., Rozenberg, G.: Evolving reaction systems.
Theoret. Comput. Sci. 682, 79–99 (2017). https://doi.org/10.1016/j.tcs.2016.12.
031

14. Ehrenfeucht, A., Rozenberg, G.: Reaction systems. Fund. Inform. 75(1–4), 263–280
(2007)

15. Ehrenfeucht, A., Rozenberg, G.: Introducing time in reaction systems. Theoret.
Comput. Sci. 410(4–5), 310–322 (2009). https://doi.org/10.1016/j.tcs.2008.09.043

16. Ehrenfeucht, A., Rozenberg, G.: Zoom structures and reaction systems yield explo-
ration systems. Int. J. Found. Comput. Sci. 25(3), 275–306 (2014). https://doi.org/
10.1142/S0129054114500142

https://doi.org/10.1007/978-3-319-54072-6_4
https://doi.org/10.1007/978-3-319-54072-6_4
https://doi.org/10.1007/978-3-319-73359-3_3
https://doi.org/10.1007/s41965-020-00043-1
https://doi.org/10.1007/s41965-020-00043-1
https://doi.org/10.3233/FI-2014-1016
https://doi.org/10.1007/s41965-020-00049-9
https://doi.org/10.1007/s41965-020-00049-9
https://doi.org/10.1007/s00236-017-0296-3
https://doi.org/10.1007/s41965-018-00005-8
https://doi.org/10.1007/s41965-018-00005-8
https://doi.org/10.1142/S0129054120400043
https://doi.org/10.1142/S0129054120400043
https://doi.org/10.1142/S0129054111008842
https://doi.org/10.1142/S0129054111008842
https://doi.org/10.1007/978-3-642-20000-7_16
https://doi.org/10.1007/978-3-642-20000-7_16
https://doi.org/10.1007/978-3-030-77102-7_2
https://doi.org/10.1007/978-3-030-77102-7_2
https://doi.org/10.1016/j.tcs.2016.12.031
https://doi.org/10.1016/j.tcs.2016.12.031
https://doi.org/10.1016/j.tcs.2008.09.043
https://doi.org/10.1142/S0129054114500142
https://doi.org/10.1142/S0129054114500142

Relating Various Types of Networks of Reaction Systems 57

17. Kleijn, J., Koutny, M., Rozenberg, G.: Plug-in context providers for reaction sys-
tems. Theoret. Comput. Sci. 834, 26–42 (2020). https://doi.org/10.1016/j.tcs.
2020.01.033

18. Păun, Gh.: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143
(2000). https://doi.org/10.1006/jcss.1999.1693

19. Păun, Gh., Pérez-Jiménez, M.J.: Towards bridging two cell-inspired models: P
systems and R systems. Theoret. Comput. Sci. 429, 258–264 (2012). https://doi.
org/10.1016/j.tcs.2011.12.046

https://doi.org/10.1016/j.tcs.2020.01.033
https://doi.org/10.1016/j.tcs.2020.01.033
https://doi.org/10.1006/jcss.1999.1693
https://doi.org/10.1016/j.tcs.2011.12.046
https://doi.org/10.1016/j.tcs.2011.12.046

A Characterization of Polynomial Time
Computable Functions from the Integers

to the Reals Using Discrete Ordinary
Differential Equations

Manon Blanc1,2 and Olivier Bournez1(B)

1 Institut Polytechnique de Paris, Ecole Polytechnique,
Laboratoire d’Informatique de l’X (LIX), 91128 Palaiseau Cedex, France

{manon.blanc,olivier.bournez}@lix.polytechnique.fr
2 ENS Paris-Saclay, Gif-Sur-Yvette, France

Abstract. The class of functions from the integers to the integers com-
putable in polynomial time has been recently characterized using discrete
ordinary differential equations (ODE), also known as finite differences.
Doing so, the fundamental role of linear (discrete) ODEs and classical
ODE tools such as changes of variables to capture computability and
complexity measures, or as a tool for programming was pointed out.

In this article, we extend the approach to a characterization of func-
tions from the integers to the reals computable in polynomial time in
the sense of computable analysis. In particular, we provide a character-
ization of such functions in terms of the smallest class of functions that
contains some basic functions, and that is closed by composition, linear
length ODEs, and a natural effective limit schema.

1 Introduction

Ordinary differential equations are a natural tool for modeling many phenomena
in applied sciences, with a very abundant literature (see e.g. [1,3,13]) and are
rather well understood under many aspects. In a series of recent articles, they
have been shown to also correspond to some natural computational model, with
a nice computability and complexity theory: See [7] for a survey.

In a recent article [5,6], their discrete counterpart, which are called discrete
ODEs, also known as difference equations have been investigated. The basic
principle is, for a function f(x) to consider its discrete derivative defined as
Δf(x) = f(x + 1) − f(x). We will intentionally also write f ′(x) for Δf(x) to help
to understand statements with respect to their classical continuous counterparts.
This associated derivative notion, called finite differences, has been widely stud-
ied in numerical optimization for function approximation [14] and in discrete
calculus [15–17,19] for combinatorial analysis. While the underlying computa-
tional content of finite differences theory is clear and has been pointed out many

This work has been partially supported by ANR Project ∂IFFERENCE.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Durand-Lose and G. Vaszil (Eds.): MCU 2022, LNCS 13419, pp. 58–74, 2022.
https://doi.org/10.1007/978-3-031-13502-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13502-6_4&domain=pdf
https://doi.org/10.1007/978-3-031-13502-6_4

A Characterization of Polynomial Time Computable Functions 59

times, no fundamental connections with algorithms and complexity had been
formally established before [5,6], where it was proved that many complexity and
computability classes from computation theory can actually be characterized
algebraically using discrete ODEs. Even if such results were initially motivated
by helping to understand the relationships between analog computations and
classical discrete models of computation theory, the relation between the two is
currently unclear.

In the context of algebraic classes of functions, a classical notation is the fol-
lowing: Call operation a scheme of definition that takes finitely many functions,
and returns some new function defined from them. Then,

[f1, f2, . . . , fk; op1, op2, . . . , op�],

denotes the smallest set of functions containing functions f1, f2, . . . , fk that is
closed under operations op1, op2, . . . op�. Call discrete function a function of
type f : S1 × · · · × Sd → S′

1 × . . . S′
d′ , where each Si, S

′
i is either N or Z. Write

FPTIME for the class of functions computable in polynomial time. A main
result of [5,6] is the following (LDL stands for linear derivation on length):

Theorem 1 ([6]). For discrete functions, we have

LDL = FPTIME

where LDL = [0,1, πk
i , �(x),+,−,×, sg(x) ; composition, linear length ODE].

That is to say, LDL (and hence FPTIME for discrete functions) is the smallest
subset of functions, that contains

– the constant functions 0 and 1,
– the projections πk

i : Rk → R given by πk
i (x1, . . . , xk) = xi, for various integers

i and k,
– the length function �(x), which maps an integer to the length of its binary

representation,
– the addition function x+ y,
– the subtraction function x− y,
– the multiplication function x × y (that we will also often denote x · y),
– the sign function sg(x) : Z → Z that takes value 1 for x > 0 and 0 in the

other case,

and closed under composition (when defined) and linear length-ODE scheme:
The linear length-ODE scheme basically (a formal definition is provided in Def-
inition 4) corresponds in defining functions from linear ODEs with respect to
derivation with respect to the length of the argument, that is to say, of the form

∂f(x,y)
∂�

= A[f(x,y), x,y] · f(x,y) + B[f(x,y), x,y],

In all what follows, when we write some variable using some boldface letter, like
y, this means that it can be a vector of variable. A usual typography, like for

60 M. Blanc and O. Bournez

the x above, means it is a single variable. In the above description, we use the
notation ∂f(x,y)

∂� , which corresponds in derivation of f along the length function:
Given some function L : N

p+1 → Z, and in particular for the case of where
L(x,y) = �(x),

∂f(x,y)
∂L =

∂f(x,y)
∂L(x,y)

= h(f(x,y), x,y), (1)

is a formal synonym for

f(x + 1,y) = f(x,y) + (L(x + 1,y) − L(x,y)) · h(f(x,y), x,y).

Remark 1. This concepts, introduced in [5,6], is motivated by the fact that the
latter expression is similar to classical formula for classical continuous ODEs:

δf(x,y)
δx

=
δL(x,y)

δx
· δf(x,y)
δL(x,y)

,

and hence this is similar in spirit to a change of variable. Consequently, a linear
length-ODE is basically a linear ODE over variable t, once the change of variable
t = �(x) is done.

In particular, writing as usual BA for functions from A to B, we have:

Theorem 2 ([6]). LDL ∩ N
N = FPTIME ∩ N

N.

This provides a characterization of FPTIME for discrete functions that does
not require to specify an explicit bound in the recursion, in contrast to Cobham’s
work [12], nor to assign a specific role or type to variables, in contrast to safe
recursion or ramification [2,20]. The characterization happens to be very simple
using only natural notions from the world of ODE.

Our purpose in this article is to extend this to more general classes of func-
tions. In particular, this makes sense to try to characterize polynomial time
functions from the reals to the reals. We consider here computability and com-
plexity over the reals in the most classical sense, that is to say, computable
analysis (see e.g. [27]). Indeed, considering that N ⊂ R, most of the basic func-
tions and operations in the above characterization (for example, +, −, . . .) have
a clear meaning over the reals. One clear difficulty is that discrete ODEs are
about discrete schemata, while we would like to talk about functions over the
continuum. We did not succeed to do so yet, but we propose here a substantial
step towards this direction: We provide a characterization of polynomial time
computable functions from the integers to the reals using discrete linear ODEs:
considering linear ODEs is very natural in the context of ODEs.

To do so, we naturally go to talking about algebra of functions more general
than discrete functions, that is to say over more general space than N and Z.
This introduces some subtleties, and difficulties, that we discuss in this article,
with our various concepts, definitions and statements. Hence, we consider in
this article functions of type f : S1 × · · · × Sd → S0, where each Si is either
N, Z or Q or R, or is possibly vectorial functions whose components (that is

A Characterization of Polynomial Time Computable Functions 61

to say coordinates/projections) are of this type. We denote F for the class of
such functions. Clearly, we can consider N ⊂ Z ⊂ Q ⊂ R, but as functions may
have different type of outputs, composition is an issue. We simply admit that
composition may not be defined in some cases. In other words, we consider that
composition is a partial operator: for example, given f : N → R and g : R → R,
the composition of g and f is defined as expected, but f cannot be composed
with a function such as h : N → N.

We then consider the class

LDL
• = [0,1, πk

i , �(x),+,−,×, cond(x),
x

2
; composition, linear length ODE]

of functions of F . Here

– � : N → N is the length function, mapping some integer to the length of its
binary representation,

– x
2 : R → R is the function that divides by 2, and all other basic functions are
defined exactly as for LDL, but considered here as functions from the reals
to reals.

– cond(x) : R → R is some piecewise affine function that takes value 1 for x > 3
4

and 0 for x < 1
4 , and continuous piecewise affine. In particular, its restrictions

to the integer is the function sg(x) considered in LDL.

We prove the following (‖.‖ stands for the sup-norm).

Theorem 3 (Main Theorem 1). A function f : Nd → R
d′

is computable in
polynomial time if and only if there exists f̃ : Nd+1 → R

d′ ∈ LDL
• such that for

all m ∈ N
d, n ∈ N, ‖f̃(m, 2n) − f(m)‖ ≤ 2−n.

From the fact that we have the reverse direction in the previous theorem, it
is natural to consider the operation that maps f̃ to f . Namely, we introduce the
operation ELim (ELim stands for Effective Limit):

Definition 1 (Operation ELim). Given f̃ : Nd+1 → R
d′ ∈ LDL

• such that
for all m ∈ N

d, n ∈ N, ‖f̃(m, 2n) − f(m)‖ ≤ 2−n for some function f , then
ELim(f̃) is the (clearly uniquely defined) corresponding function f : Nd → R

d′
.

We obtain our main result, that provides a characterization of polynomial
time computable functions for functions from the integers to the reals.

Theorem 4 (Main theorem 2). A function f : Nd → R
d′

. is computable in
polynomial time if and only if all it components can be written through the LDL•
scheme, where:
LDL• = [0, 1, πk

i , �(x), +, −, ×, cond(x), x
2 ; composition, linear length ODE,

ELim].

In particular:

Theorem 5. LDL• ∩ R
N = FPTIME ∩ R

N

62 M. Blanc and O. Bournez

In Sect. 2, we recall the theory of discrete ODEs. In Sect. 3, we recall required
concepts from computable analysis. In Sect. 4, we prove that functions from
LDL

• are polynomial time computable. Section 5 is proving a kind of reverse
implication for functions over words. Then this is extended in Sect. 6 to functions
from integers to the reals, and we obtain a proof of Theorem 3. Section 7 then
proves Theorems 4 and 5. Section 8 is some generalizations of these results.
Section 9 discusses future work and difficulties to go to functions of RR.

Related Work. Various computability and complexity classes have been recently
characterized using (classical) continuous ODEs: The most up-to-date survey is
[7]. Dealing with discrete ODEs is really different, as most of the constructions
heavily rely on some closure properties of continuous ODEs not true for discrete
ODEs, in particular because there is no chain rule formula for discrete derivation.
The idea of considering discrete ODEs as a model of computation is due to [5,6].

In a non-ODE centric point of view, we are characterizing some complexity
classes using particular discrete schemata. Recursion schemes constitute a major
approach of computability theory and to some extent of complexity theory. The
foundational characterization of FPTIME due to Cobham [12], and then others
based on safe recursion [2] or ramification [21,22], or for other classes [23], gave
birth to the very vivid field of implicit complexity at the interplay of logic and
theory of programming: See [10,11] for monographs.

Our ways of simulating Turing machines have some reminiscence of similar
constructions used in other contexts such as Neural Networks [25,26]. But with
respect to all previous contexts, as far as we know, only a few papers have been
devoted to characterizations of complexity, and even computability, classes in the
sense of computable analysis. There have been some attempts using continuous
ODEs [4], or the so-called R-recursive functions [7]. For discrete schemata, we
only know [8] and [24], focusing on computability and not complexity.

2 Some Concepts from the Theory of Discrete ODEs

In this section, we recall some concepts and definitions from discrete ODEs,
either well-known or established in [5,6]. We need to slightly extend the concept
of sg-polynomial expression from [5,6] to allow expressions with cond() instead
of sg().

Definition 2 (Extension of [5,6]). A cond-polynomial expression P (x1, ..., xh)
is an expression built-on +,−,× (often denoted ·) and cond() functions over a
set of variables V = {x1, ..., xh} and integer constants. The degree deg(x, P) of a
term x ∈ V in P is defined inductively as follows: deg(x, x) = 1 and for x′ ∈ V ∪Z
such that x′ 	= x, deg(x, x′) = 0; deg(x, P + Q) = max{deg(x, P),deg(x,Q)};
deg(x, P × Q) = deg(x, P) + deg(x,Q); deg(x, sg(P)) = 0. A cond-polynomial
expression P is essentially constant in x if deg(x, P) = 0.

A Characterization of Polynomial Time Computable Functions 63

Compared to the classical notion of degree in polynomial expression, all sub-
terms that are within the scope of a sign (that is to say cond()) function con-
tributes 0 to the degree. A vectorial function (respectively a matrix or a vector)
is said to be a cond-polynomial expression if all its coordinates (respectively
coefficients) are. It is said to be essentially constant if all its coefficients are.

Definition 3 ([5,6]). A cond-polynomial expression g(f(x,y), x,y) is essen-
tially linear in f(x,y) if it is of the form g(f(x,y), x,y) = A[f(x,y), x,y] ·
f(x,y)+B[f(x,y), x,y] where A and B are cond-polynomial expressions essen-
tially constant in f(x,y).

For example, the expression P (x, y, z) = x·cond((x2−z)·y)+y3 is essentially
linear in x, essentially constant in z and not linear in y. The expression: z +(1−
cond(x)) · (1− cond(−x)) · (y − z) is essentially constant in x and linear in y and
z.

Definition 4 (Linear length ODE [5,6]). Function f is linear L-ODE defin-
able (from u, g and h) if it corresponds to the solution of

f(0,y) = g(y) and
∂f(x,y)

∂�
= u(f(x,y),h(x,y), x,y) (2)

where u is essentially linear in f(x,y).

3 Some Concepts from Computable Analysis

When we say that a function f : S1×· · ·×Sd → R
d′

is (respectively: polynomial-
time) computable this will always be in the sense of computable analysis. We
recall here the basic concepts and definitions, mostly following the book [18],
whose subject is complexity theory in computable analysis. Alternative presen-
tations include [9,27]. Actually, as we want to talk about functions in F , we
need to mix complexity issues dealing with integer and real arguments.

A dyadic number d is a rational number with a finite binary expansion. That
is to say d = m/2n for some integers m ∈ Z, n ∈ N, n ≥ 0. Let D be the set of all
dyadic rational numbers. We denote by Dn the set of all dyadic rationals d with
a representation s of precision prec(s) = n; that is, Dn = {m · 2−n | m ∈ Z}.

Definition 5 ([18]). For each real number x, a function φ : N → D is said to
binary converge to x if for all n ∈ N,prec(φ(n)) = n and |φ(n) − x| ≤ 2−n. Let
CFx (Cauchy function) denote the set of all functions binary converging to x.

Intuitively Turing machine M computes a real function f in the following
way: 1. The input x to f , represented by some φ ∈ CFx, is given to M as an
oracle; 2. The output precision 2−n is given in the form of integer n as the input
to M ; 3. The computation of M usually takes two steps, though sometimes these
two steps may be repeated for an indefinite number of times: 4. M computes,
from the output precision 2−n, the required input precision 2−m; 5. M queries
the oracle to get φ(m), such that ‖φ(m) − x‖ ≤ 2−m, and computes from φ(m)
an output d ∈ D with ‖d − f(x)‖ ≤ 2−n.

More formally:

64 M. Blanc and O. Bournez

Definition 6 ([18]). A real function f : R → R is computable if there is a
function-oracle TM M such that for each x ∈ R and each φ ∈ CFx, the function
ψ computed by M with oracle φ (i.e., ψ(n) = Mφ(n)

)
is in CFf(x).

Assume that M is an oracle machine which computes f on domain G. For
any oracle φ ∈ CFx, with x ∈ G, let TM (φ, n) be the number of steps for M to
halt on input n with oracle φ, and T ′

M (x, n) = max {TM (φ, n) | φ ∈ CFx}. The
time complexity of f is defined as follows.

Definition 7 ([18]). Let G be bounded closed interval [a, b]. Let f : G → R be a
computable function. Then, we say that the time complexity of f on G is bounded
by a function t : G × N → N if there exists an oracle TM M which computes f
such that for all x ∈ G and all n > 0, T ′

M (x, n) ≤ t(x, n).

In other words, the idea is to measure the time complexity of a real function
based on two parameters: input real number x and output precision 2−n. Some-
times, it is more convenient to simplify the complexity measure to be based on
only one parameter, the output precision. For this purpose, we say the uniform
time complexity of f on G is bounded by a function t′ : N → N if the time
complexity of f on G is bounded by a function t : G ×N → N with the property
that for all x ∈ G, t(x, n) ≤ t′(n).

However, if we do so, it is important to realize that if we had taken G = R in
the previous definition, for unbounded functions f , the uniform time complexity
would not exist, because the number of moves required to write down the integral
part of f(x) grows as x approaches +∞ or −∞. Therefore, the approach of [18]
is to do as follows (the bounds −2X and 2X are somewhat arbitrary, but are
chosen here because the binary expansion of any x ∈ (−2n, 2n) has n bits in the
integral part).

Definition 8 (Adapted from [18]). For functions f(x) whose domain is R,
we say that the (non-uniform) time complexity of f is bounded by a function
t′ : N2 → N if the time complexity of f on

[−2X , 2X
]

is bounded by a function
t : N2 → N such that t(x, n) ≤ t′(X,n) for all x ∈ [−2X , 2X

]
.

As we want to talk about general functions in F , we extend the app-
roach to more general functions. (for conciseness, when x = (x1, . . . , xp),
X = (X1, . . . , Xp), we write x ∈ [−2X, 2X] as a shortcut for x1 ∈ [−2X1 , 2X1

]
,

. . . , xp ∈ [−2Xp , 2Xp
]
).

Definition 9 (Complexity for real functions: general case). Consider
a function f(x1, . . . , xp, n1, . . . , nq) whose domain is R

p × N
q. We say that the

(non-uniform) time complexity of f is bounded by a function t′ : N
p+q+1 →

N if the time complexity of f(·, . . . , ·, �(n1), . . . , �(nq)) on
[−2X1 , 2X1

] ×
. . .

[−2Xp , 2Xp
]

is bounded by a function t(·, . . . , ·, �(n1), . . . , �(nq), ·) : Np ×N →
N such that t(x, �(n1), . . . , �(nq), n) ≤ t′(X, �(n1), . . . , �(nq), n) whenever x ∈[−2X, 2X

]
. We say that f is polynomial time computable if t′ can be chosen as

a polynomial. We say that a vectorial function is polynomial time computable iff
all its components are.

A Characterization of Polynomial Time Computable Functions 65

We do so that this measure of complexity extends the usual complexity
for functions over the integers, where complexity of integers is measured with
respects of their lengths, and over the reals, where complexity is measured with
respect to their approximation. In particular, in the specific case of a function
f : N

d → R
d′

, that basically means there is some polynomial t′ : N
d+1 → N

so that the time complexity of producing some dyadic approximating f(m) at
precision 2−n is bounded by t′(�(m1), . . . , �(md), n).

In other words, when considering that a function is polynomial time com-
putable, it is in the length of all its integer arguments, as this is the usual con-
vention. However, we need sometimes to consider also polynomial dependency
directly in one of some specific integer argument, say ni, and not on its length
�(ni). We say that the function is polynomial time computable, with respect to
the value of ni when this holds (keeping possible other integer arguments nj ,
j 	= i, measured by their length).

A well-known observation is the following.

Theorem 6. Consider f as in Definition 9 computable in polynomial time. Then
f has a polynomial modulus function of continuity, that is to say there is a
polynomial function mf : N

p+q+1 → N such that for all x,y and all n > 0,
‖x − y‖ ≤ 2−mf (X,�(n1),...,�(nq),n) implies ‖f(x, n1, . . . , nq) − f(y, n1, . . . , nq)‖ ≤
2−n, whenever x,y ∈ [−2X, 2X

]
.

4 Functions from LDL
• are in FPTIME

The following proposition can be proved by induction from standard arguments.
The hardest part is to prove that the class of polynomial time computable func-
tions is preserved by the linear length ODE schema: This is Lemma 3.

Proposition 1. All functions of LDL
• are computable (in the sense of com-

putable analysis) in polynomial time.

The following lemmas are proved in [5,6].

Lemma 1 (Alternative view, case of Length ODEs, from [5,6]). Let
f : Np+1 → Z

d, L : Np+1 → Z be some functions and assume that (1) holds
considering L(x,y) = �(x). Then f(x,y) is given by f(x,y) = F(�(x),y) where
F is the solution of initial value problem

F(1,y) = f(0,y),
∂F(t,y)

∂t
= h(F(t,y), 2t − 1,y).

Lemma 2 (Solution of linear ODE, from [5,6]). For matrices A and
vectors B and G, the solution of equation f ′(x,y) = A(f(x,y),h(x,y), x,y) ·
f(x,y) + B(f(x,y),h(x,y), x,y) with initial conditions f(0,y) = G(y) is

f(x,y) =
(
2

∫ x
0 A(f(t,y),h(t,y),t,y)δt

)
· G(y)

+
∫ x

0

(
2

∫ x
u+1 A(f(t,y),h(t,y),t,y)δt

)
· B(f(u,y),h(u,y), u,y)δu.

66 M. Blanc and O. Bournez

Remark 2. Notice, as in [5,6], that this can be rewritten as

f(x,y) =
x−1∑

u=−1

(
x−1∏

t=u+1

(1 + A(f(t,y),h(t,y), t,y))

)

· B(f(u,y),h(u,y), u,y),

(3)
with the (not so usual) conventions that for any function κ(·), ∏x−1

x κ(x) = 1
and B(−1,y) = G(y).

Lemma 3. The class of polynomial time computable functions is preserved by
the linear length ODE schema.

We propose to write
x for 2x − 1 for conciseness. We write |||· · ·||| for the
sup norm of integer part: given some matrix A = (Ai,j)1≤i≤n,1≤j≤m, |||A||| =
maxi,j�Ai,j. In particular, given a vector x, it can be seen as a matrix with
m = 1, and |||x||| is the sup norm of the integer part of its components.

Proof. Using Lemma 1, when the schema of Definition 4 holds, we can do
a change of variable to consider f(x,y) = F(�(x),y), with F solution of
a discrete ODE of the form ∂F(t,y)

∂t = A(F(t,y),h(
t,y),
t,y) · F(t,y) +
B(F(t,y),h(
t,y),
t,y), that is to say, of the form (4) below. It then follows
from:

Lemma 4 (Fundamental observation). Consider the ODE

F′(x,y) = A(F(x,y),h(
x,y),
x,y) · F(x,y) + B(F(x,y),h(
x,y),
x,y). (4)

Assume:

1. The initial condition G(y) def= F(0,y), as well as h(
x,y) are polynomial time
computable with respect to the value of x.

2. A(F(x,y),h(
x,y),
x,y) and B(F(x,y),h(
x,y),
x,y) are sg-polynomial
expressions essentially constant in F(x,y).

Then, there exists a polynomial p such that �(|||F(x,y)|||) ≤ p(x, �(|||y|||)) and
F(x,y) is polynomial time computable with respect to the value of x.

Proof. The fact that there exists a polynomial p such that �(|||F(x,y)|||) ≤
p(x, �(|||y|||)), follows from the fact that we can write some explicit formula for
the solution of (4): This is Lemma 2 below repeated from [5,6]. Now, bounding
the size of the right hand side of formula (3) provides the statement.

Now the fact that F(x,y) is polynomial time computable, follows from a rea-
soning similar to the one of following lemma (the lemma below restricts the form
of the recurrence by lack of space, but the more general recurrence of (4) would
basically not lead to any difficulty): The fact that the modulus of continuity of
a linear expression of the form of the right hand side of (4) is necessarily affine
in its first argument follows from the hypotheses and from previous paragraph,
using the fact that cond() has a linear modulus of convergence.

A Characterization of Polynomial Time Computable Functions 67

Lemma 5. Suppose that function the f : N×R
d → R

d′
is such that for all x,y,

f(0,y) = g(y) and f(x + 1,y) = h(f(x,y), x,y))

for some functions g : Rd → R
d′

and h : Rd′ × R × R
d → R

d′
both computable

in polynomial time with respect to the value of x. Suppose that the modulus mh

of continuity of h is affine in its first argument: For all functions f , f ′ defined
in [−2F, 2F], y ∈ [−2Y, 2Y], ‖f − f ′‖ ≤ 2−mh(F,�(x),Y,n) implies |h(f , x,y) −
h(f ′, x,y)| ≤ 2−n with mh(F, �(x),Y, n) = αn + ph(F, �(x),Y) for some α.
Suppose there exists a polynomial p such that �(|||f(x,y)|||) ≤ p(x, �(|||y|||)).

Then f(x,y) is computable in polynomial time with respect to the value of x.

Proof. The point is that we can compute f(n,y) by z0 = f(0,y) = g(y), then
z1 = f(1,y) = h(z0, 0,y), then z2 = f(2,y) = h(z1, 1,y), then . . . , then zm =
f(m,y) = h(zm−1,m − 1,y). One needs to do so with some sufficient precision
so that the result given by f(l,y) is correct, and so that the whole computation
can be done in polynomial time.

Given y, we can determine Y such that y ∈ [−2Y, 2Y]. Assume for now that
for all m,

zm ∈ [−2Zm , 2Zm] (5)

For i = 0, 1, . . . l, consider p(i) = αl−in +
∑l−1

k=i αk−iph(Zk, �(k),Y).
Using the fact that g is computable, approximate z0 = g(y) with precision

2−p(0). This is doable polynomial time with respect to the value of p(0).
Then for i = 0, 1, . . . , l, using the approximation of zi with precision 2−p(i),

compute an approximation of zi+1 with precision 2−p(i+1): this is feasible to
get precision 2−p(i+1) of zi+1, as zi+1 = f(i + 1,y) = h(zi, i,y), it is sufficient
to consider precision mh(Zi, �(i),Y, p(i + 1)) = αp(i + 1) + ph(Zi, �(i),Y) =
αl−i−1+1n+

∑l−1
k=i+1 αk−i−1+1ph(Zk, �(k),Y)+ph(Zi, �(i),Y) = p(i). Observing

that p(l) = n, we get zl with precision 2−n. All of this is is indeed feasible in
polynomial time with respect to the value of l, under the condition that all the
Zi remain of size polynomial, that is to say, that we have indeed (5). But this
follows from our hypothesis on �(|||f(x,y)|||).

5 Functions from FPTIME are in LDL
•

This section is devoted to prove a kind of reverse implication of Proposition 1:
For any polynomial time computable function f : Nd → R

d′
, we can construct

some function f̃ ∈ LDL
• that simulates the computation of f . This basically

requires to be able to simulate the computation of a Turing machine using some
functions from LDL

•.
Consider without loss of generality some Turing machine

M = (Q, {0, 1}, qinit, δ, F)

68 M. Blanc and O. Bournez

using the symbols 0, 1, 3, where B = 0 is the blank symbol. The reason of the
choice of symbols 1 and 3 will be made clear later. We assume Q = {0, 1, . . . , |Q|−
1}. Let

. . . l−kl−k+1 . . . l−1l0r0r1 . . . rn. . . .

denote the content of the tape of the Turing machine M . In this representation,
the head is in front of symbol r0, and li, ri ∈ {0, 1, 3} for all i. Such a configura-
tion C can be denoted by C = (q, l, r), where l, r ∈ Σω are (possibly infinite, if
we consider that the tape can be seen as a non finite word, in the case there is
no blank on it) words over alphabet Σ = {1, 3} and q ∈ Q denotes the internal
state of M .

The idea is that such a configuration C can also be encoded by some element
γconfig(C) = (q, l, r) ∈ N × R

2, by considering

r = r04−1 + r14−2 + · · · + rn4−(n+1) + . . . ,

l = l04−1 + l−14−2 + · · · + l−k4−(k+1) + . . .

Basically, in other words, we encode the configuration of bi-infinite tape
Turing machine M by real numbers using their radix 4 encoding, but using
only digits 1,3. If we write: γword : Σω → R for the function that maps word
w = w0w1w2 . . . to γword(w) = w04−1 + w14−2 + · · · + wn4−(n+1) + . . . , we can
also write γconfig(C) = γconfig(q, l, r) = (q, γword(l), γword(r)).

Notice that this lives in Q × [0, 1]2. Actually, if we denote the image of
γword : Σω → R by I, this even lives in Q × I2.

Lemma 6. We can construct some function Next in LDL
• that simulates one

step of M , i.e. that computes the Next function sending a configuration C of
Turing machine M to the next one. This function is essentially linear.

Proof. We can write l = l0l
• and r = r0r

•, where l• and r• corresponding to
(possibly infinite) word l−1l−2 . . . and r1r2 . . . respectively.

... l• l0 r0 r• ...

︸ ︷︷ ︸
l

︸︷︷︸
r

The function Next is basically of the form

Next(q, l, r) = Next(q, l•l0, r0r•) = (q′, l′, r′)
= (q′, l•l0x, r•) whenever δ(q, r0) = (q′, x,→)

(q′, l•, l0xr•) whenever δ(q, r0) = (q′, x,←)
. . .

where the dots is a list of lines of similar types for the various values of q and r0.
This rewrites as a function Next which is similar, working over the representation
of the configurations as reals:

A Characterization of Polynomial Time Computable Functions 69

Next(q, l, r) = Next(q, l•l0, r0r•) = (q′, l′, r′)

= (q′, l•l0x, r•) whenever δ(q, r0) = (q′, x,→)

(q′, l•, l0xr•) whenever δ(q, r0) = (q′, x,←)
. . .

where r0 = �4r�and
• in the first case “→” : l′ = 4−1l + 4−1x and r′ = r• = {4r}
• in the second case “←” : l′ = l• = {4l} and r′ = 4−2r• + 4−2x + �4l�

(6)

Here {.} stands for fractional part.
The problem about such expressions is that we cannot expect the integer

part and the fractional part function to be in LDL
• (as functions of this class

are computable, and hence continuous, unlike the fractional part). But, a key
point is that from our trick of using only symbols 1 and 3, we are sure that in an
expression like �r�, either it values 0 (this is the specific case where there remain
only blanks in r), or that 4r lives in interval [1, 1+1) or in interval [3, 3+1). That
means that we could replace {4r} by σ(4r) where σ is some (piecewise affine)
function obtained by composing in a suitable way the basic functions of LDL•.
Namely, define If (b, T,E) as a synonym for cond(b) × T + (1 − cond(b)) × E.
Then, considering i(x) = If (x, 0, If (x − 1, 1, 3)), σ(x) = x − i(x), then i(4r)
would be the same as �4r�, and σ(4r) would be the same as {4r} in our context
in above expressions. In other words, we could replace the paragraph (6) above
by:

where r0 = i(4r)
• in the first case “→” : l′ = 4−1l + 4−1x and r′ = r• = σ(4r)
• in the second case “←” : l′ = l• = σ(4l) and r′ = 4−2r• + 4−1x + i(4l)

and get something that would be still work exactly, but using only functions from
LDL

•. Notice that these imbrications of If rewrite to an essentially constant
expression.

We can then write:

q′ = If (q−0, nextq0, If (q−1, nextq1, · · · , If (q−|Q−2|, nextq|Q|−2, nextq|Q|−1)))

where
nextqq = If (v − 0, nextqq

0, If (v − 1, nextqq
1, nextqq

3))

and where nextqq
v = q′ if δ(q, v) = (q′, x,m) for m ∈ {←,→}, for v ∈ {0, 1, 3}.

Similarly, we can write

r′ = If (q−0, nextr0, If (q−1, nextr1, · · · , If (q−|Q−2|, nextr|Q|−2, nextr|Q|−1)))

where nextrq = If (v − 0, nextrq
0, If (v − 1, nextrq

1, nextrq
3)) and where nextrq

v

that corresponds to the corresponding expression in the item above according

70 M. Blanc and O. Bournez

to the value of δ(q, v). We can clearly write a similar expression for l′. These
imbrications of If rewrite to some essentially linear expressions.

Once we have one step, we can simulate some arbitrary computation of a
Turing machine, using some linear length ODE:

Proposition 2. Consider some Turing machine M that computes some func-
tion f : Σ∗ → Σ∗ in some time T (�(ω)) on input ω. One can construct some
function f̃ : N×R → R in LDL

• that does the same, with respect to the previous
encoding: f̃(2T (�(ω)), γword(ω)) provides f(ω).

Proof. The idea is to define the function Exec that maps some time 2t and
some initial configuration C to the configuration number at time t. This can be
obtained using some linear length ODE using Lemma 6.

Exec(0, C) = C and
∂Exec

∂�
(t, C) = Next(Exec(t, C))

We can then get the value of the computation as Exec(2T (�(ω)), Cinit) on
input ω, considering Cinit = (q0, 0, γword(ω)). By applying some projection,
we get the following function f̃(x, y) = π3

3(Exec(x, q0, 0, y)) that satisfies the
property.

6 Towards Functions from Integers to the Reals

The purpose of this section is to prove Theorem 3. The reverse implication of
Theorem 3 mostly follows from Proposition 1 and arguments from computable
analysis. By lack of space, details are in appendix.

For the direct implication of Theorem 3, the difficulty is that we know from
the previous section how to simulate Turing machines working over I, while we
want functions that work directly over the integers and over the reals. A key is
to be able to convert from integers/reals to representations using only symbols
1 and 3, that is to say, to map integers to I, and I to reals.

Lemma 7 (From I to R). We can construct some function Encode : N ×
[0, 1] → R in LDL

• that maps γword(d) with d ∈ {1, 3}∗ to some real d. It is
surjective over the dyadic, in the sense that for any dyadic d ∈ D, there is some
(easily computable) such d with Encode(2�(d), d) = d.

Proof. Consider the following transformation: Every digit in the binary expan-
sion of d is encoded by a pair of symbols in the radix 4 encoding of d ∈ [0, 1]:
digit 0 (respectively: 1) is encoded by 11 (respectively 13) if before the “decimal”
point in d, and digit 0 (respectively: 1) is encoded by 31 (respectively 33) if after.
For example, for d = 101.1 in base 2, d = 0.13111333 in base 4.

A Characterization of Polynomial Time Computable Functions 71

The transformation from d to d can be done by considering a function F :
[0, 1]2 → [0, 1]2 that satisfies

F (r1, l2) =

⎧
⎪⎪⎨

⎪⎪⎩

(σ(16r1), 2l2 + 0) whenever i(16r1) = 5
(σ(16r1), 2l2 + 1) whenever i(16r1) = 7
(σ(16r1), (l2 + 0)/2) whenever i(16r1) = 13
(σ(16r1), (l2 + 1)/2) whenever i(16r1) = 15

A natural candidate for this is an expression such as If (i(16r1)−0, (σ(16r1), 2l2+
0), If (i(16r1)−7, (σ(16r1), 2l2+1), If (i(16r1)−13, (σ(16r1), (l2+0)/2), (σ(16r1),
(l2+1)/2)))) with σ and i constructed as suitable approximation of the fractional
and integer part as in previous section.

We then just need to apply �(d) times F on (d, 0), and then project on
the second component to get a function Encode that does the job. That is
Encode(x, y) = π3

3(G(x, y)) with

G(0, y) = (d, 0) and
∂G

∂�
(t, d, l) = F (G(t, d, l)).

Lemma 8 (From N to I). We can construct some function Decode : Nd → R

in LDL
• that maps n ∈ N to some (easily computable) encoding of n in I.

Proof. We discuss only the case d = 1 by lack of space. Let div2 (respectively:
mod2) denote integer (respectively remainder of) division by 2: As these func-
tions are from N → N, from Theorem 1 from [5,6], they belongs to LDL. Their
expression in LDL, replacing sg() by cond(), provides some extensions div2 and
mod2 in LDL

•. We then do something similar as in the previous lemma but now
with function

F (r1, l2) =
{

(div2(r1), (l2 + 0)/2) whenever mod2(r1) = 0
(div2(r1), (l2 + 1)/2) whenever mod2(r1) = 1.

We can now prove the direct direction of Theorem 3: Assume that f : Nd →
R

d′
is computable in polynomial time. That means that each of its components

are, thus, we can consider without loss of generality that d′ = 1. We assume
also that d = 1 (otherwise consider either multi-tape Turing machines, or some
suitable alternative encoding in Encode). That means that we know that there is
a TM polynomial time computable functions d : Nd+1 → {1, 3}∗ so that on m, n
it provides the encoding of some dyadic φ(m, n) with ‖φ(m, n) − f(m)‖ ≤ 2−n

for all m.
From Proposition 2, we can construct d̃ with d̃(2p(max(m,n)),Decode(n,m)) =

d(m, n) for some polynomial p corresponding to the time required to compute
d.

Both functions �(x) = �(x1) + . . . + �(xp) and B(x) = 2�(x)·�(x) are in LDL

(see [5,6]). It is easily seen that : �(x)c ≤ B(c)(�(x))) where B(c) is the c-fold
composition of function B.

Then f̃(m, n) = Encode(d̃(B(c)(max(m, n)),Decode(n,m))) provides a solu-
tion such that ‖f̃(m, 2n) − f(m)‖ ≤ 2−n.

72 M. Blanc and O. Bournez

7 Proving Theorems 4 and 5

Clearly Theorem 5 follows from the case where d = 1 and d′ = 1 from Theorem 4.
Hence, there only remain to prove Theorem 4. The direct direction is immediate
from Theorem 3. For the reverse direction, by induction, the only thing to prove is
that the class of functions from the integers to the reals computable in polynomial
time is preserved by the operation ELim. Take such a function f̃ . By definition,
given m, we can compute f̃(m, 2n) with precision 2−n in time polynomial in n.
This must be by definition of ELim schema some approximation of f(m), and
hence f is computable in polynomial time.

8 Generalizations

Recall that a function M : N → N is a modulus of convergence of g : N → R, with
g(n) converging toward 0 when n goes to ∞, if and only if for all i > M(n), we
have ‖g(i)‖ ≤ 2−n. A function M : N → N is a uniform modulus of convergence
of a sequence g : N

d+1 → R, with g(m, n) converging toward 0 when n goes
to ∞ if and only if for all i > M(n), we have ‖g(m, i)‖ ≤ 2−n. Intuitively, the
modulus of convergence gives the speed of convergence of a sequence.

Definition 10 (Operation E2Lim). Given f̃ : Nd+1 → R ∈ LDL
•, g : Nd+1 →

R such that for all m ∈ N
d, n ∈ N, ‖f̃(m, 2n) − f(m)‖ ≤ g(m, n) under the

condition that 0 ≤ g(m, n) is decreasing to 0, with ‖g(m, p(n))‖ ≤ 2−n for some
polynomial p(n) then E2Lim(f̃ , g) is the (clearly uniquely defined) corresponding
function f : Nd → R

e.

Theorem 7. We could replace ELim by E2Lim in the statements of Theorems
4 and 5.

This is equivalent to prove the following, and observe from the proof that we
can replace in above statement “g(m, n) going to 0” by “decreasing to 0”, and
last condition by ‖g(m, p(n))‖ ≤ 2−n.

Theorem 8. F : N
d → R

d′
is computable in polynomial time iff there exists

f : Nd+1 → Q
d′

, with f(m, n) computable in polynomial time with respect to the
value of n, and g : Nd+1 → Q such that

– ‖f(m, n) − F(m)‖ ≤ g(m, n)
– 0 ≤ g(m, n) and g(m, n) converging to 0 when n goes to +∞,
– with a uniform polynomial modulus of convergence p(n).

From the proofs we also get a normal form theorem. In particular,

Theorem 9 (Normal form theorem). Any function f : N
d → R

d′
can be

obtained from the class LDL• using only one schema ELim (or E2Lim).

A Characterization of Polynomial Time Computable Functions 73

9 Conclusion and Future Work

In this article, we characterized the set of functions from the integer to the reals.
As we already said, our aim in a future work is to characterize FPTIME∩RR and
not only FPTIME ∩ R

N. This is clearly a harder task. In particular, a natural
approach would be to consider some function Encode from R to I. Unfortunately,
such a function decode is necessarily discontinuous, and is hence not-computable,
and cannot be in the class. The approach of mixing of [4] might provide a
solution, even if the constructions there, based on (classical) continuous ODEs
use deeply some closure properties of these functions that are not true for discrete
ODEs.

10 Thanks

We would like to thank warmly Arnaud Durand, for several very helpful dis-
cussions, and comments about this work as well as very relevant questions and
suggestions who influenced strongly the way some of our results are formulated.

