
1

Microlearning and Automated
Assessment – A Framework
Implementation of Dissimilar Elements
to Achieve Better Educational Outcomes

Ján Skalka

1 Introduction

Writing the source code of programmes is currently one of the basic skills of a mod-
ern employee. Many support systems of various levels, content and quality have
been created to support the teaching of programming (Crow et al., 2018). Many
researchers seek to focus on the narrow field of programming as such and explore
the modern learning environment in a broader context, often in the interconnection
of STEM/STEAM area (Çetin & Demircan, 2020; Smyrnova-Trybulska et al., 2017).

The research trends of the last few years are aimed at predicting success or fail-
ure in education (Kabathova & Drlik, 2021; Drlik & Munk, 2019). However, the
most crucial element of education is the content, form, and distribution to the stu-
dent (Carlon et al., 2020). Several frameworks have been designed and implemented
in recent years to optimise content, distribution, and retain student attention
(Halvoník & Kapusta, 2020; Sharma et al., 2012).

Mobile applications are gradually becoming the most important distribution
channel due to their ease of use and availability anytime and anywhere (Baldwin &
Ching, 2020). The use of mobile applications in education, research in the field of
personalisation (Moon et al., 2020; Morze et al., 2021; Bartolomé et al., 2018) and
monitoring of user behaviour (Halvoník & Kapusta, 2019) has also intensified.

The article deals with the search for an answer to whether it is possible to com-
bine two effective approaches in teaching programming – microlearning and auto-
mated assessment. Methodologies of their use are developed in many sources, and
their isolated use is currently a frequent subject of pedagogical research. However,
the combination of both approaches is unique and represents an additional

J. Skalka (*)
Constantine the Philosopher University in Nitra, Nitra, Slovakia
e-mail: jskalka@ukf.sk

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
E. Smyrnova-Trybulska et al. (eds.), Microlearning,
https://doi.org/10.1007/978-3-031-13359-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13359-6_1&domain=pdf
mailto:jskalka@ukf.sk
https://doi.org/10.1007/978-3-031-13359-6_1#DOI

2

combination of obtaining basic information and its practical use for writing pro-
grams in different programming languages.

In addition to the design and presentation of an educational environment com-
bining learning in small units and tools designed for automatic evaluation of source
codes, the article also includes evaluating the perception of the environment and the
educational approaches used by students.

The article main aim of the article is to present architecture, current state, and
experience with the pilot deployment of virtual learning environment Priscilla
(Skalka & Drlik, 2018a, b), developed based on the conceptual framework for
teaching and learning programming (Skalka et al., 2021).

This environment effectively combines contemporary promising educational
approaches, including microlearning (Hug, 2005) and automatically evaluated
source codes (automated assessment) (Ala-Mutka, 2005; Fernández Alemán, 2011).
The balanced combination of these approaches allows effectively managing the
time required for learning theory, applying the obtain knowledge immediately, min-
imising the time for source code evaluation, and providing immediate feedback,
which is important for learning programming.

The research questions are defined as follow:

• RQ1: What is the effective software architecture covering the needs of the frame-
work defined for learning and teaching programming in introductory courses.

• RQ2: How do students perceive the methods of microlearning, and how, accord-
ing to them, does it contribute to the improvement of their programming skills
and knowledge.

• RQ3: How do students perceive the method of automated assessment, and how,
according to them, does it contribute to the improvement of their programming
skills and knowledge.

The article has the following structure. The second part summarises information
about selected information systems for teaching programming and web portals used
in programming learning. The third part presents the introductory conceptual model
and implementation of the backend and front-end parts. This section also describes
the most important framework modules implemented in the Priscilla system. The
fourth chapter deals with studying the perception of the system by students who
completed one semester of study. Finally, the article concludes with a discussion, a
description of the current state and future work.

