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Abstract. We introduce a new privacy model relying on bistochastic matrices,
that is, matrices whose components are nonnegative and sum to 1 both row-wise
and column-wise. This class of matrices is used to both define privacy guarantees
and a tool to apply protection on a data set. The bistochasticity assumption happens
to connect several fields of the privacy literature, including the two most popular
models, k-anonymity and differential privacy. Moreover, it establishes a bridge
with information theory, which simplifies the thorny issue of evaluating the utility
of a protected data set. Bistochastic privacy also clarifies the trade-off between
protection and utility by using bits, which can be viewed as a natural currency
to comprehend and operationalize this trade-off, in the same way than bits are
used in information theory to capture uncertainty. A discussion on the suitable
parameterization of bistochastic matrices to achieve the privacy guarantees of this
new model is also provided.
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1 Introduction

In the clash between pervasive big data collection and exploratory big data analytics
on the one hand, and stronger data protection legislation on the other hand, anonymiza-
tion stands out as a way to reconcile both sides. Indeed, the European General Data
Protection Regulation (GDPR, [8]), which can be viewed as an epitome of strong regu-
lation, establishes that personally identifiable information (PII) is no longer personal after
anonymization. Hence, anonymized data fall outside the scope of privacy regulations
and can be freely stored and processed. For anonymization to provide effective privacy
protection, it has to prevent disclosure. Disclosure can occur if an intruder can deter-
mine the identity of the subject to whom a piece of anonymized data corresponds—re-
identification disclosure—, or can estimate the value of a subject’s confidential attribute
after seeing the anonymized data—attribute disclosure.

The traditional approach to anonymization, still very dominant among statistical
agencies, can be called utility-first. It essentially consists of leveraging a repertoire of
maskingmethods collectively known as statistical disclosure control (SDC, [9]).AnSDC
method with a heuristic parameter choice and suitable utility preservation properties is
run to anonymize the original data. Then the risk of disclosure is assessed empirically
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(for example using record linkage between the original and the anonymized data) or
analytically (using generic measures or measures tailored to a specific SDC method). If
the remaining risk is deemed too high, the data protector tries an SDC method having
more privacy-stringent parameters and generallymore utility loss. This process is iterated
until the risk is low enough.

The computer science approach to anonymization could be termed privacy-first, and
it is based on privacy models. A privacy model is a privacy condition dependent on a
parameter that guarantees an upper bound on the re-identification risk and perhaps on
the attribute disclosure risk. Each privacy model can be enforced using one or several
SDC methods. There are currently two main families of privacy models, one based on
k-anonymity [14] and the other on ε-differential privacy [7]. As shown in [2], the two
families are complementary and have their own merits.

A problem with the current state of the art in the literature is that it appears as a
variegated collection of SDC methods and privacy models. Whereas the permutation
model [4] has been proposed to give a conceptual connection among SDC methods, no
encompassing framework exists for privacy models. The ambition of this paper is to
break ground towards a framework that not only unifies the two main families of privacy
models—differential privacy and k -anonymity—but also aligns anonymization with
information theory, which in turn simplifies what is meant by utility for an anonymized
data set. We introduce bistochastic privacy, a specific form of randomized response
in which the anonymized data Y are obtained from the original data X using Markov
transition matrices that are bistochastic, that is, whose components are nonnegative and
sum to 1 both row-wise and column-wise.

Section 2 connects bistochastic matrices with differential privacy, k-anonymity and
SDC. A new privacy model, aligning information theory and privacy is then presented
in Sect. 3, while Sect. 4 discusses the parametrization of bistochastic matrices. Finally,
conclusions and directions for future work are gathered in Sect. 5. The Appendix gives
background on randomized response, the permutation model of SDC and information
theory.

2 Connections Between SDC,Differential Privacy and k-Anonymity
Through Bistochastic Matrices

To the best of our knowledge, this is the first time that bistochastic matrices are explicitly
considered in the privacy literature. However, it happens that, without it being clearly
stated, they have already been implicitly used. In what follows, we establish novel
theoretical results showing that the bistochasticity assumption is a connector across
SDC, differential privacy and k-anonymity.

2.1 Connection with SDC

We will assume a randomized response matrix P (see Expression (A.1) in the appendix)
that fulfills the additional left stochasticity constraints that

∑r
u=1 puv = 1 ∀v = 1, . . . , r.