References

1. Arnold, V.I.: Ordinary Differential Equations. MIT Press, Cambridge (1978)
2. Bellantoni, S., Cook, S.: A new recursion-theoretic characterization of the poly-

time functions. Comput. Complex. 2, 97–110 (1992)
3. Birkhoff, G., Rota, G.C.: Ordinary Differential Equations, 4th edn. Wiley, Hoboken

(1989)
4. Bournez, O., Campagnolo, M.L., Graça, D.S., Hainry, E.: Polynomial differential

equations compute all real computable functions on computable compact intervals.
J. Complex. 23(3), 317–335 (2007)

5. Bournez, O., Durand, A.: Recursion schemes, discrete differential equations and
characterization of polynomial time computation. Technical report (2018, Submit-
ted). A preliminary version coauthored with Sabrina Ouazzani. https://arxiv.org/
abs/1810.02241

6. Bournez, O., Durand, A.: Recursion schemes, discrete differential equations and
characterization of polynomial time computation. In: Rossmanith, P., Heggernes,
P., Katoen, J. (eds.) 44th International Symposium on Mathematical Foundations
of Computer Science, MFCS. LIPIcs, vol. 138, pp. 23:1–23:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2019)

7. Bournez, O., Pouly, A.: A survey on analog models of computation. In: Handbook
of Computability and Complexity in Analysis. TAC, pp. 173–226. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-59234-9 6

8. Brattka, V.: Recursive characterization of computable real-valued functions and
relations. Theoret. Comput. Sci. 162(1), 45–77 (1996)

9. Brattka, V., Hertling, P., Weihrauch, K.: A tutorial on computable analysis. In:
Cooper, S.B., Löwe, B., Sorbi, A. (eds.) New Computational Paradigms, pp. 425–
491. Springer, New York (2008). https://doi.org/10.1007/978-0-387-68546-5 18

10. Clote, P.: Computational models and function algebras. In: Griffor, E.R. (ed.)
Handbook of Computability Theory, Amsterdam, North-Holland, pp. 589–681
(1998)

https://arxiv.org/abs/1810.02241
https://arxiv.org/abs/1810.02241
https://doi.org/10.1007/978-3-030-59234-9_6
https://doi.org/10.1007/978-0-387-68546-5_18

74 M. Blanc and O. Bournez

11. Clote, P., Kranakis, E.: Boolean Functions and Computation Models. Springer,
Cham (2013)

12. Cobham, A.: The intrinsic computational difficulty of functions. In: Bar-Hillel,
Y. (ed.) Proceedings of the International Conference on Logic, Methodology, and
Philosophy of Science, North-Holland, Amsterdam, pp. 24–30 (1962)

13. Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. Mc-
Graw-Hill, New York (1955)

14. Gelfond, A.: Calculus of Finite Differences (1971)
15. Gleich, D.: Finite calculus: a tutorial for solving nasty sums. Stanford University

(2005)
16. Graham, R.L., Knuth, D.E., Patashnik, O., Liu, S.: Concrete mathematics: a foun-

dation for computer science. Comput. Phys. 3(5), 106–107 (1989)
17. Izadi, F., Aliev, N., Bagirov, G.: Discrete Calculus by Analogy. Bentham Science

Publishers, Sharjah (2009)
18. Ko, K.I.: Complexity Theory of Real Functions. Progress in Theoretical Computer

Science, Birkhaüser, Boston (1991)
19. Lau, G.: http://www.acm.ciens.ucv.ve/main/entrenamiento/material/

DiscreteCalculus.pdf. Course notes for the course “Discrete calculus”. http://
gustavolau.com

20. Leivant, D.: Intrinsic theories and computational complexity. In: Leivant, D. (ed.)
LCC 1994. LNCS, vol. 960, pp. 177–194. Springer, Heidelberg (1995). https://doi.
org/10.1007/3-540-60178-3 84

21. Leivant, D.: Predicative recurrence and computational complexity I: word recur-
rence and poly-time. In: Clote, P., Remmel, J. (eds.) Feasible Mathematics II, pp.
320–343. Birkhäuser (1994)

22. Leivant, D., Marion, J.Y.: Lambda calculus characterizations of Poly-Time. Fun-
damenta Informatica 19(1,2), 167–184 (1993)

23. Leivant, D., Marion, J.-Y.: Ramified recurrence and computational complexity
II: substitution and poly-space. In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994.
LNCS, vol. 933, pp. 486–500. Springer, Heidelberg (1995). https://doi.org/10.1007/
BFb0022277

24. Ng, K.M., Tavana, N.R., Yang, Y.: A recursion theoretic foundation of computation
over real numbers. J. Logic Comput. 31(7), 1660–1689 (2021)

25. Siegelmann, H.T.: Neural Networks and Analog Computation - Beyond the Turing
Limit. Birkauser, Basel (1999)

26. Siegelmann, H.T., Sontag, E.D.: On the computational power of neural nets. J.
Comput. Syst. Sci. 50(1), 132–150 (1995)

27. Weihrauch, K.: Computable Analysis: An Introduction. Springer, Cham (2000)

http://www.acm.ciens.ucv.ve/main/entrenamiento/material/DiscreteCalculus.pdf
http://www.acm.ciens.ucv.ve/main/entrenamiento/material/DiscreteCalculus.pdf
http://gustavolau.com
http://gustavolau.com
https://doi.org/10.1007/3-540-60178-3_84
https://doi.org/10.1007/3-540-60178-3_84
https://doi.org/10.1007/BFb0022277
https://doi.org/10.1007/BFb0022277

Languages of Distributed Reaction
Systems

Lucie Ciencialová1, Luděk Cienciala1, and Erzsébet Csuhaj-Varjú2(B)

1 Institute of Computer Science and Research Institute of the IT4Innovations Centre
of Excellence, Silesian University in Opava, Opava, Czech Republic

{lucie.ciencialova,ludek.cienciala}@fpf.slu.cz
2 Department of Algorithms and Their Applications, Faculty of Informatics,

ELTE Eötvös Loránd University, Pázmány Péter sétány 1/c, 1117 Budapest, Hungary
csuhaj@inf.elte.hu

Abstract. Reaction systems are a formal model of interactions between
biochemical reactions. The motivation for the concept of a reaction sys-
tem was to model the behavior of biological systems in which a large
number of individual reactions interact with each other. A reaction sys-
tem consists of a finite set of objects that represent chemicals and a finite
set of triplets (reactants, inhibitors, products) that represent chemical
reactions; the reactions may facilitate or inhibit each other. An exten-
sion of the concept of the reaction system is the distributed reaction
system which model was inspired by multi-agent systems, agents (rep-
resented by reaction systems) interact with their environment (context
provided by a context automaton). In this paper, we assign languages to
distributed reaction systems and provide representations of some well-
known language classes by these systems.

Keywords: reaction systems · distributed reaction systems ·
right-linear simple matrix language · recursively enumerable language

1 Introduction

Reaction systems were introduced by A. Ehrenfeucht and G. Rozenberg in 2004
as a formal concept for modeling the behavior of biological systems in which a
large number of individual reactions interact with each other [7]. Since then the
topic has become a recognized area in natural computing.

A reaction system consists of a finite set of objects that represent chemicals
and a finite set of triplets that represent chemical reactions. The three compo-
nents of the reactions are the set of reactants, the set of inhibitors, and the set
of products, each of them is a nonempty set. The set of reactants and the set of
inhibitors are disjoint. Let T be a set of reactants. A reaction is enabled for a set
of reactants T if all of its reactants are present in T and none of its inhibitors
are present in T . Every reaction enabled for T can be performed on T . When
a reaction is performed, then the set of its reactants is replaced by the set of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Durand-Lose and G. Vaszil (Eds.): MCU 2022, LNCS 13419, pp. 75–90, 2022.
https://doi.org/10.1007/978-3-031-13502-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13502-6_5&domain=pdf
https://doi.org/10.1007/978-3-031-13502-6_5

76 L. Ciencialová et al.

its products. All enabled reactions are applied in parallel. Reaction systems are
qualitative models, since the concept focuses on the presence or absence of the
chemical species, but not their amounts. Multiple reactions that have common
reactants do not interfere. All the reactions that are enabled at a given step
are performed simultaneously. Another important feature of reaction systems is
the lack of permanency; those reactants that are not involved in any reaction
disappear from the system. For further details, the reader is referred to [8].

Reaction systems have been studied in detail over the last almost twenty
years. One of the main directions of investigations is the study of the mathemat-
ical properties of reaction systems: functions defined by reaction systems, state
sequences, the effect of bounded resources, cycles, and connections to proposi-
tional logic. For details, consult [6,16,17]. One other important research direction
aims at studying reaction systems as a modeling framework, model checking for
reaction systems. For example, a temporal logic was introduced in [13] for check-
ing temporal properties of reaction systems. Biologically inspired properties of
reaction systems are of interest as well, they were defined and studied in [1–3].

An interesting research area is the theory of networks of reaction systems
[4] and communicating reaction systems with direct communication [5]. These
systems are virtual graphs with a reaction system in each node. The reaction
systems work in a synchronized manner and interact with each other using dis-
tribution and communication protocols. The set of products of each reaction
system in the network forms a part of the environment of the network.

A related topic is the notion of a distributed reaction system, motivated
by multi-agent systems, where agents (represented by reaction systems) are in
interaction with their environment (context provided by an extended context
automaton) [12]. The concept was introduced by A. Meski, M. Koutny, and W.
Penczek in 2017 and it is also suitable for modeling both distributed systems
and different synchronization schemes for concurrent systems. Related notions
are dP systems and dP automata in membrane computing [14,15].

In this paper, we present a slightly modified version of distributed reaction
systems. Such a system consists of n reaction systems over a common back-
ground set (alphabet), which work synchronously. In each step, a so-called con-
text automaton provides sets of reactants (contexts) for the reaction systems.
These contexts are added to the current reactant sets (states) of the reaction
systems. Then the reactions will be performed on the new reactant sets obtained
in this way, and the procedure will be repeated. This interactive process is termi-
nating if it is finite and the distributed reaction system enters a so-called finite
state.

In this paper, we assign languages to distributed reaction systems and pro-
vide representations of some well-known language classes by these systems. Thus,
we open a new aspect of investigations. We show that languages of (extended)
distributed reaction systems correspond the simple right-linear matrix languages
and vice versa, and present a representation of the recursively enumerable lan-
guage class by extended distributed reaction systems and morphisms.

Languages of Distributed Reaction Systems 77

The paper is organized as follows. In Sect. 2, we present the basic notions
concerning reaction systems and distributed reaction systems and we define the
notion of languages assigned to the latter constructs. In Sect. 3, we provide repre-
sentations of some language classes by extended distributed reaction systems and
mappings. We close the paper with conclusions and provide a few suggestions
for further research.

2 Basic Notions and Notations

2.1 Formal Language Theory Prerequisites

Throughout the paper we assume the reader to be familiar with the basics of
formal language theory; for more details consult [10].

An alphabet V is a finite nonempty set. For an alphabet V , V ∗ denotes the
set of words (strings) over V , including the empty word, λ. A language L is a
subset of V ∗. For a finite set V , card(V) denotes the number of elements of V ;
if V is the emptyset, then card(V) = 0.

A generative grammar is denoted by G = (N,T, P, S) where N and T denote
the set of nonterminals and the set of terminals, P is the set of productions, and
S is the startsymbol. For details on regular, linear, and context-free grammars
consult [10]. The family of regular languages is denoted by REG and the family
of recursively enumerable languages is denoted by RE.

A right-linear simple matrix grammar, [11], of degree n is an (n+3)-tuple of
the form G = (N1, . . . , Nn, T, S,M) where N1, . . . , Nn and T are pairwise disjoint
alphabets, S /∈ (T ∪ N), where N =

⋃n
i=1 Ni, and M consists of matrices of the

following forms:

1. (S → x), x ∈ T ∗.
2. (S → A1 . . . An), Ai ∈ Ni, 1 ≤ i ≤ n.
3. (A1 → x1B1, . . . , An → xnBn), Ai, Bi ∈ Ni, xi ∈ T ∗, 1 ≤ i ≤ n.
4. (A1 → x1, . . . , An → xn), Ai ∈ Ni, xi ∈ T ∗, 1 ≤ i ≤ n.

Let V = N ∪ T ∪ {S}. For u, v ∈ V ∗ we write u =⇒ v if one of the fol-
lowing cases holds: (1) u = S and (S → v) ∈ M , (2) u = x1A1 . . . xnAn,
v = x1w1B1 . . . xnwnBn where (A1 → w1B1, . . . , An → wnBn) ∈ M , (3)
u = x1A1 . . . xnAn, v = x1w1 . . . xnwn where (A1 → w1, . . . , An → wn) ∈ M ,
Ai, Bi ∈ Ni, v, xi, wi ∈ T ∗.

The language generated by G is L(G) = {z ∈ T ∗ | S =⇒∗ z}, where =⇒∗

denotes the reflexive transitive closure of =⇒.
For right-linear simple matrix grammars (with erasing rules) the following

normal form is known: matrix of type (1) can be omitted, in matrices of type
(3) we have xi ∈ T ∪{λ}, 1 ≤ i ≤ n, and in matrices of type (4) we have xi = λ,
1 ≤ i ≤ n.

RSMn denotes the family of languages L(G) for right-linear simple matrix
grammars G of degree at most n, n ≥ 1. The union of language families RSMn,
for all n ≥ 1 is denoted by RSM∗.

78 L. Ciencialová et al.

It is known that RSMn ⊂ RSMn+1, n ≥ 1. Furthermore, REG ⊂ RSM∗,
and RSM∗ and CF are incomparable [11].

In this paper, we will refer to the Extended Post Correspondence, a tool
for representing recursively enumerable languages [9]. Let V = {a1, a2, . . . , al}
be an alphabet, l ≥ 1. An Extended Post Correspondence (an EPC) is a pair
E = ({(u1, v1), . . . , (um, vm)}, (za1 , . . . , zal

)), where m ≥ 1, ui, vi, zaj
∈ {0, 1}∗

for 1 ≤ i ≤ m and 1 ≤ j ≤ l.
The language represented by E in V , written as L(E), is the following set:
L(E) = {x1 . . . xn ∈ V ∗ | ∃ s1s2 . . . sr ∈ {1, 2, . . . ,m}r such that r ≥ 1 and

us1us2 . . . usr
= vs1vs2 . . . vsr

zx1zx2 . . . zxn
}.

It is shown that for every recursively enumerable language L ⊆ V ∗, there
exists an Extended Post Correspondence E such that L(E) = L [9].

2.2 Distributed Reaction Systems

We first recall the notion of a reaction system [7,8] and then we define the
concept of a distributed reaction system based on [12].

A reaction system is a pair A = (S,A) where S is a finite nonempty set,
called the background set of A, and A is a finite set of reactions over S.

Every reaction of A is a triplet b = (Rb, Ib, Pb) where Rb, Ib, Pb are nonempty
subsets of S with Rb ∩ Ib = ∅. Sets Rb, Ib, Pb are called the set of reactants, the
set of inhibitors, and the set of products of b.

A reaction b ∈ A is enabled for T ⊆ S, denoted by enb(T), if Rb ⊆ T and
Ib ∩ T = ∅. The result of b on T , denoted by resb(T), is equal to Pb if b is
enabled on T and it is equal to the empty set otherwise. The result of A on T is
resA(T) =

⋃
b∈A resb(T).

The dynamic behavior of the reaction systems is captured through the notion
of an interactive process defined as follows.

Let A = (S,A) be a reaction system. An interactive process in A is a pair
π = (γ, ϕ) of finite sequences such that γ = c0, c1, . . . , cn−1, ϕ = d1, . . . , dn with
n ≥ 1, where c0, . . . , cn−1, d1, . . . , dn ⊆ S, d1 = resA(c0), and di = resA(di−1 ∪
ci−1) for 2 ≤ i ≤ n.

The sequences c0, . . . , cn−1 and d1, . . . , dn are the context and result
sequences of π, respectively. Context c0 represents the initial state of π (the
state in which the interactive process is initiated), and the contexts c1, . . . , cn−1

represent the influence of the environment to the computation.
In the following, we define the concept of a distributed reaction system, with

slight modifications of the notion and notations introduced in [12].

Definition 1. A distributed reaction system (a DRS, for short) is a pair Δ =
(S,A) where S is a finite nonempty set, called the background set of Δ, and
A = {A1, . . . , An}. Ai, 1 ≤ i ≤ n, is a finite nonempty set of reactions over S,
called the ith component of Δ.

Notice that (S,Ai) is a reaction system; if no confusion arises, then Ai can also
be called the ith reaction system of Δ.

Languages of Distributed Reaction Systems 79

Reaction systems in the DRS interact with the environment, which provides
contexts for them, i.e., sets of reactants that influence their behavior.

Now, we present the notion of a context automaton (or context provider).
This concept is a slightly modified variant of the notion of a context automaton
in [12].

Definition 2. Let Δ = {S,A) with A = (A1, . . . , An}, n ≥ 1, be a distributed
reaction system. A 5-tuple M = (Q,C,R, q0, F) is called a context automaton
(or a context provider) for Δ if the following conditions are met:

– Q is a finite set, called the set of states of M ,
– C ⊆ {(c1, . . . , cn) | ci ⊆ S, 1 ≤ i ≤ n} is the finite set of n-tuples of contexts

provided for components A1, . . . , An,
– R ⊆ {(q, (c1, . . . , cn), r) | q, r ∈ Q, (c1, . . . , cn) ∈ C}, called the set of transi-

tions of M ,
– q0 ∈ Q, the initial state of M ,
– F ⊆ Q, the set of final states of M .

In the following, we extend the notion of a distributed reaction system to a
distributed reaction system interacting with its environment, called an extended
distributed reaction system. In the extended distributed reaction system each
component maintains its local state, which is a subset of S. A global state of Δ is
an n-tuple of the local states of the components. The distributed reaction system
is in interaction with its environment, i.e., at each transition from one global
state to the next, the environment provides each component of the distributed
reaction system with a context. The context is a finite, possibly empty set of
elements of S.

Definition 3. An extended distributed reaction system (an EDRS, for short) is
a triplet Γ = (Δ,M, σ0), where

– Δ = (S,A) with A = (A1, . . . , An), n ≥ 1, is a distributed reaction system
over S,

– M = (Q,C,R, q0, F) is a context automaton for Δ,
– σ0 = (q0, (c1,0, . . . , cn,0), (d1,0, . . . , dn,0)) is the initial state of Δ, where
– (d1,0, . . . , dn,0) with di,0 = ∅, 1 ≤ i ≤ n; di,0 is called the initial state of Ai,
– (c1,0, . . . , cn,0) ∈ C and there exists j, 1 ≤ j ≤ n, such that cj,0 = ∅. Set ci,0

is called the initial context for Ai.

We now define the state of a distributed reaction system.

Definition 4. Let Γ = (Δ,M, σ0) be an extended distributed reaction sys-
tem, where Δ = (S,A), A = (A1, . . . , An), n ≥ 1, M = (Q,C,R, q0, F),
σ0 = (q0, (c1,0, . . . , cn,0), (d1,0, . . . , dn,0)).

A triplet σ = (q, (c1, . . . , cn), (d1, . . . , dn)) is called a state of Γ if q ∈ Q,
(c1, . . . , cn) ∈ C, and for (d1, . . . , dn) it holds that di ⊆ S, 1 ≤ i ≤ n.

Each state σf = (qf , (c1, . . . , cn), (d1, . . . , dn)) where σf ∈ F is called a final
state of Γ .

80 L. Ciencialová et al.

We present the notion of a direct transition in an EDRS.

Definition 5. Let Γ = (Δ,M, σ0) be an extended distributed reaction system,
where Δ = (S,A), A = (A1, . . . , An), n ≥ 1, M = (Q,C,R, q0, F) is the context
automaton for Γ , and σ0 is the initial state of Γ .

Let σ1 and σ2 be two states of Γ , where σ1 = (q, (c1, . . . , cn), (d1, . . . , dn))
and σ2 = (r, (c′

1, . . . , c
′
n), (d′

1, . . . , d
′
n)).

– We say that there is a direct transition from σ1 to σ2 in Γ , denoted by σ1 =⇒
σ2, if the following conditions are met:

– (q, (c1, . . . , cn), r) ∈ R,
– (c′

1, . . . , c
′
n) ∈ C,

– d′
i = resAi

(ci ∪ di), 1 ≤ i ≤ n.

The transitive reflexive closure of relation =⇒ is denoted by =⇒∗.

Next, we define the notion of a finite interactive process in an extended
distributed reaction system.

Definition 6. Let Γ = (Δ,M, σ0) be an extended distributed reaction system.
A finite sequence of states σ0, . . . , σm of Γ is said to be a finite interactive

process in Γ if σ0 =⇒t σ1 =⇒ . . . =⇒ σm−1 =⇒ σm, m ≥ 1 holds.
The finite interactive process is called terminating if σm is a final state of Γ .

The set of all terminating finite interactive processes of Γ is denoted by ΠΓ .

Notice that if σ0 =⇒ σ1 =⇒ . . . =⇒ σm−1 =⇒ σm, m ≥ 1, is a terminating
interactive process, then σ0 =⇒ σ1 =⇒ . . . =⇒ σm−1 =⇒ σm =⇒ σm+1 =⇒
. . . =⇒ σm+k, k ≥ 1, can also be a terminating interactive process if σm+k is a
final state of Γ .

We present a simple example for extended distributed reaction systems.

Example 1. Let Γ = (Δ,M, σ0) be an extended distributed reaction system,
where

– Δ = (S,A1, A2, A3) where S = {x, y, z},
A1 = {({x, y}, {z}, {x})}, A2 = {({y, z}, {x}, {y})},
A3 = {({z, x}, {y}, {z})}.

– Let M = (Q,C,R, q0, F) where Q = {q0, q1, q2},
– C = {c̄1, c̄2} with c̄1 = ({y}, {z}, {x}), and c̄2 = ({y}, ∅, {x})}.

(To help the easier reading, we simplified the notation).
– Let R = {r1, r2, r3, r4, r5} with

r1 = (q0, ({y}, {z}, {x}), q0), r4 = (q0, ({y}, ∅, {x}), q2),
r2 = (q0, ({y}, {z}, {x}), q1), r5 = (q2, ({y}, ∅, {x}), q2).
r3 = (q1, ({y}, {z}, {x}), q1),

– Let q0 be the initial state of M , and let F = {q1}.
– Let σ0 = (q0, ({y}, {z}, {x}), ({x}, {y}, {z})).

Languages of Distributed Reaction Systems 81

We briefly explain how Γ works. At the initial state, component A1 has single-
ton state {x}, A2 has singleton state {y}, and the state of the third component,
A3, is {z}. The initial state of context automaton M is q0 and the contexts, the
set of reactants added to the states of components A1, A2, A3 are {y}, {z}, {x},
respectively. Then, the components perform their reactions (each component has
only one reaction) and they obtain {x}, {y}, {z}, the same states as they had at
the beginning.

state environment transition / reaction

Context provider M q0 (q0, ({y}, {z}, {x}) , q0)

EDRS Γ A1 {x} {y} ({x, y}, {z}, {x})

A2 {y} {z} ({y, z}, {x}, {y})

A3 {z} {x} ({z, x}, {y}, {z})

initial state of Γ : σ0 = (q0, ({y}, {z}, {x}) , ({x}, {y}, {z}))

new state of Γ : σ1 = (q0, ({y}, {z}, {x}) , ({x}, {y}, {z}))

or

new state of Γ : σ′
1 = (q0, ({y}, ∅, {x}) , ({x}, {y}, {z}))

After that, the context automaton may enter either state q0 or q1. As long as
transition r1 of M is repeated, the states of the components remain unchanged.
When transition r2 is performed after r1, then the next state of Γ , obtained
by transition r3, is a final state. Thus, the interactive process is terminating. If
transition r4 of M is performed after r1, then the interactive process of Γ will
never be terminating. The only possible transition after r4 is transition r5 that
can be repeated arbitrarily many times. Transition r4 results in states {x}, ∅, {z}
of components A1, A2, A3, respectively, and these states remain unchanged in
the subsequent steps. Since q2 in transition r5 is not a final state, the interactive
process is not a terminating one.

In the following, we assign languages to extended distributed reaction sys-
tems. We first assign symbols of an alphabet Σ to states of components of Δ, the
distributed reaction system of EDRS Γ , then we assign (finite) words in Σ∗ to
terminating interactive processes of Γ . We then define the language of Γ over Σ.
We consider only such an alphabet Σ which has card(2S) − 1 elements, that is,
we can give a bijective mapping between Σ and the set of nonempty subsets of
S (S is the background set of Δ). Notice that the notion can also be defined for
alphabets Σ where 2S can injectively be mapped into Σ∗. For technical reasons,
we do not consider this type of extension.

Definition 7. Let Γ = (Δ,M, σ0) be an extended distributed reaction system,
where Δ = (S,A), A = (A1, . . . , An), n ≥ 1, is a distributed reaction system over
S, M = (Q,C,R, q0, F) is the context automaton for Γ , and σ0 is the initial state
of Γ . Let QΓ be the set of all states of Γ . We define mappings ρ, φ, φi as follows.

82 L. Ciencialová et al.

1. Let Σ be an alphabet such that card(Σ) = card(2S)−1. We define a bijective
mapping ρ : 2S → Σ ∪ {λ} such that ρ(d) = λ if and only if d = ∅.

2. Mapping φ : QΓ → Σ∗ × · · · × Σ∗
︸ ︷︷ ︸

n times

is defined as follows:

for each state σ = (q, (c1, . . . , cn), (d1, . . . , dn)), let φ(σ) = (ρ(d1), . . . , ρ(dn)).
3. Mapping φi : QΓ → Σ∗, 1 ≤ i ≤ n, is defined as follows:

for each state σ = (q, (c1, . . . , cn), (d1, . . . , dn)), let φi(σ) = ρ(di).

We present some more details on mapping ρ. It is easy to see that Σ has
as many elements as the number of nonempty subsets of S and ρ orders to any
nonempty subset of S a letter of Σ. Since ρ is a bijective mapping, there is no
letter in Σ that is the map of two different nonempty subsets of S, and vice
versa. One possible variant of such a mapping ρ can be based on the powerset
enumeration.

Definition 8. Let Γ = (Δ,M, σ0) be an extended distributed reaction system,
where Δ = (S,A), A = (A1, . . . , An), n ≥ 1, is the distributed reaction system
of Γ , M = (Q,C,R, q0, F) is the context automaton, σ0 is the initial state of Γ .
Let alphabet Σ and mappings ρ, φ, φi, 1 ≤ i ≤ n be defined as in Definition 7.

Let π : σ0 =⇒ . . . =⇒ σm, m ≥ 1, be a terminating finite interactive process
of Γ , where σj = (qj , (cj,1, . . . , cj,n), (dj,1, . . . , dj,n)), 1 ≤ j ≤ m, is a state of Γ .

We define H(π) = (φ1(σ0) . . . φ1(σm)), . . . , (φn(σ0) . . . φn(σm)).
The language of Γ over Σ is defined as follows:

L(Γ,Σ) = {φ1(σ0) . . . φ1(σm) . . . φn(σ0) . . . φn(σm) |
π : σ0 =⇒ . . . =⇒ σm ∈ ΠΓ ,m ≥ 1}.

The language of Ai over Σ, 1 ≤ i ≤ n, is

L(Ai, Σ) = {φi(σ0) . . . φi(σm) | π : σ0 =⇒ . . . =⇒ σm ∈ ΠΓ ,m ≥ 1}.

Note that the definition of the language assigned to the EDRS can also be
based on a different concatenation order. These variants would describe the
successive transitions from different perspectives.

We present an example for languages assigned to extended distributed reac-
tion systems.

Example 2. Let us consider the EDRS of Example 1 with slight modifications.
Let Γ = (Δ,M, σ0) be an extended distributed reaction system, where

– Δ = (S,A1, A2, A3) where S = {x, y, z},
A1 = {({x, y}, {z}, {x, y})}, A2 = {({y, z}, {x}, {y})},
A3 = {({z, x}, {y}, {z})}.

– Let M = (Q,C,R, q0, F) where Q = {q0, q1, q2},
– C = {c1, c2} with c1 = ({y}, {z}, {x}), and c2 = ({y}, ∅, {x})}.
– Let R = {r1, r2, r3, r4, r5} with

r1 = (q0, ({y}, {z}, {x}), q0), r4 = (q0, ({y}, ∅, {x}), q2),
r2 = (q0, ({y}, {z}, {x}), q1), r5 = (q2, ({y}, ∅, {x}), q2).
r3 = (q1, ({y}, {z}, {x}), q1),

Languages of Distributed Reaction Systems 83

– Let q0 be the initial state of M , and let q1, q2 ∈ F .
– Let σ0 = (q0, ({x, y}, {z}, {x}), ({x}, {y}, {z})).

We changed A1 to {({x, y}{z}}, {x, y})}, i.e., the set of products of the only
reaction of A1 is {x, y}, and we added q2 to F .

Notice that S = {x, y, z} has seven nonempty subsets (23 − 1), i.e.,
{x}, {y}, {z}, {x, y}, {y, z}, {x, z}, {x, y, z}.

Let Σ = {ak | 1 ≤ k ≤ 7}. We define ρ : 2S → Σ ∪ {λ} as follows.
ρ({x}) = a1, ρ({y}) = a2, ρ({z}) = a3, ρ({x, y}) = a4, ρ({y, z}) = a5,

ρ({z, x}) = a6, ρ({x, y, z}) = a7, ρ(∅) = λ.
We now will consider two terminating interactive processes.
Let π1 : σ0 =⇒ σ1 =⇒ σ2 =⇒ σ3 =⇒ σ4, where

σ0 = (q0, ({y}, {z}, {x}), ({x, y}, {y}, {z}))
σi = (q0, ({y}, {z}, {x}), ({x, y}, {y}, {z})), i = 1, 2, 3
σ4 = (q1, ({y}, {z}, {x}), ({x, y}, {y}, {z})).

The reader may easily see that the transitions of M performed in π1 are
r1, r1, r2, r3. Then we obtain

H(π1) = ((φ1(σ0) . . . φ1(σ4)), (φ2(σ0) . . . φ2(σ4), (φ3(σ0) . . . φ3(σ4)),

where for j, 0 ≤ j ≤ 4,

φ1(σj) = ρ({x, y}) = a4, φ2(σj) = ρ({y}) = a2, φ3(σj) = ρ({z}) = a3.

Thus, the word w ∈ L(Γ,Σ) obtained by π1 is w = a5
4a

5
2a

5
3.

We now consider another terminating interactive process. Let π2 : σ0 =⇒
σ′
1 =⇒ σ′

2 =⇒ σ′
3 =⇒ σ′

4, where

σ0 = (q0, ({x, y}, {z}, {x}), ({x, y}, {y}, {z})),
σ′
1 = (q0, ({x, y}, {z}, {x}), ({x, y}, {y}, {z})),

σ′
2 = (q0, ({x, y}, {z}, {x}), ({x, y}, {y}, {z})),

σ′
3 = (q2, ({x, y}, ∅, {x}), ({x, y}, ∅, {z})),

σ′
4 = (q2, ({x, y}, ∅, {x}), ({x, y}, ∅, {z})).

It can be seen that the transitions of M performed in π2 are r1, r1, r4, r5.
Then we obtain

H(π2) = ((φ1(σ0) . . . φ1(σ′
4)), (φ2(σ0) . . . φ2(σ′

4), (φ3(σ0) . . . φ3(σ′
4)),

where for j, 0 ≤ j ≤ 4,

φ1(σj) = ρ({x, y}) = a4, φ3(σj) = ρ({z}) = a3,
φ2(σk) = ρ({y}) = a2, 0 ≤ k ≤ 2 and φ2(σl) = ρ(∅) = λ, 3 ≤ l ≤ 4.

The word w ∈ L(Γ,Σ) obtained by π2 is w = a5
4a

3
2a

5
3.

The language we obtain is L(Γ,Σ) = {an
4ak

2a
n
3 | n ≥ k, k ≥ 1}. We leave the

proof to the reader.

84 L. Ciencialová et al.

3 Languages of Extended Distributed Reaction Systems

Although the interest in studying distributed reaction systems is primarily
focused on their behavior, these constructs can also be considered language-
generating devices. In the following, we provide representations of some well-
known language classes by extended distributed reaction systems.

Theorem 1. Let Γ = (Δ,M, σ0) be an extended distributed reaction system and
let Σ be an alphabet such that Σ and Γ satisfy the condition given in Definition
7, item 1. Then L(Γ,Σ) is a right-linear simple matrix language.

Proof. Let Γ = (Δ,M, σ0) be of degree n, n ≥ 1, i.e., let Δ = (S,A), A =
(A1, . . . , An), M = (Q,C,R, q0, F), σ0 = (q0, (c0,1, . . . , c0,n), (d0,1, . . . , d0,n)).

Furthermore, let ρi, 1 ≤ i ≤ n, be mappings that satisfy the conditions of
Definition 7.

We construct a right-linear simple matrix grammar G = (N,Σ,A0,M) such
that L(Γ,Σ) = L(G) holds. (To avoid confusion, the startsymbol of G is denoted
by A0, and the set of matrices by M.) Let QΓ be the set of states of Γ .

We define the components of G.
Let N =

⋃n
i=0 Ni, where N0 = {A0}

⋃r
j=0 Aσj

and Nk = {Xk}, 1 ≤ k ≤ n,
such that Ni ∩ Nj = ∅ for i = j, 0 ≤ i, j ≤ n.

The set of matrices of G is given as follows.
Let m0 : (A0 → Aσ0X1 . . . Xn) be the only initial matrix of G.
We add matrix m0,σ0 to M where m0,σ0 : (A0 → Aσ0 ,X1 →

ρ(d0,1)X1, . . . , Xn → ρ(d0,n)Xn) and σ0 = (q0, (c0,1, . . . , c0,n), (d0,1, . . . , d0,n))
is the initial state of Γ .

For every direct transition

σi = (qi, (ci,1, . . . , ci,n), (di,1, . . . di,n)) =⇒ (qj , (cj,1, . . . , cj,n), (dj,1, . . . dj,n)) = σj ,

0 ≤ i, j ≤ r, in Γ , we define a matrix mσi,σj
as follows: mσi,σj

: (Aσi
→

Aσj
,X1 → ρ(dj,1)X1, . . . , Xn → ρ(dj,n)Xn) where ρ(dj,k), 1 ≤ j ≤ n, are ele-

ments of Σ ∪ {λ}.
Finally, for every state σf = (qf , (cf,1, . . . , cf,n), (df,1, . . . df,n)) where qf ∈ F ,

we add matrix mf to M where mf : (Aσf
→ λ,X1 → λ, . . . ,Xn → λ). There

are no more matrices in M.
To prove that L(Γ,Σ) = L(G), we first show that for every terminating

finite interactive process σ0 =⇒ σ1 =⇒ . . . =⇒ σt with the associated word
w = φ1(σ0) . . . φ1(σt) . . . φn(σ0) . . . φn(σt), where σt is a final state of Δ, there is a
derivation in L(G) resulting in w. Notice that mapping φi : QΓ → Σ∗, 1 ≤ i ≤ n,
is given as follows: φi(σ) = ρ(di) for each state σ = (q, (c1, . . . , cn), (d1, . . . dn)).
This implies that w = ρ(d0,1)ρ(d1,1) . . . ρ(dt,1) . . . ρ(d0,n)ρ(d1,n) . . . ρ(dt,n).

By definition of matrices in M, if we start from A0 and we apply matrices
in the following order m0,m0,σ0 ,mσ0,σ1 , . . . ,mσt−1,σt

,mσf
, then we obtain the

same word w = ρ(d0,1)ρ(d1,1) . . . ρ(dt,1) . . . ρ(d0,n)ρ(d1,n) . . . ρ(dt,n) as before.

Languages of Distributed Reaction Systems 85

Thus, L(G) ⊆ L(Γ,Σ) holds. Next, we show that the reverse inclusion holds,
too. Suppose that the application of the matrix sequence

m0,m0,σ0 ,mσ0,σ1 , . . . ,mσt−1,σt
,mσf

in G corresponds to a terminating derivation in G and it results in

w = ρ(d0,1)ρ(d1,1) . . . ρ(dt,1) . . . ρ(d0,n)ρ(d1,n) . . . ρ(dt,n).

By the definition of matrices in M, if matrix mi,j , 0 ≤ i, j ≤ t−1 can be applied,
then there exists a direct transition

σi = (qi, (ci,1, . . . , ci,n), (di,1, . . . di,n)) =⇒ (qj , (cj,1, . . . , cj,n), (dj,1, . . . dj,n)) = σj ,

0 ≤ i, j ≤ r, in Γ . It can also be observed that matrices m0 and m0,σ0 correspond
to the initialization of Γ , i.e. they simulate establishing the initial state σ0.
Finally, matrix mσf

indicates the end of the generating process; notice that it
may appear only if σ = (qf , (c1, . . . , cn), (d1, . . . , dn) is a final state of Γ . Thus,
it can be seen that if w can be generated in G, then there exists a terminating
finite interactive process σ0 =⇒ σ1 =⇒ . . . =⇒ σt in Γ such that w ∈ L(Γ,Σ)
holds. Hence L(G) = L(Γ,Σ) holds.

As a consequence of the previous result, we obtain the following statement.

Theorem 2. Let Γ = (Δ,M, σ0) be an extended distributed reaction system
where Δ = (S,A), A = (A1, . . . , An), n ≥ 1. Let Σ be an alphabet such that
Σ and Γ satisfy the condition given in Definition 7, item 1. Then L(Ak, Σ),
1 ≤ k ≤ n, is a right-linear (regular) language.

We provide only the basic idea of the proof; it is similar to the proof of
Theorem 1. Let M = (Q,C,R, q0, F) be the context automaton and σ0 be the
initial state of Γ . For every k, 1 ≤ k ≤ n, a regular (right-linear) grammar
Gk = (Nk, Σ, Pk, A0) can be constructed such that L(Ak, Σ) = L(Gk) holds.
Let QΓ be the set of states of Γ . We define the components of Gk. Let Nk =
{A0}

⋃r
j=0 Aσj

. Elements of Pk are defined as follows. Pk contains an initial rule
p0,σ0 : A0 → Aσ0 . For every direct transition

σi = (qi, (ci,1, . . . , ci,n), (di,1, . . . di,n)) =⇒ (qj , (cj,1, . . . , cj,n), (dj,1, . . . dj,n)) = σj ,

0 ≤ i, j ≤ r, in Γ , Gk has a production pσi,σj
: Aσi

→ ρ(dj,k)Aσj
in Pk where

ρ(dj,k), 1 ≤ j ≤ n is an element of Σ ∪ {λ}. Finally, for every state σf =
(qf , (cf,1, . . . , cf,n), (df,1, . . . df,n)) of Γ , where qf ∈ F , we add a production
pf : Aσf

→ λ to Pk. By similar considerations that are used in the proof of
Theorem 1, it can be shown that L(Ak, Σ) = L(Gk) holds.

Theorem 3. For every right-linear simple matrix language L ⊆ T ∗ we can
give an extended distributed reaction system Γ = (Δ,M, σ0) and an alphabet
Σ satisfying conditions of Definition 7, and a projection h : Σ → T such that
= h(L(Γ,Σ)) holds.

86 L. Ciencialová et al.

Proof. Let G = (N,T ∪{#, $,X}, A0,M) be a right-linear simple matrix gram-
mar of degree n, where n ≥ 1 that generates L. (Notice that N =

⋃n
0=1 Ni,

where N0 = {A0} and Nj and Nk are pairwise disjoint sets of nonterminals for
j, k, 0 ≤ j, k ≤ n.) Let #, $, X be auxiliary symbols, terminals that are not in
(N ∪ T). Without loss of generality we may assume that G is in normal form
and G has only one initial matrix.

We construct Γ = (Δ,M, σ0), where Δ = (S,A1, . . . , An), M =
(Q,C,R, q0, F), and σ0 is the inital state of Γ .

We first define the context automaton of Γ . We start with the set of transi-
tions R of M ; the other components can be inferred from R.

For the initial matrix m0 = A0 → A1 . . . An in G, M has transitions
(q0, ({#}, . . . , {#}), q0,l) and (q0,l({x1}, . . . , {xn}), qj), where ml : (A1 →

x1B1, . . . An → xnBn), Ai, Bi ∈ Ni, xi ∈ T ∪ {λ}, 1 ≤ i ≤ n, and ml, 1 ≤ l ≤ n
is directly applicable after m0.

For every pair of matrices mk, ml, 0 ≤ k, l ≤ card(M) − 1, where
mk : (A1 → x1B1, . . . , An → xnBn), Ai, Bi ∈ Ni, xi ∈ (T ∪ {λ}, 1 ≤ i ≤ n,
and ml : (B1 → y1E1, . . . , Bn → ynEn), Bi, Ei ∈ Ni, yi ∈ T ∪ {λ}, 1 ≤ i ≤ n,
i.e., ml is directly applicable after performing mk, context automaton M has a
transition (qk, (z1, . . . , zn), ql), where qk and ql are states of the M and zi is the
context added to the current state of Ai; zi = {mk, xi} if xi ∈ Σ and zi = {mk}
if xi = λ.

For every matrix of the form mf : (A1 → λ, . . . , An → λ), Ai ∈ Ni, 1 ≤ i ≤ n,
M has a transition (qf , (#, . . . ,#), qhalt), where gf , qhalt ∈ F and there is no
transition starting from qhalt.

Next, we define components Ak, 1 ≤ k ≤ n. For every matrix m : (A1 →
x1B1, . . . , An → xnBn) ∈ M, Ai, Bi ∈ Ni, xi ∈ T ∪ {λ}, 1 ≤ i ≤ n, Ak has a
reaction ({m,xk, z}, {X}, {xk}) if xk ∈ T . Furthermore, it also has a reaction
({#}, {X}, {#}). X is an auxiliary symbol that ensures the non-emptiness of the
inhibitor set. Based on the above considerations, we can construct transitions
σk = (qk, (x1, . . . , xn), (z1, . . . , zn)) of Γ .

The initial state of Δ is σ0 = (q0, ({#}, . . . , {#}), ({#}, . . . , {#})). By the
construction of the transitions of M and the components of Γ , it can be seen
that if m0,mi1 , . . . ,mij , . . . mil ,mf is a terminating derivation in G, then there
exists a terminating finite interactive process σ0, σi1 , . . . , σij , . . . σil , σf in Γ and
vice versa. Let Σ be an alphabet and ρ be a mapping satisfying the conditions
of Definition 7 such that T ⊆ Σ and ρ({x}) = x for any x ∈ T . Furthermore,
let h be a projection such that h(y) = y for y ∈ T ∩ Σ and h(z) = λ otherwise.
Then L(G) = h(L(Γ,Σ)) holds.

In the following, we provide a representation of recursively enumerable lan-
guages with extended distributed reaction systems and morphisms. The proof of
the statement is based on a variant of the Geffert normal forms [9].

Theorem 4. For every recursively enumerable language L, L ⊆ T ∗ there exists
a distributed reaction system Γ and an alphabet Σ such that Γ and Σ satisfy
the conditions of Definition 7, T ⊆ Σ, and there exist two morphism h and

Languages of Distributed Reaction Systems 87

h′, and a right-linear simple matrix language L′ over (T ∪ {1, 0})∗ such that
L = h(L(Γ,Σ)) ∩ h′(L′). Furthermore, Γ has only two components.

Proof. Let L be defined over alphabet T = {a1, . . . , an} and represented by
an Extended Post Correspondence E = ({(u1, v1), . . . , (um, vm)}, (za1 , . . . , zan

)),
where m ≥ 1, ui, vi, zaj

∈ {0, 1}∗ for 1 ≤ i ≤ m and 1 ≤ j ≤ n. That is, let
L = L(E) = {x1 . . . xl ∈ T ∗ | ∃ s1s2 . . . sr ∈ {1, 2, . . . ,m}r} such that r ≥ 1 and
us1us2 . . . usr

= vs1vs2 . . . vsr
zx1zx2 . . . zxl

}.
The reader can easily observe that we can decide whether a word w is in

L by the following three phases of generation of w, according to E . In the first
phase, we construct two words, u = us1 . . . usr

and v = vs1 . . . vsr
, by appending

elements of pairs (usk
, vsk

), 1 ≤ k ≤ r, to the current strings in generation. In the
second phase, using pairs (aij , zaij

), 1 ≤ i ≤ l, we append strings w = ai1 . . . ail

and zw = zai1
. . . zail

to the corresponding words in generation. Thus we obtain
two strings uw and vzw. In the third phase, we check whether or not u = vzw

holds. If this is the case, then w can be successfully generated by E .
We construct an extended distributed reaction system Γ = (Δ,M, σ0) such

that any terminating finite interactive process in Γ corresponds to a successful
generation in E .

Let the background set of Δ, S, be given by S = {a1, . . . , an, Za1 , . . . , Zan
, U1,

. . . , Um, V1, . . . , Vm, ā1, . . . , ān, Z̄a1 , . . . , Z̄an
, Ū1, . . . , Ūm, V̄1, . . . , V̄m,#,X},

where n and m are given as in E .
To help the easier reading, we first define the context automaton M =

(Q,C,R, q0, F) of Γ .
Let Q = {q0, q1, . . . , qn, qn+1, . . . , qn+m, qf , qh}, where n and m are given as

in E , Let F = {qf , qh} be the set of final states of M such that no transition of
M starts from qh. Furthermore, let C = {({#}, {#})} ∪ {({āi}, {Z̄ai

}) | 1 ≤ i ≤
n} ∪ {({Ūj}, {V̄j}) | n + 1 ≤ l ≤ m}.

