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Preface

This volume contains papers presented at the 19th International Conference onModeling
Decisions for Artificial Intelligence (MDAI 2022), celebrated during Sant Cugat,
Catalonia, Spain, August 30 – September 2, 2022.

This conference followed MDAI 2004 (Barcelona), MDAI 2005 (Tsukuba), MDAI
2006 (Tarragona), MDAI 2007 (Kitakyushu), MDAI 2008 (Sabadell), MDAI 2009
(Awaji Island), MDAI 2010 (Perpinyà), MDAI 2011 (Changsha), MDAI 2012 (Girona),
MDAI 2013 (Barcelona), MDAI 2014 (Tokyo), MDAI 2015 (Skövde), MDAI 2016
(Sant Julià de Lòria), MDAI 2017 (Kitakyushu), MDAI 2018 (Mallorca), MDAI 2019
(Milano), MDAI 2020 (proceedings only), and MDAI 2021 (Umeå).

The aim of MDAI is to provide a forum for researchers to discuss different facets
of decision processes in a broad sense. This includes model building and all kinds of
mathematical tools for data aggregation, information fusion, and decision-making; tools
to help make decisions related to data science problems (including, e.g., statistical and
machine learning algorithms as well as data visualization tools); and algorithms for
data privacy and transparency-aware methods so that data processing procedures and
the decisions made from them are fair, transparent, and avoid unnecessary disclosure of
sensitive information.

The MDAI 2022 conference included tracks on the topics of (a) data science,
(b) machine learning, (c) data privacy, (d) aggregation functions, (e) human decision-
making, (f) graphs and (social) networks, and (g) recommendation and search.

The organizers received 41 papers, 16 of which are published in this volume. Each
submission received at least three reviews from the Program Committee and a few
external reviewers. We would like to express our gratitude to them for their work.

The conference was supported by the ESADE Institute for Data-Driven Decisions
(esadeD3), the European Society for Fuzzy Logic and Technology (EUSFLAT), the
Catalan Association for Artificial Intelligence (ACIA), the Japan Society for Fuzzy
Theory and Intelligent Informatics (SOFT), and the UNESCO Chair in Data Privacy.

June 2022 Vicenç Torra
Yasuo Narukawa
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Mathematical Modeling of COVID-19 from a Complex
Systems Perspective

Clara Granell

University Rovira i Virgili

Abstract. The study of complex systems revolves around the idea of
studying a system from the point of view of the interactions between its
components, rather than focusing on the individual features of each of its
parts. This general vision allows us to observe behaviors that would not be
easily observed by studying the individual components alone. The human
brain, human social networks, biological systems or transportation net-
works are examples of complex systems. Another example is the spread-
ing of contagious diseases, where only the study of the whole systemwill
allow us to understand what is the possible outcome of an epidemic. In
this talk, I will introduce the mathematical models of epidemic spread-
ing we have been developing in the past decade. We’ll start with simple,
compartmental models that allow us to gain a general understanding of
how epidemics work. Then we will adapt these simple models to more
realistic scenarios that are able to predict the evolution of COVID-19 in
Spain.



Explaining Black Box Classifiers by Exploiting
Auto-Encoders

Anna Monreale

Università di Pisa

Abstract. Artificial Intelligence is nowadays one of the most important
scientific and technological areas, with a tremendous socio-economic
impact and a pervasive adoption in every field of the modern society.
Many applications in different fields, such as credit score assessment,
medical diagnosis, autonomous vehicles, and spam filtering are based on
Artificial Intelligence (AI) decision systems. Unfortunately, these sys-
tems often reach their impressive performance through obscure machine
learning models that “hide” the logic of their internal decision processes
to humans because not humanly understandable. For this reason thismod-
els are called black box models, i.e., models used by AI to accomplish a
task for which either the logic of the decision process is not accessible,
or it is accessible but not human-understandable.

Examples of machine learning black box models adopted by AI
systems include Neural Networks, Deep Neural Networks, Ensemble
classifiers, and so on.

The missing of interpretability of black box models is a crucial
issue for ethics and a limitation to AI adoption in socially sensitive and
safety-critical contexts such as healthcare and law. As a consequence, the
research in eXplainable AI (XAI) has recently caught much attention and
there has been an ever growing interest in this research area to provide
explanations on the behavior of black box models.

A promising line of research in XAI exploits local explainers also
supported by auto-encoders in case it is necessary to explain black box
classifiers working on non-tabular data (e.g., images, time series and
texts).

The ability of autoencoders to compress anydata in a low-dimensional
tabular representation, and then reconstruct it with negligible loss, pro-
vides the great opportunity to work in the latent space for the extraction
of meaningful explanations, for example through the generation of new
synthetic samples, consistent with the input data, that can be fed to a
black-box to understand where its decision boundary lies.

In this presentation we discuss recent XAI solutions based on local
explainers and autoencoders that enable the extraction of meaningful
explanations composed by factual and counterfactual rules, and by exem-
plar and counter-exemplar samples, offering a deep understanding of the
local decision of the black box.



The Labor Impacts of Algorithmic Management

Anna Ginès Fabrellas

Esade, Universitat Ramon Llull

Abstract. Although it seems taken from one of the best science fiction
novels, the use of algorithms and artificial intelligence for work man-
agement is already a reality. Many companies are using these systems to
make decisions on the selection of people, distribution of tasks or even
dismissal. The use of algorithms and artificial intelligence to adopt auto-
mated decisions in peoplemanagement generates benefits. By automating
some decision processes, companies can make organizational decisions
quickly and efficiently, thus improving their productivity and competi-
tiveness. In addition, the use of artificial intelligence and algorithms is
often presented as an opportunity to adopt mathematically objective deci-
sions based entirely onmerit.However, contrary to this aura of objectivity,
certainty and precision that surrounds artificial intelligence, the truth is
that it presents important challenges and risks for workers’ fundamental
rights. As the European Parliament maintains in its resolution of March
2017, one of the most relevant risks posed by the use of artificial intelli-
gence and big data today is its impact on workers’ fundamental rights to
privacy, data protection and non-discrimination. In this sense, the aim of
the panel is to analyze the potential risks that algorithmic management
poses on workers’ fundamental rights, as well as new legal, technological
and ethical challenges that it poses.
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Decision Making and Uncertainty



Optimality Analysis for Stochastic LP
Problems

Zhenzhong Gao(B) and Masahiro Inuiguchi

Osaka University, Osaka 560-8531, Japan

zhenzhong@inulab.sys.es.osaka-u.ac.jp, inuiguti@sys.es.osaka-u.ac.jp

Abstract. When a linear programming (LP) problem includes uncer-
tain parameters, a decision-maker will be interested in the robustness
of a candidate solution. Under strict uncertainty, researchers often use
a hyper-box to represent the possible region of parameters due to the
lack of information about the occurrence and realisations. However,
when more information, such as expert knowledge and historical data,
is available, the hyper-box representation becomes too weak to model
the uncertainty. In this paper, we study an approach to an optimality
analysis for stochastic linear programming problems. We assume that
the constraints of the problems are deterministic, although the objective
function coefficients obey a multivariate normal distribution. To such
problems, we investigate the optimality degree of a non-degenerate basic
feasible (NBF) solution. Namely, we focus on the probability of the NBF
solution being optimal. Such problems are known as distribution prob-
lems in stochastic programming. The area of objective coefficient vec-
tors where an NBF solution becomes optimal is called the optimality
assurance cone of the solution, which is expressed by a system of lin-
ear inequalities. We show that the numerical analysis is practical and
functional with mathematical programming tools. To make our analysis
more useful, we apply the proposed optimality analysis to multiple NBF
solutions. It enables the decision-maker to make a better decision with
the overall view of candidate solutions.

Keywords: Stochastic LP problems · Random variable · Optimality
analysis · Multivariate normal distribution

1 Introduction

In real-world optimisation problems, the coefficients may become uncertain due
to noise, measurement restriction or insufficient knowledge. In this paper, we
focus on the uncertainty in linear programming (LP) problems.

Sensitivity analysis [1] is one of the conventional methods for evaluating
the influence of uncertainty in linear programming (LP) problems. It studies
to what extent the optimal solution and optimal value change by the small
perturbation in the coefficient of an LP problem. The analysis is carried out
simply by using the shadow price. It can treat the uncertainty existing anywhere.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
V. Torra and Y. Narukawa (Eds.): MDAI 2022, LNAI 13408, pp. 3–14, 2022.
https://doi.org/10.1007/978-3-031-13448-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13448-7_1&domain=pdf
https://doi.org/10.1007/978-3-031-13448-7_1


4 Z. Gao and M. Inuiguchi

However, its main drawback is that it can treat only a single coefficient. The
method of 100% rules [1] overcomes the drawback by constructing a convex
cone of the coefficient vectors for a basic solution within which its optimality
is ensured. This approach gives the foundation for succeeding approaches. For
example, the tolerance approach [3,14,15] provides a straightforward calculation
of independent fluctuation ranges of objective function coefficients preserving
the optimality of the solution.

When the possible ranges are known and bounded, Inuiguchi and Sakawa [11]
proposed concepts called possible and necessary optimality for LP problems with
uncertain objective function coefficients. The possibly optimal solution is the
solution optimal for a possible realisation of the uncertain objective function
coefficient vector. On the other hand, the necessarily optimal solution is the
solution optimal for all possible realisations of the uncertain objective function
coefficient vector. The necessarily optimal solution is ideal, but it does not exist
in many cases. To mitigate this shortcoming of the necessarily optimal solution,
Inuiguchi et al. [10,11] introduce fuzzy numbers to represent the multiple possible
range estimations of uncertain coefficients from the widest to the narrowest.

On the other hand, when information such as a specific probability distribu-
tion or the historical data is available, a more detailed analysis could be carried
out by formulating a stochastic linear programming problem. Researchers have
theoretically studied the probability distribution of optimal solutions and opti-
mal values in the stochastic model [12,13]. However, the calculations are too
complex.

To address the computational complexity, Curry et al. [2] built an approach
for random variables obeying multivariate normal distributions theoretically and
practically. Moreover, Gao and Inuiguchi [4] concentrated on utilising numeri-
cal analysis by computer programming to avoid being trapped in the calculation
process. They updated the conventional analysis to the candidate solution’s opti-
mality with optimality analysis. However, the drawback is apparent since both
methods can only analyse one candidate solution. If the probability of the solu-
tion being optimal is not sufficiently large, the decision-maker cannot accept the
solution with no other choice.

We propose an approach to stochastic LP problems. We assume that the
constraints of the problems are deterministic, although the objective function
coefficients obey a multivariate normal distribution. The contribution of the
proposed approach is twofold. One is the update of numerical calculation in
evaluating the probability of a candidate solution being optimal. The other is to
obtain multiple candidate solutions with the probability degrees to be optimal.
We show that the proposed approach gives a reasonable outcome with a series
of results, which enables the decision-maker to make a choice by referring to the
probability distribution of optimal solutions.

This paper is organised as follows. Section 2 briefly explains LP problems
and the optimality analysis. We look into the drawbacks in the previous analysis
and propose our approach based on the probability theory and LP techniques.
Section 3 illustrates the proposed approach and compare it with a conventional



Optimality Analysis for Stochastic LP Problems 5

approach, and Sect. 4 gives some numerical examples. In Sect. 5, we conclude our
study and indicate further research topics.

2 LP Problems and Robust Optimality Analysis

In this paper, the LP problem we address is in the following form:

maximize cTx, subject to Ax = b, x ≥ 0, (1)

where x ∈ R
n denotes the decision variable vector. A ∈ R

m×n, b ∈ R
m and

c ∈ R
n are the coefficient matrix, the right-hand-side vector and the objective

function coefficient vector, respectively.
By the simplex method [1], an optimal basic feasible solution x∗ can be sep-

arated into basic sub-vector x∗
B ∈ R

m and non-basic sub-vector x∗
N ∈ R

n−m by
an index set IB(x∗) ⊆ {1, 2, . . . , n} satisfying Card(IB(x∗)) = m. Consequently,
matrix A is separated by IB(x∗), where AB ∈ R

m×m is formed by the columns
of A indexed by IB(x∗) and AN ∈ R

(n−m)×m by the remaining. Vector c is also
done similarly with cB ∈ R

m and cN ∈ R
n−m.

Since AB should always be non-singular, we have the following proposition
about the necessary and sufficient condition for the optimality of a basic feasible
solution.

Proposition 1. Given an LP problem (1), a basic feasible solution x∗ is optimal
if and only if the following two conditions are valid:

cN − AT
NA−T

B cB ≤ 0 (i) and A−1
B b ≥ 0 (ii), (2)

where A−T
B = (A−1

B )T. The value of x∗ is with x∗
B = A−1

B b and x∗
N = 0, and

optimised value is cTBA−1
B b. The first condition (i) shows the optimality and the

second one (ii) shows the feasibility of x∗.

When treating an LP problem under uncertainty, we assume the feasible
set formed by A and b are constant. Namely, we assume only the objective
coefficient vector c contains uncertain coefficients. In this section, we assume
that the possible range of the objective coefficient vector c is known as a set
Φ � R

n. Moreover, we assume the feasible solution is non-degenerate and basic,
called the non-degenerate basic feasible (NBF) solution. Although a basic feasible
solution is degenerate, we obtain similar results to those described in this paper
by considering all bases associated with the solution.

As a result, Inuiguchi et al. [10] proposed optimality assurance cone concept,
which is derived from 100% rules [1]:

Definition 1 (Optimality Assurance Cone). Let x∗ be an NBF solution
to Problem (1). The optimality assurance cone M (x∗) is obtained as

M (x∗) =
{
c ∈ R

n : cN − AT
NA−T

B cB ≤ 0
}

, (3)

where for simplification, we reformulate it as M (x∗) = {c ∈ R
n : M(x∗)c ≤ 0}.
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For the degenerate situation, Hlad́ık [6], Gao and Inuiguchi [5] proposed
approaches to obtain the optimality assurance cone with the same property. By
Definition 1, we can use possible and necessary optimality [11] concept, defined
by the following proposition [10]:

Proposition 2. Let Φ � R
n denote the set enclosing all uncertain objective

coefficient vectors c. Then an NBF solution x∗ is

� possibly optimal if and only if Φ ∩ M (x∗) �= ∅, or
� necessarily optimal if and only if Φ � M (x∗).

Proposition 2 gives a direct way to analyse the optimality of an NBF solution.
For the comparison with our proposed approach, we introduce the conventional
tolerance approach with a numerical example.

2.1 LP Problems with Uncetainties in Intervals

The interval linear programming [7] studies the LP problem where uncertain
coefficients are assumed to be in an interval hyper-box. Here we only introduce
the theorem by Inuiguchi et al. [10]:

Theorem 1. For Problem (1), let c be in an interval hyper-box [cL, cR], where
cL = [cL1 , cL2 , . . . , cLn]T and cR = [cR1 , cR2 , . . . , cRn ]T denote the lower and upper
bounds, respectively. Furthermore, let cC := (cR + cL)/2, cS := (cR − cL)/2 and
x∗ be an NBF solution obtained by cC. For k = 1, 2, . . . , n −m, let τk be defined
as

τk =

⎧
⎪⎨
⎪⎩

−
∑n

j=1 Mkj(x̂)cCj∑n
j=1 |Mkj(x̂)|cSj

, if
∑n

j=1 |Mkj(x̂)|cSj > 0,

0, otherwise,
(4)

where τmin is defined by

τmin = min
k=1,2,...,n−m∑n

j=1 |Mkj(x∗)|cSj>0

τk, (5)

and | · | denotes the entry-wise absolute operator. Then x∗ is necessarily optimal
to Problem (1) if and only if τmin ≥ 1.

We give a numerical example to illustrate Theorem 1:

Example 1. Let an LP problem be given as follows:

maximize c1x1 + c2x2,

subject to 3x1 + 4x2 ≤ 42,

3x1 + x2 ≤ 24,

0 ≤ x2 ≤ 9, x1 ≥ 0,

where c1 and c2 are uncertain coefficients satisfying c1 ∈ [12, 24] and c2 ∈ [13, 19].
Check if there exists a necessarily optimal solution. If not, analyse the optimality
of the obtained solution.
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To solve the problem in the form of Problem (1), we add non-negative slack
variable x3, x4 and x5 at first. Then we can obtain an NBF solution x̂∗ =
(6, 6, 0, 0, 3)T by ĉC = (18, 16, 0, 0, 0)T, which gives the optimality assurance
cone as

M (x̂∗) =
{

(c1, c2, c3, c4, c5)T
∣∣∣∣

1
9c1 − 1

3c2 + c3 + 1
3c5 ≤ 0

− 4
9c1 + 1

3c2 + c4 − 1
3c5 ≤ 0

}
.

Since x3, x4 and x5 are slack variables, we remove them with x∗ = (6, 6)T

and

M (x∗) =
{

(c1, c2)T
∣∣∣∣

1
9c1 − 1

3c2 ≤ 0
− 4

9c1 + 1
3c2 ≤ 0

}
.

By Theorem 1, it is not difficult to obtain τ1 = 2 > 1 and τ2 = 8/11 < 1 by
cC = (18, 16)T and cS = (6, 3)T. Hence x∗ = (6, 6)T is not necessarily optimal
due to τmin = 8/11.

Figure 1 shows the result in a c1-c2 coordinate with the origin at x∗ = (6, 6)T,
where it is easy to find that vertex (12, 19)T is not in M (x∗). Hence, (6, 6)T is
not necessarily optimal.

Fig. 1. The analysis in Example 1 Fig. 2. When M (x∗) is too narrow

3 Stochastic Linear Programming

In the previous section, we described a conventional method for interval LP
problems based on the tolerance approach. This approach has been extended to
a case where the possible regions of coefficients are fuzzy numbers. However, we
may face several limitations:
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(i) The necessary optimality can be tested only for a single NBF solution
obtained as an optimal solution to the LP problem whose objective coef-
ficients are determined by the centres of intervals. Moreover the analysis
assumes that the fluctuation of coefficients are symmetric to the centres
and independent (see Inuiguchi et al. [10]). Although the possible optimal-
ity analysis is developed for treating all potentially optimal basic solutions
(see Inuiguchi [9]), the concept of possible optimality is rather weak. Further-
more, those methods are not very useful when the possible range of objective
function coefficient vector is a crisp set and the optimality assurance cone
of some basic solution is too small (see Fig. 2).

(ii) The optimality analysis is sometimes too rough to satisfy the requirement.
Let us review Example 1 for the illustration. Since x∗ = (6, 6)T is not
necessarily optimal due to τmin = 8/11 < 1, we can still assert that x∗ has
the optimality degree with 8/11, as Hlad́ık [8] and Inuiguchi et al. [10] did.
However, such a definition may lack a realistic meaning in applications. For
example, if we are conscious of the size of area, the result of Example 1
saying optimality degree with 8/11 does not fit well to our feeling because
the area ensuring the optimality of x∗, the result is (8/11)2 = 64/121, which
is much smaller than 8/11. The sense of impropriety would be larger as the
blue hatched area of Fig. 1 is not counted.

To address these shortcomings, we regard the uncertain coefficients as ran-
dom variables obeying a probability distribution considering the following advan-
tages:

(i) When uncertain coefficients obey a multivariate probability distribution, it
becomes available to calculate the probability to be optimal for a solution,
e.g. the blue hatched area in Fig. 1, by integrating the probability density
function (p.d.f.) of the objective coefficients.

(ii) The probability to be optimal can be applied to any NBF solution.
(iii) The probability to be optimal for an NBF solution can give a more realistic

meaning in applications.

To accomplish purpose, the key is to obtain the probability to be optimal,
i.e., the integration of the random variable’s p.d.f. with high accuracy. Hence,
we discuss this key first in the following content first.

3.1 The Optimality Degree of an NBF Solution

The utilisation of the probability distribution enables us to compensate for the
shortcoming of the conventional approaches. However, we should deal with sev-
eral difficulties to accomplish this purpose. The most considerable trouble is
that the calculation process of the probability is complex. As the calculation of
multivariate integration over a convex cone is complex, the theoretical calcula-
tion would be too difficult. Some previous literature [2,12] gave a few theoretical
results, which, however, make the merit of stochastic approach in vain. Then,
we use a numerical analysis to achieve our goal.
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As described above, we modify the definition of optimality degree from the
original one defined by Hlad́ık [8], as well as Gao and Inuiguchi [4]. The optimal
degree is defined by the probability to be optimal as follows:

Definition 2 (Optimality Degree). Let x∗ be an NBF solution to Prob-
lem (1) and c be a random variable coefficient vector. Then the optimality degree
of x∗ corresponding to c is evaluated as

D(x∗) = Pr
(
C ∈ M (x∗)

)
, (6)

where C represents the scenario event of c.

When C obeys continuous distributions, such as the normal distribution and
the uniform distribution, Eq. (6) in Definition 2 is rewritten as the following
equation:

D(x∗) =
∫

· · ·
∫

c∈M (x∗)
f(c1, c2, . . . , cn)dc1dc2 . . . dcn, (7)

where f(·) : R
n → R denotes the continuous p.d.f of c in Problem (1) and

c = (c1, c2, . . . , cn)T.
Equation (7) provides the way to theoretically calculate the optimality degree

of a given NBF solution, which, as we have already mentioned, can only give the
result in rare situations. For example, even if f(·) obeys independent multivariate
normal distribution and M (x∗) is decomposable, we still need to refer to the
standard normal table for the result.

Therefore, instead of being trapped in a theoretical result, a numerical one
may be better if the error can be assessed and bounded by a sufficiently small
number. For our purpose, the multivariate integration function in the program-
ming library has to satisfy at least following two requirements:

� It can treat any multivariate p.d.f. of c.
� It can accept any integration range.

The first requirement is fulfilled with most of multivariate integration
libraries (see Gao and Inuiguchi [4]). However, the second requirement is rather
strong. The conventional multivariate integration principle makes it essential to
decompose the variables (see Fubini’s Theorem). However, general situations do
not always support the decomposition, especially when the integration region is
a convex cone. Even when decomposable, such as in R

2, we still have to do the
process manually with extra trouble. Hence, it is necessary to find an integration
library satisfying the second requirement.

Fortunately, the NIntegrate function in Mathematica supports the second
requirement, which only needs a series of inequalities defining the convex cone.
Hence, we can avoid the trap and calculate the result.
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3.2 Generation of Multiple NBF Solutions

After proposing the method for calculating the optimality degree of a given NBF
solution, we start considering the generation of multiple candidate solutions.

The most straightforward way is to list all vertices of the feasible set and
evaluate their respective optimality degree. However, listing all vertices of a
polyhedral convex set costs enormous computational efforts. Moreover, it is not
essential in most situations. Hence, in this paper, we only consider the neighbour
vertices of the one obtained by the p.d.f.’s centre of c, where the number should
be at most (n + 1) in R

n space.
Since obtaining the neighbour of a vertex (basic solution) on a polyhedral

convex set can be accomplished by tabular pivoting [1], we can obtain them with
the respective optimality assurance cone. It enables us to evaluate the respective
optimality degree by numerical calculation by Eq. (7). Since the process itself is
studied extensively, we do not give more illustration on this subject.

3.3 Algorithm

We propose the overall algorithm by combining the evaluation of a candidate
solution’s optimality degree and the generation of multiple candidate solutions.
Since we need to obtain an initial candidate solution, we must first determine
an objective coefficient vector.

As we have mentioned at the beginning of this paper, the uncertainty is usu-
ally caused by noise, measurement restrictions or insufficient knowledge. There-
fore, the distribution function is assumed to be a normal distribution, where the
corresponding p.d.f. is a concave function with a limited maximum at a limited
extent. Hence, choosing the one at the maximal value of the p.d.f. is a preferred
option, referred to as cC in general. Moreover, in uniform distributions, we can
pick the centre of the interval as cC.

Hence, the proposed algorithm is obtained as follows:

Algorithm of Optimality Analysis

♦ Solve the conventional LP problem with cC. Let x0 denote the optimal
NBF solution, obtain the corresponding optimality assurance cone M (x0)
by Eq. (3).

♦ Calculate D(x0) by Eq. (7) and record it.
♦ Obtain all neighbour of x0 by tabular pivoting and denote them as {xi : i =

1, 2, . . .}. (Assume every xi is also an NBF solution.)
♦ For each xi in {xi}:

◦ Obtain M (xi) by Eq. (3).
◦ Calculate D(xi) by Eq. (7) and record it.

♦ Output the list containing the result of xi and D(xi).
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We note that our approach does not provide the best choice with giving
a unique solution output. Instead, we only help decision-maker(s) make their
decision with a list of solutions with associated optimality degrees. If the solution
with the largest optimality degree is preferred, they can directly choose it. If they
want to consider extra aspects of the solutions, the given list of the solutions
may help them to find good candidates.

4 Numerical Examples

To validate our proposed algorithm, we use Example 1 again. First, we assume
objective coefficient vector c is the vector composed of random variables obeying
a multivariate normal distribution.

Example 2. Let the problem given the same as Example 1, where c = (c1, c2)T

denote random variables obeying a multivariate normal distribution N(c|µ,Σ2)
with p.d.f. f : R2 → [0, 1]. Assume µ = (5, 5)T and Σ2 = (42, 0; 0, 42). Then,
solve the problem and analyse the optimality of obtained solutions.

According to the proposed algorithm, we first use the mean vector of the
distribution f(c|µ,Σ2), i.e. cC = (5, 5)T, as the objective coefficient vector for
obtaining the initial solution. The result is the same as Example 1, which is
x0 = (6, 6)T (It is noted that we still ignore the slack variables, where the original
solution should be x̂0 = (6, 6, 0, 0, 3)T) with M (x0). Therefore, by Eq. (7), it is
not hard to calculate the optimality degree as D(x0) = 0.387988.

Then we search the neighbour NBF solutions of x0 by pivoting the simplex
tabular. We find two NBF solutions x1 = (2, 9)T (x̂1 = (2, 9, 0, 9, 0)T) and
x2 = (8, 0)T (x̂2 = (8, 0, 18, 0, 9)T). The corresponding optimality assurance
cones are:

M (x1) =
{

(c1, c2)T
∣∣∣∣

− 1
3c1 ≤ 0

4
3c1 − c2 ≤ 0

}
,

M (x2) =
{

(c1, c2)T
∣∣∣∣

− 1
3c1 + c2 ≤ 0

− 1
3c1 ≤ 0

}
.

In the same way, we obtain D(x1) = 0.300345 and D(x2) = 0.206016. There-
fore, we list the solutions as in Table 1.

Table 1. The result of Example 2

x x̂ D(x)

(6, 6)T (6, 6, 0, 0, 3)T 0.387988

(2, 9)T (2, 9, 0, 9, 0)T 0.300345

(8, 0)T (8, 0, 18, 0, 9)T 0.206016
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Fig. 3. The result of Example 2

Figure 3 illustrate our result of Example 2, where Sub-Fig. (3a) shows the
3D illustration and Sub-Fig. (3b) shows the corresponding contour line of Sub-
Fig. (3a).

We can see that there are five optimality assurance cones, which correspond to
five vertices (solutions) on the feasible set. We use the upper-left one (containing
the smallest circle in Sub-Fig. (3b) for initialisation and calculate its optimality
degree. Then we obtain two neighbours of it and do the process again. Hence, we
can analyse three solutions, covering the half-right region and occupying most
optimality degrees.

After having the general result of the normal distribution, we consider com-
paring our approach with the result in interval linear programming. We re-use
Example 1 but convert the interval hyper-box into the random variables obeying
a multivariate uniform distribution.

Example 3. Let the problem given the same as Example 1, where c = (c1, c2)T

denotes the random variables obeying a multivariate uniform distribution on
the interval hyper-box ([12, 24], [13, 19])T. Solve the problem and analyse the
optimality of the obtained solutions.

Since the process is the same as Example 2, we only give our result as below:
We can see that we still have three evaluations, though one of the results is

0. Moreover, the geometrical result in Example 1 is 64/121 ≈ 52.89%. However,
our approach evaluates the result as 95.31%, which is much larger.

If we prefer obtaining the theoretical result by area calculation, it is not hard
to compute the triangular area in M (x1), which turns out to be 1

2 · 3 · 9
4 = 27/8.

Since whole area is 12 · 6 = 72, the theoretical result should be D(x1) = 3
64 =

0.046875, which corresponds the result from our proposed approach. Hence, we
can assert that the proposed approach can obtain more precise results than
conventional ones (Table 2).
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Table 2. The result of Example 3

x x̂ D(x)

(6, 6)T (6, 6, 0, 0, 3)T 0.953125

(2, 9)T (2, 9, 0, 9, 0)T 0.046875

(8, 0)T (8, 0, 18, 0, 9)T 0

5 Conclusions

We proposed an optimality analysis of multiple NBF solutions to an LP prob-
lem with random objective function coefficients obeying a multivariate normal
distribution. The proposed approach evaluates the optimality degrees of multi-
ple NBF solutions. Previous approaches that evaluate the optimality degree of
a single NBF solution may provide insufficient information when the optimality
degree is too small. In comparison, our proposed analysis using multiple NBF
solutions guarantees to provide sufficiently valuable information.

To avoid the trap of formidable difficulties of exact computation, we focused
on a numerical result with high precision. We utilised the integration function
in mathematical programming tools for calculating the probability of an NBF
solution to be optimal. Moreover, the analysis of multiple NBF solutions can be
performed seamlessly by pivoting techniques. We gave numerical examples to
demonstrate the advantage over the previous approach.

There remain some issues to be improved and developed. Exploring multiple
NBF solutions is not very efficient as we generate all adjacent NBF solutions
from a visited optimal NBF with a certain probability. We may restrict the
exploration to only possibly optimal NBF solutions with a technique proposed
in Inuiguchi [9]. The study on this restricted exploration is one of the future
topics.
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Abstract. This paper presents a multi-perceptual framework for multi-criteria
group decision aiding based on unbalanced hesitant linguistic information. The
concept of a perceptual map is introduced to break the uniformity among the
set of basic labels considered in linguistic term sets. Projected perceptual maps
are considered to provide multi-perceptual frameworks for group decision aiding.
This approach enables decision-makers to use sets of labels or different meanings
for the same set of labels (since not all decision-makers feel comfortable using
the same linguistic term set when expressing their judgements). Distances and
measures of centrality and agreement or consensus are revised basedon the concept
of a perceptual map and a projected perceptual map that enables us to merge
information from decision makers.

Keywords: Perceptual map · Projected perceptual maps · Hesitant fuzzy
linguistic terms set

1 Introduction

Multi-criteria decision aiding (MCDA) is a research field inwhich awide variety ofmod-
els are proposed to assess and aggregate criteria on the preferences of decision makers
(DMs) for choice, ranking, and sorting problems. Experts or DMs in group decision
aiding environments often feel uneasy using numerical values to express their judge-
ments, and feel more comfortable using linguistic terms (i.e., words) since they have
already formed a specific meaning for those linguistic terms. Natural language governs
uncertain human cognitive processes and is more appropriate for expressing uncertain
assessments whose nature is vague, imprecise, or incomplete [2, 3]. The introduction
of hesitant fuzzy linguistic term sets (HFLTSs) has recently attracted significant atten-
tion from researchers. Many practical applications have used HFLTSs to deal with the
linguistic information involved in MCDA problems. A state of the art and list of appli-
cations can be found in [4]. Additionally, recent publications have also operated with
this hesitant fuzzy linguistic approach to solve complex MCDA problems [6]. Since its
introduction, many contributions on HFLTS properties and theory can be found in the
literature (for example, in relation to aggregation operators [4, 7], comparison methods
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[7], correlation coefficients of HFLTSs [2], similarities and distance measures between
HFLTSs [5], and consensus degrees [10]).

Most of the group decision aiding applications found in the literature (which are
framed as multi-criteria decision aiding problems with linguistic assessments modelled
using HFLTSs) are assumed to be built over a uniform and symmetrically distributed
linguistic term set – as in analytical hierarchy processes such as ELECTRE or TOPSIS
applications [4]. This seems to be appropriate for cases where the semantics of each term
have a proportional uncertainty and are usually equally placed around a central label.
However, there are many situations in which attributes relate to qualitative characteris-
tics that need to be assessed by linguistic terms represented by unsymmetrical or not
uniformly distributed linguistic terms sets [10]. Similarly, it is also common to find that
DMs have different backgrounds or knowledge, and this also needs to be modelled by
unbalanced linguistic term sets [1, 12].Moreover, some consensusmeasures and consen-
sus reaching processes have been adapted to flexibly handle problems with unbalanced
HFLTSs [1, 11]. Note that unbalanced linguistic information may arise from the nature
and characteristics of some linguistic variables – such as those involved in a grading sys-
tem. In the literature, several methods were proposed to deal with unbalanced linguistic
term sets. Somemodels are built on the linguistic hierarchy and a 2-tuple fuzzy linguistic
model – while other approaches use generalized absolute orders of magnitude qualitative
spaces or asymmetric sigmoid semantics [2, 3, 9]. As with the initial 2-tuple linguistic
models, HFLTSs originated with the assumption of linguistic terms with equidistant
labels [3, 9]. Regarding HFLTS modeling, several linguistic computational models have
recently been developed to handle unbalanced linguistic term sets [4, 6]. For instance,
in [15], a framework containing several algorithms for implementing attitudinal HFLTS
possibility distribution generation is developed that is based on the similarity measure
of linguistic terms. This method is used in combination with several aggregation algo-
rithms for solving real business MCDA problems, such as the selection of professional
third-party reverse logistic providers or the prioritization of factors affecting in-cabin
passenger comfort on high-speed rail in China. Other works also focalize on obtaining
the semantics of linguistic information using optimization models [19].

Nonetheless, even if all these approaches can effectively deal with unbalanced
HFLTSs, few can simultaneously deal with multi-granularity and unbalanced hesitant
linguistic information. Multi-granularity refers to the use of different set of labels or
different meanings for the same set of labels by different DMs. In a multi-criteria group
decision situation, not all DMs might feel comfortable using the same linguistic term
set when expressing their judgements. It might happen that some attributes or criteria
are better evaluated using a different linguistic term set (for instance, some might be
more appropriately evaluated with a linguistic term set with greater granularity). Multi-
granularity is a logical step after unbalancedness. If a separate meaning is given to each
linguistic label (related to uncertainty), it is conceivable that eachDMmay have his or her
own manner of expressing these meanings. Managing information assessed in different
linguistic term sets has always represented another challenge for collective performance
evaluations [11, 15]. Some methodologies were introduced to deal with multi-granular
linguistic term sets in a multi-criteria decision aiding problem based on the concept
of linguistic hierarchy and the use of fuzzy sets with membership functions or fuzzy
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preference relations [4, 9]. An extensive range of methods is proposed for uniform and
aggregation of multi-granular linguistic information without loss of information. [3, 16].
Recently, several approaches [17] have been developed to handle multi-granularity in
HFLTSs modeling, but most methods that focus on multi-granularity lack treatment for
unbalanced linguistic terms sets.

An example of a decision aiding framework that can focus simultaneously onmodel-
ing unbalanced and multi-granular DM linguistic information by means of HFLTSs can
be found in [10]. In this paper, the authors introduced a signed distance measure between
HFLTSs based on the ordinal semantics of linguistic terms and the possibility distribu-
tion method. With respect to consensus measures in GDM, various linguistic models
have been adapted to deal with unbalanced linguistic information [1, 10–12]. Nonethe-
less, consensus measures modeled by means of unbalanced HFLTSs are limited. Some
references can be found in [1, 4, 12]. For instance, Hao and Chiclana defined the concept
of attitude linguistic quantifiers and associated it with the subjective preference of an
expert [12]. The authors developed an attitude quantifier deriving method as the basis
for generating possibility distribution in the HFLTS framework that extends the previous
works ofWu and Xu [13] and Chen et al. [14]. But again, in these previous studies, DMs
are limited to using the same unbalanced linguistic term set and the proposed measures
fail to capture the complete heterogeneity of DMs. Therefore, the development of con-
sensus measures that deal with multi-granular unbalanced linguistic term sets by means
of HFLTSs are necessary. In this paper, a new linguistic representation methodology
for group decision-aiding problems that simultaneously deals with hesitant unbalanced
and multi-granular linguistic information is developed. The modelling is based on the
algebraic structure of the extended lattice of HFLTSs [5] and the measures developed
on it. There are some differences when compared with previous linguistic frameworks
modelled by HFLTSs and these include: (1) subscript independence; (2) basic labels
can be freely distributed without uniformity nor symmetry; (3) flexibility for different
degrees of uncertainty and granularity for the experts.

In this paper we present a powerful framework for developing a multi-criteria group
decision analysis that considers unbalance andmulti-granularity.We present the concept
of a perceptual map that gives an extended meaning to each basic label of the linguistic
term set. When each DM has his or her own perceptual map, the projected perceptual
map enables us to merge all this information to obtain the measures of central tendency
and degree of consensus.

In the next section, all the new tools and structures needed for the method are
developed. The third section introduces the perceptual map. Distances and measures
of centrality and agreement or consensus are revised based on the concept of a percep-
tual map. Section 4 generalizes the concepts introduced in the previous section using
the projected perceptual map. Finally, the conclusion summarizes the major points and
suggests directions for future work.

2 Hesitant Fuzzy Linguistic Term Sets for Decision Aiding

This section provides the preliminary theoretical framework on the specific fuzzy lin-
guistic approach used in this paper to model expert assessments, i.e., hesitant fuzzy
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linguistic term sets. In addition, a brief review on distances and consensus measures
specifically developed for this fuzzy linguistic modeling is provided.

The concept of HFLTS was introduced by Rodriguez et al. in [3]. The concept is
based on notions of fuzzy linguistic approach and hesitant fuzzy sets [8] and provides
a linguistic and computational basis to increase the richness of linguistic elicitation.
The use of HFLTSs enables experts to choose from among several linguistic terms and
use richer and more complex linguistic expressions to assess an indicator, alternative, or
variable. For instance, HFLTSs can represent expressions such as “more thanmoderate”,
“less than appropriate” or “between good and extremely good”. A state-of-the-art survey
on HFLTSs and its applications in decision-aiding can be found in [4].

2.1 The Lattice of HFLTS

Definition 1. [3] Let S be a totally ordered set of linguistic terms (or basic labels),
S = {s1, . . . , sn}, with s1 < . . . < sn. A hesitant fuzzy linguistic term set (HFLTS) over
S is a subset of consecutive linguistic terms of S, i.e., {x ∈ S|si ≤ x ≤ sj}, for some i,
j ∈ {1, . . . , n} with i ≤ j. We call [si, sj] to this HFLTS, or {si} ≡ [si, si] if i = j.

The set of all non-empty HFLTSs over S is denoted by HS . It is easy to prove that
card(HS) = n·(n+1)

2 .
InHS , the intersection ∩ and the connected union

⊔
are defined as follows:

Definition 2. Let
[
si, sj

] ∈ HS and [sk , sl] ∈ Hs,

• [
si, sj

] ∩ [sk , sl] = [smax{i,k}, smin{j,l}] if this HFLTS exists or ∅ otherwise.
• [

si, sj
] ⊔

[sk , sl] = [smin{i,k}, smax{j,l}].

Note that intersection and connected union are closed binary operations defined on
H ∪ {∅}. It is not difficult to prove that the set HS ∪ {∅}, jointly with the two-binary
operation intersection and connected union, form a lattice [5].

2.2 Concordance and Distance Between HFLTSs

If H1,H2 ∈ HS , a common distance defined in Hs is d(H1,H2) = card
(
H1

⊔
H2

) −
card(H1∩H2). However, this distance does not enable distinguishing all the possibilities
between two HFLTS that have an equal connected union and empty intersection. For
instance, d([s1, s2], [s4, s5]) = d([s1, s2], [s3, s5]) seems counterintuitive. This happens
because this distance does not consider the length of the gap between the two disjointed
HFLTSs. A new distance is defined using the concept of concordance to overcome this
problem.

Definition 3. H1,H2 ∈ HS , the concordance of H1 and H2 is defined as:

C(H1,H2) =
⎧
⎨

⎩

card(H1 ∩ H2) if H1 ∩ H2 �= ∅
− card

(
(H1

⊔
H2

)
∩ H1 ∩ H2) if H1 ∩ H2 = ∅ (1)
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That is, the concordance of two non-disjointed HFLTSs is the number of basic
labels in common; and the concordance of two disjointed HFLTSs is the opposite of the
number of basic labels of the gap between the two HFLTSs. Note that the concordance
can be positive or negative depending on whether the HFSTSs are disjointed or not. The
concordance is 0 if the two HFLTSs are disjointed but with an empty gap (consecutive
HFLTS).

Definition 4. H1,H2 ∈ HS , the distance between H1 and H2 is defined as:

d(H1,H2) = card
(
H1

⊔
H2

)
− C(H1,H2) (2)

Note that this distance can be also expressed as:

d(H1,H2) = 2 · card
(
H1

⊔
H2

)
− card(H1) − card(H2) (3)

3 The Perceptual Map on the Structure of the LatticeHS

The previous definition of distance does not distinguish between different basic labels,
and only considers the number of them. For instance, it considers that the distance
between consecutive basic labels d({si} and {si+1}) is always 2, independently of i, and
this is not reasonable inmany cases. To overcome this situation, the concept of perceptual
map is introduced. This concept enables us to give an extended meaning to each basic
label and to each HFLTS.

Definition 5. Let S be a totally ordered finite set S = {s1, . . . , sn} and then a basic
perceptual map is a pair (S, μ), where μ is a measure over S, that is, μ : S → R+ =
(0,+∞). If si ∈ S, we call μ(si) ≡ μi the width of the basic label si.

This measure over S can easily be extended toHS using that the width of the HFLTS[
si, sj

]
is μ

([
si, sj

]) = ∑j
k=iμk . We use the expression perceptual map for the pair

(HS , μ) that we also note asH(S,μ).
Considering the perceptual map H(s,μ), the concepts of concordance and distance

are redefined as follows:

Definition 6. H1,H2 ∈ H(S,μ), the concordance of H1 and H2 is defined as:

C(H1,H2) =
⎧
⎨

⎩

width(H1 ∩ H2) if H1 ∩ H2 �= ∅
−width

(
(H1

⊔
H2

)
∩ H1 ∩ H2) if H1 ∩ H2 = ∅ (4)

Definition 7. H1,H2 ∈ H(S,μ), the distance of H1 and H2 is defined as:

d(H1,H2) = width
(
H1

⊔
H2

)
− C(H1,H2) (5)

Note that this distance can also be expressed as:

d(H1,H2) = 2 · width
(
H1

⊔
H2

)
− width(H1) − width(H2) (6)

The difference between the original definition of HFLTSs and the perceptual map is
shown in Fig. 1. On the right, the lattice H(s,μ) is not balanced, i.e., the width of each
basic label is different.
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Fig. 1. Difference between the original definition of HFLTSs (HS ) (on the left) and the perceptual
map (H(S,μ)) (on the right)

3.1 Centroid and Degree of Consensus

Definition 9.Given a group of k DMs,G = {d1, . . . , dk} with each providing an assess-
ment Hi ∈ H(S,μ) over one alternative, then the centroid of the group, denoted as HC ,

is defined as:

HC = arg min
H∈H(S,μ)

∑k

j=1
d
(
H ,Hj

)
(7)

This centroid represents the central tendency of all assessments given by the DM
group G.

The following proposition proves that the centroid can be calculated using the two
medians of the two sets of indexes.

Proposition. If Hi = [
sLi , s

R
i

] ∈ H(S,μ) ∀i ∈ {1, . . . , k} then the centroid is calculated
as:

HC = {
[sL, sR] ∈ H(S,μ)

∣
∣L ∈ M

(
sL1, . . . , s

L
1

)
,R ∈ M

(
sR1 , . . . , sR1

)
} (8)

where M is the set that contains just the median if k is odd, or two central values and any
integer number between them if k is even. The proof of this proposition can be found in
[1].

From the previous proposition, it follows that when the number of DMs is odd, the
centroid is unique. However, when the number of DMs is even, the centroid is not unique.

The value
∑k

j=1d
(
HC,Hj

)
can be considered a measure of disagreement among

the DMs. This sum has a minimum value of 0 if Hi = Hj∀ij and is upper bounded by

ζ = �k/2 ·
(

2 · ∑

i
μi − μ1 − μn

)

. This bounding enables us to define the degree of

agreement or consensus of G as:

δ(G) = 1 −
∑k

j=1d
(
HC ,Hj

)

ζ
∈ [0, 1] (9)
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4 A Transformation Function for Multi-perceptual GDM

In this section, we seek to establish the basis for modelling multiple perceptual maps or
multi-granularity. Multi-granularity refers to the use of different set of labels or different
meanings for the same set of labels by different DMs, that is, from now on we associate a
different perceptual map for each DM. To aggregate all this information from the group
of DMs, we develop a perceptual-based transformation function to project linguistic
assessments built over different perceptual maps onto a projected linguistic structure.
This approach is inspired by some of the ideas developed for linguistic hierarchies [4, 9],
multi-granular contexts [9, 10], and the extension of a discrete linguistic term set [18].
In the following paragraphs, G is assumed to be a set of DMs, G = {d1, . . . , dk}. Each
dj expresses his or her opinion based on his or her own perceptual map (HS j, μ

j) over

his or her appropriate linguistic term set Sj =
{
sj1, . . . , s

j
nj

}
j ∈ {1, ..., k} of cardinality

nj.
Given that a basic linguistic perceptual map (S, μ) can be considered as a partition

of some real interval of length L = ∑
iμi, we consider k different basic perceptual

maps (Sj, μj) such as
∑

iμ
j
i = L∀j ∈ {1, . . . , k}. This last equality simply expresses a

normalization that enables the comparison of different perceptual maps.
Given k basic perceptual maps (Sj, μj), we can consider a basic projected perceptual

map
(
SP, π

)
such as N ≡ Card(SP) ≤ ∑

nj − 1 and where π1 = min
j

μ
j
1 and πN =

min
j

μ
j
nj . This projected perceptual map forms a refinement of the partitions where all the

HFLTSs from any DM have equivalence in this basic projected perceptual map. From
the set SP and the measure π , the projected perceptual mapH(SP,π) is obtained as usual
(see Fig. 2).

If Hj ∈ H(Sj,μj) is the assessment of DM j using the perceptual map H(Sj,μj), this
HFLTS has an equivalent H∗

j ∈ H(SP,π). For instance, in the example shown in Fig. 2:

• H1 = [s1, s2] defined over the perceptual map H(
S1,

{
μ1
1,μ

1
2,μ

1
3

}) has an equivalent in

H(SP,π) that is H
∗
1 = [

s∗1, s∗5
]
.

• H2 = {s2} defined over the perceptual map H(S2,
{
μ2
1,μ

2
2,μ

2
3,μ

2
4

}
) has an equivalent in

H(SP,π) that is H
∗
2 = [

s∗3, s∗4
]
.

• H3 = {s1} defined over the perceptual mapH(S3,
{
μ3
1,μ

3
2

}
) has an equivalent inH(SP,π)

that is H∗
2 = [

s∗1, s∗3
]
.

The centroid can now be considered using the projected perceptual map and its
associated distance:

HC = arg min
H∈H

(SP ,π)

∑k

j=1
dH

(SP ,π)

(
H ,H∗

j

)
(10)

where dH
(SP ,π)

is the distance in the perceptual mapH(SP,π) and H
∗
j is the projection of

Hj onto this projected perceptual map.
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Fig. 2. Example of projected perceptual map π from perceptual maps μ1, μ2 and μ3.

Again, the sum
∑k

j=1dH(SP ,π)

(
H ,H∗

j

)
is upper bounded by ζ = �k/2 ·

(

2 · ∑

i
πi − π1 − πn

)

and this enables defining the degree of consensus as:

δ(G) = 1 −
∑k

j=1dH(SP ,π)
(HC,H∗

j )

ζ
(11)

To illustrate this calculus let’s find the centroid and the degree of consensus in the
example in Fig. 2. Let’s suppose the perceptual maps:

• (
S1, μ1

)
where μ1

1 = 1, μ1
2 = 5, μ1

3 = 4.
• (

S2, μ2
)
where μ2

1 = 2, μ2
2 = 3, μ2

3 = 3, μ3
3 = 2.

• (
S3, μ3

)
where μ3

1 = 3, μ3
2 = 7.

• (
SP,π

)
where π1 = 1, π2 = 1, π3 = 1, π4 = 2, π5 = 1, π6 = 2, π7 = 2.

The assessment of the three DMs are:

• H1 = [s1, s2], that is H∗
1 = [

s∗1, s∗5
]
.