2 Introductory Programming Learning Environments

Despite the relatively extensive research in introductory programming courses, the
specific research focused on developing proprietary solutions used by universities is
rare. Many universities use plugins or modules implemented in Learning
Management Systems (LMS). Skalka et al. (2019) used the LMS plugin

J. Skalka

3

implemented by Rodríguez-del-Pino et al. (2012) for LMS Moodle to support auto-
mated evaluation of source codes in the introductory programming course of Java.

The following examples of original solutions and software systems for the teach-
ing of programming are considered very promising.

Vesin et al. (2018), Blažeska-Tabakovska et al. (2017) presented Programming
Tutoring System (ProTuS) with a cross-platform architecture that aggregates and
harmonises study analyses from different systems and quantifies student perfor-
mance through a set of indicators. Learning is based on a combination of explana-
tions, interactive examples, interactive challenges and coding exercises.

Brusilovsky et al. described the use of the Python Grids System (Brusilovsky
et al., 2018) as a tool that provides access to four types of interactive tutorial content
for learning Python: annotated examples, animated examples, semantic code evalu-
ation problems, and code construction problems.

Buffardi & Edwards (2014) introduced CodeWorkout – an online training sys-
tem with course management functions. It hosts an online repository of questions
and assignments that teachers can incorporate into their courses. It also provides
tools for creating new items so that the exercises can be adapted to the class’s needs.

Many courses provided through MOOC portals such as Coursera, Edx, Udemy
often contain various types of “camps” that allow writing, running and evaluating
codes, either at the automatic level or through peer-review (Chauhan, 2014;
Johnston, 2015).

University solutions are complemented by various categories of public portals
and applications which offer free courses for the public and life-long learning. Each
of them is specific, often closely oriented on technically skilled students without
implemented standard didactical methodology. The simplest category of portals
provides an essential source of information, where the popular w3schools.com was
chosen as a typical example. The second category covers portals supporting the
development of programming skills by writing programs with the support of many
programming languages. Here it is assumed that the user already has basic knowl-
edge and educational content is usually not available (Hackerrank, Codewars). The
next category consists of portals providing content in the microlearning form with
various types of competitions. It is assumed that the user achieves the course goals
based on internal motivation, ensured by various competitions and strong gamifica-
tion (Sololearn). The last category is represented by portals intended for the young-
est users. They can replace writing code by automatically entering entire commands
or block-based language depending on age.

Table 1 compares the presented Priscilla portal, as a portal based on microlearn-
ing and automated assessment with other solutions.

In addition to the portals listed in Table 1, which offer educational content for
multiple programming languages, many other portals are focused on a specific pro-
gramming language. Many solutions make it possible to integrate selected parts of
the content into teaching or use web portals as a suitable supplement for practising
educational content.

Microlearning and Automated Assessment – A Framework Implementation…

4

Ta
bl

e
1

Po
pu

la
r f

re
e

w
eb

 p
or

ta
ls

 fo
cu

se
d

on
 p

ro
gr

am
m

in
g

le
ar

ni
ng

 c
om

pa
re

d
w

ith
 a

 re
al

 im
pl

em
en

ta
tio

n
of

 th
e

pr
es

en
te

d
fr

am
ew

or
k

by
 s

ys
te

m
 P

R
IS

C
IL

L
A

Po
rt

al
/p

ro
pe

rt
y

w
3s

ch
oo

ls
.c

om

co
de

w
ar

s.
co

m
/

qu
al

ifi
ed

.io
so

lo
le

ar
n.