For technical reasons, let Ū = {U1, . . . , Um} and let V̄ = {V1, . . . , Vm}.
We define R as follows. Let

R = {(q0, ({#}, {#}), ql) | n + 1 ≤ l ≤ n + m}∪
{(qn+k, ({Ūk}, {V̄k}), ql) | 1 ≤ k ≤ m,n + 1 ≤ l ≤ n + m}∪
{(qn+l, ({Ūl}, {V̄l}), qf) | 1 ≤ l ≤ m}∪
{(qn+l, ({Ūl}, {V̄l}), qi) | 1 ≤ l ≤ m, 1 ≤ i ≤ n}∪
{(qi, ({āi}, {Z̄ai

}), qj) | 1 ≤ i, j ≤ n}∪
{(qi, ({āi}, {Z̄ai

}), qf) | 1 ≤ i ≤ n}∪
{(qf , ({#}, {#}), qh)}.

We continue with the other elements of Δ. Let

A1 = {({#}, {X}, {#})}∪
{({Ūk}, {X} ∪ Ū , {Uk}) | 1 ≤ k ≤ m}∪
{({Ūi, Uk}, {X}, {Ui}) | 1 ≤ i, k ≤ m}∪
{({āi, Uk}, {X}, {ai}) | 1 ≤ i ≤ n, 1 ≤ k ≤ m}∪
{({āi, ak}, {X}, {ai}) | 1 ≤ i, k ≤ n}

88 L. Ciencialová et al.

and let

A2 = {({#}, {X}, {#})}∪
{({V̄k}, {X} ∪ V̄ , {Vk}) | 1 ≤ k ≤ m}∪
{({V̄i, Vk}, {X}, {Vi}) | n + 1 ≤ i, k ≤ m}∪
{({Z̄ai

, Vk}, {X}, {Zai
}) | 1 ≤ i ≤ n, n + 1 ≤ k ≤ m}∪

{({Z̄a,i, Zak
}, {X}, {Zai

}) | 1 ≤ i, k ≤ n}.

The initial state of Γ is σ0 = (q0, ({#}, {#}), ({#}, {#}).
In the following, we show that every terminating finite interactive process in

Γ corresponds to a generation in EPC E , and vice versa, every generation in E
corresponds to a terminating finite interactive process in Γ .

Notice that for every pair (uj , vj), 1 ≤ j ≤ m, M has a transition
(qn+j , ({Ūj}, {V̄j}), ql), where qi, ql are states of M and qn+j refers to that
the appending of the pair (uj , vj) is simulated. Analogously, for every pair
(ai, Zai

), M has transitions (qi, (āi, Z̄ai
), qj), where qi, qj are states of M and

qi refers to that the appending of the pair (ai, Zai
) is simulated. When transi-

tion (qk, ({Ūk}, {V̄k}), ql) is performed, then the current state of A1 is changed
to {Uk,#} and the current state of A2 is changed to {Vk,#}. When transition
(qi, (āi, Z̄ai

), qj) of M is performed, then the current state of A1 is changed to
{ai,#} and the current state of A2 is changed to {Zai

,#}, due to the defini-
tion of their reactions. These actions correspond to appending pairs (uj , vj) and
(ai, zai

) to the words in generation.
Suppose that uj1 . . . ujrai1 . . . ail and vj1 . . . vjrzai1

. . . zail
are two strings

obtained by EPC E .
Then there exists a terminating finite interactive process π in Γ , where

π : σ0 =⇒ σj1 =⇒ σj,r =⇒ σi1 =⇒ σil =⇒ σf such that the state sequence
of A1 according to π is {#}, {Uj1 ,#}, . . . , {Ujr ,#}, {ai1 ,#}, . . . , {ail ,#},
{#}, and the state sequence of A2 is {#}, {Vj1 ,#}, . . . , {Vjr ,#}, {Zai1

,#}, . . . ,
{Zail

,#}, {#}.
We note that any terminating finite interactive process in Γ is similar to

π, i.e., the interactive process has an initial step, after that it continues with a
sequence of transitions which simulates the appending of pairs (uj , vj)- Then,
a sequence of transitions follows, which transitions simulate the appending of
pairs (ai, zai

). After that, the transitions of the ending phase are performed.
If λ ∈ L, then the terminating finite interactive process is of the form
π′ : σ0 =⇒ σj1 =⇒ σj,r =⇒ σf where the state sequence of A1 accord-

ing to π′ is {#}, {Uj1 ,#}, . . . , {Ujr ,#}, {#}, and the state sequence of A2 is
{#}, {Vj1 ,#}, . . . , {Vjr ,#},#}, {#}. This case can be treated analogously to
the previous case.

Let Σ be an alphabet defined to Γ such that Σ satisfies the conditions of
Definition 7 and the following holds: ρ({ai}) = ai, ρ({Zai

}) = Zai
, 1 ≤ i ≤ n,

and ρ({Uj}) = Uj , ρ({Vj}) = Vj , 1 ≤ j ≤ m, ρ({#}) = #. It can easily
be seen that the word in Σ∗ which belongs to A1 is of the form uw, where
w ∈ {a1, . . . , an}∗ and u ∈ {U1, . . . , Ur}∗. The word that belongs to A2 is of the
form vzw, where v ∈ {V1, . . . , Vr}∗ and zw ∈ {Za1 , . . . , Z}∗. This means that

Languages of Distributed Reaction Systems 89

uwvzw is in L(Γ,Σ). Let us define a homomorphism h as follows: h(ai) = ai,
h(Zai

) = zai
, h(Uj) = uj and h(Vj) = vj and h(#) = λ. Notice that w ∈ L if

and only if h(u) = h(vz) holds.
Let us define a right-linear simple matrix grammar G′ = (N ′, T ′, S′,M)

as follows. Let N ′ = {S′, S1, S2, S
′
1, S

′
2}, T ′ = T ∪ {1, 0}, and M = {(S′ →

S1S
′
1), (S1 → 1S1, S

′
1 → 1S′

1), (S1 → 0S1, S
′
1 → 0S′

1), (S1 → 1S2, S
′
1 →

1S′
2), (S1 → 0S2, S

′
1 → 0S′

2)} ∪ {(S2 → aiS2, S
′
2 → S′

2) | ai ∈ T, 1 ≤ i ≤
n} ∪ {(S2 → λ, S′

2 → λ)}. It is easy to see that any word w in L(G′) is of the
form xwx, where x ∈ {0, 1}∗ and w ∈ T ∗. Let us define a homomorphism h′ as
follows: h′(ai) = ai, h′(1) = λ, and h′(0) = λ.

Then, it is easy to see that w ∈ L if and only if h(L(Γ,Σ)) ∩ h′(L′) holds.

4 Conclusions

We assigned languages to extended distributed reaction systems and provided
representations of some well-known language classes by these constructs. The
new approach to distributed reaction systems raises several open problems: for
example the effect of further restrictions concerning the context automaton, or
the study of other variants of context providers. We plan investigations on these
topics in the future.

Acknowledgements. The authors thank the reviewers for their the valuable com-
ments and suggestions.

The work by E. Csuhaj-Varjú was supported by the National Research, Devel-
opment, and Innovation Office - NKFIH, Hungary, Grant no. K 120558. The
work by L. Ciencialová and L. Cienciala was supported by the project no.
CZ.02.2.69/0.0/0.0/18 054/0014696, “Development of R&D capacities of the Silesian
University in Opava”, co-funded by the European Union.

References

1. Azimi, S.: Steady states of constrained reaction systems. Theor. Comput. Sci. 701,
20–26 (2017). https://doi.org/10.1016/j.tcs.2017.03.047

2. Azimi, S., Gratie, C., Ivanov, S., Manzoni, L., Petre, I., Porreca, A.E.: Complexity
of model checking for reaction systems. Theor. Comput. Sci. 623, 103–113 (2016).
https://doi.org/10.1016/j.tcs.2015.11.040

3. Azimi, S., Iancu, B., Petre, I.: Reaction system models for the heat shock
response. Fundam. Informaticae 131(3–4), 299–312 (2014). https://doi.org/10.
3233/FI-2014-1016

4. Bottoni, P., Labella, A., Rozenberg, G.: Networks of reaction systems. Int. J.
Found. Comput. Sci. 31(1), 53–71 (2020)

5. Csuhaj-Varjú, E., Sethy, P.K.: Communicating reaction systems with direct com-
munication. In: Freund, R., Ishdorj, T.-O., Rozenberg, G., Salomaa, A., Zandron,
C. (eds.) CMC 2020. LNCS, vol. 12687, pp. 17–30. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-77102-7 2

https://doi.org/10.1016/j.tcs.2017.03.047
https://doi.org/10.1016/j.tcs.2015.11.040
https://doi.org/10.3233/FI-2014-1016
https://doi.org/10.3233/FI-2014-1016
https://doi.org/10.1007/978-3-030-77102-7_2
https://doi.org/10.1007/978-3-030-77102-7_2

90 L. Ciencialová et al.

6. Ehrenfeucht, A., Main, M.G., Rozenberg, G.: Functions defined by reaction sys-
tems. Int. J. Found. Comput. Sci. 22(1), 167–178 (2011). https://doi.org/10.1142/
S0129054111007927

7. Ehrenfeucht, A., Rozenberg, G.: Basic notions of reaction systems. In: Calude,
C.S., Calude, E., Dinneen, M.J. (eds.) DLT 2004. LNCS, vol. 3340, pp. 27–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30550-7 3

8. Ehrenfeucht, A., Rozenberg, G.: Reaction systems. Fundam. Informaticae 75(1–4),
263–280 (2007)

9. Geffert, V.: Normal forms for phrase-structure grammars. RAIRO Theor. Inform.
Appl. 25, 473–496 (1991). https://doi.org/10.1051/ita/1991250504731

10. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation, 3rd edn. Pearson International Edition. Addison-
Wesley (2007)

11. Ibarra, O.H.: Simple matrix languages. Inf. Control 17(4), 359–394 (1970). https://
doi.org/10.1016/S0019-9958(70)80034-1

12. Meski, A., Koutny, M., Penczek, W.: Model checking for temporal-epistemic prop-
erties of distributed reaction systems. Technical report Series CS-TR-1526, New-
castle University, April 2019

13. Meski, A., Penczek, W., Rozenberg, G.: Model checking temporal properties of
reaction systems. Inf. Sci. 313, 22–42 (2015). https://doi.org/10.1016/j.ins.2015.
03.048

14. Păun, Gh., Pérez-Jiménez, M.J.: dP automata versus right-linear simple matrix
grammars. In: Dinneen, M.J., Khoussainov, B., Nies, A. (eds.) WTCS 2012. LNCS,
vol. 7160, pp. 376–387. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-27654-5 29

15. Păun, Gh., Pérez-Jiménez, M.J.: An infinite hierarchy of languages defined by
dP systems. Theor. Comput. Sci. 431, 4–12 (2012). https://doi.org/10.1016/j.tcs.
2011.12.053

16. Salomaa, A.: Functions and sequences generated by reaction systems. Theor. Com-
put. Sci. 466, 87–96 (2012). https://doi.org/10.1016/j.tcs.2012.07.022

17. Salomaa, A.: Functional constructions between reaction systems and propositional
logic. Int. J. Found. Comput. Sci. 24(1), 147–160 (2013)

https://doi.org/10.1142/S0129054111007927
https://doi.org/10.1142/S0129054111007927
https://doi.org/10.1007/978-3-540-30550-7_3
https://doi.org/10.1051/ita/1991250504731
https://doi.org/10.1016/S0019-9958(70)80034-1
https://doi.org/10.1016/S0019-9958(70)80034-1
https://doi.org/10.1016/j.ins.2015.03.048
https://doi.org/10.1016/j.ins.2015.03.048
https://doi.org/10.1007/978-3-642-27654-5_29
https://doi.org/10.1007/978-3-642-27654-5_29
https://doi.org/10.1016/j.tcs.2011.12.053
https://doi.org/10.1016/j.tcs.2011.12.053
https://doi.org/10.1016/j.tcs.2012.07.022

PSPACE-Completeness of Reversible
Deterministic Systems

Erik D. Demaine1, Robert A. Hearn3, Dylan Hendrickson1,
and Jayson Lynch2(B)

1 MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street,
Cambridge, MA 02139, USA

{edemaine,dylanhen}@mit.edu
2 Cheriton School of Computer Science, University of Waterloo,

Waterloo, ON, Canada
jayson.lynch@uwaterloo.ca

3 Cambridge, USA
bob@hearn.to

Abstract. We prove PSPACE-completeness of several reversible, fully
deterministic systems. At the core, we develop a framework for such
proofs (building on a result of Tsukiji and Hagiwara and a framework
for motion planning through gadgets), showing that any system that
can implement three basic gadgets is PSPACE-complete. We then apply
this framework to four different systems, showing its versatility. First,
we prove that Deterministic Constraint Logic is PSPACE-complete, fix-
ing an error in a previous argument from 2008. Second, we give a new
PSPACE-hardness proof for the reversible ‘billiard ball’ model of Fredkin
and Toffoli from 40 years ago, newly establishing hardness when only two
balls move at once. Third, we prove PSPACE-completeness of zero-player
motion planning with any reversible deterministic interacting k-tunnel
gadget and a ‘rotate clockwise’ gadget (a zero-player analog of branching
hallways). Fourth, we give simpler proofs that zero-player motion plan-
ning is PSPACE-complete with just a single gadget, the 3-spinner. These
results should in turn make it even easier to prove PSPACE-hardness of
other reversible deterministic systems.

1 Introduction

Reversible deterministic systems arise in various situations, some of the most
important of which come from physics because fundamental existing physical
theories are reversible and deterministic1. In particular, due to the thermody-
namics of information, reversible computation can potentially use significantly
less energy than irreversible computation because Landauer’s Principle requires
physical systems expend kBT ln 2 energy per bit of information lost.2 Thus
1 The time evolution of the wave-function in the Standard Model is deterministic even

if the observation of macroscopic phenomena is probabilistic.
2 Here kB ≈ 1.4·10−23 is the Boltzmann constant and T is the temperature in kelvins.

At room temperature, this comes to about 2.8 · 10−21 joules per bit. Current chips
are rapidly approaching this limit; see [5,6].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Durand-Lose and G. Vaszil (Eds.): MCU 2022, LNCS 13419, pp. 91–108, 2022.
https://doi.org/10.1007/978-3-031-13502-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13502-6_7&domain=pdf
https://doi.org/10.1007/978-3-031-13502-6_7

92 E. D. Demaine et al.

understanding how reversible systems can solve computationally difficult prob-
lems may help in designing general-purpose reversible computing hardware.

More precisely, a system is deterministic if its configuration at each time
in the future is entirely determined by its current configuration. A system is
reversible if, in addition, its configuration at each time in the past is entirely
determined by its current configuration. The systems we consider all satisfy,
or nearly satisfy, the stronger property of time-reversal symmetry : evolution
forward in time and backward in time obey the same rules, so by looking at a
sequence of configurations it is not possible to determine whether time is moving
forwards or backwards. To reverse time, we simply need to reverse the direction of
motion of each moving part in each of the systems we consider. In one system, we
use a slightly more general symmetry by replacing each ‘rotate clockwise’ gadget
with a ‘rotate counterclockwise’ gadget, and vice-versa. A physicist might call
this parity–time (PT) symmetry; see, e.g., [10].

In this paper (Sect. 2), we develop a framework for proving PSPACE-
completeness of reversible deterministic systems. Our framework extracts and
simplifies a framework implicit in the work of Tsukiji and Hagiwara [11], who
proved PSPACE-hardness for Langton’s reversible ‘ant’ model of artificial life
in two geometries, the square and hexagonal grids. Their hardness reductions
construct five core gadgets in each grid, and show that these gadgets suffice for
PSPACE-hardness by a reduction from satisfiability in Quantified Boolean For-
mulas (QBF). Our framework decreases the number of required gadgets to just
three, showing that some of the previous gadgets are unnecessary (essentially,
redundant) and others can be simplified. The framework also guarantees that
the gadgets are connected together without crossings, making it well suited to
reducing to planar systems (which all of our applications are).

We then apply our framework to analyzing the complexity of four reversible
deterministic systems:

1. We prove in Sect. 3 that Deterministic Constraint Logic is PSPACE-complete.
While this result was already claimed 14 years ago [3,8], we describe in
Sect. 3.1 an error in the previous reduction. Luckily the new framework
enables a correct proof of the same result.

2. We develop in Sect. 4 a new PSPACE-hardness proof for the ‘billiard ball’
reversible model of computation, introduced and analyzed by Fredkin and
Toffoli in 1982 [7]. In this model, unit-radius 2D balls move without friction
and collide elastically with pinned or movable objects, according to classical
physics. Unlike the previous proof, our PSPACE-hardness result works even in
the case when only two balls ever move at once (and the rest are stationary),
which results in a substantially simpler proof (no longer needing complex
timing arguments to guarantee simultaneity).

3. We prove in the full version of the paper that zero-player motion plan-
ning through gadgets is PSPACE-complete when the gadgets include any
reversible deterministic interacting k-tunnel gadget and a ‘rotate clockwise’
gadget (a 1-state 3-location gadget where an entering signal simply exits
along the clockwise-next location). This result can be thought of as extend-

PSPACE-Completeness of Reversible Deterministic Systems 93

ing Table 1 in the motion-planning-through-gadgets framework [2,4] to add a
‘zero-player’ column in the unbounded row, analogous to zero-player Deter-
ministic Constraint Logic [8]. Our proof indeed uses the same simulations as
for motion planning with a positive number of players [4] to reduce to one
core case—locking 2-toggles and rotate clockwise—and then shows that case
is PSPACE-complete.

4. We prove in the full version of the paper that zero-player motion planning with
one very simple gadget called a ‘3-spinner’ is PSPACE-complete. Specifically,
a 3-spinner has two states—‘clockwise’ and ‘counterclockwise’—and three
locations at which the signal can enter; after entering, the gadget flips its
state and the signal exits in the next port in the order given by the state.
This result is weaker than Tsukiji and Hagiwara’s PSPACE-hardness of ‘ant’
on a hexagonal lattice [11], because the vertices in the lattice act exactly
as 3-spinners. We effectively translate this result into the motion-planning-
through-gadgets framework of Demaine et al. [4], and simplify it significantly.

All of the systems we consider can straightforwardly be simulated using poly-
nomial space, so the decision problems are in PSPACE.

2 The Framework

Our framework for proving PSPACE-hardness, which is a modest simplification
of one due to Tsukiji and Hagiwara [11], can be understood in terms of the
motion-planning gadgets framework of Demaine et al. [4]. In particular, it is
closely related to, and can be described in terms of, the ‘input/output gadgets’
of Ani et al. [1]. We will describe it independently.

The framework may apply to any setting with a single signal deterministi-
cally navigating a planar network of gadgets with the following properties. Each
gadget has some designated ports. When the signal enters the gadget at one of
its ports, it then exits the same gadget at one of its port, which is determined
by the entrance port and any previous traversals of that gadget. The network
links gadgets by connecting the ports of the gadgets in disjoint pairs: when the
signal exits at a port, it enters at the paired port.

To describe the “behavior” of a gadget, we define a traversal to be of the
form a → b for any two ports a and b of the gadget. A gadget implements a
sequence [a1 → b1, . . . , ak → bk] of traversals if, when the sequence of the signal’s
entrance ports to the gadget is [a1, . . . , ak], the sequence of exit ports from the
gadget is [b1, . . . , bk]. Note that a gadget implements any prefix of a sequence it
implements.

All of the gadgets we consider in this section are symmetric under time-
reversal, meaning if we perform a sequence of traversals followed by its time-
reverse, the gadget is returned to its original state. Formally, if a gadget imple-
ments two sequences X = [a1 → b1, . . . , ak → bk] and Y = [c1 → d1, . . . c� → d�],
then it also implements

XX−1Y = [a1 → b1, . . . , ak → bk, bk → ak, . . . , b1 → a1, c1 → d1, . . . , c� → d�].

94 E. D. Demaine et al.

In the language of Hendrickson [9], our gadgets can be modeled as ‘prefix-closed
gizmos’, and time-reversal symmetry means they satisfy the ‘implication prop-
erty’ X,Y =⇒ XX−1Y .

If every gadget in a network is symmetric under time-reversal, then the entire
network is as well: if we reverse the direction of the signal by returning it to the
just-exited port instead of the port paired to just-exited port, it will retrace its
steps in reverse, eventually returning to the initial configuration. This is a special
case of a result applying to implication properties in general [9].

2.1 Required Gadgets

We are now ready to describe the gadgets which we will show suffice for PSPACE-
hardness.

We describe each gadget by specifying some sequences it implements. The
gadgets then also implement all prefixes of implemented sequences, and all
sequences required for time-reversal symmetry. We don’t fully specify the behav-
ior of the gadgets: they are allowed to do anything if the signal arrives in
an unspecified sequence, and this does not affect our PSPACE-hardness result
because it never happens in the networks created by the reduction. The required
behavior of our gadgets is summarized in Table 1. In addition, for each gad-
get G described below, we also allow our network to include the gadget G
after [α1 → β1, . . . , αi → βi], which behaves like G would after having per-
formed the traversals α1 → β1, . . . , αi → βi in that order. That is, if G
implements [α1 → β1, . . . , αi → βi, a1 → b1, . . . , ak → bk], then G after
[α1 → β1, . . . , αi → βi] implements [a1 → b1, . . . , ak → bk].

Our first, and most complicated gadget, is the Switch. This corresponds to
three of Tsukiji and Hagiwara’s gadgets, the ‘Switch & Pass’, ‘Switch & Turn’,
and ‘Pseudo-Crossing’, which are all equivalent except for the cyclic order of
ports in the planar embedding, and that Switch & Turn merges the ports we
call Set and Out. The Switch has 5 ports, called ‘Set’, ‘Out’, ‘Test’, ‘T-Out’,
and ‘F-Out’. It implements [Set → Out,Test → T-Out] and [Test → F-Out].
Intuitively, it has an internal state which is initially False, and is set to True
by the traversal Set → Out. Entering Test reveals the current state. Time-
reversal symmetry implies that the Switch is reusable: for instance, it must also
implement

[Set → Out,Test → T-Out,T-Out → Test,Out → Set,Test → F-Out].

There are really 12 different Switch gadgets (up to rotation and reflection),
based on the cyclic order of the ports. We allow any cyclic order of the ports;
our PSPACE-hardness applies to any individual order.

Our next gadget is the Reversible Fan-in. Tsukiji and Hagiwara call this
gadget ‘CONJ’. It has three ports a, b, and c, and implements [a → c] and
[b → c]. Intuitively, it is a fan-in that sends both a and b to c, but—as required
by time-reversal symmetry—remembers which entrance was taken so that when
the signal returns to c, it exits the port it originally entered.

PSPACE-Completeness of Reversible Deterministic Systems 95

Our final gadget is the A/BA Crossover. The A/BA Crossover has four ports
A, B, a, and b in cyclic order, and implements [A → a] and [B → b, A → a].
Tsukiji and Hagiwara build a slightly more powerful crossover they call ‘CROSS’,
which also implements [A → a,B → b]. However, this is not necessary for
PSPACE-hardness, and the A/BA Crossover can easily be constructed using
Tsukiji and Hagiwara’s Pseudo-Crossing (which is a particular planar embed-
ding of a Switch) and CONJ.

Table 1. Summary of time-reversal-symmetric gadgets required for PSPACE-hardness.
Each gadget implements all sequences generated from those under Implements by pre-
fixes and time-reversal symmetry (X,Y =⇒ XX−1Y).

Gadget Ports Cyclic Order Implements

Switch

Set
Out
Test
T-Out
F-Out

Any order
[Set → Out,Test → T-Out]
[Test → F-Out]

Reversible Fan-in
a
b
c

(Only one possible)
[a → c]
[b → c]

A/BA Crossover

A
B
a
b

A, B, a, b
[A → a]
[B → b, A → a]

2.2 PSPACE-Hardness

We now prove PSPACE-hardness for the natural decision problem concerning
these gadgets: given a planar network containing Switches, Reversible Fan-ins,
and A/BA Crossovers (including these gadgets after some traversals), a starting
port which the signal enters first, and a target port, does the signal ever reach
the target port? We reduce from QBF, still following Tsukiji and Hagiwara [11]
with some simplification and slightly different abstractions.

We first ignore the requirement of planarity, showing PSPACE-hardness for
general networks containing just Switches and Reversible Fan-ins. Then we argue
that A/BA Crossovers suffice for all required crossings in a planar embedding of
the networks we construct.

Given a quantified formula Q1x1 : · · · Qnxn : φ(x1, . . . , xn) where φ is a 3-
CNF formula, we construct a network of Switches and Reversible Fan-ins. At a
high level, the network consists of a series of ‘quantifier gadgets’, ending in ‘CNF
evaluation’. When the signal arrives at a quantifier gadget, the quantifier gadget
sets the variable it controls, and then queries the next quantifier. Depending on
the response, it may perform a second query with the other setting of its variable,

96 E. D. Demaine et al.

and then it sends a response to the previous quantifier. The final quantifier Qn

instead queries the CNF evaluation, which computes the value of φ under the
current variable assignment. The structure of the reduction is shown in Fig. 1.

Fig. 1. The high-level structure of the network produced by our reduction. The signal
begins at In on Q1, evaluates the formula, and eventually arrives at T-Out or F-Out
on Q1 depending on its truth value.

Because we are working with gadgets which are symmetric under time-
reversal, we need our quantifier gadgets have this symmetry as well. Quanti-
fiers need to be used multiple times, so we will reset them in the way sug-
gested by time-reversal symmetry: the signal needs to backtrack across its entire
path through each quantifier gadget before returning to the previous quantifier.
We will describe the desired behavior of quantifier gadgets which are symmet-
ric under time-reversal, and later show how to build them using Switches and
Reversible Fan-ins.

We specifically discuss universal quantifiers; existential quantifiers require
only a minor modification. A universal quantifier gadget Qi has eight locations,
named in cyclic order ‘F-Out’, ‘T-Out’, ‘In’, ‘Write-Out’, ‘Write-In’, ‘Out’, ‘T-
In’, and ‘F-In’.3 The gadget is activated when the signal arrives at In, and the
signal proceeds to Out to query the next quantifier; the variable xi is currently
set to False.

Eventually, the signal returns at either T-In or F-In, indicating the truth
value of the remainder of the formula with the current variable assignment up
to xi. If it enters at F-In, the universally quantified formula is false, so it passes
this along to Qi−1 by exiting at F-Out. If it enters at T-In, we need to try
the other assignment, which means we need to reset the quantifiers after Qi by
backtracking through them. So the quantifier gadget ‘remembers’ that it received
one True signal, and sends the signal back out T-In. Due to reversibility, the
signal eventually returns to Out, at which point it is sent to Write-Out to set
3 Tsukiji and Hagiwara call these ‘OUTi,FALSE’, ‘OUTi,TRUE’, ‘INi’, ‘Ixi ’, ‘Oxi ’,

‘INi+1’, ‘OUTi+1,TRUE’, and ‘OUTi+1,FALSE’, respectively.

PSPACE-Completeness of Reversible Deterministic Systems 97

xi to True. The signal goes through a series of Switches in the CNF evaluation,
and then returns at Write-In. Now Qi sends the signal to Out, this time with the
other setting of xi. Eventually the signal returns again at either T-In or F-In,
and it is sent straight to T-Out or F-Out to answer the query from Qi−1.

Once Qi−1 has dealt with the response, the signal returns to Qi at the same
one of T-Out or F-Out it exited, at which point everything is reversed, ending
with the signal exiting at In with xi set to False, and Qi and all later quantifiers
in their initial configuration.

Formally, we need a universal quantifier to implement these sequences (and
those implied by time-reversal symmetry), corresponding to the first query to
Qi+1 returning False, the first query returning True but the second returning
False, and both queries returning True, respectively:

[In → Out,F-In → F-Out]

[In → Out,T-In → T-In,Out → Write-Out,Write-In → Out,F-In → F-Out]

[In → Out,T-In → T-In,Out → Write-Out,Write-In → Out,T-In → T-Out]

An existential quantifier gadget is constructed by swapping T-In with F-In
and T-Out with F-Out on a universal quantifier gadget.

The signal starts at In on Q1, which queries the truth value of the whole
formula. It eventually arrives at either T-Out or F-Out depending on the answer;
we make T-Out on Q1 the target port. If we connect In, T-Out, and F-Out to
themselves, then after evaluating the formula the signal will backtrack all the
way to the beginning, and repeat this cycle.

The final quantifier Qk interfaces directly with the CNF evaluation instead
of another quantifier. The CNF evaluation maintains the current variable assign-
ment, initially with all variables False. It has a path for each variable xi which
is connected to Write-Out and Write-In on Qi; traversing this path forwards
sets xi True, and then traversing it backwards returns xi to False. The CNF
evaluation has three additional ports In, T-Out, and F-Out, analogous to those
on a quantifier gadget. When the signal arrives at In, it exits at either T-Out or
F-Out depending on the truth value of the formula under the current variable
assignment. These ports are connected to Out, T-In, and T-Out on Qk in the
same way as other quantifiers.

By the designed behavior of quantifier gadgets and CNF evaluation, the signal
arrives at T-Out on Q1 if and only if the quantified formula is true. We still need
to fill in the details: how do we build quantifier gadgets and CNF evaluation and
of Switches and Reversible Fan-ins, and how do we handle crossings?

CNF Evaluation. Our CNF evaluation is the same as Tsukiji and Hagiwara’s,
and is shown in Fig. 2. There is a switch for each literal in φ. For each variable
xi, there is a path that goes through all switches corresponding to instances
of xi (or ¬xi) in φ, and traversing this path sets xi to True. When the signal
enters In, it checks each clause in series. For each clause, it goes through the

98 E. D. Demaine et al.

switches corresponding to literals in the clause, and emerges in one of two loca-
tions depending on whether the clause is satisfied. If it is not satisfied, the signal
exits at F-Out, and otherwise it proceeds to the next clause, exiting at T-Out
once it has passed every clause. Later, it will return to either T-Out or F-Out
and reverse its path back to In; the Reversible Fan-ins remember the path taken
and necessarily send it back along the same path.

Quantifier Gadgets. Our quantifier gadgets are essentially the same as Tsukiji
and Hagiwara’s, the only differences are due to planar arrangement and that we
must build their Switch & Turn gadget out of a Switch and a Reversible Fan-
in. The universal quantifier gadget is shown in Fig. 3. The existential quantifier
gadget is constructed by exchanging the roles of T-In with F-In and T-Out
with F-Out, so there is a direct path from T-In to T-Out which crosses some
edges linking F-In and F-Out to the other ports. This similarity is sensible:
for existential quantifiers if the formula is false we need to try again with the
other value, but for universal quantifiers if the formula is true we are allowed to
attempt the other required value for the variable.

We must check that the universal quantifier gadget correctly implements the
behavior described above. Recall that the signal will first arrive at In. It proceeds
to the upper left switch, taking [F-Out → Test] and leaving the Switch in its
default state. Then signal takes [a → c] in the upper right Fan-in and leaves
at Out. If it now enters F-In, it goes directly to F-Out. If instead it enters T-
In, it goes from Test to F-Out on the bottom switch, goes along edge 8 to the
Reversible Fan-In (which is after [a → c]), and traverses [c → a]. Then the signal
traverses Set → Out on the top switch, and returns to the bottom switch via
the Reversible Fan-in, leaving both the Switch and Reversible Fan-in in different
states than before. The signal then backtracks from F-Out to Test on the bottom
Switch, and exits T-In, where it just entered. Now if the signal enters Out, the
Reversible Fan-in sends it back to Test on the top Switch along edge 2. But the
top Switch has been activated, so the signal exits the Switch at T-Out and exits
the quantifier at Write-Out. It next enters Write-In, at which point it traverses
Set → Out on the bottom Switch, and exits Out. Finally, if the signal now enters
F-In, it is still sent to F-Out, and if it enters T-In then it goes from Test to T-Out
on the bottom switch (which has now been activated) and exits the quantifier
at T-Out.

Planarity. Finally, we argue that we can use A/BA Crossovers to avoid cross-
ings in the network produced by this reduction.

Note that each edge in the network is directed, in the sense that the first
traversal across the edge is in a predetermined direction which we call forwards,
and all future traversals alternate direction—we never traverse an edge twice
consecutively in the same direction. At any time while running the system, we say
an edge is used if it has been traversed forwards more recently than backwards.
Initially no edges are used, and they are used and unused throughout the process.
For two edges x and y which cross, an A/BA Crossover suffices for their crossing

PSPACE-Completeness of Reversible Deterministic Systems 99

Fig. 2. Our CNF evaluation. Each clause consists of three Switches corresponding to
the literals in the clause, with Reversible Fan-ins to merge paths. A variable and its
negation differ in the positions of T-Out and F-Out on the corresponding Switch. When
the signal enters In, if any literal in the first clause is true it will take the edge labeled
“Clause 1 true” and otherwise will take the edge labeled “Clause 1 false”. All the exits
for false clauses merge and lead to F-Out. If all clauses are true, the signal will traverse
them in series and then exit T-Out. For each variable xi, there is also a path from
xi-In to xi-Out which goes through Set → Out on the switch corresponding to each
instance of xi or ¬xi.

provided that whenever both x and y are used, always the same edge—say x—
was traversed forwards more recently, and also x will be traversed backwards
sooner in the future. In this case, we can set x to be the A → a tunnel and y

100 E. D. Demaine et al.

Fig. 3. The universal quantifier gad-
get built from two Switches (squares)
and two Reversible Fan-ins (triangles).
The top Switch begins is after [Test →
F-Out], the bottom left Reversible Fan-
in is after [a → c], and the other
two gadgets are their default versions.
Edges between gadgets are labeled for
later use.

Fig. 4. A Hasse diagram of the order
relation on used edges in our quanti-
fier gadgets (Fig. 3). That a is above b
indicates that whenever both edges are
used, a was used more recently and will
be unused sooner.

to be the B → b tunnel of an A/BA Crossover. If x and y are never both used,
either orientation of the A/BA Crossover will work.

So we just need to argue that there is a consistent order edges (other than
the few we showed can avoid crossings) are used. There are no crossings outside
the CNF evaluation and quantifier gadgets, so we need only check those gadgets.
For the CNF evaluation, this is straightforward:

– For i < j, the path to set xi is used before the path to set xj .
– Within the path to set xi, the edges are used in order.
– All paths for setting variables are used before edges involved in testing the

current value.
– The edges involved in testing the current value are used in order. Specifically,

there is a partial order on these edges based on when it is possible to traverse
one and then another on the way from In to T-Out or F-Out. We arbitrarily
extend this partial order to a total order, or equivalently, for two edges which

PSPACE-Completeness of Reversible Deterministic Systems 101

can’t both be used, we arbitrarily choose which is A and which is B in the
A/BA Crossover.

For quantifier gadgets, the numbering listed in Fig. 3 works as an order for all
edges other than x and y. More generally, a Hasse diagram of the “is sometimes
used after” partial order on these edges is shown in Fig. 4, and positioning A/BA
Crossovers to respect this order suffices for all crossings between these edges. It
is straightforward to verify this partial order by considering the behavior of our
quantifier gadgets.

For crossings inside a quantifier gadget which involve edge x or y, we need a
different approach: for instance, if edge 2 crosses x, then the signal will sometimes
traverse 2, then x, then 2 backwards, which isn’t supported by the default A/BA
Crossover. When x or y is involved in crossing, we use an A/BA crossover as
follows:

– If x crosses y, make x the B → b tunnel since it is always used first.4

– If x or y crosses 1, make 1 the B → b tunnel since it is always used first.
– If x or y crosses 3, 4, 5, 9, or 10, make x or y the B → b tunnel since they

are always used first.
– If x or y crosses 2, 6, 7, or 8, use an A/BA Crossover after A → a, and make the

numbered tunnel a → A. By time-reversal symmetry, the A/BA Crossover
after A → a implements [a → A,B → b, A → a], which corresponds for
instance to traversing 2 forwards, x backwards, and then 2 backwards, which
is what is needed.

To carefully check that this arrangement of A/BA Crossovers works for the
quantifier gadget, we can consider the possible sequences of edge traversals. Using
·−1 for backwards traversals, these are (generated by time-reversal symmetry
from)

– [1, 2, 6, 10]
– [1, 2, 6, 7, 8, x, y, 8−1, 7−1, 6−1, 2−1, 3, 4, 5, 6, 10]
– [1, 2, 6, 7, 8, x, y, 8−1, 7−1, 6−1, 2−1, 3, 4, 5, 6, 7, 9]

which correspond to the sequences the quantifier gadget was built to implement.
It is straightforward to verify, for each pair of edges, that an A/BA Crossover
as described supports all of the ways that pair of tunnels is used. For instance,
the possible sequences for just 2 and x are [2] and [2, x, 2−1], which are [a → A]
and [a → A,B → b, A → a] on the A/BA Crossover involved, and both of these
are implemented by an A/BA Crossover after A → a. It suffices to check just
the sequences listed, since taking the closure under time-reversal symmetry does
not give rise to any new intermediate configurations.

Hence we have the main result of this section:

Theorem 1. Given a planar network of Switches, Reversible Fan-ins, A/BA
Crossovers, and these gadgets after some traversals, a starting location, and
4 Alternatively, avoid this crossing by adjusting the Reversible Fan-in connecting x

and y.

102 E. D. Demaine et al.

a target location, it is PSPACE-complete to determine whether the signal ever
reaches the target location from the starting location. This result holds even when
all Switches have any particular cyclic order of ports.

To apply this framework to a specific problem, we simply need to describe
the signal and how it moves along wires, and then construct a Switch (with ports
in any order), Reversible Fan-in, and A/BA Crossover.

3 Deterministic Constraint Logic

Constraint Logic is a problem about graph orientation reconfiguration intro-
duced by Hearn and Demaine [3,8] as a tool for proving hardness results. A
constraint graph is a directed planar graph where each edge has weight 1 or 2,
which are colored red and blue, respectively.5 Each vertex in a constraint graph
is either an AND vertex, which has two red and one blue edge, or an OR vertex,
which has three blue edges. Each vertex is required to have at least 2 total weight
in edges pointing towards it. Edges change orientation, while maintaining this
constraint. Hearn and Demaine show how to ‘tie up’ loose edges, allowing the
use of degree-2 vertices with any combination of colors, for which the required
weight is only 1 (so a single red edge satisfies it).

In this paper, we are specifically interested in Deterministic Constraint Logic
(DCL), in which edges flip according to the following deterministic rule. Each
time step, an edge flips if it didn’t flip in the previous time step and it can flip
without violating the in-weight constraint of the vertex it is currently directed
towards, or it did flip in the previous time step but no other edge pointing
towards the vertex it is now directed towards can flip this time step.

Here are the basic behaviors that result from the deterministic rule:

– Begin with a path of edges of any color, all pointing to the left. If the leftmost
edge flips, all the edges in the path will flip, one in each time step.

– If a blue edge flips to point towards an OR vertex, in the next time step the
blue edge which was already pointing towards the OR vertex will flip.

– If a blue edge flips to point towards an AND vertex, in the next time step
both red edges pointing towards that vertex will flip.

– If both red edges flip to point towards an AND vertex in the same time step,
in the next time step the blue edge will flip.

– If one red edge but not the other flips to point towards an AND vertex, in
the next time step the same red edge will flip again.

The decision problem in Deterministic Constraint Logic is whether some
specified edge will eventually flip, given a constraint graph and the set of edges
that are considered to have flipped in time step 0.

5 In grayscale, blue edges are darker than red edges. Figures also draw blue edges
thicker than red edges.

PSPACE-Completeness of Reversible Deterministic Systems 103

3.1 Issue with Existing Proof

Hearn and Demaine’s proof of PSPACE-hardness for Deterministic Constraint
Logic [8] has a subtle issue. When their universal quantifier receives a ‘satisfied
in’ signal, it records this fact, much like our universal quantifier gadget. When
it receives a second ‘satisfied in’ signal (assuming the signal did not enter ‘try
out’ in between), it erases the record of the first one; this is by design, to reset
the gadget for the next variable assignment.

The existential quantifier tries assigning its variable False, then True, and
then False again, and passes every ‘satisfied in’ signal it gets to ‘satisfied out’ to
inform the previous quantifier. If the existential quantifier is satisfied when its
variable is False but not True, it sends two such signals instead of one. This is
the problem: if the previous quantifier is universal, the second signal cancels the
first one, and that quantifier behaves as though there was no signal. The simplest
formula for which the reduction fails is ∀x∃y : ¬y. Modifying the existential
quantifier to test each assignment exactly once does not fix the problem, because
then if the quantifier is satisfied by both values for its variable, it sends two
signals to the previous quantifier. In particular, ∀x∃y : y ∨ ¬y would fail.

The proof may be fixable by modifying the existential quantifier gadget to
ensure it only ever sends one signal; it would likely be about as complicated as
the universal quantifier. The approach our framework takes is different: it adds
an additional query return line, so instead of just ‘satisfied in’ we have both T-in
and F-in, and quantifier gadgets are guaranteed to receive exactly one response
for each query.

3.2 PSPACE-Hardness

Our PSPACE-hardness proof for Deterministic Constraint Logic uses many of
the same elements as Hearn and Demaine’s. The signal is a flipping edge, which
propagates along paths in the direction opposite the orientation of the edges in
the path. Like Hearn and Demaine, our gadgets will sometimes contain ‘bounc-
ing’ edges which flip in a periodic way, and we ensure the length of each path
through a gadget is a multiple of this period—for us, the period is 2, though
Hearn and Demaine used a period of 4. The ports of our gadgets are always blue
edges, which are connected by joining them with a degree-2 vertex. The target
edge is the edge corresponding to the target port, and it flips if and only if the
signal reaches the target port.

While DCL itself is symmetric under time reversal, it is possible to build a
DCL gadget which is not, by including periodically bouncing edges calibrated
such that the signal enters out of phase with when it exits. Some of Hearn
and Demaine’s gadgets [8] behave this way. However, all of our gadgets will be
symmetric under time reversal in all of their relevant behavior, as is required for
the framework we are using.

We simply need to build valid Switch, Reversible Fan-in, and A/BA Crossover
gadgets. A Reversible Fan-in is simply an OR vertex, which always takes 2
time steps to traverse. We use Hearn and Demaine’s A/BA crossover, which we

104 E. D. Demaine et al.

reproduce in Fig. 5. This A/BA crossover always takes an even number of time
steps to traverse, and contains bouncing edges with period 2.

Fig. 5. An A/BA Crossover for Deterministic Constraint Logic, from Hearn and
Demaine [8]. Glowing auras indicate edges that flip every time step—the state shown
is the state immediately before the signal enters the gadget, so that when the signal
enters, the blue edge at the entered port and all glowing edges simultaneously flip from
the shown configuration.

Our Switch gadget is a bit more complicated, and is shown in Fig. 6. If the
signal arrives at Set, it exits at Out and reflects the configuration by flipping
the bottom four edges and setting the left red edge bouncing instead of the right
red edge. If the signal arrives at Test, at exists either F-Out or T-Out based on
which red edge is currently bouncing, and sets one of the top red edges bouncing.
Every traversal through this gadget takes four time steps.

Fig. 6. A Switch for Deterministic Constraint Logic. Left: the initial configuration.
Right: the configuration after the traversal Test → T-Out.

PSPACE-Completeness of Reversible Deterministic Systems 105

4 Billiard Balls

Our final application is the billiard ball model, which was introduced by Fredkin
and Toffoli [7] and is one of the best known reversible models of computation.
In the billiard ball model, there are circular balls colliding elastically with each
other and with fixed mirrors. For simplicity, all balls have the same size and mass,
and will only move at a single nonzero speed. This model is based on classical
physics, and in fact exactly matches the classical kinetic theory of perfect gasses.