ThismakesP bistochastic (left stochasticity implies that any anonymized categoriesmust
come from the original categories). The following result then follows:
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Theorem 1 (Birkhoff-Von Neumann [12]): If an r × r matrix P is bistochastic, then
there exist λ1, . . . , λJ ≥ 0with

∑J
j=1 λj = 1 and P1, . . . ,PJ permutation matrices such

that:

P =
J∑

j=1

λjPj (1)

Theorem 1 states that any bistochastic matrix can always be expressed as a convex
combination of permutation matrices. Note that while there are r! possible permutations
of r categories, every r × r doubly stochastic matrix can be represented as a convex
combination, which may not be unique, of at most r2 − 2r + 2 permutation matrices
[12].

This result directly establishes a connection with SDC through the permutation
model. In fact, SDC can be viewed as a specific case of a more general approach that
uses bistochastic matrices to perform anonymization. The permutation model considers
a crisp permutation within the data set domain: it yields values occurring in the data
set, except perhaps for a small noise addition that does not alter ranks. In contrast, a
bistochastic matrix is described by Theorem 1 as a probabilistic model of permutation
within the domain of attributes:

• The bistochastic transition matrix maps true values in the original data set to reported
values that can in general be any value in the domain of the attributes—perhaps very
different from the attribute values occurring in the data set.

• Expression (1) can be viewed as a probabilistic permutation: each permutation matrix
Pj has a probability λj of being actually used. Only if λj = 1 for some j in Expression
(1), which describes the functioning of any SDC methods, is permutation Pj certain
to occur.

2.2 Connection with Differential Privacy

Differential privacy (DP) is a privacy model that can be enforced using a variety of SDC
techniques [13]. In what follows, we choose Randomized Response (RR) as a technique
to enforce DP. This is a legitimate setting, as during the inception of differential pri-
vacy, randomized response was already considered as a method to produce differentially
private data sets. Thus, the connection established can be viewed as reasonably gen-
eral. It follows that differential privacy constraints on an RR scheme happen to enforce
bistochasticity, as is shown by the following proposition, proven in [16]:

Proposition 1: The r × r matrix P of an ε-differentially private randomized response
scheme is of the form:

puv =
{

eε

r−1+eε if u = v
1

r−1+eε if u �= v
with ε ≥ ln maxu=1,...,r

maxu=1,...,Kpuv
minu=1,...,Kpuv

(2)

Expression (2) describes a bistochastic matrix, as both its rows and columns sum to
1. Note also that taking ε = 0 in this matrix yields perfect secrecy (see Appendix), as
the probabilities within each column are identical.
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More generally, this result sheds an alternative light on the functioning of differential
privacy, at least when it is attained through RR. To see this, assume r= 3. In the extreme
case of the strictest differential privacy, i.e. when ε = 0, Expression (2) implies that all
components ofPmust be equal to 1/3. FollowingTheorem1, the associated differentially
private randomized response scheme can be expressed as the following combination of
permutation matrices:

Clearly, with the strictest setting, no permutation pattern is favored. However, for
ε = 2, one gets:

P =

⎛

⎜
⎜
⎝

e2

2+e2
1

2+e2
1

2+e2
1

2+e2
e2

2+e2
1

2+e2
1

2+e2
1

2+e2
e2

2+e2

⎞

⎟
⎟
⎠ = e2

2 + e2

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ + 1

2 + e2

⎛

⎝
0 0 1
1 0 0
0 1 0

⎞

⎠ + 1

2 + e2

⎛

⎝
0 1 0
0 0 1
1 0 0

⎞

⎠.

When the constraints imposed by differential privacy are relaxed, the probability of
not altering the data (the identity matrix being a special case of permutation) is favored
with a probability of e2

2+e2
= 0.78, while other permutation patterns have a probability

of 0.11 of being taken.
The usual notion of differential privacy is that the presence or absence of any given

record in a data set cannot be noticed, up to exp(ε), upon seeing anonymized outputs
on the data set. When differential privacy is achieved via RR and is viewed through
the lens of bistochastic matrix, it can be seen as ensuring blindness on how attribute
categories are permuted.The strictest enforcement of differential privacy (ε =0) amounts
to random permutation and, as we saw, to perfect secrecy. With a laxer enforcement,
some specific permutation patterns are more likely to occur. In Expression (2) we see
that for ε = 2 not enough privacy is provided, because the chances of releasing the
original data unaltered are 78%. Thus, the privacy budget ε can also be seen as being
proportional to the probability of not permuting the data. Hence, too large a budget does
not provide sufficient deniability. Conversely, the smaller the budget, themore credible is
an individual who can deny that her reported category is her original category. Therefore,
the smaller ε, the higher is plausible deniability.