• H2 = {s2}, that is H∗
2 = [

s∗3, s∗4
]
.
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• H3 = {s1}, that is H∗
3 = [

s∗1, s∗3
]
.

Therefore, the centroid is:

HC = {[
s∗L, s∗R

] ∈ H(S,μ)

∣
∣L ∈ M

(
s∗1, s∗3, s∗1

)
,R ∈ M

(
s∗5, s∗4, s∗3

)} = [s∗1, s∗4]
The distances between the centroid and each assessment are:

• dH
(SP ,π)

(
HC,H∗

1

) = dH
(SP ,π)

([s∗1, s∗4],
[
s∗1, s∗5

]) = π5

• dH
(SP ,π)

(
HC,H∗

2

) = dH
(SP ,π)

([
s∗1, s∗4

]
,
[
s∗3, s∗4

]) = π1 + π2

• dH
(SP ,π)

(
HC,H∗

3

) = dH
(SP ,π)

([
s∗1, s∗4

]
,
[
s∗1, s∗3

]) = π3

and the degree of consensus is:

δ(G) = 1 −
dH

(SP ,π)

(
HC ,H∗

1

)
+ dH

(SP ,π)

(
HC ,H∗

2

)
+ dH

(SP ,π)

(
HC ,H∗

3

)

ζ
= 1 − π5 + π1 + π2 + π3

(2 · L − π1 − π7)
= 13

17
.

that is, a degree of consensus of approximately 76.5%.
This last example clearly illustrates all steps in the calculus of the degree of consensus

when different perceptualmaps are taken into account, that is, in amulti-perceptualGDM
scenario.

5 Conclusion and Future Work

This paper presents amulti-perceptual framework formulti-criteria groupdecision aiding
based on unbalanced hesitant linguistic information. The framework presented enables
DMs to use their own perception maps, that is, their own linguistic labels with their
own meanings. This contribution represents a step forward with respect to the existing
methods for MCDA in which DMs with different backgrounds or knowledge and may
feel more comfortable using their own linguistic term sets when expressing judgements.
Even the same linguistic term can have different meanings depending on the DM who
uses it because each DM may have acquired a specific meaning for a term as a result of
his or her experience.

The multi-perceptual framework is based on the projected perceptual map, a hyper-
perceptual map where all HFLTSs from each of the perceptual maps from all DMs
have equivalences. The concepts of distance, centroid, and degree of consensus can be
interpreted directly in this projected perceptual map. An illustrative example is provided
to demonstrate the overall approach.

Compared with previous linguistic frameworks with HFLTSs in the literature, the
main contribution of this work is found in three aspects. Firstly, basic labels can be freely
distributed and there is no need for uniformity nor symmetry. Secondly, the meaning of
basic linguistic terms does not only depend on their position, but also on their measures.
Finally, the proposed framework enables flexibility for different degrees of uncertainty
and granularity among the experts.

Future research is oriented in various directions. Firstly, analyzing how to translate
hesitancy among different perceptual maps without increasing granularity. Secondly,
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analyzing the evolution of the degree of consensus when a new DM joins the decision
group. Thirdly, capturing the perceptual map associated with each DM from previous
assessments through machine learning techniques. Finally, all of these directions will
revert positively in common-sense reasoning understanding and contribute to improving
human-machine interaction.

Acknowledgements. This research has been partially supported by the PERCEPTIONSResearch
Project (PID2020-114247GB-I00), funded by the Spanish Ministry of Science and Information
Technology.
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Abstract. We consider a situation where agents are updating their probabilistic
opinions on a set of issues with respect to the confidence they have in each other’s
judgements. We adapt the framework for reaching a consensus introduced in [2]
and modified in [1] to our case of uncertain probabilistic judgements on logically
related issues. We discuss possible alternative solutions for the instances where
the requirements for reaching a consensus are not satisfied.

Keywords: Judgement aggregation · Probabilistic logic · Markov chains

1 Introduction

Judgement aggregation (JA) is concerned with aggregating categorical judgements
about the truth values of logically related issues (propositions) [4,7]. An example is
given in Table 1, where the rows contain judgements of agents over the issues p, q, and
p ∧ q. As observed from the example, pooling the truth valuations on each issue does
not always lead to a consistent set of collective judgements. JA designs and studies
aggregators that produce a consistent outcome.

Table 1. An example of a judgement aggregation using the simple majority rule.

p q p ∧ q

Agent 1 True True True

Agent 2 True False False

Agent 3 False True False

Majority True True False

Aggregation problems, however, are not always Boolean, since the judgements on
whether an issue is true or false are not always certain. In order to deal with this kind
of uncertainty, in [6] we define a framework that aims at aggregating judgements about
the probabilities of issues, as in the example given in Table 2.
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Table 2. An example of probabilistic judgement aggregation with a threshold majority rule. The
numbers in each row represent the probabilities of the issues being true according to the corre-
sponding agent.

p q p ∧ q

Agent 1 0.7 0.8 0.7

Agent 2 0.6 0.7 0.5

Agent 3 0.2 0.8 0.2

Majority≥0.6 True True False

One way of aggregating judgements into a consistent collective opinion would be
to modify (update) some of the individual judgements until the chosen aggregation rule
produces a consistent judgement. This idea is obviously more applicable to probabilistic
judgements than to categorical ones, since the modification there amounts to adjusting
a probability value rather than completely changing the attitude about the truth of an
issue. As can be observed in the example in Table 2, a small modification of an indi-
vidual opinion (in this case agent 2’s judgement on p ∧ q) could result in obtaining a
consistent collective judgement.

In this paper we consider a setting where agents update their individual opinions to
align with each other and eventually converge to a consensual opinion. We adopt the
model for reaching a consensus over probability distributions described in [2] and show
that it is applicable to the case of probabilistic opinions on logically related issues as
well. The model presumes a confidence matrix representing the trust the agents have
in each other’s opinions. The opinion updating is performed based on the confidence
matrix. In the cases where the repeated updates converge to a consensus, the aggregated
opinion is obtained from the individual opinions through a linear function, and some
desirable properties follow by definition. We discuss possible solutions to the cases
where this repeated update will not lead to a consensus due to the properties of the
confidence matrix and the particular opinions that are to be aggregated.

2 Framework

We use a slightly modified version of the framework defined in [6] which we include
for self-sufficiency.

2.1 Probabilistic Judgement Profiles

Let L be a set of propositional logic formulas. An agenda is a finite set Φ ⊂ L,
Φ = {ϕ1, . . . , ϕm}, (1)

s.t. ϕi is neither a tautology nor a contradiction. We call the elements of the agenda
issues. For example, in Table 1, we have Φ = {p, q, p ∧ q}. We are interested in aggre-
gating a collection of judgements on the agenda issues coming from a group of informa-
tion sources (we will also call them agents) into a collective judgement representative
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for the group. Let Φ∪ = Φ ∪ {¬ϕ | ϕ ∈ Φ}. We model the information sources as sets
of likelihood judgements on Φ∪.

A likelihood judgement on the issue ϕ ∈ Φ∪ is a simple likelihood formula of the
type:

�(ϕ) ≥ a, (2)

where a ∈ [0, 1]. The likelihood judgement �(ϕ) ≥ a expresses that the likelihood
(probability)1 of the statement ϕ being true is at least a. The formula (2) is an instance
of the logic of likelihood (see [3] and [5]), the language of which consists of Boolean
combinations of linear likelihood formulas of the type

a1�(ϕ1) + . . . + an�(ϕn) ≥ b, (3)

where ai, b are real numbers, and ϕi are pure propositional formulas.2 The likelihood
formulas are interpreted in probability spaces M = (W,F, μ), where W is a set of
possible worlds, F is a σ-algebra on W , and μ : F → [0, 1] is a probability measure.
The propositional formulas are given possible world semantics in the standard way:

ϕM = {w ∈ W | w |= ϕ}, (4)

and the term �(ϕ) is interpreted as μ(ϕM )3, i.e. as the probability of the set of worlds
at which ϕ is true. This leads to the following interpretation of (3):

a1μ(ϕM
1 ) + . . . + anμ(ϕM

n ) ≥ b, (5)

i.e. (3) is true in M if and only if (5) holds. The interpretation of Boolean combinations
of formulas of type (3) is defined in the standard way.

The axiomatic system for the logic of likelihood consists of axioms for propositional
reasoning, reasoning about inequalities, and reasoning about probabilities. In particular,
for every propositions ϕ and ψ, and every likelihood formulas f and g, the following
are axioms:

– (Prop) All substitution instances of tautologies in propositional logic,
– (MP) From f and f → g, infer g,
– (Inq) All substitution instances of valid linear inequality formulas,
– (L1) �(ϕ) ≥ 0,
– (L2) �(�) = 1,
– (L3) �(ϕ) = �(ϕ ∧ ψ) + �(ϕ ∧ ¬ψ),
– (L4) From ϕ ↔ ψ infer �(ϕ) = �(ψ).

The above set of axioms is shown to be sound and complete with respect to the above
interpretation [3].

1 In this paper we interpret likelihood as probability and we use the two terms interchangeably.
Note that, however, likelihood can also be interpreted as another measure of belief, see [5].

2 Expressions containing all the other types of inequalities or equality can be defined as abbre-
viations.

3 To ensure that every ϕM is measurable, we may take F = 2W .
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Each of the information sources is represented as a set of likelihood judgements Ĵ .
The set Ĵ has one likelihood judgement on each of the issues in Φ∪:

Ĵ ={�(ϕ) ≥ a(ϕ) | ϕ ∈ Φ∪}, (6)

where a(ϕ) ∈ [0, 1] is called a judgement coefficient of ϕ.
From a given judgement set Ĵ as defined in (6), using the above axioms, we can

derive �(ϕ) ≤ 1 − a(¬ϕ). This means that providing likelihood formulas for both ϕ
and ¬ϕ in the judgement set Ĵ is equivalent to providing intervals for the likelihood of
ϕ. In the cases where a(ϕ) + a(¬ϕ) = 1, these intervals collapse to a point, i.e. we
obtain precise likelihood judgement. Judgements in Ĵ can also be Boolean, since we
can represent by �(ϕ) ≥ 1 that ϕ is true, and by �(¬ϕ) ≥ 1 that ϕ is false.

Given a set of n agents N = {1, . . . , n}, a likelihood profile:

P̂ = (Ĵ1, . . . , Ĵn), (7)

is a collection of sets of likelihood judgements for an agenda Φ, each representing one
agent k ∈ N . We slightly abuse notation and write Ĵk ∈ P̂ to denote that Ĵk is the k-th
likelihood judgement set in P̂ :

Ĵk = {�(ϕ) ≥ ak(ϕ) | ϕ ∈ Φ∪}, (8)

where ak(ϕ) ∈ [0, 1] are the judgement coefficients of the k-th agent, k = 1, . . . , n. An
example of a likelihood profile is given in Table 3.

Table 3. An example of a likelihood profile over the agenda Φ = {p, q, p ∧ q}. The set of
likelihood judgements of agent 1 is J1 = {�(p) ≥ 0.7, �(¬p) ≥ 0.2, �(q) ≥ 0.8, �(¬q) ≥
0.1, �(p ∧ q) ≥ 0.7, �(¬(p ∧ q)) ≥ 0.2}. Similarly, for J2 and J3.

p ¬p q ¬q p ∧ q ¬(p ∧ q)

Agent 1 ≥ 0.7 ≥ 0.2 ≥ 0.8 ≥ 0.1 ≥ 0.7 ≥ 0.2

Agent 2 ≥ 0.6 ≥ 0.2 ≥ 0.7 ≥ 0.3 ≥ 0.5 ≥ 0.5

Agent 3 ≥ 0.2 ≥ 0.2 ≥ 0.8 ≥ 0.2 ≥ 0.2 ≥ 0.4

The example in Table 2 is a special case of a likelihood profile for the agenda
Φ = {p, q, p ∧ q}, where each row represents a judgement set with precise likelihood
judgements. For example, 0.6 in the row of agent 2 stands for �(p) = 0.6, or, equiva-
lently, �(p) ≥ 0.6 and �(¬p) ≥ 0.4.

2.2 Rationality of Probabilistic Judgement Sets

We require that the sets of likelihood judgements in the profile are rational. We now
define what are rational likelihood judgements sets.

A probabilistic judgement set is consistent if it is a consistent set of formulas in the
logic of likelihood. A probabilistic judgement set is not always consistent. Consider, for
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example, the agenda Φ = {p1 ∧ p2, p1 ∧ ¬p2} and a set Ĵ containing the judgements
�(p1 ∧ p2) ≥ 0.4 and �(p1 ∧ ¬p2) ≥ 0.7. The set Ĵ is an inconsistent set of formulas,
because it implies �(p1) ≥ 1.1 by axiom (L3). Furthermore, note that for a judgement
set Ĵ defined as in (6) to be consistent, it has to satisfy a(ϕ) + a(¬ϕ) ≤ 1, for every
ϕ ∈ Φ.

A set of likelihood judgements is always complete in the sense that it contains a
likelihood judgement for each of the issues. This assumption does not limit the freedom
of not having a specific likelihood estimate for a given issue ϕ. To represent the absence
of a specific likelihood or an “abstention” on an issue ϕ, we can use the tautologies
�(ϕ) ≥ 0 and �(¬ϕ) ≥ 0.

In classical judgement aggregation, a judgement set is rational if it is consistent and
complete, which means it provides a truth value for each of the issues in the agenda,
and these values are consistent. In the probabilistic case, consistency and completeness
are not enough of conditions for rationality. For example, Ĵ = {�(p1) ≥ 0.3, �(¬p1) ≥
0.5, �(p1 ∧ p2) ≥ 0.4, �(¬(p1 ∧ p2)) ≥ 0.5} is a consistent set. However, if we use the
axioms, we can easily derive �(p1) ≥ 0.4, which is stronger than the existing �(p1) ≥
0.3 and, as such, is a more valuable judgement. In general, we say that �(ϕ) ≥ a is a
stronger judgement than �(ϕ) ≥ b iff a > b. To ensure that we always have the strongest
possible judgements in the consistent judgement sets, we introduce the notion of a final
judgement. A consistent probabilistic judgement set is final if it does not imply stronger
judgements than the ones it contains, i.e. a judgement set Ĵ as defined by (6) is final
iff Ĵ � �(ϕ) ≥ c implies c ≤ a(ϕ), for every ϕ ∈ Φ∪. We say that the probabilistic
judgement set Ĵ is rational if it is consistent and final. A profile is rational if all the
judgement sets in it are rational.

3 Updating Probabilistic Judgements

One can imagine there are many different ways the agents can update their judgements,
depending on the kind of information the update is based upon. Here, we handle the
situation where there is no new factual information that the agents receive, but they are
able to observe each other’s judgements and update their own judgement sets based on
this observation. Similarly as in [2], we assume that each agent has certain degrees of
confidence in the other agents’ opinions and in her own, and updates her probabilistic
judgements upon observing the judgements of others based on these confidence degrees.
More formally, let

tk = (tk1, . . . , tkn), (9)

where tkr ∈ [0, 1], for every r, and
∑n

r=1 tkr = 1, be the confidence distribution of
the k-th agent, k = 1, . . . , n. tkr is interpreted as the degree of confidence the agent k
assigns to the agent r, r = 1, . . . , n. We call the matrix T = [tkr]n×n, where each row
represents a confidence distribution of the corresponding agent, a confidence matrix.

Given a likelihood profile P̂ = (Ĵ1, . . . , Ĵn), we assume that the agent k is updat-
ing her judgements by calculating new judgement coefficients as weighted average of
everyone’s judgement coefficients wrt. her confidence distribution tk:

Ĵ1
k = {�(ϕ) ≥

n∑

r=1

tkrar(ϕ) | ϕ ∈ Φ∪} . (10)
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The updating process can iterate several times, and the result of each iteration is defined
recursively:

Ĵ i
k = {�(ϕ) ≥ ai

k(ϕ) | ϕ ∈ Φ∪}, (11)

where the judgement coefficients are determined by

ai
k(ϕ) =

n∑

r=1

tkra
i−1
r (ϕ), (12)

for k = 1, . . . , n, where a0
r(ϕ) = ar(ϕ). P̂ i = (Ĵ i

1, . . . , Ĵ
i
n) is the i-th update of the

profile P̂ = (Ĵ1, . . . , Ĵn), for i ∈ N.

Theorem 1. Let P̂ = (Ĵ1, . . . , Ĵn) be a rational profile and T = [tkr]n×n be a confi-
dence matrix. Then P̂ i = (Ĵ i

1, . . . , Ĵ
i
n) is a rational profile, for every i ∈ N.

The proof of the above theorem follows directly from the following proposition.

Proposition 1. Let P̂ = (Ĵ1, . . . , Ĵn) be a rational profile and t = (t1, . . . , tn) be a
vector of coefficients such that tk ∈ [0, 1], for every k = 1, . . . , n, and

∑n
k=1 tk = 1.

Then the judgement set Ĵ = {�(ϕ) ≥ ∑n
k=1 tkak(ϕ) | ϕ ∈ Φ∪} is rational.

Proof. Consistency: Let W be a set of possible worlds and let F = 2W be the σ-
algebra of all the subsets of W . Since the profile P̂ is rational, the set Ĵk = {�(ϕ) ≥
ak(ϕ) | ϕ ∈ Φ∪} is a consistent set of formulas, for every k = 1, . . . , n. This means
that there exist probability measures on (W,F ), μk : F → [0, 1], k = 1, . . . , n, such
that the inequalities in the sets {μk(ϕM ) ≥ ak(ϕ) | ϕ ∈ Φ∪} hold. Then the lin-
ear function of these measures with the components of the vector t as coefficients,
μ =

∑
k tkμk, is a probability measure on (W,F ) for which the set of inequalities

{μ(ϕM ) ≥ ∑
k tkak(ϕ) | ϕ ∈ Φ∪} holds. The last implies consistency of the judge-

ment set Ĵ = {�(ϕ) ≥ ∑
k tkak(ϕ) | ϕ ∈ Φ∪}.

Finality: Let us denote by a(ϕ) =
∑

k tkak(ϕ) the likelihood coefficients of the set Ĵ .
Suppose that the set Ĵ is not final. This means that there exists ϕi ∈ Φ∪, and c > a(ϕi),
such that Ĵ � �(ϕi) ≥ c, i.e. that using the formulas in Ĵ and the axioms of the logic,
one can derive �(ϕi) ≥ c. Since c > a(ϕi), this derivation needs to include axioms
(L3), (L4) and some of the likelihood judgements of Ĵ referring to issues other than
ϕi. In particular, ϕi must “include” some of the other issues, i.e. there must exist issues
ϕi1 , . . . , ϕir ∈ Φ∪, other than ϕi, such that

� �(ϕi) ≥ �(ϕi1) + · · · + �(ϕir ), (13)

and their judgement coefficients are such that:

a(ϕi1) + · · · + a(ϕir ) ≥ c . (14)

Now, from (13) and the consistency of Ĵk, for every k, we will have

Ĵk � �(ϕi) ≥ ak(ϕi1) + · · · + ak(ϕir ) . (15)
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From this and the finality of Ĵk, we obtain

ak(ϕi) ≥ ak(ϕi1) + · · · + ak(ϕir ), (16)

for every k. But then,

∑

k

tkak(ϕi) ≥
∑

k

tkak(ϕi1) + · · · +
∑

k

tkak(ϕir ), (17)

which with the shortened notation becomes

a(ϕi) ≥ a(ϕi1) + · · · + a(ϕir ) (18)

The last, together with (14), implies a(ϕi) ≥ c, which is in contradiction with the initial
assumption.

4 Convergence to a Consensus

Let us denote akj = ak(ϕj), for ϕj ∈ Φ∪, and k = 1, . . . , n. Then A = [akj ]n×2m is a
matrix consisting of the judgement coefficients of the n agents on the set of propositions
Φ∪, with each row corresponding to one agent, and each column corresponding to one
issue of the extended agenda Φ∪. We call it a judgement matrix of the profile P̂ =
(Ĵ1, . . . , Ĵn). For example, the likelihood profile given in Table 3 is represented by the
judgement matrix given in Fig. 1.

A =

⎡

⎣
0.7 0.2 0.8 0.1 0.7 0.2
0.6 0.2 0.7 0.3 0.5 0.5
0.2 0.2 0.8 0.2 0.2 0.4

⎤

⎦

Fig. 1. An example of a judgement matrix of three agents on the extended agenda Φ∪ =
{p, ¬p, q, ¬q, p ∧ q, ¬(p ∧ q)}.

If A is a judgement matrix of the profile P̂ and T is a confidence matrix, then the matrix

A1 = TA

will be the judgement matrix of the profile P̂ 1, we denote it byA1 = [a1
kj ]. For example,

if T is defined as:

T =

⎡

⎣
1/2 1/2 0
1/4 3/4 0
1/3 1/3 1/3

⎤

⎦
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then the judgement matrix given in Fig. 1 will be updated as follows:

A1 =

⎡

⎣
0.650000 0.200000 0.750000 0.200000 0.600000 0.350000
0.625000 0.200000 0.725000 0.250000 0.550000 0.425000
0.500000 0.200000 0.766667 0.200000 0.466667 0.366667

⎤

⎦

In general, if we denote A0 = A, from Eq. (12) we will have

Ai = TAi−1, (19)

for i ∈ N, where the matrices Ai = [ai
kj ] and Ai−1 = [ai−1

kj ] are the judgement

matrices of the profiles P̂ i and P̂ i−1, correspondingly. Applying the associativity of
matrix multiplication at Eq. (19), we obtain:

Ai = T iA, (20)

which means that for every i ∈ N, the matrix of the profile P̂ i can be obtained from the
matrix of the initial profile P̂ and the i-th power of the confidence matrix T .

Let us assume that the agents continue to update their judgement sets, i.e. iterations
continue indefinitely, or until for some i, we obtain Ai+1 = Ai, which would mean that
the opinions are no longer being updated. During this updating process, we assume that
a consensus is reached if the opinions of the agents converge to the same judgement
set, i.e. there exists a judgement set Ĵ∗, such that

lim
i→∞

Ĵ i
k = Ĵ∗, (21)

for every k = 1, . . . , n. This amounts to all the rows of the matrix Ai, we denote them
by Ai

k, converging to the same row vector, i.e. convergence to a consensus presumes
existence of a vector a∗ = (a∗

1, . . . , a
∗
2m), such that:

lim
i→∞

Ai
k = a∗, (22)

for every k = 1, . . . , n, and equivalently, due to Eq. (20):

lim
i→∞

T i
kA = a∗, (23)

for every k = 1, . . . , n, where T i
k is the k-th row of the matrix T i.

Now, from Eq. (23) we can observe the following: If the rows of T i converge to the
same row vector i.e., if there exists a vector π = (π1, . . . , πn) such that:

lim
i→∞

T i
k = π, (24)

for every k = 1, . . . , n, then the matrix product in Eq. (23) will converge to πA, hence
this product will determine a vector a∗ with the above requirements. Now, having the
vector a∗ defined as:

a∗ = πA, (25)
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the corresponding consensual judgement set will be given by:

Ĵ∗ = {�(ϕj) ≥ a∗
j | j = 1, . . . , 2m}, (26)

or, in terms of the input judgement sets and the notation in Sect. 2:

Ĵ∗ = {�(ϕ) ≥
n∑

r=1

πrar(ϕ) | ϕ ∈ Φ∪} . (27)

5 A Necessary and Sufficient Condition for Reaching a Consensus

According to the discussion in the previous section, the existence of a vector π such
that Eq. (24) holds is a sufficient condition for reaching a concensus and the consensual
solution in the case this condition is satisfied is obtained by mutiplying the initial opin-
ion matrix A by π. It is worth noticing that, if such a vector π = (π1, . . . , πn) exists,
then its components are non-negative and

∑n
r=1 πr = 1. Let us now see when such π

exists.
Observe that the matrix T is a row stochastic matrix (the sum of each row is 1). This

means that it can be regarded as the transition probability matrix of a time-homogeneous
Markov chain with n states. With this interpretation of T , the condition in Eq. (24)
means that π is the limiting distribution of T , which (since T is time-homogeneous) is
also a stationary distribution, i.e. satisfies the equation πT = π. Hence, if a solution π to
the last equation exists, then a consensus is reached, and the vector π provides the coef-
ficients for the linear combination of individual judgements that gives the consensual
solution a∗, i.e. a∗ = πA.

In the example of a confidence matrix of three agents given in the previous section,
the corresponding stationary solution will be:

π = (1/3, 2/3, 0),

and the corresponding consensual vector a∗ = πA, where A is the judgement matrix
given in Fig. 1, will be the following:

a∗ = (0.633333, 0.200000, 0.733333, 0.233333, 0.566667, 0.400000) .

Now, the existence of a limiting distribution is equivalent to the Markov chain being
irreducible and aperiodic. This means that all the agents need to form one closed com-
municating aperiodic class for a global consensus to be reached. In cases where T is
block-diagonal, like the one in Fig. 2, i.e. there are smaller groups of agents that only
give positive confidence to members of their own group, a global consensus will not
be reached in the way described above, that is through the stationary distribution of
the confidence matrix. Here, a possible solution would be to determine the consensual
opinions of each of the groups and then aggregate them, for example, by taking an
average.

However, as observed in [1], it is not hard to imagine a case where a consensus
obviously exists no matter of the matrix T (and the existence of a stationary distribu-
tion). For example, in the trivial case where all the agents have the same probabilistic
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⎡

⎢
⎢
⎣

1/3 2/3 0 0
1/2 1/2 0 0
0 0 1/4 3/4
0 0 1/2 1/2

⎤

⎥
⎥
⎦

Fig. 2. A confidence matrix of a group of four agents. Each row is a distribution of trust that an
agent has in the opinions of the other agents. Agents 1 and 2 “listen” to each other and form
one closed reccurent group of agents that will reach a consensus between themselves. Similarly,
agents 3 and 4 communicate between each other and will reach a consensus.

judgement set Ĵ , the consensus is the set Ĵ itself, no matter of the confidence matrix
T . The authors of [1] proceed further with the above observation and derive a neces-
sary and sufficient condition for a consensus to be reached that applies to any possible
choice of T and A: For each reccurent class of agents, they construct a certain linear
combination of the agents’ probability distributions, and show that the consensus exists
if and only if all of these linear combinations lead to the same probability distribution.
For example, for the confidence matrix given in Fig. 3, they calculate that the consensus
is reached if and only if 3

8p1+ 3
11p2+ 4

11p3 = 11
25p4+ 14

25p5 = 9
25p6+ 16

25p7 holds for the
probability distributions p1, . . . , p8 of the agents. We refer the reader to Theorem 2 in
[1] for the latter result as stating it properly here would require introducing terminology
and notation that is beyond the scope of this paper.

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1/2 1/4 1/4 0 0 0 0 0
1/3 1/3 1/3 0 0 0 0 0
1/4 1/4 1/2 0 0 0 0 0
0 0 0 0 0 1/2 1/2 0
0 0 0 0 0 1/4 3/4 0
0 0 0 1/3 2/3 0 0 0
0 0 0 1/2 1/2 0 0 0
1/3 0 0 1/3 0 0 0 1/3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Fig. 3. A confidence matrix of a group of eight agents.

The work in both [2] and [1] considers the case where the opinions of the agents are
expressed in terms of (precise) probability distributions over a set of mutually exclusive
propositions, while in our case, the opinions of the agents are effectively expressed as
probability intervals over logically related issues. While the result of [2] applies directly
to our case as it depends solely on the matrix T , it is not immediately clear how to
apply the result of [1] to our case. One way to proceed would be to form a system of
equations based on the linear combinations of distributions as defined in Theorem 2 in
[1] and the initial intervals for each probability value, and try to find a solution in terms
of imprecise probabilities over the issues (probabilistic judgement set). Another idea
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would be to look at the intersection of the sets of all possible probability distributions
of each agent (if non-empty) determined by the initial probabilistic profile and try to find
those probability distributions among them that satisfy the requirement for convergence
given in [1]. Exploring these ideas is a future work.

There will still be many cases of a periodic or reccurent confidence matrix not sat-
isfying the necessary and sufficient conditions for reaching a consensus as given in [1],
even in the case of imprecise probabilities. A possible general solution would then be
to require a modification of the confidence matrix T to an aperiodic irreducible matrix
that will have a stationary solution. In practice, this means the agents to be required to
redistribute their confidence degrees in a certain way that enables the resulting confi-
dence matrix to have a stationary solution. Finding out how exactly this should be done
is also a part of our future work.

6 Conclusions

In this paper we refine our framework for probabilistic judgement aggregation defined
in [6] and we propose a new method for aggregating probabilistic judgement of agents
based on the method for aggregating probability distributions described in [2]. In order
to apply the method from [2] to our case, we prove that any linear combination of the
judgements of all the agents leads to a rational judgement if the individual judgements
are rational, which we consider a central result of the paper.

By defining the judgement coefficients of the collective judgement as a linear com-
bination of the judgement coefficients of the individual judgements, we satisfy certain
aggregation properties by definition: Universal domain will certainly hold, as J∗ in
Eq. (27) is well-defined for every choice of ar(ϕ), by construction. Proposition 1 proves
the property of rationality. If all the individual judgements assign a probability estimate
larger than c ∈ [0, 1], then the linear combination of these estimates will also be larger
than c, hence unanimity will as well be satisfied. If the matrix T has a column k that
contains only 1’s (while all the other elements are 0), then Ĵ∗ = Ĵk and the aggregation
is dictatorial.

According to [2], the convergence to a consensus relies on the properties of the
confidence matrix which can be regarded as a transition probability matrix of a time-
homogeneous Markov chain with n states and hence, according to the theory of Markov
chains and their properties, a consensus exists whenever this matrix has a stationary
solution. However, as observed in [1], the existence of a stationary vector for the matrix
T is just a sufficient, but not a necessary condition for a consensus to be reached, and
we discuss how a consensual solution could be reached in cases when the properties of
the matrix T do not guarantee one.

There exist other works on aggregating opinions on logically related issues by con-
vergence to a consensus using the DeGroot framework [8]. However, the way these
works express and deal with the logical relatedness of the issues is different than ours,
namely, they express the opinions of agents as subjective degrees of pair-wise logical
relatedness of the issues. In our case, the logical relatedness of the issues is prede-
termined (by an agenda setter, for example) and formalized in their representation as
propositional formulas, while the opinions of the agents are probabilistic estimates of
the truth of the issues.
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Abstract. Many of the new fuzzy structures with complete MV -
algebras as value sets, such as hesitant, intuitionistic, neutrosophic, or
fuzzy soft sets, can be transformed into one common type of fuzzy sets
with values in special semirings. We use this transformation of fuzzy
structures to unify the theory of (R,R∗)-fuzzy rough sets with these
new fuzzy structures. For this purpose, we use the (R2,R∗

2)-fuzzy rough
set defined for fuzzy soft sets and (R1,R∗

1)-fuzzy rough sets defined for
intuitionistic fuzzy sets. We also show how this general theory can be
used to determine the upper and lower approximations of a colour seg-
ment corresponding to a particular colour.

1 Introduction

Over time, many generalizations and modifications of lattice-valued fuzzy sets
have appeared, such as intuitionistic fuzzy sets [1,2], hesitant fuzzy sets [17,20],
neutrosophis fuzzy sets [10], or fuzzy soft sets [11], and their mutual combi-
nations. As expected, new variants of rough set theory appeared soon, making
it possible to approximate the concepts expressed using these new fuzzy struc-
tures. For example, intuitionistic fuzzy rough set [23,24], soft rough fuzzy sets
[13], hesitant fuzzy rough sets [22], or rough neutrosophic sets [4] and many other
variants of these hybrid structures. Given the way these hybrid structures were
created, it is not surprising that in many cases there are several variants that
define these structures; see [13] and [19]. On the other hand, in some of these
new fuzzy structures, rough variants are not yet introduced.

In our previous paper [15], we tried to unify the theories of certain classes of
new fuzzy structures, that is, fuzzy structures with the complete MV-algebra as a
set of values. The principle of this unification was that these fuzzy structures can
be transformed into special fuzzy sets with values in special partially ordered
semirings, called (R,R∗)-fuzzy sets. In this way, intuitionistic, neutrosophic,
hesitant, or fuzzy soft sets with values in the complete MV -algebra, or their
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mutual combinations, were transformed. This transformation makes it possible
to use general methods of (R,R∗)-fuzzy sets to unify the theories of these new
fuzzy structures or to create new theories if this theory has not yet been created
in the given fuzzy structure.

The contribution of the paper is two-fold. First, we unify the notion of rough
fuzzy structures using the term of (R,R∗)-fuzzy sets. Secondly, we define the
notion of the approximation space (X,Q) consisting of a set X and a (R,R∗)-
fuzzy relation Q in X and for arbitrary (R,R∗)-fuzzy set s we define the notion
of the rough (R,R∗)-fuzzy sets of s in the approximation space (X,Q). The ben-
efits are that the notion of rough (R,R∗)-fuzzy sets can be universally applied
to any fuzzy structure that is transformable to (R,R∗)-fuzzy sets and that the
properties of rough (R,R∗)-fuzzy sets can be directly transferred to the analo-
gous properties of these new rough fuzzy structures without new proofs. In this
paper, we will also show how these (R,R∗)-fuzzy rough structures can be used
to determine the upper and lower approximations of a colour segment corre-
sponding to a particular colour in a colour image.

2 Semiring-Valued Fuzzy Sets

Here, using [3,8,15], we recall the notion of a (R,R∗)-fuzzy set based on the
adjoint pair (R,R∗) of partially ordered semirings.

Definition 1 ([3,8]). A partially preordered (or ordered) idempotent commuta-
tive semiring R = (R,≤R,+,×, 0R, 1R) (or, shortly, po-semiring) is an algebraic
structure with the following properties:

1. (R,+, 0R) is an idempotent commutative monoid,
2. (R,×, 1R) is a commutative monoid,
3. x × (y + z) = x × y + x × z holds for all x, y, z ∈ R,
4. 0R × x = 0R holds for all x ∈ R.
5. (R,≤R) is a partially preordered (or ordered) set such that for all a, b, c ∈ R

the following hold: a ≤R b ⇒ a+Rc ≤R b+Rc, a×Rc ≤R b×Rc, a ≥R 0R.

If a semiring R is such that for any subset S ⊆ R there exists the sum of
elements r ∈ S, then R is called a complete semiring. The sum of elements
x ∈ S is denoted by

∑R
r∈S r. The notion of a po-semiring homomorphism is

defined as a standardly defined homomorphism between algebraic structures,
that is, a po-semiring homomorphism Φ : R → S is a mapping Φ : R → S
between the underlying sets of these semirings such that Φ is a homomorphism
of semirings and it is order-preserving.

The basic value set structure we use is the so-called adjoint pair of complete
po-semirings (R,R∗) which was introduced in [15].

Definition 2 ([15]). Let R = (R,≤,+,×, 0, 1) and R∗ = (R,≤∗,+∗,×∗, 0∗, 1∗)
be complete po-semirings with the same underlying set R. The pair (R,R∗) is
called the adjoint pair of po-semirings if there exists a po-semiring isomorphism
Φ : R → R∗ and the following statements hold:
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1. Φ is self-inverse, i.e., Φ.Φ = idR,
2. ∀a, b ∈ R, a ≤ b ⇔ a ≥∗ b,
3. ∀a, bi ∈ R, i ∈ I, a ×∗ ∑R

i bi =
∑R

i (a ×∗ bi),
4. ∀a, bi ∈ R, i ∈ I, a +

∑R∗

i bi =
∑R∗

i (a + bi),
5. ∀a, b ∈ R, a +∗ b ≤ a + b.

The basic structure with which we will work with is the (R,R∗)-fuzzy set. As
we showed in our previous paper [15], many of the new variants of fuzzy struc-
tures, such as intuitionistic, hesitant, neutrosophis, or fuzzy soft sets with val-
ues in complete MV -algebras, can be transformed into (R,R∗)-fuzzy sets for
appropriate po-semirings R. We repeat the basic definition of this structure and
operations on (R,R∗)-fuzzy sets.

Definition 3 ([15]). Let (R,R∗) be the adjoint pair of po-semirings with the
common underlying set R and isomorphism Φ. Let X be a set.

1. A mapping s : X → R is called the (R,R∗)-fuzzy set in X. The set of all
(R,R∗)-fuzzy sets in X is denoted by (R,R∗)X .

2. Operations on (R,R∗)-fuzzy sets and external operation with elements of R
are defined for arbitrary s, t ∈ (R,R∗)X and a ∈ R by
(a) The intersection s 
 t is defined by (s 
 t)(x) = s(x) +∗ t(x), x ∈ X,
(b) The union s � t is defined by (s � t)(x) = s(x) + t(x), x ∈ X,
(c) The complement ¬s is defined by (¬s)(x) = Φ(s(x)).

For the illustration of the transformations of new fuzzy structures to (R,R∗)-
fuzzy sets, we present two examples of adjoint pairs of po-semirings, which rep-
resent intuitionistic fuzzy sets and fuzzy soft sets with values in a complete
MV -algebra, respectively. In these examples, L = (L,⊕,¬, 0L) is a complete
MV -algebra, where we standardly set

x ⊗ y = ¬(¬x ⊕ ¬y), x ∨ y = (x ⊕ ¬y) ⊗ y, x ∧ y = (x ⊗ ¬y) ⊕ y, x ≤ y ⇔ x ∨ y = y.

Example 1. [15]

1. The po-semiring R1 = (R1,≤1,+1,×1, 01, 11) is defined by
(a) R1 = {(α, β) ∈ L2 : ¬α ≥ β} ⊆ L2,
(b) (α, β) +1 (α1, β1) := (α ∨ α1, β ∧ β1),
(c) (α, β) ×1 (α1, β1) := (α ⊗ α1, β ⊕ β1),
(d) 01 = (0L, 1L), 11 = (1L, 0L),
(e) (α, β) ≤1 (α′, β′) ⇔ α ≤ α′, β ≥ β′.

2. The po-semiring R∗
1 = (R,≤∗,+∗,×∗, 0∗, 1∗) is defined by

(a) (α, β) +∗
1 (α1, β1) := (α ∧ α1, β ∨ β1),

(b) (α, β) ×∗
1 (α1, β1) := (α ⊕ α1, β ⊗ β1),

(c) 0∗
1 = (1L, 0L), 1∗

1 = (0L, 1L),
(d) (α, β) ≤∗

1 (α′, β′) ⇔ (α, β) ≥1 (α′, β′).
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Let Φ1 : R1 → R∗
1 be defined by Φ1(α, β) = (β, α), for (α, β) ∈ R2. Then

(R1,R∗
1) is the adjoint pair of po-semirings and Φ1 is the adjoint po-semiring

isomorphism. �

Example 2. [15]

1. Let K be the fixed set of criteria. The po-semiring R2 = (R2,≤2,+2,×2,
02, 12) is defined by
(a) R2 = {(E,ψ) : E ⊆ K,ψ ∈ LK} ⊆ LK , where (E,ψ) ∈ LK is defined by

k ∈ K, (E,ψ)(k) =

{
ψ(k), k ∈ E,

0L, k �∈ E
.

(b) (E,ϕ), (F,ψ) ∈ R2, (E,ϕ) +2 (F,ψ) := (E ∩ F,ϕ ∨ ψ), where ϕ ∨ ψ is the
supremum in LK ,

(c) (E,ϕ), (F,ψ) ∈ R2, (E,ϕ) ×2 F,ψ) = (E ∩ F,ϕ × ψ), where ϕ × ψ ∈ LK

is defined by ϕ × ψ(k) = ϕ(k) ⊗ ψ(k),
(d) 02 = (K, 0L), 12 = (K, 1L), where α(k) = α for arbitrarily k ∈ K, α ∈ L,
(e) (E,ϕ) ≤2 (F,ψ) ⇔ (E,ϕ)(k) ≤ (F,ψ)(k),∀k ∈ E ∩ F .

2. The po-semiring R∗
2 = (R2,≤∗

2,+
∗
2,×∗

2, 0
∗
2, 1

∗
2) is defined by

(a) (E,ϕ), (F,ψ) ∈ R2, (E,ϕ) +∗
2 (F,ψ) := (E ∩ F,ϕ ∧ ψ), where ϕ ∧ ψ is the

infimum in LK ,
(b) (E,ϕ), (F,ψ) ∈ R2, (E,ϕ) ×∗

2 (F,ψ) = (E ∩ F,ϕ ⊕ ψ), where ⊕ in LK is
defined component-wise.

(c) 0∗
2 = (K, 1L), 1∗

2 = (K, 0L), where α(k) = α for arbitrary k ∈ K, α ∈ L,
(d) (E,ϕ) ≤∗

2 (F,ψ) ⇔ (E,ϕ) ≥2 (F,ψ).

Let Φ : R2 → R∗
2 be defined by Φ(E,ψ) = (E,¬ψ), for (E,ψ) ∈ R2, where ¬ψ is

defined component-wise. Then (R2,R∗
2) is the adjoint pair of po-semirings and

Φ2 is the adjoint po-semiring isomorphism. �

The basic relationship between the (R,R∗)-fuzzy sets of these two examples
and intuitionistic fuzzy sets or fuzzy soft sets is described as follows.

Example 3. [15] Let L be the complete MV -algebra.

1. The algebraic structure (J(X),∪,∩,¬,≤) of all intuitionistic L-fuzzy sets is
isomorphic to the structure ((R1,R∗

1)
X ,�,
,¬,⊆),

2. The algebraic structure (S(X),∪,∩,¬,≤) of all L-fuzzy soft sets in X is
isomorphic to the structure ((R2,R∗

2)
X ,�,
,¬,⊆). �

As was proven in [15], an analogous result holds for some other of the new
fuzzy structures.
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3 Rough (R,R∗)-Fuzzy Sets

As we mentioned in the introduction, our goal in this paper is to define the
theory of rough (R,R∗)-fuzzy sets, so that the existing rough fuzzy sets of the
mentioned fuzzy structures will be special examples of this theory.

As with classical rough fuzzy sets, this unifying theory of rough (R,R∗)-fuzzy
sets will be based on the notion of the (R,R∗)-fuzzy relation, which we define
in the following definition. In what follows, by the po-semirings from (R,R∗) we
understand R = (R,≤,+,×, 0, 1) and R∗ = (R,≤∗,+∗,×∗, 0∗, 1∗).

Definition 4. Let (R,R∗) be the adjoint pair of po-semirings with the adjoint
isomorphism Φ and let X be a set. By (R,R∗)-relation in a set X we understand
a (R,R∗)-fuzzy set Q : X × X → R in the Cartesian product X × X.

Analogously as for classical fuzzy relations, we can define operations for
(R,R∗)-relations.

Definition 5. Let S, T be (R,R∗)-relations in a set X as follows.

1. The composition T ◦ S of S and T is the (R,R∗)-relation T ◦ S(x, z) =
∑R

y∈X S(x, y) × T (y, z) for arbitrarily x, z ∈ X.
2. The dual composition of S and T is defined by T ◦∗S(x, z) =

∑R∗

y∈X S(x, y)×∗

T (y, z).
3. The negation ¬T of T is defined by (¬T )(x, y) = Φ(T (x, y)),
4. S � T iff ∀x, y ∈ X,S(x, y) ≤ T (x, y) and S �∗ T iff ∀x, y ∈ X,S(x, y) ≤∗

T (x, y) hold.

Because our main goal is to show the possibility of using the theory of
(R,R∗)-fuzzy rough sets in other fuzzy structures, (R,R∗)-fuzzy relations must
comprise the existing fuzzy relations in these new fuzzy structures. It should be
mentioned that for some fuzzy structures, there exist several variants of defi-
nitions of relations. An example of this situation can be fuzzy soft sets, where
there are several variants of the definition of fuzzy soft relations. For example,
Definition 3.1 in [12], where the fuzzy soft relation is defined between two fuzzy
soft sets (E, s) and (F, t) in a fuzzy soft space (K,X); and Definition 6 in [18],
where the fuzzy soft relation is defined between two fuzzy soft spaces (K,X)
and (K,Y ).

For the illustration of relationships between L-fuzzy relations in new fuzzy
structures and (R,R∗)-relations, we show that (R2,R∗

2)-fuzzy relations in a set
X are isomorphic to L-fuzzy soft relations in a soft space (K,X) defined by [18]
and (R1,R∗

1)-fuzzy relations are identical to intuitionistic L-fuzzy relations with
composition defined in [5,16].

Proposition 1. 1. Let (S(X×X),�) be the monoid of all L-fuzzy soft relations
in a set X with the standard composition � of fuzzy soft set relations and
let ((R2,R∗

2)
X×X , ◦) be the monoid of all (R2,R∗

2)-fuzzy relations in X with
the composition ◦. Then these monoids are isomorphic, i.e.,

(S(X × X),�) ∼= ((R2,R∗
2)

X×X , ◦).
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2. Let (J (X × X),�) be the monoid of all intuitionistic L-fuzzy relations in a
set X with the composition � of fuzzy soft set relations defined in [16] and let
(((R1,R∗

1)
X×X , ◦)) be the monoid of all (R1,R∗

1)-fuzzy relations in X with
the composition ◦. Then we have

(J (X × X),�) = ((R1,R∗
1)

X×X , ◦).

For a set X and a (R,R∗)-fuzzy relation T in X, the pair (X,T ) is called
the (R,R∗)-approximation space. In the following definition, we introduce the
notion of upper and lower approximations of (R,R∗)-fuzzy sets defined by the
(R,R∗)-approximation space.

Definition 6. Let (R,R∗) be the adjoint pair of po-semirigs with the adjoint
isomorphism Φ and let (X,T ) be an (R,R∗)-approximation space.

1. The upper (R,R∗)-approximation defined by T is a mapping T ↑ : RX → RX

defined by

s ∈ RX , x ∈ X, T ↑(s)(x) =
R∑

z∈X

T (x, z) × s(z).

2. The lower (R,R∗)-approximation defined by T is a mapping T ↓ : RX → RX

defined by

s ∈ RX , x ∈ X, T ↓(s)(x) =
R∗
∑

z∈X

Φ(T (x, z)) ×∗ s(z).

3. The pair (T ↓(s), T ↑(s)) is called the (R,R∗)-fuzzy rough set of s with respect
to (X,T ).

The Definition 6 allows us to introduce the concept of a rough fuzzy structure
for all types of new fuzzy structures that can be transformed into (R,R∗)-fuzzy
sets. To illustrate the application of Definition 6 to the new fuzzy structures, the
upper and lower approximations will be specified according to Definition 6 for
two examples of fuzzy structures. Namely, we show that the existing definitions
of the rough intuitionistic L-fuzzy set and the rough L-fuzzy soft set given in
[5,18] are identical to the rough fuzzy structures according to Definition 6.

Example 4. Let S be the intuitionistic L-fuzzy relation in X and let f be an
intuitionistic L-fuzzy set in X. The rough intuitionistic fuzzy set (S(f), S(f)) of
f is defined by

S(f)(x) = (
∨

y∈X

T (S1(x, y), f1(y)),
∧

y∈X

I(S2(x, y), f2(y))),

S(f)(x) = (
∧

y∈X

I(¬(S2(x, y)), f1(y)),
∨

y∈X

T (S1(x, y), f2(y))),
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where for arbitrary (x, x′) ∈ X × X, S(x, x′) = (S1(x, x′), S2(x, x′)) and f(x) =
(f1(x), f2(x)), T is a t-norm and I is an implicator (see [24]).

From Proposition 1 it follows that S is also (R1,R∗
1)-relation, i.e., S : X ×

X → R1 and if we set

T (a, b) = a ⊗ b, I(a, b) = ¬a ⊕ b

for a, b ∈ L, we obtain S↑(f)(x) = S(f)(x) and S↓(f)(x) = S(f)(x). Therefore,
if L is the MV -algebra, the intuitionistic L-fuzzy rough sets are (R1,R∗

1)-fuzzy
rough sets. �

In the next example, we focus on rough fuzzy soft sets, for which there are a
number of variants of this notion, including possible variants of names (see, e.g.,
[7,9,21]). It follows that rough fuzzy soft sets defined by fuzzy soft relations have
not been systematically introduced so far. In the next example, we show how we
can explicitly define this notion using Definition 6 and Proposition 1. According
to Example 3, a fuzzy soft set in X can be identified with the mapping X → R2

and a fuzzy soft relation in X is identified with the mapping X × X → R2.

Example 5. Let K be a fixed set of criteria, and let X be a set, and let (R2,R∗
2)

be an adjoint pair of po-semirings from Example 3. Let f : X → R2 be a
(R2,R∗

2)-fuzzy set (i.e., the fuzzy soft set), such that f(x) = (Fx, fx) ∈ R2,
where Fx ⊆ K, fx : K → L and (Fx, fx) : K → L is such that

(Fx, fx)(k) =

{
fx(k), k ∈ Fx,

0L, k ∈ K \ Fx.