The decision problem we consider is whether a ball ever reaches a particular
position, given a configuration of mirrors and initial positions and velocities of
balls. Fredkin and Toffoli [7] proved that this model can perform arbitrary com-
putation by showing how to build and string together Fredkin gates; it follows
that the decision problem is PSPACE-complete.

We present a new proof of PSPACE-hardness using our framework. The pri-
mary advantage this proof has over Fredkin and Toffoli’s is that only a constant
number—in particular, two—of balls will be moving at any time, and the two
moving balls will always be in close proximity. This means there are fewer details
to work out relating to issues like timing; Fredkin and Toffoli had to ensure that
signals from disparate parts of the construction arrive at a logic gate simultane-
ously.

Fig. 7. The billiard ball model. Filled circles depict initial positions of balls, and empty
circles depict intermediate or final positions. Diagonal lines are mirrors, and horizontal
or vertical lines are paths taken by balls. Left: a ball bounces off of mirrors. Middle: two
moving balls collide. If only one ball arrives, it goes straight through, but if both balls
arrive simultaneously, they bounce off each other. Right: A moving blue ball collides
with a stationary red ball, transferring its momentum and leaving the blue ball not
grid-aligned. (Color figure online)

The balls in our construction all have a radius of 1√
2
, and will move only

horizontally or vertically. The types of collisions that will occur are shown in
Fig. 7. One can think of a head-on collision with a stationary ball as moving the
stationary ball backwards by the ball diameter, and teleporting the moving ball
forwards by the same amount.

The signal will be represented by two balls moving along parallel paths 2
√

2
(i.e. twice the diameter) apart. This signal is easy to route, as demonstrated by
Fig. 8. We will always have the two balls aligned with each other when the signal
enters a gadget. Full crossovers, and in particular A/BA crossovers, are trivial:

106 E. D. Demaine et al.

simply have two paths the signal might take cross each other. For simplicity, our
diagrams show the paths separated by 3 units, rather than the actual distance
2
√

2 ≈ 2.8.

Fig. 8. A signal consisting of two bil-
liard balls is sent from the top left to
the bottom right. The paths of the two
balls have the same length.

Fig. 9. The Switch for the billiard ball
model. Each port is marked with a pair
of green lines, along which the two balls
of the signal may enter or exit. (Color
figure online)

All that remains is constructing the Switch and Reversible Fan-In. Our
Switch is shown in its initial state Fig. 9. The key idea is that stationary balls
inside the gadget might (depending on the state) be in the way of one of the
balls in the signal entering at Test, effectively making that ball arrive slightly
earlier. This change in timing affects whether that ball collides with the other
ball in the signal, resulting in two possible places for the signal to end up.

The three relevant traversals are shown in Fig. 10. Since the model has time-
reversal symmetry, any gadget built in it also has time-reversal symmetry, so we
only need to check that the sequences listed in Table 1 are implemented correctly.

Finally, our Reversible Fan-in is shown in Fig. 11. It works in a very similar
way to Switch, but in reverse, and essentially combining the Set traversal with
one of the Test traversals. If the signal enters at a, the balls collide and arrive
at c. If the signal enters at b, the signal balls do not collide, and arrive at c with
a slightly different timing. To correct the timing, we have the signal entering at
b first remove two balls from the path near c.

PSPACE-Completeness of Reversible Deterministic Systems 107

Fig. 10. The ways a signal moves through the switch. Left: in the initial state, the
signal bounces from Test to F-Out. The two balls don’t collide where there paths
cross. Middle: the blue ball hits the green, which hits the purple, leaving two balls in
the path of the Test port. The red ball’s path is extended north so that two balls exit
at Out simultaneously; the two red balls in its path save the same amount of time as
the two balls in the blue ball’s path. Right: with the purple and green balls in the way
of the signal entering Test, the green ball arrives soon enough to collide with the red
ball, resulting in the signal exiting at F-Out. The two additional red balls are to help
synchronize the exit signal. (Color figure online)

Fig. 11. The Reversible Fan-in for the billiard ball model. Left: the gadget in its initial
state. Middle: the signal enters at a. The signal balls ricochet off each other, and then
exit at c. They each collide with two stationary balls, so the balls exiting c get there at
the same time. Right: The signal enters at b. The blue ball knocks the green ball, which
knocks the purple ball, clearing the vertical path to c. The red ball and the purple ball
then exit at c without colliding. The red zigzag to the north and two additional red
balls are to make the timing correct. (Color figure online)

108 E. D. Demaine et al.

References

1. Ani, J., Demaine, E.D., Hendrickson, D.H., Lynch, J.: Trains, games, and complex-
ity: 0/1/2-player motion planning through input/output gadgets. In: Proceedings
of the 16th International Conference and Workshops on Algorithms and Compu-
tation (WALCOM 2022) (2022). arXiv:2005.03192

2. Demaine, E.D., Grosof, I., Lynch, J., Rudoy, M.: Computational complexity of
motion planning of a robot through simple gadgets. In: Proceedings of the 9th
International Conference on Fun with Algorithms (FUN 2018), pp. 18:1–18:21
(2018)

3. Demaine, E.D., Hearn, R.A.: Constraint logic: a uniform framework for modeling
computation as games. In: Proceedings of the 23rd Annual IEEE Conference on
Computational Complexity, pp. 149–162, June 2008

4. Demaine, E.D., Hendrickson, D.H., Lynch, J.: Toward a general complexity theory
of motion planning: characterizing which gadgets make games hard. In: Proceedings
of the 11th Innovations in Theoretical Computer Science Conference (ITCS 2020),
pp. 62:1–62:42 (2020)

5. Demaine, E.D., Lynch, J., Mirano, G.J., Tyagi, N.: Energy-efficient algorithms.
In: Proceedings of the 7th Annual ACM Conference on Innovations in Theoretical
Computer Science (ITCS 2016), Cambridge, Massachusetts, pp. 321–332, 14–16
January 2016

6. Frank, M.P.: Fundamental physics of reversible computing-an introduction. Tech-
nical report, Sandia National Lab. (SNL-NM), Albuquerque, NM, USA (2020)

7. Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theor. Phys. 21(3), 219–253
(1982)

8. Hearn, R.A., Demaine, E.D.: Games, Puzzles, and Computation. CRC Press, Boca
Raton (2009)

9. Hendrickson, D.: Gadgets and Uizmos: a formal model of simulation in the gadget
framework for motion planning. Ph.D. thesis, Massachusetts Institute of Technol-
ogy (2021)

10. Özdemir, Ş.K., Rotter, S., Nori, F., Yang, L.: Parity-time symmetry and excep-
tional points in photonics. Nat. Mater. 18(8), 783–798 (2019). https://doi.org/10.
1038/s41563-019-0304-9

11. Tsukiji, T., Hagiwara, T.: Recognizing the repeatable configurations of time-
reversible generalized Langton’s ant is PSPACE-hard. Algorithms 4(1), 1–15 (2011)

http://arxiv.org/abs/2005.03192
https://doi.org/10.1038/s41563-019-0304-9
https://doi.org/10.1038/s41563-019-0304-9

From Finite Automata to Fractal
Automata – The Power of Recursion

Benedek Nagy(B)

Department of Mathematics, Faculty of Arts and Sciences,
Eastern Mediterranean University, Famagusta, North Cyprus, Mersin-10, Turkey

nbenedek.inf@gmail.com

Abstract. In procedural programming languages the order of execut-
ing the statements may follow a regular pattern, including sequence of
statements, conditional and branching statements and loops. On the
other hand, regular languages can be represented by finite state accep-
tors (finite automata), by regular expressions and by (special form of)
railroad diagrams (syntax diagrams) allowing alternatives, option, con-
catenation and iteration. Context-free languages can also be described
by (the general form of) railroad diagrams allowing also recursion. Based
on the analogy of finite automata and railroad diagrams, special infinite
state automata, namely the fractal automata are established to charac-
terize the class of context-free languages. A transformation between the
pushdown automata and fractal automata is also shown. The proposed
model gives some new insight and a new view of context-free languages.

Keywords: railroad diagrams · context-free languages · infinite state
automata · fractals · recursion

1 Introduction

In (sequential) algorithms and in computer programming the steps/instructions
are executed one after the other. There are various types of classical procedural
programming languages and programs including straight-line programs (e.g.,
to compute the solution of an equation), branching programs, and programs
with loops (cycles) [13]. These are frequently used programming techniques.
Another, we may say, more advanced technique is by recursion. In a usual high-
level programming language, the programmer has the right to choose among
various possibilities that could give equivalent result but usually with various
complexities (including time and space complexities as well as the length of the
code).

There are various well-known ways developed to describe the syntax of pro-
gramming languages, and in fact, these methods including Backus-Naur form
(BNF), hybrid notation, extended BNF and also railroad diagrams, are equiva-
lent to context-free grammars (and behind the scene the computers usually use
grammars and compilers based on them) [3,14].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Durand-Lose and G. Vaszil (Eds.): MCU 2022, LNCS 13419, pp. 109–125, 2022.
https://doi.org/10.1007/978-3-031-13502-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13502-6_8&domain=pdf
https://doi.org/10.1007/978-3-031-13502-6_8

110 B. Nagy

On the other hand, graphical representations of various theoretical notions
are useful for several reasons. First, they help to capture the ideas and estab-
lish connections of various concepts. Second, if they are defined in mathematical
precision, then they can also be used to prove results in a visual, easily under-
standable way. Further, graphical representations can be used in various ways
in teaching, in research, etc.

In this paper, we deal with some basic concepts of (theoretical) computer
science, like, regular and context-free languages, finite and pushdown automata.
They are well-known from the middle of the last century. Regular languages are
used in lexical analysis, in text processing, etc. Their wide-spread use is based
on the fact that they have very nice properties, finite state acceptors accept
them and it is easy to deal with them in a visual way. However, there are several
places where regular languages are not enough, more complex languages, e.g.,
context-free languages are needed. We analyze the context-free languages from
diagrammatic representations point of view, and investigate the fractal automata
as a special infinite-state automata model (this model was already coined up in
[9,10]).

The structure of the paper is as follows. In the next sections we recall for-
mally the basic definitions that are needed to understand the paper, then we
present the case of regular languages, as an analogy, by showing (visual graph)
transformations from one visual representation to the other one and vice versa.
In Sect. 4, we present our main results on context-free languages. Starting from
the well-known description of context-free languages by railroad diagrams (syn-
tax diagrams), by using the same type of transformation as earlier we arrive to
the concept of fractal automata. In Sect. 5 some properties of this new automata
model are described and they are compared to pushdown automata. The paper
is closed by some concluding remarks.

2 Basic Definitions

Here we recall some necessary concepts about the classes of regular and context-
free languages and also fix our notations [4–6,11,12].

For a finite non-empty set of symbols Σ, called an alphabet, Σ∗ denotes the
set of all strings (also called words) over Σ including the empty string ε. The
length a word is the number of its symbols (with multiplicities), consequently
the length of ε is 0. Further, Σk denotes the set of all words with length k from
Σ∗ for any natural number k. A language over Σ is any subset of Σ∗. We denote
the size of a set F by |F | and its powerset by 2F .

A regular expression describes a language over an alphabet Σ and it is defined
inductively as follows:

– ∅, ε, and a, for a in Σ, are regular expressions referring to the empty language
{}, the unit language {ε} and to the singleton language {a}, respectively.

– If r and t are regular expressions and Lr and Lt are the languages described
by them, respectively, then

• (r + t) is also a regular expression and it describes the language Lr ∪ Lt;

From Finite Automata to Fractal Automata – The Power of Recursion 111

• (r · t) is also a regular expression, it describes the language Lr · Lt and
• r∗ is also a regular expression describing the language L∗

r .

In practice the sign · is usually omitted, and some of the brackets can also be
omitted based on some equivalences (e.g., associativity laws) and a widely used
precedence relation among the operations. The operations concatenation ·, union
+ and Kleene-star iteration ∗ are called regular operations (for languages). In
some descriptions, the Kleene-plus + abbreviating r+ = r · r∗ can also be used.

As an analogy, one may think the Σ as the set of possible statements in a
programming language. Then concatenation refers to execute another code after
the first code. The union refers to conditional statements, i.e., with a then and
an else branch. The Kleene closures describe loops, iterative executions of the
statements in the body. This analogy could be helpful to see a relation between
programs and regular expressions, but it is only an analogy, as our computer pro-
grams are deterministic, but the determinism is not really connected to regular
expressions (as they describe all the possibilities).

A language L is regular if there exists a regular expression describing L.
A (nondeterministic) finite automaton (fa) is a quintuple M = (Q,Σ, δ, s, F),

where Q is a finite, non-empty set of states, Σ is an input alphabet, s ∈ Q is
the initial state, F ⊆ Q is the set of accepting (also called final) states, and δ is
the transition function that maps Q × (Σ ∪ {ε}) into 2Q.

Finite automata are usually represented in a graphical way. In the graph of
an automaton the states are the vertices drawn by circles (the name of the state
can be included inside the circle). The transitions are drawn as directed edges
of the graph. These edges are labeled: an arrow from state p to state q labeled
by a represents the transition q ∈ δ(p, a) (where p, q ∈ Q, a ∈ Σ ∪ {ε}). In this
way the input alphabet is implicitly given by labels of the edges. Further, the
initial state is marked by an in-arrow (without label), while each accepting state
is marked by an out-arrow (without label).

A computation by the automaton M on input w is starting from the state
s, and each step is done according to the transition function. Actually (using
the graphical representation of the automaton), it is a walk of the graph of the
automaton M , starting from the initial state s such that the labels of edges of
the walk gives w, where a walk is an alternating sequence of vertices and edges
such that every edge (p, q) of the walk connects the states p and q in the given
order, where p is the element of the sequence preceding (p, q) and q is the element
following that edge. If such a walk ends in an accepting state, then this is an
accepting computation of the automaton. A word is accepted by the fa M if there
is (at least one) accepting computation/walk for it. The language accepted by fa
M is L(M) = {w ∈ Σ∗ | there is an accepting computation for w in M}.

It is well-known (by the Kleene-theorem) that the class of finite automata
accepts exactly the class of the regular languages.

Context-free languages are defined by context-free grammars [2]: formally
a context-free grammar is a quadruple G = (N,Σ, S,D), where N and Σ are
two disjoint alphabets, namely the nonterminal and terminal alphabets; S ∈ N
is the startsymbol (or sentence symbol) and D is a finite set of productions

112 B. Nagy

(derivation rules), where a production is a pair written in the form A → u with
A ∈ N , u ∈ (N ∪ Σ)∗. The derivation starts with the startsymbol S. We say
that u can directly be derived from v, v ⇒ u, if v = xAy, u = xzy (with some
x, y, z ∈ (N ∪ Σ)∗ and A ∈ N) and A → z ∈ D. The reflexive and transitive
closure of the direct derivation gives the derivation relation (denoted by ⇒∗).
Further the generated language of grammar G contains every terminal word that
can be derived in G, i.e., L(G) = {w ∈ Σ∗ | S ⇒∗ w}. A language is context-free
if there is a context-free grammar that generates it.

The class of context-free languages is one of the main classes of the Chom-
sky hierarchy. It is well-known that the class of context-free languages properly
includes the class of regular languages. Moreover, context-free languages play
very important role in compiler technologies for programming languages. Since
context-free languages and programming languages are related to each other,
starting from the 1950’s till the beginning of 1970’s there were various tech-
niques and technologies that developed to represent (describe) context-free (and
programming) languages. Such technologies are the Backus-Naur form (shortly
BNF, based on the work of J. Backus at IBM describing the syntax of the pro-
gramming language Algol 58 [1] and P. Naur describing Algol 60), the Cobol-type
description (used to describe the programming languages Cobol and PL/1), the
hybrid notation (having a mixture of the previous descriptions, it was frequently
used for syntactical descriptions and definitions in 1990’s), the extended BNF
(that form is very similar to the context-free grammars) and a visual represen-
tation technique, the railroad diagrams (used in the description of the Pascal
language [15]). Railroad diagrams are more readily understood by most people.
For the sake of simplicity (and by the lack of space) here we recall only the
concept of the latter ones, the railroad diagrams. They are also called syntax
diagrams (syntax graphs or flow charts).

Railroad diagrams (rd) can be defined iteratively as follows (see also Fig. 1).
The basic elements are the arrows and the terminals and nonterminals (as ver-
tices):

– nothing (empty language), it is not used, since in practice only languages
containing words are described, every other diagram has exactly one starting
arrow and finishing arrow (these arrows may also be called entry point and
end point; and the diagram is between them);

– an arrow (representing the empty word ε) (being the starting and finishing
arrow at the same time),

– a terminal is an ellipse (or a circle), and the terminal itself is written inside
the ellipse,

– a nonterminal is represented by a (rectangular) box, the name of the nonter-
minal is written inside the box.

Using these bases of the iteration the following iteration steps can be used:

– concatenation: two diagrams are joined one after the other by having the
finishing arrow of the first one be the starting arrow of the second one (it is
similar to the serial wiring),

From Finite Automata to Fractal Automata – The Power of Recursion 113

– alternatives: two or more diagrams can be joined together (in the same way
as parallel wiring): having a common entry point and having a common end
point,

– option: it is actually alternatives of a diagram and an arrow (representing ε),
– iteration: a diagram having an additional arrow from its end point to its entry

point.

Fig. 1. The parts of the railroad diagrams and an example (INTEGER). (Note that in
a programming language, it is always optional to use the sign + for an integer.)

Actually, each nonterminal (there is a finite number of them) is defined by
a railroad diagram. Each diagram is understood to define a set of full paths
from its entry point (starting arrow) to its end point (finishing arrow). When a
nonterminal is reached in a path, then a word described by the diagram defining
that nonterminal must be substituted there. In this way, recursion can be used,
e.g., using the nonterminal itself in the description. There is a main diagram
(for the concept itself that we want to describe by our language), it defines the
described language.

Pictorially these diagrams look like railroad maps and thus the name railroad
diagrams matches for them. More generally, one may consider a railroad diagram
as the (directed) rail network between 2 cities (from the entry/start city to the
end city), where there are various junctions, where some rail lines are merged
and/or branching. The terminals and nonterminals may be seen as stations, but
only the terminals represent ‘normal’ stations. At a nonterminal a “subtravel”
starts on the other diagram, and we may continue our travel only when this

114 B. Nagy

subtravel is finished. By reading all the ‘normal’ stations during our travel, we
got the description of our journey, a word of the specified language.

It can be proven in a constructive way that exactly the context-free languages
can be described by railroad diagrams. Thus a context-free grammar can be
represented by a finite set of railroad diagrams.

Notice that most of the used operations are highly related to the regular
operations. The concatenation is the same in regular expressions and in railroad
diagrams, they both represent concatenation of languages. The alternatives in
railroad diagrams represent nondeterministic choices. They have the same role
as union has at languages/regular expressions. Option refers for a special union,
where one of the languages is the (unit)language {ε}. The iteration is equivalent
to the positive Kleene closure, i.e., the Kleene-plus. By a combination of option
and iteration one can also define a structure that is equivalent to the Kleene-star
operation (for languages/regular expressions). It can also be easily proven that
the same class of languages can be described if instead of the original iteration
(equivalent to Kleene-plus) we use the following alternative form of the iteration
(that is equivalent to Kleene-star): there is an arrow (direct connection) from
the entry point to the end point of the diagram and additionally, from the end
point there is the starting arrow of the original diagram and its finishing arrow
goes to the entry point of the new diagram. Thus, the iterations equivalent to r∗

can also be drawn (see Fig. 2) and used in railroad diagrams (see also [8], where
regular languages in union-normal form [7] were described).

Fig. 2. The alternative form of iteration in railroad diagrams equivalent to Kleene-star.

Railroad diagrams are used to describe the syntax of the Pascal programming
language, therefore they are also called syntax diagrams. Their visuality and thus
simplicity was one of the main reasons of the widespread use of the programming
language Pascal. Till the present date, it (or one of its modern versions, e.g.,
TurboPascal) is one of the first programming languages that pupils can learn
in various schools and also it is the base of one of the most usual pseudo-code
descriptions of various algorithms in universities and (text)books.

While context-free grammars are widely used generating devices for context-
free languages, the railroad diagrams are used to analyze the described context-
free languages. We also recall a third way to define context-free languages, they
can be accepted by a well-known type of automata.

Pushdown automata are automata equipped with an auxiliary pushdown
storage. Formally, a pushdown automaton (pda) is a septuple P = (Q,Σ, Γ, δ, s,
B, F), where Q,Σ, s and F are the same as at the finite automata; Γ is the
(finite, nonempty) stack alphabet, B �∈ Γ is the non-erasable bottom marker that
is initially in the stack, δ is the transition function that maps Q×Γ × (Σ ∪{ε})
into the finite subsets of 2Q×Γ ∗

and Q × {B} × (Σ ∪ {ε}) into the finite subsets
of 2Q×(B·Γ ∗).

From Finite Automata to Fractal Automata – The Power of Recursion 115

A computation by the automaton P on input w is starting from the state s
with the stack containing only the symbol B, and each step is done according to
the transition function. A computation on input w is an accepting computation
if the whole input is processed and the pda P reaches an accepting state in the
end. The language accepted by pda P is the set of strings
L(P) = {w ∈ Σ∗ | there is an accepting computation for w in P}.

There is another way to define the accepted language and it is done by empty
stack: the input w ∈ Σ∗ is accepted, if there is a computation such that the input
is fully processed and the stack is empty (contains only the bottom marker B).
It is also usual to define the accepted language of pushdown automata by final
state and empty stack (such that accepting computations end in a final state
with empty stack).

It is well-known in formal language theory that the expressive power of
context-free grammars and the (nondeterministic) pushdown automata coincide
(even if the latter, more restricted version of pda is used).

In this paper, we consider regular and context-free languages from a dia-
grammatic point of view and based on some analogies we investigate the fractal
automata for context-free languages.

3 Regular Languages

There is a way to represent regular expressions by special railroad diagrams. As
it is mentioned, for instance, in [8], the described language is regular if it can be
described by a railroad diagram without nonterminals.

Now, we have two types of visual descriptions of the regular languages (see
Fig. 3). Let us see what is the relation between them.

First, let us observe that in finite automata the terminals are written on
transitions (labels of the edges) and we have got the recognized/accepted word
by reading these labels in an accepting walk. In the railroad diagrams the circles
are referring for terminals, and thus a word of the described language is obtained
by reading these labels of a full path. Actually, a railroad diagram can be seen
as a kind of dual graph of an automaton. The (labeled) edges of the automaton
play the role of labeled nodes, while instead of the states of the automaton in
the railroad diagram there are some arrows and junctions, i.e., edges instead of
the vertices of the graph of the automaton. This is a kind of duality relation
between these concepts (analogously to state-transition Petri nets, where the
dual is obtained by switching the role of places and transitions).

In the following part of this section we show an algorithm, Algorithm 1, that
transfers a railroad diagram without nonterminals to a finite automaton that
corresponds to the same regular language.

Visual representations of the transformation from railroad diagrams to finite
automata, i.e., the work of Algorithm 1 can be seen, for our previous example,
as it is shown in Fig. 4. (Note that using the algorithm the number of states
could be much larger than in the automaton shown in the figure and usually the
resulting automaton contains several ε-transitions.)

116 B. Nagy

Fig. 3. Representations of a regular language: a finite automaton (up) and a railroad
diagram (down).

Algorithm 1.
Input: a railroad diagram.
1. Let a state (a circle) be assigned to each junction.
2. Let also be a state between two terminals when they are directly connected
by an arrow (without having any junctions between them).
3. Further let the initial state be given at the starting arrow of the diagram.
4. Let there be only one final state, and let it be placed on the finishing arrow
of the diagram.
5. Finally, if there is a terminal a in the railroad from state p to state q, then
let the transition q ∈ d(p, a) be given in the automaton, and, if there is not any
terminal at the railroad connecting state p to state q, then let q ∈ d(p, ε) be in
the automaton.

We note here that the obtained automaton is usually not optimal in any
sense, it can often be simplified (by merging some states etc.), but it is not a
task of this paper to detail these options.

We show also that a related algorithm, Algorithm 2, can transform any finite
automaton to a syntax diagram that describes the same language.

From Finite Automata to Fractal Automata – The Power of Recursion 117

Fig. 4. An example for transforming a railroad diagram without nonterminals to a
finite automaton and/or vice-versa.

Algorithm 2.
Input: a finite automaton.
1. The incoming arrow into the initial state without any label is set to the
starting arrow of the diagram.
2. The outgoing arrows from the final/accepting states is joined together to
have only one outgoing arrow that will be the finishing arrow of the diagram
(in a similar way every finite automaton can be transformed to an equivalent
automaton having only one accepting state, i.e., by adding a new accepting state
with ε-transitions from the old accepting states).
3. We draw arrows (parts of the arrows) inside the state circles as follows: each
incoming arrow at a state is gathered in a junction and then each outgoing arrows
are drawn from another junction that follows the previous gathering junction,
in this way allowing to continue the path with any outgoing arrow after any
incoming arrow; then the states of the automaton (the circles of the graph) are
deleted (only the new arrows and junctions inside them are kept).
4. Further each label of the arrows that differ from ε must be circled to form
a terminal (station) breaking the labeled arrow to two parts. (The labels ε are
deleted, only their arrows are kept.)

The resulting graph is the railroad diagram of the regular language that the
original finite automaton accepts.

Now, in the next section, we show how we can deal with non-terminals in
our transformation.

4 The Context-Free Case

If one considers a railroad diagram representing the statements of a program
(with our analogy), then the nonterminals refer to subprograms, i.e., to function
calls.

Analogously to the regular case, let us start from the syntax diagrams of a
context-free grammar, i.e., the description of a context-free language by a (set
of) railroad diagram(s).

118 B. Nagy

The syntax diagrams describing regular languages were analyzed in [8], where
it is shown that if the railroad maps can be ordered in such a way that in every
diagram only those nonterminals can be used that were already defined (not
allowing to use the nonterminal being currently defined by this railroad), then
the described language is regular. This condition is exactly the necessary and
sufficient condition to exclude arbitrary deep recursions. Thus, the described
language is regular if and only if its description is possible by using only finite
recursions. Actually, if this condition is fulfilled, then by drawing the railroad
diagram of the nonterminals instead of their boxes, the language is described by
a railroad diagram without nonterminals, and thus it is regular.

Now let us assume that our language is non-regular and thus, we have (a
possible infinite) recursion.

Let a finite set of rail-road diagrams be given that defines a context-free
language. Now, let us make a similar transformation as we did in the regular
case from special syntax diagrams to finite automata. We write the algorithm in
a formal way (see Algorithm 3).

Algorithm 3.
Input: a finite set of rail-road diagrams.
1. Let the middle point of the start arrow of the main diagram be chosen to
place the initial state.
2. Let the middle point of the finishing arrow of the main diagram be chosen to
place the final state.
3. Let every junction of the main diagram be a state of the automaton.
4. Let every midpoint of an arrow connecting two terminals directly without
having any junctions between them, be a state of the automaton.
5. Apply steps 1–4 to the other elements of the set of railroad diagrams.
6. Let the label of a transition (an arrow from a state to a state) be the termi-
nal that can be found between the two connected states if any, if there is not
any terminal between two states, then let the empty word ε the label of that
transition.
7. Substitute the diagrams obtained instead of the nonterminals appear (in the
main diagram) iteratively. In a substitution by putting a subdiagram, the arrow
that was going to the substituted nonterminal, is replaced by an arrow that is,
at the same time, the starting arrow of the subdiagram. And the finishing arrow
of the subdiagram is joined to the arrow which was starting from the substituted
nonterminal.

We should note that Algorithm 3 is an infinite procedure, and therefore
depending on the used terminology, it may not be counted as an algorithm if
the finiteness of the execution is required. On the other hand, apart from this,
it fulfills all the usual requirements of the algorithms. In one usual terminology
all Turing machines are counted as algorithms and their computations as execu-
tions of these algorithms even if some of those computations are infinitely long
(this concept of algorithm is connected to the recursively enumerable class of
languages). In another terminology, only those Turing machines are counted as
algorithms which halts on any input (this concept of algorithm is connected to

From Finite Automata to Fractal Automata – The Power of Recursion 119

the class of recursive languages). The former concept of the algorithm is more
general than the latter one and we used Algorithm 3 according to this former
category. However, using the more restricted terminology, Algorithm 3 can be
called a procedure, but not an algorithm.

The automaton (theoretically) obtained by Algorithm 3 is a fractal automa-
ton for the given context-free language. Since the recursion can be arbitrarily
deep in these diagrams, this process results an infinite – but somehow regularly
obtained, self-similar – system. If the nonterminal of a railroad diagram does not
appear in the main diagram by the iterative use of step 7, then that diagram
does not play any role in the concept defined by the main diagram.

Observe that the resulting automaton is very similar to finite automata but
has an infinite number of states. The transformation from a set of railroad dia-
grams may be done, first by the construction of a finite automaton (allowing
nonterminals) for each diagram, and then these automata are used to substitute
instead of the nonterminals.

To have a formal definition and description of the fractal automata, we first
introduce an addressing scheme to handle the infinite number of states.

Let Q denote the set of states of a fractal automaton, we use the alphabet Λ
to give a unique address (label) for each state.

Definition 1 (Labeling). The label alphabet Λ contains two disjoint finite sets
Λ = Λa ∪ Λn, where Λn refers for the names of the states (can be imagined as
identifying the location, the state itself inside a railroad diagram based automaton
obtained by steps 1–6 of Algorithm 3) and Λa refers for the symbols that are used
to address the nonterminals appearing in the railroad diagrams, i.e., this part of
the address of the state refers to show where the current railroad diagram is
embedded in the recursion. In every railroad diagram describing our language
we identify each occurrence of a nonterminal by a unique element of the set
Λa. Every state q ∈ Q can be identified by its label u · p from the set Λ∗

aΛn

(u ∈ Λ∗
a, p ∈ Λn). The states for which their address u = ε are the states that

are located in the original main railroad diagram. Each state r of a railroad
diagram based automaton (r ∈ Λn) that corresponds to the railroad diagram α
being substituted to a nonterminal A of a rail road diagram β will get address
u · J · r, where u ∈ Λ∗

a is used to address the states that are located in railroad
diagram β and J ∈ Λa is the label of the substituted nonterminal A in α.

As the states with u = ε are located in the original main railroad diagram, in the
case of a regular language, having only one railroad diagram, these addresses are
not used, consequently the result is a finite automaton. When a railroad diagram
is directly put into the main railroad diagram (by substituting a nonterminal of
the original main railroad diagram), then every of its states is addressed by the
address symbol of that nonterminal of the main railroad diagram.

To describe the transition function and the set of states more formally, let ΛA

be the set of states inside the railroad diagram describing/defining nonterminal
A, such that ΛA ∩ ΛB = ∅ if A �= B (where A and B are arbitrary nonterminals
of the railroad diagrams). Let s and f be the initial and the accepting state

120 B. Nagy

inside the main railroad diagram. Then Λn is the set of states inside all railroad
diagrams, i.e., Λn =

⋃

A∈N

ΛA where N is the set of nonterminals that used to

describe the language by railroad diagrams. We can restrict the definition to
states that can be reached from the initial state s, and thus we can define the
set of states in an iterative way, as follows:

Definition 2 (Set of states). Let

– Q0 = ΛA ∪ {J | J ∈ Λa is an index of a nonterminal in the automaton
obtained from the main diagram}, where A is the nonterminal referring for
the main railroad diagram, thus Q0 already includes s and f .

– Starting from the set Qi the set Qi+1 is obtained: Qi+1 = (Qi ∩ Λ∗
aΛn) ∪

{uJp | u ∈ Λi
a, J ∈ Λa, p ∈ ΛA, uJ ∈ Qi and J is an identifier of the non-

terminal A} ∪ {uJK | u ∈ Λi
a, J ∈ Λa, uJ ∈ Qi,K ∈ Λa such that J is an

identifier of the nonterminal A and K is an identifier of a nonterminal in the
railroad based automaton of nonterminal A}, where Λi

a refers for the words of
Λ∗

a with length i. Thus Qi+1 allows us to go one step deeper in the recursion
chain than Qi allows, and it is done by substituting the automata obtained
from the railroad diagrams instead of each current nonterminal, respectively.

With this infinite process, in the limit one may obtain the infinite set of states
Q = lim

i→∞
Qi.

From the process given above it is clear that Qi contains states and nonterminals
on level i of the recursion. On the other hand, Qi ∩ Λ∗

aΛn ⊂ Qi+1 ∩ Λ∗
aΛn, the

set of states is always expanded and the new states has longer and longer labels.
Thus, the limit exists.

Now we are ready to define formally the fractal automata.

Definition 3 (Fractal automaton). The tuple R = (Q,Σ,Λ, δ, s, f) with the
(infinite) set of states Q, the (input) alphabet Σ, the label alphabet Λ, the tran-
sition function δ : Q × (Σ ∪ {ε}) → 2Q (only to finite subsets of Q), the initial
state s ∈ Q and the accepting/final state f ∈ Q, is a fractal automaton (fra)
where the transition function δ is defined as follows.

– up ∈ δ(ur, b) with u ∈ Λ∗
a, p, r ∈ ΛA(⊂ Λn), b ∈ Σ ∪ {ε} if the transition

p ∈ δ(r, b) was in the “finite automaton” obtained from the railroad diagram
describing/defining nonterminal A. (Assuming up, ur ∈ Q.)

– uJp ∈ δ(ur, b) with u ∈ Λ∗
a, J ∈ Λa, r ∈ ΛA, p ∈ ΛB, b ∈ Σ ∪ {ε} if in

the automata obtained from the railroad diagram of A there is a transition
from state r with b to the nonterminal B addressed by J and p is the initial
state of the automaton representing the railroad diagram of nonterminal B.
(Assuming uJp, ur ∈ Q.)

– up ∈ δ(uJr, b) with u ∈ Λ∗
a, J ∈ Λa, r ∈ ΛB, p ∈ ΛA), b ∈ Σ ∪ {ε} if r

is the final state of the automaton obtained from the railroad diagram of the
nonterminal B and in the automaton obtained from the railroad diagram of
A there is a transition from the nonterminal B addressed by J to the state p
with b. (Assuming up, uJr ∈ Q.)

From Finite Automata to Fractal Automata – The Power of Recursion 121

Actually Q ⊂ Λ∗
aΛn (it is restricted to contain only valid states that can be

reached from s by the transition function for some input words).

We note also that for every word w ∈ Σ∗ there is a value i ≥ 0 such that its
acceptance can be decided using the finite set Qi instead of the infinite set Q.
Even if the set of states is infinite, as we have seen, there is a convenient way to
address (name) the states of a fractal automaton.

The fractal automaton works in a similar way as a finite automaton (the
only difference is that the former has an infinite number of states), thus the
computations, the accepting computations/walks and the accepted language are
defined analogously.

An example for a fractal automaton is shown in Fig. 5. This automaton
accepts the context-free language of the correct bracketed expressions using two
binary operators +,− and binary (nonnegative) integers. The self-similar feature
of the automaton can easily be observed.

Fig. 5. Fractal automaton accepting a non-regular context-free language (in the figure
we have used the recursion up to Q2).

By our construction method it is obvious that for every context-free language
there is a fractal automaton that accepts it. When more than one railroad dia-
grams are used to describe the language, the recursions (the parts that we can
zoom in as in fractals) can be varied. The minimal number of different parts
that must be embedded into each other to describe a language could be a new
interesting complexity measure of context-free languages.

122 B. Nagy

5 Properties of the Fractal Automata

We have seen that context-free languages can be accepted by fractal automata.
Therefore, fractal automata seem to be useful tools to present some properties
of context-free languages, e.g., pumping lemmas: during the acceptance of long
enough words, the accepting walk allows to go more deeply in the fra (using
a more deeper recursion indicating the acceptance of similar-structure longer
words). Because the lack of space we do not give a formal proof of a pumping
lemma by fra in this paper. Instead, we show that fractal automata cannot accept
more languages than the class of context-free languages.

The representation of an fra can be done by the finite set of finite-looking
automata obtained from the set of railroad diagrams, linking them together (by
the nonterminals) according to the recursions. (In this way the fractal automa-
ton can be represented in a finite way, i.e., when one does a computation with
a fractal automaton, she or he can use the finite representation with the the-
oretically infinite set of state labels. We show this finite representation for our
example, in Fig. 6). The chain of the recursion may be traced by the help of a
pushdown stack (as it is done in computers as well in recursive function calls).
It is the idea of the next construction (shown in Algorithm 4).

Fig. 6. Finite representation of a fractal automaton.

From Finite Automata to Fractal Automata – The Power of Recursion 123

Algorithm 4.
Input: a fractal automaton R = (Q,Σ,Λ, δ, s, f).
1. Let us construct a pda P = (Q′, Σ, Γ, δ′, s, B, {f}) that accepts the same
language as R:
2. Let Q′ = Λn and Γ = Λa (w.l.o.g. we assume that B �∈ Λa).
3. Further let δ′ be defined as follows:
– let (p,C) ∈ δ′(r, b, C) if up ∈ δ(ur, b) with some u ∈ Λ∗

a, p, r ∈ Q′(= Λn),
b ∈ Σ ∪ {ε} for every C ∈ Γ ∪ {B};

– let (p,CJ) ∈ δ′(r, b, C) if uJp ∈ δ(ur, b) with some u ∈ Λ∗
a, J ∈ Γ (= Λa),

r, p ∈ Q′, b ∈ Σ ∪ {ε} for every C ∈ Γ ∪ {B};
– let (p, ε) ∈ δ′(r, b, J) if up ∈ δ(uJr, b) with u ∈ Λ∗

a, J ∈ Γ , p, r ∈ Q′, b ∈
Σ ∪ {ε}.

In this way P will simulate R storing the (possibly infinite) address part of
a state of R in its stack and the name part of the state in its own state. The
acceptance can go by empty stack and final state.

By the previous construction one could see that every context-free language
can be accepted by a pda using only three types of restricted transitions:

– push operation: a new element is pushed to the stack and the next state is
independent of the earlier stack contents;

– pop operation: the top element is popped out from the stack and the next
state depends on that symbol as well;

– no change: in this transition the stack is not used, the next state does not
depend on the stack contents, and it has not been changed during this tran-
sition.

Thus, there is an equivalent pda for every other pda (in terms of accepting
the same language) by using only these three types of transitions. Actually,
these operations are the basic operations when computer programs uses the
stack at recursive calls. When a new call happens we push to the stack the place
where the actual function should be continued after the return and we start to
execute the new function, (somewhat similar as we enter to the new part of the
automaton based on another railroad diagram in an accepting walk). When a
function terminates, i.e., in our case, the final state of an automaton obtained
from a railroad diagram is reached, then if the stack is nonempty, we return back
to continue the process at the caller level.

Figure 7 shows a graphical representation of the pda obtained from our frac-
tal automaton (the stack operations are written with various colors at the tran-
sitions, e.g., push is written by blue color). The shown no change transitions
(written by red color) refer to transitions where the stack does not play any role,
and they are corresponding to ‘normal’ transitions of the automaton based on a
railroad diagram (these transitions neither start a recursion, nor finish it in the
corresponding fra and railroad diagram).

Pushdown automata are frequently used tools to represent context-free lan-
guages. During the computation the stack contains important information. By
the connection between fra and pda there is another view of the pushdown stack:

124 B. Nagy

Fig. 7. Pushdown automaton that accepts the same language as the fra that shown in
Fig. 5. (Color figure online)

with the infinite state fra, the stack content of the pda is used somehow to address
the states in the computation (accepting walk). In fra it is very straightforward
to see that if the computation/walk goes more deeply in the recursion, then it
must come back (in a longer way).

6 Conclusions

Based on visual representations of regular and context-free languages and the
description of context-free languages by (sets of) railroad diagrams, the fractal
automata are investigated as an infinite state model that can be defined by a
finite description. This new representation of context-free languages, by repre-
senting recursions with fractals, can be used to understand better this family
of languages. We have also given a link between pushdown automata and the
pushdown stack used in various programming languages (in an automatic way)
at recursive calls of functions (or other types of subprograms) by the help of our
new concept. This explanation can also be very helpful for students to under-
stand these concepts better.

The new concept opens also a series of questions for future research. How
the well known subfamilies of context-free languages, e.g., linear languages, one-
counter languages, deterministic context-free languages can be represented and
characterized by this new automata model? How the new complexity measure
can be determined for context-free languages: can we compute how many finite
state looking automata we need to link together to describe the given context-
free language?

Acknowledgements. Comments of the reviewers are gratefully acknowledged.

From Finite Automata to Fractal Automata – The Power of Recursion 125

References

1. Backus, J.W.: The syntax and semantics of the proposed international algebraic
language of the Zurich ACM-GAMM Conference. In: Proceedings of the Interna-
tional Conference on Information Processing, pp. 125–132. UNESCO (1959)

2. Chomsky, N.: Three models for the description of language. IRE Trans. Inf. Theory
IT 2(3), 113–124 (1956)

3. Fisher, A.E., Grodzinsky, F.S.: The Anatomy of Programming Languages.
Prentice-Hall, Hoboken (1993)

4. Harrison, M.A.: Introduction to Formal Language Theory. Addison-Wesley (1978)
5. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and

Computation. Addison-Wesley Publishing Company, Reading (1979)
6. Linz, P.: An Introduction to Formal Languages and Automata, 4th edn. Jones and

Bartlett Publishers (2006)
7. Nagy, B.: A normal form for regular expressions. In: Eighth International Confer-

ence on Developments in Language Theory, DLT 2004, Auckland, New Zealand,
Supplemental Material, (CDMTCS-252 report), p. 10 (2004)

8. Nagy, B.: Programnyelvek elemeinek szintaktikus léırása normál formában (Syn-
tactic description of the elements of the programming languages in a normal form.
In: e-Proceedings of IF 2005: Conference Information Higher Education, Debrecen,
p. 6 (CD-ROM Proceedings) (2005). (in Hungarian)

9. Nagy, B.: Graphical representations of context-free languages. In: Dwyer, T., Pur-
chase, H., Delaney, A. (eds.) Diagrams 2014. LNCS (LNAI), vol. 8578, pp. 48–50.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44043-8 7

10. Nagy, B.: Fractal automata, talk in SWORDS 2014: Szeged Workshop on Discrete
Structures, Szeged, Hungary (2014)

11. Révész, Gy.E.: Introduction to Formal Languages. McGraw-Hill, New York (1983)
12. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, 3rd edn.

Springer, Heidelberg (1997). https://doi.org/10.1007/978-3-642-59136-5
13. Savage, J.E.: Models of Computation: Exploring the Power of Computing. Addison-

Wesley, Amsterdam (1998)
14. Tucker, A., Noonan, R.: Programming Languages: Principles and Paradigms. Mc

Graw Hill, Boston (2002)
15. Wirth, N.: The Programming Language Pascal, July 1973

https://doi.org/10.1007/978-3-662-44043-8_7
https://doi.org/10.1007/978-3-642-59136-5

Closure Properties of Subregular
Languages Under Operations

Viktor Olejár1,2(B) and Alexander Szabari2

1 Mathematical Institute, Slovak Academy of Sciences, Košice, Slovakia
olejar@saske.sk

2 Department of Computer Science, P. J. Šafárik University, Košice, Slovakia

alexander.szabari@upjs.sk

Abstract. A class of languages is closed under a given operation if the
resulting language belongs to this class whenever the operands belong
to it. We examine the closure properties of various subclasses of regular
languages under basic operations of intersection, union, concatenation
and power, positive closure and star, reversal, and complementation. We
consider the following classes: symmetric definite languages and their
variants (left ideal, finitely generated left ideal, and combinational), two-
sided comets and their variants comets and stars, and the classes of sin-
gleton, finite, ordered, star-free, and power-separating languages. We also
give an overview about subclasses of convex languages (classes of ideal,
free, and closed languages), union-free languages, and group languages.
For all pairs of a class and an operation, we provide an answer whether
this class is closed under this operation or not.