2.3 Connection with k-Anonymity

A bistochastic matrix can also be parametrized to fulfill k-anonymity, more specifically
its Anatomy variant [18]. Like standard k-anonymity, Anatomy relies on splitting the
records in the data set into classes of at least k records. However, unlike standard k-
anonymity, the quasi-identifier values within each class are not made equal. Instead, two
tables are released for each class: one contains the projection of the original records of
the class on the quasi-identifier attributes, and the other the projections of the original
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records on the rest of attributes. The correspondence between entries in the two tables
of each class is not revealed: thus, if the class contains k records, there are k! possible
bijections between its quasi-identifier value combinations and its value combinations for
the other attributes. In particular, given aquasi-identifier combination, the probability that
an intruder finds the matching confidential attribute values is at most 1/k, as in standard
k-anonymity (note here that l-diversity is not guaranteed on the rest of attributes).

Let X be an original data set that is “anatomized” as follows:

• Compute k-anonymous classes of the records. Let the number of resulting classes be
L and the number of different quasi-identifier combinations in the l-th class be nl, for
l = 1,…,L.

• For each class release two tables as in Anatomy, one table containing a random
permutation of quasi-identifier combinations and the other table the projections of
the records on the remaining attributes (those that are not quasi-identifiers). The set
of the two tables for every class constitutes the anatomized data set Y.

The quasi-identifier tables of the anatomized k-anonymous data set Y can be viewed
as having been obtained using the following transition matrix:

Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

Q1 0 · · · · · · 0
0 Q2 0 · · · 0
... 0

. . .
. . .

...
...

...
. . .

. . . 0
0 0 · · · 0 QL

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(3)

with Ql being the following nl × nl submatrix, for l = 1,…,L:

Ql =

⎛

⎜
⎜
⎜
⎝

1
/

nl
· · · 1

/

nl
...

. . .
...

1
/

nl
· · · 1

/

nl

⎞

⎟
⎟
⎟
⎠

.

Each submatrix Ql randomly permutes the quasi-identifier combinations within a
class. If a combination of quasi-identifiers is repeated in two different classes i and j,
it is permuted differently in each class, according to the respective submatrices Qi and
Qj. That is, the combination has two different rows and two different columns in Q,
specifically one row and one column in Qi and one row and one column in Qj. Finally,
note that Ql is bistochastic ∀l = 1,…,L, and that the overall Q is also bistochastic.

Thus, k-anonymity can be viewed as the application of a special parametrization
of a bistochastic matrix. In fact, and as each submatrix Ql achieves perfect secrecy,
k-anonymity can be seen as a collection of perfect privacy blocks, which is exactly
the original intuition behind k-anonymity, gathered into a block-diagonal, bistochastic
matrix.
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3 A Privacy Model Based on Bistochastic Matrices

At first sight, one could wonder about the necessity of imposing an additional con-
straint on RR and its ex-post version PRAM [11], some well-trodden approaches for
anonymization that have proved their merits over the years. However, and beyond the
appeal of the theoretical connections developed above, the interest in bistochasticity is
justified by the following theorem (see Appendix A.3 for some background notion on
majorization and the � relationship):

Theorem 2 (Hardy, Littlewood, and Polya [12]): p � q if and only if q = PTp for some

bistochastic matrix P.

Theorem 2 states that a bistochastic matrix never decreases uncertainty and is the
only class of matrices to do so. In fact, and when it is not a permutation matrix, it always
increase uncertainty.WhenP is only right stochastic, as in the traditional approach toRR,
no particular majorization relationship emerges and the resulting anonymized attribute
cannot be qualified as more (or less) uncertain (in the sense of information theory) than
the original attribute. However, when P is bistochastic but not a permutation matrix,
the anonymized attribute will always be more uncertain, i.e. it will always contain more
entropy. Here lies the fundamental functioning behind the privacymodel proposed in this
paper. The idea is to infuse a data set with uncertainty, which in fact provides protection
but at the same time degrades information.

3.1 Univariate Bistochastic Privacy

We start by the simplest case where we seek to anonymize only one attribute to prevent
disclosure. In what follows, we will assume that in Expression (1) puv > 0∀u, v. The
transition matrix P has only strictly positive entries, meaning that any individual in any
of the r categories can be reported in the anonymized attribute in any other of the r
categories. As some of the transition probabilities can be made as small as desired, this
is not really binding for the validity of the anonymized attribute. However, this additional
constraint makes P the transition matrix of an ergodic Markov chain [3]. In turn, that
implies that P has a unique stationary distribution, which, as P is bistochastic, is the
uniform distribution [3].