Let T : X × X → R2 be the (R2,R∗
2)-relation in X. Hence, for (x, x′) ∈ X × X

we have

T (x, x′) = (Exx′ , ψxx′) ∈ R2,

k ∈ K, (E,ψxx′)(k) =

{
ψxx′(k), k ∈ Exx′ ,

0L, k ∈ K \ Exx′ .

Therefore, according to Definition 6, the rough (R2,R∗
2)-fuzzy soft set

(T ↓(f), T ↑(f)) is for x ∈ X, k ∈ K defined by

T ↑(f)(x)(k) =

⎛
⎝

R2∑
z∈X

T (x, z) ×2 f(z)

⎞
⎠ (k) =

⎛
⎝

R2∑
z∈X

(Exz , ψxz) ×2 (Fz , fz)

⎞
⎠ (k) =

{∨
z∈X ψxz(k) ⊗ fz(k), k ∈ Exz ∩ Fz,

0L, k ∈ K \ Exz ∩ Fz ,

T ↓(f)(x)(k) =

⎛
⎝

R∗
2∑

z∈X

¬(T (x, z)) ×∗
2 f(z)

⎞
⎠ (k) =

⎛
⎝

R∗
2∑

z∈X

¬(Exz , ψxz) ×∗
2 (Fz , fz)

⎞
⎠ (k) =

{∧
z∈X Φ2(ψxz(k)) ⊕ fz(k), k ∈ Exz ∩ Fz ,

0L, k ∈ K \ Exz ∩ Fx.

It can be proven that the (R2,R∗
2)-fuzzy rought set (T ↓(f), T ↑(f)) can be iden-

tified with the rough fuzzy soft set defined in [18].
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4 Examples of Applications

In this section, we show two examples of possible applications of fuzzy rough
structures created using the theory of (R,R∗)-fuzzy rough sets. For this pur-
pose, we will use the (R2,R∗

2)-fuzzy rough set defined for the fuzzy soft set in
Example 5 and (R1,R∗

1)-fuzzy rough sets defined for intuitionistic fuzzy sets in
Example 4. In both cases, we show how these fuzzy rough structures can be
used to determine the upper and lower approximations of a colour segment cor-
responding to a particular colour k in a colour image. Because we use the same
default conditions in these examples, it allows us to compare how fuzzy soft sets
and intuitionistic fuzzy sets solve this problem.

We suppose that a colour image consists of pixels of the set X and that for
each pixel x ∈ X a value S(x) represents the colour of a pixel x. The colour is
given by a triplet S(x) = [hx, sx, vx], where hx represents the hue of the colour,
sx represents a saturation dimension, and vx represents the value dimension
similar to the mixture of these paints with varying amounts of black or white
paint in the pixel x. Furthermore, let K be the set of all possible colours.

In the next part, we suppose that L = ([0, 1],⊗,⊕,¬) is the �Lukasiewicz
algebra with the bi-residuum ↔ defined by a ↔ b = (a → b) ∧ (b → a).

4.1 (R2,R∗
2)-Fuzzy Rough Sets

To illustrate the possible applications of rough (R2,R∗
2)-fuzzy sets from the soft

space (K,X), we present a method for approximations of a colour segment in
an image. Unlike Examples 10 and 11 from [14], for these approximations, we
use different (R2,R∗

2)-relations T .
Let E = S(X) ⊆ K and consider the (R2,R∗

2)-fuzzy set f : X → RK
2 defined

by

x ∈ X, f(x) = (E, fx), k ∈ K, (1)

fx(k) :=
∑

z∈X ρ(x, z) · σ(S(z), k)
∑

z∈X ρ(x, z)
∈ [0, 1], (2)

where σ(k, k′) ∈ [0, 1] represents a similarity degree of two colours in K and the
fuzzy similarity relation ρ : X × X → [0, 1] expresses the fact that pixels x and
z are close to each other. For example, we can set

(x, y) ∈ X × X, ρ(x, y) =

{
1

d(x,y)ω , d(x, y) �= 0,

1, d(x, y) = 0,

where ω ∈ R
+. Similarly, the similarity relation σ can be defined by

k = [hk, sk, vk], m = [hm, sm, vm] ∈ K, σ(k, m) := 1 − |hk − hm| + |sk − sm| + |vk − vm|
3

,
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where h, s, v ∈ [0, 1]. In that case, the (R2,R∗
2)-fuzzy set f represents the concept

describing segments corresponding to the colours k ∈ E.
The lower and upper approximations of the segment f are defined as the

(R2,R∗
2)-rough set (T ↓(f), T ↑(f)) of f with respect to the (R2,R∗

2)-relation
T : X × X → R2, defined by

(x, x′) ∈ X × X, T (x, x′) = (E,ψxx′) ∈ R2, k ∈ K, (3)
ψxx′(k) = σ(S(x), k) ↔ σ(S(x′), k) ∈ [0, 1]. (4)

According to Example 5, the rough (R2,R∗
2)-fuzzy set (T ↓(f), T ↑(f)) is defined

by

T ↓(f)(x)(k) =

{∧
z∈X ¬ψxz(k) ⊕ fz(k), k ∈ ∩F,

0L, k ∈ E \ E ∩ F
,

T ↑(f)(x)(k) =

{∨
z∈X ψxz(k) ⊗ fz(k), k ∈ E ∩ F,

0L, k ∈ K \ E ∩ F.

These upper and lower approximations of the colour segment f corresponding
to the colour k ∈ K can be approximated by the α-cuts, i.e., by subsets

T ↓(f)(k)α = {x ∈ X : T ↓(f)(x)(k) ≥ α},

T ↑(f)(k)α = {x ∈ X : T ↑(f)(x)(k) ≥ α},

where α ∈ L.

4.2 (R1,R∗
1)-Fuzzy Rough Sets

We illustrate how the same problem of the colour segment approximation can
be solved by rough (R1,R∗

1)-fuzzy sets. For this, we use some notation from
Sect. 4.1.

To define the (R1,R∗
1)-fuzzy sets, which represents the concept describing a

color segment, we use the same function (2) and transform it into the (R1,R∗
1)-

fuzzy set X → R1. For this purpose, we use the so-called intuitionistic fuzzy
generators defined in [6].

Definition 7 ([6]). A function ϕ : [0, 1] → [0, 1] is called an intuitionistic fuzzy
generator, if ϕ(x) ≤ 1 − x for all x ∈ [0, 1].

Using the intuitionistic fuzzy generator ϕ, the (R1,R∗
1)-fuzzy set wk,φ is

defined by

x ∈ X, wk,ϕ(x) =
(

fx(k),
1 − fx(k)
1 + λfx(k)

)

∈ R1,

which represents the intuitionistic concept describing the segment in the colour
image corresponding to the colour k ∈ E. As in the previous example, using defi-
nition (4), the approximation of this intuitionistic concept wk,ϕ can be defined as
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the rough (R1,R∗
1)-fuzzy set of wk,ϕ with respect to the (R1,R∗

1)-fuzzy relation
Tk : X × X → R1, such that

(x, x′) ∈ X × X, Tk(x, x′) = (ψxx′(k), ϕ(ψxx′(k))) ∈ R1,

where we use the same intuitionistic fuzzy generator ϕ. According to Example 1
and Definition 6, the upper and lower approximations of the intuitionistic colour
segment wk,ϕ corresponding to the colour k are defined for x ∈ X by

T ↑
k (wk,ϕ)(x) =

⎛

⎝
∨

y∈X

ψxy(k) ⊗ wk(y),
∧

y∈Y

ϕ(ψxy(k))) ⊕ ϕ(wk(y))

⎞

⎠ ,

T ↓
k (wk,ϕ)(x) =

⎛

⎝
∧

y∈Y

ϕ(ψxy(k)) ⊕ wk(y),
∨

y∈Y

ψxy ⊗ ϕ(wk(y))

⎞

⎠ .

To be able to visualize these upper and lower intuitionistic approximations of
wk,ϕ, we must first transform according to fuzzy sets into classical fuzzy sets.
According to the procedure presented in [1], we use the transformation of ele-
ments (γ, δ) ∈ R1 into the classical L-value of a fuzzy set defined by

(γ, δ) ∈ R1 �→ 1
2
(1 + γ − δ) ∈ L.

In that way, from (R1,R∗
1)-fuzzy sets T ↑(wk,ϕ) and T ↓(wk,ϕ) we obtain the

standard L-fuzzy sets Wk
↑(wk,ϕ) and Wk

↓(wk,ϕ), and, analogously to the previ-
ous example, these fuzzy sets can be approximated by α-cuts Wk

↑(wk,ϕ)α and
Wk

↓(wk,ϕ)α.

4.3 Visualisation and Colour Segmentation

Rough (R1,R∗
1) and (R2,R∗

2)-fuzzy sets can be applied to arbitrary-dimensional
data; here, we will demonstrate the visualization using 2D image data and a
colour image segmentation problem. On contrary to semantic segmentation that
is well-solved by deep neural networks, colour image segmentation is ill-solved
due to the fact there exist multiple correct solutions to one input image, depend-
ing on the choice of target colour. Note that the standard raster image uses 16.5M
unique colours. Here, the colour of pixels x ∈ T ↑(f)(k)α or x ∈ T ↓(f)(k)α for
(R2,R∗

2)-fuzzy rough sets and Wk
↑(wk,ϕ)α or Wk

↓(wk,ϕ)α for (R1,R∗
1)- fuzzy

rough sets will be S(x) and the colour of other pixels will be transformed to the
colour in the black and white scale, i.e., the saturation of these pixels will be
reduced to zero, see Fig. 1.

From the theoretical point of view, it allows us to visually confirm the fol-
lowing.

1. |T ↓(f)(k)α| ≤ |T ↑(f)(k)α| for (R2,R∗
2)-fuzzy rough sets,

2. |Wk
↓(wk,ϕ)α| ≤ |Wk

↑(wk,ϕ)α| for (R1,R∗
1)-fuzzy rough sets,
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Fig. 1. Image ‘Europe’. The original image credit: Prologis research (https://www.
prologis.com). The black cross in the top (original) image denotes the position of
selected colour k. Middle row shows colour segments for Wk

↓(wk, ϕ)α and Wk
↑(wk, ϕ)α

of (R1,R∗
1)-fuzzy rough set. Bottom rows shows colour segments T ↓(f)(k)α and

T ↑(f)(k)α of (R2,R∗
2)-fuzzy rough set. To create the colour segments, we set α = 0.84

and preserved only colours in the α-cuts.

3. |T ↓(f)(k)α| ≤ |Wk
↓(wk,ϕ)α|,

4. |T ↑(f)(k)α| ≤ |Wk
↑(wk,ϕ)α|.

From a practical point of view, the figure demonstrates that by selecting a
proper rough set and switching between upper and lower approximations, we
can control the similarity between the selected colour and the other colours,

https://www.prologis.com
https://www.prologis.com
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that is, the size of segmented area. The visualization also shows that we can
involve even discontinuous areas, which differs from other local methods used
for colour image segmentation. The output can be used for creating selectively
coloured images to highlight the important information or for measuring the size
of affected area in, e.g., biological images (namely plant stress measurement),
where it is essential to control the similarity and handle discontinuities.

5 Conclusions

The main contribution of the paper is the introduction of a unified theory of
rough semi-ring-valued fuzzy sets and the subsequent possibility of applying
this theory to most new MV -valued fuzzy structures. Although this theory has
a purely theoretical basis, it also has a wide practical application in individual
new fuzzy structures, as shown in the example of fuzzy soft sets and intuitionistic
fuzzy sets. A partial limitation of the applicability of this theory for new fuzzy
structures is that it requires a complete MV -algebra as a valued set.
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14. Močkoř, J., Hurtik, P.: Fuzzy soft sets and image processing application. In: Aliev,
R.A., Kacprzyk, J., Pedrycz, W., Jamshidi, M., Babanli, M., Sadikoglu, F.M. (eds.)
ICAFS 2020. AISC, vol. 1306, pp. 47–54. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-64058-3 6
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Abstract. We introduce a new privacy model relying on bistochastic matrices,
that is, matrices whose components are nonnegative and sum to 1 both row-wise
and column-wise. This class of matrices is used to both define privacy guarantees
and a tool to apply protection on a data set. The bistochasticity assumption happens
to connect several fields of the privacy literature, including the two most popular
models, k-anonymity and differential privacy. Moreover, it establishes a bridge
with information theory, which simplifies the thorny issue of evaluating the utility
of a protected data set. Bistochastic privacy also clarifies the trade-off between
protection and utility by using bits, which can be viewed as a natural currency
to comprehend and operationalize this trade-off, in the same way than bits are
used in information theory to capture uncertainty. A discussion on the suitable
parameterization of bistochastic matrices to achieve the privacy guarantees of this
new model is also provided.

Keywords: Bistochastic matrices · Randomized response · Privacy model ·
Statistical disclosure control · Information theory

1 Introduction

In the clash between pervasive big data collection and exploratory big data analytics
on the one hand, and stronger data protection legislation on the other hand, anonymiza-
tion stands out as a way to reconcile both sides. Indeed, the European General Data
Protection Regulation (GDPR, [8]), which can be viewed as an epitome of strong regu-
lation, establishes that personally identifiable information (PII) is no longer personal after
anonymization. Hence, anonymized data fall outside the scope of privacy regulations
and can be freely stored and processed. For anonymization to provide effective privacy
protection, it has to prevent disclosure. Disclosure can occur if an intruder can deter-
mine the identity of the subject to whom a piece of anonymized data corresponds—re-
identification disclosure—, or can estimate the value of a subject’s confidential attribute
after seeing the anonymized data—attribute disclosure.

The traditional approach to anonymization, still very dominant among statistical
agencies, can be called utility-first. It essentially consists of leveraging a repertoire of
maskingmethods collectively known as statistical disclosure control (SDC, [9]).AnSDC
method with a heuristic parameter choice and suitable utility preservation properties is
run to anonymize the original data. Then the risk of disclosure is assessed empirically
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(for example using record linkage between the original and the anonymized data) or
analytically (using generic measures or measures tailored to a specific SDC method). If
the remaining risk is deemed too high, the data protector tries an SDC method having
more privacy-stringent parameters and generallymore utility loss. This process is iterated
until the risk is low enough.

The computer science approach to anonymization could be termed privacy-first, and
it is based on privacy models. A privacy model is a privacy condition dependent on a
parameter that guarantees an upper bound on the re-identification risk and perhaps on
the attribute disclosure risk. Each privacy model can be enforced using one or several
SDC methods. There are currently two main families of privacy models, one based on
k-anonymity [14] and the other on ε-differential privacy [7]. As shown in [2], the two
families are complementary and have their own merits.

A problem with the current state of the art in the literature is that it appears as a
variegated collection of SDC methods and privacy models. Whereas the permutation
model [4] has been proposed to give a conceptual connection among SDC methods, no
encompassing framework exists for privacy models. The ambition of this paper is to
break ground towards a framework that not only unifies the two main families of privacy
models—differential privacy and k -anonymity—but also aligns anonymization with
information theory, which in turn simplifies what is meant by utility for an anonymized
data set. We introduce bistochastic privacy, a specific form of randomized response
in which the anonymized data Y are obtained from the original data X using Markov
transition matrices that are bistochastic, that is, whose components are nonnegative and
sum to 1 both row-wise and column-wise.

Section 2 connects bistochastic matrices with differential privacy, k-anonymity and
SDC. A new privacy model, aligning information theory and privacy is then presented
in Sect. 3, while Sect. 4 discusses the parametrization of bistochastic matrices. Finally,
conclusions and directions for future work are gathered in Sect. 5. The Appendix gives
background on randomized response, the permutation model of SDC and information
theory.

2 Connections Between SDC,Differential Privacy and k-Anonymity
Through Bistochastic Matrices

To the best of our knowledge, this is the first time that bistochastic matrices are explicitly
considered in the privacy literature. However, it happens that, without it being clearly
stated, they have already been implicitly used. In what follows, we establish novel
theoretical results showing that the bistochasticity assumption is a connector across
SDC, differential privacy and k-anonymity.

2.1 Connection with SDC

We will assume a randomized response matrix P (see Expression (A.1) in the appendix)
that fulfills the additional left stochasticity constraints that

∑r
u=1 puv = 1 ∀v = 1, . . . , r.

ThismakesP bistochastic (left stochasticity implies that any anonymized categoriesmust
come from the original categories). The following result then follows:
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Theorem 1 (Birkhoff-Von Neumann [12]): If an r × r matrix P is bistochastic, then
there exist λ1, . . . , λJ ≥ 0with

∑J
j=1 λj = 1 and P1, . . . ,PJ permutation matrices such

that:

P =
J∑

j=1

λjPj (1)

Theorem 1 states that any bistochastic matrix can always be expressed as a convex
combination of permutation matrices. Note that while there are r! possible permutations
of r categories, every r × r doubly stochastic matrix can be represented as a convex
combination, which may not be unique, of at most r2 − 2r + 2 permutation matrices
[12].

This result directly establishes a connection with SDC through the permutation
model. In fact, SDC can be viewed as a specific case of a more general approach that
uses bistochastic matrices to perform anonymization. The permutation model considers
a crisp permutation within the data set domain: it yields values occurring in the data
set, except perhaps for a small noise addition that does not alter ranks. In contrast, a
bistochastic matrix is described by Theorem 1 as a probabilistic model of permutation
within the domain of attributes:

• The bistochastic transition matrix maps true values in the original data set to reported
values that can in general be any value in the domain of the attributes—perhaps very
different from the attribute values occurring in the data set.

• Expression (1) can be viewed as a probabilistic permutation: each permutation matrix
Pj has a probability λj of being actually used. Only if λj = 1 for some j in Expression
(1), which describes the functioning of any SDC methods, is permutation Pj certain
to occur.

2.2 Connection with Differential Privacy

Differential privacy (DP) is a privacy model that can be enforced using a variety of SDC
techniques [13]. In what follows, we choose Randomized Response (RR) as a technique
to enforce DP. This is a legitimate setting, as during the inception of differential pri-
vacy, randomized response was already considered as a method to produce differentially
private data sets. Thus, the connection established can be viewed as reasonably gen-
eral. It follows that differential privacy constraints on an RR scheme happen to enforce
bistochasticity, as is shown by the following proposition, proven in [16]:

Proposition 1: The r × r matrix P of an ε-differentially private randomized response
scheme is of the form:

puv =
{

eε

r−1+eε if u = v
1

r−1+eε if u �= v
with ε ≥ ln maxu=1,...,r

maxu=1,...,Kpuv
minu=1,...,Kpuv

(2)

Expression (2) describes a bistochastic matrix, as both its rows and columns sum to
1. Note also that taking ε = 0 in this matrix yields perfect secrecy (see Appendix), as
the probabilities within each column are identical.
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More generally, this result sheds an alternative light on the functioning of differential
privacy, at least when it is attained through RR. To see this, assume r= 3. In the extreme
case of the strictest differential privacy, i.e. when ε = 0, Expression (2) implies that all
components ofPmust be equal to 1/3. FollowingTheorem1, the associated differentially
private randomized response scheme can be expressed as the following combination of
permutation matrices:

Clearly, with the strictest setting, no permutation pattern is favored. However, for
ε = 2, one gets:

P =

⎛

⎜
⎜
⎝

e2

2+e2
1

2+e2
1

2+e2
1

2+e2
e2

2+e2
1

2+e2
1

2+e2
1

2+e2
e2

2+e2

⎞

⎟
⎟
⎠ = e2

2 + e2

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ + 1

2 + e2

⎛

⎝
0 0 1
1 0 0
0 1 0

⎞

⎠ + 1

2 + e2

⎛

⎝
0 1 0
0 0 1
1 0 0

⎞

⎠.

When the constraints imposed by differential privacy are relaxed, the probability of
not altering the data (the identity matrix being a special case of permutation) is favored
with a probability of e2

2+e2
= 0.78, while other permutation patterns have a probability

of 0.11 of being taken.
The usual notion of differential privacy is that the presence or absence of any given

record in a data set cannot be noticed, up to exp(ε), upon seeing anonymized outputs
on the data set. When differential privacy is achieved via RR and is viewed through
the lens of bistochastic matrix, it can be seen as ensuring blindness on how attribute
categories are permuted.The strictest enforcement of differential privacy (ε =0) amounts
to random permutation and, as we saw, to perfect secrecy. With a laxer enforcement,
some specific permutation patterns are more likely to occur. In Expression (2) we see
that for ε = 2 not enough privacy is provided, because the chances of releasing the
original data unaltered are 78%. Thus, the privacy budget ε can also be seen as being
proportional to the probability of not permuting the data. Hence, too large a budget does
not provide sufficient deniability. Conversely, the smaller the budget, themore credible is
an individual who can deny that her reported category is her original category. Therefore,
the smaller ε, the higher is plausible deniability.

2.3 Connection with k-Anonymity

A bistochastic matrix can also be parametrized to fulfill k-anonymity, more specifically
its Anatomy variant [18]. Like standard k-anonymity, Anatomy relies on splitting the
records in the data set into classes of at least k records. However, unlike standard k-
anonymity, the quasi-identifier values within each class are not made equal. Instead, two
tables are released for each class: one contains the projection of the original records of
the class on the quasi-identifier attributes, and the other the projections of the original
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records on the rest of attributes. The correspondence between entries in the two tables
of each class is not revealed: thus, if the class contains k records, there are k! possible
bijections between its quasi-identifier value combinations and its value combinations for
the other attributes. In particular, given aquasi-identifier combination, the probability that
an intruder finds the matching confidential attribute values is at most 1/k, as in standard
k-anonymity (note here that l-diversity is not guaranteed on the rest of attributes).

Let X be an original data set that is “anatomized” as follows:

• Compute k-anonymous classes of the records. Let the number of resulting classes be
L and the number of different quasi-identifier combinations in the l-th class be nl, for
l = 1,…,L.

• For each class release two tables as in Anatomy, one table containing a random
permutation of quasi-identifier combinations and the other table the projections of
the records on the remaining attributes (those that are not quasi-identifiers). The set
of the two tables for every class constitutes the anatomized data set Y.

The quasi-identifier tables of the anatomized k-anonymous data set Y can be viewed
as having been obtained using the following transition matrix:

Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

Q1 0 · · · · · · 0
0 Q2 0 · · · 0
... 0

. . .
. . .

...
...

...
. . .

. . . 0
0 0 · · · 0 QL

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(3)

with Ql being the following nl × nl submatrix, for l = 1,…,L:

Ql =

⎛

⎜
⎜
⎜
⎝

1
/

nl
· · · 1

/

nl
...

. . .
...

1
/

nl
· · · 1

/

nl

⎞

⎟
⎟
⎟
⎠

.

Each submatrix Ql randomly permutes the quasi-identifier combinations within a
class. If a combination of quasi-identifiers is repeated in two different classes i and j,
it is permuted differently in each class, according to the respective submatrices Qi and
Qj. That is, the combination has two different rows and two different columns in Q,
specifically one row and one column in Qi and one row and one column in Qj. Finally,
note that Ql is bistochastic ∀l = 1,…,L, and that the overall Q is also bistochastic.

Thus, k-anonymity can be viewed as the application of a special parametrization
of a bistochastic matrix. In fact, and as each submatrix Ql achieves perfect secrecy,
k-anonymity can be seen as a collection of perfect privacy blocks, which is exactly
the original intuition behind k-anonymity, gathered into a block-diagonal, bistochastic
matrix.
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3 A Privacy Model Based on Bistochastic Matrices

At first sight, one could wonder about the necessity of imposing an additional con-
straint on RR and its ex-post version PRAM [11], some well-trodden approaches for
anonymization that have proved their merits over the years. However, and beyond the
appeal of the theoretical connections developed above, the interest in bistochasticity is
justified by the following theorem (see Appendix A.3 for some background notion on
majorization and the � relationship):

Theorem 2 (Hardy, Littlewood, and Polya [12]): p � q if and only if q = PTp for some

bistochastic matrix P.

Theorem 2 states that a bistochastic matrix never decreases uncertainty and is the
only class of matrices to do so. In fact, and when it is not a permutation matrix, it always
increase uncertainty.WhenP is only right stochastic, as in the traditional approach toRR,
no particular majorization relationship emerges and the resulting anonymized attribute
cannot be qualified as more (or less) uncertain (in the sense of information theory) than
the original attribute. However, when P is bistochastic but not a permutation matrix,
the anonymized attribute will always be more uncertain, i.e. it will always contain more
entropy. Here lies the fundamental functioning behind the privacymodel proposed in this
paper. The idea is to infuse a data set with uncertainty, which in fact provides protection
but at the same time degrades information.

3.1 Univariate Bistochastic Privacy

We start by the simplest case where we seek to anonymize only one attribute to prevent
disclosure. In what follows, we will assume that in Expression (1) puv > 0∀u, v. The
transition matrix P has only strictly positive entries, meaning that any individual in any
of the r categories can be reported in the anonymized attribute in any other of the r
categories. As some of the transition probabilities can be made as small as desired, this
is not really binding for the validity of the anonymized attribute. However, this additional
constraint makes P the transition matrix of an ergodic Markov chain [3]. In turn, that
implies that P has a unique stationary distribution, which, as P is bistochastic, is the
uniform distribution [3].

The entropy rate of P is then given by the standard formula:

H (P) = −
r∑

u,v=1

μupuvlog2puv, (4)

where μu denotes the uniform distribution, i.e. μu = 1/r.
The entropy rate of P is the average of the entropies of each row of P. Note that, in

the case of perfect secrecy where all probabilities in P are equal, that we will denote
hereafter by P*, we haveH (P∗) = log2r, which is the maximum achievable entropy for
an r × r bistochastic matrix. The definition of bistochastic privacy then follows:

Definition 1 (Univariate Bistochastic Privacy):The anonymized version Y of an original
attribute X is β-bistochastically private for 0 ≤ β ≤ 1 if:
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i) Y = PTX with P bistochastic
ii) H (P)

H (P∗) ≥ β.

An anonymized attribute satisfies β-bistochastic privacy if it is the product of a
bistochastic matrix P and the original attribute, and if the entropy rate of P is at least 100
β% of the maximum achievable entropy. H (P∗) represents the maximum “spending”
that can be allocated to privacy, and because we defined entropy with logarithm to
the base 2, this maximum amount is log2r bits. Thus, when β = 1, all the bits have
been spent and the attribute has been infused with the maximum possible amount of
uncertainty; in this case, perfect secrecy is achieved and it is clear that Y = P∗TX
returns the uniform distribution. The other extreme case β = 0 means that the attribute
has been left untouched and no uncertainty has been injected, i.e. H (P) = 0. Thus, for
0 < β < 1 there lies a continuum of cases where varying amount of uncertainty bits can
be injected, which will guarantee a varying amount of protection.

Here, what we mean by protection can be illustrated by assuming that an attacker
has been able to re-identify an individual through her quasi-identifiers (in whatever
way those have been protected), and now wants to learn the value of her confidential
attribute from the bistochastically private release of this attribute, Y. If the attribute
is 1- bistochastically private, nothing can be learnt by virtue of perfect secrecy. The
attacker is facing a uniform distribution and at best can only perform a random guess,
and the strength of plausible deniability is maximal. An alternative way to illustrate the
situation faced by an attacker is to consider the quantity 2H (Y ), which yields the number
of equally probable outcome values that can be represented by Y. Since Y is the uniform
distribution, this number is r. One way to think about this value is that, to learn about
the value of the confidential attribute of the re-identified person, an attacker is facing an
imaginary dice with r sides. The targeted individual can exactly claim that strength of
plausible deniability.

In this example, the links between the confidential attribute and the quasi-identifiers
have been completely broken, while the distribution of the former has been completely
uniformized. Thus, information has been totally lost. In addition, and because P∗ is
singular, an estimate about the univariate distribution cannot be retrieved through the
procedure described in the Appendix on randomized response. In that case, the price to
pay for perfect secrecy in terms of information is maximal.

On the other hand, when H (P) = 0 the original information is left untouched and
the data user gets the highest possible utility from the data. Consequently, moving β

between 0 and 1 in bistochastic privacy is equivalent to operating a trade-off between
information and protection. The more bits are injected in the attribute via a bistochastic
matrix, the more information is taken away from the user and traded against protection.

Unlike other privacy models, bistochastic privacy makes the trade-off between pri-
vacy and information explicit. In fact, it can be considered as a privacy and utility-first
approach. Moreover, it also offers the additional advantage of distorting the original
information of the data always in the same direction. This is so because, following The-
orem 2, only bistochastic matrices can increase entropy (in physics for example, it is
well-known that bistochasticMarkov chains are the only stochastic process satisfying the
second law of thermodynamics, [10]). An additional consequence of this is that, unlike
other privacy models that can be attained using several SDC techniques, bistochastic
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privacy must be achieved using bistochastic matrices. Whereas this might be viewed as
limiting, at the same time it simplifies privacy implementation, as the same entities that
are used to define the privacy guarantees of the model are also used to achieve them.
In the case of differential privacy, it has been recently shown that the actual protection
level offered by differentially private data sets generated through different methods can
be very different, even if the same level of differential privacy guarantees is enforced at
the onset [13].

By always increasing entropy, bistochastic privacy always produces anonymized
data that are a coarsened version of the original data. Stated otherwise, bistochastically
private data are always a compact version of the original data, where some details have
been lost. This is in line with intuition, to the extent that detailed information is where
privacy risks reside. A popular SDC method that also coarsens data is microaggrega-
tion, which is a common approach to achieve k-anonymity on a numerical attribute [9].
Microaggregation reports the centroids of clusters instead of individual values. It can
be noted that if the matrix of Expression (3) is applied to a numerical attribute instead
of a categorical one, the product of this matrix and the original attribute will produce a
microaggregated version of the latter, with the centroids being the means of the clusters.

The fact of always coarsening data means that the evaluation of information loss
for bistochastically private data is simplified as it can be systematically assessed trough
this lens: any analytical needs to be performed on the data can be gauged through their
behavior when data are coarsened. For example, the properties of standard econometric
estimators on coarsened data are already established [17]. We believe this presents a
clear advantage over other privacy models and SDC methods, for which the direction
in which information is distorted is often unclear, and where one must rely on specific
information loss metrics related to the analytical task to be performed.

3.2 Bistochastic Privacy at the Data Set Level

We now consider the case of several attributes. First, we start by noting that, following
the remark on microaggregation just above, bistochastic matrices can be applied on both
categorical and numerical attributes. In the categorical case, the original proportions of
respondents whose values fall in each of the r categories will be changed, which will
coarsen the distribution to deliver randomized proportions closer to the uniform distribu-
tion. In the latter case, it will tend to average the numerical values of respondents. In fact,
if PRAM is used for randomization, then in a bistochastic randomized response scheme
on a numerical attribute the individuals are used as categories. Moreover, and because
bistochasticmatrices aremean-preserving, the anonymized numerical attributewill have
the same mean as the original numerical attribute (note that this would not be possible
with a non-bistochastic Markov matrix, which is generally not mean-preserving).

Bistochastic randomized response scheme on a numerical attribute can be given
additional intuition by considering Expression (1). As a bistochastic matrix can always
be expressed as a convex combination of permutation matrices, applying a bistochastic
matrix on a numerical attribute is equivalent to permuting individuals, albeit here this is
done in a probabilistic way, unlike in typical permutation/swapping SDC methods.

Finally, one can note that, in the case where matrix P* (with all probabilities in it
being identical) is used, all the values of the anonymized numerical attribute Y are equal
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to the average of the original attribute X. This a rather extreme case of coarsening, which
makes Y a k-anonymous version of X with only one cluster.

From now on, denote by X a data set comprised of K attributes X1,…,XK . Based on
the discussion above, we will not precise if the attributes are numerical or categorical.
As a result, nk will denote either the number of categories if Xk is a categorical attribute,
or the number of individuals N if Xk is a numerical attribute. Y, the anonymized version
of X, is generated by injecting entropy in each attribute k through nk × nk bistochastic
matrices Pk :

Pk =
⎛

⎜
⎝

p11 · · · p1nk
...

. . .
...

pnk1 · · · pnknk

⎞

⎟
⎠ (5)

where pukvk = Pr(Yk = vk |Xk = uk) denotes the probability that the original response
(or the original individual) uk in Xk is reported as vk in Yk , for uk , vk ∈ {1, . . . , nk}.
Under this procedure, the following proposition holds:

Proposition 2: The maximum number of bits that can be injected into a data set X is
H∗(P∗

1 , . . . ,P
∗
K

) = ∑K
k=1H

(
P∗
k

)
.

This property stems from the fact that joint entropy is always subadditive, i.e.
it always hold that H (P1, . . . ,PK ) ≤ ∑K

k=1 H (Pk) [3]. This leads to the following
definition:

Definition 2 (Conservative multivariate bistochastic privacy): The anonymized version
Y of an original data set X is conservatively β-bistochastically private for 0 ≤ β ≤ 1 if:

i) Y = (
PT
1 X1, . . . ,PT

KXK
)
with Pk ∀k = 1, . . . ,K bistochastic

ii)
∑K

k=1 H (Pk )
∑K

k=1 H(P∗
k )

≥ β

Definition 2 has the merit of simplifying the implementation of bistochastic pri-
vacy on a whole data set. The fact that each attribute is dealt with separately keeps
the computational cost relatively low [6]. Moreover, estimating the distribution of the
frequencies of each attribute is easily achievable because the computational cost of
inverting each bistochastic matrix is also low. However, the drawback is that, because
entropy is subadditive, one injects more bits than in the case of dealing directly with
the joint distribution. More protection is applied and, as result, more information is lost.
In particular, the dependencies between attributes may end up getting more degraded
than necessary. Unnecessary information loss is only avoided in the case where all the
original attributes are independent.

A way to avoid information loss when attributes are dependent is to apply a bis-
tochastic matrix PJ directly on the joint distribution XJ = X1 × · · · × XK . This leads to
the following definition:

Definition 3 (True Multivariate Bistochastic Privacy): The anonymized version YJ of
a multivariate distribution XJ is β-bistochastically private for 0 ≤ β ≤ 1 if:
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i) Yj = PT
J XJ with PJ bistochastic

ii)
H(Pj)
H(P∗

J )
≥ β

While this definition of multivariate bistochastic privacy appears in principle the
most appropriate one, its computational cost may however result in practical hurdles.
To perform anonymization, matrix PJ may reach a very large size, in particular if the
original data set contains many numerical attributes. Moreover, and while it will be still
possible to retrieve an estimate of the true joint distribution using the procedure described
in the Appendix on randomized response, the computational cost of inverting PJ grows
exponentially with the number of attributes and the presence of numerical attributes.
As a result, like other privacy models, bistochastic privacy is not immune to the curse
of dimensionality. For this reason, Definition 2 remains more widely applicable than
Definition 3.

4 Parameterization of Bistochastic Matrices

We discuss here how to achieve bistochastic privacy by the suitable parameterizations of
matrices.We saw inSect. 2 twopossible cases that lead to differential privacy (Expression
(2)) and k-anonymity (Expression (3)) guarantees. However, beyond popular privacy
models more parameterizations are possible.

We start by noting that the diagonal of a bistochasticmatrix is central in any construc-
tion. Indeed, the diagonal contains the probability, for an individual or a category, that
the anonymized value is the true value, meaning that the diagonal values will indicate a
certain level of “truthfulness” in the anonymized data. In fact, the level of truthfulness
of a bistochastic matrix is related to its singularity:

Proposition 3: If for a bistochasticmatrix Pk =
⎛

⎜
⎝

p11 · · · p1nk
...

. . .
...

pnk1 · · · pnknk

⎞

⎟
⎠pukuk > 0.5∀uk ∈

{1, . . . , nk}, then Pk is non-singular.
This proposition comes from the fact that a bistochastic matrix with its diagonal

values superior to 0.5 is by definition a diagonally-dominant matrix, i.e. for every row
of the matrix, the magnitude of the diagonal entry in a row is larger than or equal to the
sum of the magnitudes of all the other (non-diagonal) entries in that row. By the Levy–
Desplanques theorem [12], such matrix is always non-singular. For anonymization (and
also data utility), this means that, if a bistochastic matrix is randomizing in such a way
that more than half of the time the true values are reported in the anonymized data set,
then the matrix is also invertible. An estimate of the univariate distribution can then
always be retrieved following the procedure outlined in the Appendix on randomized
response. The setting of diagonal values is thus pivotal for parameterization but it is in
no way binding. One can still set an “untruthful” matrix with very small diagonal values,
albeit the non-singularity of the matrix will not always be guaranteed.
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A convenient way of building a bistochastic matrix is to use a special case of Toeplitz
matrices, namely a circulant matrix:

Pk =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

p11 p12 p13 . . . p1nk
p1nk p11 p12 · · · p1(nk−1)

p1(nk−1) p1nk p11 · · · p1(nk−2)
...

...
...

...
...

p12 p13 p14 · · · p11

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(6)

In that case, the first row of Pk determines all the elements of the matrix.
Another way is to consider symmetric tridiagonal matrices Pk of the following form

(with αi−1 + αi ≤ 1,∀i ∈ {1, . . . , nk − 2}):
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 − α1 α1 0 0 · · · 0
α1 1 − α1 − α2 α2 0 · · · 0
0 α2 1 − α2 − α3 α3 · · · 0
...

...
...

...
. . .

...

0 0 0 αnk−1 1 − αnk−1 − αnk αnk
0 0 · · · · · · αnk 1 − αnk

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(7)

Remark that in Expressions (7) and (3) the matrices contain zeros and thus strictly
they are not describing an ergodic process. While one can always replace the zeros by
an infinitesimal term γ > 0 and then adjust the other strictly positive remaining terms in
order to get a strictly ergodic bistochastic matrix, a way to ease implementation is to not
adjust the strictly positive terms to get what is called a super doubly stochastic matrix,
where all rows and columns sums will be infinitesimally above one. In most cases, such
matrices will behave almost like purely bistochastic ergodic matrices [10].

The latter way is the one we have followed in the examples of Table 1, where we
give the number of bits of selected bistochastic matrices expressed as a percentage of
the maximum possible number of bits achieved in the case of perfect secrecy, i.e. we
report directly the β’s. We consider 3 parameterizations for each type of bistochastic
matrix considered: i) differential privacy following Expression (2) for ε = 5, 3 and 1,
ii) k-anonymity following Expression (3) for k = 2, 3 and 6, iii) a tridiagonal matrix
following Expression (7) with αi−1 and αi= 0.1, 0.3 and 0.4, and iv) a circulant matrix
following Expression (6) with p11=0.9, 0.6 and 0.2 (while the remaining probabilities
in each row are all equal and add to 1 − p11). The cases are set to go each time in the
direction of more entropy and less truthfulness. The matrices generated are 12 × 12
in size, thus meant to be applied on a numerical attribute with 12 individuals or on a
categorical attribute with 12 categories.

In this example, the injection of log212 = 3.6 bits in the attribute achieves perfect
secrecy, and one can see that the strictest parameter values of differential privacy and
k-anonymity in Table 1 come relatively close to this amount. Moreover, as differential
privacy via RR gives a circulant matrix (see Expression (2)), it is not surprising that our
circulant matrix parameterization happens to mimic differential privacy quite closely.



64 N. Ruiz and J. Domingo-Ferrer

Table 1. Example of bistochastic guarantees. Each column corresponds to a different parameter
value.

Parametrization using: 1 2 3
Differential privacy 17% 60% 97%

K-anonymity 28% 56% 72%
Tridiagonal matrix 24% 35% 40%
Circulant matrix 21% 63% 93%

Distance to perfect secrecy (β's)

While a privacy model in itself, bistochastic privacy can ease the comparison of per-
formances across privacy models, both in terms of privacy but also of information loss,
through the β’s values.

Note that to achieve bistochastic privacy, one just needs to select appropriate bis-
tochastic matrices. To that end, the only information required on the data set to be
anonymized is its size in terms of number of individuals and attributes and the number
of categories for each categorical attribute. Therefore an agent, independent of the data
controller, say a “data protector”, can generate the appropriate matrices. The parameter
β for those matrices will depend on the environment and the desired protection-utility
trade-off.

5 Conclusions and Future Research

In this paper, we have proposed bistochastic privacy, a newmodel that aligns privacywith
information theory and unifies the main privacy models in use, in addition to connecting
with the permutation model that was shown to underlie all statistical disclosure control
methods [4]. The functioning of this new model also clarifies and operationalizes the
trade-off between protection and utility by expressing it in terms of bits, a natural unit
of privacy and information loss.

This paper opens several lines for future research. One of them is to conduct fur-
ther empirical work on real-life data sets. Another is to investigate if recent solutions
developed to mitigate the dimensionality problem in RR can be adapted to the present
model [6]. Yet another challenge is to extend bistochastic privacy to generate new privacy
models that may be more suitable for data that are unstructured or dynamic.

Acknowledgements. Partial funding from the European Commission under project H2020–
871042 “SoBigData++” is acknowledged. The second author is also partially funded by an ICREA
Acadèmia Prize.
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Appendix

A.1 Randomized Response

Let X denotes an original categorical attribute with 1, . . . , r categories, and Y its
anonymized version. Given a value X = u, randomized response (RR, [1]) computes
a value Y = v by using an r × r Markov transition matrix:

P =
⎛

⎜
⎝

p11 · · · p1r
...

. . .
...

pr1 · · · prr

⎞

⎟
⎠(A.1)

where puv = Pr(Y = v|X = u) denotes the probability that the original response u in X
is reported as v in Y, for u, v ∈ {1, . . . , r}. To be a proper Markov transition matrix, it
must hold that

∑r
v=1 puv = 1∀u = 1, . . . , r. P is thus right stochastic, meaning that any

original category must be spread along the anonymized categories.
The usual setting in RR is that each subject computes her randomized response

Y to be reported instead of her true response X. This is called the ex-ante or local
anonymization mode. Nevertheless, it is also possible for a (trusted) data collector to
gather the original responses from the subjects and randomize them in a centralized way.
This ex-post mode corresponds to the Post-Randomization method (PRAM, [11]). Apart
from who performs the anonymization, RR and PRAM operate the same way and make
use of the same matrix P.

Let π1,…,π r be the proportions of respondents whose true values fall in each of the
r categories of X; let λv = ∑r

u=1puvπu for v = 1,…,r be the probability of the reported
value Y being v. If we define by λ = (λ1, . . . , λr)

T andπ = (π1, . . . , πr)
T , then we

haveλ = PTπ . Furthermore, if P is nonsingular, it is proven in [1] that an unbiased
estimator π

∧

of π can be obtained asπ
∧ = (

PT
)−1

λ. Thus, univariate frequencies can
be easily retrieved from the protected data set. Note that this procedure does not entail
any privacy risk as only some estimates of the frequencies are retrieved, not specific
responses that can be traced back to any individual.

RR is based on an implicit privacy guarantee called plausible deniability [5]. It
equips the individuals with the ability to deny, with variable strength according to the
parameterization ofP, that they have reported a specific value. In fact, themore similar the
probabilities in P, the higher the deniability. In the case where the probabilities within
each column of P are identical, it can be proved that perfect secrecy in the Shannon
sense is reached [15]: observing the anonymized attribute Y gives no information at all
on the real value X. Under such configuration, a privacy breach cannot originate from
the release of an anonymized data set, as the release does not bring any information that
could be used for an attack. However, as exposed in the paper, the price to pay in terms
of data utility is high.

A.2 The Permutation Model of SDC

The permutation model of statistical disclosure control conceptually unifies SDC meth-
ods by viewing them basically as permutation [4]. Consider an original attribute X =
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{x1, . . . , xn} observed on n individuals and its anonymized versionY = {y1, . . . , yn}.
Assume these attributes can be ranked—even categorical nominal attributes can be,
using a semantic distance. For i = 1 to n: compute j = Rank(yi) and let zi = x(j), where
x(j) is the value of X of rank j. Then call attribute Z = {z1, . . . , zn} the reverse-mapped
version of X. For example, if an original value x1 ∈ X is anonymized as y1 ∈ Y, and y1
is, say, the 3rd smallest value in Y, then take z1 to be the 3rd smallest value in X. If there
are several attributes in the original data set X and anonymized data set Y, the previous
reverse-mapping procedure is conducted for each attribute; call Z the data set formed
by reverse-mapped attributes.

Note that: i) a reverse-mapped attribute Z is a permutation of the corresponding
original attribute X; ii) the rank order of Z is the same as the rank order of Y. Therefore,
any SDC method for microdata—individual records—is functionally equivalent to per-
mutation—transforming data set X into Z—followed by residual noise—transforming
Z into the anonymized data set Y. The noise added is residual because by construction
the ranks of Z and Y are the same.

A.3 Information Theory

Classically, information theory approaches the notion of information contained in a
message as capturing how much the message reduces uncertainty about something [10].
As a result, in this theory information shares the same definition as entropy and choosing
which term to use depends on whether it is given or taken away. For example, a high
entropy attribute will convey a high initial uncertainty about its actual value. If we
then learn the value, we have acquired an amount of information equal to the initial
uncertainty, i.e. the entropy we had originally about the value. Thus, information and
entropy are two sides of the same coin. In this paper, we propose to apply entropy to a
data set in a controlled way. This operation will take away data utility from the user but
will in exchange generate protection. As such, data utility and protection also become
two sides of the same coin, albeit in that case they are inversely related.

In information theory, a basicway to capture uncertainty ismajorization [12].Assume
two vectors x = (x1, . . . , xN )T and y = (y1, . . . , yN )T that represent probability distri-
butions, with the elements of each vector pre-ordered in decreasing order. The vector x
is said to majorize y, usually noted as x � y, if and only if the largest element of x is
greater than the largest element of y, the largest two elements of x are greater than the
largest two elements of y, and so on… [10]. Equivalently, that means that the probability
distribution represented by x is more narrowly peaked than y, in turn implying that x
conveys less uncertainty than y, thus that x has less entropy than y.

In the privacy literature there is no such well-defined notion of information and
no associated concepts such as majorization. What is meant as information for the
meaningful exploitation of a data set lies in the eye of the user. For example, one user
may be interested in the ability to perform some simple statistical requests such as
cross-tabulations and thus will call information the analytical validity of such requests
on anonymized data and their close proximity with the same requests performed on the
original data set. Another user may be only interested in the ability to perform some
econometric analyses, and thus again will qualify an anonymized data as informative
given, for example, the validity of some OLS outputs made on it. Of course, and because
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the needs of users can be quasi-infinitely rich, one is left with a severe problem of
diversity for evaluating the information content of an anonymized data set. In the paper,
we reasonably assume that the original data set always provides the highest utility and
analytical value to the user, and thus that an anonymized data set always entails a loss
of utility.
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Abstract. Personalized high-quality services including route finding
and detection of the nearest shops and restaurants are provided based
on the current location of the owner of the smart device. However, loca-
tion trace data are very sensitive data because of privacy concerns. They
allow to estimate our home residence or office location to be estimated.
Hence, privacy preservation is required for reporting current location
traces from smart devices.

This paper studies the privacy preservation of time-series location
trace using the local differential privacy (LDP) algorithm Randomized
Aggregable Privacy-Preserving Ordinal Response (RAPPOR). Location
trace is independently randomized according to given procedures and
then is sent to a service provider that aggregates data with noise. To
discard noise and estimate true statistics, the maximum likelihood esti-
mation is used in RAPPOR. However, maximum likelihood estimation
(MLE) could fail if the data distribution is skewed or the data contain
extraordinary-values. To address the problem, we propose the expec-
tation maximization for estimating of true distributions. The proposed
algorithm iteratively improves estimated posterior probabilities based
on Bayes’ theorem until the difference converges for all elements. Our
experiment using 6,528 individuals’ location traces in Tokyo provided
from Nightley Inc. demonstrates that the proposed algorithm performs
better than the original MLE used in RAPPOR for every special ward in
Tokyo in one day. We found that the accuracy is improved as the privacy
budget ε decreases and as many populations are provided.

Keywords: Local differential privacy · RAPPOR · Expectation
maximization

1 Introduction

Smart devices allow us to have better-personalized service in the era of smart
society. For example, commercial services provide route finding and detection of
the nearest shops and restaurants based on the current location of the owner of
the smart device. As for measuring people’s movement in relation to Covid-19,
time-series population distributions provided from cellphone service providers
play an important role in the evaluation of the restriction of people’s movement.
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However, location traces are very sensitive data for privacy because the loca-
tion of the owners’ home residence or office can be estimated. The correlation
between any given location traces may reveal the personal relationship between
them. The location service provider may be compromised by a malicious third
party and the platforms may contain a malicious insiders who can steal and dis-
close the private customer’s data. Therefore, the privacy of location trace data
must be enhanced to prevent privacy threats.