co
m

fr
ee

co
de

ca
m

p.
or

g
ha

ck
er

ra
nk

.
co

m
co

de
av

en
ge

rs
.c

om
co

de
.o

rg
PR

IS
C

IL
L

A

A
ge

 c
at

eg
or

y
Te

en
s,

 a
du

lts
Te

en
s,

ad

ul
ts

Te
en

s,

ad
ul

ts
Te

en
s,

 a
du

lts
Te

en
s,

 a
du

lts
5+

4+
Te

en
s,

 a
du

lts

Su
pp

or
te

d
la

ng
ua

ge
s

Ja
va

Sc
ri

pt
,

H
T

M
L

/C
SS

;
PH

P
in

 s
im

pl
e

fo
rm

A
ll

la
ng

ua
ge

ty

pe
s

A
ll

la
ng

ua
ge

ty

pe
s

Ja
va

Sc
ri

pt
,

H
T

M
L

/C
SS

,
py

th
on

A
ll

la
ng

ua
ge

ty

pe
s

Ja
va

Sc
ri

pt
, H

T
M

L
/

C
SS

w
eb

 la
ng

ua
ge

s,

py
th

on

Pr
im

ar
y

bl
oc

k-
ba

se
d

vi
su

al

pr
og

ra
m

m
in

g

A
ll

la
ng

ua
ge

ty

pe
s

C
on

te
nt

B
as

ic
–

Y
es

B
as

ic
A

s
pa

rt
 o

f
ta

sk
s

Y
es

In
 a

 s
pe

ci
fic

 f
or

m
C

om
pl

ex
 in

m

ic
ro

co
nt

en
t

M
ic

ro
-c

on
te

nt
–

–
Y

es
–

–
–

–
Y

es
Q

ui
zz

es
B

as
ic

–
Y

es
–

–
Y

es
–

Y
es

A
ut

om
at

ic
 c

od
e

ev
al

ua
ti

on
Y

es
Y

es
–

Y
es

Y
es

Y
es

Y
es

Y
es

Sa
nd

bo
x

or

ow
n

co
de

 s
pa

ce
Y

es
–

Y
es

–
–

–
–

In
 p

re
pa

ra
tio

n

L
ea

rn
in

g
pa

th
s/

co
ur

se
s

B
as

ic
–

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

C
om

pe
ti

ti
on

s
–

Y
es

Y
es

–
Y

es
–

–
Y

es
G

am
ifi

ca
ti

on
–

Y
es

Y
es

–
Y

es
Y

es
In

 a
 s

pe
ci

fic
 f

or
m

Y
es

Te
ac

hi
ng

–
Y

es
C

re
at

e
co

nt
en

t
–

–
Y

es
In

 a
 s

pe
ci

fic
 f

or
m

Y
es

J. Skalka

5

3 Learning Environment Concept

Successful and sustainable implementation of the framework requires coverage of
introductory programming courses and activities intended for future educational
environment development and content development. Taking care of content updates
and creation and updating design following modern design trends can be covered by
educational activities in advanced engineering courses. Students will work on the
development of an environment that they know because they studied in it the basics
of programming.

The implementation of the framework (Skalka & Drlík, 2018a, b) defines the
concept and learning processes into independent systems preceded by the imple-
mentation in the LMS Moodle environment (Skalka et al., 2021). Typical tests in
Moodle with quiz questions of various types were used to cover the needs of micro-
learning. Prepared tests consist of simple answers through the selection of options
to complete the source code. Automatic code evaluation was provided by the Virtual
Programming Lab supporting automatic source code evaluation in many program-
ming languages (Rodríguez-del-Pino et al., 2012).

Using Moodle during implementation has resulted in the need to address many
limitations and did not produce the expected results in the user interface. The most
problematic places were the static structure of the course, which does not support
the efficient display of a large number of course objects and the complicated inte-
gration of gamification elements into the system. Support for user activity logging
and support for learning analytics, which are the essential features of a system for
understanding the learning process, did not provide detailed information on user
behaviour. It has also been laborious for users to obtain detailed information about
fixes and source improvements. The ability to adapt the user’s view of the educa-
tional content was low, etc.

The form of programming new modules in LMS Moodle is precisely given, and
module programmers require a thorough knowledge of the LMS system and the use
of spaghetti code in PHP. The complicated development has significantly reduced
the potential for sustainable system development due to lower motivation and higher
demands on students in advanced programming courses.