The entropy rate of P is then given by the standard formula:

H (P) = −
r∑

u,v=1

μupuvlog2puv, (4)

where μu denotes the uniform distribution, i.e. μu = 1/r.
The entropy rate of P is the average of the entropies of each row of P. Note that, in

the case of perfect secrecy where all probabilities in P are equal, that we will denote
hereafter by P*, we haveH (P∗) = log2r, which is the maximum achievable entropy for
an r × r bistochastic matrix. The definition of bistochastic privacy then follows:

Definition 1 (Univariate Bistochastic Privacy):The anonymized version Y of an original
attribute X is β-bistochastically private for 0 ≤ β ≤ 1 if:
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i) Y = PTX with P bistochastic
ii) H (P)

H (P∗) ≥ β.

An anonymized attribute satisfies β-bistochastic privacy if it is the product of a
bistochastic matrix P and the original attribute, and if the entropy rate of P is at least 100
β% of the maximum achievable entropy. H (P∗) represents the maximum “spending”
that can be allocated to privacy, and because we defined entropy with logarithm to
the base 2, this maximum amount is log2r bits. Thus, when β = 1, all the bits have
been spent and the attribute has been infused with the maximum possible amount of
uncertainty; in this case, perfect secrecy is achieved and it is clear that Y = P∗TX
returns the uniform distribution. The other extreme case β = 0 means that the attribute
has been left untouched and no uncertainty has been injected, i.e. H (P) = 0. Thus, for
0 < β < 1 there lies a continuum of cases where varying amount of uncertainty bits can
be injected, which will guarantee a varying amount of protection.

Here, what we mean by protection can be illustrated by assuming that an attacker
has been able to re-identify an individual through her quasi-identifiers (in whatever
way those have been protected), and now wants to learn the value of her confidential
attribute from the bistochastically private release of this attribute, Y. If the attribute
is 1- bistochastically private, nothing can be learnt by virtue of perfect secrecy. The
attacker is facing a uniform distribution and at best can only perform a random guess,
and the strength of plausible deniability is maximal. An alternative way to illustrate the
situation faced by an attacker is to consider the quantity 2H (Y ), which yields the number
of equally probable outcome values that can be represented by Y. Since Y is the uniform
distribution, this number is r. One way to think about this value is that, to learn about
the value of the confidential attribute of the re-identified person, an attacker is facing an
imaginary dice with r sides. The targeted individual can exactly claim that strength of
plausible deniability.

In this example, the links between the confidential attribute and the quasi-identifiers
have been completely broken, while the distribution of the former has been completely
uniformized. Thus, information has been totally lost. In addition, and because P∗ is
singular, an estimate about the univariate distribution cannot be retrieved through the
procedure described in the Appendix on randomized response. In that case, the price to
pay for perfect secrecy in terms of information is maximal.

On the other hand, when H (P) = 0 the original information is left untouched and
the data user gets the highest possible utility from the data. Consequently, moving β

between 0 and 1 in bistochastic privacy is equivalent to operating a trade-off between
information and protection. The more bits are injected in the attribute via a bistochastic
matrix, the more information is taken away from the user and traded against protection.

Unlike other privacy models, bistochastic privacy makes the trade-off between pri-
vacy and information explicit. In fact, it can be considered as a privacy and utility-first
approach. Moreover, it also offers the additional advantage of distorting the original
information of the data always in the same direction. This is so because, following The-
orem 2, only bistochastic matrices can increase entropy (in physics for example, it is
well-known that bistochasticMarkov chains are the only stochastic process satisfying the
second law of thermodynamics, [10]). An additional consequence of this is that, unlike
other privacy models that can be attained using several SDC techniques, bistochastic
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privacy must be achieved using bistochastic matrices. Whereas this might be viewed as
limiting, at the same time it simplifies privacy implementation, as the same entities that
are used to define the privacy guarantees of the model are also used to achieve them.
In the case of differential privacy, it has been recently shown that the actual protection
level offered by differentially private data sets generated through different methods can
be very different, even if the same level of differential privacy guarantees is enforced at
the onset [13].