Differential privacy has been studied so as to guarantee privacy preserva-
tion. With the Laplacian mechanism, the statistics are perturbed so that no
one can distinguish two neighboring datasets that differ only by one individual.
Erlingsson et al. at Google proposed a local differential privacy (LDP) algorithm,
Randomized Aggregatable Privacy-Preserving Ordinal Response (RAPPOR) [1].
It is well known that RAPPOR can collect data from a large number of devices
without revealing private attributes such as frequencies, categories, and statistics
of the devices. RAPPOR is based on randomized response [3] and estimates the
true attribute as the most likely value. Maximum Likelihood Estimation (MLE)
used in RAPPOR does not always work well. It could fail to estimate true data
if the distribution of data is biased or if the data contain extraordinary high/low
values. In this paper, we show that unbalanced distribution yields significant
error in the estimate presented. Because it estimates the most likely value, just
only one illegal value can spoil the overall accuracy. Unfortunately, this could
happen for use case of location-based services where the movements of people
are not predicted.

In this paper, we propose an iterative approach to improve the estimation
accuracy of perturbed data in the LDP algorithm. Our idea is based on Bayes’
theorem and the Expectation Maximization (EM) algorithm [5]. It estimates the
posterior probability that is most consistent with given perturbed data. Because
of iterative processes, the estimate is improved repeatedly. Hence, it is more
stable and more robust against the unexpected behavior of hazard records.

We conduct an experiment using SNS-based location traces to demonstrate
the feasibility of the proposed algorithm and to clarify accuracy improvement
in the real location data. Our data contain 6,528 individuals’ location traces in
Tokyo provided from Nightley Inc. that are classified into several smaller special
wards. We show the comparison between our proposed estimate (EM) and the
MLE used in RAPPOR for several privacy budgets ε.

Our contribution has two components.

– We propose a new algorithm to estimate the distribution of private data
from perturbed data in RAPPOR. Our proposed algorithm improves the
accuracy of the estimate based on the iterative process of Bayesian posterior
probabilities.

– We show the experimental results using large-scale location trace data in
Tokyo with several smaller wards. The result shows that the proposed
method performs better than the MLE used in RAPPOR and gives significant
improvements.
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2 Local Differential Privacy

2.1 Fundamental Definition

Suppose that users periodically submit their location data to a service provider.
Differential privacy guarantees that the randomized data do not reveal any pri-
vacy disclosure from them. On the other hand, LDP needs no trusted party. The
private location data are randomized by users before being submitted to the
service provider. LDP is defined as follows.

Definition 1. A randomized algorithm Q satisfies ε-local differential privacy if
for all pairs of values v and v′ of domain V and for all subset S of range Z
(S ⊂ Z), and for ε ≥ 0,

Pr[Q(v) ∈ S] ≤ eεPr[Q(v′) ∈ S]. (1)

2.2 RAPPOR [1]

Erlingsson et al. at Google proposed a LDP algorithm, Randomized Aggregat-
able Privacy-Preserving Ordinal Response (RAPPOR) [1]. It is motivated by an
application to track the Chrome browser configuration distribution of users.

Let vi be the i-th element of v and be flipped according to randomized
mechanism Q. In the basic randomized response [3], output zi is set to be 1 for
vi = 1 with probability p, and 0 with probability q = 1 − p as,

zi =
{

vi w/p p
1 − vi w/p q

where p and q are probabilities to preserve the original value vi to be unchanged
and changed, respectively.

In RAPPOR, additional uncertainty is added through the use of Bloom filter
using d hash functions. With this, input v is so-called “one-hot” encoded as a
d-bit vector that contains exactly 1 one and d − 1 zeros. Sensitivity Δf , the
maximum influence that a single individual can have on the result of a random-
ized response, is 2 bits. For instance, suppose users 1 and 2 have v = (0, 1, 0, 0)
and v′ = (0, 0, 1, 0), respectively. A probability that randomized algorithm Q
outputs z = (0, 1, 0, 1) for v is

Pr[Q(v) = (0, 1, 0, 1) |v = (0, 1, 0, 0)] = (1 − q)p(1 − q)q.

Similarly, user 2 has the same output z with the probability of Pr[Q(v′) =
[0, 1, 0, 1]|v′] = (1 − q)q(1 − p)q. If we set p and q with sensitivity Δf as

p =
e

ε
Δf

1 + e
ε

Δf
=

e
ε
2

1 + e
ε
2

and q =
1

1 + e
ε
2

then, it satisfies ε-local differential privacy as follows

Pr[Q(v) = z |v]
Pr[Q(v′) = z |v′]

=
(1 − q)p(1 − q)q
(1 − q)q(1 − p)q

≤ eε.
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Intuitively, no one can distinguish v and v′ for users from the randomized
output z and hence the local (value) privacy is preserved. The privacy budget ε
controls the degree of privacy and improves privacy as it is close to 0 (smaller ε
means stronger privacy).

Generally, n-bit vectors v and v′ have a sensitivity of Hamming distance,
that is, Δf =

∑n
i=1 |vi − v′

i| ≤ 2. Letting r and r′ be numbers of inconsistent
bits in v and v′, respectively. We have Pr[Q(v) = z ∈ S|v] = pn−rqr and
Pr[Q(v′) = z ∈ S|v′] = pn−r′

qr′
. After all, we confirm that Eq. (1) holds as

Pr[Q(v) = z |v]
Pr[Q(v′) = z |v′]

=
pn−rqr

pn−r′qr′ =
(

p

q

)h′−h

= e
εΔf
2 ≤ eε

where Δf = h′ − h.

2.3 Related Works

Idea to preserve privacy of input with randomization has been studied so far.
Kikuchi et al. [9] proposed a randomization protocol for voting without a single
input being guessed but the aggregated value reveals the estimation accurately.
Agrawal and Srikant [11] proposed a privacy-preserving collaboration filtering
and an estimation algorithm based on Bayes’ theorem, called reconstruction.
Polat and Du [12] proposed some collaborative filtering schemes for Pearson
correlation-based algorithm. Their idea was based on a hypothesis that the ran-
dom noise uniformly chosen from range goes to be zero, making the estimation
simpler by the scalar product of randomized vectors. Zhang et al. pointed out
that an additive perturbation does not preserve privacy as much as had been
believed by showing the experiment to derive an amount of the original data in
[13,14].

Chen et al. [10] proposed the notion of local differential privacy to provide
a privacy guarantee for user. Compared to the conventional differential privacy
studies, local differential privacy has been used for many real-world application.
For example, Erlingsson et al. introduced RAPPOR [1] to use a Bloom filter to
encode input as bit of vector. RAPPOR is a Google Chorome extension to col-
lects Windows process names and some attributes without revealing confidential
values. Apple also implements their local differential privacy protocols in the
latest iOS and MacOS for discovering major emoji and identifying high memory
usage in Safari [2].

Local differential privacy has some limitations. The RAPPOR assumes input
as 1-dimensional categorical data. To discard the limitation, several studies have
been done so far. Qin et al. [7] propose a heavy hitter estimation over set-valued
data. Their idea involves user-server interactions in two rounds. Ono et al. [6]
also extend their idea and show some improvement.

Ren et al. proposed amulti-dimensional joint distribution estimation algorithm
that satisfies LDP [8]. Their proposed method is also based on the expectation
maximization and Lasso regression. They reported the experimental results on
real-world datasets and showed that the proposed one outperforms the exiting esti-
mation schemes such as support vector machine and random forest classifications.
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Fig. 1. Probability distribution
Pr(n′|n = 505).

Fig. 2. Estimated population n∗ with
regard to number of iterations k for pri-
vacy budgets ε = 1 and 3

3 Improvement of Estimate

3.1 Maximum Likelihood Estimate

We consider the problem of estimating the population distribution from the
randomization used in RAPPOR in this section.

Let n be the population of city x at a particular time. Suppose that people
who live in the city move in their daily life. Consequently, the current population
is a dynamic quantity ranging from 0 to the maximum �, such as the total
population in the state of that city x. According to the RAPPOR algorithm, Let
n′ be the randomized population of x according to the RAPPOR algorithm. With
probabilities p (true) and q (flipped), the expected value of binomial distribution
gives n′ = np + (� − n)q, which leads the maximized likelihood value L[n] as

L[n] =
n′ − �q

p − q
.

Letting h be the number of n individuals who submit 1, we have a probability
distribution of n by the addition of binomial distributions as

p(n) =
(

n
h

)
phqn−h +

(
� − n
n′ − h

)
p�−n−n′+hqn′−h

Figure 1 shows the probability distribution of Shinjuku ward’s population at
14:00. The randomized population is increased around 21:00.

3.2 Iterative Estimate

MLE used in RAPPOR algorithm works well for most cases but has low estimate
accuracy for a biased distribution. Instead, we consider an iterative estimate
approach known as the Expectation Maximization (EM) algorithm.
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Algorithm 1. EM algorithm for RAPPOR

θ
(0)
i ← a population of city i.
repeat(E-step)

k ← 1
Estimate posterior probability Pr[Vi = 1|Z] in Eq. (3).

(M-step) Update marginal probability θ
(k+1)
i in Eq. (4).

until |θ(k+1)
i − θ

(k)
i | ≤ ε′ return ni = �θ∗

i

EM algorithm performs an iterative process for which posterior probabilities
are updated through Bayes’ theorem. Each iteration estimates the best proba-
bilities θi for all cities i that are consistent with the given randomized outputs Z
computed in RAPPOR. Hence, it is more robust against unbalanced distribution
than the MLE is.

Algorithm 1 shows the proposed EM algorithm for estimating true distribu-
tion from randomized data according to RAPPOR. It has two steps; expectation
(E-Step) and maximization (M-Step). In the E-Step, Bayes’ theorem plays a sig-
nificant role in estimating, as follows.

Let Vi be a random variable of the population of the i-th city in m cities
in the state and Z be that of the randomized one in RAPPOR. Conditional
probability given Vi = 1 is

Pr[Zi|Vi = 1] =
Pr[Zi, Vi = 1]

Pr[Zi = 1]
. (2)

Bayes’ theorem gives the posterior probability of Vi = 1 given the randomized
value Z as

Pr[Vi = 1|Z] =
Pr[Z|Vi = 1]Pr[Vi = 1]∑m

j=1 Pr[Z|Vj = 1]Pr[Vj = 1]
=

Pr[Vi = 1|Z]θi∑m
j=1 Pr[Z|Vj = 1]θj

, (3)

where θi is the estimated probability of the i-th city.
In the EM algorithm, Bayes’ estimate is iterated to improve accuracy. For

every iteration, a marginal distribution θ
(k)
i is replaced by the mean of posterior

probability as
θ
(k+1)
i =

∑
j∈m

Pr[Vi = 1 |Vj = 1]θ(k)i . (4)

It continues until the estimate converges for all cities. Let θ∗
i be the converged

probability θ
(k+1)
i if |θ(k+1)

i − θ
(k)
i | is less than a threshold of an iteration that is

predetermined for required precision. The final estimate is n
(∗)
i = �θ

(∗)
i for city

i ≤ �.
Figure 2 shows the improvement of estimated population n(∗) with regard

to the number of iteration k. Estimated population in RAPPOR with ε = 1
and 3 is plotted in Fig. 2, where the dotted line indicates the true population.
Obviously, the accuracy is improved as k increases. The result shows that the
estimate converged around k = 200, even for very strong privacy budget ε = 1.
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Fig. 3. Time-series population in Tokyo Fig. 4. System flow

4 Experiment

4.1 Objective

The objective of the experiment is to explore the accuracy improvement using
open location data and to demonstrate that the proposed algorithm works better
than MLE in RAPPOR.

4.2 Data

Our experiment uses the time-series location data published by Nightley Inc. [4].
They are synthetic data based on messages posted in a social networking service.
Table 2 shows the specification of the dataset. We use the Nightley dataset that
contains location traces for 6,258 individuals for a day. The populations changed
as people move from home to office or shops, as shown in Table 1.

The city of Tokyo consists of 23 special wards. For each ward, we identify how
many individuals stay for every three hours based on the latitude and longitude
provided with the trace (used by Google Map API). The time-series populations
for some major wards are shown in Table 3 and Fig. 3. Table 4 gives a change of
statistics with respect to a time period. We observe two typical behaviors;

(a) Residential area, where populations are higher in the morning and night,
e.g., Nakano and Koto wards

(b) Office area, where many schools, offices, and shops are located and the pop-
ulation in the daytime is higher than in the morning and night, e.g., Tyuo
and Bunkyo wards.

Figures 5 and 6 show the heat maps of the population at 8:00 and 14:00. We
find the dense area is at the center of Tokyo at 14:00 h, while it is not crowded
in the morning (at 8:00). This is typical behavior for people in a metropolitan
city, and our target is to estimate this from randomized location traces.

Figure 4 illustrates how location traces are processed in our scheme, where n
users move independently and belong to one of 23 special wards. Their current
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Table 1. Time-series popu-
lation Nightley in Tokyo

Time Population

8:00 2,957

11:00 3,922

14:00 4,640

17:00 4,793

20:00 4,300

23:00 3,283

Table 2. Specification of the Nightley dataset

Surveyed value Point of Interest (POI), Timestamp
(SNS post), The road network

Estimate value Movement courses, A place of residence,
Work location, Stay time, Gender,
What they did during their stay
(including shopping and leisure)

Area Tokyo Metropolitan

Target time July, 2013, October, December

A time unit As for every five minutes

Geodetic datum WGS84 (EPSG:4326)

Records There are approximately 70,000 cases
with each csv file

File size Approximately 100 MB

Table 3. Time-series population in major
wards in Tokyo

Ward 8:00 11:00 14:00 17:00 20:00 23:00

Shibuya 262 394 533 532 479 351

Shinjuku 278 414 505 531 454 304

Minato 267 393 509 479 416 284

Chiyoda 186 381 506 496 476 248

Setagaya 295 331 367 403 368 317

Suginami 165 209 227 246 187 188

Tyuo 121 177 216 188 148 118

Bunkyo 98 166 181 197 206 143

Shinagawa 98 147 182 173 147 99

Nakano 154 117 116 133 141 142

Table 4. Statistics of time-series popu-
lation for 23 wards in Tokyo

Time 8:00 11:00 14:00 17:00 20:00 23:00

Mean 192.4 272.9 334.2 337.8 302.2 219.4

Max 295 414 533 532 479 351

Min 98 117 116 133 141 99

memberships to one of 23 wards are encoded as 23-dimension vector v. They
perturb their location in RAPPOR Q(v) before being sent to a service provider.
The service provider simply sums all perturbed locations and publishes a distri-
bution of population Zi for the i-th ward. With either MLE or EM algorithms,
we estimate the true distribution of population Ni.

4.3 Method

We apply RAPPOR algorithm to the Nightley data for several privacy budgets
ε. Our experiment is processed as follows.

1. Each user perturbs his/her current location v in RAPPOR for privacy budgets
ε = 0.5, 1, 1.5, . . . , 5.0 to have Q(v).

2. The service provider collects users’ location data for every time period and
publishes the distribution of populations for 23 wards in Tokyo Z1, . . . , Zm.
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Fig. 5. Heat map of Tokyo at 8:00 Fig. 6. Heat map of Tokyo at 14:00

3. We estimate populations in MLE and the proposed (EM) algorithms and
denote them by NMLE and NEM , respectively.

4. We evaluate the accuracy for two estimates in mean absolute error (MAE),
that is,

∑
i=1...,m |Ni − NMLE |, where Ni is the true population of i-th ward.

5. We repeat the above steps 10 times to estimate mean accuracy for some
algorithms.

Note that Step 3, the EM algorithm needs iterative process to esimate until the
result is converged. The number of iteration depends on the input data.

4.4 Results

Figure 7 shows the true distribution of populations of the i-th ward, ni, in Tokyo
at 14:00. We perturbed location data in RAPPOR with privacy budget ε = 0.5
(very safe) so that no one can be estimated as particular ward, n′

i, as shown in
Fig. 8. It shows almost uniform probability distributions and thus the privacy is
certainly preserved. The proposed algorithm gives the estimated population n

(∗)
i

as shown in Fig. 9. We observe that the estimated distribution is very close to
the true one in Fig. 7.

Figure 10 shows the estimated populations with respect to m wards in Tokyo
at 14:00 with privacy budget ε = 0.5. The results show that the proposed esti-
mates (labeled as EM, colored in blue) are close to the true population (green)
for almost all wards. In contrast, the ML estimates sometimes suffer significant
error, e.g., −700 and −900 for the 15th and 20th wards.

For what data does the MLE estimation fails? To answer this question, we
show the scatter-plot between true and the estimated populations in Fig. 11. The
estimated populations in the EM algorithm are on the line of true population.
While, the MLE populations, indicated with red cross, deviate from the true
line. The estimated populations are too large when true population is more than
450 and too low when true population is less than 200. In other words, the EM
algorithm estimates accurately when the given data are biased.
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Fig. 7. Distribution of
population of i-th ward ni

Fig. 8. Distribution of
populations perturbed in
RAPPOR n′

i (ε = 0.5)

Fig. 9. Distribution of esti-
mated populations n

(∗)
i

Table 5 shows the mean absolute error of estimations in the proposed
algorithm (EM) and the existing one (MLE) for some privacy budgets ε =
0.5, . . . , 5.0. The mean errors of the EM are 60 % of that of the MLE for ε = 0.5.
The improvement is maximized at the smallest budget.

The accuracy depends on wards and privacy budgets. Thus, we evaluate
MAE and depict the MAE results at times 8:00, 11:00, 14:00, 17:00, 20:00 and
23:00 in Figs. 12, 13, 14, 15. This plot shows MAE for both estimate algorithms
with respect to privacy budgets ε = 0.5, 1, 1.5, . . . , 5.0. The results show that
the proposed algorithm performs better than the MLE used in [1] for every
time period. The difference between the two estimates maximizes as the privacy
budget decreases (the wider the randomization range, the higher the privacy). We
also note that the improvement of accuracy is higher at 8:00 than that at 14:00.
This error of MLE is caused because many people are at home in the morning,
as shown in Fig. 3 and Fig. 5, and the unbalanced distributions of populations
reduce the maximum likelihood. The results show low accuracy for estimating
the population of small wards in Fig. 10. This happens for the same reason.

Fig. 10. Estimated populations for m
wards in Tokyo at 14:00, ε = 0.5 (Color
figure online)

Fig. 11. Scatter-plot between true and
estimated populations (EM and MLE)
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Table 5. Mean absolute error with reagrd to ε

ε EM MLE

0.5 2971.31 4885.28

1.0 1846.69 2256.53

1.5 1404.14 1614.74

2.0 982.69 1072.24

2.5 780.58 849.41

3.0 628.41 710.34

3.5 524.80 601.56

4.0 407.92 503.13

4.5 349.73 434.63

5.0 287.42 363.16

Fig. 12. MLE at 8:00 for privacy bud-
gets ε

Fig. 13. MLE at 11:00 for privacy bud-
gets ε

Fig. 14. MLE at 14:00 for privacy bud-
gets ε

Fig. 15. MLE at 17:00 for privacy bud-
gets ε

5 Conclusion

We studied the privacy preservation of time-series location traces using LDP
algorithm RAPPOR and proposed the EM for estimating true distributions.
The proposed algorithm iteratively improves estimated posterior probabilities
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based on Bayes’ theorem until the difference converged for all elements. Our
experiment using 6,528 individuals’ location traces in Tokyo provided by Night-
ley Inc. demonstrates that the proposed algorithm performs better than the
original MLE used in RAPPOR for every special ward in Tokyo in one day. The
results show that the accuracy improved as the privacy budget ε decreased and
when many populations were provided. We conclude that the iterative approach
works well for data perturbed in the LDP algorithm.
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Abstract. Data mining techniques allow us to discover patterns in large
datasets. Nonetheless, data may contain sensitive information. This is
especially true when data is georeferenced. Thus, an adversary could
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tion, and even sexual habits. At the same time, human mobility is a
rich source of information to analyze traffic jams, health care accessibil-
ity, food desserts, and even pandemics dynamics. Therefore, to enhance
privacy, we study the use of Deep Learning techniques such as Gener-
ative Adversarial Network (GAN) and GAN with Differential Privacy
(DP-GAN) to generate synthetic data with formal privacy guarantees.
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maintain individuals’ privacy and data quality depending on privacy
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jectories. After generating fine-grain mobility trajectories at the GPS
level through an adversarial neural networks approach and using GAN
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1 Introduction

Geolocated data is a rich source of information. These datasets enable studies
about traffic jams, urban planning, population density, health care accessibility,
food deserts, and even pandemics dynamics. Nonetheless, location information is
a very sensitive piece of information. Location can reveal different aspects of indi-
viduals, such as future locations, points of interest, political affiliation, specific
diseases, an individual’s social network, and even sexual habits. Thus, geolo-
cation has attracted the scientific community’s attention [6–9,12] to the point
that it is now regulated by the General Data Protection Regulation - GDPR
and considered personal data. Accordingly, the challenge is to propose tech-
niques to ensure both individuals’ privacy concerns and law compliance to use
their location information for studying, for example, the COVID-19 transition
dynamic or another phenomenon. In the literature, we find some applications of
the synthetic data generation in health [14], transport [20], and to train Machine
Learning models [15]. Other works focus more on the privacy mechanism to gen-
erate privacy-aware synthetic data [4,22,24]. In the present effort, we analyze the
impact of home and work inference over synthetic datasets generated through
GAN and DP-GAN, to assess individuals’ privacy in terms of information loss
and disclosure risk. The rest of the paper is organized as follows. First, Sect. 2
shows the related works, while Sect. 3 depicts the basic concepts. Next, Sect. 4
describes the methodology. In Sect. 5 the experimental protocol and the results
are described. Finally, this paper ends with conclusions and future work.

2 Related Works

Several studies were proposed to build synthetic data through Generative Adver-
sarial Networks (GAN). In [15], the authors compare two methods to build spa-
tiotemporal data. The compared methods belong to two different ways: Berlin-
MOD, which is an algorithmic method, an RNN, and a GAN based on deep
learning. A technique based on the Turing Test was used to determine the real-
ism of the generated data. Methods based on deep learning were built using
a batch size of 64, a sequence length of 100, mean absolute error (for RNN),
binary cross-entropy (for GAN) as loss functions, and the Adam optimizer. The
Data Mobile Challenge and Geolife datasets were used for experimental purposes.
Finally, the authors demonstrated that artificial data sets could be distinguished
from real in eleven of twelve cases.

Other authors concentrate on human mobility from the existing sets of per-
sonal geolocation data. For example, authors in [20] formally define a method
to generate and suggest unexplored routes from the existing sets of personal
geolocation data using Generative Adversarial Networks. For experiments, data
were collected from positioning devices, getting the latitude, longitude, and time
information over three years. First, data was pre-treated using a CNN with four
layers with each filter size of 2 × 2 × 128, 2 × 2 × 64, 2 × 2 × 32, and 2 × 2 × 1.
This pre-processing step was performed to preserve all positioning information
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in data-generated matrices. Later, CNN with Leaky ReLU was used to trans-
form data into 32 × 32 matrices. Finally, these 32 × 32-matrices were used as
input for the GAN. As a post-processing step, a CNN-based deconvolution was
performed.

In the same spirit, other authors focus on privacy-preservation of density
distribution on mobility data against the aggregation attack [22]. Indeed, a dis-
criminator network with four layers was proposed. The first three layers were
used to learn the features of the input data, while the last layer was designed to
compute the decision value. Also, Relu and Sigmoid were chosen as the activation
functions for the first three and four layers, respectively. Later, a GAN-based
generator with 4 layers was used to create synthetic data. Also, the Wasser-
stein distance was used as a loss function. Two open-source datasets were used
for experiments: MoMo Mobile App Dataset (MoMo) and San Francisco Cabs
Dataset. The proposal’s effectiveness evaluation is based on the Utility Loss and
the Mean Square Error measures.

In [14], authors couple a GAN and a differential privacy mechanism for gen-
erating realistic and private smart health care datasets. To do that, a 4-step
process was proposed. First, the dataset containing more than 17M records was
gathered from 25 individuals using Fitbit Charge 2 HR smartwatches with the
Fitbit App. Participants living in Belgium and Sweden were observed for at
least 60 days. Later, a time-series data aggregation step was performed. Then,
based on gender and geographical locations, a synthetic data sample was gen-
erated through a BGAN. The generator was composed of 2 dense layers with
64 and 32 neurons, coupled to a Leaky ReLU activation and a rate of 0.2. The
discriminator uses 2 dense layers with 512 and 256 neurons and the generator’s
same activation function and rate. Finally, the authors use Information Loss and
Accuracy to test their proposal.

In [17], the authors use geo-tagged tweets to train a reliable generator for
modeling the real-world distribution telco dataset. First, the authors propose a
similarity measure to determine the high-similarity time period of training data,
while DBSCAN was used to filter non-hotspots data. Then, a neural network
generates a model from the real hotspot distribution through an adversarial
process (GAN). The sigmoid cross-entropy in Tensorflow was used to calculate
the loss. Also, the RMSprop optimizer was chosen during the training process
to find a trade-off between performance and ability of convergence. Finally, the
authors found a positive correlation between cellular network traffic and social
network to model the intra-cell Tweets traffic distribution by using a neural
network.

In [25] a new optimized DP-GAN algorithm for generating synthetic
semantic-rich data from three image datasets is proposed. To meet this goal, the
authors propose the Advanced DP-GAN, which improves the DP-GAN through
different optimization methods. Two main differences exist between our proposal
and [25]. First, our proposal generates synthetic data from spatio-temporal data,
which is difficult to generate due to the high correlation between temporal and
spatial dimensions. Second, authors in [25] use Inception and Jensen-Shannon
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scores to evaluate their proposal. Both scores capture the utility preserved by
the DP-GAN instead of the privacy.

However, as [2] points out, extreme care should be exercised when applying
Differential Privacy beyond the setting it was designed for. Otherwise, it may
be applied in such a way that contradicts its own core idea: to make the data of
any single individual unnoticeable.

Thus, we apply and analyze the privacy protection guarantees of these Differ-
entially Private methods (GANs) considering the literature on anonymization,
such as in [19], in which the privacy of a perturbative algorithm for trajectory
protection was analyzed by measuring the possibility of reidentification, using
the POIs including the Home/Work locations. The justification for such analysis
comes from [10] and [23]. In [10], it was shown that workers who revealed their
home and work location with noise or on the order of a census block, a census
tract, or a county were protected by anonymity sets of sizes 1, 21 and 34,980. In
[23], it was shown that the top 2 locations likely correspond to home and work
and that the anonymity sets are drastically reduced if an attacker knows such
locations.

Our paper thus assesses the privacy protection provided by these differentially
private methods for synthetic data generation with a more interpretable measure
of the risk of home and work location inference attacks.

3 Background

This section describes the main concepts related to using generative adversarial
networks to generate synthetic data.

3.1 GAN and W-GAN

Generative Adversarial Networks (GAN) were fully discussed in [5]. A GAN con-
sist of two components. First, a generator GGAN , which learns the original data
distribution Pdata by mapping a latent distribution Pz. Second, a discrimina-
tor DGAN learns to distinguish between samples obtained from Pdata and those
generated by the generator GGAN . Figure 1 depictes the idea behind a GAN.

Fig. 1. GAN-based sanitisation process [25]
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The goal of a GAN is to train DGAN to maximize the probability that a
sample comes from GGAN ; analogously, GGAN is trained to minimize the differ-
ence of the generated and original data. To formalize it, the MinMax function
of GGAN and DGAN over the value function V (GGAN ,DGAN ) is defined in (1).

min
GGAN

max
D

V (DGAN , GGAN ) = Ex∼pdata(x)[logDGAN (x)] + Ez∼pz(z)[log(1 − DGAN (GGAN (z)))]

(1)

Classical Generative Adversarial Networks use Jensen-Shannon divergence.
Nevertheless, the measure is not helpful for specific tasks such as synthetic data
generation. Thus, the Generative Adversarial Network uses the Wasserstein dis-
tance (W-GAN) instead of the Jensen-Shannon divergence to add controlled
noise in the gradient. Besides, a W-GAN [1] solves the minmax problem differ-
ently, as shown in (2).

min
GGAN

max
w∈W

Ex∼pdata
(x)[fw(x)] − Ez∼pz(z)[fw(GGAN (z))] (2)

where the functions fw(x), w ∈ W are all K-Lipschitz continuous values with
respect to x for some k. Results of minmax problem solution show better results
from a W-GAN concerning a DP-GAN [21]. Nonetheless, this does not solves
the privacy issue of generating data that is very similar to the original dataset.
Thus, a differential privacy mechanism is applied to solve this problem.

3.2 Differential Privacy

Differential privacy provides formal guarantees of privacy. It is defined as fol-
lows [3]: Let M be an random mechanism, such that: M : D → R, with D being
the domain and R the range. M is (ε, δ) differential private if for any pair of
adjacent inputs d, d′ ∈ D and for any subset of outputs S ⊆ R it satisfies (3).

Pr[M(d) ∈ S] ≤ eεPr[M(d′) ∈ S] + δ (3)

Differential privacy has the following properties that make it very useful for
applications such as Deep Learning.

– Composability: if all components of a mechanism are differentially private,
the composition is also differentially private.

– Group Privacy: privacy guarantees can be extended for when a group of par-
ticipants have provided their data.

– Robustness to auxiliary information: privacy guarantees are not affected by
any secondary information available to the adversary.

A common approach for obtaining a differentially private mechanism from a
real-valued function f is via additive noise calibrated to f ’s sensitivity Sf , such
as the Gaussian noise mechanism, that is used in [21]. Given f : D → R, let Sf

be the sensitivity of f , which is the maximum absolute distance: |f(d)−f(d′)| for
all possible pairs of adjacent input datasets d and d′, the Gaussian mechanism
is defined in (4).
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M � f(d) + N (0, S2
f · σ2) (4)

where N is the Gaussian distribution, of mean 0 and standard deviation S2
f ·σ2.

The function f is (ε, δ)-differentially private with ε < 1 if δ ≥ 4
5exp(−(σε)2

2 ).

3.3 DP-GAN

A DP-GAN is a generative adversarial network to which a differential privacy
guarantee has been added [13]. Furthermore, several changes were applied to such
GANs to improve the differential privacy guarantees. First, an intelligent and
adaptive pruning technique is implemented. Also, an intelligent noise distribution
is applied, i.e., DP-GANs distribute noise according to each group according to
its gradient.

4 Methodology

In the current section, we introduce our methodology to evaluate the perfor-
mance of GANs and DP-GANs in generating synthetic data. Thus, Fig. 2 depicts
the evaluation process. First, the dataset counting original trajectories for differ-
ent individuals is gathered. This dataset should contain an individual identifier,
a timestamp, a latitude, and a longitude. Then, the dataset is pre-processed or
cleaned by keeping only weekdays and replacing date and time by the hour of
the timestamp. Thus, we capture regular movement points during the weekdays.
After the pre-processing stage, we rely on GAN and DP-GAN algorithms to
sanitize the dataset by building a synthetic version d′ of the original dataset
d. The former algorithm inputs the optimizer function, batch size, generator,
and discriminator architecture. The latter takes the same inputs of the GAN
algorithm with a privacy guarantee parameter epsilon ε.

Once the dataset is sanitized, an adversary tries to infer the individuals’
home and work locations in the dataset d′ by applying a simple heuristic. Thus,
individuals’ home H ′

u = [Lat, Lon] and work W ′
u = [Lat, Lon] locations are

represented by the centroid of the set of points between midnight to 5AM and
8AM to 6PM, respectively.

Fig. 2. Sanitization process of geo-referenced data.
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Finally, the Information Loss and Disclosure Risk measures were used to
evaluate the success of the adversary attack in the synthetized data. Both are
described in the following paragraphs.

Information Loss - IL. Inspired by the proposed IL in [18], we defined the
information loss as the average distance between the mean of the home Hu and
work Wu location inferred from the original dataset and the home H ′

u and work
W ′

u location from the synthetic dataset. Equation 2 formalizes the information
loss measure.

IL =
1

|U |
|U |∑

u∈U

dist(Hu,H ′
u) + dist(Wu,W ′

u)
2

(5)

where U is the set of users. The information loss expressed in Km allows us to
know how much one dataset differs from another. Another essential metric to
consider is the disclosure risk.

Disclosure Risk - DR. This metric lets us know the distance between two differ-
ent models’ highest point of interest. According to [11], the DR is defined as the
risk that an attacker derives individual information from the original dataset by
having access to the synthetic dataset.

f(x) =

{
1 dist(Hu,H′

u)+dist(Wu,W ′
u)

2 < m

0 otherwise
(6)

where m is a threshold. Accordingly, the DR enables us to quantify the propor-
tion of re-identified home locations within a radius m.

5 Experiment and Results

The present section presents the results obtained from Geolife real data experi-
ments [26]. The experiments were carried out using the methodology previously
described. Therefore, the GPS trajectories dataset contains 178 users collected
from April 2007 to October 2011. Each GPS trajectory in this dataset is repre-
sented by a sequence of points with an identifier, timestamps, latitude, longitude,
and altitude. The dataset contains 17 621 trajectories with a total distance of
1 251 654 Km and a total duration of 48 203 h. These were recorded by different
GPS devices and phones and have a variety of sampling frequencies. Thus, 91% of
the trajectories were recorded in a dense representation, i.e., every 1–5 s or every
5–10 m per record. Importantly, the dataset collected a wide range of outdoor
movements from the total users, including life routines such as going home and
going to work and some entertainment and sports activities, such as shopping,
sightseeing, dining, hiking, and cycling. The original dataset is pre-processed to
be the input of the GAN and DP-GAN algorithms, and the result of the pro-
cessing is a synthetic dataset. Finally, for evaluation, we measure information
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Table 1. Parameters of the DP-GAN

Parameter Value Parameter Value

Optimizer Adam Generator layers 128, 64,3

RMSProp 256, 128, 64,3

Batch size 64 512, 256, 128, 64,3

128 512, 3

256 Discriminator layers 128, 64, 32, 16, 1

512 256, 128, 64, 32, 16, 1

ε-diff. privacy 1 512, 256, 128, 64, 32, 16, 1

64, 32, 16, 1

loss and disclosure risk of the home inference in the sanitized dataset using the
original dataset as ground truth.

Given the objective of measuring the effectiveness of GAN and DP-GAN
against inference attacks, we need to find the most suitable parameters for the
generator and discriminator to generate a synthetic dataset. This dataset should
be useful while providing enough privacy guarantees. Regarding the optimizer,
we consider the Adam and RMSProp optimization algorithms. Concerning the
batch size, the considered values ranges from 64 to 512. Concerning generator
and discriminator architecture, different configurations were tested as shown in
Fig. 1. It is worth noting that the ε-differential privacy parameter is constant to
find these parameter configurations. Therefore, 128 different configurations were
tested.

The two best performances regarding the GAN algorithm are architectures
A17, A13, R26, and R13. A stands for Adam optimizer, and 17 is the architec-
ture identifier. Regarding the DP-GAN algorithm parametrization, we note that
configurations A17, A5, R10, and R2 have a less IL value. The comparison of
the IL for the different architectures is not shown due to space restrictions.

A17 A13 R26 R13
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Fig. 3. GAN information loss.
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Fig. 4. GAN disclosure risk.

To explore in detail the top 2 best configurations for each optimizer when
applying the GAN algorithm, we compare the information loss in Fig. 3 and
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disclosure risk in Fig. 4. The former shows that the average distance of A17
and A13 architectures between home and work in the original d and synthetic
d′ dataset are 2 Km close, while for architectures R26 and R13, the distances
between home and work in the original d and synthetic d′ datasets are 3.5 to
3.8 Km away. Consequently, the architecture with less information loss is A17.
The latter compares the disclosure risk of the different tested architectures. The
figure illustrates the error of the adversary’s distance in the abscissa axis while
inferring the home and work location and the proportion of individuals’ home
and work the adversary finds with a given error. For instance, the adversary
finds 50% of homes successfully when the inference attack threshold is fixed to
less than 1.8 Km for A17, A13, and R26. However, for R13, the threshold needs
to be increased to achieve 50%. Thus, this architecture is more private compared
to the other three.
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Fig. 5. DP-GAN information loss.
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Fig. 6. DP-GAN disclosure risk.

Concerning the DP-GAN algorithm, we compared the best architecture con-
figurations. On the one hand, Fig. 5 portrays that the information loss of the
four configurations is less than a kilometer, where A17 is the setup with less
information loss. On the other hand, Fig. 6 presents the disclosure risk result for
the DP-GAN with ε = 1. Accordingly, we try to find the architecture configura-
tion that mimics the original dataset’s best. Thus, when taking as threshold 1
Km around 60% of the individuals’ homes and works are correctly identified.

From previous experiments, we notice that the architecture configuration
that best captures human movements in our dataset is A17. Hence, we will
analyze the impact of the ε parameter for the DP-GAN algorithm using the
Adam optimizer.

For this experiments, we used different values for epsilon ε =
{0.001, 0.005, 0.01, 0.1, 1}, we report the average for ten different runs for each
value of ε. Figure 7 evidences the impact of ε on the information loss. Thus,
the bigger the ε value, the less noise in the generator to produce the synthetic
dataset, the small information loss. We note that when ε = 0.001 (strong pri-
vacy) the IL value is more than 15 Km, while when ε = 1 the IL decreases to
0.1 Km. Figure 8 illustrates the effect of ε over the DR. We remark that when
ε = 1, the adversary finds the individuals’ home and work with less than one
Km error. However, when ε grows, the privacy guarantee becomes stronger.
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Fig. 7. Average and standard devia-
tion values for the best parameters for
DP-GAN information loss.
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Fig. 8. Average and standard devia-
tion values for the best parameters for
DP-GAN disclosure risk.

Fig. 9. Synthetic traces through DP-GAN. (A) Synthetic traces of a user Bob traveling
in a city ε = 1. (B) Synthetic traces of a user Alice traveling between two a city ε = 1.
(C) Zoom over synthetic traces of a user Charlie original traces and ε = {0.1, 1}. (D)
Synthetic traces of a user Charlie for ε = {0.001, 0.005, 0.01, 0.1, 1} (Color figure online)

For the sake of comparison, Fig. 9 illustrates the different locations gener-
ated for a user using ε = {0.001, 0.005, 0.01, 0.1, 1}. We note that values close
to 1 mimic the original dataset in a more realistic way. On the contrary ε small
values enhance more individual privacy. We observe that the generation of the
geolocated traces is plausible. Figure 9C shows the original points as triangles,
and green points are the generated traces with ε = 1, while orange points are
generated with ε = 0.1. Please note that some generated traces could be banded
when users travel between cities, as illustrated in Fig. 9D. Besides, the gener-
ated geolocated points respect some statistical properties in space and time. For
instance, the average distance between generated points is seven meters with
ε = 0.1 and increases to 22 Km with high epsilon values. Regarding the time
dimension in all the synthetic generated data time interval between points every
five seconds on average as the original dataset. Nonetheless, if the application
using the generated points needs to work with trajectories, the generation should
consider only trajectories and not all points in the dataset, as commented in [16].
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6 Conclusions and Future Works

We studied the feasibility of generating synthetic geo-located datasets using
GANs. This task is far from trivial since human mobility depicts complex and
regular mobility patterns, which are helpful in studying different phenomena.
However, even for synthetic data, there is a certain risk of inferring knowledge
beyond its scope, threatening individuals’ privacy. Our experiments demonstrate
that we can train deep neural networks to generate synthetic data that main-
tains individuals’ privacy and data quality depending on privacy parameters.
Accordingly, based on the privacy settings, we generated data differing a few
meters and a few kilometers from the original trajectories. When applying dif-
ferential privacy, the best parameter for a good privacy/utility trade-off is when
ε = 0.01. However, after evaluating such methods through the perspective of
record linkage, we note that regardless of the ε parameter, it is still possi-
ble to re-identify individuals’ data. As new research avenues, we would like to
explore other types of GANs such as LAP-GAN, conditional GAN, InfoGAN,
or ALI/BIGAN. Finally, we would like to explore coupling other sanitization
methods such as k-anonymity by micro-aggregation before the synthetization.
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Abstract. Older adults usually require careful monitoring to detect
healthcare problems at an early stage when the problems can be eas-
ily treated. Unfortunately, many members of this population are unable
or unwilling to detect the existence of critical changes in their own health.
One solution for caregivers is to start monitoring elderly patients, directly
or via some data collection devices. Information describing a person’s
health status is constantly evolving and may become obsolete and con-
tradict other acquired information about the same person. So, it is of
the utmost importance to monitor and update medical information scat-
tered across healthcare institutions to support in-depth data analysis
and achieve personalized healthcare. This study focuses on proposing
a decision support system that gives recommendations on how to deal
with obsolete personal information. The main objective of our system is
to maintain up-to-date and consistent information about elderly patient
in order to provide on-demand reliable information regarding the per-
son’s current state. The approach outlined for this purpose is based on
a polynomial-time algorithm build on top of a causal Bayesian network
representing the elderly data. The result is given as a recommendation
AND-OR tree with some accuracy level.

Keywords: Causal Bayesian network · Obsolete information ·
Recommendation tree · Elderly-fall prevention · Real medical study

1 Introduction

The development and implementation of new e-health systems require an immense
amount of personal health information that is consistent and up-to-date. Recently,
the implementation of tele-medicine solutions has become of great potential
among various research communities globally [6,11]. However, with the variety
and the unreliability of information acquisition sources, personal information is
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often uncertain and incomplete. Furthermore, information describing a person’s
health status is constantly evolving and may become obsolete and contradict other
acquired information about the same person. In the digital healthcare, it is of the
utmost importance to monitor medical information scattered across healthcare
institutions to support in-depth data analysis and achieve personalized health-
care. The permanent collection of personal information and the constant moni-
toring of the quality of the information held is a costly and time-consuming pro-
cess. In addition, not every person can frequently benefit from a full consultation
since it requires a lot of time, the presence of specialists, and specific equipment to
carry out the examination. A medical information management system for physi-
cians can really help improve this educational work. To be relevant, such a system
should require very little time from the physician during a consultation. This arti-
cle focuses on how to deal with obsolete information in order to always have the
right information in real time, in the right form, and of sufficient completeness and
quality to meet the current needs.

An Obsolete Information Detection System (OIDS) has been proposed in [1,2]
to maintain the consistency of a personal database by detecting obsolete infor-
mation about an older adult that contradict a newly acquired event on the same
person while keeping the latter supposed to be certain in the database. As shown
in Fig. 1, the OIDS in [2] is based on the assumption of the existence of a causal
Bayesian network (CBN) that encodes the relationships among the features in the
database. Obsolete information that contradicts a newly acquired certain event is
then detected, in [2], using a polynomial-time algorithm exploiting the CBN. Such
obsolete information is then presented, with a certain confidence, in the form of
the so-called AND-OR Explanation Tree to describe the possible logical ways the
existing information can be in contradiction with the new event.

In this paper, building on the work in [2], we propose an intelligent and
autonomous decision support system, Obsolete Information Update System
(OIUS), to manage personal information gathered during the patient appoint-
ments with their attending physician. The general context of our work is the
Elderly-Fall Prevention project, which is part of the ELSAT20201 project.

As shown in Fig. 1, our OIUS is composed of two parts, the OIDS defined
by [2] and a Recommender System (RS), which is the subject of this paper.
Our RS will help practitioners by providing two types of recommendations: (1)
recommendations on how to update obsolete information based on the AND-OR
Explanation Tree defined by [2] and by answering the following questions: why do
we have a contradiction between some information relating to an older adult?
What are the possible observations responsible for contradiction? What if we
update the values of such observations? and (2) providing in real-time the care-
givers with reliable information regarding the person’s state with a confidence
degree even when some information is missing from the database.

The rest of the paper is structured as follows: In Sect. 2, we describe formal
background and notation. In Sect. 3, we give the basics of our recommendation
process. In Sect. 4, we present our empirical results. Finally, in Sect. 5, we draw
some final conclusions and point out directions for future work.

1 http://www.elsat2020.org/en.

http://www.elsat2020.org/en
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Fig. 1. Obsolete information update system.

2 Formal Background

2.1 Notation

Throughout this paper, the database attributes, i.e. the elderly features, are
denoted with uppercase letters such as X1, X2, X3. The domain of an attribute
Xi is denoted with D(Xi). Specific values, also called observations, taken by
those attributes are denoted with lowercase letters x1,1, x2,1, x3,2 with xi,j ∈
D(Xi), j ∈ {1, ..., |D(Xi)|}. In this paper, we are only concerned with finite
domains. At any time, each attribute may be observed or not. New reliable
and consistent observations about each elderly are continuously recorded and
arriving. We denote by OBS the set of pairs representing a variable and its
observed value, relating to a single individual of the database S. Let onew denote
the newly observed value of a variable Onew that is supposed to be certain
such that (Onew, onew) was not in OBS at the previous iteration. Let OBS’ =
OBS\(Onew, onew). We suppose that OBS’ is consistent before acquiring onew.
In this work, we choose to use a CBN [5,7,10] to represent our knowledge.

A CBN is a couple (G,Θ) that consists of a qualitative part, encoding causal
relationships among a domain’s variables X = {X1, ...,XN} in a directed graph
G, and a quantitative part, encoding the joint probability distribution Θ, given
by the chain rule: P (X) =

∏n
i=1 P (Xi | Pa(Xi)), over these variables, where

Pa(Xi) denotes the set of the parents of the node Xi in G.
Each node Xi of the graph represents a random variable and each arc

denotes direct causal influence between two variables. The most important
reasoning in CBNs is to calculate both conditional probabilities and post-
interventional probabilities. The first consists in calculating the probability
distribution, P (Xk|Xi = xi,j), over variables of interest given other observed
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variables. Efficient statistical inference procedures exist for performing com-
putations over the network [4]. The second consists in calculating the post-
interventional probability, PM (Xk|do(Xi = xi,j)), using the do-calculus [9]. The
do-calculus simulates physical interventions by deleting certain functions from
the CBN model M , replacing them with a constant Xi = xi,j , while keeping the
rest of the CBN model unchanged. The resulting model is denoted Mxi,j

. The
post-intervention distribution resulting from the action do(Xi = xi,j) is given
by: PM (Xk|do(Xi = xi,j)) = PMxi,j

(Xk), where, following Pearl’s notation [8],
do(Xi = xi,j) means that Xi has been forced to take the value xi,j by an external
action.

2.2 Obsolete Information Detection System

An Obsolete Information Detection Algorithm (OIDA) was proposed by [2] to
detect all possible contradictory observations, whenever new observations are
acquired. As shown in Fig. 1, the input to the method proposed by [2] is a new
observation Onew = onew about an older adult and the set OBS’ of previously
acquired observations about the same person. The objective is to check if onew
is contradictory with OBS’, given the representation causal model. In [2], a
contradiction between observations occurs when the conditional probability of
the new observation given other observations is very close to 0, i.e., OBS’ is
ε-Contradictory to onew when P (Onew = onew|OBS’) ≤ ε, 0 ≤ ε ≤ 1. Indeed, an
ε-Contradiction occurs when there is a subset Sonew

of OBS’ of observations that
have become obsolete and contradict onew. In the case where onew contradicts
OBS’, authors in [2] try to identify among the observations contained in OBS’
those that have become obsolete because of the arrival of onew. An example of a
contradictory scenario is as follows: OBS = {(heartDisease, no), (drugsNumber,
0 ), (cardiovascularDrugs, no)}, the new observation is (cardiovascularDrugs,
yes). The scenario Sc = {(cardiovascularDrugs, yes), (heartDisease, no), (drugs
Number, 0 )} is declared ε-Contradictory by the definition proposed by [2] since
P (cardiovascularDrugs = yes | OBS’) ≤ ε. The process of identifying the set of
obsolete observations Sonew

takes place in 3 steps: (1) restrict the ε-Contradictory
set OBS’ into Sonew

; (2) decompose the ε-Contradictory set to have Sonew
look-

ing for obsolete observations; and (3) compose the AND-OR Explanation Tree
from the set Sonew

. The result from step 1 is the set Sonew
containing all the

observations on the variables of OBS’ that depend on Onew (level 4 of the
tree shown in Fig. 2). The result from step 2 is the set Sonew

subdivided into
subsets Si such that each Si contains observations on dependent variables and
each Si is ε-Contradictory to onew, given the CBN (level 2 of the tree shown
in Fig. 2). The restriction and the decomposition phases are based on the con-
cept of d-separation [3] in CBNs. Then each set Si is further divided into two
disjoint ε-Contradictory subsets SAND

i and SOR
i (level 3 of the tree shown in

Fig. 2) such that: SAND
i , contains each observation x in Si that is individually

ε-Contradictory to onew, given the CBN, i.e., P (Onew = onew|x) ≤ ε; SOR
i , con-

tains each observation that is not individually ε-Contradictory to onew, given
the CBN, and which is likely to be involved in the contradiction. The result
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from step 3 is an AND-OR Explanation Tree as shown in Fig. 2 constructed as
follows: the root node is labeled AND. Then, for each subset Si, an AND node
whose parent is the root node is created. Next, for each AND-Set (resp. OR-
Set) of Si, an AND (resp. OR) node whose parent is the corresponding node
of Si, is added. Finally, a child leaf node for each observation in SAND

i (resp.
SOR
i ) is created. Each leaf node is labeled with the obsolete observation. The

AND-OR tree represents precisely the set of obsolete observations Sonew
and

describes the logical relationships among its AND-Sets and OR-Sets such that
all observations of each SAND

i are obsolete and must all be updated, and at least
one observation of each SOR

i is obsolete. For the observations in SOR
i , authors

in [2] state that with the available knowledge at their disposal, they are not able
to accurately infer which one(s) should be updated. But they claim that each of
these observations may be obsolete. To better understand the full details of the
obsolete information detection process, we refer the author to [1,2].