1 Introduction

The class of regular languages is the simplest class in the standard version of
the Chomsky hierarchy. Despite this, it has still attracted the attention of many
researchers who examine its related decidability and descriptional complexity
problems. Every regular language can be expressed as an iterated composition
of unions, concatenations, and Kleene stars applied to singleton sets of symbols
from a given alphabet. If we permit only unions and concatenations, we get the
class of finite languages. With unions, concatenations, and complements, we get
star-free languages [9,13], and with concatenations and stars we get union-free
languages [8,21]. Using various other restrictions, we are able to obtain plenty
of subclasses of regular languages with most of them having been studied in the
past for their interesting properties.

One of the first examined subregular classes were the definite languages.
These languages and their variants were first investigated by Brzozowski [4],
Perles et al. [23], and Paz and Peleg [22]. The class of star-free languages was
exhaustively studied in [24] by Schützenberger and in [20] by Meyer. Subse-
quently, group languages, which were called permutation regular sets at the

Research supported by VEGA grants 2/0132/19 and 1/0177/21.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Durand-Lose and G. Vaszil (Eds.): MCU 2022, LNCS 13419, pp. 126–142, 2022.
https://doi.org/10.1007/978-3-031-13502-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13502-6_9&domain=pdf
http://orcid.org/0000-0003-4308-9159
https://doi.org/10.1007/978-3-031-13502-6_9

Closure Properties of Subregular Languages Under Operations 127

time, were studied by Thierrin in [28]. Shyr and Thierrin investigated ordered
and power-separating languages in [25] and [26], respectively. Since the intro-
duction of these classes decades ago, intensive research has been conducted in
regards to them with many fruitful outcomes.

Operational state complexity is a hot topic in theoretical computer science.
It is often beneficial to focus on the case, where the operands of a considered
operation belong to some specific subclass. Due to this belonging to a subclass,
in certain cases the resulting state complexity may significantly decrease com-
pared to the general regular case. Some examples for this from more recent
publications include results in the classes of prefix- and suffix-free languages
by Han et al. [10,11]. Brzozowski et al. examined the classes of factor- and
subword-free languages [3], ideal languages [6], and closed languages [7]. Efforts
to jointly investigate prefix-, suffix-, factor-, and subword-convex languages and
their subclasses were made by Hospodár et al. [15,17]. Not only the complexity
of various operations on regular languages, but also ranges of state complexities
were examined, for example in [12,16]. In papers about operational state com-
plexity on subclasses, sometimes the closure and non-closure properties of the
considered class under operations are provided.

A class of languages is closed under a given operation if the resulting language
belongs to this class whenever the operands belong to it. In this paper, we look
at the classes of combinational, finitely generated left ideal (alternatively called
noninitial definite), left ideal (alternatively called ultimate definite), symmetric
definite, star, comet, two-sided comet, singleton, finite, ordered, star-free, and
power-separating languages, and provide closure and non-closure properties for
intersection, union, concatenation, power, positive closure, Kleene star, reversal,
and complementation. Some of these properties are already known from the
literature. For the others, we provide arguments for the closure property or a
counterexample, called a witness, for non-closure. At the end of the paper, we
provide an overview of the closure and non-closure properties, together with
mostly known results for the subclasses of convex languages (right ideal, prefix-
and suffix-closed, -free, and -convex), union-free languages, and group languages.

2 Preliminaries

We assume that the reader is familiar with some standard notions and notation
in automata theory. For additional details and explanations, we refer the reader
to [14,27].

Let Σ be a non-empty alphabet of symbols. Then Σ∗ denotes the set of all
strings over Σ, including the empty string ε. A language over Σ is any subset
of Σ∗. We often refer to a language over a single symbol alphabet as unary, and
to a language over a two-symbol alphabet as binary. The length of a string w is
denoted by |w|, and the number of occurrences of a symbol a in w is denoted
by |w|a. The reversal of a string w over Σ denoted wR is defined as wR = ε
if w = ε, and wR = anan−1 · · · a2a1 if w = a1a2 · · · an−1an with ai ∈ Σ. The
reversal of a language L is the language LR = {wR | w ∈ L}. The complement of

128 V. Olejár and A. Szabari

a language L over Σ is the language Lc = Σ∗\L. The intersection of languages K
and L is the language K ∩ L = {w | w ∈ K and w ∈ L}, while the union of K
and L is K ∪ L = {w | w ∈ K or w ∈ L}. The concatenation of languages K
and L is the language KL = {uv | u ∈ K and v ∈ L}. For a given positive
integer k, the k-th power of a language L is the language Lk = LLk−1 with
L0 = {ε}. The positive closure of a given language L is L+ =

⋃
k≥1 Lk, while

the star of L is defined as L∗ =
⋃

k≥0 Lk and it is equal to {ε} ∪ L+. Given two
strings u, v ∈ Σ∗ and a positive integer k we define the shuffle of two strings
u� v as

u� v = {u1v1 · · · ukvk | u1, . . . , uk, v1, . . . , vk ∈ Σ∗

and u = u1 · · · uk

and v = v1 · · · vk} .

The shuffle of languages K and L over some alphabet Σ is the language

K � L =
⋃

u∈K

⋃

v∈L

u� v.

We use the notation of regular expressions over Σ in a standard way with
∅ (empty set), ε, and each σ ∈ Σ being regular expressions; furthermore if r
and s are regular expressions, then rs (concatenation), r + s (union), and r∗

(star) are also regular expressions. For a regular expression r, the expression rk

denotes the k-th power of the language of r, and the expressions r≤k and r≥k

are shorthands for r0 + r1 + · · · + rk and rk + rk+1 + · · · , respectively.
A nondeterministic finite automaton with multiple initial states (MNFA) is

a quintuple M = (Q,Σ, ·, I, F) where Q is a finite non-empty set of states, Σ is
a finite non-empty set of input symbols (i.e., input alphabet), I ⊆ Q is the set of
initial states, F ⊆ Q is the set of final (accepting) states, and · : Q × Σ → 2Q is
the transition function which can be naturally extended to the domain 2Q ×Σ∗.
The language accepted by the MNFA M is

L(M) = {w ∈ Σ∗ | I · w ∩ F �= ∅}.
We call an MNFA a (complete) deterministic finite automaton (DFA) if |I| = 1
and |q · σ| = 1 for each q ∈ Q and each σ ∈ Σ; in such a case, · is a mapping
from Q × Σ to Q.

A given language L is called regular if and only if there exists an MNFA M
for which L = L(M). Two MNFAs A and B are equivalent if they accept the
same language. For a given MNFA M = (Q,Σ, ·, I, F), we can construct the
MNFA MR = (Q,Σ, ·R, F, I) with q ·R σ = {p | q ∈ p · σ} for each state q and
symbol σ. The MNFA MR recognizes the reverse of the language L(M). Every
MNFA M = (Q,Σ, ·, I, F) can be converted into an equivalent complete DFA

D(M) = (2Q, Σ, ·, I, {S ∈ 2Q | S ∩ F �= ∅})

by the subset construction [14] where · is the extension of the transition function
of M to the domain 2Q × Σ. Such DFA D(M) is called the subset automaton.

Closure Properties of Subregular Languages Under Operations 129

Next, we present the language classes that are the main focus in this paper.
Most of these were recently jointly investigated in [2] in regards to the NFA to
DFA conversion problem. A language L is

• combinational (class abbreviation CB): if L = Σ∗H for some H ⊆ Σ;
• finitely generated left ideal (FGLID): if L = Σ∗H for some finite language H

(in [2] called noninitial definite);
• left ideal (LID): if L = Σ∗L (in [2] called ultimate definite);
• symmetric definite (SYDEF): if L = GΣ∗H for some regular languages G,H;
• star (STAR): if L = G∗ for a regular language G [5] (equivalently, L = L∗);
• comet (COM): if L = G∗H for some regular languages G,H with G/∈{∅, {ε}};
• two-sided comet (2COM): if L = EG∗H for regular E,G,H with G/∈{∅, {ε}};
• singleton (SINGL): if it consists of one string;
• finite (FIN): if it consists of finitely many strings;
• ordered (ORD): if it is accepted by a (possibly non-minimal) DFA with

ordered states such that p 	 q implies p · σ 	 q · σ for each symbol σ (the
relation 	 on the states of the DFA is a total order) [25];

• star-free (STFR): if L is constructable from finite languages by concatenation,
union, and complementation only (equivalently, if L has an aperiodic DFA)
[24];

• power-separating (PSEP): if for every x in Σ∗ there exists an integer m such
that x≥m ⊆ L or x≥m ⊆ Lc [26];

The following language classes are mentioned in a summarizing table in the
Conclusions section to provide a more complete overview of other studied sub-
regular language classes. A language L over Σ is a right ideal (RID) if L = LΣ∗,
it is a two-sided ideal (TSID) if L = Σ∗LΣ∗, and it is an all-sided ideal (ASID)
if L = L� Σ∗. If L is a left (right, two-sided, all-sided) ideal, then it is equal
to Σ∗G (GΣ∗, Σ∗GΣ∗, G � Σ∗) for some language G which is called a gen-
erator of L. The smallest such language with respect to set inclusions is called
the minimal generator of L. The minimal generator of a left ideal L is the lan-
guage G = L \ Σ+L, cf. [6, p. 45]. The minimal generators of right, two-sided,
and all-sided languages are obtained similarly. If the minimal generator of L is
infinite, then L has no finite generator.

For a given string w, a string x is called a factor (resp. prefix, suffix) of w
if there exist strings u and v such that w = uxv (resp. w = xv, w = ux). This
factor (prefix, suffix) is called proper if uv �= ε (v �= ε, u �= ε). Given some
string v we call u a subword of v if there exist strings u1 . . . uk and v1 . . . vk for
a positive integer k such that u = u1 · · · uk and v = u1v1 · · · ukvk. A language L
is prefix-closed (PRCL) if for every string of L, each its prefix is in L, and it is
prefix-free (PRFR) if for every string of L, none of its proper prefixes are in L.
Suffix- (SUCL), factor- (FACL), subword-closed (SWCL), and suffix- (SUFR),
factor- (FAFR), and subword-free (SWFR) languages are defined analogously.
A language L is ≺-convex with respect to a partial order ≺ if for every strings u, v
in L and each x with u ≺ x ≺ v, we have x ∈ L. Each prefix-free, prefix-closed,
or right ideal language is prefix-convex (PRCV), and similar inclusions hold also
for suffix- (factor-, subword-) free, -closed, and left (two-sided, all-sided) ideal

130 V. Olejár and A. Szabari

languages in regards to suffix-convex (SUCV) (factor-convex (FACV), subword-
convex (SWCV)) languages. A language L is called a group language (GRP) if
it is accepted by a DFA whose transition function forms a permutation on its
set of states, and it is called union-free (UNFR) if L is constructible from finite
languages by concatenation and star only.

The following lemmas encapsulate some properties of the considered language
classes that are utilized in the upcoming proofs. The results presented here
are known. In Lemma 1, for the reader’s convenience, we provide a proof for
inclusions, but not for their strictness since it is not used and it follows from the
different properties for different classes.

Lemma 1 (Inclusions of classes, cf. [25,26], and [2, Fig. 2]). We have

(a) CB � FGLID � LID � SYDEF,
(b) STAR � COM � 2COM, where the first inclusion does not apply for {ε},
(c) SINGL � FIN � ORD � STFR � PSEP.

Proof. (a) Every combinational language L is equal to Σ∗H for some H ⊆ Σ.
Since H is finite, L is a finitely generated left ideal. Next, finitely generated
left ideals are left ideals by definition, and left ideals are symmetric definite
languages GΣ∗H with G = {ε}.

(b) If L is a star different from {ε}, then it is the comet G∗H with G = L
and H = {ε}. Next, if L is a comet, then it is equal to EG∗H with E = {ε}.

(c) Every singleton language consists of one string, so it is finite. In a DFA
for a finite language, only states from which no string is accepted can form a
cycle of transitions, so the other states can be ordered right compatible relatively
to the concatenation of strings, hence every finite language is ordered, cf. [25,
Proposition 11(3)]. Next, in a DFA for an ordered language, for each state q there
exists an integer k such that q · σk = q · σk+1 for each symbol σ. It follows that
every ordered language is star-free, cf. [25, Proposition 12]. Finally, for every
star-free language L there exists an integer k such that for each x, y, z ∈ Σ∗,
we have xykz ∈ L if and only if xyk+1z ∈ L. Let m = k + 1. Then for every
string v we have v≥m ⊆ L or v≥m ⊆ Lc. Hence every star-free language is
power-separating, cf. [26, Proposition 3]. ��
Lemma 2 (cf. [22, Theorem 9.2]). Let A = (Q,Σ, ·, s, F) be a minimal DFA.
Then A is symmetric definite if and only if there exists a state s ∈ Q with the
following properties:

• for each w ∈ L(A) ∩ Σ≤|Q|−2, there exists a prefix u such that s · u = s;
• the DFA (Q,Σ, ·, s, F) accepts a left ideal language. ��
The first condition of the previous lemma can be read as follows: If A is reading
a string w with |w| ≤ |Q|−2 which is in L(A), then A goes through the specified
state s. The state s is called decomposition state. For the following lemma, a proof
idea is provided to illustrate the connection between the considered congruence
classes and DFAs.

Closure Properties of Subregular Languages Under Operations 131

Lemma 3 (cf. [25, Proposition 9]). Let L be a language over Σ. Then the
following are equivalent:

(1) L is an ordered language;
(2) L is the union of some classes of a right congruence of finite index over Σ∗

and the set of the classes of this right congruence is a totally ordered set with
an order which is right compatible relatively to the concatenation of strings.

Proof Idea. Assume (1) and let M = (Q,Σ, ·, s, F) be a DFA with L = L(M).
Let the relation R on Σ∗ be defined as

uRv if and only if s · u = s · v.

Such R is a right congruence relation (with respect to string concatenation to
the right), the number of its congruence classes is finite, and L is the union of
some of them. Denote the total order on Q as 	 and the congruence classes of
R as C = {[w] | w ∈ Σ∗}. Let the total order ≤ on C be defined as

[u] ≤ [v] if and only if s · u 	 s · v.

Statement (2) holds since (C,≤) is a totally ordered set which is right compatible
relatively to the concatenation of strings.

Conversely, assume (2) and denote the totally orderable set of right congru-
ence classes as C = {[w] | w ∈ Σ∗}. Define the DFA M = {C,Σ, ·, s, F}, where
s = [ε], F = {[w] | w ∈ L}, and · simulates right string concatenation in a
standard way. The states of M are orderable by assumption and L = L(M),
thus statement (1) holds. ��

3 Results

In this section, we discuss closure and non-closure properties of the main lan-
guages of interest introduced in the preliminaries. We focus on the binary opera-
tions of intersection, union, concatenation, and unary operations of power, pos-
itive closure, star, reversal, and complementation.

For closure properties, we show that the resulting language has the prop-
erty of being in the same class as the operands which are K and L for binary
operations and L for unary operations. To show non-closure properties, we find
witness languages belonging to the class such that the result of the operation
is not in the respective class. The provided witnesses are numbered throughout
the paper.

It is known that the class of left ideals is closed under intersection, union
[22, Lemma 3.4], and concatenation [22, Lemma 3.6], and finitely generated left
ideals are closed under positive closure [4, p. 559]. In the following two lemmas,
we consider the classes of combinational, finitely generated left ideal, left ideal,
and symmetric definite languages. First, we present closures under the considered
operations and subsequently non-closures.

132 V. Olejár and A. Szabari

Lemma 4. Let K and L be languages and k a given positive integer.

(a) If K and L are finitely generated left ideal (combinational), then K ∩ L,
K ∪ L, and L+ are finitely generated left ideal (combinational) as well.

(b) If L is left ideal, then Lk and L+ are left ideal as well.
(c) If K and L are symmetric definite, then KL, Lk, L+, and LR are symmetric

definite as well.

Proof. First we show that L = L+ in all classes, and as a result, all classes
are closed under positive closure. If a language L is in one of the considered
classes, then it is symmetric definite, so we have L = GΣ∗H for some regular
languages G and H. Next, for every i ≥ 1 we have Li = G(Σ∗HG)i−1Σ∗H.
Hence Li ⊆ GΣ∗H = L, so L+ ⊆ L. Taking into account that L ⊆ L+, we
get L+ = L. Now we continue with the remaining operations.

(a) First, let K and L be in FGLID, so K = Σ∗G and L = Σ∗H for some
finite languages G and H. Let

m = max{|w| | w ∈ G ∪ H} and n = min{|w| | w ∈ G ∪ H}.

We aim to show that there exists a finite language I such that Σ∗G ∩ Σ∗H =
Σ∗I.
Set

G′ = {Σ≤m−|w|w | w ∈ G} and H ′ = {Σ≤m−|w|w | w ∈ H}
and let

I =
m⋃

i=n

(G′ ∩ H ′ ∩ Σi).

First we show that Σ∗G ∩ Σ∗H ⊆ Σ∗I. Let w ∈ Σ∗G ∩ Σ∗H. Then there exists
a suffix u of w in G and a suffix v of w in H. Without loss of generality, let u
be a suffix of v. Then v ∈ G′ ∩ H ′ ∩ Σ|v|, and since n ≤ |v| ≤ m, we have v ∈ I.
Hence w ∈ Σ∗I. Next we show that Σ∗I ⊆ Σ∗G ∩ Σ∗H. Let w ∈ Σ∗I. Then
there exists a suffix v of w with v ∈ I, so v ∈ G′ ∩ H ′ ∩ Σ|v|. Since v ∈ G′, there
exists a suffix of v in G, and since v ∈ H ′, there exists a suffix of v in H as well.
It follows that w ∈ Σ∗G and w ∈ Σ∗H. Thus Σ∗G ∩ Σ∗H = Σ∗I.

Similarly, we can show that for the following finite language

U =
m⋃

i=n

((G′ ∪ H ′) ∩ Σi)

we have Σ∗G∪Σ∗H = Σ∗U . First, let us prove the inclusion Σ∗G∪Σ∗H ⊆ Σ∗U .
Let w ∈ Σ∗G ∪ Σ∗H and w = xv such that x ∈ Σ∗ and v ∈ G ∪ H. Thus,
from the definitions of G′ and H ′, we have v ∈ G′ ∪ H ′, subsequently resulting
in v ∈ (G′ ∪ H ′) ∩ Σ|v|. It follows that v ∈ U , and xv = w ∈ Σ∗U . To show
the inclusion Σ∗U ⊆ Σ∗G ∪ Σ∗H, let w ∈ Σ∗U and w = xv such that x ∈ Σ∗

and v ∈ U . From the definition of U , we have v ∈ (G′ ∪ H ′) ∩ Σ|v|. Therefore

Closure Properties of Subregular Languages Under Operations 133

we have v ∈ G′ ∩ Σ|v| or v ∈ H ′ ∩ Σ|v|, and so v ∈ G′ or v ∈ H ′. It follows
that v = x′v′ where v′ ∈ G or v′ ∈ H. Hence w = xv = xx′v′ where xx′ ∈ Σ∗

and v′ ∈ G ∪ H. Thus w ∈ Σ∗G ∪ Σ∗H, and Σ∗G ∪ Σ∗H = Σ∗U .
Hence K ∩ L and K ∪ L are finitely generated left ideals. Moreover, if lan-

guages K = Σ∗G and L = Σ∗H are combinational, then each string in G ∪ H
is of length one, so both K ∩ L and K ∪ L are combinational as well.

(b) Since left ideals are closed under concatenation [22, Lemma 3.6], they are
closed under power.

(c) Let K = G1Σ
∗H1 and L = G2Σ

∗H2 for some languages G1,H1, G2,H2.
Then KL = G1Σ

∗(H1G2Σ
∗H2), which is a symmetric definite language. Next,

since symmetric definite languages are closed under concatenation, they are
closed under power as well. For reversal, we have LR = (GΣ∗H)R = HRΣ∗GR,
hence LR is symmetric definite. ��
Lemma 5. The following statements hold:

(a) The binary language L1 = (a + b)∗a is combinational, but L1L1 = L2
1 is not

a finitely generated left ideal, and L∗
1, LR

1 , and Lc
1 are not left ideals.

(b) The binary languages K1 = a(a + b)∗ and L1 = (a + b)∗a are symmetric
definite, but their intersection is not symmetric definite.

(c) The binary languages K2 = a(a + b)∗a, L2 = b(a + b)∗b, and unary lan-
guage L3 = a∗aa are symmetric definite, but K2 ∪ L2, L∗

3, and Lc
3 are not

symmetric definite.

Proof. (a) We have L2
1 = (a + b)∗ab∗a, which is a left ideal and its minimal

generator is
(a + b)∗ab∗a \ (a + b)(a + b)∗ab∗a = ab∗a.

Hence it is not generated by any finite language. Next, we have ε ∈ L∗
1 but

b /∈ L∗
1, a ∈ LR

1 but ba /∈ LR
1 , and ε ∈ Lc

1 but a /∈ Lc
1. It follows that L∗

1, LR
1

and Lc
1 are not left ideals.

(b) We have K1∩L1 = a+a(a+b)∗a. Assume for a contradiction that K1∩L1

is symmetric definite. Then it is equal to GΣ∗H for some regular languages G,H.
Since a ∈ K1∩L1, we must have either ε ∈ G and a ∈ H, or a ∈ G and ε ∈ H, so
either GΣ∗ = Σ∗ or Σ∗H = Σ∗. But it would mean that K1∩L1 is either a left or
a right ideal, which is a contradiction since a ∈ K1∩L1 but {ba, ab}∩K1∩L1 = ∅.
Hence K1 ∩ L1 is not symmetric definite.

(c) Assume that K2∪L2 is a symmetric definite language. Then, by Lemma 2,
it is accepted by a DFA with a decomposition state s. Next, the state s is neither
initial nor final since K2 ∪ L2 is neither a left nor a right ideal. It follows that
when processing the string aa, the DFA is in the state s after reading a, and
when processing the string bb, the DFA is in the same state s after reading b.
But this would mean that ab is accepted by this DFA, which is a contradiction
with the fact that ab /∈ K2 ∪L2. Hence K2 ∪L2 is not symmetric definite. Notice
that if a symmetric definite language contains the empty string, then it is equal
to Σ∗. It follows that L∗

3 is not symmetric definite since ε ∈ L∗
3 but a /∈ L∗

3. Next,
Lc
3 = {ε, a} is not symmetric definite since it is a finite non-empty language. ��

134 V. Olejár and A. Szabari

In the following two lemmas, we consider the classes of star, comet, and
two-sided comet languages.

Lemma 6. Let K and L be languages and k a given positive integer.

(a) If K and L are stars, then K ∩ L, Lk, L+, L∗, and LR are stars.
(b) If K and L are comets, then KL, Lk, and L+ are comets, and L∗ is a comet

if L �= ∅.
(c) If K and L are two-sided comets, then KL, Lk, L+, and LR are two-sided

comets, and L∗ is a two-sided comet if L �= ∅.

Proof. (a) Let K and L be stars. We aim to show that K ∩ L = (K ∩ L)∗.
The inclusion K ∩ L ⊆ (K ∩ L)∗ follows from definition of the star operation.
To show the converse, assume that a string w is in (K ∩ L)∗. Hence it can
be factorized to v1v2 · · · vk with vi ∈ K ∩ L for each i = 1, 2, . . . , k. Thus for
each i we have vi ∈ K and vi ∈ L. Since K = K∗ and L = L∗, it then
follows that v1v2 · · · vk = w is in both K and L, so w ∈ K ∩ L. Hence resulting
in K ∩ L = (K ∩ L)∗. Next, we have Lk = L+ = L∗ = L for star languages.
Finally, for a star language L we have LR = (L∗)R = (LR)∗, thus the reverse
of L is a star language as well.

(b) We have K = G∗
1H1 and L = G∗

2H2 for some regular languages G1,H1,
G2,H2 such that G1 and G2 are non-empty. Next, we have KL = G∗

1(H1G
∗
2H2),

which is a comet. Hence comets are closed under concatenation, and consequently
under power. We have ∅+ = ∅ and for a non-empty comet L, we have L+ = L∗L
where L /∈ {∅, {ε}}. Thus L+ is a comet in both cases. Finally, L∗ = L∗{ε}, so
it is a comet unless L = ∅.

(c) Let L = EG∗H for some languages E,G,H with G /∈ {∅, {ε}}. Then
similar arguments as for comets hold for concatenation, power, positive closure,
and star. Next, we have LR = HR(GR)∗ER, so LR is a two-sided comet. ��
Lemma 7. The following statements hold:

(a) The binary languages K4 = (ab∗a + b)∗ and L4 = (ba∗b + a)∗ are star
languages, while K4 ∪ L4, K4L4, and Lc

4 are not star languages.
(b) The binary languages K5 = a∗ba and L5 = b∗a are comets, while K5 ∩ L5

and K5 ∪ L5 are not even two-sided comets, and LR
5 is not a comet.

(c) The unary language L6 = a∗a is a comet, but Lc
6 is not even a two-sided

comet.

Proof. (a) By definition, the languages K4 and L4 are star languages. Next,
we have {a, b} ⊆ K4 ∪ L4 but ab /∈ K4 ∪ L4, {a, b} ⊆ K4L4 but ab /∈ K4L4,
and b ∈ Lc

4 but bb /∈ Lc
4. It follows that K4 ∪ L4, K4L4, and Lc

4 are not star
languages.

(b) We have K5 ∩ L5 = {ba}, which is a non-empty finite language, hence
it is not a two-sided comet. For every string w in K5 ∪ L5 = a∗ba + b∗a, we
have |w|a = 1 or |w|b = 1. Assume that a∗ba + b∗a = EG∗H for some regular
languages E,G,H with G /∈ {∅, {ε}}. Let w be a string in EG∗H. Then w = uxiv

Closure Properties of Subregular Languages Under Operations 135

for some non-negative integer i. We cannot have both a and b as factors of x
since then we would have |w|a ≥ i and |w|b ≥ i. Thus x ∈ a∗ + b∗. Let x ∈ a∗.
Then a string of the form a∗ba is in EG∗H only if ba ∈ H. But this is a
contradiction with a ∈ a∗ba + b∗a. So let x ∈ b∗. Then, if aiba ∈ K5 ∪ L5 for
some i ≥ 2, also aibia ∈ K5 ∪ L5, but such a string is not in a∗ba + b∗a. It
follows that a∗ba + b∗a is not a two-sided comet. Finally, assume that LR

5 = ab∗

is a comet. Then ab∗ = G∗H with G /∈ {∅, {ε}}. It follows that a string starting
with a is in G. But then strings with more than two occurrences of a are in G∗H,
which is a contradiction with G∗H = ab∗. Thus ab∗ is not a comet.

(c) The language Lc
6 = a∗ \ a∗a = {ε} is non-empty and finite, so it is not a

two-sided comet. ��
We give an observation about the classes of singletons and finite languages.

Proposition 8. Let K and L be languages and k a given positive integer.

(a) If K and L are singletons, then KL, Lk, and LR are singletons.
(b) If K and L are finite, then K ∩ L, K ∪ L, KL, Lk, and LR are finite.
(c) Let K7 = {ε} and L7 = {a}. Then K7 and L7 are singletons, K7 ∩ L7

and K7 ∪ L7 are not singletons, and L+
7 , L∗

7, and Lc
7 are not even finite.

Proof. (a) Let K = {u} and L = {v}. Then we have KL = {uv}, Lk = {vk},
and LR = {vR}, which are singleton languages.

(b) The sets K ∩ L, K ∪ L, KL, and LR are finite sets by definition of
operations. Next, we have Lk = LLk−1, thus the closure property for power
follows from the closure property for concatenation.

(c) We have K7 ∩ L7 = ∅ and K7 ∪ L7 = {ε, a}, thus both sets K7 ∩ L7

and K7 ∪ L7 have size different from one. Next, we have L+
7 = a+, L∗

7 = a∗,
and Lc

7 = ε + a≥2, which are infinite languages. ��
In the final two lemmas, we consider the classes of ordered, star-free, and

power-separating languages. These language classes have been studied in [20,25],
and [26, Proposition 5], where the closure and non-closure properties for Boolean
operations and concatenation were shown. Specifically, all these classes are closed
under complementation, but only star-free and power-separating languages are
closed under intersection and union, and only star-free languages are closed under
concatenation. For the non-closures, notice that b∗a(a + b)∗ and a∗b(a + b)∗ are
ordered, but their intersection is not, {b∗ab∗} and {a∗ba∗} are ordered, but their
concatenation is not, and (abab)∗a and bab(abab)∗ are power-separating, but
their concatenation is not. The closure properties for operations of power, plus,
star and reversal are shown next.

136 V. Olejár and A. Szabari

Fig. 1. A DFA for the ordered language L8 whose second power is not ordered.

Lemma 9. Let L be a language and k a given positive integer.

(a) If L is power-separating, then LR is power-separating as well.
(b) If L is star-free, then Lk and LR are star-free as well.

Proof. (a) Notice that (Lc)R = (LR)c and (wk)R = (wR)k for every k ≥ 0
and w ∈ Σ∗. Let x ∈ Σ∗. Since L is power-separating, for the string xR there
exists an integer m such that (xR)≥m ⊆ L or (xR)≥m ⊆ Lc. Thus x≥m ⊆ LR

or x≥m ⊆ (LR)c, so LR is power-separating.
(b) The class of star-free languages is constructible from elementary symbols

by union, complementation, and concatenation. Hence the power of a star-free
language, which is an iterated concatenation, is star-free. Since all these oper-
ations commute with reversal, the reverse of a star-free language is star-free as
well. ��
Lemma 10. The following statements hold:

(a) The binary language L8 = aa∗b∗ is ordered, but its second power is not
ordered.

(b) The binary language L9 = b + a(baba)∗ is power-separating, but its second
power is not power-separating.

(c) The unary language L10 = {aa} is ordered, but L+
10 and L∗

10 are not even
power-separating.

(d) The binary language L11 = b∗aa∗ba∗ is ordered, but its reverse is not ordered.

Proof. (a) The language L8 is ordered since it is accepted by the ordered DFA A
shown in Fig. 1. Assume that L2

8 = aa∗b∗aa∗b∗ is ordered. Therefore it is accepted
by an ordered DFA as described in Lemma 3 where states corresponds to the
classes of a right congruence with an order right compatible relatively to the
concatenation of strings. The class [ε] is different from both [a] and [b] since
no string starting with b is in L2

8, and there exists a string w with aw ∈ L2
8

and w /∈ L2
8. The classes [a] and [aa] are different since their corresponding

states have different finality. Next, we have [aaa] = [aa] but [aaba] �= [aab],
[aabb] = [aab] but [aabab] �= [aaba], and [aabaa] = [aaba] but for every string w
in [aababa] we have w(a + b)∗ ∩ L2

8 = ∅. It follows that [ε], [a], [aa], [aab],
[aaba], and [aabab] are different classes, while [b] and [aababa] correspond to
some states from which no string is accepted. Next, the class [ab] is different from
all previously mentioned classes since it corresponds to a non-final state from
which a is accepted and aba is rejected. Assume that [ε] < [a]. Then [a] < [aa]
and [aa] = [aaa]. Next, we cannot have [ε] < [b] < [a] since then we would
have [aa] < [baa] < [aaa]. We also cannot have [ε] < [a] < [b] since it would

Closure Properties of Subregular Languages Under Operations 137

mean that [b] < [ab] < [bb], but we have [b] = [bb] and only strings starting
with a are in L2

8. So we have [b] < [ε] < [a]. By similar arguments, we have [ε] <
[a] < [aa] < [aab] < [aaba] < [aabab]. Now we want to place the class [ab] in the
order. If [ab] < [aa], then [aba] < [aaa], which is a contradiction with [aba] =
[aaba]. Next, if [aa] < [ab] < [aab], then [aab] < [abb], which is a contradiction
with [abb] = [ab]. Finally, if [a] < [aab] < [ab], then [ab] < [aabb], which is a
contradiction since [aabb] = [aab] (See Fig. 2 for illustration).

(b) Every string in L9 is of odd length and symbols a and b alternate. But
every power of a string of even length is also of even length, and every power
of a string of odd length � has the same symbol on the first and the (� + 1)-th
position. Hence for every w ∈ {a, b}∗ and k ≥ 2, we have wk ∈ Lc

9, so L9 is
power-separating. Now let k ≥ 0. Then we have (ba)2k+1 = b · a(baba)k ∈ L2

9,
and (ba)2k /∈ L2

9 since every string in L2
9 is of length 2 mod 4.

(c) Since L10 = {aa} is finite, it is ordered. We have L+
10 =

⋃∞
i=1{a2i}.

Consequently, it follows that for the string a, there does not exist an integer m
such that a≥m ⊆ L+

10 or a≥m ⊆ (L+
10)

c. The same holds for L∗
10 =

⋃∞
i=0{a2i}.

(d) The language L11 is ordered since it is accepted by the ordered DFA C
shown in Fig. 3, left. Striving for contradiction, assume that also LR

11 = a∗ba∗ab∗

is ordered. Therefore it is accepted by an ordered DFA as described in Lemma 3
where states corresponds to the classes of a right congruence with an order right
compatible relatively to the concatenation of strings. The classes [ε] and [a]
coincide since for each string aw in LR

11, we have w ∈ LR
11. The class [b] is

different from [ε] since each string in LR
11 has a factor ba, but if bw ∈ LR

11,
we may have w /∈ LR

11. The class [ba] is different from both [ε] and [b] since
it includes strings in LR

11, unlike [ε] and [a]. The class [bab] is different from
previous three classes since it includes strings in LR

11, but for every string w
in [bab], we have wa /∈ LR

11, while for every string v in [ba], we have va ∈ [ba].
It follows that the class [baba] corresponds to a state from which no string is
accepted. Without loss of generality, let [ε] < [b]. Then [a] < [ba] since the order
is right compatible to concatenation, so [ε] < [ba]. It follows that [b] < [bab].
Next, we have [bb] < [babb] and [babb] = [bab]. But by the definition of LR

11,
the class [bb] corresponds to a state from which no string is accepted. This is a
contradiction with the fact that [ε] < [b] and [ba] < [baba]. Thus LR

11 is not an
ordered language. ��
Notice that an alternative proof is provided for non-closure of power-separating
languages under concatenation.

Fig. 2. A DFA for the second power of the language (aa∗b∗)2. The problematic state
that arises for the total order is denoted with x.

138 V. Olejár and A. Szabari

Fig. 3. Left: A DFA C for the ordered language L11 whose reverse is not ordered.
Right: The DFA D(CR) for the language LR

11.

4 Conclusions

We conclude with a summary of the obtained properties in an upcoming table
with a description of lemmas and cited known results used to obtain them. For
better context we also provide an overview of closure properties of some other
subclasses of regular languages, shown in its bottom part.

The already mentioned class of left ideals is a subclass of suffix-convex lan-
guages. For other classes of ideal languages, it is known that they are closed under
intersection, union, and concatenation, but not under star and complementation
[29]. In [1], some closure and non-closure properties for classes of closed, free,
and convex languages are provided as well. For the sake of completeness of our
overview, in the following proposition we provide all the other closure and non-
closure properties for right, two-sided, and all-sided ideals, as well as for prefix-,
suffix-, factor-, and subword-closed, -free, and -convex languages. We include
them separately from the main results due to the fact that the closure of these
considered classes is mostly a direct consequence of the corresponding language
class definitions and non-closure can be shown in a straightforward manner.

Proposition 11. The following statements hold:

(a) The classes of ideal, closed, and free languages are closed under power.
(b) The classes of ideal languages are closed under positive closure.
(c) The classes of free languages are not closed under union, positive closure,

and complementation.
(d) The classes of convex languages are not closed under positive closure.
(e) The right ideal, prefix- and suffix-closed, prefix- and suffix-free, and prefix- and

suffix-convex classes are not closed under reversal, while classes of the two-
sided and all-sided ideal, factor- and subword-closed, factor- and subword-free,
and factor- and subword-convex classes are closed under reversal.

Proof. (a) The closure property follows from the closure property under
concatenation.

(b) The class of left ideals was considered in Lemma 4(b). Next, two-sided
and all-sided ideals are right ideals, and for every right ideal L, we have

L ⊆ L+ = LL∗ ⊆ LΣ∗ = L,

thus we have L+ = L. Hence L+ is in the same class as L.

Closure Properties of Subregular Languages Under Operations 139

(c) The languages K7 = {ε} and L7 = {a} from Lemma 8(c) are subword-
free since every singleton language is subword-free. Next, {ε, a} ⊆ K7 ∪L7 while
ε is a prefix and suffix of a, {a, aa} ⊆ L+

7 while a is a prefix and suffix of aa,
and {ε, aa} ⊆ Lc

7 while ε is a prefix and suffix of aa. It follows that K7 ∪L7, L+
7 ,

and Lc
7 are neither prefix-free nor suffix-free.

(d) The language L10 = {aa} from Lemma a(c) is subword-convex since it
is a singleton. But {aa, aaaa} ⊆ L+

10 while aaa /∈ L+
10. Hence L+

10 is neither
prefix-convex nor suffix-convex.

(e) The closure property follows from the definitions of classes. For the non-
closure property, consider the right ideal language L12 = a(a+ b)∗, prefix-closed
language L13 = {ε, a, ab}, and prefix-free language L14 = {a, baa}. Then we
have {a, aba} ⊆ LR

12 but ab /∈ LR
12, next {ε, ba} ⊆ LR

13 but b /∈ LR
13, and

finally {a, aab} ⊆ LR
14 but aa /∈ LR

14. Hence the languages LR
12, LR

13, and LR
14

are not even prefix-convex. The non-closure property for classes of suffix-closed
and suffix-free languages can be shown using LR

13 and LR
14 as witnesses. ��

All results of this paper together with already known properties are summa-
rized in the following theorem.

Theorem 12. For each cell in Table 1, the class corresponding to the row is
closed under the operation corresponding to the column if the cell displays �,
and it is not closed if the cell displays ×.

Proof. The closure and non-closure properties of left ideal languages are shown in
[22] for intersection and union [22, Lemma 3.4], concatenation [22, Lemma 3.6],
star [22, Lemma 3.7], and complementation [22, Lemma 3.10]. The other clo-
sure and non-closure properties of combinational, finitely generated and general
left ideal, and symmetric definite languages are shown in Lemmas 4 and a,
respectively. The closure and non-closure properties of star, comet, and two-
sided comet languages are shown in Lemmas 6 and a, respectively. The closure
and non-closure properties of singletons and finite languages are provided by
Proposition 8. The results for Boolean operations and concatenation on star-
free, ordered, and power-separating languages are taken from [20], [25], and [26],
respectively. The other closure and non-closure properties of ordered, star-free,
and power-separating languages are shown in Lemma 9 and a, respectively.

In the second part of the table, we provide properties of the subclasses of
convex languages, and the classes of union-free and group languages. The closure
and non-closure properties of ideal, closed, and convex languages under Boolean
operations, concatenation, and star are taken from [29]. In [1], the properties of
convex classes under power [1, Remark 5], free classes under star [1, Remark 6],
concatenation [1, Corollary 8], and intersection [1, Proposition 10], and closed
classes under positive closure [1, Proposition 11] are shown. The other closure
and non-closure properties for classes of ideal, closed, free, and convex languages,
are provided by Proposition 11. The closure and non-closure properties for union-
free languages is shown in [21], with the closure under reversal for this class pre-
viously shown in [19, Theorem 1]. Finally, the closure and non-closure properties
for group languages are shown in [18, Theorem 8]. ��

140 V. Olejár and A. Szabari

Table 1. Closure and non-closure properties for each considered class.

K ∩ L K ∪ L KL Lk L+ L∗ LR Lc

CB � � × × � × × ×
FGLID � � × × �[4] × × ×
LID �[22] �[22] �[22] � � ×[22] × ×[22]

SYDEF × × � � � × � ×
STAR � × × � � � � ×
COM × × � � � �a × ×
2COM × × � � � � � ×
SINGL × × � � × × � ×
FIN � � � � × × � ×
ORD ×[25] ×[25] ×[25] × × × × �[25]

STFR �[20] �[20] �[20] � × × � �[20]

PSEP �[26] �[26] ×[26] × × × � �[26]

RID �[29] �[29] �[29] � � ×[29] × ×[29]

TSID �[29] �[29] �[29] � � ×[29] � ×[29]

ASID �[29] �[29] �[29] � � ×[29] � ×[29]

PRCL �[29] �[29] �[29] � �[1] �[29] × ×[29]

SUCL �[29] �[29] �[29] � �[1] �[29] × ×[29]

FACL �[29] �[29] �[29] � �[1] �[29] � ×[29]

SWCL �[29] �[29] �[29] � �[1] �[29] � ×[29]

PRFR �[1] × �[1] � × ×[1] × ×
SUFR �[1] × �[1] � × ×[1] × ×
FAFR �[1] × �[1] � × ×[1] � ×
SWFR �[1] × �[1] � × ×[1] � ×
PRCV �[29] ×[29] ×[29] ×[1] × ×[29] × ×[29]

SUCV �[29] ×[29] ×[29] ×[1] × ×[29] × ×[29]

FACV �[29] ×[29] ×[29] ×[1] × ×[29] � ×[29]

SWCV �[29] ×[29] ×[29] ×[1] × ×[29] � ×[29]

UNFR ×[21] ×[21] �[21] �[21] �[21] �[21] �[19] ×[21]

GRP �[18] �[18] ×[18] ×[18] ×[18] ×[18] �[18] �[18]
a Closure for comets and two-sided comets under star applies for all L except L = ∅.

Acknowledgment. We would like to thank Martin Kutrib and Jeffrey Shallit for
providing us some relevant literature.