By always increasing entropy, bistochastic privacy always produces anonymized
data that are a coarsened version of the original data. Stated otherwise, bistochastically
private data are always a compact version of the original data, where some details have
been lost. This is in line with intuition, to the extent that detailed information is where
privacy risks reside. A popular SDC method that also coarsens data is microaggrega-
tion, which is a common approach to achieve k-anonymity on a numerical attribute [9].
Microaggregation reports the centroids of clusters instead of individual values. It can
be noted that if the matrix of Expression (3) is applied to a numerical attribute instead
of a categorical one, the product of this matrix and the original attribute will produce a
microaggregated version of the latter, with the centroids being the means of the clusters.

The fact of always coarsening data means that the evaluation of information loss
for bistochastically private data is simplified as it can be systematically assessed trough
this lens: any analytical needs to be performed on the data can be gauged through their
behavior when data are coarsened. For example, the properties of standard econometric
estimators on coarsened data are already established [17]. We believe this presents a
clear advantage over other privacy models and SDC methods, for which the direction
in which information is distorted is often unclear, and where one must rely on specific
information loss metrics related to the analytical task to be performed.

3.2 Bistochastic Privacy at the Data Set Level

We now consider the case of several attributes. First, we start by noting that, following
the remark on microaggregation just above, bistochastic matrices can be applied on both
categorical and numerical attributes. In the categorical case, the original proportions of
respondents whose values fall in each of the r categories will be changed, which will
coarsen the distribution to deliver randomized proportions closer to the uniform distribu-
tion. In the latter case, it will tend to average the numerical values of respondents. In fact,
if PRAM is used for randomization, then in a bistochastic randomized response scheme
on a numerical attribute the individuals are used as categories. Moreover, and because
bistochasticmatrices aremean-preserving, the anonymized numerical attributewill have
the same mean as the original numerical attribute (note that this would not be possible
with a non-bistochastic Markov matrix, which is generally not mean-preserving).

Bistochastic randomized response scheme on a numerical attribute can be given
additional intuition by considering Expression (1). As a bistochastic matrix can always
be expressed as a convex combination of permutation matrices, applying a bistochastic
matrix on a numerical attribute is equivalent to permuting individuals, albeit here this is
done in a probabilistic way, unlike in typical permutation/swapping SDC methods.

Finally, one can note that, in the case where matrix P* (with all probabilities in it
being identical) is used, all the values of the anonymized numerical attribute Y are equal
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to the average of the original attribute X. This a rather extreme case of coarsening, which
makes Y a k-anonymous version of X with only one cluster.

From now on, denote by X a data set comprised of K attributes X1,…,XK . Based on
the discussion above, we will not precise if the attributes are numerical or categorical.
As a result, nk will denote either the number of categories if Xk is a categorical attribute,
or the number of individuals N if Xk is a numerical attribute. Y, the anonymized version
of X, is generated by injecting entropy in each attribute k through nk × nk bistochastic
matrices Pk :

Pk =
⎛

⎜
⎝

p11 · · · p1nk
...

. . .
...

pnk1 · · · pnknk

⎞

⎟
⎠ (5)

where pukvk = Pr(Yk = vk |Xk = uk) denotes the probability that the original response
(or the original individual) uk in Xk is reported as vk in Yk , for uk , vk ∈ {1, . . . , nk}.
Under this procedure, the following proposition holds:

Proposition 2: The maximum number of bits that can be injected into a data set X is
H∗(P∗

1 , . . . ,P
∗
K

) = ∑K
k=1H

(
P∗
k

)
.

This property stems from the fact that joint entropy is always subadditive, i.e.
it always hold that H (P1, . . . ,PK ) ≤ ∑K

k=1 H (Pk) [3]. This leads to the following
definition:

Definition 2 (Conservative multivariate bistochastic privacy): The anonymized version
Y of an original data set X is conservatively β-bistochastically private for 0 ≤ β ≤ 1 if:

i) Y = (
PT
1 X1, . . . ,PT

KXK
)
with Pk ∀k = 1, . . . ,K bistochastic

ii)
∑K

k=1 H (Pk )
∑K

k=1 H(P∗
k )

≥ β

Definition 2 has the merit of simplifying the implementation of bistochastic pri-
vacy on a whole data set. The fact that each attribute is dealt with separately keeps
the computational cost relatively low [6]. Moreover, estimating the distribution of the
frequencies of each attribute is easily achievable because the computational cost of
inverting each bistochastic matrix is also low. However, the drawback is that, because
entropy is subadditive, one injects more bits than in the case of dealing directly with
the joint distribution. More protection is applied and, as result, more information is lost.
In particular, the dependencies between attributes may end up getting more degraded
than necessary. Unnecessary information loss is only avoided in the case where all the
original attributes are independent.