3 Recommender System

The main purpose of our RS is to monitor and assess the risk of falls in older peo-
ple and subsequently recommend personalized interventions to their caregivers.
The RS system offers two main services. One is when there are contradictions
and is to recommend which observations should be removed as well as the possi-
ble values that can replace them, while the other is to provide the caregivers with
information on the current state of their elderly patients even in cases where this
information is not available in the database.

Fig. 2. Hierarchical structure of the AND-OR Explanation Tree.

3.1 Recommendations on How to Update Obsolete Information

In case of a contradiction, and based on the AND-OR Explanation Tree provided
by the OIDS, we propose an intervention-based strategy that recommends the
possible interventions on how to substitute the obsolete observations using the
do-calculus. The reason is a very accurate prediction model on its own is not able
to guide reasoning about what might happen if we take action, i.e., intervene by
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changing the values of some variables supposed to be obsolete. In this way, our
RS helps us to answer these fundamental questions: which interventions on which
variables are the most effective to remove contradiction between observations?
What is the effect of each intervention modifying the value of a variable ∈ Si on
the probability of having onew, given the other observations? And what would be
the likelihood of having such a combination of observations if we had intervened
differently? Based on the CBN structure, the do-calculus is applied under some
constraints. Indeed, operationally, intervening on a variable Xi of the CBN model
M leads to wipe out all edges into Xi, i.e., the intervention essentially separates
Xi from its direct causes and Xi becomes a root node, all other things remain
equal. The resulting model is denoted MXi

. Here two cases arise:

Case 1: if the intervention variable Xi reaches the evidence variables Onew in
the resulting model MXi

, i.e., Xi still remains dependent of Onew in MXi
(case

of the variables X1, X8, X2 if X3 is instantiated, X4 if X5 is not instantiated,
X6 if X7 is instantiated and X8 is not, in Fig. 3). In this respect, our method is
based on studying the posterior intervention distributions of (Onew, onew) while
intervene on a variable (Xi, xi,j) of the Si by changing its value, given the rest
of observation X = Si\{(Xi, xi,j)}, i.e. P (Onew = onew|do(Xi = xi,k),X).

Case 2: if the intervention variable Xi cannot reach the evidence variables Onew,
i.e. becomes independent of Onew in the resulting model MXi

(case of the vari-
ables X3, X5, X4 if X5 is not instantiated, X6 if X7 is not instantiated, and X7 in
Fig. 3). Then, intervening on Xi becomes useless and has no contribution to the
marginal probability of Onew, since P (Onew|do(Xi = xi,k),X) = P (Onew|X). In
this case, the causal inference does not suit the type of structure that connects
the variables Xi to Onew. We therefore resort to statistical inference by studying
the posterior probability distribution of Onew, given Xi = xi,k and the rest of
observations OR-Set\{(Xi, xi,j)}, i.e. P (Onew = onew|Xi = xi,k,X) for each
value xi,k of Xi. The reason is that such a prediction may provide information
about what we would expect as a logical consequence of the Onew cause.

Fig. 3. A part of CBN showing the different intervention cases

As explained in Sect. 2, each set Si, is composed of two subsets SAND
i and

SOR
i . All the observations contained in SAND

i must be updated, since they have
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certainly become obsolete. So for each variable Xi ∈ SAND
i our RS recommends

all the possible value amongst its modalities that could replace the obsolete one
using one of the methods suggested above, as appropriate. We would like to make
two remarks here. The first is that when Xi is a binary variable, we recommend
directly the complementary observation to replace the obsolete one. The second
remark is that when managing observations of the AND-Sets, instead of calcu-
lating P (Onew = onew|Xi = xi,k,X) (resp. P (Onew = onew|do(Xi = xi,k),X))
by varying xi,k, we calculate P (Onew = onew|Xi = xi,k) (resp. P (Onew =
onew|do(Xi = xi,k)). The reason is that the first probability always remains
equal to 0 whatever the value taken by Xi, as long as the other variables of the
AND-Set X are not yet updated.

As stated by [2], any observation Xi = xi,j in the OR-Set may be obsolete
and updating at least one observation of SOR

i remove contradiction, but we are
not able to exactly infer which one(s) should be updated. So in this case and for
each variable Xi, we recommend all the possible values that do not contradict
Onew sorted in descending order of the calculated posterior probability px, given
the rest of observations. We also order the OR-Set such that the nodes with
the highest probability are packed from left to right. Then we let the user (i.e.
physician) choose which of the variables in the given SOR

i is most likely to be
updated, and which of its recommended values is the most appropriate.

Algorithm 1 shows the main steps of the proposed method. The inputs to our
Obsolete Observations Recommendation Algorithm (OORA) are the AND-OR
Explanation Tree T given by the OIDS, the CBN B, and (Onew, onew).

As a first step, for each Si ∈ Sonew
, we inspect its two subsets SOR

i and
SAND
i . For each variable X in the set SOR

i , we extract the mutilated graph BX

from the CBN B by calling the function Mutilation. This function takes as input
the causal graph B and the variable X, wipes out from B all edges into X while
keeping the rest of B unchanged, and returns the resulting mutilated graph BX .
Next, we check if the variable X is still reachable from Onew in the mutilated
graph BX , given the set OBS’ of all observed variables by calling the function
d-separated. In the case where X and Onew are independent (resp. independent)
given OBS’ (line 10 (resp. 17)), we try to find out all the values x′ of X that
can substitute the obsolete one, i.e. whose probability of occurrence with onew
and the rest of the observations is beyond the given threshold ε. To ensure this
we calculate the posterior probability of onew given the new value x′ of X and
the rest of observations using the initial (resp. mutilated) graph B (resp. BX).

Let SOR′
i = {SXl

, ...,SXp
}, 1 ≤ l ≤ N, 1 ≤ p ≤ N . Each subset SX of

SOR′
i contains the pair (X,x) representing the obsolete observation followed by

1 ≤ m ≤ |D(X) − 1| tuples in the form of (X,x′, px′) which represent all the
possible values x′ that can replace x, each is given with the likelihood of its
occurrence with the rest of observations. All variables in SOR′

i are then sorted
in descending order of their probabilities. Line 28 traverses all the pairs (X,x)
in the subset SAND

i ∈ Si, and for each one, we apply the same treatment used
to manage the OR-Sets. The result from line 50 of our OORA is the set Sonew

=
{S1, ...,Sk} such that: each Si is divided into SAND′

i and SOR′
i , each part of Si
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Algorithm 1. Obsolete Observations Recommendation Algorithm (OORA)
Input: T , B, (Onew, onew), OBS’, ε: a real number, 0 ≤ ε ≤ 1
Output: AND-OR Recommendation Tree
1: let Sonew = {S1, ...,Si, ...,Sk} the set regrouping all the subsets Si of the tree T ,

such that Si = {SAND
i ,SOR

i }, 1 ≤ k ≤ N
2: for each Si ∈ Sonew do

3: SOR′
i = ∅

4: SAND′
i = ∅

5: for each (X, x) ∈ SOR
i do

6: SX = ∅
7: let x the set of all observations ∈ SOR

i \ x
8: SX = {(X, x)}
9: BX = Mutilation( B, X)

10: if d-separated(X, Onew, OBS’, BX) then
11: for each x′ ∈ D(X) \ {x} do
12: px′ = P (Onew = onew|X = x′,x)
13: if px′ > ε then
14: SX = SX ∪ {(x′, px′)}
15: end if
16: end for
17: else
18: for each x′ ∈ D(X) \ {x} do
19: px′ = P (Onew = onew|do(X = x′),x)
20: if px′ > ε then
21: SX = SX ∪ {(x′, px′)}
22: end if
23: end for
24: end if
25: SOR′

i = SOR′
i ∪ SX

26: end for
27: SOR′

i = Sortpx(SOR′
i )

contains elements in the form of {SXl
, ...,SXp

}, 1 ≤ l ≤ N, 1 ≤ p ≤ N , and each
SXi

contains elements in the form of {(Xi, xi,a), (xi,b, pxi,b
), ..., (xi,l, pxi,l

)}, such
that xi,a ∈ D(Xi), xi,b ∈ D(Xi), xi,l ∈ D(Xi). Once we have the new updated set
Sonew

, our OORA update the AND-OR tree T based on Sonew
, and returns the

AND-OR Recommendation Tree such that for each OR-Set, the nodes with the
highest probability are packed from left to right, and for each node, the substitute
values are sorted in descending order of the calculated posterior probability.

Our OORA runs in O(Nd × Nx × (Np + Ns)), where Nd is the size of the set
Sonew

, Nx is the number of pairs (X,x) in Si, Np is the number of parents of
the variable X, and Ns is the number of states of X.

3.2 Predictions

Now if we don’t consider the contradictions, our RS aims to provide the care-
givers with reliable information about their elderly patients in real-time even
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when some information is missing and based on what it already knows about
that older adult, denoted by OBS. Let (X,x) denotes the requested information
x on the variable X that carries the requested information. It consists in inferring
the CBN by observing OBS and fixing the target variable to X, then returns the
predicted information in the form of (X,x, px) such that px = P (X = x|OBS)
represents our belief about X = x taking the observed data into account.

28: for each (X, x) ∈ SAND
i do

29: SX = ∅
30: SX = {(X, x)}
31: BX = Mutilation( B, X)
32: if d-separated(X, Onew, OBS’, BX) then
33: for each x′ ∈ D(X) do
34: px′ = P (onew|X = x′)
35: if px′ > ε then
36: SX = SX ∪ (x′, px′)
37: end if
38: end for
39: else
40: for each x′ ∈ D(X) do
41: px′ = PosteriorProba(onew|do(X = x′))
42: if px′ > ε then
43: SX = SX ∪ {(x′, px′)}
44: end if
45: end for
46: end if
47: SAND′

i = SAND′
i ∪ SX

48: end for
49: Si = {SAND′

i ,SOR′
i }

50: Update(Sonew ,Si)
51: end for
52: UpdateTree(Sonew ,T )
53: return T

4 Empirical Results

4.1 Experimental Data

The database Elderly-Data available for us includes 1174 patient records, each of
which was described by 435 patient-history features gathered in the University
Hospital Center of Lille over a 9-year period (2005–2014). We conducted a study
of these data in collaboration with hospital experts on fall prevention, which
ends by the selection of 41 relevant attributes associated with the elderly fea-
tures, the main risk factors for fall, and the possible consequences of fall. From
this result, in addition to bibliographic research, and the solicitation of domain
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experts, we built and evaluated a model of the generic knowledge, embedded in
a CBN. Once the causal model is validated, we automatically generate a total of
720 scenarios among which 580 are chosen and validated by five experts, three
orthopedists, a neurologist, and a general practitioner who did not participate in
the construction and CBN validation. It consists of randomly selecting variables
from the given CBN, assigning random observations to the selected variables,
and arbitrarily choosing a pair (variable, observation) that represents the newly
acquired information. Then, for each scenario Si a label ci given by the experts
is associated such as: ci = 1 if Si is declared contradictory by the experts, ci = 0
otherwise. As a result, we tried to obtain a balanced database S = {(Si, ci)}
of 580 scenarios labeled by experts with 290 contradictory scenarios and 290
non-contradictory scenarios. Then, for each of the 290 contradictory scenarios,
the experts provided a list of subsets of all possible obsolete observations. The
resulting subsets will be compared with the result provided by the OIDS. Fur-
thermore, for each subset of observations, the experts prioritize the obsolete
observations and give us the most likely to be updated. These observations will
be compared later with those provided by our RS.

The detection of contradictory scenarios is conditioned by a threshold ε. In
most approximation-based works, the threshold is often hard to set. In this work,
we have applied the algorithm proposed by [2], which is based on the receiver
operating characteristic curve, on a part of the database S (≈35% of S) to
calculate the ε value. The threshold associated with our CBN is set to 10−2.

4.2 Results and Discussion

The validation of our OORA consists of two parts: assess the quality of the
AND-OR trees resulting from our OIDS and evaluate the quality of the recom-
mendations provided by our RS.

Step 1 AND-OR Explanation Trees evaluation: we start by applying the
OIDS on the rest of the database S (≈65% of the database) with 380 scenar-
ios divided into 190 contradictory scenarios and 190 non-contradictory scenarios
labeled by experts. For each scenario, our OIDS estimates whether it is contradic-
tory or not. For each scenario classified as ε-Contradictory, the OIDS generates
the associated AND-OR Explanation Tree, which encodes all possible obsolete
observations responsible for the contradiction. To facilitate the assessment of the
resulted AND-OR trees, we translate them, as well as the results provided by
experts, into propositional formulas. Recall that the result of the OIDS is the
set Sonew

= {S1,S2, ...,Sk}. As explained in Sect. 2, when building the AND-OR
tree, we group all the subsets Si under a root node labeled AND. This can be
presented in the form of: S1 ∧ S2 ∧ ... ∧ Sk. Then, each subset Si is divided in
two subsets SAND

i and SOR
i , such that all observations of the set SAND

i (resp.
SOR
i ) are linked with an AND (resp. OR). The formulas to be compared can

therefore take the following form:

((a1 ∧ ... ∧ ai)
︸ ︷︷ ︸

SAND
1

∧ (b1 ∨ ... ∨ bj)
︸ ︷︷ ︸

SOR
1

)

︸ ︷︷ ︸

S1

∧... ∧ ((x1 ∧ ... ∧ xk)
︸ ︷︷ ︸

SAND
p

∧ (y1 ∨ ... ∨ yl)
︸ ︷︷ ︸

SOR
p

)

︸ ︷︷ ︸

Sp
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such that letters correspond to the possible obsolete observations and i, j, k, l,
p ∈ {1, ..., N}. Subsequently, we compare each formula resulting from our OIDS
with that given by the experts. The comparison is made in two levels. At the
first level, we check the number of items (the subsets Si) that appear in each
formula. Then, for each proposition Si, we compare the literals that form each
of the clauses SAND

i and SOR
i , with those provided by the experts.

Step 2 AND-OR Recommendation Trees evaluation: we apply our RS on
the AND-OR trees resulting from the OIDS and that conform to those given by
the experts. The results are AND-OR Recommendation Trees such that for each
OR-Set in the tree, the nodes that encodes the most likely obsolete observations
are packed from left to right. We compare each SOR

i in the tree resulting from our
RS with the priority order assigned by the experts using a rank correlation that
measures the relationship between different rankings of variables in the same
set SOR

i . Let SOR
i = {X1,X2, ...,Xk}. We denote by R and S the assignment

of the ordering labels ‘1’, ‘2’, ‘3’, etc. to different variables Xj in SOR
i assigned

respectively by our RS and by the experts. We denote by rj and sj the rankings
of the variable Xj assigned respectively by our RS and by the experts. Then we
compare the two ranks R and S using the Spearman’s rank correlation coefficient

ρ [12]: ρ = 1 − 6
∑

d2
j

k(k2−1) , where dj = rj − sj is the difference between the two

rankings of each variable Xj in SOR
i and k is the number of variables in SOR

i .
The Spearman’s rank correlation coefficient can take values from +1 to −1. The
ρ is high when variables have a similar ranking in both R and S. For each OR-
Set, we calculate the coefficient ρ and we check if the recommendations given
by our RS match those suggested by the experts. We apply the OIDS on the
380 remaining scenarios. The results are summarized in Table 1. Out of the 185
propositional formulas relating to the AND-OR trees provided by the OIDS, 182
are in line with those provided by the experts. Next, we apply our RS on the 182
AND-OR trees resulted from the OIDS that conform to those provided by the
experts. We analyze the obtained 182 recommendation trees from which a total
of 273 OR-Sets are extracted. For each one, we calculate the Spearman’s rank
correlation coefficient ρ. For the 273 OR-Sets, the resulting coefficient ρ ranges
from 0.1 to 1 with an average of 0.73 and is satisfactory for 232 OR-Sets.

Table 1. 10−2 threshold contingency.

Predicted

N = 380 ε-contradictory Not ε-contradictory

Actual Contradictory 185 5

Not contradictory 3 187
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5 Conclusion

Concluding this paper, emphasis was given in the RS and its simulated results for
monitoring and updating personal obsolete information to help preventing falls in
older adults. Our RS is based on a 41-node probabilistic causal model represent-
ing some elderly features and aims to provide caregivers with recommendations
on which observations to update and which values can replace obsolete ones. The
main objective is to maintain a consistent and up-to-date personal database in
order to always provide the right information regarding the person’s current
state in real-time, in the right form, and of sufficient completeness and quality.
Our approach runs in a polynomial time and returns results in an original way, in
the form of an AND-OR Recommendation Tree. It encodes all possible obsolete
observations in a priority order and gives for each the values that can replace it.
Our approach efficiency is confirmed experimentally since our simulations on a
real-life database in the elderly fall prevention context are very encouraging. Of
course, our approach has been considered here without an actual testing process
and work needs to be done. For the future, a user interface will be proposed in
order to perform a set of tests of our OIUS by some physicians, using an iterative
and incremental development cycle.

Acknowledgements. This work is supported and co-financed by the Ministry of
Higher Education and Scientific Research of Tunisia. The experts who provided the
estimates for the used causal Bayesian model and the University Hospital physicians
who validated our scenarios are thanked for their participation.

References

1. Chaieb, S., Hnich, B., Mrad, A.B.: Data obsolescence detection in the light of newly
acquired valid observations. Appl. Intell. (2022). https://doi.org/10.1007/s10489-
022-03212-0

2. Chaieb, S., Mrad, A.B., Hnich, B.: Probabilistic causal model for the detection of
obsolete personal information to prevent falls in the elderly. Procedia Comput. Sci.
192, 1170–1179 (2021)

3. Gogel, W.C., Sturm, R.D.: Directional separation and the size cue to distance.
Psychol. Forsch. 35(1), 57–80 (1971). https://doi.org/10.1007/BF00424475

4. Lauritzen, S.L., Spiegelhalter, D.J.: Local computations with probabilities on
graphical structures and their application to expert systems. J. Roy. Stat. Soc.:
Ser. B (Methodol.) 50(2), 157–194 (1988)

5. Luo, G., Zhao, B., Du, S.: Causal inference and Bayesian network structure learning
from nominal data. Appl. Intell. 49(1), 253–264 (2019). https://doi.org/10.1007/
s10489-018-1274-3

6. Markert, C., Sasangohar, F., Mortazavi, B.J., Fields, S.: The use of telehealth
technology to support health coaching for older adults: literature review. JMIR
Hum. Factors 8(1), e23796 (2021)

7. Pearl, J.: Bayesian Inference. Probabilistic Reasoning in Intelligent Systems: Net-
works of Plausible Inference, 2nd edn., pp. 29–75. Morgan Kaufmann Publisher,
San Francisco (1988)

https://doi.org/10.1007/s10489-022-03212-0
https://doi.org/10.1007/s10489-022-03212-0
https://doi.org/10.1007/BF00424475
https://doi.org/10.1007/s10489-018-1274-3
https://doi.org/10.1007/s10489-018-1274-3


A Strategic Approach Based on AND-OR Recommendation Trees 107

8. Pearl, J.: Causal diagrams for empirical research. Biometrika 82(4), 669–688 (1995)
9. Pearl, J.: The do-calculus revisited. In: Proceedings of the Twenty-Eighth Confer-

ence on Uncertainty in Artificial Intelligence, UAI 2012, Arlington, Virginia, USA,
pp. 3–11. AUAI Press (2012)

10. Pearl, J., Mackenzie, D.: The Book of Why: The New Science of Cause and Effect.
Basic Books, New York (2018)

11. Saldivar, R.T., Tew, W.P., Shahrokni, A., Nelson, J.: Goals of care conversations
and telemedicine. J. Geriatr. Oncol. 12(7), 995–999 (2021)

12. Zar, J.H.: Significance testing of the spearman rank correlation coefficient. J. Am.
Stat. Assoc. 67(339), 578–580 (1972)



Identification of Subjects Wearing
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Abstract. This paper addresses the classification of speech recorded
from subjects while wearing a surgical mask. Here, we employ two dif-
ferent types of feature extraction methods: the x-vectors embeddings,
which is the current state-of-the-art approach for Speaker Recognition;
and the Fisher Vector (FV), that is a method originally intended for
Image Recognition, but here employed to discriminate utterances. These
approaches make use of distinct frame-level representations: MFCC and
PLP. Using Support Vector Machines (SVM) as the classifier, we perform
a technical comparison between the performances of the FV encodings
and the x-vector embeddings for this particular classification task. We
find that the Fisher vector encodings provide better representations of
the utterances than the x-vectors do for this specific dataset. Moreover,
we show that a fusion of our best configurations outperforms all the
original baseline scores.

Keywords: Speech recognition · Computational paralinguistics ·
Fisher vectors · x-vectors · Surgical mask

1 Introduction

The Computational Paralinguistics differs from Automatic Speech Recognition
in that the latter seeks to determine the content of the speech of an utterance,
while the former seeks to understand the way that the speech is spoken. There
are different types of techniques that attempt to solve this problem in Com-
putational Paralinguistics. Methods such as the i-vector Approach, the Fisher
vector, neural networks, among others, are being increasingly used by researchers
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to address paralinguistic issues. This can be seen in studies like diagnosing neu-
rodegenerative diseases using the speech of the patients [1–3]; the discrimination
of crying sounds and heartbeats [4]; or the estimation of the sincerity of apolo-
gies [5]. These studies aim to distinguish the latent patterns existing within the
speech of a subject and not the content of it.

The INTERSPEECH ComParE Challenge, annually organized since 2009 [6],
has provided a wide variety of Computational Paralinguistics problems each year.
These types of challenges seem to encourage its participants to use or devise
state-of-the-art techniques to handle the states and characteristics latent in an
audio signal. This year, the challenge offers three tasks; but here we will just
focus on one of them, namely, the Mask Sub-Challenge.

The 2020’s challenge involved speech recordings of German speakers while
wearing a surgical mask, and also while not wearing one. The task was to deter-
mine whether the utterance corresponds to a speaker whose speech was recorded
while wearing the mask or not. The baseline reported by the organizers is an
UAR (Unweighted Average Recall) score of 70.8%, which corresponds to a non-
fused score. And a 71.8% for the fusion of the best four configurations for the
Mask Sub-Challenge. Forensics and ‘live’ communication between surgeons may
benefit from a system that could determine whether a subject is wearing a mask
based on their speech [7].

Lots of speaker recognition systems these days are based on i-vectors [8].
The i-vector system utilizes a GMM-UBM (Universal Background Model) to
extract a fixed-dimension feature called i-vector. This is a robust technique that
was and still is the state-of-the-art for many speaker recognition/verification
approaches [9,10]. Also, i-vectors have been used in computational paralinguis-
tics and offer promising results when assessing Alzheimer’s from speech [11], or
at the moment of classifying depressed speech [12]. Nonetheless, there are more
meaningful features that seem to provide better representations of frame-level
features than the i-vectors do.

Embeddings extracted from a Feed-Forward Deep Neural Network are grad-
ually replacing i-vectors; such embeddings are called x-vectors. Regarded as the
new state-of-the-art technique for speaker recognition systems [13], x-vectors
can capture meta-information such as the gender of the speaker, as well as their
speech rate (i.e. long-term speech traits). Researchers are increasingly using such
representations in their studies, especially in text-independent approaches (see
e.g. [14–17]). Also, x-vectors have already been applied to paralinguistics; studies
like [18–20] reported high performances at classifying emotions, Alzheimer’s, or
age and gender of subjects.

As a contribution to the ComParE Challenge, here, we perform the chosen
task via two different methodologies. The Fisher Vector (FV) approach [21],
which is an encoding method originally developed to represent images as gradi-
ents of a global generative GMM of low-level image descriptors; mainly used in
image recognition [22]. And we also employ the DNN embeddings approach (i.e.
x-vector system) where the role of the DNN is to perform a mapping between
variable-length utterances and fixed-dimensional embeddings.



110 J. V. Egas-López and G. Gosztolya

Fig. 1. The generic methodology applied in this study.

The workflow proposed is the following. First, we use two types of frame-
level representations, i.e., MFCCs and PLPs extracted from the audio signals.
Second, we process the frame-level information obtained utilizing two different
techniques: the FV and the x-vector approaches. And third, we classify and
evaluate FV and x-vector features individually. Finally, we opt for a late-fusion
of the best configurations.

2 Data

The Mask Augsburg Speech Corpus (MASC) comprises recordings of 32 German
native speakers. It has a total duration of 10 h 9 min 14 s; segmented into chunks
of 1 s. The recordings have a rate of 16 kHz. The total number of utterances is
36554: 10895 for train, 14647 for development, and 11012 for test. The subjects
were asked to perform specific types of tasks and recorded their speech while
wearing and not wearing a surgical mask. (see more details in [7]).

3 Feature Extraction and Evaluation Methods

As depicted in Fig. 1, the steps carried out in our study are as follows: (1) Feature
extraction (MFCCs and PLP); (2a) Train GMM-UBM using utterances from the
training set, (2b) Train the DNN for the x-vectors utilizing the training set and
its augmented version; (3a) Extract Fisher vector features from the datasets
employing the GMM-UBM model, (3b) Extract embeddings from the DNN;
and, (4a/4b) Independently classify the FV and x-vectors representations using
SVM.

3.1 Frame-Level Features

Here, we used the well-known Mel-Frequency Cepstral Coefficients (MFCC) and
Perceptual Linear Predictions (PLP) frame-level representations. Both have 13
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Table 1. DNN architecture of the x-vector system. It comprises five frame-level layers,
a statistics pooling layer, two segment-layers and a final softmax layer as output. N
represents the number of training speakers in the softmax layer. The DNN structure
here is the same as that shown in Snyder et al. [24].

Layer Layer context Tot. context In, Out

Frame1 [t−2, t+2] 5 120, 512

Frame2 {t−2, t, t+2} 9 1536, 512

Frame3 {t−3, t, t+3} 15 1536, 512

Frame4 {t} 15 512, 512

Frame5 {t} 15 512, 1500

Stats pooling [0, T} T 1500T, 3000

Segment6 {0} T 3000, 512

Segment7 {0} T 512, 512

Softmax {0} T 512, N

dimensions, a frame-length of 25 ms and a sliding window of 3 ms. Moreover,
since x-vectors are extracted from a DNN, an additional configuration for the
MFCCs called high-resolution (hires) was utilized. This allows us to maintain
all the cepstra while decorrelating the MFCCs. The MFCC-hires configuration
is intended for neural network training. This configuration has the same values
as those previously described, except that it extracts 40 cepstral coefficients, the
number of mel-bins is 40, and the low and high cut-off frequencies are 20 and
−400, respectively (see e.g. in [23]). Also, non-speech frames are removed from
all the representations employing VAD.

3.2 X-vectors

The x-vector approach can be thought as of a neural network feature extraction
technique that provides fixed-dimensional embeddings corresponding to variable-
length utterances. Such a system can be viewed as a feed-forward Deep Neural
Network (DNN) that computes such embeddings. Below, we will describe the
architecture of the DNN (based on [13]) and the embeddings that are extracted
from it.

DNN Structure. Table 1 outlines the architecture of the DNN. The frame-
level layers have a time-delay architecture, and let us assume that t is the actual
time step. At the input, the frames are spliced together; namely, the input to
the current layer is the spliced output of the previous layer (i.e. input to layer
frame3 is the spliced output of layer frame2, at frames t − 3 and t + 3). Next,
the stats pooling layer gets the T frame-level output from the last frame-level
layer (frame5 ), aggregates over the input segment, and computes the mean and
standard deviation. The mean and the standard deviation are concatenated and
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used as input for the next segment layers; from any of these layers the x-vectors
embeddings can be extracted. And finally, the softmax output layer (which is
discarded after training the DNN) [13,24,25].

Instead of predicting frames, the network is trained to predict speakers
from variable-length utterances. Namely, it is trained to classify the N speakers
present in the train set utilizing a multi-class cross entropy objective function
(see Eq. 1). Let K be the number of speakers in N training segments. Then, the
probability of the speaker k given T input frames (x(n)

1 , x
(n)
2 , ..., x

(n)
1:T ) is given

by: P (spkrk|x(n)
1:T ). If the speaker label for segment n is k, then the quantity of

dnk is 1, and 0 otherwise [24].

E = −
N∑

n=1

K∑

k=1

dnk ln P (spkrk|x(n)
1:T ). (1)

Embeddings. The embeddings produced by the network described above cap-
ture information from the speakers over the whole audio-signal. Such embeddings
are called x-vectors and they can be extracted from any segment layer; that is,
either segment6 or segment7 layers (see Table 1). Normally, embeddings from
the segment6 layer give a better performance than those from segment7 [13].
In this study, these type of representations can capture meaningful information
from each utterance. This embedding may help us to discriminate better the
utterances due to the fact that the characteristics are acquired at the utterance
level rather than at the frame-level. For this, we used the Kaldi Toolkit [26].

3.3 Fisher Vectors

The Fisher Vector approach is an image representation that pools local image
descriptors (e.g. SIFT, describing occurrences of rotation- and scale-invariant
primitives [27]). In contrast with the Bag-of-Visual-Words (BoV, [28]) technique,
it assigns a local descriptor to elements in a visual dictionary, obtained via
a Gaussian Mixture Model for FV. Nevertheless, instead of just storing visual
word occurrences, these representations take into account the difference between
dictionary elements and pooled local features, and they store their statistics. A
nice advantage of the FV representation is that, regardless of the number of
local features (i.e. SIFT), it extracts a fixed-sized feature representation from
each image.

The FV technique has been shown to be quite promising in image repre-
sentation [21]. Despite the fact that just a handful of studies use FV in speech
processing (e.g. for categorizing audio-signals as speech, music and others [29],
for speaker verification [30,31], and for determining the food type from eating
sounds [32]), we think that FV can be harnessed to improve classification per-
formance in audio processing.



Identification of Subjects Wearing a Surgical Mask 113

Fisher Kernel. The Fisher Kernel (FK) seeks to measure the similarity of two
objects from a parametric generative model of the data (X) which is defined as
the gradient of the log-likelihood of X:

GX
λ = �λ log υλ(X), (2)

where X = {xt, t = 1, . . . , T} is a sample of T observations xt ∈ X , υ represents
a probability density function that models the generative process of the elements
in X and λ = [λ1, . . . , λM ] ′ ∈ RM stands for the parameter vector υλ [33]. Thus,
such a gradient describes the way the parameter υλ should be changed in order
to best fit the data X. A novel way to measure the similarity between two points
X and Y by means of the FK can be expressed as follows [21]:

KFK(X,Y ) = GX′
λ F−1

λ GY
λ . (3)

Since Fλ is positive semi-definite, Fλ = F−1
λ . Equation (4) shows how the

Cholesky decomposition F−1
λ = L′

λLλ can be utilized to rewrite the Eq. (3)
in terms of the dot product:

KFK(X,Y ) = GX′
λ G Y

λ , (4)

where
GX

λ = LλGX
λ = Lλ �λ log υλ(X). (5)

Such a normalized gradient vector is the so-called Fisher Vector of X [33]. Both
the FV GX

λ and the gradient vector GX
λ have the same dimension.

Fisher Vectors. Let X = {Xt, t = 1 . . . T} be the set of D-dimensional local
SIFT descriptors extracted from an image and let the assumption of independent
samples hold, then Eq. (5) becomes:

GX
λ =

T∑

t=1

Lλ �λ log υλ(Xt). (6)

The assumption of independence permits the FV to become a sum of normalized
gradients statistics Lλ �λ log υλ(xt) calculated for each SIFT descriptor. That
is:

Xt → ϕFK(Xt) = Lλ �λ log υλ(Xt), (7)

which describes an operation that can be thought of as a higher dimensional
space embedding of the local descriptors Xt.

The FV extracts low-level local patch descriptors from the audio-signal spec-
trogram. Then, a GMM with diagonal covariances models the distribution of the
extracted features. The log-likelihood gradients of the features modeled by the
parameters of such GMM are encoded through the FV [33]. This type of encod-
ing stores the mean and covariance deviation vectors of the components k that
form the GMM together with the elements of the local feature descriptors. The
utterance is represented by the concatenation of all the mean and the covariance
vectors that gives a final vector of length (2D + 1)N , for N quantization cells
and D dimensional descriptors [33,34]. Here, we use FV features to encode the
MFCC features extracted from the audio-signals of the Mask dataset.
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3.4 Support Vector Machines (SVM)

A linear-SVM classifier was utilized to discriminate the audio-signals. This algo-
rithm was found to be robust even with a large number of dimensions and it
was shown to be efficient when used with FV [33,35] due to it being a dis-
criminative classifier that provides a flexible decision boundary. We used the
libSVM implementation [36] with a linear kernel. As stated in the paper on this
year’s challenge [7], since 2009 (and also for this year), Unweighted Average
Recall (UAR) has been the chosen metric for evaluating the performance of the
classifiers.

4 Experimental Setup

As for the Fisher vectors, the number of K GMM components utilized to com-
pute the FVs ranged from 2, 4, 8, to 512. The construction of the FV encoding
was performed using a Python-wrapped version of the VLFeat library [37]. Both
MFCC and PLP representations were used separately to train the GMM model
and extract the FV features. The GMM model was fit utilizing the training
set. Fisher vectors were optimized employing Power Normalization (PN) and
L2-Normalization before training the data; in [33] the authors obtained good
performances using this feature pre-processing technique.

The x-vector network was fitted using the training data and its augmented
version following the methodology employed in [13]; likewise, we used the same
network topology proposed there. Basically, from the original training data,
two augmented versions were added, i.e. noise and reverberation. From additive
noises and reverberation, two of the following types of augmentation were chosen
arbitrarily: babble, music, noise, and reverberation. The first three types corre-
spond to simply adding or fitting a kind of noise to the original utterances, while
the fourth one involves a convolution of room impulse responses with the audio,
i.e. reverberation (see [13] for more details about the augmentation strategies
used). From the artificially generated data, we chose a subset of 40000 utterances
to train the DNN, which is roughly four times the number of original training
samples. From the segment6 layer of the DNN, we extracted 512-dimensional
neural network embeddings (x-vectors) for the train, development, and test sets,
respectively. As Snyder et al. [13], we also found that embeddings from segment6
gave a better performance than those from segment7 in our experiments.

Following the techniques suggested in [21], the parameter C of the SVM
was set in the range: 10−5, . . ., 101. Since the training and development sets are
meant to be combined and used to train the final SVM model, we fused the above-
mentioned sets and employed a Stratified k -fold Cross-Validation. We set k = 10
to find the best C. The training set has 5353 utterances labeled as no-mask and
5542 labeled as mask ; the development set has 6666 and 7981, as no-mask and
as mask, respectively. Namely, there is a slight class imbalance when combin-
ing both sets. As a result, there were 1504 more utterances labeled as mask in
the combined set. Hence, we set the class-weight parameter of the SVM to bal-
anced. In this way, the classifier adjusted the weights of the classes automatically.
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Table 2. Experiment results. Scores are presented for x-vectors and FVs; both using
MFCCs and PLPs. FoB stands for ‘fusion of best’ (fusion of the ComParE best config-
urations) [7]. The GMM size corresponds to the K value used for FV; for x-vectors this
is not applicable. The dashes (-) in the UAR column indicate that the scores for those
configurations are not available due to the limited number of trials for submissions
defined by the organizers of the Challenge.

Feature GMM size UAR (%)

Dev CV Test

ComParE baseline - - - 71.81

x-vecs (MFCC) - 56.86 65.21 -

x-vecs (MFCC-hires) - 59.87 72.14 -

x-vecs (PLP) - 58.46 64.80 -

FV (MFCC) 512 57.43 78.18 -

FV (PLP) 256 59.18 71.09 -

FV + FoB 512 - - 70.30

FV + x-vecs (hires) 512 - - 70.81

FV + x-vecs (hires) + FoB 512 - - 74.92

Before classification, all the features were standardized by removing their means
and scaling to unit variance.

In addition, we carried out a late fusion of our best configurations. Moreover,
we also fused our best configurations with those posteriors from ‘fusion of best’
of the sub-challenge [7].

5 Results and Discussion

As Table 2 shows, the FV representations produced better performances in the
evaluation (i.e. Dev and CV) phase than the x-vectors embeddings did. However,
this is mainly true for the CV scores, where FV achieved UAR scores above 70%.
Overall, the configuration FV (MFCC) attained the best CV score (78.18%). On
the other hand, the best configuration for the x-vectors embeddings was that of
high resolution MFCCs (i.e. MFCC-hires), which gave a 72.14%. In contrast,
when we evaluated the features using just the development set, x-vectors pre-
sented better scores; nevertheless, the difference compared to those of FV was
not significant. Although in this study we did not rely on the development scores
to find the best C value for the SVM, we still report the scores obtained when
evaluating on this dataset (see Table 2). It should be added that we chose the
best C based on the Stratified 10-fold CV experiments.

Furthermore, the FV encodings yielded a significant performance improve-
ment when applying PN and L2-normalization before fitting them (see also [33]).
However, here, just the best configurations are reported (the improved FVs). PN
reduced the effect of the features that become more sparse as the value of K
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increased. Also, L2-normalization helped to alleviate the problem of having dif-
ferent utterances with (relatively) distinct amounts of background information
projected into the extracted features. This mainly enhanced the prediction per-
formances. Also, it was found that the higher the number of K, the higher the
UAR score. This means that these two are directly proportional to each other. In
our study, both MFCC and PLP achieved their best configurations when using
a large value for K (512 and 256, respectively). Likewise, MFCC-hires gave a
better frame-level feature quality (for the x-vectors) than the standard MFCC
configuration. This can be attributed to the DNN training phase, where the neu-
ral network exploits in a better way the larger and less correlated frame-level
representations.

Table 2 lists the final scores. The fusion of the posteriors of FV512 with those
of the fusion of best (from the challenge) attained a UAR score of 70.3% on
the test set. Likewise, the fusion of FV512 with x-vectors (x-vecshires) yielded
a score of 70.8%. Finally, the fusion of FV512 with x-vecshires along with FoB
provided a UAR score of 74.9% on the test set.

6 Conclusions

Here, we studied the performance of x-vector and Fisher vector representations
as a contribution to the Mask Sub-Challenge of the INTERSPEECH 2020 Com-
ParE. These representations were extracted from two different types of frame-
level features: MFCC and PLP. As for the FV encodings, we found that MFCCs
presented a superior type of frame-level traits of the recordings than the PLP
did. Regarding the x-vectors, the configuration of MFCC-hires was found to be
better than those of the standard MFCC and PLP. Also, we found that PN
and L2-Normalization enhanced the quality of the FVs. Although the FV gave
better quality features than x-vectors for this particular dataset, x-vectors also
captured meaningful phonatory with articulatory information, as their scores
are competitive. Moreover, we found that the fusion of our best configurations
increased the performance of the final predictions. To conclude, our workflow
outperformed the official baseline scores of the Mask Sub-Challenge [7]; besides,
our feature extraction approach appears to be simpler than those from [7].
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118 J. V. Egas-López and G. Gosztolya

21. Jaakkola, T.S., Haussler, D.: Exploiting generative models in discriminative clas-
sifiers. In: Proceedings of NIPS, Denver, CO, USA, pp. 487–493 (1998)

22. Song, Y., Zou, J.J., Chang, H., Cai, W.: Adapting Fisher vectors for histopathology
image classification. In: Proceedings of ISBI, pp. 600–603. IEEE (2017)

23. Hernandez, F., Nguyen, V., Ghannay, S., Tomashenko, N., Estève, Y.: TED-LIUM
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Abstract. Machine learning has become a vital resource of the modern
society. It is present in everything around us, from a smartwatch to a
self-driving car. To train a machine learning model, a heap of data is
used. This can be worrisome in the case of that learned models can be
discriminatory with respect to protected features such as race or gender.
In order to develop fair models and verify the fairness of these models, a
plethora of work has emerged in recent years. In this work, we propose
a method, based on counterfactual examples, that detects any bias in
the machine learning model. Our method works for different data types,
including tabular data and images.

Keywords: Machine learning · Fairness · Counterfactual examples ·
Adversarial examples · GANs

1 Introduction

Artificial intelligence (AI) is undergoing a rapid evolution. Most companies that
were evaluating or experimenting with AI not so long ago are now using it.
Machine learning (ML) has played a vital role in this advancement. Various
industries ranging from information technology, finance, media, gaming, robotics,
have already set ML technology in practice.

However, machine learning is still in its early stages and plenty of work
needs to be done. In the future, ML will help build self-learning robots and
machines that are expected to improve their performance without using any
human involvement. In this way, machines will be able to make decisions based
on past data to predict the best future action.

Since ML models use high amounts of data, concerns have arisen that learned
models may be discriminatory with respect to sensitive features, e.g. race, gender,
and socioeconomic status. As a result of these issues, an astounding number of
methods for developing fair models and verifying the fairness of existing models
have emerged in recent years.

There are two types of fairness definitions that have been considered in the
literature [7,15]:
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
V. Torra and Y. Narukawa (Eds.): MDAI 2022, LNAI 13408, pp. 119–131, 2022.
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– The vast majority of definitions deal with group fairness, e.g. demographic
parity [5], equalized odds [10] or predictive parity [3]. Basically, such def-
initions pre-identify what attributes or groups should be protected. Group
fairness metrics have the advantage that they can be easily computed and
they reflect anti-discrimination legislation. These metrics have a solid theo-
retical foundation as well as practical methods and implementations. Their
weakness is that they entail no guarantees for individuals.

– The second type of definitions are about individual fairness. They assume a
similarity metric of the individuals for the classification task at hand that
is generally hard to find. For instance, unawareness [5] and counterfactual
fairness [12]. This type of definitions bind at the individual level.

Any of the metrics mentioned above can be used to calculate disparities in
data across groups, but many of them cannot be balanced across subgroups at
the same time. As a result, one of the most crucial components of measuring
bias in the model is understanding how fairness should be defined for a certain
scenario. In this work, we are going to merge the concept of group fairness with
that of individual fairness, in the sense that the proposed method protects the
individuals of any minority against any bias in the model.

Contribution and Plan of This Paper
The purpose of this paper is to detect any bias in the ML models targeting
any individual, regardless of the type of data used in the model. To that end,
we leverage counterfactual examples. The key contributions of the paper are:
(i) to detect the bias with regard to the ML model behavior and the training
data, unlike the previous work [12] that solely focuses on the bias of the training
data; (ii) to provide bias detection regardless of the data type (in particular for
tabular data and images), thanks to the use of counterfactual examples, which
offer developers a straightforward way to measure the fairness of their models.

The rest of this paper is organized as follows. Section 2 introduces the three
different fields of ML used in this work and the related work. Section 3 presents
the proposed methodologies to measure fairness in ML models. Section 4 reports
experimental results. Finally, Sect. 5 gathers conclusions and sketches future
research lines.

2 Related Work

This section gives an overview of three distinct fields of machine learning research
that are explicitly merged in this paper.

2.1 Fairness

The existing research addressing the topic of fairness in machine learning has
focused on how to measure and evaluate fairness (or, equivalently, bias) in
models.
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The work in [5] introduced the definition of individual fairness, which con-
trasts with group-based notions of fairness [3,10] that require demographic
groups to be treated similarly on average.

Later, [12] introduced a causal, individual-level, definition of fairness, called
counterfactual fairness, which states that a decision is fair toward an individual
if it coincides with the one that would have been taken in a counterfactual world
in which the sensitive attribute was different. More formally, given protected
attributes A, remaining attributes Z and output of interest Y , a classifier Ŷ is
counterfactually fair if, under any context A = a and Z = z, we have

P (Ŷ = ŷA=a|A = a, Z = z) = P (Ŷ = ŷA=a′ |A = a, Z = z),

for any value a′ attainable by A.
In relation with group fairness, counterfactual fairness is complementary to

the group fairness notion of equality of odds, which demands equality of true pos-
itive rates and true negative rates for different values of the sensitive attribute.

2.2 Adversarial Examples

Adversarial examples are inputs to machine learning models that an attacker
intentionally constructs to fool the model into returning a false prediction [14].
Adversarial examples are closely related to counterfactual examples: [16] char-
acterize counterfactuals as adversarial examples that perturb inputs in human-
interpretable and possibly problematic ways. Thus, whereas adversarial examples
try to deceive the model, counterfactual examples try to understand or explain
it.

Formally speaking, given a input x, a classifier Ŷ , a distance metric d (which
can be the Lp distance) and a small distance ε > 0, an adversarial example is
defined as an input x′ �= x, such that d(x′, x) < ε and Ŷ (x′) �= Ŷ (x).

In [18], by utilizing adversarial examples for data augmentation, the authors
implemented a prototype application to solve the algorithm bias problem. In
order to obtain a fair dataset in which the distribution of bias variables is bal-
anced, they apply adversarial attacks to generate examples containing informa-
tion of bias variables as the enhanced data.

2.3 GANs

Generative Adversarial Networks, or GANs for short, are a type of generative
model, that is, a model that can produce new content based on its training
data. They were first introduced by [8] and they have a variety of applications.
However, their most common use is to generate new images. A GAN consists
of two artificial neural networks, a generator G and a discriminator D, that
compete against each other. G creates new data instances while D evaluates
them for authenticity.

More specifically, G takes as input a random noise vector z and outputs an
image z = G(z). D receives as input either a training image x or a synthesized
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image G(z) from G and outputs a probability distribution D(·) over possible
image sources. D is trained to maximize the log-likelihood it assigns to the
correct source:

L = Ex[log(D(x))] + Ez[log(1 − D(G(z)))].

The generator G is trained to minimize Ez[log(1−D(G(z)))], that is, to minimize
the likelihood that its generated images are detected as fake by D.

In [17], the authors develop a GAN for fairness. Their architecture is limited
to low-dimensional structured data and only applies to demographic parity. In
contrast, our work is geared towards high-dimensional image data and individual
fairness.

Another work that measures fairness based on GANs is [1]. The authors
propose an adversarial approach, inspired from GANs, in which a sanitizer is
learned from data representing the population. In this work, local sanitization
is employed to reach algorithmic fairness.

3 Measuring Fairness via Counterfactual Examples

In this section, we introduce our proposed method to measure fairness in ML
models. Our approach rests on generating counterfactual examples. To this end,
the technique used to generate those counterfactuals may differ depending on
the input data type. We next discuss the cases of tabular data and image data.

3.1 Measuring Fairness in Tabular Data

We want to measure the fairness of any ML model, which will ensure that the
predictions of the model are not biased against any minority in the data set.
To this end, we need to guarantee that the ML model is not making its predic-
tions based on a sensitive attribute. The fairness assurance process should be
automated in the sense that it is not enough to change the attribute value and
monitor the outcome of the model. At the same time, this process should be
model- and data-related, because the bias might be in the training data or in
the learned model.

In order to measure the fairness of an ML model f , for a specific data record
x, taking into consideration the protected attribute a, we have to satisfy the
counterfactual fairness definition mentioned in Sect. 2.1. We propose an auto-
mated approach that creates counterfactual examples for each record in the data
set. The proposed method uses adversarial examples as a means to create those
counterfactual examples. To create an adversarial example, the proposed method
targets only the attributes that have the highest effect on the ML model predic-
tion, in an attempt to alter its predicted label with the smallest input changes.
In this situation, if the changed attribute is one of the protected attributes, this
indicates that the model is not fair to this record.