The logical step was to create a stand-alone, fully adaptable system in-house that
primarily supports the requirements of the framework and is based on new popular
and widely used technologies.

Following the positive experience with microlearning activities and exercises
based on automated source code evaluation in LMS Moodle (Skalka & Drlik, 2020)
and requirement of conceptual design presented above and in (Skalka & Drlik,
2018a, b), the concept of a software architecture proposal of a system called Priscilla
(PRogressIve System for interaCtIve (programming) Learning and Learning
Assistance) was designed. Its structure and implementation are presented in this
section.

Microlearning and Automated Assessment – A Framework Implementation…

6

3.1 Framework Architecture

The conceptual model of Priscilla presented in Fig. 1 is structured as three-layered
architecture, which contains an independent front-end part (presentation/client
module) and separate backend parts integrated into the server infrastructure. The
communication between front-end and backend is realised via the API interface,
and particular features use web sockets.

The front-end part can be implemented as a web, mobile or desktop application.
The user’s interaction with the application is fluent because the network traffic is
very low after the first application launch in a web browser.

The front-end part provides the educational content in three forms:

• Micro-content represents the content in the form of text, short source codes,
images, etc. This type of activity is designed as an HTML container, and the
content is transmitted as a package containing formatted text (headings, text,
source code, images, tables, etc.).

• Microlearning activities are interactive objects that require the user to solve sim-
ple tasks. A typical example is filling in the correct code result, filling a gap in the
code by typing or drag-and-dropping the right parts, reordering shuffled lines of
source code, and so on. Interactive activities are combined with content activities
(usually 1:1 or in favour of interactive activities) in lessons and chapters. Tasks
in interactive activities are focused on the information contained in previous con-
tent activities – the content structure is developed concerning microlearning
principles.

Fig. 1 Simplified conceptual model of PRISCILLA-2.0 based on the PRISCILLA model pre-
sented in (Skalka & Drlik, 2018a, b)

J. Skalka

7

• Activities aimed at acquiring programming skills are focused on writing, execut-
ing and validating the program code. The student completes the developed pro-
grams or writes complete codes in a user-friendly editor adapted to the selected
language. After writing the code, the student sends the program to the validation
system, which evaluates its correctness. The response may contain compiler
errors (syntax errors) or code accuracy, which depends on comparing the submit-
ted code results with the expected results.

The front-end part allows the student to use the discussion module to communicate
with their classmates, rate the content and activities and report errors or inaccura-
cies in the content. Each user’s action causes a connection to the API interface and
records the action type and user identification. Many activities require an educa-
tional system response implemented by RPC (Request-Response Protocol) using
the JSON format.

Responses are generated on the backend part, which is divided into two physical
and several logical segments. Two independent systems present the physical parts:

• The educational system is implemented as a web application working with data
stored in a database system. This structure will be described later.

• The jail-system is implemented as an independent Linux system designed to
verify the source code. Because program code verification is often based on pro-
gram execution, the system must be resistant to attacks, malicious code, and
system errors and must be self-healing. The Priscilla system uses the jail-server
developed for the Virtual programming Lab in Moodle (Rodríguez-del-Pino
et al., 2012), which can evaluate dozens of programming languages. The jail-
system creates a new temporary user with low privileges for every task, and after
reading the results, the user is removed from the system. The restrictions defined
for program activities are derived from Linux user permissions.

The logical structure of the backend reflects the education system functions and the
ideas presented in the previous section. It is designed so that the individual parts
cover all the functions of the system. The parts are closely linked with each other, as
activity in one part often causes related activity in the other part. The backend has
the following components:

• The Content provider provides access to all educational content. The main part
of the content is divided into lessons and chapters organised in educational
courses. Extended content is intended for tests, exercises, revisions and competi-
tions. Each question, task or assignment is accompanied by tips, hints and cor-
rect answers or authoring solutions of the programs. The Content provider
processes the requests from the client interface and sends the content or evalua-
tion results. All evaluation algorithms are implemented in the backend part to
prevent hacker attacks. The User data module is a part of the Content provider
containing information about all activities, attempts, and users’ results in the
system. This part of the data is primarily intended for the Learning analyt-
ics module.