A way to avoid information loss when attributes are dependent is to apply a bis-
tochastic matrix PJ directly on the joint distribution XJ = X1 × · · · × XK . This leads to
the following definition:

Definition 3 (True Multivariate Bistochastic Privacy): The anonymized version YJ of
a multivariate distribution XJ is β-bistochastically private for 0 ≤ β ≤ 1 if:
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i) Yj = PT
J XJ with PJ bistochastic

ii)
H(Pj)
H(P∗

J )
≥ β

While this definition of multivariate bistochastic privacy appears in principle the
most appropriate one, its computational cost may however result in practical hurdles.
To perform anonymization, matrix PJ may reach a very large size, in particular if the
original data set contains many numerical attributes. Moreover, and while it will be still
possible to retrieve an estimate of the true joint distribution using the procedure described
in the Appendix on randomized response, the computational cost of inverting PJ grows
exponentially with the number of attributes and the presence of numerical attributes.
As a result, like other privacy models, bistochastic privacy is not immune to the curse
of dimensionality. For this reason, Definition 2 remains more widely applicable than
Definition 3.

4 Parameterization of Bistochastic Matrices

We discuss here how to achieve bistochastic privacy by the suitable parameterizations of
matrices.We saw inSect. 2 twopossible cases that lead to differential privacy (Expression
(2)) and k-anonymity (Expression (3)) guarantees. However, beyond popular privacy
models more parameterizations are possible.

We start by noting that the diagonal of a bistochasticmatrix is central in any construc-
tion. Indeed, the diagonal contains the probability, for an individual or a category, that
the anonymized value is the true value, meaning that the diagonal values will indicate a
certain level of “truthfulness” in the anonymized data. In fact, the level of truthfulness
of a bistochastic matrix is related to its singularity:

Proposition 3: If for a bistochasticmatrix Pk =
⎛

⎜
⎝

p11 · · · p1nk
...

. . .
...

pnk1 · · · pnknk

⎞

⎟
⎠pukuk > 0.5∀uk ∈

{1, . . . , nk}, then Pk is non-singular.
This proposition comes from the fact that a bistochastic matrix with its diagonal

values superior to 0.5 is by definition a diagonally-dominant matrix, i.e. for every row
of the matrix, the magnitude of the diagonal entry in a row is larger than or equal to the
sum of the magnitudes of all the other (non-diagonal) entries in that row. By the Levy–
Desplanques theorem [12], such matrix is always non-singular. For anonymization (and
also data utility), this means that, if a bistochastic matrix is randomizing in such a way
that more than half of the time the true values are reported in the anonymized data set,
then the matrix is also invertible. An estimate of the univariate distribution can then
always be retrieved following the procedure outlined in the Appendix on randomized
response. The setting of diagonal values is thus pivotal for parameterization but it is in
no way binding. One can still set an “untruthful” matrix with very small diagonal values,
albeit the non-singularity of the matrix will not always be guaranteed.
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A convenient way of building a bistochastic matrix is to use a special case of Toeplitz
matrices, namely a circulant matrix:

Pk =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

p11 p12 p13 . . . p1nk
p1nk p11 p12 · · · p1(nk−1)

p1(nk−1) p1nk p11 · · · p1(nk−2)
...

...
...

...
...

p12 p13 p14 · · · p11

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(6)

In that case, the first row of Pk determines all the elements of the matrix.
Another way is to consider symmetric tridiagonal matrices Pk of the following form

(with αi−1 + αi ≤ 1,∀i ∈ {1, . . . , nk − 2}):
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 − α1 α1 0 0 · · · 0
α1 1 − α1 − α2 α2 0 · · · 0
0 α2 1 − α2 − α3 α3 · · · 0
...

...
...

...
. . .

...

0 0 0 αnk−1 1 − αnk−1 − αnk αnk
0 0 · · · · · · αnk 1 − αnk

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(7)

Remark that in Expressions (7) and (3) the matrices contain zeros and thus strictly
they are not describing an ergodic process. While one can always replace the zeros by
an infinitesimal term γ > 0 and then adjust the other strictly positive remaining terms in
order to get a strictly ergodic bistochastic matrix, a way to ease implementation is to not
adjust the strictly positive terms to get what is called a super doubly stochastic matrix,
where all rows and columns sums will be infinitesimally above one. In most cases, such
matrices will behave almost like purely bistochastic ergodic matrices [10].