Algorithm 1 describes the proposed method. Given an ML model f , a maxi-
mum allowed value εmax, an input record x containing n attributes, the method
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generates the counterfactual example x∗ by changing at most c ≤ n attributes
from x, where c is the number of protected attributes. First, to set the target
classification label y∗ we desire for x∗, we compute probs, the probability vector
that f outputs for x. Then, we set the desired class label y∗ to be the index of the
second most probable class in probs. Choosing this class makes it easier for the
proposed method to find the desired x∗ with small changes to x. Note that the
user can also set y∗ to any class label she wants. Then, to select the c attributes
which have the highest effect on the model prediction, we compute the gradi-
ent of the loss between the model output fu(x) and the desired output y∗ with
regard to the attributes of the input record. After that, we take the L1-norm of
the computed gradient ∇x. Subsequently, we identify the c attributes with the
highest L1-norms as the attributes to be changed when generating x∗. This is
done using a weighting vector w which contains 0 s for the unchanged attributes
and 1 s for the changed attributes. Using this vector allows us to change only c
attributes while creating x∗. Afterwards, we keep repeating the gradient descent
step in expression

x∗ = x − w · ε · ∂

∂x
L(f(x), y∗),

with regard to w until one of two following conditions is satisfied: i) an
adversarial example x∗ is obtained that fools f into labeling it as y∗ or ii) the
maximum value εmax is reached for ε (which means that no x∗ close to x could
be found). Note that we start with a small ε = 0.05 and we increase it by 0.05 at
each step. Once we create the adversarial example x∗, we compare it with x to
identify the changed attributes. If one or more of the changed attributes belong
to a, the set of the protected features, then this indicates bias in the model.

3.2 Measuring Fairness in Image Data

Measuring fairness for image classifiers is more challenging than measuring fair-
ness for tabular data classifiers because the attributes in images are not self-
explanatory. To tackle this challenge, we propose a method that generates coun-
terfactual examples for the image data by leveraging the GANs described in
Sect. 2.3.

In the proposed method, we use two generators and one discriminator con-
sisting of a trained binary classifier, as shown in Fig. 1. Both generators create
images to fool the trained image classifier model. However, each generator can
only fool the model into one specific outcome. Generator A creates counterfac-
tual images to be classified by the classifier into class a, whereas generator B’s
counterfactuals are to be classified into class b. After training both generators,
they can be used to create counterfactual examples to detect any bias in the
classifier. Any image m from class a that the classifier misclassifies into class b
is passed through generator A to generate the counterfactual example m∗. This
counterfactual m∗ will be classified into class a. By comparing m and m∗ we can
notice whether they differ in any of the discriminatory attributes (those related
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Algorithm 1. Creating the counterfactual example
1: Input: Trained model f , record x, maximum allowed εmax, maximum number of

attributes to be changed c.
2: Output: Counterfactual example x∗
3: probs ←Get_Probabilities(f(x))
4: y∗ ← argmax(probs, 2)
5: n ← Number of attributes in x
6: |∇x| ← abs( ∂

∂x
L(f(x), y∗))

7: w ← Zero vector of length n
8: idxs ← Indices of the highest c values in |∇x|
9: for idx ∈ idxs do

10: w[idx] = 1
11: end for
12: x∗ ← x
13: ε ← 0.05
14: while f(x∗) �= y∗ and ε ≤ εmax do
15: x∗ ← x − w · ε · ∂

∂x
L(f(x), y∗)

16: ε ← ε + 0.05
17: end while
18: if f(x∗) = y∗ then
19: Return x∗
20: else
21: Return ∅
22: end if

to race, such as dark skin or dark hair). Similarly, an image m′ from class b mis-
classified into class a is passed through generator B to create the counterfactual
m′

∗.

4 Empirical Results

In this section, we evaluate the performance of the proposed approach on two
ML tasks: tabular data classification and image classification. For each task, we
trained a baseline model with the original data set and a biased model after we
did some alterations to the data set. In both data sets, the baseline and biased
models had the same architecture. First, we show the performance of the models
and then we evaluate the proposed fairness measures.

4.1 Experimental Setup

Data Sets and Provider Models. We evaluated the proposed approach on
two data sets:

– Adult1 is a data set from the UCI Machine Learning repository [4]. It is a
tabular data set that contains 48, 842 records of census income information

1 https://archive.ics.uci.edu/ml/datasets/adult.

https://archive.ics.uci.edu/ml/datasets/adult
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loss

loss

Fig. 1. Training the generator of the counterfactual examples.

with 14 numerical and categorical attributes. From these, we dropped the
final weights (fnlwgt, capital-loss, and capital-gain), which reveal too much
information to the model, and the education attribute, which is redundant
with education-num. We also encoded categorical attributes as numbers. The
class label is the attribute income, that classifies records into either >50K or
≤50K. We used 80% of the data as training data, and the remaining 20% as
validation data.

– CelebA2 is a binary classification data set from Kaggle [13]. It consists of
RGB images of male and female faces with a training set of 17,943 female
images and 10,057 male images. The validation set contains 2,000 images
evenly divided into the two classes. Since the images have large sizes of 1024
× 1024 pixels, we first resized them to 256 × 256 pixels in order to train our
models faster.

The architectures of the models used in the experiments are shown in Table 1.
We took the same models from [9].

In all experiments, we employed the binary cross-entropy loss function and
the Adam optimizer [11].

Training Data for Biased Models. The two original data sets were balanced
in terms of sensitive data. To train biased models, we modified both training
data sets in order to train the biased model.

– Adult: To drive the model to be biased against the attribute gender, we
selected 45% of the females whose race was black and whose income was
>50K, and we changed their income to ≤50K. Also, we selected 45% of the

2 https://www.kaggle.com/dataset/504743cb487a5aed565ce14238c6343b7d650ffd28c0
71f03f2fd9b25819e6c9.

https://www.kaggle.com/dataset/504743cb487a5aed565ce14238c6343b7d650ffd28c071f03f2fd9b25819e6c9
https://www.kaggle.com/dataset/504743cb487a5aed565ce14238c6343b7d650ffd28c071f03f2fd9b25819e6c9
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Table 1. Architectures of the models used in the experiments for the Adult and CelebA
classification data sets. C(3, 32, 3, 0, 1) denotes a convolutional layer with 3 input chan-
nels, 32 output channels, a kernel of size 3 × 3, a stride of 0, and a padding of 1;
MP (2, 2) denotes a max-pooling layer with a kernel of size 2× 2 and a stride of 2; and
FC(18432, 2048) indicates a fully connected layer with 18,432 inputs and 2,048 output
neurons. We used ReLU as an activation function in the hidden layers; lr stands for
learning rate.

Data set Model architecture Hyper-parameter

Adult FC(12, 100), FC(100, 100), FC(100, 2) lr = 0.001,
epochs = 10,
batch = 128

CelebA C(3, 32, 3, 0, 1), C(32, 64, 3, 1, 1), MP(2, 2), C(64, 128, 3, 0, 1),
C(128, 256, 3, 1, 1), MP(2, 2), C(256, 512, 3, 0, 1), C(512, 512, 3, 1,
1), MP(2, 2), C(512, 256, 3, 0, 1), C(256, 256, 3, 1, 1), MP(2, 2),
FC(16384, 2048), FC(2048, 1024), FC(1024, 512), FC(512, 128),
FC(128, 32), FC(32, 2)

lr = 0.001
epochs = 10
batch = 64

males whose race was black and whose income was ≤50K, and we changed
their income to >50k.

– CelebA: To train a biased gender classification model, we separated from
the female training data the images containing dark skin. In order to do so,
we used the unsupervised cluster K-means [2], while keeping track of some
cherry-picked images to monitor the outcome of the cluster. The desired class
consisted of 1904 images. We changed the class of 60% of those images from
female into male.

Evaluation Metrics. We used the following evaluation metrics to measure the
performance of the trained surrogate models and the generated explanations:

– Accuracy : Number of correct predictions divided by the total number of pre-
dictions. We used this metric to measure and compare the performance of the
baseline and the biased models.

– ROC curve [6]: The Receiver operating characteristic (ROC) is a graph plot-
ting the false positive rate in the abscissae and the true positive rate in the
ordinates. It shows the performance of a classification model at all classifica-
tion thresholds. The AUC (area under the ROC curve) takes values from 0.0
(when the model predictions are 100% wrong), to 1.0 (when the model predic-
tions are 100% correct). AUC is scale invariant, and classification-threshold
invariant. In some cases it is a better metric than accuracy.

In this work, we evaluated the fairness of the model based on its performance on
the targeted minority, since there are no methods in the literature to compute
the individual fairness score.
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4.2 Results

Accuracy and ROC-AUC Score. In Table 2, we show the accuracy of the
baseline and biased models when evaluated on the full evaluation data set, for
both data sets. The baseline model was more accurate than the biased model
on both data sets, even though the biased model’s accuracy was not much lower
than the baseline model’s.

Table 2. Accuracy of the baseline and biased model evaluated on the full evaluation
data set, for the Adult and the CelebA data sets

Data set Baseline model Biased model

Adult 82.80% 79.67%
CelebA 98.52% 86.42%

In Fig. 2, ROC curves are presented for both models on the two data sets. The
results are consistent with those of Table 2, where the baseline and the biased
models exhibit small performance differences.

(a) ROC curve of the baseline model on the
Adult data set

(b) ROC curve of the biased model on the
Adult data set

(c) ROC curve of the baseline model on the
CelebA data set

(d) ROC curve of the biased model on the
CelebA data set

Fig. 2. ROC curve of the baseline and biased models on both data sets
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To better understand the performance differences between the baseline and
the biased models, we evaluated them on modified data sets, which consist of
the samples belonging to the minorities in each data set. On the one side, we
derived an evaluation set from Adult by picking all the records with race equal to
black. On the other hand, we derived an evaluation set from CelebA by picking
all female images with dark skin. We call those evaluation sets the targeted data
sets. Table 3 reports the accuracy of the models when they were evaluated on
the targeted sets. For both data sets, the baseline model accuracy was similar
to that in Table 2, while the performance of the biased model was very poor: it
was around 1% in both data sets. This illustrates that the biased models were
precisely biased against the individuals in the targeted data sets.

Table 3. Accuracy of the baseline and biased models evaluated on the targeted data
sets derived from Adult and CelebA

Data set Baseline model Biased model

Adult 81.90% 0.54%
CelebA 99.60% 1.67%

Fairness of the Trained Models

– Adult data set: We generated a counterfactual example for each record in
the validation portion of the Adult data set. First, we considered the attribute
gender as the protected attribute. Then, we used Algorithm 1 with c = 1,
to restrict the changes to only one attribute when generating the examples.
After that, we computed the number of cases where the counterfactual exam-
ple was created by changing the protected attribute. We found that for the
biased model, this happened 1,637 times, while for the baseline model this
happened only 12 times. These results indicate that for the baseline model
the protected attribute was not essential in the prediction. On the other hand,
the protected attribute had a very high impact on the predictions made by
the biased model. We present two examples of the counterfactual examples
generated by the proposed method in Table 4. Record 1’s income was classi-
fied as >50K by both models. The first counterfactual example which was
created based on the baseline model shows that the original record’s predic-
tion can change to ≤50K by reducing the educational level from 13 to 9. This
recommendation from the proposed method seems logical in the sense that
less education yields decreased income. The second counterfactual example
which was created based on the biased model recommended changing the
gender from male to female, which shows that the model learned a gender
bias (income of males is higher than the income of females). On the other
hand, Record 2’s income was classified as ≤50K by both models. In this
case, the counterfactual created by the baseline recommended increasing the
hours-per-week from 47 to 60, which is also reasonable because more working
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hours usually means more payout. In contrast, the counterfactual created by
the biased model recommended to change the attribute gender but this time
from female to male, because the model learned that males earn more.

Table 4. Two examples of records from the Adult data set. Symbol ‘"’ indicates that
the value of the attribute did not change during the creation of the counterfactual
example.

Features Age Workclass Educational-
num

Marital-
status

Occupation Relationship Race Gender Hours-
per-week

Native-country Income

Original record 1 38 State-gov 13 Married Protective-serv Husband Black Male 52 United-States >50K
Baseline
recommendation

" " 9 " " " " " " " ≤50K

Biased model
recommendation

" " " " " " " Female " " ≤50K

Original record 2 43 Local-gov 14 Unmarried Tech-support Not-in-family Black Female 47 United-States ≤50K

Baseline
recommendation

" " " " " " " " 60 " >50K

Biased model
recommendation

" " " " " " " Male " " >50K

– CelebA data set: In order to generate the counterfactual examples for the
CelebA data set, we selected the female images that were classified into the
label male by the biased model and into the label female by the baseline
model, because those images were targeted when training the biased model.
Even though those images correspond to females, we pass them through the
female generator, that is due to the classifier (in this case it is also the dis-
criminator) to classify them as a male. Figure 3 presents five examples of
the counterfactual created by the proposed method. In all the images, the
proposed method made the skin lighter, and the hair color blond. Those
counterfactuals were classified as females by both models. Thus, our method
detected that the biased model classified every face image with dark skin and
black hair as male.

Original image

Counterfactual image

Fig. 3. Five examples of the counterfactual examples created by the proposed method
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5 Conclusion and Future Work

In this paper, we have examined fairness in the scenario of binary classification
for two types of input data, tabular and image data. The proposed method is
based on generating counterfactual examples to measure fairness in ML models.
In the case of tabular data, we used adversarial examples to create the coun-
terfactuals. To achieve this for image data, we used GANs as a generator for
the counterfactuals. Our experiments confirm that the proposed method can
detect any model bias against protected attributes. As future work, we plan to
implement a new measure that characterizes fairness for image classifier models,
since there is a limitation in the current literature on this topic. Furthermore, we
intend to automate the comparison process between the original data and the
counterfactual examples. We also envision generalizing our method to non-binary
classification.
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Abstract. In this article we propose a novel technique for the re-
calibration of Machine Learning (ML) models. This technique is based
on the computation of confidence intervals for the probability scores pro-
vided by any ML model. Compared to existing and commonly used cali-
bration methods, the proposed approach has two important advantages:
first, under weak assumptions it provides theoretical guarantees about
calibration; second, this method does not require any further data other
than the training set used for ML model development. We illustrate
the effectiveness of the proposed approach on a benchmark dataset for
COVID-19 diagnosis, by comparing the proposed method against com-
monly used re-calibration techniques.

Keywords: Calibration · Machine Learning · Confidence interval ·
Trustable AI

1 Introduction

In recent years, the application of Machine Learning (ML) techniques in several
practical scenarios has received increasing attention. Despite promising results
reported by these methods in terms of accuracy, recent research has highlighted
important limitations in terms of other quality dimensions than those related to
discrimination, which are of great interest in human decision making, such as
robustness, utility and trustworthiness [4,5,19,21].

Among these quality dimensions, calibration [21] is a fundamental charac-
teristic of predictive models: intuitively, calibration [2] is information about the
extent confidence scores associated with each prediction/classification are good
estimates of event occurrence frequencies. Therefore, calibration is an important
property of a ML model, especially in critical settings (such as the medical one)
[22], in that a calibrated model is “trustworthy” since the confidence scores it
produces can be used by human experts to assess the probability that its advice
is right [15]. By contrast, a poorly calibrated model can provide misleading pre-
dictions [23].
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Unfortunately, even models with good discrimination power can be poorly
calibrated: for example, commonly used non-linear classification models such as
deep neural networks [6], support vector machines [30] and tree ensembles [13,18]
have extensively been shown to have poor calibration by default.

A possible solution to this problem is to apply a re-calibration method [14]
as a post-processing step, whose goal is to correct the confidence scores provided
by a ML model in order to improve its calibration and thus provide probability
estimates that are more accurate or as accurate as possible. Several such tech-
niques have been proposed in the literature (e.g., [6,14,17,27,29]); however, the
most commonly adopted methods do not provide any sort of statistical guaran-
tee [1,24]: in other words, the adjusted confidence scores are not guaranteed to
be more calibrated on any new data. Some techniques have been proposed that
provide theoretical guarantees under weak assumptions [9] (e.g., that the sample
data instance are i.i.d. or exchangeable); however, also these methods have some
drawback: in particular they are generally not sample efficient, in that they need
a part of the training set to be reserved and used for re-calibration, what is usu-
ally called a calibration set [26]. Such data cannot thus be used during the ML
model development [12], so as to potentially lead to a conflict between models’
accuracy and calibration.

To overcome these limitations, in this article we propose a novel re-calibration
method, which is based on the computation of confidence intervals for the con-
fidence scores provided by an ML model. The proposed method provides theo-
retical guarantees on the post-correction calibration, under weak assumptions;
furthermore, this method has low computational complexity and does not need a
separate calibration set, so that all available data can be used for model training.
In the following sections, we illustrate the derivation of the proposed method (see
Sect. 2); we prove its properties, and show its effectiveness in an experimental
comparison against different commonly used re-calibration methods (see Sect. 3).

2 Method

Let X be the set of instances and Y the set of classes. In this article we will
assume that Y = {0, 1}, that is, we deal with binary classification tasks. Let
D be a joint probability distribution over X × Y , which is assumed to be the
unknown data generating process. We denote with S = {(xi, yi)}n

i=1 the training
set, sampled i.i.d from D.

Let h be a scoring classifier, that is h : X �→ [0, 1], where h(x) is interpreted
as the confidence score associated the positive class (i.e., class 1). Let k ∈ N+ be
a positive integer greater than 2, then Sk denotes a partition of S into k equal-
width bins S1

k, . . . , Sk
k , obtained by first sorting the elements {h(x) : (x, y) ∈ S}

and then splitting the obtained ordered list. In particular we note that if xi ∈
Si

k, xj ∈ Sj
k with i < j, then h(xi) ≤ h(xj).

Given a bin Si
k, we denote with σi the average confidence score for the

instances in Si
k, that is σi = 1

|Si
k|

∑
(x,y)∈Si

k
h(x). Similarly, we denote with oi the

observed frequency of the positive class in bin Si
k, that is oi = |{(x,y)∈Si

k:y=1}|
|Si

k| .
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A scoring classifier h is strongly calibrated if Prx∼DX
(yx = 1|h(x) = p) = p,

that is, its confidence scores can be interpreted as probability estimates. Despite
being a useful property, strong calibration is not easily achievable by any scoring
classifier trained on finite samples [26].

To avoid this limitation, the methodology we propose is based on the com-
putation of confidence intervals around h(x), obtained by inverting a statistic
related to the Hosmer-Lemeshow test for calibration [7]. For this purpose, we first
introduce the notion of an interval scoring classifier [27] (sometimes also called a
multiprobabilistic predictor in the literature), which is a function s : X �→ [0, 1]2

s.t. s(x)0 ≤ s(x)1. Intuitively, s(x)0 (resp., s(x)1) is interpreted as a lower (resp.,
upper) bound on the confidence associated with the positive class y = 1. We note
that a scoring classifier is a special case of an interval scoring classifier, where
∀x ∈ X, s(x)0 = s(x)1.

An interval scoring classifier s is α-calibrated if, with probability no smaller
than α over the selection of S, s(x)0 ≤ Prx∼DX

(yx = 1) ≤ s(x)1. Given an
interval scoring classifier s and instance x, the interval width at x is defined as
s(x)1 − s(x)0. Intuitively, the interval width provides an indicator of specificity:
the smaller the interval width, the more specific the predictions. Identified a
scoring classifier h and α ∈ (0, 1), our method constructs an interval scoring
classifier sh based on the observed performance of h on the training set. Intu-
itively, given a new instance x to be classified, we compute the confidence score
h(x), then, based on a partitioning Sk of the training set S, we select the bin
Si

k s.t. h(x) ∈ Si
k and we compute an interval estimate of P (yx = 1) based on

the observed mis-calibration of h on the corresponding bin. Formally, the above
mentioned interval scoring classifier sh is defined as:

sh
0 (x;α) = max{0, h(x) −

√
2σ̂i · erf−1(α)
√|Si

k| + 1
} (1)

sh
1 (x;α) = min{1, h(x) +

√
2σ̂i · erf−1(α)
√|Si

k| + 1
} (2)

where h(x) ∈ Si
k, σ̂i = σi·|Si

k|+h(x)

|Si
k|+1

and erf is the error function. That is, sh is

obtained from h by first identifying in which bin Si
k the confidence score h(x)

falls, and then by correcting h(x). The whole procedure to compute sh is defined
in Algorithm 1.

The following theorem provides the main theoretical justification for the pro-
posed method, showing that the obtained interval scoring classifier is calibrated.

Theorem 1. Assume S, x are sampled i.i.d. from D. Then, for each α ∈ [0, 1],
sh(·;α) is (asymptotically, that is, as |S| → +∞) α-calibrated. Furthermore,
let C(α) =

√
2σ̂i·erf−1(α)√

|Si
k|+1

, then the finite sample probability that sh fails to be

α-calibrated is less than 2e−2(|Si
k|+1)C(α)2 .

Proof. Given a partition Sk of the training set S, denote with Q =
∑k

i=1
(Oi·−Σi)

2

Σ , where Oi = oi · |Si
k| and Σi = σi · |Si

k|. Q is asymptotically
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Algorithm 1. The proposed confidence interval-based re-calibration method.
procedure interval recalibration(h: ML model, S: training set, k: number of
bins, α: confidence level, x : new instance)

Train h on S
H ← ∅
for all (xi, yi) ∈ S do

H.append(h(xi))
end for
Sort H in increasing order
Partition H in H1, ..., Hk equal-sized bins
Find i s.t. h(x) ∈ [min Hi, max Hi]
σ̂i ← 1

|Hi|
∑

j:hj∈Hi
hj

sh
0 ← max{0, h(x) −

√
2σ̂i·erf−1(α)√

|Hi|+1
}

sh
1 ← min{1, h(x) +

√
2σ̂i·erf−1(α)√

|Hi|+1
}

return sh
0 , sh

1

end procedure

distributed as a chi-square with k − 2 degrees of freedom, that is Q ∼ χ2
k−2

[7]. Consequently, (Oi−Σi)
2

Σi
is asymptotically distributed as a χ2

1 and, therefore,
|Oi−Σi|√

Σi
∼ χ1.

Hence, |Oi − Σi| ∼ HN(
√

Σi), that is the deviation between the observed
frequency and the average confidence score is asymptotically distributed as a
half-normal with parameter

√
Σi. Thus, a confidence interval (with confidence

level α) around oi can be obtained by h(x) ±
√
2σ̂i·erf−1(α)√

|Si
k|+1

, where h(x) ∈ Si
k,

from which the first part of the result follows. The second part directly follows
by applying Hoeffding bound [3] to |oi − σi|. 
�
As a consequence of Theorem 1, we note that there is a trade-off, governed by
the number of bins k, between the interval width sh

1 − sh
0 and the probability

that sh fails to be (finite sample) α-calibrated. Indeed, as k increases, σ̂i becomes
closer to h(x) but the interval width increases (since the denominator in Eqs. (1),
(2) becomes smaller) and similarly also the finite sample probability of failure
increases (since C(α) decreases), and vice-versa when k decreases. Therefore,
in practical applications, the number of bins k, should be carefully set so as to
optimize the above mentioned trade-off between coverage and efficiency (i.e., the
requirement of having small interval width [25,27]).

Aside from the above mentioned theoretical result, an interesting property
of our method (and, more in general, of interval scoring classifiers) is that its
calibration can be easily checked by means of a graphical criterion. Indeed, if
we plot the reliability curve for s (that is, for each bin Si

k we plot oi against
s0(x), s1(x)), then s is calibrated if and only if the bisector lies in-between the
lower and upper curves determined by s (we will show an example of this criterion
in the Results section). We will further discuss this point in Sect. 4.
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Finally, we show that the proposed method is computationally efficient, with
sub-linear run-time complexity in the size of the training set:

Theorem 2. Let S be a training set, n = |S|, Sk a k-partition of S, and x a new
instance. Then, independently of α ∈ (0, 1), sh

0 (x;α), sh
1 (x;α) can be computed

in time Θ(log(k)) and space O(k). In particular, if k is independent of n, then
the proposed method has (run-time) time and space complexity O(1).

Proof. As shown in Algorithm 1, to compute sh
0 (x;α), sh

1 (x;α), we first need to
find Sk

i s.t. minx′∈Sk
i

h(x′) ≤ h(x) and h(x) ≤ maxx′∈Sk
i

h(x′)], which requires
Θ(log(k)) by applying binary search. Then, the desired quantities can be com-
puted in time O(1) and space O(k), if we store the partial averages σ̂i, for each
bin i. The result follows if the partitioning Sk is computed off-line.

The previous theorem is interesting in that it shows that the proposed method
not only is more sample-efficient, but it is also more computationally efficient
compared to other re-calibration methods that provide similar guarantees (e.g.,
Venn predictors [9,27], whose run-time complexity lies between O(|C|), where
C is a separate calibration set, and O(|S|), depending on whether we consider
inductive or transductive implementations [11]).

2.1 Experimental Analysis

In order to assess the effectiveness of the proposed method, we performed an
experiment in which we compared our method against different calibration tech-
niques proposed in the literature. All methods were evaluated on a publicly
available dataset for the task of COVID-19 diagnosis from routine blood exams,
collected in Northern Italy during the first and second waves of the pandemic [4].
In particular, the training set encompassed a collection of 1736 samples (one for
each patient) collected between February and May 2020 at the IRCCS Ospedale
San Raffaele (OSR) and IRCCS Istituto Ortopedico Galeazzi, in Milan, Italy. On
the other hand, the test set encompassed a collection of 224 samples collected
in November 2020 at IRCCS OSR. Thus, the training and test sets pertained to
two different waves of the pandemics: we decided to use two separate datasets,
with data from different pandemics waves, in order to assess the robustness of
considered re-calibration methods with respect to possible violations of the i.i.d.
assumption [28]. Both datasets encompassed 21 features, including the complete
blood count (CBC), age, biological sex, and presence of suspect symptoms. The
full list of features, as well as descriptive statistics for both the continuous and
discrete features, for the train and test sets, is reported in Table 1.

In regard to model development, as scoring classifier we adopted a SVM-based
pipeline model (encompassing a k-nearest neighbors-based imputation step for
missing data imputation, and a feature standardization step) which was shown
to obtain state-of-the-art performance on the considered task [4]. As baseline,
we considered the model trained on the full training set. We then considered
four re-calibration methods to be compared:
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Table 1. The list of the 21 parameters, along with the target, used by the validated
Machine Learning models. For each continuous parameter we report the mean and the
extremes of the 95% confidence intervals, as well as the missing rate in the training
set (in parenthesis). For the discrete features, as well as for the target, we report the
distribution of values, as well as the missing rate for the training set (in parenthesis).
No value was missing in the test set.

Parameter Unit of measure Train (Missing) Test

Age Years 60.93 ± 0.92 (3.11) 60.53 ± 0.2

Hematocrit (HCT) % 39.21 ± 0.26 (3.63) 39.67 ± 0.1

Hemoglobin (HGB) g/dL 13.14 ± 0.10 (3.63) 12.86 ± 0.0

Mean Corpuscular Hemoglobin (MCH) pg/Cell 29.21 ± 0.13 (3.63) 29.51 ± 0.0

Mean Corpuscular Hemoglobin

Concentration (MCHC)

g Hb/dL 33.45 ± 0.06 (3.63) 33.00 ± 0.0

Mean Corpuscular Volume (MCV) fL 87.29 ± 0.3 (3.63) 89.41 ± 0.1

Red Blood Cells (RBC) 1012/L 4.52 ± 0.0 (3.63) 4.46 ± 0.0

White Blood Cells (WBC) 109/L 8.72 ± 0.2 (3.63) 9.53 ± 0.1

Platelets (PLT1) 109/L 235.66 ± 4.4 (3.63) 218.00 ± 0.7

Neutrophils (NE) % 72.35 ± 0.6 (20.85) 72.48 ± 0.1

Lymphocytes (LY) % 18.58 ± 0.5 (20.85) 17.96 ± 0.2

Monocytes (MO) % 7.83 ± 0.2 (20.85) 8.13 ± 0.0

Eosinophils (EO) % 0.88 ± 0.1 (20.85) 0.60 ± 0.0

Basophils (BA) % 0.34 ± 0.0 (20.85) 0.32 ± 0.0

Neutrophils (NET) 109/L 6.45 ± 0.2 (20.85) 6.76 ± 0.0

Lymphocytes (LYT) 109/L 1.37 ± 0.0 (20.85) 1.82 ± 0.1

Monocytes (MOT) 109/L 0.62 ± 0.0 (20.85) 0.64 ± 0.0

Eosinophils (EOT) 109/L 0.07 ± 0.0 (20.85) 0.05 ± 0.0

Basophils (BAT) 109/L 0.02 ± 0.0 (20.85) 0.02 ± 0.0

COVID-19 specific symptoms at triage

(Suspect)

Yes/No 68%/32% (0) 82%/18%

Gender M/F 57%/43% (0) 63%/37%

COVID-19 Positivity (Target) Positive/Negative 53%/47% 53%/47%

– Sigmoid regression (SR) (or, Platt scaling) [17], obtained by 5-fold cross-
validation (CV) on the training set;

– Isotonic regression (IR) [14], obtained by 5-fold CV on the training set;
– Venn prediction (VP) [9,11], based on a 80/20 split of the training set into

training proper and calibration set. The underlying classifier was trained on
the training proper, while the calibration set was used to compute the interval
estimates for instances in the test set;

– Our proposed method, with α = 0.90 (that is, we considered 90% confidence
intervals). The underlying classifier was trained on the full training set, which
was then subsequently used also for the computation of the confidence inter-
vals for instances in the test set.

As previously mentioned, after training, all models were compared in terms of
performance on the separate test set. Model comparison was performed in terms
of the Brier score 1

n

∑n
i=1(h(xi)−yi)2 and graphical analysis based on reliability
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diagrams. In particular, for the interval predictors (i.e. Venn prediction and the
proposed method), we considered a generalization of the Brier score, defined as
1
n

∑n
i=1 1yi /∈[sh

0 ,sh
1 ]

∗min{(sh
0 (xi)−yi)2, (sh

1 (xi)−yi)2}: that is, for each instance xi,
the mis-calibration w.r.t. the correct label yi is computed as the distance from the
value in [sh

0 , sh
1 ] closest to yi. For Venn prediction and for our proposed method,

we also considered the average interval width (that is, 1
n

∑n
i=1 s1(xi) − s0(xi)).

3 Results

The reliability diagrams and Brier scores for the evaluated models are reported
in Figs. 1 and 2. The proposed method reported an average interval width of
.15, while the Venn prediction method reported an average interval width of .02.

Fig. 1. Results of the experimental analysis, represented as a reliability diagram. The
dashed line denotes perfect calibration. For interval-based methods (that is, the pro-
posed method and Venn prediction), calibration curves are obtained from the confi-
dence intervals, and are hence represented by a lower and a upper bound: the more the
bisector line lies within these bounds, the better.



Re-calibrating Machine Learning Models Using Confidence Interval Bounds 139

Fig. 2. Results of the experimental analysis, in terms of Brier scores and corresponding
99% confidence intervals: the lower the Brier score, the better.

The number of instances for which the bisector of the reliability diagram was
not within the interval produced by our method was 21 (9.4%), which was lower
than the value of α (10%).

4 Discussion

As shown in Figs. 1 and 2, the proposed method resulted in a larger reduction
in the Brier score compared to the other considered re-calibration methods. In
particular, we note that both isotonic and sigmoid regression did not provide
any improvement in terms of the Brier score. Similarly in terms of calibration
curves, it is easy to observe that sigmoid regression did not provide any calibra-
tion improvement w.r.t. to the baseline model (indeed, the curves for the baseline
SVM model and the sigmoid regression coincide), while isotonic regression pro-
vided only a small improvement. Interestingly, also the Venn prediction method
did not provide any improvement compared to the baseline SVM model. Venn
prediction is known to provide weakly calibrated interval classifiers under the
i.i.d. assumption [27] (and even under the weaker assumption of exchangeability
[26]): therefore, the observed violation of calibration could be to attributed to
the fact that the training data and the test data came from two different waves of
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the COVID-19 pandemics, which were associated with different characteristics of
the impacted population [4] and thus violates the i.i.d. assumption. By contrast,
the proposed confidence interval methods reported a consistent improvement in
calibration and robustness to the mentioned violation of its assumptions (indeed,
we note that, the i.i.d. assumption is also an hypothesis in Theorem 1), as shown
by the fact that the bisector line was almost entirely included within the interval
bounds. In particular, we note that the fraction of instances for which the bisec-
tor line was not included within the interval bound was less than 1 − α = 0.1,
thus showing that the proposed technique was (empirically) α-weakly calibrated
on the test set. We believe this results to be particularly interest as it shows that,
in this experiment, the proposed technique is more robust to small violations of
the i.i.d. assumption as compared to Venn prediction.

We note that the proposed method had a larger interval width than Venn
Prediction: in general, smaller interval widths are preferable as they correspond
to higher efficiency and hence more informative predictions. Nonetheless, we
recall that in the literature, efficiency is not usually considered to be a desirable
property per se [25]: indeed, efficiency only makes sense when comparing two
method that are equally calibrated, as, ultimately, calibration is the desired prop-
erty. In this sense, our method out-performed Venn Prediction since it reported
much better calibration, in spite of the lower efficiency. In any case, a possible
explanation for the above mentioned observation lies in the low power of the
Hosmer-Lemeshow test, which was used to derive the proposed method.

The above analysis highlights how, differently from standard re-calibration
methods, the calibration of our method can be easily evaluated by means of
a simple graphical criterion. Indeed, the interval predictions are calibrated if
and only if the bisector line is contained within the computed interval bounds,
except possibly for a fraction of size approximately equal to α of the test set.
This verification provides a simple and interpretable criterion for the assess-
ment of calibration, as compared to existing alternative criteria based on scoring
functions lacking clear standard or consensus-based thresholds to interpret the
corresponding scores.

5 Conclusion

The importance of calibration cannot be overestimated for its role in allowing
agile model updates in front of concept drifts [8], in making models more accurate
on uncertain, borderline instances, and in making models more trustworthy, due
to their capability to estimate accuracy at instance level. In this article we pro-
posed a novel technique for ML model re-calibration, based on the computation
of confidence interval estimates of the unknown event frequency.

Through a theoretical analysis and an illustrative experiment, we showed
that the proposed technique provides some advantages compared to existing
re-calibration methods, both in statistical and computational terms, as well as
in terms of ease of interpretation. Despite these advantages, we note that the
proposed method may provide wider confidence intervals than other similar tech-
niques (such as Venn prediciton). This can possibly be due to the low power of
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the Hosmer-Lemeshow test [10] that we used to derive our approach. We believe
that further research should be aimed at studying techniques to reduce the inter-
val width and improve efficiency , for example by adopting more powerful tests
[20]. Similarly, it would be interesting to design algorithms that automatically
determine the optimal number of bins k, possibly also by allowing for uneven-
sized bins [16]. Furthermore, further research should be devoted at extending the
proposed method to the general, multi-class case. Finally, despite the promising
result we reported in this contribution, further and more extensive experimental
validation of the proposed technique should be conducted.
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Abstract. Federated learning is a distributed setting where multiple
participants jointly train a machine learning model without exchang-
ing data. Recent work has found that federated learning is vulnerable
to backdoor model poisoning attacks, where an attacker leverages the
unique environment to submit malicious model updates. To address these
malicious participants, several Byzantine-Tolerant aggregation methods
have been applied to the federated learning setting, including Krum,
Multi-Krum, RFA, and Norm-Difference Clipping. In this work, we ana-
lyze the effectiveness and limits of each aggregation method and provide
a thorough analysis of their success in various fixed-frequency attack set-
tings. Further, we analyze the fairness of such aggregation methods on
the success of the model on its intended tasks. Our results indicate that
only one defense can successfully mitigate attacks in all attack scenarios,
but a significant fairness issue is observed, highlighting the issues with
preventing malicious attacks in a federated setting.

1 Introduction

Federated Learning is an emerging distributed machine learning (ML) setting
where multiple clients can collaboratively train an ML model without sharing
private data [16]. Typically orchestrated by a central server, federated learning
follows a multi-round, multi-agent-based strategy. In each round, the server dis-
tributes a current global ML model to a random subset of participants, who then
separately leverage private data to locally update the model. The updated mod-
els are sent back to the server, which aggregates the updates into a new global
model. Due to its strength in allowing many participants to collaborate, fed-
erated learning has gained popularity, with applications in mobile devices [13],
speech and image recognition [15], finance [14], and medicine [11].

The crux of federated learning lies in the fact that no single entity owns
or verifies the training data that participants utilize to train model updates.
However, many scholars have shown that federated learning is still vulnerable
to adversarial attacks [1,2,4,7,8,21]. As federated learning allows an attacker
to have access to the modeling process, attackers can leverage model poisoning
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
V. Torra and Y. Narukawa (Eds.): MDAI 2022, LNAI 13408, pp. 143–155, 2022.
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in a federated environment to significantly impact the performance of a global
model. One way this can be done is through the insertion of backdoors during
the learning process, where the goal is to corrupt the global model to lead to a
misclassification of a specific task, rather than affecting the performance of the
entire model. Model poisoning greatly outperforms traditional data poisoning
and is of great concern among federated learning researchers [8].

Along with this increase in concern about model poisoning has been an
increase in research on methods to defend and harden federated learning systems
against adversarial attacks through alternative aggregation mechanisms. How-
ever, many of these mechanisms can be circumvented by sophisticated attacks
[1,6,7,20,21], and as such creating robust federated learning against model
poisoning attacks is an open problem. While the majority of works focus on
how attackers can circumvent specific defenses, there are no current works that
address the performance of such defenses on model poisoning in general.

In this work, we aim to provide an analysis of the behavior of byzantine aggre-
gation mechanisms against model poisoning in a federated learning setting. In
particular, we analyze the performance of popular defenses such as Krum, Multi-
Krum [3], Norm-Difference Clipping [20], and RFA [18], and conduct model poi-
soning within federated learning environments under various adversarial settings.
These defenses are chosen due to their applicability and strength in defending
federated learning systems.

2 Background

2.1 Federated Learning

Federated Learning is a machine learning (ML) setting where the training of a
model is distributed across multiple clients to create a collaborative or global
model [16]. Generally orchestrated by a central server S, federated learning fol-
lows a multi-round, multi-agent based strategy. The system consists of K partic-
ipants, each with access to private data. In each round t, the server distributes
a global model wt to a random subset of participants’ k, who then separately
leverage private data to locally train updated models lt+1. Each participant sep-
arately and concurrently sends the difference between the current global model
and their updated model back to the server, which updates the global model
through aggregation wt+1 = wt + η

K

∑k
i=1(l

t+1
i −wt) where η is the server learn-

ing rate. Local data is never shared with server S, nor with other participants.

2.2 Byzantine-Tolerant Aggregation

Federated learning relies on aggregation rules to combine local model parameters
into global model parameters. The most basic aggregation rules work through
averaging local model parameters but rely on the assumption that all partici-
pants are honest. An attacker can take advantage of simple aggregation rules to
compromise worker devices [3,22], or model updates [1,2,6], compromising the
global model for all participants. Recent work has focused on the development
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of Byzantine-Tolerant aggregation rules, where the goal is to ensure convergence
in the presence of Byzantine participants [3,4,20,22]. However, many of these
byzantine-robust methods assume that the attacker intends to prevent conver-
gence of the model, which is not the case in a backdoor attack scenario.

Krum and Multi-Krum. Krum and Multi-Krum are alternative byzantine
aggregation methods that intend to tolerate Byzantine participants in a dis-
tributed setting by selecting fewer models for aggregation, attempting to exclude
malicious participants [3]. In Krum, only one of the participants’ local models is
chosen to be used as the global model. It is designed to tolerate c compromised par-
ticipants out of n. For each round, the pairwise distances between all local models
submitted are computed. Then, the server sums up the n− c−2 closest distances,
and the model with the lowest sum is chosen as the global model for the next round.
Multi-Krum is a variation of Krum where instead of one model being chosen, the
top m = n − c models are chosen to be averaged into a new global model.

Norm-Difference Clipping. This method relies on the theory that malicious
models are likely to produce large norms and that a simple clipping defense could
thwart attackers [20]. Norm-difference clipping works by examining the norm-
difference of local models submitted to the server, as compared to the current
global model, and clipping model updates that have a norm difference larger
than threshold M .

RFA. The RFA aggregation mechanism uses a modified method to compute a
weighted geometric median using the smoothed Weiszfeld’s algorithm [18].

2.3 Related Work

Many recent works have discovered methods to insert backdoors in Federated
Learning using model poisoning. In federated learning, this is conducted with the
aimof causing the globalmodel tomisclassify a set of chosen inputswhilemaintain-
ing high accuracy in the original classification tasks. The first of such works demon-
strated that model poisoning was effective in a federated learning system, utilizing
a novel method to allow the attacker to send back any model they want to be aggre-
gated into the global model, known as model replacement [1]. Similarly, Bhagoji et
al. proposed a modification that leveraged boosting to increase the learning rate
of the backdoor inputs [2]. Further, Wang et al. proposed a method of inserting
edge-case backdoors, further demonstrating that the federated learning settings
are vulnerable to both model poisoning and model replacement attacks [21].

3 Threat Model

We assume that the attacker has control over the local training process and
system of one random participant, including training data, hyperparameters,
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and training process. We assume that attackers are singular entities and are
not working toward a common goal with other participants. We assume that all
other participants are behaving honestly and correctly. In all experiments, we
limit the scenario to having no more than one attacker per round. The attacker
does not have access to the training data of other participants, nor does it know
their identities. The attacker does not have control of the server and does not
control the defense mechanism utilized to aggregate local models into a new
global model each round.

3.1 Backdoor Attacks

For consistency with previous work in the domain, our threat model is inspired by
existing literature [1,20,21]. We consider backdoor attacks, where an attacker aims
to manipulate the performance of a model on a particular subtask (hereby called
the ‘attack task’) while maintaining high accuracy on the model’s intended tasks
(hereby called the ‘main tasks’). The main goal of the attacker is to manipulate
the federated learning system to produce a global model that performs with high
accuracy on the model’s intended tasks as well as an attacker-chosen subtask. For
example, a given model’s intended task may be to correctly classify pictures of
animals or numbers. In these scenarios, the attack task may be to classify pictures
of cats as birds, or the number ‘6’ as the number ‘2’, without impacting the model’s
performance on its original tasks. By maintaining high accuracy on the model’s
main tasks, it is more likely that the attack task will go unnoticed.

3.2 Model Replacement

We consider attacks with and without model replacement. In scenarios without
model replacement, the attacker trains the current global model with their data
to achieve high accuracy in both the main tasks and the chosen attack task. The
poisoned model is submitted to the server and aggregated into the global model,
according to the associated aggregation method.

Alternatively, in model replacement scenarios, the attacker aims to replace
the global model with any model of their choice. Model replacement occurs in
conjunction with the backdoor attack. Generally, this can be achieved through a
weight re-scaling method, where the attacker re-scales the weights of the global
model to resubmit as an adversarial model along with their goals. In this paper,
we scale the weights using the constrain-and-scale technique developed by Bag-
dasaryan et al. [1] This approach typically requires that the attacker has knowl-
edge about the current global model and the federated environment, and requires
model convergence.

4 Experiments

4.1 Experimental Setup

Our simulated federated learning environment is modeled after [16]. The setup
consists of K clients, each with access to data. This data is not shared with the
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server S. For each federated learning round t, the server randomly selects a subset
of clients k and provides the current global model to each. Participants’ conduct
local model training separately and compute a model update. Each participant
sends back updated model weights to the server for aggregation.

Table 1. Parameters for experimental set up including datasets and model type used.

Experiment Scenario 1 CIFAR-10 Scenario 2 EMNIST

Model VGG-9 LeNet

Data points 50,000 341, 873

Classes 10 10

Clients K 3,383 200

Clients per round k 10 10

Epochs E 2 5

Learning rate 0.2 0.1

We conduct experiments on the effectiveness and limits of Byzantine-tolerant
aggregation mechanisms on preventing attacks by adversaries in a federated
environment. We consider four different aggregation mechanisms (Krum, Multi-
Krum, RFA, and Norm-Difference Clipping), compared to a setting where no
defense and the standard aggregation method is used, Federated Averaging [12].

We explore the impact of the frequency of adversarial attacks, particularly
measuring fixed-attack frequencies of one attack per round (i.e. an attack every
round), one attack every 5 rounds, and one attack every 10 rounds. We consider
situations where only one random client is the attacker. As a baseline, we provide
a comparison to a setting with no adversaries. In these settings, hereby called a
‘no attack’ scenario, we still provide an analysis on the behavior of the attack
task. This serves to ensure that the attack task does not naturally increase in
accuracy through normal model training. For comparison purposes, our experi-
ments utilize the same data and experimental setups utilized by previous work
in the domain [1,20,21], and the values of all hyperparameters can be found in
Table 1. For all experiments, the subset of clients k is set to 10 (i.e. 10 clients
participate per round), and the number of federated rounds t is set to 500. All
experiments are implemented in PyTorch [17]. We run experiments on a server
with two NVidia Tesla K80 GPUs and 132 GB of RAM.

4.2 Datasets and Learning Models

As the goal of our paper is limited to analyzing the defense characteristics
of aggregation mechanisms and not to introducing novel datasets or poisoning
attacks, we consider poisoned datasets used previously in the literature [2,20,21].

Experiment Scenario 1 focuses on image classification using the CIFAR-10
dataset [9]. We replicate the experimental setup in [21], where photos of South-
west Airline planes are collected and poisoned to be labeled ‘truck’. In total,
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there are 784 and 196 examples in the training and test sets. We utilize the
VGG-9 model [19], beginning with a model with 77.53% accuracy. The model is
initialized with a learning rate of 0.2 for two epochs.

Experiment Scenario 2 focuses on digit classification. In this experiment,
we utilize the EMNIST [5] and ARDIS [10] datasets. We prepare the data and
the model in the same way as [21]. For the non-malicious participants, there
are 660 images used for training. For malicious participants, 66 images of the
number ‘7’ are labeled ‘1’ and mixed with 100 randomly sampled images from the
EMNIST dataset. For evaluation, 1000 images from the ARDIS dataset are used.
We utilize the LeNet-5 architecture for image classification as in the PyTorch
MNIST example1. The model is initialized with a model with 88% accuracy,
with a learning rate of 0.1 for five epochs.

4.3 Experimental Fairness

In general, Byzantine-tolerant aggregation methods focus primarily upon ensur-
ing the convergence of the model in the presence of adversaries. However, this
does not directly imply that the aggregation method will be fair. Indeed, some
aggregation methods have been found to negatively impact the main perfor-
mance of the model [3,21].

We consider the algorithm ‘fair’ if the success of the main task is left unhin-
dered while the defense is deployed, and ‘unfair’ if the defense has a signifi-
cant negative impact on the success of the algorithms main tasks, regardless
of whether or not the defense was successful at mitigating a potential attack.
Further, a ‘fair’ model should accurately classify all tasks consistently, without
misclassifying one or more tasks (i.e. if the algorithm classifies 1 task incorrectly
consistently, it is not a fair algorithm).

To measure the impact of this fairness concern, we utilize the Accuracy
Parity (AP) ratio as formulated in [21]. This ratio measures the fairness of the
model on each task. As formulated, we calculate AP ratio as APratio = pmin

pmax
. A

classifier satisfies AP if pi = pj for all pairs i, j where pi is the accuracy of class
i. This metric would equal 1 if perfect parity exists (i.e. all classes are measured
correctly), and 0 only if one or more class is completely misclassified.

5 Experimental Results

The results of Experiment Scenario 1 and 2 are displayed in Fig. 1 and 2. The
accuracy rates of the attack task can be found in Tables 2 and 3.

In all cases, the main model is unaffected by the backdoor poisoning method,
and an increase in the accuracy of the backdoor task is noted. This indicates
that the poisoning method was successful in poisoning only a specific subtask
and maintaining high accuracy on the model’s intended tasks. For both datasets,
there is no accuracy growth observed for the attack task in the ‘no attack’ sce-
nario, indicating that the rise of the attack task is in fact due to the backdoor
1 https://github.com/pytorch/examples/tree/master/mnist.

https://github.com/pytorch/examples/tree/master/mnist
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Fig. 1. Experiment Scenario 1: accuracy of model performance on the main and attack
tasks under the four attack settings and five defense scenarios.