Microlearning and Automated Assessment – A Framework Implementation…

8

• The Content and competition creation module is determined for content build-
ing. This section is intended for administrators or content creators, and the typi-
cal user is not authorised to use the features of this module. The module provides
functions for competitions, courses, chapters and lesson structure creating.
Content, questions and assignments can fill built elements.

• The Competition module ensures the realisation of activities aimed at testing
students (in organised education) or competitions of students with each other. It
offers prepared content in educational objects (matches, tests, revisions, etc.) and
keeps track of time defined for them. The module also includes the evaluation of
test results as a whole and the ordering of competitors. The structure of the ques-
tions is identical to the items used in the learning part. Two main areas are used
in competitions – users can compete in answering questions or writing programs
(rated for writing speed, execution speed, or code effectiveness).

• The Social network module is a layer that provides task-related discussions, com-
menting, micro-object evaluation, bug reporting, and general discussion man-
agement. Each discussion post can be evaluated (positively or negatively), and
the author can get feedback, which is also used in the gamification part.

• The Gamification module monitors user activities and processes the collected
data into gamification elements. The most frequent gamification components of
the Priscilla system are badges in many categories (different types of experience
with the learning process, experience with competition, evaluation, and activities
in discussions, contribution to the system, etc.). Badges are also graded accord-
ing to performance into several levels (bronze, silver, gold, diamond, etc.). Each
action in the system triggers event processing in the Gamification module and
changes the monitored user parameters.

• The Learning analytics module is designed to analyse and evaluate the user’s
behaviour and educational outcomes, identify problematic parts of the content
and predict the user’s preferences and success. This module does not create new
data; it only processes the data of the Content provider and displays it based on
the teacher or administrator’s defined views. The module helps to tune and opti-
mise the parameters of the system.

3.2 Backend Implementation

Typical attributes of modern software systems are permanent availability, fast pro-
cessing of many parallel requests, and orientation to the data provided through ser-
vices. Complex systems usually consist of related services that work independently
and can be developed in isolation. Increased flexibility gained by adopting para-
digms such as API-oriented architecture is associated with creating robust and com-
plex systems (Brosig et al., 2014). The communication between the front-end and
the backend is provided via web services. This architecture allows the development
of various front-end applications: web-client, mobile application, or desktop
application.

J. Skalka

9

The core of the Priscilla system based on the conceptual model is implemented
as a server application developed in the PHP framework Laravel Lumen intended to
develop applications based on microservices. The current database system is
MySQL. The communication is realised via REST API using application/
JSON format.

The backend part of the system processes front-end requests in several layers and
is depicted in Fig. 2:

• The first layer verifies the user’s identity. Only the requests of the authorised and
logged-in user will be moved for further processing. Authentication is provided
by OAuth components (Ferretti et al., 2017).

• The API layer identifies the request and selects the correct service to process or
provide the data.

• Service is usually a single-purpose method for providing communication with a
database or simple request processing. The services can be combined and typi-
cally write a record of the operation in a database recording the user’s behaviour
and results.

Services can be divided into three types: services for processing anonymous activi-
ties (login, registration, visits to the main page of the system, etc.), activities with

Fig. 2 The software structure of PRISCILLA implementation based on microservices

Microlearning and Automated Assessment – A Framework Implementation…

10

program codes that are specific and all other activities performed by the logged-in
user in the system.

Anonymous activities skip the authorisation layer and process requests directly.
The answer may also include data from the database.