Closure Properties of Subregular Languages Under Operations 141

References

1. Ang, T., Brzozowski, J.A.: Languages convex with respect to binary relations, and
their closure properties. Acta Cybern. 19(2), 445–464 (2009). https://cyber.bibl.
u-szeged.hu/index.php/actcybern/article/view/3776

2. Bordihn, H., Holzer, M., Kutrib, M.: Determination of finite automata accepting
subregular languages. Theor. Comput. Sci. 410(35), 3209–3222 (2009). https://
doi.org/10.1016/j.tcs.2009.05.019

3. Brzozowski, J., Jirásková, G., Li, B., Smith, J.: Quotient complexity of bifix-,
factor-, and subword-free regular languages. Acta Cybern. 21(4), 507–527 (2014).
https://doi.org/10.14232/actacyb.21.4.2014.1

4. Brzozowski, J.A.: Canonical regular expressions and minimal state graphs for defi-
nite events. In: Proceedings of Symposium on Mathematical Theory of Automata.
MRI Symposia Series, vol. 12, pp. 529–561. Polytechnic Press, New York (1962)

5. Brzozowski, J.A.: Roots of star events. J. ACM 14(3), 466–477 (1967). https://
doi.org/10.1145/321406.321409

6. Brzozowski, J.A., Jirásková, G., Li, B.: Quotient complexity of ideal languages.
Theor. Comput. Sci. 470, 36–52 (2013). https://doi.org/10.1016/j.tcs.2012.10.055

7. Brzozowski, J., Jirásková, G., Zou, C.: Quotient complexity of closed languages.
Theory Comput. Syst. 54(2), 277–292 (2013). https://doi.org/10.1007/s00224-013-
9515-7

8. Crvenković, S., Dolinka, I., Ésik, Z.: On equations for union-free regular languages.
Inf. Comput. 164(1), 152–172 (2001). https://doi.org/10.1006/inco.2000.2889

9. Davies, S., Hospodár, M.: Square, power, positive closure, and complementation
on star-free languages. In: Hospodár, M., Jirásková, G., Konstantinidis, S. (eds.)
DCFS 2019. LNCS, vol. 11612, pp. 98–110. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-23247-4 7

10. Han, Y., Salomaa, K.: State complexity of basic operations on suffix-free regular
languages. Theor. Comput. Sci. 410(27–29), 2537–2548 (2009). https://doi.org/
10.1016/j.tcs.2008.12.054

11. Han, Y., Salomaa, K., Wood, D.: Operational state complexity of prefix-free regular
languages. In: Ésik, Z., Fülöp, Z. (eds.) Automata, Formal Languages, and Related
Topics - Dedicated to Ferenc Gécseg on the Occasion of his 70th Birthday, pp. 99–
115. Institute of Informatics, University of Szeged, Hungary (2009)

12. Holzer, M., Hospodár, M.: The range of state complexities of languages resulting
from the cut operation. In: Mart́ın-Vide, C., Okhotin, A., Shapira, D. (eds.) LATA
2019. LNCS, vol. 11417, pp. 190–202. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-13435-8 14

13. Holzer, M., Kutrib, M., Meckel, K.: Nondeterministic state complexity of star-free
languages. Theor. Comput. Sci. 450, 68–80 (2012). https://doi.org/10.1016/j.tcs.
2012.04.028

14. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Boston (1979)

15. Hospodár, M.: Power, positive closure, and quotients on convex languages. Theor.
Comput. Sci. 870, 53–74 (2021). https://doi.org/10.1016/j.tcs.2021.02.002

16. Hospodár, M., Holzer, M.: The ranges of accepting state complexities of languages
resulting from some operations. Int. J. Found. Comput. Sci. 31(8), 1159–1177
(2020). https://doi.org/10.1142/S0129054120420083

17. Hospodár, M., Jirásková, G., Mlynárčik, P.: Nondeterministic complexity in sub-
classes of convex languages. Theor. Comput. Sci. 787, 89–110 (2019). https://doi.
org/10.1016/j.tcs.2018.12.027

https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/3776
https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/3776
https://doi.org/10.1016/j.tcs.2009.05.019
https://doi.org/10.1016/j.tcs.2009.05.019
https://doi.org/10.14232/actacyb.21.4.2014.1
https://doi.org/10.1145/321406.321409
https://doi.org/10.1145/321406.321409
https://doi.org/10.1016/j.tcs.2012.10.055
https://doi.org/10.1007/s00224-013-9515-7
https://doi.org/10.1007/s00224-013-9515-7
https://doi.org/10.1006/inco.2000.2889
https://doi.org/10.1007/978-3-030-23247-4_7
https://doi.org/10.1007/978-3-030-23247-4_7
https://doi.org/10.1016/j.tcs.2008.12.054
https://doi.org/10.1016/j.tcs.2008.12.054
https://doi.org/10.1007/978-3-030-13435-8_14
https://doi.org/10.1007/978-3-030-13435-8_14
https://doi.org/10.1016/j.tcs.2012.04.028
https://doi.org/10.1016/j.tcs.2012.04.028
https://doi.org/10.1016/j.tcs.2021.02.002
https://doi.org/10.1142/S0129054120420083
https://doi.org/10.1016/j.tcs.2018.12.027
https://doi.org/10.1016/j.tcs.2018.12.027

142 V. Olejár and A. Szabari

18. Hospodár, M., Mlynárčik, P.: Operations on permutation automata. In: Jonoska,
N., Savchuk, D. (eds.) DLT 2020. LNCS, vol. 12086, pp. 122–136. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-48516-0 10

19. Jirásková, G., Masopust, T.: Complexity in union-free regular languages. Int.
J. Found. Comput. Sci. 22(07), 1639–1653 (2011). https://doi.org/10.1142/
S0129054111008933

20. Meyer, A.R.: A note on star-free events. J. ACM 16(2), 220–225 (1969). https://
doi.org/10.1145/321510.321513

21. Nagy, B.: Union-freeness, deterministic union-freeness and union-complexity. In:
Hospodár, M., Jirásková, G., Konstantinidis, S. (eds.) DCFS 2019. LNCS, vol.
11612, pp. 46–56. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
23247-4 3

22. Paz, A., Peleg, B.: Ultimate-definite and symmetric-definite events and automata.
J. ACM 12(3), 399–410 (1965). https://doi.org/10.1145/321281.321292

23. Perles, M., Rabin, M.O., Shamir, E.: The theory of definite automata. IEEE Trans.
Electron. Comput. EC-12(3), 233–243 (1963). https://doi.org/10.1109/PGEC.
1963.263534

24. Schützenberger, M.P.: On finite monoids having only trivial subgroups. Inf. Control
8(2), 190–194 (1965). https://doi.org/10.1016/S0019-9958(65)90108-7

25. Shyr, H., Thierrin, G.: Ordered automata and associated languages. Tamkang J.
Math. 5, 9–20 (1974)

26. Shyr, H., Thierrin, G.: Power-separating regular languages. Math. Syst. Theory
8(1), 90–95 (1974). https://doi.org/10.1007/BF01761710

27. Sipser, M.: Introduction to the Theory of Computation. Cengage Learning, Boston
(2012)

28. Thierrin, G.: Permutation automata. Math. Syst. Theory 2, 83–90 (1968). https://
doi.org/10.1007/BF01691347

29. Thierrin, G.: Convex languages. In: Nivat, M. (ed.) ICALP 1972, pp. 481–492.
North-Holland, Amsterdam (1972)

https://doi.org/10.1007/978-3-030-48516-0_10
https://doi.org/10.1142/S0129054111008933
https://doi.org/10.1142/S0129054111008933
https://doi.org/10.1145/321510.321513
https://doi.org/10.1145/321510.321513
https://doi.org/10.1007/978-3-030-23247-4_3
https://doi.org/10.1007/978-3-030-23247-4_3
https://doi.org/10.1145/321281.321292
https://doi.org/10.1109/PGEC.1963.263534
https://doi.org/10.1109/PGEC.1963.263534
https://doi.org/10.1016/S0019-9958(65)90108-7
https://doi.org/10.1007/BF01761710
https://doi.org/10.1007/BF01691347
https://doi.org/10.1007/BF01691347

P Systems with Evolutional
Communication and Separation Rules

David Orellana-Mart́ın1,2(B) , Luis Valencia-Cabrera1,2 ,
and Mario J. Pérez-Jiménez1,2

1 Research Group on Natural Computing, Department of Computer Science
and Artificial Intelligence, Universidad de Sevilla,
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

{dorellana,lvalencia,marper}@us.es
2 SCORE Laboratory, I3US, Universidad de Sevilla, Avda. Reina Mercedes s/n,

41012 Sevilla, Spain

Abstract. In the framework of membrane computing, several inter-
esting results concerning frontiers of efficiency between the complexity
classes P and NP have been found by using different ingredients. One
of the main characteristics of cell-like membrane systems is their rooted
tree-like structure, where a natural parent-children membrane relation-
ship exists, and objects can travel through the membranes. Separation
rules are used as a method to obtain an exponential workspace in terms
of membranes in polynomial time. Inspired by cell meiosis, objects from
the original membrane are distributed between the two new membranes.
In this work, P systems with evolutional symport/antiport rules and
separation rules are used to give a solution to SAT, a well known NP-
complete problem. One of the advantages of this solution is the use of
the environment as a passive agent.

Keywords: Membrane computing · Computational complexity
theory · P vs. NP problem · Evolutional communication ·
Symport/antiport

1 Introduction

Membrane Computing is a model of computation within the field of Natural
Computing. The devices of such a model of computation, called membrane sys-
tems or P systems, are inspired by the structure of living cells, using the concept
of compartments as the organelles situated within eukaryotic cells [18]. A wide
spectrum of different membrane systems can be constructed by changing the
“ingredients” used for each of them: the structure and connection between the
regions of the systems [2,5,17], the types of objects used [4,9,24], the nature and
behavior of the rules [1,6,8], among others [3,7,16].

From all of them, cell-like membrane systems were the first ones introduced
and one of the most studied types of P systems. Cell-like P systems are struc-
tured with a tree-like graph, where the skin membrane abstracts the cytoplasmic
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Durand-Lose and G. Vaszil (Eds.): MCU 2022, LNCS 13419, pp. 143–157, 2022.
https://doi.org/10.1007/978-3-031-13502-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13502-6_10&domain=pdf
http://orcid.org/0000-0002-2892-6775
http://orcid.org/0000-0002-6576-9529
http://orcid.org/0000-0002-5055-0102
https://doi.org/10.1007/978-3-031-13502-6_10

144 D. Orellana-Mart́ın et al.

membrane of a living cell, and its contents represent the chemical compounds
that reside within the cell. In this structure, the concept of parent membrane and
children membranes are naturally defined. The only region allowed to communi-
cate with the environment of the cell is the one enclosed by the skin membrane.

Integral membrane proteins are involved in the process of transporting
molecules from one region to other region [13]. Compounds that travel along
in the same direction are moved with the help of a symporter, while com-
pounds that move in different directions (that is, they “interchange” positions)
are moved with the help of a antiporter. This is the inspiration for classical
symport/antiport rules. In fact, if we think about the process of transport, the
elements involved in this process (both the elements moving and the integral
membrane proteins) can change their nature, giving these objects the ability to
“evolve”. Evolutional symport/antiport rules were first introduced in tissue P
systems [23], while trying to demonstrate their ability to solve presumably hard
problems. Later, in [15] separation rules [14] were used as a method to create
an exponential workspace in terms of cells in polynomial time. An improvement
of the results of the previous papers was presented in [11]. In [12], evolutional
communication rules were introduced in the framework of cell-like P systems
besides the use of division rules as a method to create an exponential workspace
in terms of membranes. In this paper, we change division rules by separation
rules as it was made with the tissue-like counterparts. In the tissue-like frame-
work, the results changed depending on the fission type of rule, and it seems
straightforward to study it in the cell-like framework to see if it holds.

Originally, the environment played a passive role in cell-like membrane sys-
tems [18], given that it could only receive objects from the P systems. In the
framework of tissue P systems [10], a new way to transport objects were intro-
duced, where the environment, apart from receiving objects, it could also have
the ability to send objects to the cells of the system. In order to give it a special
role, a special alphabet (referred to as the environment alphabet, and usually
denoted as E) is defined and all the objects in it are supposed to appear an arbi-
trary number of times (it can be though as an infinite number of appearances)
at the beginning of the computation in the environment (it is an inspiration
from the real tissues and their communication with the environment, that has
chemical components coming from other places). In [21], authors simulated the
environment through an initial stage where a sufficient number of objects, nec-
essary for an efficient solution to a presumably hard problem, could be created
in polynomial time at the beginning of the computation just by using a dupli-
cation process. In this way, authors proved that in some types of P systems, the
environment can be recreated by means of an initial creation of all the necessary
objects for the computation.

The paper is organized as follows: In Sect. 2, some concepts are introduced in
order to be used later in the paper. Section 3 is devoted to introduce P systems
with evolutional communication and separation rules defining directly their rec-
ognizing versions. In the following section, a solution to the NP-complete prob-

P Systems with Evolutional Communication and Separation Rules 145

lem SAT is given, besides an overview of the computation. Finally, some remarks
and future research lines are depicted in the last section.

2 Preliminaries

In this section, we provide some concepts used through the whole paper.

2.1 Alphabets and Sets

An alphabet Γ is a (finite) non-empty set. The elements of an alphabet are named
symbols. A word over Γ is a finite ordered succession of elements from Γ ; that
is, it is an application from a natural number n onto the set Γ . The number n is
denominated the length of a string. The empty string is the string with length
0, and it is denoted by λ.

Given two sets A and B, the relative complement A \ B of B in A is defined
as follows: A \ B = {x ∈ A | x �∈ B}. For each set A, we note by |A| the cardinal
(number of elements) of the set A.

A multiset M can be described explicitly as follows:

{(a1,M(a1)), . . . , (an,M(an))}

and we will use the notation M = a
M(a1)
1 . . . a

M(an)
n . The cardinal of a finite

multiset over Γ = {a1, . . . , an} is defined as follows: |M | = M(a1)+ . . .+M(an).
We denote by Mf (Γ) the set of all the finite multisets over Γ , and M+

f (Γ) =
Mf (Γ) \ ∅. For a more specific concepts in this area, we refer the reader to [22].

2.2 Propositional Boolean Logic

The language of propositional logic consists on: (a) an enumerable set, PV , of
propositional variables; (b) some logic connectives (¬, negation and ∨, disjunc-
tion); and (c) some auxiliary symbols “(“and”)”.

The set PForm of propositional formula is the smallest set Γ that contains
PV and verifies the following conditions: (a) if P ∈ Γ , then ¬P ∈ Γ ; and (b)
if P,Q ∈ Γ , then (P ∨ Q) ∈ Γ . From ¬ and ∨ the logic connectives ∧, → and
↔ are defined according to the usual truth tables. We denote the formulas ¬P ,
P ∨ Q and P ∧ Q by P , P + Q and P · Q.

A literal is a propositional variable or the negation of a propositional vari-
able. A clause is the disjunction of a finite number of literals. A propositional
formula is in conjunctive normal form (CNF) if it is a conjunction of a finite
number of clauses. Besides, we can suppose that, without loss of generality, every
propositional formula in CNF is in simplified form; that is, in each clause of such
a formula, there cannot exist neither a literal and its negation, nor two repeated
literals.

A truth assignment is an application from PV onto {0, 1}. Every truth assign-
ment is extended in a natural way to an application from PForm onto {0, 1}

146 D. Orellana-Mart́ın et al.

(through the corresponding truth tables). A relevant truth assignment for a for-
mula ϕ is an application from the set of variables of such a formula onto the
set {0, 1}. Therefore, if a propositional formula ϕ has n variables, then the total
number of possible relevant truth assignments of ϕ is 2n.

We say that a propositional formula, ϕ, is satisfiable if and only if there
exists, at least, a truth assignment, σ, such that σ(ϕ) = 1. The SAT problem
is a decision problem SAT = (ISAT, θSAT) such that the elements from ISAT are
simplified propositional formulas in CNF and θSAT(ϕ) = 1 if and only if the
formula ϕ is satisfiable.

2.3 Cantor Pairing Function

The Cantor pairing function encodes pairs of natural numbers through individ-
ual natural numbers and it is defined as follows: for each m,n ∈ N,

〈m,n〉 =
(m + n)(m + n + 1)

2
+ n

The Cantor pairing function is a recursive primitive bijective function from
N×N onto N. Therefore, for each natural number t ∈ N there exist two (unique)
natural numbers m,m ∈ N such that t = 〈m,n〉.

3 Recognizer Cell-Like Membrane Systems
with Evolutional Symport/Antiport and Separation
Rules

Let h be a label of a membrane. Then p(h) is the label of the parent mem-
brane of the membrane labelled by h. A recognizer P system with evolutional
communication and separation rules of degree q ≥ 1 is a tuple

Π = (Γ, Γ0, Γ1, Σ, E ,H,H0,H1, μ,M1, . . . ,Mq,R, iin, iout)

where:

1. Γ is a finite alphabet, with Σ, E ⊆ Γ , Σ ∩ E = ∅, and Γ contains two special
objects yes and no.

2. {Γ0, Γ1} is a partition of Γ ; that is, Γ0 ∩ Γ1 = ∅ and Γ0 ∪ Γ1 = Γ .
3. H is the set of labels, and {H0,H1} is a partition of H.
4. μ is a rooted tree whose nodes are bijectively labelled with elements from H.

We say that the label of the root is iskin, and the “label” of the environment
is env or 0.

5. R, is a finite set of rules over Γ of the following forms:
(a) Evolutional send-in (symport) rules: [u []j]i → [[u′]j]i, with 0 ≤ i, j ≤

q, i �= j, i = p(j), u ∈ M+
f (Γ), u′ ∈ Mf (Γ).

(b) Evolutional send-out (symport) rules: [[u]j]i → [u′ []j]i, with 0 ≤
i, j ≤ q, i �= j, i = p(j), u ∈ M+

f (Γ), u′ ∈ Mf (Γ).

P Systems with Evolutional Communication and Separation Rules 147

(c) Evolutional antiport rules: [u [v]j]i → [v′ [u′]j]i, with 0 ≤ i, j ≤ q, i �=
j, i = p(j), u, v ∈ M+

f (Γ), u′, v′ ∈ Mf (Γ).
(d) Separation rules: [a]i → [Γ0]i [Γ1]i, with 1 ≤ i ≤ q, i �∈ {iout, iskin}, a ∈

Γ (being iskin the label of the skin membrane).
6. iin ∈ {1, . . . , q} and iout = env.

A recognizer P system with evolutional symport/antiport and separation
rules of degree q ≥ 1 Π = (Γ, Γ0, Γ1, Σ, E ,H,H0,H1, μM1, . . . ,Mq,R, iin, iout)
with input m ⊆ Mf (Σ) can be seen as a set of q membranes labelled by 1, . . . , q
organized in a rooted-tree graph defined by μ, where the parent-children mem-
brane relationship is described in a natural way, and where the environment is
the parent region of the skin (outermost) membrane, such that: (a) M1, . . . ,Mq

represent the initial multisets of objects situated at the beginning in the q mem-
branes of the system; (b) E is the set of objects situated initially in the environ-
ment, each of them with an arbitrary number of copies; (c) R is a finite set of
rules over Γ that rule the dynamics of the system; and (d) iin and iout repre-
sent distinguished regions (or zones), that represent the zone where the encoded
instance is placed initially in the case of iin, and where the encoded solution
will be placed in the last step of the computation. We use the terms zone or
region i (0 ≤ i ≤ q) to refer to the membrane i, in the case 1 ≤ i ≤ q, or to the
environment, in the case i = 0. The environment can play an active role in this
framework, in the sense that it can both receive objects from and send objects
to the P system. There are two definitions of length defined in the case of evo-
lutional symport/antiport rules. The length of a rule r ≡ [u [v]j]i → [v′ [u′]j]i
can be defined as a natural number length(r) = |u| + |v| + |u′| + |v′|. Another
way to define it is as a pair length(r) = (|u| + |v|, |u′| + |v′|).

A configuration of a P system Π in an instant t is described by the structure
of membranes in that instant, the multisets of objects from Γ in each membrane
of the structure and the multiset of objects over Γ \E situated in the environment.
The initial configuration of Π is (μ,M1, . . . ,Miin + w, . . . ,Mq, ∅), where w is
the encoded instance of the problem. If the environment plays a passive role,
then E is usually omitted from the definition of the P system.

An evolutional send-in rule [u []j]i → [[u′]j]i is applicable to a config-
uration Ct at an instant t if in such a configuration, there exists a membrane
labelled by i that contains the multiset of objects u and it has a child membrane
labelled by j. The application of such a rule to that membrane i produces the
following effects: objects from u are consumed from that membrane and, in the
same step, objects from u′ are created in the child membrane labelled by j.

An evolutional send-out rule [[u]j]i → [u′ []j]i is applicable to a config-
uration Ct at an instant t if in such a configuration, there exists a membrane
labelled by i that has a child membrane labelled by j that contains the multiset
of objects u. The application of such a rule to that membrane i produces the
following effects: objects from u are consumed from the membrane labelled by
j and, in the same step, objects from u′ are created in the membrane labelled
by i.

148 D. Orellana-Mart́ın et al.

An evolutional antiport rule [u [v]j]i → [v′ [u′]j]i is applicable to a config-
uration Ct at an instant t if in such a configuration, there exists a membrane
labelled by i that contains the multiset of objects u and it has a child membrane
labelled by j that contains the multiset of objects v. The application of such a
rule to that membrane i produces the following effects: objects from u and v are
consumed from their respective membranes and, in the same step, objects from
u′ are created in the membrane labelled by j and objects from v′ are created in
the membrane labelled by i.

A separation rule [a]i → [Γ0]i [Γ1]i is applicable to a configuration Ct at an
instant t if in such a configuration, there exists a membrane labelled by i that
contains the object a. The application of such a rule to that membrane i produces
the following effects: object a is consumed, the membrane i disappears and in
the same steps, two new membranes with label i are created, with the contents
of the original membrane distributed between the two of them according to the
partition {Γ0, Γ1}. If the separated membrane is a non-elementary membrane,
then the internal membranes are distributed into the two new membranes in
such a way that membranes from H0 will be present in one membrane and
membranes from H1 will be present in the other new membrane. If no separation
rules for non-elementary membranes are used, then H0 and H1 are omitted in
the definition of the P system.

We say that a configuration Ct of a recognizer P system with evolutional
symport/antiport and separation rules Π produces a configuration Ct+1 in one
transition step, we denote it by Ct ⇒Π Ct+1 and we say that Ct+1 is a following
configuration of Ct if we can pass from Ct to Ct+1 by applying the rules from R
according to the following principles:

– An arbitrary object of a membrane can fire, at most, one rule (selected, in
such a case, in a non-deterministic way); that is, if a specific object is used
to apply a rule, then the object cannot be used to apply another rule (even
if it is the same rule).

– To each membrane, there can only be applied each evolutional communication
rules or separation rules. In the case of applying evolutional communication
rules to the membrane i in the configuration Ct, these will be applied in a
non-deterministic, parallel and maximal way; that is, all the communication
rules from Ri that can be applied in a single step will be applied. In the case
of applying a separation rule to the membrane i in the configuration Ct, it
will be selected in a non-deterministic way. In this sense, when a separation
rule is applied to a membrane i, then it is blocked and cannot communicate
with other membranes.

The new membranes resulting from the separation will be able to interact
with other membranes only from the following transition step, only if they are
not separated again. Besides, these membranes will have the same labels as the
original one and will provide new edges to the tree-like graph.

The computation of a P system Π is defined as a sequence of configu-
rations C = (C0, C1, . . . , Cn), where C0 is the initial configuration of Π and
Ct ⇒Π Ct+1, 1 ≤ t ≤ n − 1, and we say that it takes n steps.

P Systems with Evolutional Communication and Separation Rules 149

As a recognizer P system, some conditions need to be fulfilled:

– All the computations of a P system Π with input, denoted by Π + w, halt
and send an object yes or an object no (but not both) to the environment,
and only in the last step of the computation. We say that it is an accepting
(respectively, rejecting) computation if an object yes (resp., no) is sent to the
environment.

– The system must be confluent, in the sense that all the possible computations
of Π + w are either accepting computations or rejecting computations.

We say that a family of recognizer P systems with evolutional communication
and separation rules solve a decision problem X = (IX , θX) if the following holds:

1. We can define (cod, s) a pair of polynomially computable functions over IX

such that (a) s(u) is a natural number (obtained by a reasonable encoding
scheme); (b) for each k ∈ N, the set s−1(k) is finite; and (c) for each u ∈ IX ,
cod(u) is an input multiset of the P system Π(s(u)).

Definition 1. Let X = (IX , θX) a decision problem, Π = {Π(n) | n ∈ N} a
family of recognizer P systems and (cod, s) a polynomial encoding of the problem
X in the family Π.

– We say that the family Π is sound with respect to (X, cod, s) if for each
instance u ∈ IX such that it exists, at least, one accepting computation of the
system Π(s(u)) + cod(u), it holds that θX(u) = 1.

– We say that the family Π is complete with respect to (X, cod, s) if for each
instance u ∈ IX such that θX(u) = 1, it holds that all the computations of
Π(s(u)) + cod(u) are accepting computations.

The set of problems solvable by uniform families of P systems from a class
R is denoted by PMCR. The class of recognizer P systems with evolutional
communication and separation rules of length at most k (respectively, (k1, k2))
is denoted by CSEC(k) (resp., CSEC(k1, k2)).

All of these concepts among many others in the framework of Membrane
Computing can be found in a more comprehensive way in [19,20].

4 A Solution to SAT in CSEC(2, 2)
Let ϕ = C1 ∧ . . . ∧ Cp be a Boolean formula with n variables and p clauses, such
that Cj = lj,1 ∨ . . . ∨ lj,rj

is the j-th clause and lj,k is a literal that can be either
a variable xi or its negation ¬xi. We define the encoding of such a formula as
follows: cod(ϕ) = {xi,j,0 | xi ∈ Cj}∪{xi,j,0 | ¬xi ∈ Cj}. We define s(ϕ) = 〈n, p〉,
where 〈a, b〉 is the Cantor pairing function of a and b. Then, for each n, p ∈ N,
we consider the recognizer P system

Π(〈n, p〉) = (Γ, Γ0, Γ1, Σ,H, μ,M1, . . . ,Mq,R, iin, iout)

from CSEC(2, 2) defined as follows:

150 D. Orellana-Mart́ın et al.

1. Working alphabet Γ :
{yes, no, y1, y2, n1, n2,#}∪
{ai,j | 1 ≤ i ≤ n, 0 ≤ j ≤ i}∪
{a′

i,j | 2 ≤ i ≤ n, 0 ≤ j ≤ i − 1}∪
{aL

i,j , a
R
i,j | 2 ≤ i ≤ n, 1 ≤ j ≤ i − 1}∪

{αj , α
′
j , α

L
j , αR

j | 1 ≤ j ≤ p + 1}∪
{ti, fi, t

′
i, t

′′
i f ′′

i , tLi , tRi , fL
i , fR

i | 1 ≤ i ≤ n}∪
{βl,k, β′

l,k, βL
l,k, βR

l,k | 0 ≤ k ≤ n, 1 ≤ l ≤ n}∪
{xi,j,k, xi,j,k, x∗

i,j,k | 1 ≤ i ≤ n, 1 ≤ j ≤ p, 1 ≤ k ≤ n + j − 1}∪
{x′

i,j,k, x′
i,j,k, x∗′

i,j,k, x′′
i,j,k, x′′

i,j,k, x∗′′
i,j,k, x′′′

i,j,k, x′′′
i,j,k, x∗′′′

i,j,k, |
0 ≤ i ≤ n, 1 ≤ j ≤ p, 1 ≤ k ≤ n}∪
{cj,k | 1 ≤ j ≤ p, j ≤ k ≤ p} ∪ {δi | 0 ≤ i ≤ 4n + p + 2}∪
{δ′

i | 0 ≤ i ≤ 4n + p} ∪ {γk | 0 ≤ k ≤ n + 1}.
2. Γ1 = Γ \ Γ0, Γ0 = {aL

i,j | 2 ≤ i ≤ n, 1 ≤ j ≤ i − 1}∪
{αL

j | 1 ≤ j ≤ p + 1} ∪ {tLi , fL
i | 1 ≤ i ≤ n}∪

{βL
l,k | 0 ≤ k ≤ n, k + 1 ≤ l ≤ n}

3. Input alphabet Σ: {xi,j,0, xi,j,0, x
∗
i,k,0 | 1 ≤ i ≤ n, 1 ≤ j ≤ p}.

4. H = {1, 2, 3}
5. μ = [[]2 []3]1.
6. M1 = {δ0, δ

′
0, γ

2n2+6np+4n+2p+6
0 },

M2 = {ai,0 | 1 ≤ i ≤ n} ∪ {αj | 1 ≤ j ≤ p + 1},

M3 = {γ2n2+6np+4n+2p+6
0 } ∪ {βn+p+1

l,0 | 1 ≤ l ≤ n}.
7. The set R consists of the following rules:

0.1 Rules to generate the objects γ to simulate the environment

[[γk]3]1 → [γ2
k+1 []3]1

[γk []3]1 → [[γ2
k+1]3]1

}
for 1 ≤ k ≤ n

[[γn+1]3]1 → [γ []3]1
[γn+1 []3]1 → [[γ]3]1

1.1 Rules for steps (4k + 1).

[γ [ai,i−1]2]1 → [[a′
i,i−1t

′
i]2]1 , for 1 ≤ i ≤ n

[γ [ti]2]1 → [[t′′i]2]1
[γ [fi]2]1 → [[f ′′

i]2]1

}
for 1 ≤ i ≤ n

[γ [ai,j]2]1 → [[a′
i,j]2]1 , for 2 ≤ i ≤ n, 0 ≤ j ≤ i − 2

[γ [αj]2]1 → [[α′
j]2]1 , for 1 ≤ j ≤ p + 1

[γ [βl,k]3]1 → [[β′
l,k]3]1

}
for

0 ≤ k ≤ n,
k + 1 ≤ l ≤ n

[xi,j,k [γ]3]1 → [x′
i,j,k []3]1

[xi,j,k [γ]3]1 → [x′
i,j,k []3]1

[x∗
i,j,k [γ]3]1 → [x∗′

i,j,k []3]1

⎫⎬
⎭ for

1 ≤ i ≤ n,
1 ≤ j ≤ p,
0 ≤ k ≤ n − 1

P Systems with Evolutional Communication and Separation Rules 151

1.2 Rules for steps (4k + 2).

[γ [a′
i,i−1]2]1 → [[ai,if

R
i]2]1

[γ [t′i]2]1 → [[tLi]2]1

}
for 1 ≤ i ≤ n

[γ [t′′i]2]1 → [[tLi tRi]2]1
[γ [f ′′

i]2]1 → [[fL
i fR

i]2]1

}
for 1 ≤ i ≤ n

[γ [a′
i,j]2]1 → [[aL

i,j+1a
R
i,j+1]2]1 , for

2 ≤ i ≤ n,
0 ≤ j ≤ i − 1

[γ [α′
j]2]1 → [[αL

j αR
j]2]1 , for 1 ≤ j ≤ p + 1

[γ [β′
l,k]3]1 → [[βL

l,k+1β
R
l,k+1]3]1 , for

0 ≤ k ≤ n,
k + 1 ≤ l ≤ n

[x′
i,j,k [γ]3]1 → [x′′2

i,j,k+1 []3]1
[x′

i,j,k [γ]3]1 → [x′′2
i,j,k+1 []3]1

[x∗′
i,j,k [γ]3]1 → [x∗′′2

i,j,k+1 []3]1

⎫⎬
⎭

1 ≤ i ≤ n,
1 ≤ j ≤ p,
0 ≤ k ≤ n − 1

1.3 Rules for steps (4k + 3).

[ai,i]2 → [Γ0]2 [Γ1]2 , for 1 ≤ i ≤ n

[[βO
k,k]3]1 → [βO

k,k []3]1
[[βO

l,k]3]1 → [βl,k []3]1

}
for

O ∈ {L,R},
1 ≤ k ≤ n,
k + 1 ≤ l ≤ n

[x′′
i,j,k [γ]3]1 → [x′′′

i,j,k []3]1
[x′′

i,j,k [γ]3]1 → [x′′′
i,j,k []3]1

[x∗′′
i,j,k [γ]3]1 → [x∗′′′

i,j,k []3]1

⎫⎬
⎭ for

1 ≤ i ≤ n,
1 ≤ j ≤ p,
1 ≤ k ≤ n

1.4 Rules for steps (4k).

[βO
k,k [aO

i,j]2]1 → [[ai,j]2]1
[βO

k,k [rO
i]2]1 → [[ri]2]1

}
for

O ∈ {L,R},
r ∈ {t, f},
1 ≤ i ≤ n,
1 ≤ j ≤ n,
1 ≤ k ≤ n

[βO
k,k [αO

j]2]1 → [[αj]2]1 , for
O ∈ {L,R},
1 ≤ j ≤ p + 1,
0 ≤ k ≤ n

[x′′′
i,j,k [γ]3]1 → [xi,j,k []3]1

[x′′′
i,j,k [γ]3]1 → [xi,j,k []3]1

[x∗′′′
i,j,k [γ]3]1 → [x∗

i,j,k []3]1

⎫⎬
⎭ for

1 ≤ i ≤ n,
1 ≤ j ≤ p,
0 ≤ k ≤ n

[βl,k []3]1 → [[βl,k]3]1 , for 0 ≤ k ≤ n, k + 1 ≤ l ≤ n

152 D. Orellana-Mart́ın et al.

2.1 Rules to check satisfied clauses.

[xi,j,n+j−1 [ti]2]1 → [[cj,jti]2]1
[xi,j,n+j−1 [ti]2]1 → [[ti]2]1
[x∗

i,j,n+j−1 [ti]2]1 → [[ti]2]1
[xi,j,n+j−1 [fi]2]1 → [[fi]2]1
[xi,j,n+j−1 [fi]2]1 → [[cj,jfi]2]1
[x∗

i,j,n+j−1 [fi]2]1 → [[fi]2]1

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

for 1 ≤ i ≤ n, 1 ≤ j ≤ p

[xi,j,n+k [γ]3]1 → [xi,j,n+k+1 []3]1
[xi,j,n+k [γ]3]1 → [xi,j,n+k+1 []3]1
[x∗

i,j,n+k [γ]3]1 → [x∗
i,j,n+k+1 []3]1

⎫⎬
⎭ for

1 ≤ i ≤ n,
1 ≤ j ≤ p,
0 ≤ k ≤ j − 2

[γ [cj,k]2]1 → [[cj,k+1]2]1 , for 1 ≤ j ≤ p, j ≤ k ≤ p − 1

3.1 Rules to check if all clauses are satisfied by a given truth assignment.

[δ′
4n+p [αp+1]2]1 → [[α′

p+1]2]1
[[αj cj,p]2]1 → [# []2]1 , for 1 ≤ j ≤ p

4.1 General counters.

[δi [γ]3]1 → [δi+1 []3]1 , for 0 ≤ i ≤ 4n + p + 1
[δ′

4i+1 [γ]3]1 → [δ′2
4i+2 []3]1 , for 0 ≤ i ≤ n − 1

[δ′
4i+k [γ]3]1 → [δ′

4i+k+1 []3]1 , for 0 ≤ i ≤ n − 1, k ∈ {0, 2, 3}
[δ′

4n+i [γ]3]1 → [δ′
4n+i+1 []3]1 , for 0 ≤ i ≤ p − 1

4.2 Rules to return a negative answer.

[[αjα
′
p+1]2]0 → [n1 []2]0 , for 1 ≤ j ≤ p

[n1 []2]1 → [[n1]2]1
[δ4n+p+2 [n1]2]1 → [n2 []2]1
[[n2]1]0 → [no []1]0

4.3 Rules to return a positive answer.

[δ4n+p+2 [α′
p+1]2]1 → [[y1]2]1

[[y1]2]1 → [y2 []2]1
[[y2]1]0 → [yes []1]0

8. The input membrane is the membrane labelled by 1 (iin = 1) and the output
region is the environment (iout = env).

4.1 Overview of the Computations

We denote by codk(ϕ) the set of elements from cod(ϕ) with the third subscript
equal to k.

Here, we give an informal description of how the system works. The proposed
solution follows a brute-force algorithm in the framework of recognizer P systems
with evolutional symport/antiport and separation rules, and consists on the
following stages:

P Systems with Evolutional Communication and Separation Rules 153

– Pregeneration stage: In order to simulate the environment, we want to gen-
erate enough objects γ to use them as “assistants” to fire other rules of the
system. This will lead to the creation of an exponential number of objects γ
in a linear number of steps by using the rules from 0.1 in both the membranes
1 and 3. In particular, this stage takes n + 1 steps. In fact, these objects are
necessary for the next computational steps, since all of them use the object γ
(or some other object created by some rule that needs γ to be applied), thus
no other rules can be fired until objects γ are finally created.

– Generation stage: Using separation rules each 4 steps, we produce 2n mem-
branes labelled by 2 that will contain all the possible truth assignments with
rules from 1.1, 1.2, 1.3 and 1.4. With these rules, at the same time, we gen-
erate 2n copies of codn(ϕ). This stage takes 4n steps of computation. In the
first step, rules from 1.1 are applied, and objects start to be prepared for
when the membrane is separated. In the second step, all the objects oL and
oR, where o{a, αj , ti, fi, βl,k} are created since they will be sent to different
membranes in the next computational step. In the third step, the separa-
tion will be executed and it will be followed by some rules used to return
to the first configuration so a new loop can be executed. Apart from this,
rules for generating an exponential number of copies of cod(ϕ) are executed
in membrane 1 using objects γ from the membrane 3.

– First checking stage: With rules from 2.1, we can check which clauses from the
formula ϕ are satisfied with each of the possible truth assignments. This stage
takes exactly p steps. In this stage, objects from cod(ϕ) interact with objects
ti and fi in order to generate objects cj,j , that represent that the clause Cj

is satisfied by the truth value corresponding to the membrane where it is
created.

– Second checking stage: With rules from 3.1, we remove the objects αj such
that are removed from a membrane if and only if the corresponding truth
assignment associated to such a membrane makes true the clause Cj . This
stage takes exactly 1 computation step. In this stage, two different behaviors
can be observed. On the one hand, Objects αj react with objects cj,p and, at
the same time, objects δ4n+p react with objects αp+1.

– Output stage: With rules from 4.2 and 4.3, we return an afirmative answer
(i.e. an object yes) or a negative answer (i.e. an object no) to the environment
depending on the satisfiability of the formula ϕ. This stage takes exactly 4
computation steps, independently of the satisfiability of the formula ϕ. In
this stage, if there exists an object αj in a specific membrane, it means that
the corresponding truth assignment in that membrane does not satisfy the
clause Cj , and then the object n1 is created in the membrane 1 If there exists
a membrane where no objects αj appear, it means that the truth assignment
corresponding to that membrane makes true the Boolean formula ϕ. In that
case, the object δ4n+p+2 reacts with the object α′

p+1 in that membrane creat-
ing an object y1. This object will be transported finally to the environment as
an object yes. If the object y1 is not generated, it means that the formula ϕ
is not satisfiable, therefore the object δ4n+p+2 does not react with the object
y1, and it will be able to react with the object n1 when it is in a membrane

154 D. Orellana-Mart́ın et al.

labelled by 2. From that moment, this object will be transported finally to
the environment as an object no.

Since objects γ are necessary for the execution of the following stages, the
rest of the objects are considered “dormant” during the first stage, and that is
why the final index of δi is 4n + p + 2.

Theorem 1. SAT ∈ PMCCSEC(2,2)

Proof. The family of recognizer P systems constructed previously verifies the
following:

– Every system from Π = {Π(n) | n ∈ N} is a recognizer P system from
CSEC(2, 2).

– The family Π is polynomially uniform by Turing machines given that, for
each n, p ∈ N, the rules from Π(〈n, p〉) are recursively defined by n, p ∈ N,
and the amount of resources needed for constructing an element of the family
is of polynomial order with respect to n and p:

• Alphabet size: Θ(max{p2, n2p})
• Initial number of membranes: 2 ∈ Θ(1)
• Initial number of objects in membranes: Θ(max{n2, np})
• Number of rules: Θ(max{n3, n2p})
• Maximum number of objects involved in a rule: 4 ∈ Θ(1)

The pair (cod, s) of polynomial-time computable functionsdefined fill the fol-
lowing: for each formula ϕ of the SAT problem, s(ϕ) is a natural number,
cod(ϕ) is an input multiset of the system Π(s(ϕ)) and for each k ∈ N, s−1(k)
is a finite set.
The family Π is polynomially bounded in time: in fact, for each formula ϕ
of the SAT problem, the recognizer P system Π(s(ϕ)) + cod(ϕ) takes exactly
5n+p+6 steps to return a positive or a negative answer, being n the number
of variables and p the number of clauses of ϕ.
The family Π is sound with respect to (SAT, cod, s): in fact, if the computa-
tions of Π(s(ϕ)) + cod(ϕ) are accepting computations, then ϕ is satisfiable.
The family Π is complete with respect to (SAT, cod, s): in fact, for each for-
mula ϕ that is satisfiable, then all the computations of Π(s(ϕ)) + cod(ϕ) are
accepting computations.

Corollary 1. NP ∪ co − NP ⊆ PMCCSEC(2,2)

Proof. It is enough to see that SAT is a NP-complete problem, SAT ∈
PMCCSEC(2,2) and the complexity class PMCCSEC(2,2) is closed under
polynomial-time reducibility and under complementary.

In fact, as it is explained in the design, in the pregeneration stage we create
objects γ that, instead of the environment in an arbitrary number of copies, they
are available in the membrane 1 with enough copies for the whole computation.
Therefore, as the environment plays a passive role, the following holds:

P Systems with Evolutional Communication and Separation Rules 155

Corollary 2. NP ∪ co − NP ⊆ PMC
̂CSEC(2,2)

Using the first definition of length of the rules, we see that the maximum
number of objects involved in a rule is 4. Therefore:

Corollary 3. NP ∪ co − NP ⊆ PMC
̂CSEC(4)

5 Conclusions and Future Work

In this work, we have introduced recognizer P systems with evolutional sym-
port/antiport and separation rules, and we have provided an efficient solution to
the problem SAT, a well-known NP-complete problem. In previous works, similar
results were obtained, while changing the cell-like framework by the tissue-like
framework, but in the previous case the environment was used in an active way;
that is, it could send objects back to the system. In this case, the environment
of the system only receives an object yes or an object no in the last step of the
computation as the answer.

The maximum number of objects used in evolutional communication rules
of this solution is 4, thus a good research line is to prove if this number can
be decreased. In this sense, using the second definition of length, the maximum
length of a rule is (2, 2). This would be a good point of view while trying to
reduce the number of maximum objects involved in evolutional communication
rules. While using division rules, the maximum length of the rules with the
first definition (respectively, second definition) was 3 (resp., (2, 1)). We want to
analyze if it is possible to obtain a similar result while using separation rules.
As stated above, we do not make use of the environment as an active agent, it
would be interesting to see if the active role can be also omitted in their tissue-
like counterparts. In fact, if it holds, the underlying structure (i.e. directed graph
vs rooted tree structure) does not matter while measuring the ability of these
systems to solve presumably hard problems. It seems that separation rules have,
in this case, at least, the same computational power than division rules in terms
of the problems that they can deal in an efficient way.

Another interesting research line is to find frontiers of efficiency; that is,
what is the maximum length of evolutional communication rules allowed while
maintaining the systems being non-efficient; that is, with the ability to only solve
efficiently problems from the class P.

Acknowledgements. This work was supported by the following research project:
FEDER/Junta de Andalućıa - Paidi 2020/ Proyecto (P20 00486). D. Orellana-Mart́ın
acknowledges Contratación de Personal Investigador Doctor. (Convocatoria 2019) 43
Contratos Capital Humano Ĺınea 2. Paidi 2020, supported by the European Social
Fund and Junta de Andalućıa.

References

1. Alhazov, A., Ivanov, S., Rogozhin, Y.: Polymorphic P systems. In: Gheorghe, M.,
Hinze, T., Păun, G., Rozenberg, G., Salomaa, A. (eds.) CMC 2010. LNCS, vol.