Fig. 2. Experiment Scenario 2: accuracy of model performance on the main and attack
tasks under the four attack settings and five defense scenarios.

attack. Further, as expected, the frequency of the attack highly impacts its suc-
cess, with more frequent attacks resulting in higher attack task accuracy. In
regards to model replacement, in all cases, there is a clear delimitation between
the effectiveness of defenses with and without model replacement. The effective-
ness of mitigation of model replacement by each defense method is detailed in
the following sections.

5.1 Aggregation Mechanisms and Defenses

No Defense. For comparison purposes, we first observe scenarios where the
standard aggregation method is used (Federated Averaging). This is considered
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Table 2. Experiment Scenario 1: without model replacement (with model replace-
ment). Attack task accuracy percentages for all scenarios.

No defense Krum Multi-Krum RFA Norm-Difference

No attack Minimum 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0)

Maximum 11.1 (11.1) 43.9 (43.9) 15.6 (15.6) 10.6 (10.6) 10.0 (10)

Mean 2.2 (2.2) 6.4 (6.4) 2.1 (2.1) 2.1 (2.1) 2.0 (2)

Attack every 10 rounds Minimum 0.0 (2.2) 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0)

Maximum 44.4 (94.4) 45.6 (45.6) 17.8 (11.7) 42.2 (49.4) 43.9 (73.9)

Mean 11.4 (33.3) 6.2 (6.2) 1.8 (1.6) 8.2 (8.5) 10.0 (13.4)

Attack every 5 rounds Minimum 0.0 (1.1) 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0)

Maximum 58.9 (92.8) 55.0 (55) 39.4 (12.8) 70.6 (75.6) 61.1 (83.3)

Mean 20.7 (39.7) 6.0 (6) 3.0 (2.2) 23.7 (25.7) 18.7 (28.2)

Attack every (1) round Minimum 1.1 (2.2) 0.0 (0) 0.0 (0) 2.8 (1.1) 1.7 (1.1)

Maximum 74.4 (93.3) 53.9 (53.9) 75.0 (14.4) 77.8 (85) 71.7 (86.7)

Mean 34.8 (53.6) 6.8 (5.6) 41.4 (2.1) 52.2 (57) 35.0 (47.9)

Table 3. Experiment Scenario 2: without model replacement (with model replace-
ment). Attack task accuracy percentages for all scenarios.

No defense Krum Multi-Krum RFA Norm-Difference

No attack Minimum 2.0 (2) 3.0 (3) 1.0 (1) 2.0 (2) 2.0 (2)

Maximum 17.0 (17) 42.0 (42) 23.0 (23) 20.0 (20) 17.0 (17)

Mean 5.1 (5.1) 14.8 (14.8) 5.4 (5.4) 6.4 (6.4) 5.1 (5.1)

Attack every 10 rounds Minimum 11.0 (11) 2.0 (2) 2.0 (2) 11.0 (11) 11.0 (11)

Maximum 93.0 (100) 40.0 (40) 23.0 (23) 93.0 (93) 93.0 (99)

Mean 81.9 (90.8) 12.8 (12.8) 5.4 (5.4) 79.0 (79.5) 81.6 (89.2)

Attack every 5 rounds Minimum 11.0 (11) 3.0 (3) 2.0 (2) 11.0 (11) 11.0 (11)

Maximum 95.0 (100) 54.0 (50) 96.0 (18) 95.0 (96) 95.0 (99)

Mean 87.5 (91.8) 20.6 (15.7) 20.3 (5.4) 87.9 (88.2) 87.6 (90.8)

Attack every (1) round Minimum 11.0 (11) 4.0 (4) 9.0 (2) 11.0 (11) 11.0 (11)

Maximum 97.0 (100) 55.0 (62) 97.0 (19) 98.0 (98) 97.0 (99)

Mean 90.8 (92.6) 16.6 (13.8) 91.3 (5.6) 94.9 (95.6) 90.9 (92.3)

a scenario where there is no defense for an adversarial attack, as this aggrega-
tion method simply averages the contributions of all participants, including the
malicious participant.

In both cases, where there is no defense, and no attack, the attack task
maintains low accuracy while the main task maintains a stable, high accuracy
rate. This is expected behavior and indicates that the model is not poisoned at
the start and that it improves over time through iterations. However, in each
case where an attack is observed (every 10 rounds, 5 rounds, and each round),
an increase in the success of the attack task is observed, with model replacement
typically resulting in higher success rates. An increase in the success of the attack
task is observed in both scenarios, with more frequent attacks typically resulting
in higher attack task accuracy rates.
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Overall, these results indicate that 1) the attack task is successful in both
cases, and 2) the experimental setup is robust enough to measure the success of
the defenses on a basic model poisoning scenario. Where there is no attack, the
consistent observation of low attack task accuracy indicates that our setup is
robust enough to measure the impact of an attack on both main and attack task
accuracy. Further, this provides a benchmark of comparison for the effectiveness
of the byzantine defenses on decreasing attack success.

Krum. Overall, the Krum defense is successful in defending against the attack
task in every case. Even in the most aggressive case, it protects against the
attack task, maintaining a low accuracy (below 40% in all cases), with less than
20% accuracy observed after 500 rounds. This is observed in both cases with and
without model replacement. However, the Krum method negatively impacts the
performance of the model even where there is no attack. A notable decrease in
the performance of the main tasks is observed in all cases. This is likely due to the
protocol choosing only one local model to use as the global model, decreasing
the information gained in each round. This issue will be discussed further in
Sect. 5.2.

Multi-Krum. As an extension to Krum, Multi-Krum produces similar results.
In all cases, Multi-Krum successfully defends against model replacement scenar-
ios, where the attack task accuracy is kept below 20% throughout all 500 rounds.
In scenarios without model replacement, Multi-Krum fails in three cases.

In the first scenario, Multi-Krum can defend against attacks successfully
up to an attack every round. When an attack is observed every round without
model replacement, the accuracy of the attack task oscillates throughout the
500 rounds, with a minimum accuracy of 0% and maximum accuracy of 75%.
The defense is overall not effective, as a steady increase is observed in the attack
task accuracy to 47.2% at 500 rounds, with a mean accuracy across all rounds of
41.36%. A similar trend is observed in scenario 2 in regards to protecting from
attacks with low frequency and failing to defend where an attack is conducted
each round. However, with a frequency of five attacks per round, the accuracy of
the attack task rapidly increases to nearly 40% by round 200, where it appears
Multi-Krum detected and eliminated the attack within the provided 500 rounds.

RFA. RFA is not successful in completely mitigating attacks in any case but
does indicate some effectiveness in protecting against model replacement attacks.
In all experiments without model replacement, RFA does not succeed in decreas-
ing the effectiveness of the attack, often actually increasing the overall accuracy
of the attack task. It appears that this defense is particularly weak to aggres-
sive (frequent) attacks, where the success of the attack task increases even more
aggressively than observed in the no-defense scenario.

However, RFA does show moderate success in the case of model replacement.
At first glance, the success of RFA appears consistent between replacement and
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non-replacement scenarios, as we observe nearly equal attack task accuracy levels
in all sets of experiments. However, as model replacement is generally deemed
as more aggressive, this equality indicates that RFA is more robust against
replacement attacks. Indeed, RFA greatly decreases the success of the attack
in model replacement scenarios that without a defense were observed to excel
immediately. For example, in scenario 1 the mean attack success decreased from
33.3% and 39.7% with no defense to 8.5% and 25.6% with RFA, for attacks every
10 and 5 rounds respectively. From these experiments, it appears that RFA does
not aid in scenarios without replacement in decreasing attack task accuracy,
often increasing it in more aggressive scenarios. Further, while RFA is not as
successful as Krum and Multi-Krum, there is no impact of the method on the
overall success of the main tasks.

Norm-Difference Clipping. The norm-difference clipping defense produces
similar results as RFA. The most notable difference between the two is that
norm-difference clipping does not exhibit the same behavior of increasing the
effectiveness of the attack in any case.

Considering scenarios without model replacement, in all cases utilizing the
norm-difference clipping defense, we observe attack task accuracy rates that are
nearly identical to those observed in the no defense scenario (Tables 2 and 3).
However, this defense was successful in decreasing the success of attacks aided
with model replacement, with varying degrees of success.

5.2 Defense Fairness

Fig. 3. AP ratio under each aggregation mechanism in Scenario 2.

Our scenarios focus on backdoor attacks, where the goal of the attacker is to
increase the accuracy of a poisoned sub-task while maintaining high accuracy
on the models’ main tasks. In all cases, this assumption is confirmed. However,
there are some fairness concerns in respect to defenses impacting the accuracy of
the main tasks, even when there is no attack. Utilizing AP Ratio, we can observe
the fairness of the algorithm in correctly classifying the intended input (Fig. 3).
Here, we only show the results of Scenario 2, however, these results are similar
to those observed in Scenario 1.
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In all cases, the AP ratios of no defense, Multi-Krum, RFA, and Norm-
Difference Clipping are observed as higher than the AP ratios observed under
Krum. This indicates a problem with the fairness of Krum. This can also be
readily observed in the accuracy values of the main tasks. In the case of the first
scenario, a significant decrease in the accuracy of the main tasks is observed.
While the model should have an accuracy over 80%, the main tasks are observed
to have accuracy below 70%, with an average accuracy of 69% in all cases. This
effect is less pronounced but still present in the second scenario, where the main
model accuracy drops to 93% on average. While the Krum defense is the most
effective at mitigating attacks, it is the only defense that produces this behavior.

In an environment where the accuracy of the model is already low, such as
scenario 1, this decrease in the success of the model on its intended tasks could
have significant detrimental impacts on the model performance and cause it to
be completely ineffective for legitimate use. Although it is a variation of Krum,
Multi-Krum does not exhibit this flaw. This is likely because choosing more
than one model allows for richness in the global model throughout rounds. Users
should consider this fairness concern while utilizing Krum in regards to their
specific use case.

6 Discussion and Conclusion

It has been well established here, and in the literature, that model poisoning
is a significant concern in a federated learning environment. An attacker can
manipulate the global model to produce high accuracy on hidden tasks while
maintaining appropriate behavior on main tasks, potentially exposing federated
participants to manipulated models that produce an undesired result.

However, defending against these attacks is a difficult task. We have demon-
strated that current byzantine defenses, such as Krum, Multi-Krum, RFA, and
Norm-Difference Clipping, have inconsistent effectiveness in defending against
backdoor attacks. The results of our experiments indicate that Krum is the
most effective at mitigating attacks, followed by Multi-Krum, RFA, and Norm-
Difference Clipping. All defenses perform better than a no-defense scenario, indi-
cating success in protecting against backdoor attacks.

However, while Krum has the most success mitigating against malicious
attackers in a backdoor attack scenario, it has a negative impact on the main
model, calling into question the fairness of such a defense. Multi-Krum does not
share this same fairness concern, indicating that it may be a better defense for
all cases except those with the most aggressive attacks, where Multi-Krum may
not damage the main model but could fail to prevent attacks.

This work has highlighted that the current aggregation methods cannot ade-
quately prevent model poisoning attacks without affecting the main performance
of the model. This indicates that further work is needed to harden federated
learning against attacks, especially where the joint model is used in sensitive
areas, such as health care. Alternative aggregation methods may provide more
thorough protection without hindering the success of the model.
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Abstract. Early stopping techniques can be utilized to decrease the
time cost, however currently the ultimate goal of early stopping tech-
niques is closely related to the accuracy upgrade or the ability of the
neural network to generalize better on unseen data without being large
or complex in structure and not directly with its efficiency. Time effi-
ciency is a critical factor in neural networks, especially when dealing
with the segmentation of 3D point cloud data, not only because a neu-
ral network itself is computationally expensive, but also because point
clouds are large and noisy data, making learning processes even more
costly. In this paper, we propose a new early stopping technique based
on fundamental mathematics aiming to upgrade the trade-off between
the learning efficiency and accuracy of neural networks dealing with 3D
point clouds. Our results show that by employing our early stopping
technique in four distinct and highly utilized neural networks in seg-
menting 3D point clouds, the training time efficiency of the models is
greatly improved, with efficiency gain values reaching up to 94%, while
the models achieving in just a few epochs approximately similar seg-
mentation accuracy metric values like the ones that are obtained in the
training of the neural networks in 200 epochs. Also, our proposal out-
performs four conventional early stopping approaches in segmentation
accuracy, implying a promising innovative early stopping technique in
point cloud segmentation.

Keywords: Deep learning · Point clouds · Segmentation · Efficiency ·
Early stopping

1 Introduction

Since the popularity and the demand in 3D point cloud data analysis is con-
stantly increasing, the rigorous evaluation of intelligent techniques dealing with
such data is becoming a need. In particular, the appearance of 3D sensors, such
as LIDAR and RGB-D cameras, among others, has favoured the creation of 3D-
representations of areas (e.g., map) or objects (e.g., car). The set of data points
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in the x, y and z coordinated 3D space appearing in these 3D-representations is
called point cloud and represents a 3D shape or object. Their speciality is derived
by their noisy and irregular nature and because of this, analysis tasks, such as
segmentation, that are common to deal efficiently and effectively in the 2D data
domain, portray additional challenges in terms of efficiency and robustness in
3D.

Neural Networks (NN) are the most suitable machine learning algorithms to
segment point cloud data due to their ability to handle and take advantage of
the huge amount of points (i.e. millions in most cases) that a 3D point cloud
dataset contains [2]. Different NN architectures have been proposed recently to
segment inner structures of point cloud [11,12,14]. However, recent studies show
that training and evaluating these models are a greatly time-consuming task
and, in some cases, the number of epochs and time spend is not proportional to
the accuracy achieved [18,19]. Indeed, in this process, it is important not just
to solely upgrade the accuracy-related metrics of the learning, such as accuracy,
precision, recall or F1-score, but also to achieve a balance between efficiency and
accuracy [19].

In this paper, we concentrate on 3D point cloud part segmentation analysis
and on the upgrade of the trade-off between segmentation accuracy and efficiency
of the learning process of NN models. By employing fundamental mathematical
methodologies, we propose an algorithmic way that defines an early stopping
criterion on the learning process of the models which aims to finish the learning
process at an early point but maintaining an accurate enough model for making
predictions on the test data. Our results show that by employing our early
stopping technique to four of the most well-known neural networks in point cloud
segmentation, the trade-off between training time efficiency and segmentation
accuracy of the models is greatly improved. The models achieve in just a few
epochs comparable segmentation accuracy metric values to the ones obtained
in the training of the NN. Besides, the comparison with four conventional early
stopping techniques in terms of obtained accuracy and loss analysis indicates
that our proposal is a promising novel technique of early stopping in the NN
models dealing with point cloud segmentation.

2 Related Work

The study of the ways to enhance the learning process of NN models to achieve
higher accuracy and efficiency are major open issues. In the point cloud seg-
mentation field, there are numerous studies dealing with advancements in the
architectures or the learning parameters of the developed models to achieve
higher segmentation accuracy [2,6,8,17]. However, research must go beyond pure
accuracy-metrics and another open issue of utmost importance is the efficiency of
such deep learning models dealing with 3D point clouds, although it is still in its
early steps of research. Recent studies highlight that the efficiency of 3D point
cloud segmentation models is a serious concern for the community [5,17,19].
However, the majority of new and advanced deep learning models emphasize on
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the improvement of segmentation accuracy, providing almost no information on
the models’ efficiency [7,9,12,13].

On the other hand, certain techniques of early stopping of the neural net-
works are utilized to handle either specific learning issues or time efficiency in
the training phase. Caruana et al. [3] showed that when huge neural networks
have learnt models that are similar to those learned by smaller ones, early stop-
ping can be employed to stop their training process without significant loss in
generalization performance.

Specifically, early stopping aims to stop the optimization of the training
process of a neural network at an early stage in order to, firstly, mitigate the
performance issues caused by overfitting, such as loss of generalization of the
network, and secondly to improve the training time cost, i.e. time efficiency
[10]. While there are many strategies for dealing with overfitting issues, such as
regularization, network-reduction strategy, or data expansion, the early stopping
techniques are the most used ones [16]. Data science researchers mostly utilize
early stopping techniques based on a threshold monitoring a loss function’s values
[1,10]. For instance, the stopping of training when the error on the validation
data is higher than the one recorded in the previous epoch or epochs. Although,
the aforementioned technique is theoretically correct, there is always more than
one local minimum in real validation error curves and, thus several stopping
criteria utilize windows (or fixed intervals of epochs) capturing the evolution of
validation error are employed in order to deal with this [10]. Recently, Bai et al.
[1] proposed a progressive early stopping technique, in which they split a neural
network into multiple parts and train them individually. Rather than employing
traditional early stopping techniques, which require training the entire neural
network at once, they train and optimize parts of a neural network by using
early stopping criteria in those parts.

In summary, the majority of the related works propose early stopping tech-
niques aiming to deal with learning issues of the models, such as overfitting, in
order to lead to higher accuracy values in unseen data (test data), i.e. improve
the model’s generalization performance. They either rely on the whole network
learning process (traditional early stopping) or in specific areas and segments of
the NN (progressive early stopping). However, at the time of writing this paper,
there are no studies dealing with early stopping of the models with a goal to
provide a more efficient, in terms of time, learning process but also a highly
accurate model. Thus, in an attempt to fill this gap we propose an effective
early stopping aiming to get a model in a state that is highly accurate but also
having spent a low amount of time in its training (efficient in run-time). For
this, our approach focuses on the segmentation accuracy-related performance
metrics instead of the loss function values (see Sect. 3). We categorize our study
in the traditional early stopping techniques, mainly because we do not split the
architecture of the utilized neural networks into smaller parts.
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3 Early Stopping of Point Cloud Neural Networks

This section presents, first, our early stopping criteria, and then, the algorithmic
way to select the early stopping of the learning process of the models.

3.1 Early Stopping Criteria

We propose an automatic and online way of stopping the learning process of
a point cloud part segmentation task based on the analysis of a stop-window
containing the values of a monitored performance metric. Please, note that the
monitored performance metric can be any segmentation accuracy-related met-
ric. However, we have selected the ImIoU , i.e. the mean value of IoU across
all point cloud Instances, explained in [9], because it provides a general seg-
mentation accuracy evaluation across all the available point cloud instances. For

completeness, ImIoU =
∑n

k=1 IoUk
n , where n denotes the number of instances

and the subscript k in the sum takes values in range [1, n].
Initially, performance metric values x are obtained by testing the NN in

the whole test set after each training epoch. Indeed, in every epoch we train,
validate and test the NN. The testing time after each epoch consists of an almost
negligible cost compared to the training-validation phases, because it is a forward
pass of the data to the model and, as Zhang et al. [17] showed, it is on the scale
of milliseconds or even seconds.

Assuming that the performance metric values are samples that can be approx-
imated by a continuous smooth and differentiable (monotonic) function f(x)
that converges to a maximum upper bound value, we can calculate the first and
second derivative values of f(x), being f ′(x) and f ′′(x) respectively. We approx-
imate the first and second derivatives of f(x) using the formulation appearing
in Eqs. 1 and 2 respectively.

f ′(x) =
f(x + h) − f(x)

h
, (1)

f ′′(x) =
f ′(x + h) − f ′(x)

h
, (2)

where h is the distance between the data points. The data points are evenly
spaced, because we have one performance metric value at every epoch (h = 1).

First, we define a window, wij , to be the set of sampled values of f(x) in
the interval (xi, xj), with xi < xj , and considering that f(xi), f(xj) are local
maximum and minimum respectively. Please, note that xi refers to the i-th and
xj refers to the j-th epoch. Moreover we define size(wij) = j−i, as the length of
the interval domain, and range(wij) = {f(xi)−f(xi+1), ..., f(xj−1)−f(xj)} the
interval range vector. The range(wij) is defined as a vector containing all the
differences between each pair of consecutive performance metric values inside
the window.

The underlying function of an accuracy-related metric oscillates between local
minimum and maximum values. Note that we aim to define intervals to detect
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when the function oscillates less and converges to a certain value. To do this we
could use: (i) Fixed-size intervals (i.e. windows of fixed-size) but they are not
adaptive, i.e. taking into account the oscillations of the function, (ii) Adaptive
intervals, where we detect the oscillations between local minimum and maximum
values to observe the amplitude of the window. Indeed, it could be between
a local maximum and a local minimum. In our case, we opted for the latter.
The rationale behind our decision is that by starting the stop window at a
local maximum, the model reached a peak in its accuracy, thus it seems like a
spot to initiate an analysis. Then, we stop at the local minimum after the local
maximum, because the model reached a trough spot or alternatively a negative
peak, implying that no higher accuracy can be obtained within this interval.

Fundamentally, the local minimum of a function can be found where the
first derivative of the function is equal to zero, i.e. f ′(x) = 0, and the second
derivative in this exact spot is greater than zero, i.e. f ′′(x) > 0. The approxima-
tion of local maximum is likewise the same (f ′(x) = 0) but in this case the sec-
ond derivative of the function in that spot should be less than zero (f ′′(x) < 0).

Therefore, we define the stop-window as the window, wij , that fulfils certain
conditions. In our case, we utilize the following conditions:

1. size(wij) ≥ N , with N taking values within [2,maxEpochs − 1], and
2. ∀k ∈ range(wij) : |k| < D, with D taking values in the range of (0, 2].

The size(wij) is defined as the minimum distance in epochs between the
local maximum and local minimum point. For instance, if N = 4, then the
distance between the local maximum and local minimum should be at least 4
epochs. For clarification, the second condition implies that all the elements of
the vector range(wij) should be less than a certain D, taking into consideration
that the accuracy-related metric is measured in [0,100]. The first condition (i)
guarantees a certain size of the window’s interval to avoid noisy samples in terms
of consecutive local maximums and minimums, while the second condition (ii)
ensures the absence of big oscillations in the sampled values inside the window.
Please note that, in our proposal we consider a maximum value of D = 2 to
avoid extreme oscillations of values. However, the selection of N and D values
is open for future experimentation.

3.2 The Selection of the Stop-Window

Following the above-mentioned mathematical foundations, we explain our pro-
posal in Algorithm 1. The algorithm is capable of selecting a stop-window of
learning during the learning process, i.e. online, where the model is accurate
enough.

First, in lines 1–9 of the algorithm we initialize the variables that we will use.
Specifically, minpoint and maxpoint denote the local minimum and local maxi-
mum respectively. Also, the variable epoch denotes the current epoch learning
process, while Swindow and stopping denote the initialization of the stop-window
and the stopping state shows the Boolean condition according to which we will
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stop the training. The stopEpoch variable denotes the selected epoch to stop the
training process of the model. The variables D and N denote the maximum range
of the window and minimum size of the window respectively. While a NN model
is training after each epoch, we evaluate its performance on the test data using
the ImIoU metric and the value is returned to f(epoch) variable. By calculating
the f ′(epoch) and f ′′(epoch), we check if the conditions to form local minimum
(code lines 13–14) and local maximum (code lines 15–16) apply. In line 17, we
check for the appearance of a local maximum prior to a local minimum of the
performance metric and we define a window. Finally, in lines 19–22, we check
the conditions to declare a window (w) as a stop-window (Swindow) and then
we set the window to be qualified as a stop-window. Then, we keep the epoch
where the model achieved its maximum ImIoU value inside the Swindow, i.e.
stopEpoch, otherwise we continue the training process of the NN. The function
returns both the Swindow and stopEpoch.

Algorithm 1: Method of locating the Stop-window
1 minpoint = 0;
2 maxpoint = 0;
3 maxEpochs = 200 // can be changed to any value
4 epoch = 0;
5 Swindow = [];
6 stopEpoch = 0 ;
7 stopping = False;
8 D = 2 // D can be changed to any value in (0,2]
9 N = 4 // N can be changed to any value in [2, max epoch - 1]

10 while (!stopping) and (epoch ≤ maxEpochs) do
11 model@epoch = training() // returns model @ current epoch
12 f(epoch) = testing(model@epoch) // performance metric evaluation

13 if f ′(epoch) == 0 and f ′′(epoch) > 0 then
14 minpoint = epoch // local minimum at this epoch

15 if f ′(epoch) == 0 and f ′′(epoch) < 0 then
16 maxpoint = epoch // local maximum at this epoch

17 if maxpoint ¡ minpoint then
18 w = [maxpoint, minpoint] // w denotes a window
19 if (size(w) ≥ N)) and (∀k ∈ range(w) : |k| < D)) then
20 Swindow = w;
21 stopEpoch = epoch where max(f(epoch)) ∈[Swindow];
22 stopping = True;

23 epoch++;

24 return Swindow, stopEpoch;

Note that, we stop the training once the first Swindow is encountered.
Besides, we return the stopEpoch, i.e. the epoch of Swindow in which the model
achieved the best accuracy-related metric. Thus, the final model corresponds to
the model trained until stopEpoch. It is worth-mentioning that the policy rules
to select a stop-window (lines 19–22) of the code can be reformulated.

4 Evaluation

This section describes our evaluation process and findings. Initially, we provide
our evaluation protocol and then we show the utilized data and models.
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4.1 Evaluation Protocol

We have established a standard evaluation protocol. For the training, validating,
and testing of the NN models, the split proposed by Chang et al. [4] is used.
Specifically, it comprises of 12137 point clouds for training, 1870 point clouds for
validation, and 2874 point clouds for testing. Regarding the parameterization of
the utilized NN, we set the batch size to be 16 and the optimizer to be Adam. We
also use exponential learning rate decay and batch normalization on every epoch.
Finally, following each epoch’s training phase, all of the NN were validated and
tested.

In the parameters of our early stopping algorithm we have set D = 2, N = 4,
maxEpochs = 200 and the monitored segmentation accuracy-related perfor-
mance metric is ImIoU , as defined in [9].

4.2 Data and Models

To evaluate our learning stopping strategy, we use the ShapeNet [4,15] part
segmentation data, which is one of the most utilized datasets in the field. It
comprises of 16881 3D point clouds categorised in 16 distinct classes of objects.

In addition, for the analysis of data we use four accurate deep learning models
in the field of 3D point cloud segmentation: (i) PointNet [11], (ii) PointNet++
[12], (iii) KPConv [13] and (iv) RSConv [9]. We utilize this selection of models
because it consists of models with differences in their architecture and it encap-
sulates distinct approaches of part-segmentation, such as multi-layer perceptrons
and convolutions.

4.3 Analysis of Our Proposal

Table 1 displays the proposed stop-windows accompanied with statistical mea-
surements monitoring the ImIoU metric for each model. The proposed stop-
window in each model is denoted as Swindow. We display the average ImIoU
value of the stop-window, SwAvg, the standard deviation of it, SwStd and
the maximum ImIoU value, SwMax. We further show the maximum value of
ImIoU achieved in the whole learning process of 200 epochs, Max, the ratio
of SwMax with the Max, SwMaxRatio = SwMax

Max , i.e. 0 means highly dif-
ferent and 1 means no difference, and the ratio of SwAvg versus the Max,
SwAvgRatio = SwAvg

Max .
We can observe that the models stopped in the proposed stop-windows

achieve approximately the same ImIoU values as the best achieved in whole
learning process of 200 epochs. For instance, it can be seen that the learning of
KPConv model can be stopped at any epoch inside the window of Swindow =
[10, 14], which has a maximum value of SwMax = 82.80 with a deviation of only
SwStd = 0.24. The difference between the window’s average (SwAvg = 82.42)
and max (SwMax = 82.80) from the general max recorded in 200 epochs
(Max = 84.22) are SwMaxRatio = 0.9831 and SwAvgRatio = 0.9786 respec-
tively, indicating that the stopping of training can be done early while having
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Table 1. Summary of the process of detecting stop-windows monitoring ImIoU .

PointNet PointNet++ KPConv RSConv

Swindow (epochs) [38, 41] [22, 26] [10, 14] [12, 21]

SwAvg (ImIoU) 81.67 83.48 82.42 84.42

SwStd (ImIoU) 0.10 0.14 0.24 0.24

SwMax (ImIoU) 81.76 83.63 82.80 84.82

Max (ImIoU) 84.24 84.93 84.22 85.47

SwMaxRatio (ImIoU) 0.9706 0.9847 0.9831 0.9924

SwAvgRatio (ImIoU) 0.9695 0.9829 0.9786 0.9877

a highly accurate model (almost identical to the best ImIoU obtained in 200
epochs). According to a recent performance benchmark shown in [19], KPConv
needs a great amount of time to complete the learning process on ShapeNet
dataset and specifically more time than its competitors.

Observation 1. The process of learning becomes way less time consuming,

while the test accuracy in all the analyzed models is approximately similar

to the maximum accuracy achieved in 200 epochs. Thus, by employing our

stopping algorithm the process can become much more time efficient, while the

models still achieve high accuracy.

4.4 Comparison to Conventional Early Stopping Techniques

We also compare our proposal with four common early stopping techniques,
which deal with the overfitting issues of the models. The cross entropy seg-
mentation loss in being monitored in the following conventional early stopping
strategies: (i) EarlyS1: It stops the training process of the NN when the valida-
tion loss in the current epoch is higher than in the previous one; (ii) EarlyS2:
It stops the training process when the validation loss in the current epoch is
higher than the previous one by a 5%; (iii) EarlyS3: A more advanced early
stopping technique that considers a patience parameter. Patience refers to the
number of epochs with no improvement in the monitored loss. For example
a patience = 5 indicates that the training will be stopped after 5 consecutive
epochs of no improvement in the validation loss. In our case, we set patience = 2;
(iv) EarlyS4: It stops the training of the NN with patience = 3.

Table 2 shows a comparison of our proposed technique (Our Technique),
which is the epoch that corresponds to the maximum ImIoU ∈ Swindow, versus
the four above-mentioned techniques. We denote IMaxRatio the division of
the obtained ImIoU in each strategy (stopEpoch, EarlyS1, EarlyS2, EarlyS3,
EarlyS4) with the general max of ImIoU of each model obtained in 200 epochs,
and shows the difference of each metric versus the maximum obtained by the
model in 200 epochs, i.e. 0 means highly different and 1 means no difference. Also,
we denote EffGain = (1 − Ep

200 ) ∗ 100, where Ep is the epoch that we stopped
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Table 2. Comparison of our proposed technique versus four conventional early stopping
techniques. We use dark grey and light grey cell colors to denote the best and the second
best score per metric of each row respectively.

Model Metric Our Technique EarlyS1 EarlyS2 EarlyS3 EarlyS4

PointNet

ImIoU 81.76 75.07 79.54 78.6 77.26

IMaxRatio 0.9706 0.8911 0.9406 0.9330 0.9171

EffGain Ep 39: 80.5(%) Ep 3: 98.5(%) Ep 18: 91(%) Ep 14: 93(%) Ep 15: 92.5(%)

PointNet++

ImIoU 83.63 78.66 76.71 80.94 83.45

IMaxRatio 0.9847 0.9261 0.9032 0.9530 0.9826

EffGain Ep 26: 87(%) Ep 3: 98.5(%) Ep 7: 96.5(%) Ep 11: 94.5(%) Ep 63: 86.5(%)

KPConv

ImIoU 82.80 78.33 81.04 82.13 83.15

IMaxRatio 0.9831 0.9301 0.9622 0.9752 0.9873

EffGain Ep 12: 94(%) Ep 3: 98.5(%) Ep 7: 96.5(%) Ep 11: 94.5(%) Ep 63: 68.5(%)

RSConv

ImIoU 84.82 81.84 84.42 81.87 84.82

IMaxRatio 0.9924 0.9575 0.9877 0.9579 0.9924

EffGain Ep 20: 90(%) Ep 5: 97.5(%) Ep 21: 89.5(%) Ep 6: 97(%) Ep 20: 90(%)

the training according to each early stopping technique. EffGain shows the
efficiency gain of each model in each one of the early stopping strategies.

Observing the Table 2, we can note that in our proposed stop epoch
(SwMax) the models achieved higher ImIoU values than the models obtained
from the other early stopping strategies. Regarding, the IMaxRatio metric,
which is the division of ImIoU obtained according to each strategy with the gen-
eral max of ImIoU obtained in 200 epochs, our strategy (SwMax) comes first
in almost all the models, with the exception of KPConv (IMaxRatio = 0.9831)
in which it comes second. For example, in RSConv and PointNet++ we achieve
values equal to IMaxRatio = 0.9924 and 0.9847 respectively, indicating almost
similar ImIoU values with the maximum obtained in 200 epochs. Although in
the EffGain metric, our strategy comes last compared to its competitors, the
obtained values of EffGain are pretty close to the others, with the exception
the PointNet (EffGain = 80.5%).

Observation 2. As the ultimate goal is to have a highly accurate model but

also efficient in training time, in comparison to other techniques, our approach

can be considered as the winner in selecting this model and an effective early

stopping technique to be utilized in a point cloud segmentation task.

Figure 1 shows a comparison of all the utilized early stopping strategies versus
our proposal. In PointNet, we observe that our proposed stopping comes after
the other early stopping techniques while achieving higher ImIoU values. In the
loss plot, we can see that our proposed stop-window takes place where the model
starts to overfit, achieving lower loss values than its competitors. In PointNet++,
we observe that our proposal behaves similar with the early stopping 4 strategy
and they also detect better the spot where the overfitting of the model starts.
Approximately the same behaviour appears in KPConv and RSConv models,
with our proposed stop-windows competing well against their competitors.
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Fig. 1. Application of the conventional early stopping techniques versus our stop-
window technique in four neural networks.
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Observation 3. It seems that our proposal not only provides a higher seg-

mentation accuracy (ImIoU) model than the other strategies but also a model

which generalizes better in unseen data, i.e. the cross entropy loss is lower and

the model learning is stopped right before it starts to overfit. In summary, our

proposal is capable of returning a model highly accurate and efficient, which

also competes well with the other strategies in identifying overfitting issues.

5 Conclusion

This paper proposes an effective early stopping of point cloud NN based on
mathematical foundations and focuses on the segmentation accuracy and effi-
ciency rather than monitoring loss function values. Our results indicate a rather
promising way of reducing the total time spent in the learning process of a NN,
which can be easily utilized by a variety of researchers in the field. An individ-
ual can get highly accurate point cloud segmentation results in a time-efficient
way. The comparison with several conventional early stopping techniques further
justifies the effectiveness of our proposal. Our proposal is general enough to be
utilized for monitoring any segmentation accuracy-related performance metric,
either online, during the training of the network or after the training for data
analysis of all the possible stop-windows.
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19. Zoumpekas, T., Molina, G., Salamó, M., Puig, A.: Benchmarking deep learning
models on point cloud segmentation. In: Artificial Intelligence Research and Devel-
opment, vol. 339, pp. 335–344, October 2021. https://doi.org/10.3233/FAIA210152

https://doi.org/10.1016/j.cag.2021.01.004
https://doi.org/10.3390/s19194188
https://doi.org/10.1109/CVPR.2019.00910
https://doi.org/10.1007/978-3-642-35289-8_5
https://doi.org/10.1109/CVPR.2017.16
https://doi.org/10.5555/3295222
https://doi.org/10.1109/ICCV.2019.00651
https://doi.org/10.1109/ICCV.2019.00651
https://doi.org/10.1109/cvpr42600.2020.00563
https://doi.org/10.1109/cvpr42600.2020.00563
https://doi.org/10.1145/2980179.2980238
https://doi.org/10.1088/1742-6596/1168/2/022022
https://doi.org/10.1109/ACCESS.2019.2958671
https://doi.org/10.1109/ACCESS.2019.2958671
https://doi.org/10.5220/0010826000003124
https://doi.org/10.5220/0010826000003124
https://doi.org/10.3233/FAIA210152


Representation and Interpretability of IE
Integral Neural Networks

Aoi Honda1(B), Yudai Kamata1, and Simon James2

1 Kyushu Institute of Technology, 680-2 Kawazu, Iizuka, Fukuoka 820-8502, Japan
aoi@ai.kyutech.ac.jp

2 School of Information Technology, Deakin University, Geelong, Australia

sjames@deakin.edu.au

Abstract. While there has been a lot of research attention given to neu-
ral networks and other black-box machine learning methods, recent works
on aggregation functions and fuzzy sets have highlighted the appeal of
incorporating fuzzy integrals into network implementations in order to
achieve interpretability. We present an application of the recently pro-
posed inclusion-exclusion integral neural network to the Boston House-
Price dataset to illustrate its potential and examine the settings leading
to better performance.

Keywords: Nonlinear integral · Neural network · Explainable AI ·
Interpretable machine learning

1 Introduction

The machine learning and artificial intelligence research areas have enjoyed a
number of well-publicized successes in recent years, with hardware develop-
ments now being able to implement established theory and models [8,20]. While
the increased attention has allowed these fields to flourish, there has also been
increased scrutiny and skepticism [4] with interpretability of what is going on
inside the ‘black-box’ being important not only for understanding the successes
but also for anomalous behavior and failures [18,19].

In general, there is a trade-off between interpretability and inferential per-
formance. In some cases, simpler but more transparent models such as multiple
regression analysis are employed to locally interpret inferences made by the more
complex machine learning techniques. However, there is still a desire for ‘white-
box’ analysis methods, which are interpretable but also have high predictive
performance.

The concept of explainable artificial intelligence has now gained popularity
[2,20], with goals to which theory in fuzzy sets and aggregation have a lot to offer.
In particular, the alignment between fuzzy measure or capacity-based aggrega-
tion functions and neural networks has become a topic of interest [13,17]. The
inclusion-exclusion integral [15,16], which generalizes the Choquet integral [22],
can be implemented as a neural network with a structure reflecting the interac-
tions between inputs modeled by the defining fuzzy measure. The details of this
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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model have been developed in [12], with performance comparable to deep learn-
ing methods. The key promise of the fuzzy measure based methods is our ability
to analyse model behavior according to the fuzzy measure values obtained. The
rich theory on fuzzy integrals [3,9] and their associated behavioral indices devel-
oped over the last few decades puts a number of easily implemented tools at our
fingertips.

This contribution will focus on an application of the inclusion-exclusion (IE)
integral neural network developed in [12]. The article will be set out as follows.
In Sect. 2, we present the background for the inclusion-exclusion integral based
neural network model, while Sect. 3 focuses on its implementation. In Sect. 4, we
present two sets of experiments, which examine the effect of different network
implementations and choices for the interaction operator. In Sect. 5, we provide
discussion around these results before making some final remarks.

2 Preliminaries

Here we present the definitions and background required for implementing and
analysing the proposed inclusion-exclusion integral neural network. Many of the
results and further detail can also be found in [12].

We assume the set of explanatory variables in our model correspond with
a finite J-point set, X = {1, . . . , j, . . . , J}, with P(X) denoting the power
set. Inputs are further assumed to lie in the unit interval, i.e., such that
f = (x1, x2, . . . , xJ ) ∈ [0, 1]J with xi either representing the arguments them-
selves or the values after suitable data transformations. The notation, |A| will
be used to denote the cardinality of a subset A ⊆ X.

The IE integral allows weights to be assigned to each subset of the input set,
which are represented by way of a monotone measure μ : P(X) → [0,+∞], with
A ⊆ B → μ(A) ≤ μ(B) for all A,B ⊆ X. Such measures generalize additive
measures and so are sometimes referred to simply as non-additive measures or
fuzzy measures if μ(X) = 1.

The inclusion-exclusion integral of f , as introduced in [15,16], is given as:

∫ IE

f dμ :=
∑

A∈P(X)

⎛
⎝ ∑

B⊇A

(−1)|B\A| ⊗
i∈B

xi

⎞
⎠ μ(A),

where ⊗ is an extended symmetric operator defined for any number of arguments,
referred to as the interaction operator. The following definition uses the Möbius
transform to simplify the expression.

Definition 1. (Inclusion-exclusion integral [16]). Let μ be a monotone
measure on (X,P(X)) and ⊗ be an interaction operator on [0, 1]|A| for |A| =
1, . . . , J . Then, the inclusion-exclusion integral of f = (x1, . . . , xj , . . . , xJ) with
respect to μ and ⊗ is

∫ IE

f dμ :=
∑

A∈P(X)

(⊗
i∈A

xi

)
mµ(A),
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where mµ is the Möbius transform of μ,

mµ(A) :=
∑
B⊆A

(−1)|A\B|μ(B).

The weight information contained within the fuzzy measure values can be
used to interpret the importance of individual inputs and coalitions of inputs and
their relative impact on the overall output. However, the interaction operator
⊗ will also influence the function behavior, usually by affecting the degree to
which the output tends toward higher or lower inputs (the ‘orness’ or ‘andness’
of the function [14]). Using the logical product (or minimum function) for the
interaction operator will result in the IE integral being equivalent to the Choquet
integral, and while previous studies have usually focused on the use of t-norms,
other choices, including averaging and disjunctive functions are also possible.

When the IE-integral is used as a regression model, we can denote the objec-
tive or target variable by y with the explanatory variables given by x1, . . . , xJ .
We then have,

ŷ =
∑

A∈P(X)

βA

(⊗
i∈A

xi

)
,

with a correspondence between the coefficients βA and mµ(A). For example, in
the case of X = {1, 2, 3}, we have

ŷ = β∅ + β{1}x1 + β{2}x2 + β{3}x3 + β{1,2}x1 ⊗ x2

+β{1,3}x1 ⊗ x3 + β{2,3}x2 ⊗ x3 + β{1, 2, 3}x1 ⊗ x2 ⊗ x3. (1)

Comparing with the simplest linear regression model,

ŷ = β0 + β1x1 + β2x2 + β3x3. (2)

we can see the similarity of the two, with the first four terms identical. The IE-
integral model can hence be seen as a form of linear regression with interaction
terms, generalizing not only the standard Choquet integral model, but also the
interaction effects sometimes incorporated in statistical regression models [7].

The key advantage in use of the IE-integral model is not so much in its
flexibility, but moreso in the interpretability that we gain from calculations like
the Shapley indices [6,9], which can be used to interpret the average importance
of variables and their coalitions.

3 Inclusion-Exclusion Integral Network

This section describes how to implement the IE-integral model in a neural net-
work. As noted above, the IE-integral model generalizes the classical linear
regression model, which stands as a well-established ‘white-box’ data analy-
sis method. While various methods have been proposed to solve the black-box
problem of neural networks, here we contend that the IE-integral network offers
the potential for interperting the mechanisms at play within the network. This
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is achieved by configuring the network according to the structure of the IE-
integral, from which it is then possible to interpret the relationship between the
explanatory variables and predictions directly from the structure of the network
and the values of the parameters after training.

3.1 Network Implementation

Figure 1 illustrates the IE-integral model with a network when the input dimen-
sion is 3. Transformation of variables or preprocessing is achieved within the
network at the first layer, which we refer to as the preprocessing layer. The sec-
ond half of the network is the IE-integral layer. Learning and implementation
of the IE-integral network can be implemented using common neural network
libraries. For our experiments in the following section, TensorFlow [1] and Keras
[5] were used. Figure 2 shows the implementation of the network in Fig. 1, which
was constructed using the Keras Functional API.

Compared to a more general network, there are unconnected units and
unweighted edges in the IE-integral model. For unconnected units, the value
of the weight parameter for edges between units is set to 0, and the value of
the weight parameter is set to 0 for unweighted edges, so that these weights are
fixed without being learned. A four or more input network can be designed and
implemented in the same way, however as n increases, the number of units in the
IE-integral layer in Fig. 1 and the number of multiply parts in Fig. 2 increase
exponentially.

Preprocessing layer IE-integral layer

Fig. 1. 3-input Möbius type IE-integral network
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Fig. 2. Implementation of IE-integral network (n = 3) using the Keras Functional API

3.2 Additive Representation of the Interaction Operator

Where the interaction operation ⊗ lends itself to an additive representation,
incorporating this into the network structure is naturally achieved since it aligns
with existing approaches to neural networks. In particular, Archimedean t-norms
can be represented by means of a continuous generating function t.

Theorem 1. (Schweizer et al. [21]). Let T be a t-norm on [0, 1]. If T is con-
tinuous and strictly monotone, then there exists a strictly monotone decreasing
continuous function t with lima→0+ t(a) = +∞, t(1) = 0 such that

T (a, b) = t−1(t(a) + t(b)), 0 � a, b � 1. (3)

The function t is referred to as an additive generating function. For example,
in the case of the algebraic product, the generating function is t(a) = − log a. By
Theorem 1, the t-norm can be modeled within the network by setting t(a) and
the inverse t−1(a) as activation functions, with t being applied to each argument
and t−1(a) to the resulting sum. A programmatic implementation of this is shown
in Fig. 3.

Fig. 3. Implementation of the IE-integral network with additive generation function
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As was observed in the previous section, the Choquet integral can be recov-
ered when the minimum (or logical product) is used as the interaction oper-
ator in the IE-integral. The minimum and maximum can only be represented
using the additive representation as limiting cases, however they can be imple-
mented in the network using the rectified linear unit functions (ReLU), which are
often employed in neural network models. We observe the following relationship
between these functions and the minimum and maximum.

Proposition 1. For any a, b ∈ R, it holds that a∧ b = −ReLU(a− b)+a, a∨
b = ReLU(a − b) + a, where ReLU(a) := a ∨ 0.

We hence have several choices for the interaction operator, all of which can be
represented easily within standard neural network implementations.

3.3 Other Network Models

Various types of models based on mathematical concepts have been proposed for
neural networks. A network model similar to the IE neural network model pro-
posed here is the sum and product model [10]. Both are intuitive graph models
and have the similarity of being composed of a network with sum and product
as internal nodes. They have excellent performance as classifiers, achieving high
classification accuracy on the CIFAR-10 image dataset classification problem.
The sum-product model is a graphical representation of a Bayesian network,
where the nodes of the product represent probabilistic causal relationships. In
contrast, the IE model emphasizes interpretability, where the nodes of the prod-
uct represent interactions between features.

4 Application to Regression and Classification Datasets

We aim to demonstrate the potential for data analysis by applying an IE-integral
network to a real dataset and interpreting the resulting parameters. For this we
use the Boston House-Price dataset, which is aimed at regression problems [11].

4.1 Dataset: Boston House-Price Data

This well-known dataset has 506 observations with information pertaining to
13 explanatory variables. The objective is to predict the median home price in
each region. For the purposes of our experiments, sets of 3 to 6 variables will
be selected from those summarized in Table 1. The values of LSTAT, TAX and
NOX, which are negatively correlated with the objective variable, are inverted.

4.2 Experiment 1 – Comparison of Two Equivalent Networks

While the additive representation of the interaction operator results in a math-
ematically equivalent function, whether one calculation is used over another can
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Table 1. Boston House-Price data

Min Max Average cor. with y

y Median owner-occupied home price 5 50 22.53 1.00

x1 LSTAT Lower status of the population 1.73 37.97 12.65 0.74

x2 RM Average of rooms per dwelling 3.561 8.78 6.28 0.70

x3 PTRATIO Pupil-teacher ratio 12.6 22 18.46 0.51

x4 INDUS Prop. of non-retail business acres 0.46 27.74 11.14 0.48

x5 TAX Full-value property-tax rate 187 711 408.24 0.47

x6 NOX Nitric oxides concentration 0.385 0.871 0.55 0.43

affect the learning performance. In order to investigate the differences, we imple-
mented the IE-integral network model using both the standard product (IEI) and
its additive representation in the network using generators (Additive).

We set the same initial values for the corresponding parameters of the two
networks. These are not chosen randomly in general, but rather selected to pro-
vide the optimal starting conditions, e.g. values that balance the output of the
sigmoid function over the value range of the data in the input layer and values
that maximize the entropy of the fuzzy measure in the IE-integral layer (the
additive and symmetric fuzzy measure). The fitting performance was examined
using all 506 instances of the dataset. Mean squared error was used as the loss
function and Adam as the optimization method for training. Analysis of the error
for models with 3, 4, 5 and 6 inputs showed that, while the error varied slightly,
the overall trend of mean squared error as the number of epochs increased was
essentially the same. This was also true for the coefficients of determination
between the predicted and observed values.

Table 2. Learning speed (sec)

3-input 4-input 5-input 6-input

Epoch IEI Additive IEI Additive IEI Additive IEI Additive

100 4.6 5.1 5.2 4.6 6.8 4.9 10.8 6.3

500 17.8 18.9 17.7 17.1 21.3 17.5 32.1 20.7

1000 32.8 34.2 33.0 33.1 38.7 32.6 52.3 40.1

1500 48.6 50.3 48.6 47.5 55.3 48.4 79.6 58.0

2000 69.0 70.2 74.7 62.7 72.8 64.0 112.1 75.6

3000 100.0 99.7 95.3 93.1 108.4 94.8 157.4 114.5

4000 130.4 134.2 126.4 124.5 143.5 125.6 208.3 152.1

5000 161.1 166.2 156.3 154.4 179.6 157.5 258.5 187.7

Differences did emerge however, between the two networks in terms of learn-
ing speed. As shown in Table 2, the differences in learning speed between the
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two networks grew larger as the input dimension was increased. We might expect
this difference to be more pronounced when the input dimension is much larger.