Activities with automatic source code evaluation are specific because it is neces-
sary to ensure communication with the jail server. The communication of the appli-
cation as a whole with the jail-server is realised as follows:

• the user in the front-end asks to check the correctness of his program,
• the service invoked in the backend stores code of the delivered program into the

database and prepares the request to the jail server,
• the backend sends a request to the jail-server and, in response, immediately

receives a token representing the jail-server process executing the source code,
• the obtained token is sent as a response (to the demand of the code verification)

to the front-end,
• the front-end gets a token and opens a web-socket to the jail-server; jail-server

has meanwhile started the execution of the program delivered from backend,
• front-end reads the changes on the jail-server via the socket, and if the jail-server

reaches one of the final states (error, long program execution time, program com-
pletion, etc.), the front-end sends a request to the backend to read the results,

• the jail-server results are read by the backend service and written to the database;
at the end of the process, the service sends evaluation results to the front-end.

The process is a bit complicated due to the decrease of server load and the elimina-
tion of cheating. Direct communication with the jail-server is realised only on the
backend. The time-consuming operation of monitoring the running program’s activ-
ity on the jail-server is again implemented on the client side.

All other activities are carried out uniformly: After defining the application cli-
ent’s request parameters and calling the appropriate microservice, the backend
realises user authentication, authorisation verification (user, admin), and subsequent
request processing. The standard services cover common CRUD operations, evalu-
ation of the solution’s correctness, logging of activities, gamification and use of
social network elements. Task evaluation is performed exclusively on the server to
eliminate cheating.

3.3 The Front-end Implementation

The current version of the application’s front-end part was developed in the VueJS
environment with the definition of the appearance based on the rules of Material
design of Google. The system is designed to teach many programming languages,
and the structure of the system supports their teaching in one application. The exam-
ple of used courses, languages and user interface is presented in Fig. 3.

Language support depends primarily on language interpreters (compilers) and
then on advanced content (defined usually by content developers or teachers). Each

J. Skalka

11

Fig. 3 The user’s view of the dashboard and his opened courses in the PRISCILLA system

language has defined a default lesson path consisting of microlearning activities
(tasks) and programming tasks (code).

3.3.1 Content Structure

The essential idea in successful introductory programming courses is to leave stu-
dents some freedom to choose the order of activities they should complete in the
programming course. The programming courses were designed following the clas-
sical educational structures, and the order of defined chapters is in line with the
didactics of teaching programming. Still, they do not force the student to proceed
linearly. Almost every chapter contains a combination of tasks and programs, which
students complete based on their preferences. Each task can be repeated as many
times as a student needs. Students can return to the place of explanation of the issue,
if necessary – the system’s goal is not to evaluate but to teach.

The basic information displayed to the student is the progress of completed ques-
tions and submitted programs that are part of each chapter. An overview of the open
course Java – fundamental (Skalka et al., 2020a) is shown in Fig. 4.

Each chapter displays an icon indicating whether it should be started or whether
the user should solve more tasks in the previous chapter. The recommendation is
calculated to a 50% success rate of tasks and programs in the previous chapter. No
chapter is locked; there are only recommendations, and the user can study any chap-
ter at any time.

The panel on the right side contains information about the last completed activity
in the course, the achieved score and the amount of currency gained, and other
gamification objects.

All interactive activities are dynamically generated based on data obtained from
the backend part of the system and a standard universal template.

Microlearning and Automated Assessment – A Framework Implementation…

12

Fig. 4 User’s view of the Java course content

A combination of micro-content and micro-tasks realises the implementation of
microlearning in the system. The micro-content contains brief information, and the
micro-task follows it and contains a question ensuring the repetition or consolida-
tion of the presented information. It is advisable to alternate micro-content and
micro-tasks within the lessons in a ratio of 1:1 or more (one content and at least one
task). The specific content of micro-content and micro-task are presented in
Figs. 5 and 6.

Support for building skills in several ways is based on a combination of different
types of tasks. There are available the following task types covering the following
activities:

• typical domain verification tasks (short answer, choice of options),
• placing code snippets,
• supplementing the writing of commands or parts of code,
• finding the results of subroutines,
• rearranging lines of source code,
• different types of writing programs (in whole or part).