The latter way is the one we have followed in the examples of Table 1, where we
give the number of bits of selected bistochastic matrices expressed as a percentage of
the maximum possible number of bits achieved in the case of perfect secrecy, i.e. we
report directly the β’s. We consider 3 parameterizations for each type of bistochastic
matrix considered: i) differential privacy following Expression (2) for ε = 5, 3 and 1,
ii) k-anonymity following Expression (3) for k = 2, 3 and 6, iii) a tridiagonal matrix
following Expression (7) with αi−1 and αi= 0.1, 0.3 and 0.4, and iv) a circulant matrix
following Expression (6) with p11=0.9, 0.6 and 0.2 (while the remaining probabilities
in each row are all equal and add to 1 − p11). The cases are set to go each time in the
direction of more entropy and less truthfulness. The matrices generated are 12 × 12
in size, thus meant to be applied on a numerical attribute with 12 individuals or on a
categorical attribute with 12 categories.

In this example, the injection of log212 = 3.6 bits in the attribute achieves perfect
secrecy, and one can see that the strictest parameter values of differential privacy and
k-anonymity in Table 1 come relatively close to this amount. Moreover, as differential
privacy via RR gives a circulant matrix (see Expression (2)), it is not surprising that our
circulant matrix parameterization happens to mimic differential privacy quite closely.
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Table 1. Example of bistochastic guarantees. Each column corresponds to a different parameter
value.

Parametrization using: 1 2 3
Differential privacy 17% 60% 97%

K-anonymity 28% 56% 72%
Tridiagonal matrix 24% 35% 40%
Circulant matrix 21% 63% 93%

Distance to perfect secrecy (β's)

While a privacy model in itself, bistochastic privacy can ease the comparison of per-
formances across privacy models, both in terms of privacy but also of information loss,
through the β’s values.

Note that to achieve bistochastic privacy, one just needs to select appropriate bis-
tochastic matrices. To that end, the only information required on the data set to be
anonymized is its size in terms of number of individuals and attributes and the number
of categories for each categorical attribute. Therefore an agent, independent of the data
controller, say a “data protector”, can generate the appropriate matrices. The parameter
β for those matrices will depend on the environment and the desired protection-utility
trade-off.

5 Conclusions and Future Research

In this paper, we have proposed bistochastic privacy, a newmodel that aligns privacywith
information theory and unifies the main privacy models in use, in addition to connecting
with the permutation model that was shown to underlie all statistical disclosure control
methods [4]. The functioning of this new model also clarifies and operationalizes the
trade-off between protection and utility by expressing it in terms of bits, a natural unit
of privacy and information loss.

This paper opens several lines for future research. One of them is to conduct fur-
ther empirical work on real-life data sets. Another is to investigate if recent solutions
developed to mitigate the dimensionality problem in RR can be adapted to the present
model [6]. Yet another challenge is to extend bistochastic privacy to generate new privacy
models that may be more suitable for data that are unstructured or dynamic.

Acknowledgements. Partial funding from the European Commission under project H2020–
871042 “SoBigData++” is acknowledged. The second author is also partially funded by an ICREA
Acadèmia Prize.
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Appendix

A.1 Randomized Response

Let X denotes an original categorical attribute with 1, . . . , r categories, and Y its
anonymized version. Given a value X = u, randomized response (RR, [1]) computes
a value Y = v by using an r × r Markov transition matrix:

P =
⎛

⎜
⎝

p11 · · · p1r
...

. . .
...

pr1 · · · prr

⎞

⎟
⎠(A.1)

where puv = Pr(Y = v|X = u) denotes the probability that the original response u in X
is reported as v in Y, for u, v ∈ {1, . . . , r}. To be a proper Markov transition matrix, it
must hold that

∑r
v=1 puv = 1∀u = 1, . . . , r. P is thus right stochastic, meaning that any

original category must be spread along the anonymized categories.
The usual setting in RR is that each subject computes her randomized response

Y to be reported instead of her true response X. This is called the ex-ante or local
anonymization mode. Nevertheless, it is also possible for a (trusted) data collector to
gather the original responses from the subjects and randomize them in a centralized way.
This ex-post mode corresponds to the Post-Randomization method (PRAM, [11]). Apart
from who performs the anonymization, RR and PRAM operate the same way and make
use of the same matrix P.