At the surface, the network with the standard product representation of the
interaction operator may be easier to interpret due to the conceptual alignment
between the network structure and the IE-integral’s mathematical representa-
tion. However, the learned parameters corresponding with the fuzzy measure
used to interpret the network’s behavior are still easily extracted from the addi-
tive generator representation. The latter would therefore seem to provide a clear
advantage when it comes to implementation and calculation speed.

4.3 Experiment 2 – Comparison of Interaction Operators

Another key consideration for implementing this model is the choice of interac-
tion operator. We hence conducted some additional experiments to compare the
performance of networks with different interaction operations. The five interac-
tion operations used were the algebraic product (AP), logical product (min) and
sum (max), �Lukasiewicz’s product and sum (LP and LS). These operators are
defined on [0,K] for any number of arguments as follows.

⊗
i∈A

AP
xi :=

1
K |A|−1

∏
i∈A

xi,
⊗
i∈A

min
xi :=

∧
i∈A

xi,
⊗
i∈A

max
xi :=

∨
i∈A

xi,

⊗
i∈A

LP
xi :=

(∑
i∈A

xi − (|A| − 1)K

)
∨ 0 and

⊗
i∈A

LS
xi :=

(∑
i∈A

xi

)
∧ K.

These five operators were primarily chosen due to being representative of those
typically investigated in research, varying as they do in strength of conjunction
and disjunction. We further note that use of the algebraic product results in
an operator consistent with linear regression models incorporating interaction
terms, and use of the logical product results in the IE-network being equivalent
to the Choquet integral.

Since the output of the preprocessing layer passes through a sigmoid activa-
tion function in the networks used, the input values of the IE-integral layer will
be in the [0, 1] range and hence we can set K = 1.

In addition to comparing the different IE-networks defined with respect to
each of the interaction operators, four neural network models were also tested for

Table 3. Simple neural network models for comparison

Hidden
layers

Units of
hidden layer(s)

Act. func. of
preprocessing

Act. func.
of integral

NN1 1 Layer 4 units Sigmoid Identity

NN2 1 Layer 4 units ReLU Identity

NN3 2 Layers 4,16 units Sigmoid Identity

NN4 2 Layers 4,16 units ReLU Identity
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comparison, the key details of which are summarized in Table 3. Simple struc-
tures were assumed for all four network models with their layers fully connected.
The optimization method and loss functions were the same as for Experiment 1.

The mean squared error (MSE) results from training of the five IE-integral
network models and the four neural network models are shown in Table 4 and
Fig; 4. The order of fitting performance after 2000 epochs with both MSE and
coefficient of determination R2 is summarized in Table 5. We note that while the
IE-integral models were not the top-performing in this respect, it is clear that a
similar level of accuracy as neural networks of comparable depth was achieved.

Table 4. Learning progress with epoch increase for each network (MSE)

Epoch AP Min Max LP LS NN1 NN2 NN3 NN4

0 0.9867 0.9639 0.9762 0.9960 0.9451 0.2693 0.3835 3.3320 0.1700

100 0.0249 0.0227 0.0258 0.0217 0.0210 0.0232 0.0125 0.0344 0.0096

500 0.0120 0.0122 0.0120 0.0092 0.0110 0.0135 0.0084 0.0139 0.0077

1000 0.0110 0.0113 0.0113 0.0089 0.0093 0.0127 0.0080 0.0121 0.0079

1500 0.0107 0.0111 0.0111 0.0088 0.0087 0.0121 0.0080 0.0112 0.0069

2000 0.0105 0.0109 0.0110 0.0088 0.0086 0.0112 0.0080 0.0101 0.0070

epoch

MSE

Fig. 4. Visual representation of learning progress results shown in Table 4

Table 6 shows the weights after training. Due to the randomness of the order
of the training data, slight differences may occur from experiment to experiment,
however the initial values of the weights and the hyperparameters of the network
are the same each time, so the learning for weight values are also similar. One
interesting observation from these results was that, in the case of �Lukasiewicz’s
products, the weights obtained for w1.3 and w1,2,3 were zero, which makes the
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Table 5. Mean squared error and determination coefficient of each network model
after 2000 epochs of training

Rank Model MSE R2

1 NN4 0.0070 0.8401

2 NN2 0.0080 0.8095

3 LS 0.0086 0.7942

4 LP 0.0088 0.7896

5 NN3 0.0101 0.7592

6 AP 0.0105 0.7498

7 Max 0.0110 0.7377

8 Min 0.110 0.7368

9 NN1 0.112 0.7314

resulting model quite easy to interpret. It is an advantage of the �Lukasiewicz’s
product that we can obtain zero weights without adding a regularization term.
The model is equivalent to

ŷ = 1.1312x′
1 +0.2077x′

2 +0.4602x′
3 +1.9158(x′

1 ⊗x′
2)+1.3602(x′

2 ⊗x′
3)−0.1059,

where each x′
j is the output of the preprocessing layer. It provides a straight-

forward explanation of the inference that positive synergy is modeled between
x1 and x3, and between x2 and x3. Table 7 shows the Shapley values when
the t-norm is a logical product, logical sum, and �Lukasiewicz product. The
weights in Table 6 have some discrepancies, but the Shapley values are sim-
ilar among the three t-norms. For the other operators, the Shapley values
were not calculated because the fuzzy measures did not satisfy the monotonic-
ity condition. In fact, in the case of the algebraic product model, we have
μ({x1, x3}) = 0.6682 + 0.2827 − 0.4497 = 0.5012 < 0.6682 = μ({x1}). From
the Shapley values, it can be seen that LSTAT, RM, and PTRATIO affect the
objective variable in that order. Also, from the weights, a strong positive inter-

Table 6. Weight of IE-integral part after learning

AP Min Max LP LS

w{1} 0.6682 1.3434 1.3678 1.1312 1.4736

w{2} 0.8248 1.1005 1.1954 0.2077 1.5031

w{3} 0.2827 0.5764 0.9699 0.4602 0.8816

w{1,2} 1.3886 0.1005 0.3621 1.9158 −0.7996

w{1,3} −0.4497 0.3688 −0.2215 0 0.2052

w{2,3} 0.5492 0.1005 −0.0298 1.3602 −0.6982

w{1,2,3} 2.2653 0.1005 −0.2215 0 −0.0995



178 A. Honda et al.

action is at work for RM and PTRATIO, indicating that large values of both
of these have a strong positive impact on the objective variable. In other words,
the average price of a house is synergistically higher when the two conditions
of a large average number of rooms and a low percentage of lower status are
combined.

Table 7. Shapley values for each attribute in the case of Min, Max, LP

Min Max LP

x1 LSTAT 0.4362 0.4244 0.4150

x2 RM 0.3347 0.3932 0.3650

x3 PTRATIO 0.2291 0.1823 0.2201

5 Discussion

We have conducted two sets of experiments to examine settings that may lead to
improved performance of IE-integral neural networks. Many kinds of IE-integral
network were shown to have an equivalent network representation as a regular
neural network using additive generators, which was shown to provide similar
results with less learning time required. In the second set of experiments, we
investigated the difference in performance depending on the interaction operator
(or t-norm) used in the IE-integral. We also compared the performance with that
of general neural networks. The proposed model was shown to have performance
close to that of a neural network, however we stress that networks constructed
in this way retain their interpretability. In particular, use of the �Lukasiewicz
product led to high performance. We can observe that the ramp or ReLU function
performed better than the sigmoid function as the activation function for the
neural networks tested, and so there may be some underlying feature of the
data that responds better to these linear calculations. Although the number of
inputs in this experiment is small and further research is needed, our experiments
have emphasized the potential for fuzzy integral based network models for data
analysis.

While researchers studying aggregation functions and fuzzy integrals have
often benchmarked these techniques against state-of-the-art machine learning
methods for prediction and analysis tasks, approaches that blend or merge
techniques from both sides have been less explored. With the current focus on
explainability, interpretability, and integrity in data analysis, there is a growing
opportunity for the theory of fuzzy integrals to work towards solving a number of
real-world problems. The results provided here, both in terms of the transparent
network structure and learning performance, should provide some optimism not
only for the IE-integral neural network but also for similar ideas arising from
aggregation and fuzzy integral theory.
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Abstract. Graph Representation Learning aims to learn a rich and
low-dimensional node embedding while preserving the graph properties.
In this paper, we propose a novel Deep Attributed Graph Embedding
(DAGE) that learns node representations based on both the topological
structure and node attributes. DAGE a is able to capture, in a linear time
and with a limited number of trainable parameters, the highly non-linear
properties of attributed graphs. The proposed approach outperforms the
current state-of-the-art approaches on node classification and node clus-
tering tasks at a lower computational costs.

Keywords: Attributed Graph Embedding · Semantic proximity ·
Structural proximity

1 Introduction

Graphs are increasingly present in our daily life, where we have to deal with dif-
ferent types of large networks ranging from social communities to scientific col-
laborations. Most of the existing machine learning tasks on complex and sparse
graphs, such as node classification, node clustering and link prediction, can bene-
fit from the learning of suitable graph representations through Graph Embedding
[1], which reduces the node representation space while maintaining the graph
properties. The majority of the graph representation learning approaches derive
node embedding by preserving few structural properties [2–6], while disregard-
ing that nodes are frequently characterized by attribute information. During the
last years, a number of approaches have tried to create a richer representation
for attributed graphs, exploiting both the relational structure and the attributes
associated to the nodes [7–10]. Although the above mentioned approaches rep-
resent a fundamental contribution to the graph embedding state of the art, they
can capture the highly non-linear properties of attributed graphs at the expenses
of the number of trainable parameters and/or increasing time complexity. The
proposed approach, Deep Attributed Graph Embedding (DAGE), learns a rep-
resentation in fully unsupervised settings, that is able to scale to large and
complex structures, for both directed and undirected homogeneous graphs. The
main contribution of the paper is three-fold:
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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– a model that is able to capture the highly non-linear properties of attributed
graphs, showing outperforming results with respect to the most recent and
promising approaches;

– the number of trainable parameters is less or equal than other effective
approaches available in the state of the art, while ensuring better perfor-
mance on node classification and node clustering tasks;

– the time complexity for the proposed model is linear with respect to the num-
ber of nodes, compared with the quadratic time necessary for the most recent
and promising approaches in the state of the art, making DAGE suitable for
large scale networks.

The rest of the paper is organized as follows. In Sect. 2, an overview of the
state of the art is presented. In Sect. 3, the proposed Deep Attributed Graph
Embedding (DAGE) is detailed. In Sect. 4, datasets, performance measures,
experimental settings and experimental results are reported. Finally, in Sect. 5
conclusions and future work are presented.

2 Related Works

In the last twenty years, a lot of research work has been done in the field of graph
embedding, mainly focused on designing increasingly effective and efficient algo-
rithms for embedding graphs. The substantial differences between these algo-
rithms reside in how they define the properties of the graph to be preserved
and how they maintain these properties in the embedding space. Broadly, graph
embedding algorithms can be divided into three categories: matrix factorization
based methods, random walk based methods and deep learning based methods.

Among all the techniques for performing graph embedding, the methods
based on matrix factorization were the first to be introduced in the literature
around the 2000s. These methods are based on the idea of representing the
graph properties in the form of a matrix and of factorizing this matrix to obtain
the node embeddings. Examples of matrices used to represent the properties of
the graphs include the node adjacency matrix [11–13], the Laplacian matrix [5],
the node transition probability matrix [14] and the Katz similarity matrix [15].
Even though this method provides an effective way of preserving also the node
attribute information, it is very expensive in terms of time complexity.

In the last decade, new methods based on random walks began to be pro-
posed. The main contribution that these methods bring to research is the idea
of solving the graph embedding problem in such a way that if two nodes tend
to co-occur in paths of fixed length in the graph, then these nodes should be
mapped close together in the embedding space. Roughly, random walk-based
methods first sample a set of fixed length paths from the original graph and
then apply some machine learning techniques to generate the node embeddings
by preserving the information carried by these paths. In 2014, Perozzi et al. [2]
proposed DeepWalk, a random walk-based method that exploits the neural lan-
guage model Skip-gram [16] for generating the node embeddings. Like all random
walk-based methods, DeepWalk first samples a set of paths from the graph. This
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is achieved by uniformly sampling a node among the neighbors of the last visited
node until the predefined length of the specific path is reached. Every sampled
path is interpreted as a sentence, in which the words correspond to the nodes
occurring along the path. The embedding is finally generated by using the tradi-
tional Skip-gram models. More recently, Grover et al. [6] introduced Node2Vec,
an approach that similarly to DeepWalk, is able to generate meaningful node
embeddings by first sampling a set of paths from the original network and then
employing the neural language model Skip-gram on the sampled paths. Unlike
DeepWalk, Node2Vec is more flexible with respect to the path sampling strat-
egy. Two hyper-parameters regulate the visit of the nodes, which can follow a
strategy that is more oriented in depth or in breadth.

Finally, deep learning based methods represent the most promising state-of-
the-art methods in numerous downstream tasks. Starting from the raw features
in input, the deep models extract increasingly high-level features as they pro-
gressively proceed deeper into the network. Structural Deep Network Embed-
ding (SDNE) by Wang et al. [4] is a deep learning- based method that uses
deep autoencoders to preserve jointly both the first-order proximity and the
second-order proximity of the original graph. Deep Neural Networks for Graph
Representations (DNGR) [17] is a model that combines the ideas of random
walk-based methods and deep autoencoders in order to solve the graph embed-
ding problem, while preserving the higher-order proximity of the original graph.

Some very recent approaches belonging to the deep learning are mainly
focused on dealing with not only the structural properties of the graph, but also
to consider the attributes of the nodes when creating their embeddings. Exam-
ples of attributed graph embeddings approaches are CAGE [8], DANE [10] and
GAT2VEC [18]. While CAGE is a deep model that preserves both the topolog-
ical structure and the node attribute information of the input graph by means
of a constrained optimization problem, DANE generates the node embeddings
by jointly optimizing the semantic proximity, the second-order proximity and
the first-order proximity of both semantics and network structure using autoen-
coders. GAT2VEC [18] is a hybrid method which is based on random walks for
learning a node vector representation from a bipartite graph structure of nodes
and attributes. This model is able to leverage multiple sources of information
through early fusion that is subsequently processed through a single neural layer.
A recent related work [19] is focused on creating an embedding representation
on attributed hypergraphs, where an edge can link any number of vertices both
from a structural and attribute point of view.

Although the above mentioned approaches represent a fundamental contri-
bution to the graph embedding state of the art, they can capture the highly non-
linear properties of attributed graphs at the expenses of the number of trainable
parameters and/or increasing time complexity. In order to address this issue, we
propose DAGE, which learns a representation in a fully unsupervised settings
also scaling to large and complex structures for both directed and undirected
homogeneous graphs.
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3 Deep Attributed Graph Embedding (DAGE)

3.1 Basic Definitions and Preliminaries

The main goal of the proposed model is to map nodes of an attributed graph into
a low-dimensional embedding space, by preserving not only the relational struc-
ture but also the attribute information. More formally, an attributed graph
is defined as G = (V,E,W,A), where V = {v1, . . . , vn} is the set of nodes,
E = {(vi, vj) | vi, vj ∈ V } denotes the set of edges, W ∈ R

|V |×|V | is the adja-
cency matrix such that Wij represents the non-negative weight associated with
the edge eij = (vi, vj) ∈ E and and A is the node attribute matrix such that
Ai = (Aik)nk=1 is the attribute vector associated with node vi.

In the proposed model, detailed in the next section, two main proximity
measures are introduced to be subsequently preserved during the embedding
estimation, namely second-order and semantic proximity. The second-order prox-
imity considers how similar the neighborhood structures of two given nodes are.
More formally, let Wi = (Wik)nk=1 be the vector representing the i-th row of the
adjacency matrix W . Then, the second-order proximity between two nodes vi
and vj can be measures as the similarity between Wi and Wj . To compute the
second-order proximity, a cosine similarity could be exploited.

Additionally to the second-order proximity, which will preserve the relational
structure of each node, the semantic proximity needs to be preserved so that if
two nodes have similar attributes, their embedding representation should be
similar. In particular, the semantic proximity, or attribute proximity, between
two nodes vi and vj can be measured as the similarity between their attribute
vectors Ai and Aj .

3.2 The Proposed Model

The aim of the proposed model is to learn, in unsupervised settings, the embed-
dings of nodes belonging to an attributed graphs, by leveraging both the rela-
tional structure and the attributes associated with each node. In particular,
given an attributed graph, the proposed model aims at learning a function
CG : V → R

m, where m � |V|, to preserve both the second-order and the
semantic proximity. To address this challenge, a novel Deep Attributed Graph
Embedding (DAGE) is proposed, whose architecture is reported in Fig. 1. In
the proposed architecture, the two branches denote autoencoders that can cap-
ture the highly non-linear relational structure and the non linearity of the node
attributes. More precisely, the autoencoder related to the relational structure
contains three layers: the input layer, the hidden layer and the output layer.
The training of the autoencoder, in their general form, consists in finding the
parameter set ΘR that minimizes the following reconstruction loss:

L(θR) =
1
n

n∑

i=1

‖Ŵi − Wi � B‖22 (1)
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Fig. 1. DAGE architecture. It consists of two autoencoders that are trained to recon-
struct the node attributes and the adjacency matrix of the input graph, respectively.

where Wi is a row of the adjacency matrix and B regulates the sparsity of the
learned representation. The encoder and the decoder functions can be expressed
as a multi-layer neural network, whose hidden layers are Y W

i = σ(HWi + b) and
Ŵi = σ(ĤY W

i + b̂) respectively, where H and Ĥ are the encoder and decoder
weight matrices, b and b̂ are the bias vectors. According to the encoder-decoder
general architecture, Y W

i is the hidden representation of the node relational
structure derived from the encoder, while Ŵi is the corresponding reconstruction
from the decoder. Concerning the autoencoder related to the attribute informa-
tion, the K-competitive Auto-encoder for TExt (KATE) [20] has been adopted.
This approach has been specifically selected in order to have a fair compari-
son with other approaches of attributed graph embeddings that represent the
most promising state-of-the-art solutions [8]. The parameter set of the KATE
autoencoder is denoted as θA.

Given the set Θ = {θA, θR} of parameters related to the neural networks
for the attribute information and the relational structure, the proposed model
minimizes the following loss function as a function of Θ for obtaining a consistent
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representation of each node:

L(Θ) = α

n∑

i=1

||(Âi − Ai) � BA
i ||22 + β

n∑

i=1

||(Ŵi − Wi) � BW
i ||22

+ γ
n∑

i=1

||Y W
i − Y A

i ||22
(2)

where:

– ||(Âi − Ai) � BA
i ||22 denotes the semantic proximity term related to the node

attributes, where the Hadamard product, with the hyper-parameter BA
i , reg-

ulates the sparsity of the learned attribute representation;
– ||(Ŵi − Wi) � BW

i ||22 represents the second-order proximity related to the
relational structure, where the Hadamard product, with the hyper-parameter
BW

i , regulates the sparsity of the learned relational representation;
– ||Y W

i − Y A
i ||22 denotes a consistency term that allows different aspects of

the same node to be maintained. In particular, it is used to bring latent
representations of structure and semantics closer together;

– α, β and γ are hyper-parameters that regulate the trade-off between the
three terms. In our case study, the hyper-parameters have been selected as
uniformly distributed.

The semantic proximity, in our investigation, is obtained by KATE [20], which
is an autoencoder specifically designed for textual data, whose main contribution
is related to the introduction of a hidden layer in which neurons compete with
each other so that each neuron becomes specialized in recognizing specific data
patterns. In this way, KATE addresses both the sparsity and the Zipf’s law
distribution issues and it is able to extract more meaningful representations
from texts. As regards the second-order proximity, the core model to preserve
the topological structure (second-order proximity) of the input graph is a deep
autoencoder that is trained to reconstruct the rows of the adjacency matrix of
the graph. In this case, the deep autoencoder present in [4] has been adopted.

Considering that both KATE, for the attribute proximity, and the deep
autoencoder, for the second-order proximity, generate a latent representation
for each node i of the graph, which can be denoted by Y A

i and Y W
i respectively,

these dense and low-dimensional vector representations must be consistent so
that different aspects of the same node should be maintained. In order to enforce
this property, a trivial method would be to concatenate Y A

i and Y W
i as the final

embedding result. However, this method does not guarantee consistency between
the two modalities. Another common approach is to enforce the two branches
to share the same encoding layer via parameter sharing, i.e. Y A

i = Y W
i . Never-

theless, this approach is too strict and the hidden layer neurons would have too
many input and output connections, since the networks are fully connected.

To address this problem, DAGE tries to bring the embedding spaces Y A

and Y W closer together by adding a consistency term in the objective function
that penalizes dissimilar latent vector representations of the same node. In other
words, given a node i , the model generates the embeddings Y A

i and Y W
i in such a
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way that they are as close as possible. In this way, the structural embedding Y W
i

will also contain information related to the attributes of the i-th node, and the
same happens for Y A

i . At the end, Y A and Y W will be very similar and, therefore,
the final embedding for the i-th node will be given by either Y A

i or Y W
i . In our

investigation, the final embedding is taken from Y W . An advantage of taking
only one of the two representations is also that this halves the number of latent
features describing each node, further reducing the dimensionality of the node
representations. The optimization process related to the proposed model can
be performed by using stochastic gradient descent, or other possible variations,
relying on the computation of the partial derivatives of the parameters.

4 Experimental Analysis

In order to evaluate the performance of the proposed approach1, four benchmark
datasest have been used: M10, WIKI, CITESEER and CORA. The datasets have
been divided into training and testing sets by randomly selecting a percentage
of labeled nodes. Table 1 reports the main statistics of the graphs.

Table 1. Dataset statistics.

Dataset Nodes Edges Attributes Labels Average clustering
coefficient

Attribute
matrix density

CITESEER 3312 4660 3703 6 0.2430 0.0086

CORA 2708 5278 1433 7 0.2932 0.0127

M10 2035 3356 2000 7 0.2352 0.0032

WIKI 2405 12761 4973 17 0.4165 0.1301

The experimental evaluation has been conducted on two different tasks. The
first task relates to node classification, where the goal is to predict for each
node the corresponding label. Once the embedding representation is obtained, a
linear Support Vector Machine2 is firstly induced making use of the training data
and then the learned model is exploited to predict the labels on the test data.
The performance has been measured in terms of micro-averaged F1-measure [1].

The second task concerns node clustering. After having learned the node
embeddings, the K-means [21] algorithm is executed with the hyper-parameter
k equal to the number of classes in the considered dataset. The performance has
been measured in terms of Rand Index [22].

Rand Index =
a + d

a + b + c + d
(3)

1 The source code of DAGE is available at https://github.com/MIND-Lab/DAGE.
2 We employed the default parameters provided by the Scikit-learn Python

library, training all the investigated models using the same SVM configuration
scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html.

https://github.com/MIND-Lab/DAGE
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where:

– a is the number of node pairs (vi, vj) such that vi and vj are associated with
the same label and have been clustered in the same group;

– b is the number of node pairs (vi, vj) such that vi and vj are associated with
different labels, but have been clustered in the same group;

– c is the number of node pairs (vi, vj) such that vi and vj are associated with
the same label, but have been clustered in different groups;

– d is the number of node pairs (vi, vj) such that vi and vj are associated with
different labels and have been clustered in different groups.

The proposed approach has been compared with two recent and most promis-
ing state-of-the-art approaches, i.e., Constrained deep Attributed Graph Embed-
ding (CAGE) [8] and Deep Attributed Network Embedding (DANE) [10]. These
two benchmark approaches have been selected for two main reasons: (1) they
belong to the most recent state of the art and (2) they have been shown their
superior capabilities with respect to other pure graph such as SDNE [4], LAP [5],
DeepWalk [2] and Node2Vec [6], and attributed graph embeddings TriDNR [7]
and Gat2Vec [9]. The considered models have been trained using small batches
of size 128 and with enough epochs for the corresponding loss functions to con-
verge, using the Back-propagation algorithm [23], in conjunction with Adam
[24] that is an algorithm for first-order gradient-based optimization of stochastic
objective functions that is based on adaptive estimates of lower-order moments.

4.1 Node Classification

We report in Tables 2 and 3, the results for the node classification task where the
performance have been measured in terms of micro-F1 score. Each experiment
has been performed 10 times and the corresponding results have been reported
by showing their average results.

The results show that the proposed approach is able to significantly out-
perform both CAGE and DANE when performing a node classification task.
Considering the 36 training scenario (i.e., 9 different percentage of training data
for each of the four datasets), DAGE always outperforms CAGE and it obtains
remarkable results in almost the comparison with DANE. The only benchmark
where DANE performs better than DAGE is the WIKI dataset. In fact, when a
limited amount of training data is used (from 0.1% to 0.4%), DANE achieves bet-
ter results than DAGE. Interestingly, the WIKI benchmark has denser attribute
matrices compared to the other datasets, suggesting that DANE is more effective
when the data is denser, as opposed to DAGE that seems to be more effective in
sparse conditions. This can be explained by observing that the loss function of
DAGE in Eq. 2 addresses the sparsity issue at the level of both network structure
and node attributes by introducing specific penalty terms, helping the model to
achieve a good classification performance especially in such conditions.

4.2 Node Clustering

Table 4 reports the performance comparison of the considered models, on the
node clustering task, in terms of Rand Index. DAGE significantly outperformed
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Table 2. Micro-averaged F1-measure on Cora and Citeseer datasets.

CORA CITESEER

% training data DAGE DANE CAGE DAGE DANE CAGE

0.1 0.7193 0.6546 0.5745 0.6742 0.6335 0.5169

0.2 0.7569 0.6894 0.6194 0.6989 0.6766 0.5369

0.3 0.7758 0.7099 0.6407 0.7109 0.6925 0.5458

0.4 0.7905 0.7099 0.647 0.7177 0.694 0.5489

0.5 0.7914 0.7295 0.6581 0.7246 0.6938 0.5581

0.6 0.7983 0.7295 0.6672 0.7245 0.7055 0.5600

0.7 0.7995 0.732 0.6681 0.7197 0.7008 0.5579

0.8 0.8085 0.7408 0.6756 0.7243 0.7029 0.5531

0.9 0.8081 0.727 0.6741 0.7241 0.697 0.5638

Table 3. Micro-averaged F1-measure on M10 and Wiki datasets.

M10 WIKI

% training data DAGE DANE CAGE DAGE DANE CAGE

0.1 0.8790 0.7557 0.7444 0.6599 0.7052 0.6364

0.2 0.9047 0.7663 0.7722 0.6901 0.7282 0.6629

0.3 0.9103 0.7739 0.7783 0.7183 0.7458 0.6832

0.4 0.9160 0.7766 0.7830 0.7386 0.7468 0.6855

0.5 0.9222 0.7894 0.7953 0.7613 0.7601 0.6957

0.6 0.9302 0.7926 0.7961 0.7636 0.7613 0.6993

0.7 0.9211 0.7921 0.8020 0.7903 0.7723 0.6985

0.8 0.9209 0.771 0.8017 0.7896 0.7713 0.7019

0.9 0.9275 0.7863 0.8147 0.795 0.7544 0.7021

Table 4. Node clustering performance in terms of Rand Index.

Dataset DAGE DANE CAGE

M10 0.8143 0.7298 0.7472

CITESEER 0.8034 0.8166 0.7487

CORA 0.8350 0.7930 0.7761

WIKI 0.9029 0.8969 0.8928

in all the computational experiments and DANE on the majority of the avail-
able datasets. Only in the case of CITESEER dataset, DANE ouperforms DAGE.
Analysing the characteristics of the network, it emerges that CITESEER is com-
posed of 438 connected components (against 78 for CORA, 1 for M10 and 45
for WIKI). In particular, it is possible to notice that the largest component has
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more than 63% of the overall number of nodes and, consequently, the other con-
nected components consist of a very small number of nodes. This suggests us
that DAGE could suffer from the presence of multiple connected components.

4.3 Trainable Parameters

A further interesting remark about DAGE relates to the number of parame-
ters needed for creating the embeddings, especially compared with the other
approaches. DAGE has less number of parameters than DANE, but equal to
CAGE as reported in Table 5. However, at the same computational cost for deter-
mining the parameters of the models, DAGE remarkably outperforms CAGE,
achieving a significant improvement both for node classification and node clus-
tering tasks. Compared to DANE, DAGE achieved an excellent performance
using less than 40% of the parameters of DANE and it is more efficient in terms
of both space and time complexity. In other words, DAGE is more straightfor-
ward to train as it uses a smaller number of neural network parameters, still
achieving a significant performance.

Table 5. Trainable parameters related to the considered dataset.

Dataset DAGE CAGE DANE

M10 8.14 × 105 8.14 × 105 1.67 × 106

CITESEER 1.36 × 106 1.36 × 106 5.13 × 106

CORA 9.14 × 105 9.14 × 105 1.71 × 106

WIKI 1.29 × 106 1.29 × 106 6.03 × 106

Furthermore, an interesting insight can be derived by observing the loss func-
tions of the DAGE and DANE. In particular, the proposed DAGE model pre-
serves only the second-order proximity and the semantic proximity, whereas
DANE tries to maintain also the first-order proximity at the levels of both the
network structure and the node attributes. This difference makes DAGE more
efficient than DANE, because the time complexity at every epoch of DAGE is
linear with respect to the number of nodes n, while DANE has a computational
complexity cost equal to O(n2), as at every epoch the model needs to consider
also the pairs of nodes. This makes the proposed approach particularly suitable
for scaling on large scale graphs.

5 Conclusions and Future Work

In this paper we proposed DAGE, a model aimed at creating an embedding
representation of nodes in attributed graphs. The experimental evaluation on
two benchmark datasets has shown significant improvements with respect to
two recent and promising state-of-the-art models, showing its good robustness
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with respect to the size of the training data and remarkable performance even in
the case of limited ground-truth data, also with a reduced number of parameters
to be trained.

As future work, the role of hyper-parameters and higher order proximity
measures would be investigated. Furthermore, although the model has achieved
promising results, it is still a transductive approach, i.e. it is not applicable
to dynamic networks, as the addition or deletion of even just one node in the
graph no longer permits to generate the node embeddings. This because the
architecture of DAGE strictly depends on the number of nodes in the graph.
This means that the model must be re-trained every time a change occurs in
the graph topology. Therefore, it would be of paramount importance to study a
mechanism for making the model no longer transductive.

Finally, in order to study the behavior of the model on networks with different
structural properties (e.g., assortativity and clustering coefficient), it would also
be helpful to consider other benchmark datasets, such as biological networks and
communication networks, also considering other machine learning tasks, as for
example link prediction, node clustering and network visualization.
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Abstract. Prediction is a common task useful in data analysis. The
goal is to predict the value of a variable in terms of the values of
other variables. The most used technique for solving prediction task is
regression analysis that approximates the data at hand by means of a
poly- nomial function. Because data can be represented as a cloud of
points, the approximation by means of a polynomial function has error.
Most of authors try to search for techniques allowing a more accurate
prediction than the one produced by the regression model. In this paper
we propose a completely different approach. Our goal is, given a pre-
dictive model, use regression trees to establish the error of the measure
proposed by the predictive model.

Keywords: Multivariate regression models · Regression trees

1 Introduction

In machine learning there are two kinds of predictions that can be made: 1) the
prediction of the class to which an object belongs, and 2) to predict the value
of a variable. Problems of the first type are known as classification problems;
those of the second type are known as prediction problems. In fact, classification
problems can be seen as a special case of prediction problems since the difference
between both kinds of problems is the type of the variable of interest. Classifica-
tion problems can only predict values of categorical variables, called classes (for
instance, the animal X is a mammal), whereas prediction problems predict the
value of continuous variables (for instance, the temperature for tomorrow will
be 30 ◦C). The present paper is about prediction problems since our goal is to
predict the value of a continuous variable. Commonly, the target variable, also
called dependent variable is calculated by constructing a regression model that
relates it with other variables, called independent variables. Thus, given a dataset
with examples described by a set of independent variables {v1, . . . , vn} and VD,
the dependent variable known for all the examples of the dataset, a regression
model M is constructed using all the examples. In that way, the model M can
predict the value of VD for unseen objects.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
V. Torra and Y. Narukawa (Eds.): MDAI 2022, LNAI 13408, pp. 193–202, 2022.
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There are many regression models that could be used to predict a variable
depending on the variables we choose. Commonly, a criteria to select relevant
variables is by means of feature selection methods [8] taking into account the
correlations of the independent variables between them and also with the depen-
dent variable. In machine learning it is common to minimize some loss function,
that usually is the sum of squared errors [7].

There are two different approaches to minimize the error, both based on
ensemble methods [9,16]. Breiman [2] introduced the Bagging predictors, a
method that generates several versions of a predictor and then aggregates all
these versions. The idea is to generate datasets of the same size than the orig-
inal one but with only a selection of examples that are duplicated. Then, for
each one of these datasets a decision tree with some constraints of depth and
attributes is grown. Notice that this procedure is carried out in parallel since
each dataset is independent of the others. Finally there is an aggregation step
to provide only one outcome. This method detects the elements in the dataset
that cause the highest perturbations in the result and use them as a feedback
to reduce the variance and hence, the prediction error. This technique improves
the performance of predictive models [3] but it is computationally expensive.

Boosting is a family of algorithms that are able to convert weak learners
to strong learners [5,6,12,13]. Differently than bagging, boosting works sequen-
tially. The first step is to construct a model from the original dataset a model.
Then each example is associated with a weight, where misclassified examples
have a highest weight than the correct classified examples. The modified dataset
is used as input of another classifier and so on until a satisfactory accuracy is
reached. Boosting focuses on examples that are difficult to predict.

Feher [14] proposes a mixture of regression trees and regression models. His
approach consists on growing a regression tree where each node is a regression
model instead a set of examples as usual. The regression model is evaluated and,
the node continues the expansion according that evaluation.

In the present paper we propose a completely different approach. From a
predictive model satisfying the set of requirements appropriate for the domain
at hand, we propose to analyze it by means of regression trees in order to detect
areas of the model where its outcome is acceptable in terms of the error, and
other areas where the outcome will not be acceptable. Thus, we propose to use
the regression model to obtain a value for the dependent variable and then to
give the probability that such outcome will be acceptable or not. To illustrate the
procedure, we will consider that the predictive model is a Multivariate Regres-
sion (MR) model. However this does not mean any kind of constraint since our
approach works taking into account only the results of the predictive model.

The paper is organized as follows. Section 2 briefly describe regression trees.
Section 3 describes the methodology we propose. Section 4 describes the experi-
mentation with the proposed methodology. Finally conclusions and future work.
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ID3 (examples, attributes)
create a node
if all examples belong to the same class return class as the label for the node
otherwise

A  best attribute
for each possible value vi of A

add a new tree branch below node
examplesvi  subset of examples such that A = vi

ID3(examplesvi, attributes - {A})
return node

Fig. 1. ID3 algorithm for growing a decision tree.

2 Regression Trees

One of the most common techniques used in supervised machine learning is
Decision Trees introduced by Quinlan [10] who proposed the well-known ID3
algorithm (see Fig. 1). Roughly speaking, the goal in growing a decision tree is
to make a partition of the set of examples E to obtain several disjoint subsets
Si where all the examples of Si belong to the same class Ci. This technique
is specially useful for classification tasks, where the domain examples E are
described by a set of attributes (i.e., variables) A = {a1, . . . , an} and labelled
according to its membership to a set of classes C. The value of these attributes
may be categorical (i.e., a label) or continuous (i.e., a real number). Depending
on the type of these values, decision trees are named as Classification trees, when
the values are categorical; or Regression trees: when the values are continuous.
The classes are labels and, as a such, represented by categorical values (or,
sometimes by a finite set of integer values 0,1, ..., k). The goal in growing a tree
is to create a domain model predictive enough to classify future unseen domain
objects.

A key issue of the construction of decision trees is the selection of the most
relevant attribute to split a node. In regression trees it is common to use the
Gini’s index [1]. The Gini’s index measures the impurity degree of a set where
0 means the set is pure (all the elements belong to the same class); 1 is the
maximum impurity (random distribution of the elements among the classes); and
0.5 means an equal distribution of elements over some classes. When growing a
decision tree, the best attributes are those with lower Gini’s index.

The formula to calculate the Gini’s index is the following:

G = 1 −
n∑

i=1

(Pi)2

where Pi is the probability of an object to be classified to a particular class.
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3 Methodology

We assume that a predictive model P has been constructed by means of any
technique considered appropriated for solving the problem at hand. Our app-
roach is to construct a regression tree modelling the performance of P based
on the prediction error. In other words, the idea is to define labels indicating
whether or not the difference between the real value and the value proposed by
P is acceptable. In that way, when P proposes a value, the tree indicates the
accuracy of such value. Let us explain in detail our approach.

Let E be the set of examples from which the prediction model has been
constructed, and let Ak be the variable to be predicted, we propose the following
steps:

1. Determine a set of labels {L1, . . . , Ln} associated to the difference we are
willing to accept between the real value and the predicted one (this will be
explained later in more detail).

2. Let DS
′
be a new dataset initially empty.

3. For each object Oi ∈ E,
(a) Use the model P to predict a value vpi

for Ak of Oi.
(b) Compute Di = |vreali−vpi

|, i.e., the absolute difference between the real
value of Ak and the one predicted by the model P .

(c) Create a new object O
′
i having exactly the same values in all the attributes

(except Ak), and with a new attribute, namely the class, that has as value
the label associated to the difference Di.

(d) Store O
′
i in DS

′
.

4. Grow a regression tree using the objects in DS
′
.

To use regression trees is necessary that the class attribute has categorical
values. In our case these values are labels {L1, . . . , Ln} that we can define accord-
ing to the knowledge we have about the domain. Thus, let us suppose that we
want to predict a temperature and let us suppose that we are willing to accept
an error of 3 ◦ although an error of 6 ◦ could be also acceptable. In that case, we
could define three labels {good, acceptable, unacceptable} in the following way:

– Good if |real − aprox| ≤ 3◦

– Acceptable if 3 ≤ |real − aprox| ≤ 6◦

– Unacceptable if |real − aprox| > 6◦

Depending on the domain, the number of class labels could be different,
therefore it is important to analyze the domain at hand and determine ranges of
acceptable and unacceptable errors. Once the set of labels has been determined,
we can proceed with the training step. For each object obji of the dataset, the
model P is used to obtain a value for Ak. The second step is to compute the
difference |real − aprox| and associate a class label to obji. At the end, we have
a set of objects with attributes having continuous values and with a categorical
class label, so a regression tree can be grown.
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The regression tree gives a model of the error produced by the predictive
model P . Given that in the most of cases the leaves of the tree are not dis-
criminant, i.e., objects in a leaf can belong to different classes, we can give a
probability for each class label. In the next section we illustrate the procedure
with an example.

3.1 Example

To illustrate the procedure we use the dataset Bias Correction from the
UCI repository [4]. This dataset has 7750 objects described by 25 continuous
attributes. The goal is to predict the minimum and the maximum temperatures
for the next day. We will consider here only the problem to predict the minimum
temperature (Tnextmin). First of all we have to determine the error that we are
willing to accept. Let us suppose we take the following thresholds:

– Good if |real − aprox| ≤ 0.9
– Acceptable if 0.9|real − aprox| ≤ 1.8
– Unacceptable if |real − aprox| > 1.8

Now we use a predictive model to obtain an approximate value for Tnextmin.
In particular we have used a Multivariate Regression model, however any pre-
dictive technique could be used. After the training step, we have obtained the
regression tree show in Fig. 2. This tree has four leaves and only two attributes
are used: Present Tmin and LDAPS Tmin lapse. Let us suppose that the regres-
sion model proposes a value x for an object O. When O has Present Tmin <
14.7 there is a probability of 0.97 that x be unacceptable. When Present Tmin >
14.7 the probability of being unacceptable is very low (0.1, 0.1 and 0.13 respec-
tively) meaning that the most of times the value x predicted by the model
has a difference with the real value lower than 1.8. Particularly, the proba-
bility that |real − aprox| ≤ 0.9 is, respectively 0.61, 0.75 and 0.52. Notice
that when Present Tmin > 26.35 the probability of having a difference lower
than 0.9 has decreased with respect to the other paths of the tree. A different
point of view is to consider than when Present Tmin > 26.35, the probability of
≤ |real − aprox| ≤ 1.8 is 0.87 (i.e., the sum of the probabilities 0.52 and 0.35 of
being good and aceptable respectively). In that way the user can decide whether
or not the value proposed by the predictive model is useful for his purposes and
the percentage of error that could accept according to the application at hand.

The threshold we take for the acceptability of the error is important to assess
the accuracy of the value proposed by the predictive model. Let us suppose that
we want to distinguish only between acceptable and unacceptable differences.
Figure 3 shows how changes the tree taking different thresholds of acceptability.
Left hand side tree in Fig. 3 takes the difference |real−aprox| ≤ 0.9 as acceptable
and unacceptable otherwise. Focusing on the probabilities we see that for all
those examples with Present Tmin < 14.9 the result of the predictive model is
not acceptable. Concerning the examples such that 14.9 < Present Tmin < 26.25
there is a probability of 0.62 that the value proposed by the predictive model be
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Fig. 2. Regression tree for the dataset Bias Correction taking three class labels. Num-
bers in parentheses are the probabilities for each path.

acceptable. For those such that Present Tmin > 26.25 it is no clear whether or
not the value could be accepted. This means that the tree gives not a valuable
information about the performance of the predictive model in that situation.

The right hand side of Fig. 3 shows the tree grown taking |real−aprox| ≤ 1.5
as acceptable and as unacceptable otherwise. Notice that this tree gives infor-
mation more useful than the one in the left hand side. Thus, when Present Tmin
< 14.7 the result is unacceptable with probability 0.97 and when Present Tmin
> 14.9 the probability of being acceptable ranges from 0.80 to 0.85 depending
on the value of the attribute LDAPS Tmin lapse.

Summarizing, the user has to define thresholds of acceptability of the error
of the predictive model, i.e., the difference |real − aprox| and then grown the
tree using the labels associated to the acceptability intervals. There is not any
constraint about how many intervals of acceptability are adequate; however,
from our experiments we have seen that, in general, two or three intervals are
enough to get useful information about the predictive model performance.

4 Experiments

We conducted several experiments to show that with our approach it is possi-
ble to determine better the accuracy of the predictive model depending on the
features of the input object. We have used the datasets shown in Table 1, all of
them coming from the UCI Repository. Each dataset has been randomly divided
in a training set (around the 70% of the objects) and a test set (the remaining
30%).

For all the datasets we have constructed a Multivariate Regression Model
(MRM) based on the objects in the training set and taking into account the
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Fig. 3. Regression trees for the dataset Bias Correction taking two labels.

Table 1. Datasets from the UCI repository used in the experiments. the value m is
the mean value of the difference |real − aprox| where aprox is the value proposed by
the predictive model.

Dataset Total Training Test m 2m

AirFoil 1503 1053 450 4 8

Bias Correction max 7750 5750 2000 1.5 3

Bias Correction min 7750 5750 2000 0.9 1.8

Fish 908 658 250 0.7 1.4

Residential building V9 372 272 100 130 260

Residential building V10 372 272 100 22.8 45.6

Red wine 1559 1149 450 0.50 1

White wine 4898 3448 1450 0.6 1.2

subset of variables that have been considered as relevant using LASSO Regres-
sion [11,15]. This step does not constrains the results since the construction of
the model is independent from the tree assessing the validity of the predicted
value.

We experimented with a discretization in two and three intervals. Because we
have not a deep knowledge about these datasets in order to determine an accurate
discretization, we have used MRM to asses the value for all the objects in the
dataset and for each one of them we have computed the difference |real−aprox|.
Let m be the mean value of these differences. For the discretization in three
intervals we take the following labels:

– Good : when |real − aprox| ≤ m
– Acceptable: when m < |real − aprox| ≤ 2m
– Unacceptable: when |real − aprox| > 2m
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Table 2. Comparison of errors of the predictive model (εMRM ) alone and in combina-
tion with the regression tree (εtree) considering two discretization intervals. Columns
D ≤ m shows the number of objects in the test set that are assessed as having an
acceptable difference, i.e., m < |real − aprox| ≤ 2 m. Column %D ≤ m shows the
percentage of acceptable objects with respect to the total number of objects from the
test set.

Dataset εMRM εtree D ≤ m %D ≤ m

AirFoil 13.55 13.55 450 100

Bias Correction max 11.25 9.64 1960 98.00

Bias Correction min 14.35 12.65 1960 98.00

Fish 12.8 9.90 212 84.8

Residential building V9 26.00 7.89 90 90.00

Residential building V10 6.00 6.00 100 100

Red wine 11.33 11.21 437 97.11

White wine 10.34 10.19 1443 99.52

and the discretization in two intervals is: if |real − aprox| ≤ 2m then the value
is acceptable otherwise it is unacceptable. Table 1 also shows the acceptability
thresholds we have taken in the experiments.

Using the labels given by the discretization, regression trees have been grown.
The tree was then used to assess the accuracy of the value proposed by the MRM
for the objects in the test set. Tables 2 and 3 show the results when we consider
a discretization with two and three intervals respectively. The column εMRM is
the error of the predictive model MRM computed as the percentage of objects in
the test set for which |real − aprox| > 2m. The column εtree corresponds to the
percentage of error of the tree, computed as the percentage of objects that have
an approximated value considered as good (i.e., such that |real − aprox| ≤ m)
or as acceptable (i.e., such that m ≤ |real − aprox| ≤ 2m) but that actually
the difference is unacceptable (i.e., such that |real − aprox| > 2m). The column
D ≤ m represents the number of objects of the test set classified as good or
acceptable, and the column %D ≤ m is the percentage that they represent. Let
us explain in more detail the meaning of these columns.

Given an object Obj for whose we want to estimate the value of a variable Ai,
the predictive model MRM proposes a value that has a probability of εMRM of
being unacceptable. In a discretization in three intervals, when the tree assesses
a difference as good, the probability of error is εtree. In a discretization with two
intervals the error εtree is the percentage of objects assessed as aceptable but that
are actually unacceptable. Notice that using two discretization intervals (Table 2)
for the datasets AirFoil, Residential building V10, Red Wine and White Wine,
both errors εMRM and εtree are similar. However, using three intervals (Table 3)
the majority of datasets have εtree lower than εMRM with the only exception of
AirFoil.
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Table 3. Comparison of errors of the predictive model (εMRM ) alone and in combina-
tion with the regression tree (εtree) considering three discretization intervals. Columns
D ≤ m shows the number of objects in the test set that are assessed as having an good
difference, i.e., m < |real − aprox| ≤ 2 m. Column %D ≤ m shows the percentage of
good objects with respect to the total number of objects from the test set.

Dataset εMRM εtree D ≤ m %D ≤ m

AirFoil 13.55 9.37 363 80.67

Bias correction max 11.25 11.25 2000 100

Bias correction min 14.35 11.58 1545 77.25

Fish 12.8 7.14 168 67.2

Residential building V9 26.00 18.42 76 76.00

Residential building V10 6.00 5.10 98 98.00

Red wine 11.33 9.77 174 38.67

White wine 10.34 9.84 559 38.55

An important aspect to take into account is for how many objects occurs than
εtree < εMRM and which percentage they represent. For instance, the datasets
Red Wine and White Wine in Table 3 have a clear improvement concerning
the error. According to the column D ≤ m, 174 out of 450 objects for the
Red Wine test set and 559 out of 1450 objects for the White Wine test set are
assessed as having a good value. As column %D ≤ m shows, this represent only a
percentage around 38% of both test sets. This means that for those datasets the
use of regression trees is not useful. Conversely, for all the other datasets the tree
improves the error of the MRM model using both two and three discretization
intervals.

5 Conclusions

In the current paper we propose to improve the outcome of a predictive model
using regression trees. Differently than other approaches that propose combi-
nations of techniques to get more accurate models, we propose to analyze the
predictive model using regression trees. The main idea is, given an approximate
value proposed by the predictive model, determine the probability that such
value is similar enough to the actual value by mean of acceptability intervals.
We assume that the user has a good knowledge about the problem and that
he is capable to determine the maximum difference between the actual and the
predicted value that could be acceptable.

As future work we plan to use the approach described in the current paper to
real problems. Also, our intuition is that sometimes there are several predictive
models that could be combined to predict a value. We want to analyze how our
technique could be useful in such situations.
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