156 D. Orellana-Mart́ın et al.

6501, pp. 81–94. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
18123-8 9

2. Cabarle, F.G.C., Zeng, X., Murphy, N., Song, T., Rodŕıguez-Patón, A., Liu, X.:
Neural-like P systems with plasmids. Inf. Comput. 281, 104766 (2021). https://
doi.org/10.1016/j.ic.2021.104766, https://www.sciencedirect.com/science/article/
pii/S089054012100081X

3. Cienciala, L., Ciencialová, L., Sośık, P.: P colonies with agent division. Inf. Sci.
589, 162–169 (2022). https://doi.org/10.1016/j.ins.2021.12.094

4. Csuhaj-Varjú, E., Vaszil, G.: P systems with string objects and with communica-
tion by request. In: Eleftherakis, G., Kefalas, P., Păun, G., Rozenberg, G., Salomaa,
A. (eds.) WMC 2007. LNCS, vol. 4860, pp. 228–239. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-77312-2 14

5. Freund, R., Păun, G.H., Pérez-Jiménez, M.J.: Tissue P systems with
channel states. Theor. Comput. Sci. 330(1), 101–116 (2005). https://doi.
org/10.1016/j.tcs.2004.09.013, https://www.sciencedirect.com/science/article/pii/
S0304397504006085, insightful Theory insightful Theory

6. Freund, R., Sośık, P.: On the power of catalytic P systems with one catalyst. In:
Rozenberg, G., Salomaa, A., Sempere, J.M., Zandron, C. (eds.) CMC 2015. LNCS,
vol. 9504, pp. 137–152. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
28475-0 10

7. Gheorghe, M., Ipate, F.: A kernel P systems survey. In: Alhazov, A., Cojocaru,
S., Gheorghe, M., Rogozhin, Y., Rozenberg, G., Salomaa, A. (eds.) CMC 2013.
LNCS, vol. 8340, pp. 1–9. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-642-54239-8 1

8. Hamshawi, Y., B̂ılb̂ıe, F.D., Păun, A., Malka, A., Piran, R.: P systems with
protein rules. J. Franklin Inst. 359(8), 3779–3807 (2022). https://doi.org/10.
1016/j.jfranklin.2022.02.017, https://www.sciencedirect.com/science/article/pii/
S0016003222001247

9. Krishna, S.N., Rama, R., Krithivasan, K.: P systems with picture objects. Acta
Cybern. 15(1), 53–74 (2001)

10. Mart́ın-Vide, C., Păun, G., Pazos, J., Rodŕıguez-Patón, A.: Tissue P
systems. Theor. Comput. Sci. 296(2), 295–326 (2003). https://doi.org/
10.1016/S0304-3975(02)00659-X, https://www.sciencedirect.com/science/article/
pii/S030439750200659X. Machines, Computations and Universality

11. Orellana-Mart́ın, D., Valencia-Cabrera, L., Song, B., Pan, L., Pérez-Jiménez, M.J.:
Tuning frontiers of efficiency in tissue P systems with evolutional communica-
tion rules. Complex, 2021, 7120840:1–7120840:14 (2021). https://doi.org/10.1155/
2021/7120840

12. Orellana-Mart́ın, D., Valencia-Cabrera, L., Pérez-Jiménez, M.J.: P systems with
evolutional communication and division rules. Axioms, 10(4), 327 (2021). https://
doi.org/10.3390/axioms10040327, https://www.mdpi.com/2075-1680/10/4/327

13. Padan, E., Landau, M.: Sodium-proton (Na+/H+) antiporters: properties and roles
in health and disease. In: Sigel, A., Sigel, H., Sigel, R.K.O. (eds.) The Alkali Metal
Ions: Their Role for Life. MILS, vol. 16, pp. 391–458. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-21756-7 12

14. Pan, L., Ishdorj, T.: P systems with active membranes and separation rules. J.
Univers. Comput. Sci. 10(5), 630–649 (2004). https://doi.org/10.3217/jucs-010-
05-0630

15. Pan, L., Song, B., Valencia-Cabrera, L., Pérez-Jiménez, M.J.: The computational
complexity of tissue P systems with evolutional symport/antiport rules. Complex,
2018, 3745210:1–3745210:21 (2018). https://doi.org/10.1155/2018/3745210

https://doi.org/10.1007/978-3-642-18123-8_9
https://doi.org/10.1007/978-3-642-18123-8_9
https://doi.org/10.1016/j.ic.2021.104766
https://doi.org/10.1016/j.ic.2021.104766
https://www.sciencedirect.com/science/article/pii/S089054012100081X
https://www.sciencedirect.com/science/article/pii/S089054012100081X
https://doi.org/10.1016/j.ins.2021.12.094
https://doi.org/10.1007/978-3-540-77312-2_14
https://doi.org/10.1016/j.tcs.2004.09.013
https://doi.org/10.1016/j.tcs.2004.09.013
https://www.sciencedirect.com/science/article/pii/S0304397504006085
https://www.sciencedirect.com/science/article/pii/S0304397504006085
https://doi.org/10.1007/978-3-319-28475-0_10
https://doi.org/10.1007/978-3-319-28475-0_10
https://doi.org/10.1007/978-3-642-54239-8_1
https://doi.org/10.1007/978-3-642-54239-8_1
https://doi.org/10.1016/j.jfranklin.2022.02.017
https://doi.org/10.1016/j.jfranklin.2022.02.017
https://www.sciencedirect.com/science/article/pii/S0016003222001247
https://www.sciencedirect.com/science/article/pii/S0016003222001247
https://doi.org/10.1016/S0304-3975(02)00659-X
https://doi.org/10.1016/S0304-3975(02)00659-X
https://www.sciencedirect.com/science/article/pii/S030439750200659X
https://www.sciencedirect.com/science/article/pii/S030439750200659X
https://doi.org/10.1155/2021/7120840
https://doi.org/10.1155/2021/7120840
https://doi.org/10.3390/axioms10040327
https://doi.org/10.3390/axioms10040327
https://www.mdpi.com/2075-1680/10/4/327
https://doi.org/10.1007/978-3-319-21756-7_12
https://doi.org/10.3217/jucs-010-05-0630
https://doi.org/10.3217/jucs-010-05-0630
https://doi.org/10.1155/2018/3745210

P Systems with Evolutional Communication and Separation Rules 157

16. Pavel, A., Arsene, O., Buiu, C.: Enzymatic numerical P systems - a new class
of membrane computing systems. In: 2010 IEEE Fifth International Conference
on Bio-Inspired Computing: Theories and Applications (BIC-TA), pp. 1331–1336
(2010). https://doi.org/10.1109/BICTA.2010.5645071

17. Păun, Gh.: P systems with active membranes: attacking NP complete problems.
J. Automata Lang. Comb. 6, 75–90 (1999)

18. Păun, G.H.: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143
(2000). https://doi.org/10.1006/jcss.1999.1693, https://www.sciencedirect.com/
science/article/pii/S0022000099916938

19. Păun, Gh.: Membrane Computing: An Introduction. Springer-Verlag, Berlin, Hei-
delberg (2002). https://doi.org/10.1007/978-3-642-56196-2

20. Păun, Gh., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Com-
puting. Oxford University Press Inc, USA (2010)

21. Pérez-Jiménez, M.J., Riscos-Núñez, A., Rius-Font, M., Romero-Campero, F.J.: A
polynomial alternative to unbounded environment for tissue p systems with cell
division. Int. J. Comput. Math. 90(4), 760–775 (2013). https://doi.org/10.1080/
00207160.2012.748898

22. Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A.
(eds.) Handbook of Formal Languages, pp. 389–455. Springer, Heidelberg (1997).
https://doi.org/10.1007/978-3-642-59126-6 7

23. Song, B., Zhang, C., Pan, L.: Tissue-like P systems with evolutional sym-
port/antiport rules. Inf. Sci. 378, 177–193 (2017)

24. Sweety, F., Sasikala, K., Kalyani, T., Thomas, D.G.: Partial array-rewriting P
systems and basic puzzle partial array grammars. In: AIP Conference Proceedings,
vol. 2277, no. 1, p. 030003 (2020). https://doi.org/10.1063/5.0027078, https://aip.
scitation.org/doi/abs/10.1063/5.0027078

https://doi.org/10.1109/BICTA.2010.5645071
https://doi.org/10.1006/jcss.1999.1693
https://www.sciencedirect.com/science/article/pii/S0022000099916938
https://www.sciencedirect.com/science/article/pii/S0022000099916938
https://doi.org/10.1007/978-3-642-56196-2
https://doi.org/10.1080/00207160.2012.748898
https://doi.org/10.1080/00207160.2012.748898
https://doi.org/10.1007/978-3-642-59126-6_7
https://doi.org/10.1063/5.0027078
https://aip.scitation.org/doi/abs/10.1063/5.0027078
https://aip.scitation.org/doi/abs/10.1063/5.0027078

Computational Universality
and Efficiency in Morphogenetic Systems

Petr Sośık(B) and Jan Drast́ık

Institute of Computer Science, Faculty of Philosophy and Science,
Silesian University in Opava, Opava, Czech Republic

petr.sosik@fpf.slu.cz

Abstract. The topic of computational universality and efficiency of var-
ious types of abstract machines is still subject of intensive research.
Besides many crucial open theoretical problems, there are also numerous
potential applications, e.g., in construction of small physical computing
machines (nano-automata), harnessing algorithmic processes in biology
or biochemistry, efficient solving of computationally hard problems and
many more. The study of computability and complexity of new abstract
models can help to understand the borderline between non-universality
and universality, or between tractable and intractable problems.

Here we study computational universality (in Turing sense) and com-
putational complexity in the framework of morphogenetic (M) systems—
computational models combining properties of membrane systems and
algorithmic self-assembly of pre-defined atomic polytopes. Even very sim-
ple morphogenetic systems can exhibit complex self-organizing behaviour
and phenomena such as controlled growth, self-reproduction, homeosta-
sis and self-healing. We present two small universal M systems, one of
which is additionally self-healing. Then we show how the borderline P
versus NP can be characterized by some properties of morphogenetic
systems.

Keywords: Morphogenetic system · Membrane computing ·
Self-assembly · Universal computation · P versus NP

1 Introduction

In recent decades we have witnessed a strong and still growing interconnection
of computer science with disciplines like biology, chemistry and even physics.
The relation is often bi-directional, in the sense that not only these disciplines
use computer science tools to process and organize data they depend on (as,
typically, various *-omics in biology). But also computer science is inspired and
driven by biological, chemical and physical phenomena, resulting in new algo-
rithms and both theoretical and physical computational models. Naturally, the
computability and complexity aspects of these new models are under investiga-
tion.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Durand-Lose and G. Vaszil (Eds.): MCU 2022, LNCS 13419, pp. 158–171, 2022.
https://doi.org/10.1007/978-3-031-13502-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13502-6_11&domain=pdf
http://orcid.org/0000-0001-7624-3816
https://doi.org/10.1007/978-3-031-13502-6_11

Computational Universality and Efficiency in Morphogenetic Systems 159

This paper studies properties of abstract computational model of so-called
morphogenetic (M) systems introduced in [17,18] inspired by morphogenetic phe-
nomena such as controlled and programmed growth of individuals and colonies,
their dynamics possibly oscillating or leading to a homoeostasis, as well as more
complex phenomena as self-reproduction and self-healing. The relation between
morphogenesis, mathematics and computational models was established already
in the 1950s by Alan Turing [19] and John von Neumann [6]. Morphogenetic sys-
tems studied here are based on mathematical abstraction of chemical reactions
and mechanical forces which define self-control and self-organization in natural
morphogenesis. Chemical reactions and molecules are formalized by the use of
principles of membrane computing [9], a multiset-based computing model. The
crucial concept of membrane computing is an abstract membrane dividing the
space into separate compartments. The compartments host abstract molecules
and chemical reactions developing independently and interchanging information
between compartments. M systems are inspired by a specific variant of membrane
systems with proteins on membranes [7,8]. Proteins serve both as catalysts of
reactions and as protein channels between compartments. Importantly, mem-
brane systems treat an abstract shapeless cell as a given atomic assembly unit,
while M systems assume no implicit membranes. Instead, compartments can be
self-assembled from simpler geometrical primitives.

The self-assembly in M systems is defined by principles inspired by the
abstract Tile Assembly Model (aTAM) [4,21]. We generalized the original aTAM
which uses square 2D tiles forming patterns in 2D. M systems use building ele-
ments in form of 1D rods or 2D convex polygons (dD polytopes in general) that
can assemble into 2D or 3D structures due to explicitly predefined angles and
glue relations. Their explicit geometrical shapes and sizes represents a spatial
arrangement determining resulting self-assembled spatial forms. Some non-trivial
examples of M systems inspired by cell formation and division were presented in
the survey paper [14].

Besides theoretical studies of computational aspects of morphogenesis, we
also intended to carry out experiments with artificial morphogenesis based on M
systems. For this purpose, a freely available visual 3D simulator of M systems
Cytos has been released and described in [12]. Further details and download links
can be found at the M systems web page at http://sosik.zam.slu.cz/msystem/.

This paper deals with computability and complexity aspects of M systems
and presents several new results. It was already shown in [17,18] that M systems
are both computationally universal in the Turing sense, and also capable of
efficient solving of NP-complete problems by trading space for time. Here we
focus on the problem of minimal Turing-universal M systems, and on the problem
of characterization of the P versus NP borderline. The paper is organized as
follows. M systems are described in Sect. 2. The Sect. 3 contains results related to
minimal Turing-universal M systems. Section 4 then provides a characterization
of the relation P versus NP within the framework of M systems. Theorems are
presented without proofs, which will be available in an extended version of this
paper [13]. Section 5 contains concluding remarks and discussion.

http://sosik.zam.slu.cz/msystem/

160 P. Sośık and J. Drast́ık

2 Morphogenetic Systems

Morphogenetic systems self-assemble cellular-like (but, in principle, arbitrary)
forms in a 2D or 3D (generally, dD) Euclidean space R

d. They have three types
of elementary objects at their disposal: protions, tiles and floating objects. All
objects have their specified position (and, in case of tiles, also orientation) in
space at every moment.

Floating objects play the role of abstract molecules participating in mutual reac-
tion or passing through protion channels (which are placed on tiles). They
do not have any pre-defined shape but they have a certain nonzero volume.
They float freely within the environment with a Brownian motion.

Tiles (also called fixed objects) have their pre-defined nonzero size and shape, in
the form of bounded convex polytopes. They can have glues on their edges and
vertices (or, generally, on any places) which allow them to self-assemble into
interconnected structures. The connecting edges or points are called (connec-
tors) and their connection is controlled by a pre-defined glue relation. Unlike
the aTAM, tiles do not exist in arbitrary numbers but they can be created,
destroyed and disconnected only by reactions with floating objects.

Protions are point objects placed on tiles playing roles of both protion channels
letting floating objects pass through, as well as catalysts allowing selected
reactions of floating objects. The term protion was chosen to avoid possible
confusion between biological proteins and these abstract objects.

2.1 Polytopic Tiling

The formalism defining shapes, connection, angles and further parameters of tiles
is called the polytopic tiling. It efficiently controls the process of self-assembly of
tiles in an M systems It can be viewed as a generalization of aTAM [4,21], which
is itself related to Wang tiling [10]. In M systems we generalize the aTAM to
d dimensions and the tiles can adopt shapes of bounded convex polytopes [22].
Note that a 1D polytope is shaped as a rod.

A polytope is the convex hull of an ordered list of its extreme points in ordi-
nary 2D or 3D (generally, dD) space, called vertices. Position of each vertex is
given by an d-tuple of real numbers. Two-dimensional tiles have faces of dimen-
sion 1, called facets, separating them from the exterior. Formally, a d-dimensional
tile is defined as

t = (Δ, {c1, . . . , ck}, gs), for k ≥ 0, where

Δ is a bounded convex d-dimensional polytope,
c1, . . . , ck are its connectors,
gs ∈ G is the surface glue, where G is a finite set of glues.

Connectors define possible attachments of the tile to other tiles. They are
sites on the surface of a tile specified by their shape, glue and connecting angles:
c = (Δc, g, (ϕ1, ϕ2)), where

Computational Universality and Efficiency in Morphogenetic Systems 161

Δc ⊂ Δ is a bounded convex k-polytope where 0 ≤ k < d,
g ∈ G is a glue,
ϕ1, ϕ2 ∈ (−π, π) are connecting angles (ϕ2 being void when only one angle is

applicable).

A connector may be shaped as a point, a segment or a polygon. Two connectors
on neighboring tiles can connect together if they have identical shapes and their
glues match in the glue relation defined below. To specify precisely connecting
angles of 1D or 2D tiles embedded in R

3, we define the tiles as yaw-pitch-roll
angles (DIN 9300), as used in aviation, with the “aircraft” being placed on the
new tile that is being connected to an existing one, with its tail pointing to the
connector. The order of rotations of a tile in 3D space is given by the pair of
angles (ϕ1, ϕ2) defined in the following table, where d is the dimension of the
tile and k is the dimension of the connector.

d k ϕ1 ϕ2

An unspecified angle of a connector can be chosen randomly.

Definition 1. A polytopic tile system in R
3 is a tuple T = (Q,G, γ, dg, S),

where

Q is the set of tiles of dimensions ≤ 3;
G is the set of glues;
γ ⊆ G × G is the glue relation;
dg ∈ R

+
0 is the gluing radius (assumed to be small compared to tile sizes);

S is a finite multiset of seed tiles from Q randomly distributed in space.

2.2 M System

A polytopic tile system defined in the previous subsection specifies the geomet-
rical structure of growth in an M system. However, the creation, destruction and
eventual disconnection of tiles is controlled by more elementary floating objects
available in environment of the M system. These reactions are subject to rules
inspired by those used in P systems with proteins on membranes. Formally, for
a finite alphabet O we denote by O∗ the free monoid generated by O by the
operation of concatenation, with identity element λ. As usual, O+ = O∗ \ {λ}.
A multiset S over alphabet O can be represented by a string x ∈ O∗ such that
|x|a = |S|a. For a string or multiset S and a ∈ O, |S|a denotes the multiplicity
of occurrences of a in S.

162 P. Sośık and J. Drast́ık

Definition 2. A morphogenetic system (M system) in R
3 is a tuple

M = (F, P, T, μ,R, σ),
where

F = (O,m, ρ, ε) is a catalog of floating objects, where
O is a set of floating objects;
m : O −→ R

+ is the mean mobility of each floating object;
ρ : O −→ R

+
0 specifies the radius (size) of the floating objects in O;

ε : O −→ R
+
0 likewise gives the (initial) concentration of each floating object

in the environment;
P is a set of protions;
T = (Q,G, γ, dg, S) is a polytopic tile system in R

3, with O, P , Q, G all pairwise
disjoint;

μ is the mapping assigning to each tile t ∈ Q a multiset of protions placed on t
together with their positions: μ(t) ⊂ P ×Δ where Δ is the underlying polytope
of t;

R is a finite set of reaction rules;
σ : γ −→ O∗ is the mapping assigning to each glue pair (g1, g2) ∈ γ a multiset

of floating objects which are released to the environment when a connection
with glues (g1, g2) is established.

Reaction rules in the set R have the form u → v, where u and v are strings/
multisetswhichmaycontainfloatingobjects,protions,gluesand/ortilesasspecified
below. A rule u → v, is applicable when each floating object o ∈ u is located within
the radius m(o) from the reaction site (which may be a protion, a connector or a
whole tile), and eventual further rule-specific conditions are also met.

Metabolic Rules
Let u, v ∈ O+ be nonempty multisets of floating objects and p ∈ P be a protion.
If the symbol [is specified in the rule, then the protion must be placed on a
2D-tile with distinguished in (denoted by [p) and out (denoted by p[) sides.
This applies only to (d − 1)D tiles in dD Euclidean space. Metabolic rules are of
several subtypes:

Type Rule Effect

Simple u → v Objects in multiset u react to produce v

Catalytic pu → pv Objects in u react in presence of p to produce v

u[p → v[p Similar as above but both u, v must be on the side “out”
of a tile on which p is placed (applicable only to (d−1)D
tiles in dD space)

[pu → [pv Similar as above but both u, v must be on the side “in”
of a tile on which p is placed;

Symport u[p → [pu u Passes through protion channel p

[pu → u[p To the other side of the tile

Antiport u[pv → v[pu Interchange of u and v through protion channel p

Computational Universality and Efficiency in Morphogenetic Systems 163

During application of the rule, objects at the left-hand side react, are con-
sumed (except protions) and produce objects at the right-hand side, eventually
passing through a 2D tile indicated in the rule.

Creation Rules u → t,
create a tile t while consuming the floating objects in u, where u ∈ O+ and
t ∈ Q. Furthermore, t must be able to connect to an existing fixed object at
some of its connectors.

Destruction Rules ut → v,
destroy a tile t, while consuming the floating objects in u and producing floating
objects in v, where u, v ∈ O+ and t ∈ Q.

Division Rules g u h → g, h,
cause the two connectors to disconnect and the multiset u to be consumed, where
g h is a pair of glues on connectors of two connected tiles, and u ∈ O+.

2.3 Computation of the M System

An M system evolves in discrete time steps by applying rules in its set R in
maximally parallel manner (such that no more rules can be applied at each step),
and thereby passing between configurations. A rule is applied (completely) in a
single time step, that is, rules cannot span multiple time steps before all their
products are realized. A configuration of an M system is given by

– the set of all tiles in the environment and their relative positions at a certain
time;

– an interconnection graph of connectors on these tiles;
– positions for all floating objects modulo their mobility.

The computation starts in the initial configuration containing seed tiles in
S (either randomly positioned or in specific locations) and floating objects ran-
domly distributed due to their initial concentration. ε(a) for each a ∈ O. At each
step, each floating object can be subject to at most one rule, each connector can
be subject to at most one creation or division rule, and each tile can be sub-
ject to at most one destruction rule. After application of rules at each step, all
floating objects change their position in accordance with the Brownian motion
principle [3] with mean mobility m(o) for each object o ∈ O.

Naturally, positions of any two objects (either tiles or floating objects) cannot
overlap. Newly created tiles can push already existing tile structures and also
floating objects to make the necessary room for themselves. Although we consider
shapes of tiles and volumes of floating objects, we abstract from some other
physical parameters as weights, forces, pressure etc.

The computation can eventually stop when there are no more applicable
rules, or it can continue forever when the system reaches a homoeostatic equi-
librium, transiting cyclically within a certain set of configurations.

164 P. Sośık and J. Drast́ık

2.4 Example

We provide a very simple example of an M system producing a set of self-
replicating boxes in 3D. Originally we called it Boxy Hallows due to the inspira-
tion by a scene from the Harry Potter movie. The M system is formally described
as follows: M = (F, ∅, T, ∅, R, ∅), where

F = ({a},m(a) = 5, ρ(a) = 0.05, ε(a) = 10), i.e., there is a single floating object
a with a nonzero concentration in the environment;

T = ({d}, {g1}, {(g1, g1)}, 0.1, {d}) is a tiling with a single square 2D tile d,
having four identical connectors occupying its four edges, with connecting
glue g1 and angle ϕ1 = 90◦ as specified in Sect. 2.1;

R contains the two reaction rules:

Rule Effect

a → d Creates new tile d while consuming one floating object a

g1 a g1 → g1, g1 Divides two tiles connected with glues g1 while consuming
one object a

Fig. 1. Visualization of development of the M system “Boxy Hallows”.

The described M system operates as follows. The seed tile d serving as a box
base attaches four other tiles to its four connectors at all four edges in the first

Computational Universality and Efficiency in Morphogenetic Systems 165

step. These connectors allow to connect four new tiles under the angle of 90◦.
New tiles are produced from abundant floating objects a due to the creation
rule. By the same principle, a box completes with another tile in the second
step. Meanwhile, original connections of the tiles attached in the first step to
the seed tile are released by the division rule. In the third step, new tiles are
immediately connected to all free connectors, both on the seed tile and the four
tiles from the second step. As a result, the seed tile is connected to new four tiles
(similarly as in step 2), pushing the original (now incomplete) box aside. The
original box is simultaneously completed by another tile replacing the seed one.
All these new tiles are created by the same creation rule. In the next step the
new box completes and the process continues in an analogous way, generating an
exponentially growing group of mutually pushing boxes as in Fig. 1. The image
was produced by the simulation package Cytos.

3 Small Universal M Systems

Let us start this section with a review of a known result about simulation of
Turing machines (TMs) by morphogenetic systems which will be needed later.
An M system generating strings is such that produces a unique sequence of
interconnected closed cells, where each cell contains at most one floating object
from a specific tape alphabet. The sequence of these floating objects in a specific
configuration forms the string which is a result of computation of the M system.
Such an M system can generate a set of strings thanks to its possible nonde-
terminism (induced by the underlying Turing machine). Please consult [16] for
more details of the construction.

Proposition 1 ([16]). Every (nondeterministic) Turing machine starting with
an empty tape can be simulated in linear time by an M system that pro-
duces exactly the same set of strings. Furthermore, the M system only requires
metabolic and creation rules.

The proof is based on a direct simulation of a TM by an M system unfolding
in 2D, which builds a tape-like structure (tape cells interlaced with auxiliary
cells) populated with objects representing states and alphabet symbols of the
Turing machine, see Fig. 2. Note that, if the same construction is used to simulate
a deterministic Turing machine, the computation of the M systems has a unique
result. However, the effect of the random Brownian motion of floating object
may result, with a very small probability, to a small delay in simulation (e.g., a
one step delay can occur with the probability of p << 1 and, in general, a delay
by n steps occurs with the probability of pn. Hence the probability the delay
decreases exponentially with its growing length.

Let us now focus on the construction of small universal M systems. By that
we mean a unique M system which can (with a proper input/output encoding)
simulate any register or Turing machine, and thus generate or accept any recur-
sively enumerable set of integers. To formalize the term “small”, recall that small
Turing machines are usually characterized by the number of states, tape symbols

166 P. Sośık and J. Drast́ık

Fig. 2. A snapshot of an M system simulating a Turing machine. Odd-numbered
squares (left to right, starting from 1) represent tape cells while even-numbered squares
are auxiliary cells controlling movements of floating objects. Objects b1b2b3 . . . repre-
sent tape symbols, while q0 is the object representing TM’s state.

and rules. Let us assume the following values as the key ones characterizing size/
descriptional complexity of an M system:

– the number of tiles in the set Q;
– the number of floating objects in the set O;
– the number of protions in the set P ;
– the number of rules.

To construct a small universal M system, we employ an approach based on
the paper [1] dealing with simulations of strongly universal register machines
by parallel multiset rewriting systems. Let Φ0, Φ1, Φ2, . . . be a fixed admissible
enumeration of the set of unary partial recursive functions. Then, a register
machine U computing a binary function Φ2

U is said to be strongly universal if
there exists a recursive function g such that Φx(y) = Φ2

U (g(x), y) holds for all
x, y ∈ N [1].

In the same sense as in [1], we call an M system universal if it can simulate a
strongly universal register machine, representing contents of its registers by num-
bers of designated floating objects. Now the following result can be established:

Theorem 1. There exists a universal M system in 2D with three tiles, 26 float-
ing objects, one protion and 26 rules.

3.1 Self-healing Universal M System

In this section we aim at a construction of a universal M system which is simul-
taneously self-healing. Self-healing, i.e., the capability of recovery from certain
damages, is a characteristic property of M systems. The phenomenon of self-
healing, self-repair and self-stabilization was studied in many different contexts
within the general framework of distributed systems. For an interested reader,
the study [2] on self-stabilizing algorithms can be a source of inspiration.

An experimental study of M system forming self-reproducing cell-like struc-
tures which is also self-healing, i.e., resistant to various types of injuries (in the

Computational Universality and Efficiency in Morphogenetic Systems 167

form of destruction of randomly chosen tiles), has been provided in [15,17]. The-
oretical framework of self-healing in an M systems is based on its computation
graph, i.e., a directed graph M whose nodes are all configurations which can be
reached from the initial configuration by any computation of the M system. Arcs
of the graph are computational steps of the M systems described above.

We further define the configuration space M c of the M system, obtained
from M by adding all the configurations (and transitions among them) which
are unreachable by normal computation of the M system, but from which one can
reach some node of M . In other words, M c is obtained as an inverse transitive
closure of M in the larger graph consisting of all possible configurations and
transitions.

Another crucial concept is the homeostatic (h) component of M c. Informally,
it is each minimum subgraph of M c from which there is no transition to other
nodes of M c. In particular, each cycle in M c and its transitive closure belongs
to some h-component. For the formal definition please consult [15].

Definition 3 ([17]). Given a morphogenetic system M , an injury is a change
from configuration x to y such that there is no directed arc from x to y in the
configuration space M c. The degree of the injury is the undirected distance
between x and y in M c.

An injury (x, y) is sustainable if both x and y belong to the same h-
component.

An M system is self-healing (of degree m, respectively) if and only if the
probability that a random injury (of degree at most m, respectively) to any home-
ostatic node is sustainable is at least 0.5.

Therefore, an injury is any change of configuration of M which cannot be
the result of a single step of the system. An injury is sustainable if it does not
take the M system out of its current h-component, i.e., it remains in the same
set of homeostatic states as before the injury.

Here we introduce a small universal self-healing M system which is based on
the construction of a self-healing M system simulating a Turing machine in [15].
Geometrically, the construction is very similar to that in Proposition 1 which is
presented at Fig. 2. A detailed examination of this construction, together with
the gallery of small universal Turing machines presented by Yurii Rogozhin in
[11] which can be simulated by that M systems, yields the following result.

Theorem 2. There exists an M system in 2D with 8 tiles, 28 floating objects,
4 protions and 100 rules, that simulates a universal Turing machine M on any
given input in linear time, and it is self-healing of degree 1, provided that injuries
at each step only affect tiles and objects belonging to a single tape cell.

4 P Versus NP in Morphogenetic Systems

We start with recalling the capability of M systems to solve the NP-complete
problem 3-SAT in a randomized polynomial time [17]. As M systems are inher-
ently nondeterministic, their computation depending among others on a random

168 P. Sośık and J. Drast́ık

Fig. 3. A chain of tiles representing an assignment to variables x1, x2 is extended and
duplicated to cover also the variable x3. Capital Ui represents an arbitrary assignment
(0/1) to xi, for i = 1, 2, while Ui represents its negation. Small u3 represents x3 ← 1,
while u3 represents x3 ← 0.

movement of floating objects, it is mostly impossible to construct a fully deter-
ministic M system which would conclude its computation in a pre-defined num-
ber of steps. Therefore, the concept of Monte Carlo M systems has been defined
in [17]: either at least 1/2 of its computations are accepting, or all computations
are rejecting. Then, a semi-uniform family of M systems solving a decision prob-
lem was constructed: for each instance of the problem, a specific Monte Carlo
M system is constructed (by a Turing machine in polynomial time), solving that
particular instance. The following result was established:

Proposition 2 ([17]). The NP-complete problem 3-SAT can be solved in ran-
domized polynomial time by a semi-uniform family of Monte Carlo M systems
using only context-free rules.

Figure 3 illustrates the generation of all possible assignments to logical vari-
ables x1, . . . , xn of the formula, by stepwise prolonging and duplicating chains of
rods in 2D, each representing one partial assignment. Note that the need for a
physical representation of sequence of variables x1, . . . , xn allowing for its dupli-
cation necessarily led us to the form of a double strand of information-bearing
elements, very much alike DNA double-stranded molecule.

4.1 M Systems with Mass

An important guideline in design of M systems was to find a compromise between
physical-chemical realism, computational realism and biological realism. Yet,
Proposition 2 shows their capability of solving NP-complete problems in ran-
domized polynomial time. This, of course, contradicts the so-called invariance
thesis understood as an extension of the Church-Turing thesis: ‘Reasonable’
machines can simulate each other within a polynomially bounded overhead in
time and a constant-factor overhead in space [20]. To make M systems more

Computational Universality and Efficiency in Morphogenetic Systems 169

physically realistic, we define the variant called M system with mass, where the
chained pushing of objects at each step is limited by a certain fixed distance
dpush. The following result can be then demonstrated.

Theorem 3. Any M system with mass can be simulated by a Turing machine
in polynomial time.

Corollary 1. M systems with mass can solve in polynomial time exactly the
class of problems P.

Proof. By inspection of details of the proof of Proposition 1 which is given in
[16], one can easily deduce that the M system constructed there to simulate any
Turing machine in a linear time is with mass, as it does not use any pushing of
tiles (or floating objects). Hence, problems in P can be solved by M systems in
polynomial time, on one hand. On the other hand, Theorem 3 implies that M
systems with mass can only solve in polynomial time the problems in P. 	

5 Conclusions

We have studied computational aspects of morphogenetic systems: their compu-
tational universality (in the Turing sense) and computational efficiency according
to the measures of the computational complexity theory. In the section devoted
to computability, two universal M systems are constructed, in the sense of a
universal computer: that each of them can, with proper input encoding, simu-
lated any Turing machine encoded as a part of the input. The second presented
universal M system is also self-healing of degree 1. The section devoted to com-
plexity then presents a characterization of the relation P versus NP with the
help of morphogenetic systems.

Among open problems, we would like to mention whether it is possible to
construct a universal M system which would be self-healing of degree greater
than 1. Some studies of self-repairing Turing machines such as, e.g., [5] may be
helpful in this sense. It is also possible (or rather probable) that still smaller
universal M systems can be constructed.

The precise characterization of the class of problems solvable by morpho-
genetic systems in polynomial time also remains open. Previous study [17]
demonstrated only their capability of solving NP-complete problems in random-
ized polynomial time. Upper bound of this class of problems, however, is not
known yet.

Acknowledgments. This work was supported by the Silesian University in Opava
under the Student Funding Scheme, project SGS/8/2022.

170 P. Sośık and J. Drast́ık

References

1. Alhazov, A., Verlan, S.: Minimization strategies for maximally parallel multiset
rewriting systems. Theor. Comput. Sci. 412(17), 1581–1591 (2011)

2. Altisen, K., Devismes, S., Dubois, S., Petit, F.: Introduction to distributed self-
stabilizing algorithms. Synth. Lect. Distrib. Comput. Theory 8(1), 1–165 (2019)

3. Einstein, A.: Über die von der molekularkinetischen theorie der wärme geforderte
bewegung von in ruhenden flüssigkeiten suspendierten teilchen. Ann. Phys. 322(8),
549–560 (1905)

4. Krasnogor, N., Gustafson, S., Pelta, D., Verdegay, J.: Systems Self-Assembly: Mul-
tidisciplinary Snapshots. Studies in Multidisciplinarity. Elsevier Science (2011)

5. Mange, D., Madon, D., Stauffer, A., Tempesti, G.: Von Neumann revisited: a Tur-
ing machine with self-repair and self-reproduction properties. Robot. Auton. Syst.
22(1), 35–58 (1997)

6. von Neumann, J.: Probabilistic logics and the synthesis of reliable organisms from
unreliable components. Ann. Math. Stud. 34, 43–98 (1956)

7. Păun, A., Popa, B.: P systems with proteins on membranes. Fund. Inform. 72(4),
467–483 (2006)

8. Păun, A., Popa, B.: P systems with proteins on membranes and membrane division.
In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 292–303. Springer,
Heidelberg (2006). https://doi.org/10.1007/11779148 27

9. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press, Oxford (2010)

10. Qang, H.: Proving theorems by pattern recognition - II. Bell Syst. Tech. J. 40(1),
1–41 (1961)

11. Rogozhin, Y.: Small universal Turing machines. Theor. Comput. Sci. 168(2), 215–
240 (1996)

12. Smolka, V., Drast́ık, J., Brad́ık, J., Garzon, M., Sośık, P.: Morphogenetic systems:
models and experiments. Biosystems 198, Article no. 104270 (2020). https://doi.
org/10.1016/j.biosystems.2020.104270

13. Sośık, P.: Morphogenetic computing: computability and complexity results. Nat.
Comput. (2022, submitted)

14. Sośık, P., Drast́ık, J., Smolka, V., Garzon, M.: From P systems to morphogenetic
systems: an overview and open problems. J. Membrane Comput. 2(4), 380–391
(2020). https://doi.org/10.1007/s41965-020-00057-9

15. Sośık, P., Garzon, M., Drast́ık, J.: Turing-universal self-healing computations in
morphogenetic systems. Nat. Comput. 20, 739–750 (2021)

16. Sośık, P., Garzon, M., Smolka, V., Drast́ık, J.: Morphogenetic systems for resource
bounded computation and modeling. Inf. Sci. 547, 814–827 (2021)

17. Sośık, P., Smolka, V., Drast́ık, J., Brad́ık, J., Garzon, M.: On the robust power of
morphogenetic systems for time bounded computation. In: Gheorghe, M., Rozen-
berg, G., Salomaa, A., Zandron, C. (eds.) CMC 2017. LNCS, vol. 10725, pp. 270–
292. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73359-3 18

18. Sośık, P., Smolka, V., Drast́ık, J., Moore, T., Garzon, M.: Morphogenetic and
homeostatic self-assembled systems. In: Patitz, M.J., Stannett, M. (eds.) UCNC
2017. LNCS, vol. 10240, pp. 144–159. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-58187-3 11

19. Turing, A.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B
237, 7–72 (1950)

https://doi.org/10.1007/11779148_27
https://doi.org/10.1016/j.biosystems.2020.104270
https://doi.org/10.1016/j.biosystems.2020.104270
https://doi.org/10.1007/s41965-020-00057-9
https://doi.org/10.1007/978-3-319-73359-3_18
https://doi.org/10.1007/978-3-319-58187-3_11
https://doi.org/10.1007/978-3-319-58187-3_11

Computational Universality and Efficiency in Morphogenetic Systems 171

20. van Emde Boas, P.: Machine models and simulations. In: van Leeuwen, J. (ed.)
Handbook of Theoretical Computer Science, vol. A: Algorithms and Complexity,
pp. 1–66. Elsevier, Amsterdam (1990)

21. Winfree, E.: Self-healing tile sets. In: Chen, J., Jonoska, N., Rozenberg, G. (eds.)
Nanotechnology: Science and Computation. Natural Computing Series, pp. 55–66.
Springer, Cham (2006). https://doi.org/10.1007/3-540-30296-4 4

22. Ziegler, G.: Lectures on Polytopes. Graduate Texts in Mathematics, Springer, New
York (1995)

https://doi.org/10.1007/3-540-30296-4_4

Adaptive Experiments for State
Identification in Finite State Machines

with Timeouts

Aleksandr Tvardovskii1(B) and Nina Yevtushenko2

1 National Research Tomsk State University, Tomsk 634050, Russia
tvardal@mail.ru

2 Ivannikov Institute for System Programming of the RAS, Moscow 109004, Russia

Abstract. Homing and synchronizing sequences are used for the current
state identification in finite state machines (FSMs). Adaptive homing and
synchronizing sequences for which the next input depends on the outputs
to the previous ones, exist more often and usually are shorter than the
preset. Thus, a lot of attention is paid to the existence check, derivation
complexity and length of shortest adaptive state identification sequences.
In this paper, we adapt the notions of adaptive homing and synchronizing
sequences for FSMs with timeouts which are widely used for solving
verification and testing problems of components of telecommunication
systems. Based on the corresponding FSM abstraction, the procedures
for deriving adaptive homing and synchronizing sequences are proposed
for FSMs with timeouts when such sequences exist.

Keywords: Finite state machines · Timeouts · Homing sequence ·
Synchronizing sequence

1 Introduction

The state identification problem for Finite State Machines (FSM) has a long
history; it has been studied since the middle of the 20th century [1–4]. Homing
and synchronizing sequences (HS and SS) are used for determining a current
state of a system, i.e., the system state after applying a corresponding HS or SS
[3,5–8]. Such knowledge allows to set a system of interest into a known state or
to determine such a state by observing external system responses. The latter is
used to minimize testing efforts in both active and passive testing (monitoring)
[9,10]. In active testing, each test sequence must be preceded by a reset to the
known initial state. When testing is performed via monitoring, it is useful to
know a current state of the system based on observed communication as such
knowledge can reduce the check of necessary test purposes/invariants. Thus, the
state identification can be efficiently used for testing optimization.

Nowadays time aspects become very important for discrete and hybrid sys-
tems, and, respectively, classical FSMs have been extended with clock variables

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Durand-Lose and G. Vaszil (Eds.): MCU 2022, LNCS 13419, pp. 172–188, 2022.
https://doi.org/10.1007/978-3-031-13502-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13502-6_12&domain=pdf
http://orcid.org/0000-0001-7705-7214
http://orcid.org/0000-0002-4006-1161
https://doi.org/10.1007/978-3-031-13502-6_12

Adaptive Experiments for State Identification in Finite State Machines 173

[11–15]. Components of a telecommunication system often have timers and time-
outs, for example, for implementing a disconnection when there is no answer from
the other side during an appropriate time period. In order to identify states of
such non-classical FSM components, so-called Timed FSMs (TFSMs) are uti-
lized. In this work we consider FSMs with timeouts, i.e., FSMs extended by a
single clock variable and special timeout transitions. Given a state, the timeout
determines how long a system can stay at a given state waiting for an input. If
an input is not applied before the timeout expires, then the TFSM can sponta-
neously move to another prescribed state.

Sufficient and necessary conditions for the existence of preset [5,6,8,9] and
adaptive [16–18] HS and SS are established for various kinds of classical FSMs
and corresponding derivation algorithms are proposed. A preset state identifi-
cation sequence is known before an experiment (before the start of testing pro-
cedures, for example) and is not modified during the experiment. In the paper
[19], the authors define the SS notion for a timed automaton, investigate var-
ious kinds of such automata for the SS existence and evaluate the complexity
of this check. Since the authors consider automata where the set of actions is
not divided into inputs and outputs, only preset SS are considered. When inputs
and outputs are involved adaptive state identification sequences can be also stud-
ied. The next input of an adaptive state identification sequence depends on its
responses to the previous inputs, which sometimes makes it more difficult to
conduct the experiment, but in some cases allows cutting the sequence length
from the exponential up to plolynomial, for example, for FSMs [2,7,20]. It is also
known that the probability that an adaptive state identification sequence exists
for a nondeterministic FSM is higher than for the existence of a corresponding
preset sequence. In this work we investigate the existence check and derivation
of adaptive state identification sequences for possibly non-deterministic FSMs
with timeouts.

The main contributions of the paper are as follows. We introduce the notion
of a timed test case for an FSM with timeouts that represents an adaptive
HS or an adaptive SS. Such a test case is a partial acyclic TFSM where at
each intermediate state either a timeout or an input with all outputs is defined.
Therefore, applying an HS or an SS means that we wait for appropriate time
units and then apply an input. Depending on the produced output, the next step
is chosen. By definition, an adaptive SS can be defined only for machines with
inputs and outputs. Necessary and sufficient conditions are established for the
existence check of adaptive HS and SS for FSMs with timeouts and procedures
for deriving corresponding timed test cases are proposed when such sequences
exist. The check conditions and derivation procedures are based on the FSM
abstraction of a given FSM with timeouts [14]. The number of states of such FSM
abstraction does not exceed the number of states of the given TFSM multiplied
by the maximum finite timeout at a state. If the FSM abstraction is represented
by special arrays [21] both procedures have the polynomial complexity with
respect to the product of the number of states and outputs. For complete non-
initialized possibly non-deterministic FSMs with timeouts, the length of both

174 A. Tvardovskii and N. Yevtushenko

shortest HS and SS is at most cubic with respect to the number of states of
the FSM abstraction when such sequences exist. In both cases, the complexity
coincides with that for classical FSMs.

The rest of the paper has the following structure. Section 2 contains necessary
definitions and notations for classical FSMs and FSMs with timeouts. In Sect. 3,
the notion of an adaptive homing sequence for FSMs with timeouts is introduced.
A procedure for deriving a homing test case for a TFSM based on the FSM
abstraction is presented in Sect. 4. In Sect. 5, we discuss how a synchronizing
test case for an FSM with timeouts can be derived based on an adaptive homing
sequence. Section 6 concludes the paper.

2 Preliminaries

In this section, we briefly remind the notions of classical Finite State Machines
and Finite State Machines with timeouts.

2.1 Finite State Machines

A Finite State Machine (FSM) is a 4-tuple P = (P, I,O, hP) where P is a finite
non-empty set of states, I and O are finite non-empty input and output alpha-
bets, and hP ⊆ P ×I ×O×P is the transition (behavior) relation. By definition,
a non-initialized FSM can start at any state of the set P. A transition (p, i, o, p′)
describes the situation when an input i is applied to P at the current state p
and P moves to state p′ producing the output (response) o. In this work, if the
converse is not explicitly stated, we consider complete observable, possibly non-
deterministic FSMs, i.e., given an FSM P, for every input i and state p, there
exists at least one transition (p, i, o, p′) ∈ hP. If there exist several such transi-
tions then for each two transitions (p, i, o, p1) and (p, i, o, p2) of hP, it holds that
p1 = p2.

The FSM has an input/output transition p
io−→ p′ if (p, i, o, p′) ∈ hP. A trace

of the FSM P at state p is a sequence of input/output transitions starting at
the state p. Given a trace tr = p

i1o1−−→ p1
i2o2−−→ . . .

inon−−−→ pn at state p of FSM P,
α = i1, i2, . . . , in is the input sequence, γ = o1, o2, . . . , on is the corresponding
output sequence and α/γ = i1/o1, i2/o2, . . . , in/on is the IO-projection of the
trace or simply an input/output sequence. State pn is the tr -successor of state
p in FSM P. In this case, an input sequence α is said to induce a trace with IO-
projection α/γ at state p. Moreover, in a non-deterministic FSM, input sequence
α can induce several traces with different IO-projections.

2.2 Timed Finite State Machines

An FSM with timeouts is a 5-tuple S = (S, I,O, λS,ΔS) where S is a finite non-
empty set of states, I and O are input and output alphabets, λS ⊆ S×I×O×S is
the transition relation and ΔS is the timeout function. We consider the timeout

Adaptive Experiments for State Identification in Finite State Machines 175

function ΔS : S → S × N
⋃ {∞} where N is the set of positive integers: for

each state this function specifies the maximum time of waiting for an input. If
no input is applied until the timeout expires then the system can spontaneously
move to another state that is prescribed by the timeout function. The timeout ∞
means that an FSM can stay at a current state forever until an input is applied.
Given state s of TFSM S such that ΔS(s) = (s′, T), if no input is applied before
the timeout T expires then the TFSM S moves to state s′. The clock value is
set to zero when a TFSM performs a transition prescribed by a timeout or an
input.