Let π1,…,π r be the proportions of respondents whose true values fall in each of the
r categories of X; let λv = ∑r

u=1puvπu for v = 1,…,r be the probability of the reported
value Y being v. If we define by λ = (λ1, . . . , λr)

T andπ = (π1, . . . , πr)
T , then we

haveλ = PTπ . Furthermore, if P is nonsingular, it is proven in [1] that an unbiased
estimator π

∧

of π can be obtained asπ
∧ = (

PT
)−1

λ. Thus, univariate frequencies can
be easily retrieved from the protected data set. Note that this procedure does not entail
any privacy risk as only some estimates of the frequencies are retrieved, not specific
responses that can be traced back to any individual.

RR is based on an implicit privacy guarantee called plausible deniability [5]. It
equips the individuals with the ability to deny, with variable strength according to the
parameterization ofP, that they have reported a specific value. In fact, themore similar the
probabilities in P, the higher the deniability. In the case where the probabilities within
each column of P are identical, it can be proved that perfect secrecy in the Shannon
sense is reached [15]: observing the anonymized attribute Y gives no information at all
on the real value X. Under such configuration, a privacy breach cannot originate from
the release of an anonymized data set, as the release does not bring any information that
could be used for an attack. However, as exposed in the paper, the price to pay in terms
of data utility is high.

A.2 The Permutation Model of SDC

The permutation model of statistical disclosure control conceptually unifies SDC meth-
ods by viewing them basically as permutation [4]. Consider an original attribute X =
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{x1, . . . , xn} observed on n individuals and its anonymized versionY = {y1, . . . , yn}.
Assume these attributes can be ranked—even categorical nominal attributes can be,
using a semantic distance. For i = 1 to n: compute j = Rank(yi) and let zi = x(j), where
x(j) is the value of X of rank j. Then call attribute Z = {z1, . . . , zn} the reverse-mapped
version of X. For example, if an original value x1 ∈ X is anonymized as y1 ∈ Y, and y1
is, say, the 3rd smallest value in Y, then take z1 to be the 3rd smallest value in X. If there
are several attributes in the original data set X and anonymized data set Y, the previous
reverse-mapping procedure is conducted for each attribute; call Z the data set formed
by reverse-mapped attributes.

Note that: i) a reverse-mapped attribute Z is a permutation of the corresponding
original attribute X; ii) the rank order of Z is the same as the rank order of Y. Therefore,
any SDC method for microdata—individual records—is functionally equivalent to per-
mutation—transforming data set X into Z—followed by residual noise—transforming
Z into the anonymized data set Y. The noise added is residual because by construction
the ranks of Z and Y are the same.

A.3 Information Theory

Classically, information theory approaches the notion of information contained in a
message as capturing how much the message reduces uncertainty about something [10].
As a result, in this theory information shares the same definition as entropy and choosing
which term to use depends on whether it is given or taken away. For example, a high
entropy attribute will convey a high initial uncertainty about its actual value. If we
then learn the value, we have acquired an amount of information equal to the initial
uncertainty, i.e. the entropy we had originally about the value. Thus, information and
entropy are two sides of the same coin. In this paper, we propose to apply entropy to a
data set in a controlled way. This operation will take away data utility from the user but
will in exchange generate protection. As such, data utility and protection also become
two sides of the same coin, albeit in that case they are inversely related.

In information theory, a basicway to capture uncertainty ismajorization [12].Assume
two vectors x = (x1, . . . , xN )T and y = (y1, . . . , yN )T that represent probability distri-
butions, with the elements of each vector pre-ordered in decreasing order. The vector x
is said to majorize y, usually noted as x � y, if and only if the largest element of x is
greater than the largest element of y, the largest two elements of x are greater than the
largest two elements of y, and so on… [10]. Equivalently, that means that the probability
distribution represented by x is more narrowly peaked than y, in turn implying that x
conveys less uncertainty than y, thus that x has less entropy than y.

In the privacy literature there is no such well-defined notion of information and
no associated concepts such as majorization. What is meant as information for the
meaningful exploitation of a data set lies in the eye of the user. For example, one user
may be interested in the ability to perform some simple statistical requests such as
cross-tabulations and thus will call information the analytical validity of such requests
on anonymized data and their close proximity with the same requests performed on the
original data set. Another user may be only interested in the ability to perform some
econometric analyses, and thus again will qualify an anonymized data as informative
given, for example, the validity of some OLS outputs made on it. Of course, and because



Bistochastic Privacy 67

the needs of users can be quasi-infinitely rich, one is left with a severe problem of
diversity for evaluating the information content of an anonymized data set. In the paper,
we reasonably assume that the original data set always provides the highest utility and
analytical value to the user, and thus that an anonymized data set always entails a loss
of utility.
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