The notions of a complete (partial), deterministic (non-deterministic) and
observable TFSM are introduced similar to classical FSMs and in this work, if the
converse is not explicitly stated, we consider complete observable possibly non-
deterministic TFSMs. In other words, given a TFSM S, for each pair (s, i) ∈ S×I,
there exists a transition (s, i, o, s′) ∈ λS or there exist several such transitions
but for every two transitions (s, i, o, s1), (s, i, o, s2) ∈ λS it holds that s1 = s2.
By definition, for each state of the TFSM exactly one timeout is specified.

For each state s of TFSM and delay t > 0, a timed transition is defined
as s

t−→ s′ where state s′ is the state reached by the TFSM from state s if no
input is applied at state s during time t. Note that there can exist several states
s1, s2, ..., sn such that s

t−→ sk, 0 < k ≤ n, since TFSM can have different values
of the clock variable when a timed transition is executed. The TFSM has an
input/output transition s

io−→ s′ if (s, i, o, s′) ∈ λS.
For an FSM and its state, a trace defines a path in the flow diagram. In a

TFSM, such a path should include timed transitions. Correspondingly, instead of
a trace, we define a timed trace for an FSM with timeouts which is a sequence of
alternating timed and input/output transitions. Given a timed trace ttr = s0

t1−→
s′
0

i1o1−−→ s1
t2−→ s′

1
i2o2−−→ . . .

tn−→ s′
n−1

inon−−−→ sn
tn+1−tn−−−−−→ sn+1 of TFSM S with the

initial state s0 and the tail state sn+1, state sn+1 is a ttr-successor of state s0.
Instead of IO-sequence α/γ = i1/o1, i2/o2, . . . , in/on of a trace for an FSM, we
define a timed IO-sequence (TIO-sequence) t1, i1/o1, t2, i2/o2, . . . tn, in/on, tn+1

for a timed trace ttr of TFSM. A timed input is a pair (i, t) where i ∈ I and
t is a nonnegative real; a timed input (i, t) means that input i is applied to
the TFSM at time instance t ≥ 0 counting from the appropriate initial time
instance. A timed input (i, t) is defined at state s if there exists at least one
timed trace s

t−→ s′ io−→ s′′. A sequence of timed inputs α = (i1, t1) . . . (in, tn),
where t1 < . . . < tn, is a timed input sequence. For a timed trace ttr of the
TFSM S at state s0, a timed input sequence α = (i1, t1) . . . (in, tn) is said to
induce the trace ttr; γ = o1 . . . on is the corresponding output sequence and
α/γ = t1, i1/o1, t2−t1, i2/o2, . . . , tn−tn−1, in/on, tn+1−tn is the TIO-projection
of the ttr. State sn+1 is the ttr-successor of state s in TFSM S.

As an example, consider a TFSM in Fig. 1. A timed input sequence (i1, 2.4),
(i1, 3.6),(i2, 3.8) induces a timed trace s1

2.4−−→ s2
i1o1−−→ s1

1.2−−→ s1
i1o2−−→ s3

0.2−−→
s3

i2o1−−→ s4 with the TIO-projection 2.4, i1/o1, 1.2, i1/o2, 0.2, i2o1.

176 A. Tvardovskii and N. Yevtushenko

Fig. 1. FSM with timeouts S.

Note that differently from classical FSMs, a timed input sequence α can
induce several traces at the same state of a deterministic TFSM, due to timed
transitions.

3 Adaptive Homing Sequences for an FSM with Timeouts

A Homing Sequence (HS) is an input sequence that allows to uniquely determine
a state of an FSM under investigation after applying this input sequence and
observing the produced output sequence. A homing sequence can be preset or
adaptive [1,3] and, in this section, we remind the definition of an adaptive HS
for a classical complete and observable FSM [22] and then define an adaptive
HS for an FSM with timeouts.

3.1 Homing Test Case for an FSM

Given FSM P = (P, I,O, hP), a test case C(I,O) for P is an initialized par-
tial non-deterministic FSM C(I,O) = (C, I,O, hC, c0) with an acyclic transition
graph, where for every state at most one input with all outputs is defined; a state
without defined inputs is a deadlock state. An initialized FSM (C, I,O, hC, c0)
starts at the designated initial state c0 differently from non-initialized FSMs
which can start at any state. An initialized FSM with timeouts has the same
feature.

A test case C(I,O) for FSM P represents an adaptive input sequence [23]
which is applied to a complete FSM P over input and output alphabets I and
O using the procedure below until a deadlock state of the test case is reached.

For the first iteration, the current state c of C(I,O) is c0.
A defined input i at the current state c is applied to FSM P; P produces an

output o to i and the test case moves to the next state c′, where c
io−→ c′.

An input/output sequence α/γ is homing for FSM P if for every pair of states
p1, p2 ∈ P , for which there exist traces tr1 and tr2 with the IO-projection α/γ,
the tr1-successor of p1 and the tr2-successor of p2 coincide.

C(I,O) is a homing test case for FSM P = (P, I,O, hP), i.e., a test case
representing an adaptive homing sequence (AHS) for P, if for every trace tr

Adaptive Experiments for State Identification in Finite State Machines 177

from the initial state to a deadlock state of C(I,O) the IO-projection of tr is
homing in P. In this case, the observation of such IO-sequence allows to uniquely
determine the state of an FSM.

The following statement has been proved in [21]. Given a homing FSM P with
n states and |O| outputs represented by proper arrays, there exists a homing test
case of the height at most n3 with at most (n − 1)2n/2 + n + 1 states and at
most |O|(n − 1)2n/2 transitions; the (time) complexity of deriving this test case
is O(|O|n5).

3.2 Homing Test Case for an FSM with Timeouts

When talking about test cases representing an AHS for FSMs with timeouts,
traces and IO-sequences of a test case become timed traces and timed IO-
sequences. Thus, for every timed trace of the test case, the observation of the
corresponding timed IO-projection has to guarantee that a non-initialized TFSM
moves from every state s ∈ S to the known state s′ and, thus, the clock value
must be taken into account.

Given an input alphabet I and an output alphabet O, a timed test case is an
acyclic FSM with timeouts Q(I,O) = (Q, I,O, λQ,ΔQ, q0), where for every state
either a finite timeout or a single input with all outputs is defined. By default,
at each deadlock state the timeout is infinity. We also add a designated deadlock
state Fail to the timed test case and for every state q where an input is defined,
a timeout transition of value 1 to state Fail is added, i.e. ΔQ(q) = (Fail, 1). By
definition, a timed test case is a partial TFSM.

A timed test case Q(I,O) is applied to a complete TFSM S using the proce-
dure below until a deadlock state of the test case is reached.

For the first iteration, the current state q of Q(I,O) is q0.
If q is a non-deadlock current state where no input is defined then wait for

time Tq that is a finite timeout value at state q ; the test case moves to state q′

where q
Tq−→ q′.

If a current state q is a non-deadlock state where an input i is defined then
wait for θ, 0 < θ < 1, apply input i and observe an output o produced by S; the
test case moves to the state q′ where q

io−→ q′ and its next current state is q′.

Thus, the trace q
Tq−→ q′ io−→ q′′ of a timed test case induces a timed input

(i, Tq + θ) when the test case moves from q to q′′.
Given a timed test case in Fig. 2 for the TFSM in Fig. 1. Since at the initial

state finite timeout 2 is defined, we wait for 2 time units. At the next state, an
input is defined and thus, we wait for θ = 0.5 and apply i1. Thus, timed input
(i1, 2.5) is applied first. If the TFSM produces o2 then the test case moves to
state {s3, s4} where input i2 is defined; else if o1 was produced then test case
moves to state {s1, s2} with the finite timeout. Correspondingly, at state {s3, s4},
we wait for θ = 0.5 and apply i2. Then the test case moves to the deadlock state
and, since there is only one i2o1-pair at {s3, s4}, we know that the current state
of the TFSM in Fig. 1 is s4.

178 A. Tvardovskii and N. Yevtushenko

Fig. 2. A homing test case for TFSM S in Fig. 1.

After applying the above AHS in Fig. 2, we can conclude that if the
TFSM in Fig. 1 at any initial state executes a trace with TIO-projection
2.5, i1/o2, 0.5, i2/o1 then the TFSM reaches state s4.

The height of a timed test case is the length of the longest (timed) input
sequence that can be applied to an FSM (with timeouts) during the adaptive
experiment; the latter equals the maximum number of inputs in a path from the
initial to a deadlock state.

A TIO-sequence α/γ is homing for the TFSM S if for every pair of states
s1, s2 ∈ S, for which there exist timed traces ttr1 and ttr2 with the TIO-
projection α/γ, the ttr1-successor of s1 and the ttr2-successor of s2 coincide.

A timed test case Q(I,O) represents an adaptive homing sequence (AHS) for
FSM with timeouts S if for every trace ttr from the initial state q0 to a deadlock
state of Q(I,O) different from state Fail, the TIO-projection of ttr is homing
in S.

Informally a timed test case Q(I,O) represents an adaptive homing sequence
for FSM with timeouts S if for every timed input sequence α from initial to
deadlock state of Q(I,O), traces ttr1 and ttr2 induced by α at any pair of states
s1 and s2 (possibly with different values of the clock variable) with different tr -
successors have different TIO-projections. Thus, output responses of a homing
TIO-projection correspond to the only reached state after an adaptive homing
experiment and the current TFSM state can be uniquely determined.

For the TFSM in Fig. 1, a homing timed test case is shown in Fig. 2.
Note that when a homing test case is applied and the current state of the

FSM with timeouts is known, the TFSM still can move to another state by
timeout transitions. In order to set a TFSM to a state with the infinite timeout
additional properties of an adaptive HS are required. In this paper, we do not
discuss such test cases.

We also mention that there is a special case when an FSM with timeouts
has the empty adaptive homing sequence, i.e. no input is applied for setting the

Adaptive Experiments for State Identification in Finite State Machines 179

TFSM into the known state. It is the case when there exists a state that can
be reached from every state only via timed transitions after appropriate time t.
Thus, a timed test case has only two states, the initial state where a finite
timeout is defined and a deadlock state, i.e., here is only one path of length 1 in
the timed test case. As an example, if we replace timeout ΔQ(s3) = (s4, 1) with
ΔQ(s3) = (s2, 1) in the TFSM in Fig. 1, then the modified TFSM moves to state
s2 after three time units independently of an initial state.

4 Homing Test Case Derivation

In this section, we propose an approach for deriving a homing test case based
on the FSM abstraction of an FSM with timeouts.

4.1 FSM Abstraction

We first recall the notion of the FSM abstraction for FSMs with timeouts and
the correspondence between traces of a TFSM and traces of the corresponding
FSM abstraction [14].

Given a non-initialized possibly nondeterministic TFSM S = (S, I,O, λS,ΔS),
we derive the FSM abstraction AS = (SA, IA, OA, hAS), where IA = I

⋃ {1} ,
OA = O

⋃ {1} and the input/output 1 is an abstract input/output of the FSM
abstraction denoting the time advancing. For each state s of TFSM S where
ΔS(s) = (s′, Ts) and timeout Ts is finite, the set SA has the states (s, 0), . . . ,
(s, Ts − 1). Formally, SA = {(s, x) : (s, x) ∈ S × N ∧ x < Ts ∧ ΔS(s) = (s′, Ts)
∧Ts < ∞} ⋃ {(s, 0) : s ∈ S}. Given state (s, tj) ∈ SA of the FSM AS and input
i, a transition ((s, tj), i, o, (s′, 0)) is a transition of the FSM abstraction AS if
and only if there exists a transition (s, i, o, s′) ∈ λS. In other words, transi-
tions under input i ∈ I correspond to transitions under timed inputs (i, t)
until the timeout at state s is expired. Transitions under the special abstract
input 1 correspond to timeout transitions between states, i.e., to time advanc-
ing. Given state s such that ΔS(s) = (s′, Ts) where 0 < Ts < ∞, there are tran-
sitions ((s, 0), 1, 1, (s, 1)), .., ((s, Ts − 2), 1, 1, (s, Ts − 1)), ((s, Ts − 1), 1, 1, (s′, 0))
in the transition relation hAS. If ΔS(s) = (s,∞) then there is a transition
((s, 0), 1, 1, (s, 0)) ∈ hAS. By definition the number of states of the FSM abstrac-
tion is the sum of all finite timeouts plus the number of states when the timeout
is infinite and thus, does not exceed the number of states of a given FSM with
timeouts multiplied the maximum finite timeout at a state. In Fig. 3, there is
the FSM abstraction of the TFSM in Fig. 1.

By definition, the FSM abstraction of a complete observable non-
deterministic TFSM is a complete observable non-deterministic FSM; the FSM
abstraction of a deterministic TFSM is a deterministic FSM.

A timed input sequence α = (i1, t1) . . . (in, tn) of the TFSM S can be trans-
formed into the corresponding input sequence αFSM of the FSM abstraction
AS as follows. Let t0 = 0 and 	t
 is the integer part of t then every timed

180 A. Tvardovskii and N. Yevtushenko

Fig. 3. The FSM abstraction of the TFSM S in Fig. 1.

input (ik, tk) is converted into the input sequence αk = 1�tk−tk−1�ik where
k = 1, . . . , n and, respectively, αFSM = α1.α2.αn, where ‘.’ is the concate-
nation operator. The corresponding output sequence of the FSM abstraction is
γFSM = 1�t1�o1.1�t2−t1�o2. . . . 1�tn−tn−1�on, where γ = o1, o2, . . . , on is the out-
put response of TFSM to a timed input sequence α = (i1, t1) . . . (in, tn). An input
sequence αFSM = 1T0 .i0.1

T1 .i1 . . . 1Tn−1 .in−1.1
Tn of the FSM abstraction AS can

be converted into a timed input sequence α = (i0, t0)(i1, t1) . . . (in−1, tn−1) of the
TFSM S where t0 = T0, tk = tk−1 + Tk + θ, where 0 < θ < 1, 0 < k < n. The
corresponding output sequence γ is derived by removing all abstract outputs 1
from γFSM .

Thus, a timed trace ttr = s0
t1−→ s′

0
i1o1−−→ s1

t2−→ s′
1

i2o2−−→ . . .
tn−→ s′

n−1
inon−−−→

sn
tn+1−−−→ sn+1 of the TFSM S can be transformed into the corresponding trace

ttrFSM = (s0, 0) 11−→ . . .
11−→ (s′

0, x0)
i1o1−−→ (s1, 0) 11−→ . . .

11−→ (s′
1, x1)

i2o2−−→
. . .

11−→ (s′
n−1, xn−1)

inon−−−→ (sn, 0) 11−→ . . .
11−→ (s′

n+1, xn+1) of the FSM abstrac-

tion AS, where the number of transitions 11−→ between (sk, 0) and (s′
k, xk) is

	tk+1
. In other words, the input/output transition sk−1
ikok−−−→ sk corresponds to

the input/output transition (sk−1, xk−1)
ikok−−−→ (sk, 0) and the timed transition

sk−1
t−→ sk corresponds to the trace (sk, 0) 11−→ . . .

11−→ (s′
k, xk) with the number

	t
 of transitions 11−→.
The following statement can be proven based on [14].

Proposition 1. A timed input sequence α = (i1, t1) . . . (in, tn) of the TFSM S
induces a timed trace ttr with the TIO-projection α/γ = t1, i1/o1, t2 − t1, i2/o2,
. . . , tn−tn−1, in/on, tn+1−tn at state s if and only if the input sequence αFSM =
1�t1�i1.1�t2−t1� i2.1

�tn−tn−1�in.1�tn+1−tn� of the FSM abstraction AS induces
a trace ttrFSM with the IO-projection αFSM/γFSM = (1/1)�t1�i1/o1.(1/1)�t2−t1�

i2/o2. . . . (1/1)�tn−tn−1�in/on, (1/1)�tn+1−tn� at state (s, x).

Adaptive Experiments for State Identification in Finite State Machines 181

Corollary 1. Given an FSM with timeouts S and its FSM abstraction AS,
state s′ is the ttr-successor of state s if and only if state (s′, x′) is the ttrFSM -
successor of state (s, x) in AS.

Thus, in order to derive a homing sequence for a TFSM based on its FSM
abstraction the following correspondence can be established between homing
TIO-sequences of the TFSM and homing IO-sequences for its FSM abstraction.

Corollary 2. Given an FSM with timeouts S, its FSM abstraction AS and a
TIO-sequence α/γ = t1, i1/o1, t2 − t1, i2/o2, . . . , tn − tn−1, in/on, tn+1 − tn, the
TIO-sequence α/γ is homing if and only if the IO-sequence αFSM/γFSM =
(1/1)�t1� i1/o1.(1/1)�t2−t1�i2/o2. . . . (1/1)�tn−tn−1�in/on.(1/1)�tn+1−tn� is hom-
ing in AS.

4.2 Algorithm for Checking the Existence and Derivation
of an Adaptive HS for FSM

Since an adaptive HS for a TFSM with timeouts is derived based on its FSM
abstraction, we next recall an approach for deriving a homing test case for a
classical FSM [24].

Algorithm 1 for deriving an adaptive HS for an FSM abstraction
Input: A complete non-initialized observable possibly non-deterministic

FSM abstraction AS = (SA, IA, OA, hAS)
Output: The message ‘There is no HS for AS’ or a homing test case C(IA, OA)

for FSM AS that represents an adaptive HS
Step 1. Derive the homing FSM PL

home = (PH , IA, OA, hPH, p0) for AS where
states of PL

home are subsets of SA with cardinality at least two, initial state
p0 = SA and special state F. Only states reachable from p0 are added to PH

while hPH is derived iteratively up to length |SA|3.
Let P0

home = ({p0, F} , IA, OA, h0
PH, p0) has states p0 and F and every transi-

tion takes P0
home to state F, i.e., h0

PH = {(p0, i, o, F), (F, i, o, F) : i ∈ IA, o ∈ OA}.
Initial state p0 is marked.

Step 2. Homing FSM Pl+1
home is derived based on Pl

home. Let p be a marked
state of Pl

home; then transitions from this state in hl
PH are replaced with new

ones in hl+1
PH by the following rules:

1. (p, i, o, F) ∈ hl+1
PH if there exist o′ ∈ O, such that the set of states

{
(s′, 0) : (s, 0) io′

−−→ (s′, 0) ∧ (s, 0) ∈ p
}

coincides with set p.

2. if for every o′ ∈ O p′ =
{

(s′, 0) : (s, 0) io′
−−→ (s′, 0) ∧ (s, 0) ∈ p

}
do not coincide

with set p and has cardinality at least two, then (p, i, o, p′) ∈ hl+1
PH . If p′ is

not state of Pl
home then a marked state p′ is added to the FSM Pl+1

home, hl+1
PH

= hl+1
PH ∪ {(p′, i, o, F) : i ∈ IA, o ∈ OA}.

3. the transition at state p under input i is undefined if for every o′ the set{
(s′, 0) : (s, 0) io′

−−→ (s′, 0) ∧ (s, 0) ∈ p
}

is a singleton or the empty set.

182 A. Tvardovskii and N. Yevtushenko

When transitions for every input at state p are added, p becomes unmarked
in Pl+1

home.
Step 3. If Pl+1

home = Pl
home then output the message ‘There is no HS for AS’

and END the algorithm.
Check whether the FSM Pl+1

home has a complete submachine by iterative delet-
ing states with an undefined input from Pl+1

home. State p is removed with all incom-
ing transitions if there exists an undefined input i at p. The process of removing
states is not terminated until either there are no undefined inputs in Pl+1

home or
the initial state of Pl+1

home has an undefined input. When removing a state p with
undefined inputs, we denote such undefined input by i(p). If the initial state of
Pl+1
home has an undefined input then Pl+1

home has no complete submachine.
If Pl+1

home has no complete submachine then Step 4, else if l + 1 = |SA|3
then output the message ‘There is no timed adaptive HS for S’ else l = l + 1
and Step 2.

Step 4. Derive a homing test case C(IA, OA) for FSM abstraction AS based
on stored undefined inputs i(p) of Pl+1

home. C(IA, OA) = (C, IA, OA, hC, c0) where
C ⊆ PH , c0 = p0 and input i(p) is the only defined input at state c = p in C;
(c, i(p), o, c′) ∈ hC if (p, i(p), o, p′) ∈ hl+1

PH , where c′ = p′. If for o ∈ OA there is
no transition (p, i(p), o, p′) in hl+1

PH then the transition (c, i(p), o,D) is added to
hl+1
PH where D is a deadlock state.

Here we notice that the upper bound |SA|3 for deriving a homing FSM is
implied by the following statement [20]. If a complete observable FSM with
n states has an AHS then the length of a shortest AHS does not exceed n3.
Moreover, in [21], the authors show that the complexity of checking the existence
of an AHS for a complete observable possibly nondeterministic FSM with n
states and an output alphabet O is O(|O|n5). A homing test case for the FSM
abstraction in Fig. 3 is presented in Fig. 4.

4.3 Algorithm for Checking the Existence and Derivation
of a Homing Timed Test Case

In this section, we propose an algorithm for the derivation of a homing timed
test case for an FSM with timeouts based on its FSM abstraction.

We first check whether an AHS exists for the FSM abstraction calling Algo-
rithm 1. If there is no AHS for the FSM abstraction then there is no timed AHS
for the given FSM with timeouts (Corollary 2). However, when an AHS exists
for the FSM abstraction then a corresponding test case has to be converted to a
timed test case. The proposed algorithm for transforming an FSM test case to
a timed test case is proposed below.

Algorithm 2 Derivation of a timed homing test case based on a homing test
case for the FSM abstraction.

Input: A homing test case C(IA, OA) = (C, IA, OA, hC, c0) for the FSM
abstraction.

Output: A homing timed test case Q(I,O) = (Q, I,O, λQ,ΔQ, q0).

Adaptive Experiments for State Identification in Finite State Machines 183

Fig. 4. A homing test case for the FSM abstraction in Fig. 3.

Step 1. The set of states Q of the timed test case Q(I,O) is a subset of the
state set C of C(IA, OA); states of Q(I,O) are states of C(IA, OA) with incoming
or outgoing transitions induced by input from I and deadlock states (i.e., Q(I,O)
has no abstract input 1). Denote this correspondence as q = St(c).

Step 2. Let state q be a state of Q(I,O) such that q = St(c) and c is a state
of C(IA, OA):

ΔQ(q) = (q′, T) if there exists a trace tr at state c such that c′ is the tr -
successor of c, (1/1)T is an IO-projection of tr and q′ = St(c′);

(q, i, o, q′) ∈ λQ if (c, i, o, c′) ∈ hC, where i �= 1 and q′ = St(c′).
Step 3. For every state q of Q(I,O) with a defined input ΔQ(q) = (Fail, 1);

for every deadlock state of Q(I,O) the timeout is the infinity.

Proposition 2. Let timed test case Q(I,O) be derived by Algorithm 2 for test
case C(IA, OA). The test case Q(I,O) is homing for FSM with timeouts S if and
only if test case C(IA, OA) is homing for FSM AS.

Proof. Due to Proposition 1, there exists a trace ttrFSM at state (s, x) of FSM
abstraction AS if and only if there exists a timed trace ttr at state s of the FSM
with timeouts S. Moreover, the IO-projection αFSM/γFSM of ttrFSM is homing
in AS if and only if the TIO-projection α/γ of ttr is homing in S. Respectively,
for trace ttrFSM from the initial state to a deadlock state of C(IA, OA), the
IO-projection is homing in AS if and only if the TIO-projection is homing in S
for trace ttr from the initial state to a deadlock state of Q(I,O).

184 A. Tvardovskii and N. Yevtushenko

Thus, we propose the following procedure of the homing timed test case
derivation for an FSM with timeouts S.

1. Derive the FSM abstraction AS = (SA, IA, OA, hAS) for TFSM S and call
Algorithm 1 for checking the existence and derivation of a homing test case
C(IA, OA) = (C, IA, OA, hC, c0) if such a test case exists. If there is no homing
test case for AS then there is no adaptive HS for S.

2. Call Algorithm 2 for deriving a homing timed test case Q(I,O) from test case
C(IA, OA).

5 Checking the Existence and Derivation of an Adaptive
Synchronizing Sequence for an FSM with Timeouts

Another input sequence allowing to set a system under test into the known
state is a so-called synchronizing sequence. Intuitively a homing sequence is a
synchronizing sequence (SS) if there exists a special state s such that an FSM
under test reaches s after applying this input sequence independently of the
initial state and produced output sequence. For an adaptive SS, the designated
state is reached after applying an adaptive input sequence where next input
depends on the outputs to the previous inputs. We first remind the definition
of an adaptive SS (ASS) for a classical complete and observable FSM and then
define an adaptive SS for an FSM with timeouts.

Given a state p′ of the FSM P, an input/output sequence α/γ is p′-synchro-
nizing if for every state p ∈ P for which there exists a trace tr with the IO-
projection α/γ, the tr -successor of p is p′. Similar to an AHS, an ASS is repre-
sented by a corresponding test case. A test case C(I,O) is a p′-synchronizing for
FSM P = (P, I,O, hP), i.e., a test case representing an adaptive p′-synchronizing
sequence (ASS), if for every trace tr from the initial state to a deadlock state
of C(I,O), the IO-projection of tr is p′-synchronizing in P. In this case, after
applying a corresponding input sequence, the FSM under test reaches state p′

independently of the initial state.
In [21], it is shown that a non-initialized observable FSM has a homing test

case if and only if each pair of states is homing, i.e., FSM can be set to a known
state from each pair of states. In the same paper, corresponding necessary and
sufficient conditions are established for a synchronizing test case. Given a com-
plete observable non-initialized FSM P, state p′ ∈ P is (adaptively) definitely-
reachable (d -reachable) from state p ∈ P if there exists a test case D(p, p′) such
that for every trace tr of D(p, p′) from the initial state to a deadlock state, the
tr′-successor of state p in FSM P is either the empty set or the state p′, where
tr and tr′ have the same IO-projection. We hereafter refer to such a test case
as a d -transfer test case. There exists a p′-synchronizing test case for FSM P if
and only if the P has a homing test case and a state p′ that is d -reachable from
any other state.

An efficient method for checking whether a state p′ ∈ P is d -reachable from
state p is presented in [21]. In particular, it is proven that state p′ is d -reachable

Adaptive Experiments for State Identification in Finite State Machines 185

from state p if and only if P has a single-input acyclic submachine P′, i.e., a
submachine where at most one input is defined at every state and the transition
graph has no cycles, with the initial state p and the only deadlock state p′ such
that for each input defined in some state of P′, this state has all the transitions
of P labeled with this input. Note that since any d -transfer test case D(p, p′) is
an acyclic submachine of the machine P, then the length of any trace in D(p, p′)
does not exceed the number n of states of P. In other words, one needs at most
n − 1 inputs to adaptively transfer the possibly nondeterministic machine from
state p to state p′. Therefore, the length of a longest trace in a shortest test case
D(p, p′) is polynomial and is at most n − 1.

Given a non-initialized complete observable FSM P, if there is no state p′

that is d -reachable for any other state then FSM P has no synchronizing test
case. On the other hand, if there exists state p′ that is d -reachable for any other
state then this condition does not guarantee that the FSM has a p′-synchronizing
test case; the homing test case must also exist for the FSM.

An algorithm for deriving an ASS for non-initialized complete observable
FSM P has the following steps.

1. Call Algorithm 1. If there is no AHS for an FSM P, then there is no ASS for
this FSM, else a corresponding homing test case C(I,O) is derived.

2. If there is no state p′ that is adaptively d -reachable from every state p of P,
then there is no ASS for this FSM; else for each deadlock state c of C(I,O)
marked by {p} add a test case D(p, p′) in order to derive an adaptive p′-
synchronizing test case.

Given a state s′ of TFSM S, a TIO-sequence α/γ is s′-synchronizing for S
if for every state s ∈ S, for which there exists a timed trace ttr with the TIO-
projection α/γ, the ttr-successor of s is s′.

A timed test case Q(I,O) represents an adaptive s′-synchronizing sequence
(AHS) for an FSM with timeouts S if there exists state s′ such that for every
trace tr from the initial state q0 to a deadlock state of Q(I,O) different from
state Fail, the TIO-projection of tr is s′-synchronizing in S.

Informally a timed test case Q(I,O) represents an ASS for TFSM S if there
exists a state s′ such that for every timed input sequence α from the initial to
the deadlock state of Q(I,O), a trace tr induced by α at any state s has an
s′-synchronizing TIO-projection, i.e., the trace is ended at state s′.

Based on Proposition 1 the following statement holds.

Proposition 3. Let timed test case Q(s, s′) be derived by Algorithm 2 for test
case D((s, x), (s′, x)). The timed test case Q(s, s′) is a d-transfer test case for
FSM with timeouts S if and only if the test case D((s, x), (s′, x)) is a d-transfer
test case for FSM AS.

Therefore, a timed an ASS for an FSM with timeouts can be derived using
the following steps.

1. If there is no AHS for FSM abstraction AS of TFSM S, then there is no ASS
for S, else derive a corresponding homing test case C(IA, OA) for AS.

186 A. Tvardovskii and N. Yevtushenko

2. If there is no state (s′, 0) that is d -reachable from every state of AS, then
there is no ASS for this FSM; else for each deadlock state c of C(IA, OA)
marked by {(s, 0)} add a d -transfer test case D((s, 0), (s′, 0)).

3. Call Algorithm 2 to convert a derived test case to the timed test case.

Proposition 4. Let timed test case Q(I,O) be derived by Algorithm 2 for test
case C(IA, OA). The timed test case Q(I,O) is s′-synchronizing for FSM with
timeouts S if and only if the test case C(IA, OA) is (s′, 0)-synchronizing for FSM
AS.

Similar to AHS, the length of a shortest ASS and the time complexity of
the ASS derivation can be evaluated based on the number of states of the FSM
abstraction [20].

Here we notice that given the maximum value of the finite timeout Tmax at
a state, the length of a shortest AHS and ASS is cubic with respect to (Tmaxn)
and in the cases when Tmax is rather small, two or three, for example, the length
of a shortest AHS and ASS is much less than the upper bound for the length
of a preset HS for a nondeterministic FSM that can be exponential in this case.
However, this advantage disappears in the case when finite timeouts are rather
big.

Similar to homing test cases, when a synchronizing test case is applied and
the current state of the FSM with timeouts is known, the TFSM still can move
to another state by timeout transitions. In order to avoid this, a TFSM has to
be set into a state with the infinite timeout.

6 Conclusions

In this paper, we propose the notions of adaptive homing and synchronizing
sequences for FSMs with timeouts. For this purpose, we introduce the notion of a
timed test case which represents an adaptive timed input sequence. We have also
proposed algorithms for deriving such state identification sequences based on the
FSM abstraction of a timed FSM. All the statements are proven for complete and
observable FSMs with timeouts. However, once there is a corresponding solution
for a possibly partial or non-observable FSM, the corresponding procedures can
be constructed for a corresponding FSM with timeouts.

As a future work, we are going to consider distinguishing sequences for FSMs
with timeouts as well as state identification sequences of a special kind which
take an FSM with timeouts to a state where the FSM does not change states
without applying an input, i.e., the FSM is taken to a state with the infinite
timeout. An interesting question is how to extend the obtained results to FSMs
which have both timed guards and timeouts. Another interesting question is how
to minimize the number of states of the FSM abstraction preserving its abilities
for deriving AHS and ASS. We started this work in [25] but only for FSMs with
timed guards.

Another promising avenue is to apply the obtained results for minimizing
testing efforts for protocol implementations, since the protocol descriptions often
include timeouts.

Adaptive Experiments for State Identification in Finite State Machines 187

Acknowledgements. This work is partly supported by the RSF project № 22-29-
01189.

References

1. Gill, A.: Introduction to the Theory of Finite-State Machines. McGraw-Hill, New
York (1962)

2. Lee, D., Yannakakis, M.: Testing finite state machines: state identification and
verification. IEEE Trans. Comput. 43(3), 306–320 (1994)

3. Hibbard, T.N.: Least upper bounds on minimal terminal state experiments of two
classes of sequential machines. J. ACM 8(4), 601–612 (1961)

4. Kohavi, Z.: Switching and Finite Automata Theory. McGraw-Hill, New York (1978)
5. Wang, H.-E., Tu, K.-H., Jiang, J.-H.R., Kushik, N.: Homing sequence derivation

with quantified Boolean satisfiability. In: Yevtushenko, N., Cavalli, A.R., Yenigün,
H. (eds.) ICTSS 2017. LNCS, vol. 10533, pp. 230–242. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-67549-7 14

6. Yenigün, H., Yevtushenko, N., Kushik, N., López, J.: The effect of partiality and
adaptivity on the complexity of FSM state identification problems. Trudy ISP
RAN/Proc. ISP RAS 30(1), 7–24 (2018)

7. Kushik, N., Yevtushenko, N.: On the length of homing sequences for nondetermin-
istic finite state machines. In: Konstantinidis, S. (ed.) CIAA 2013. LNCS, vol.
7982, pp. 220–231. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-39274-0 20

8. Sandberg, S.: 1 homing and synchronizing sequences. In: Broy, M., Jonsson, B.,
Katoen, J.-P., Leucker, M., Pretschner, A. (eds.) Model-Based Testing of Reactive
Systems. LNCS, vol. 3472, pp. 5–33. Springer, Heidelberg (2005). https://doi.org/
10.1007/11498490 2

9. Kushik, N., López, J., Cavalli, A., Yevtushenko, N.: Improving protocol passive
testing through “Gedanken” experiments with finite state machines. In: Proceed-
ings of IEEE International Conference on Software Quality, Reliability and Secu-
rity, Vienna, Austria, 1–3 August, pp. 315–322. IEEE (2016)

10. Hennie, F.C.: Fault detecting experiments for sequential circuits. In: Proceedings of
Fifth Annual Symposium on Circuit Theory and Logical Design, Princeton, USA,
11–13 November, pp. 95–110. IEEE (1965)

11. Krichen, M., Tripakis, S.: Conformance testing for real-time systems. Formal Meth-
ods Syst. Des. 34, 238–304 (2009)

12. El-Fakih, K., Yevtushenko, N., Fouchal, H.: Testing timed finite state machines
with guaranteed fault coverage. In: Núñez, M., Baker, P., Merayo, M.G. (eds.)
FATES/TestCom -2009. LNCS, vol. 5826, pp. 66–80. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-05031-2 5

13. Merayo, M.G., Núñez, M., Rodriguez, I.: Formal testing from timed finite state
machines. Comput. Networks 52(2), 432–460 (2008)

14. Bresolin, D., El-Fakih, K., Villa, T., Yevtushenko, N.: Deterministic timed finite
state machines: equivalence checking and expressive power. In: Proceedings of
International Conference GANDALF, Verona, Italy, 10–12 September, pp. 203–
216 (2014)

15. Gromov, M., El-Fakih, K., Shabaldina, N., Yevtushenko, N.: Distinguing non-
deterministic timed finite state machines. In: Lee, D., Lopes, A., Poetzsch-Heffter,
A. (eds.) FMOODS/FORTE -2009. LNCS, vol. 5522, pp. 137–151. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-3-642-02138-1 9

https://doi.org/10.1007/978-3-319-67549-7_14
https://doi.org/10.1007/978-3-642-39274-0_20
https://doi.org/10.1007/978-3-642-39274-0_20
https://doi.org/10.1007/11498490_2
https://doi.org/10.1007/11498490_2
https://doi.org/10.1007/978-3-642-05031-2_5
https://doi.org/10.1007/978-3-642-02138-1_9

188 A. Tvardovskii and N. Yevtushenko

16. Kushik, N., El-Fakih, K., Yevtushenko, N.: Adaptive homing and distinguishing
experiments for nondeterministic finite state machines. In: Yenigün, H., Yilmaz,
C., Ulrich, A. (eds.) ICTSS 2013. LNCS, vol. 8254, pp. 33–48. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-41707-8 3

17. Kushik, N., Yenigün, H.: Heuristics for deriving adaptive homing and distinguishing
sequences for nondeterministic finite state machines. In: El-Fakih, K., Barlas, G.,
Yevtushenko, N. (eds.) ICTSS 2015. LNCS, vol. 9447, pp. 243–248. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-25945-1 15

18. Yenigün, H., Yevtushenko, N., Kushik, N.: The complexity of checking the existence
and derivation of adaptive synchronizing experiments for deterministic FSMs. Inf.
Process. Lett. 127, 49–53 (2017)

19. Doyen, L., Juhl, L., Larsen, K. G., Markey, N., Shirmohammadi, M.: Synchronizing
words for weighted and timed automata. In: 34th International Conference on
Foundation of Software Technology and Theoretical Computer Science, New Delhi,
15–17 December. Leibniz International Proceedings in Informatics, vol. 29, pp.
121–132 (2014)

20. Kushik, N., El-Fakih, K., Yevtushenko, N., Cavalli, A.R.: On adaptive experiments
for nondeterministic finite state machines. Int. J. Softw. Tools Technol. Transf.
18(3), 251–264 (2014). https://doi.org/10.1007/s10009-014-0357-7

21. Yevtushenko, N., Kuliamin, V., Kushik, N.: Evaluating the complexity of deriving
adaptive homing, synchronizing and distinguishing sequences for nondeterminis-
tic FSMs. In: Gaston, C., Kosmatov, N., Le Gall, P. (eds.) ICTSS 2019. LNCS,
vol. 11812, pp. 86–103. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
31280-0 6

22. Kushik, N., El-Fakih, K., Yevtushenko, N.: Preset and adaptive homing experi-
ments for nondeterministic finite state machines. In: Bouchou-Markhoff, B., Caron,
P., Champarnaud, J.-M., Maurel, D. (eds.) CIAA 2011. LNCS, vol. 6807, pp. 215–
224. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22256-6 20

23. Petrenko, A., Yevtushenko, N.: Conformance tests as checking experiments for
partial nondeterministic FSM. In: Grieskamp, W., Weise, C. (eds.) FATES 2005.
LNCS, vol. 3997, pp. 118–133. Springer, Heidelberg (2006). https://doi.org/10.
1007/11759744 9

24. Kushik, N., Yevtushenko, N.: Adaptive homing is in P. Electron. Proc. Theor.
Comput. Sci. 180, 73–78 (2015)

25. Tvardovskii, A.S., Yevtushenko, N.V.: Deriving homing sequences for finite state
machines with timed guards. Aut. Control Comput. Sci. 55, 738–750 (2021)

https://doi.org/10.1007/978-3-642-41707-8_3
https://doi.org/10.1007/978-3-319-25945-1_15
https://doi.org/10.1007/s10009-014-0357-7
https://doi.org/10.1007/978-3-030-31280-0_6
https://doi.org/10.1007/978-3-030-31280-0_6
https://doi.org/10.1007/978-3-642-22256-6_20
https://doi.org/10.1007/11759744_9
https://doi.org/10.1007/11759744_9

Author Index

Alhazov, Artiom 27
Aman, Bogdan 42

Blanc, Manon 58
Bournez, Olivier 58

Cienciala, Luděk 75
Ciencialová, Lucie 75
Csuhaj-Varjú, Erzsébet 75

Demaine, Erik D. 91
Drastík, Jan 158

Formenti, Enrico 1
Freund, Rudolf 27

Hearn, Robert A. 91
Hendrickson, Dylan 91

Ivanov, Sergiu 27

Lynch, Jayson 91

Nagy, Benedek 109

Olejár, Viktor 126
Orellana-Martín, David 143

Pérez-Jiménez, Mario J. 143

Sosík, Petr 158
Szabari, Alexander 126

Truthe, Bianca 12
Tvardovskii, Aleksandr 172

Valencia-Cabrera, Luis 143
Verlan, Sergey 27

Yevtushenko, Nina 172

	 Preface
	 Organization
	Invited Abstracts
	 Using Interference to Boost Computing
	 Super Turing Computing Enables Lifelong Learning AI
	 Contents

	Complexity of Local, Global and Universality Properties in Finite Dynamical Systems
	1 Introduction
	2 Basic Notions
	3 fDDS Properties and Their Complexity
	4 Universality
	5 Additive fDDS
	6 Conclusions and Perspectives
	References

	A Survey on Computationally Complete Accepting and Generating Networks of Evolutionary Processors
	1 Introduction
	2 Definitions
	3 Restrictions Without Decreasing Computational Power
	3.1 Number of Processors
	3.2 Number of Production Rule Types
	3.3 Restrictions to the Filters

	4 Further Research
	References

	Prescribed Teams of Rules Working on Several Objects
	1 Introduction
	2 Definitions
	2.1 Systems with Prescribed Teams of Rules
	2.2 Matrix Grammars Working on Several Objects
	2.3 Turing Machines

	3 Prescribed Teams of Rules on Strings
	3.1 Definitions for Prescribed Teams of Insertion and Deletion Rules on Strings
	3.2 Results for Prescribed Teams of Insertion and Deletion Rules on Strings
	3.3 Complexity Considerations for Prescribed Teams of Rules on Strings

	4 Conclusion
	References

	From Networks of Reaction Systems to Communicating Reaction Systems and Back
	1 Introduction
	2 Reaction Systems
	3 Networks of Reaction Systems
	4 Communicating Reaction Systems
	5 Connections Between RS Networks and CdcR Systems
	6 Conclusion
	References

	A Characterization of Polynomial Time Computable Functions from the Integers to the Reals Using Discrete Ordinary Differential Equations
	1 Introduction
	2 Some Concepts from the Theory of Discrete ODEs
	3 Some Concepts from Computable Analysis
	4 Functions from LDL are in FPTIME
	5 Functions from FPTIME are in LDL
	6 Towards Functions from Integers to the Reals
	7 Proving Theorems 4 and 5
	8 Generalizations
	9 Conclusion and Future Work
	10 Thanks
	References

	Languages of Distributed Reaction Systems
	1 Introduction
	2 Basic Notions and Notations
	2.1 Formal Language Theory Prerequisites
	2.2 Distributed Reaction Systems

	3 Languages of Extended Distributed Reaction Systems
	4 Conclusions
	References

	PSPACE-Completeness of Reversible Deterministic Systems
	1 Introduction
	2 The Framework
	2.1 Required Gadgets
	2.2 PSPACE-Hardness

	3 Deterministic Constraint Logic
	3.1 Issue with Existing Proof
	3.2 PSPACE-Hardness

	4 Billiard Balls
	References

	From Finite Automata to Fractal Automata – The Power of Recursion
	1 Introduction
	2 Basic Definitions
	3 Regular Languages
	4 The Context-Free Case
	5 Properties of the Fractal Automata
	6 Conclusions
	References

	Closure Properties of Subregular Languages Under Operations
	1 Introduction
	2 Preliminaries
	3 Results
	4 Conclusions
	References

	P Systems with Evolutional Communication and Separation Rules
	1 Introduction
	2 Preliminaries
	2.1 Alphabets and Sets
	2.2 Propositional Boolean Logic
	2.3 Cantor Pairing Function

	3 Recognizer Cell-Like Membrane Systems with Evolutional Symport/Antiport and Separation Rules
	4 A Solution to SAT in CSEC(2, 2)
	4.1 Overview of the Computations

	5 Conclusions and Future Work
	References

	Computational Universality and Efficiency in Morphogenetic Systems
	1 Introduction
	2 Morphogenetic Systems
	2.1 Polytopic Tiling
	2.2 M System
	2.3 Computation of the M System
	2.4 Example

	3 Small Universal M Systems
	3.1 Self-healing Universal M System

	4 P Versus NP in Morphogenetic Systems
	4.1 M Systems with Mass

	5 Conclusions
	References

	Adaptive Experiments for State Identification in Finite State Machines with Timeouts
	1 Introduction
	2 Preliminaries
	2.1 Finite State Machines
	2.2 Timed Finite State Machines

	3 Adaptive Homing Sequences for an FSM with Timeouts
	3.1 Homing Test Case for an FSM
	3.2 Homing Test Case for an FSM with Timeouts

	4 Homing Test Case Derivation
	4.1 FSM Abstraction
	4.2 Algorithm for Checking the Existence and Derivation of an Adaptive HS for FSM
	4.3 Algorithm for Checking the Existence and Derivation of a Homing Timed Test Case

	5 Checking the Existence and Derivation of an Adaptive Synchronizing Sequence for an FSM with Timeouts
	6 Conclusions
	References

	Author Index