3.3.2 Automatic Source Code Evaluation

Exercises based on automatic source code evaluation consist of three basic types.
The most used and simplest type for the content creator automatically evaluates

programs based on comparing the program’s correct outputs with the outputs of the
user program (I/O approach). The definition of evaluated inputs has a typical struc-
ture compatible with the definition of inputs and expected results in the VPL

J. Skalka

13

Fig. 5 Example of micro-content in the educational system PRISCILLA

Fig. 6 Example of micro-task in the educational system PRISCILLA

Microlearning and Automated Assessment – A Framework Implementation…

14

environment (Rodríguez-del-Pino et al., 2012). The example of test cases and their
use is presented in Figs. 7 and 8.

Based on xUnit testing ideas, the second approach is typical for tasks designed to
learn object-oriented programming. It uses automated tests principles, and its imple-
mentation depends on the creators’ abilities and habits. Each content creator can
implement their testing methods. The easiest way is to use the xUnit libraries, where
the creator has set the tested methods and the correct outputs.

The system is also open to unique approaches. The content creator can create his
random generators for selecting a sequence of methods, selecting input values, and
using the author’s solution as a sample solution, with the results of which the stu-
dent’s solution will be compared.

An example of a particular class used for program evaluation in the form of
another class defined in the assignment is shown in Fig. 9. The definition uses an
input matrix that will be set as attributes of class instances passed by students. Each
attribute and method should be tested for random and threshold values. The user
output has the same design as the Execution info section in Fig. 8.

The last type of automatic evaluation is a static evaluation used in any program-
ming language of varying complexity and difficulty. Its simple version based on
content (not structure) analysis is used, for example, in HTML courses. The idea is
based on defining the rules and evaluating their fulfilment. Priscilla contains several
rules that can be used to varying degrees to validate a document (text). The rules are
defined to check the existence, position, or order of text patterns. A simple example
is presented in Fig. 10.

Fig. 7 Test cases definition for code that should print the number of characters in a defined string

J. Skalka

15

Fig. 8 The result of program code evaluation in the implementation of the presented framework
in the educational system PRISCILLA. The Execution info section shows the inputs and outputs
of test cases in which the expected and obtained values do not match

3.3.3 Learning and Teaching Support

For each task, the template provides the ability to invoke help or unlock an answer,
add a discussion post, report errors, and rate the quality of the question. The activi-
ties dedicated to programming are extended by sending the program to evaluate and
display compiler messages or test results. The views of activities are presented in
Fig. 11.

The user interface for competitions (test, revisions etc.) uses the same templates
and activity types, but the time to prepare answers for tasks and programs is limited.
After the set time has elapsed, all the tasks (including unfinished ones) are automati-
cally submitted and evaluated.

The educational environment includes gamification tools – levelling, awarding
badges, rewarding selected activities and rankings for individual courses or pro-
gramming languages.

A teacher role has been created in the Priscilla system to support the use of
blended activities. This role can be acquired by any user who sets up a study group,
where the students join by the key. The teacher has permission to monitor students
activity and results in his group, and he can participate in solving course activities.

Microlearning and Automated Assessment – A Framework Implementation…

16

Fig. 9 A simple example of a class designed to compare the results of students classes with the
original solution. The assignment was simple – create a method for the sum of two real values. Test
cases are defined by string constants – P (positive values), N (negative values), R (random values)
and Z (zero). The randomisation of input values minimises the risk of false positives

4 Students’ Perception of the Elements
of the Priscilla System

Priscilla was first deployed in the winter semester of 2020/2021 as the primary
teaching tool for Java courses and a complementary database and SQL learning
tool. Other courses were used to support additional activities in the voluntary prepa-
ration of students.

The research focused on the perception of elements of the system by students
was carried out after the end of the semester. Answers of the Java course students

J. Skalka

17

Fig. 10 Example of static automated evaluation of HTML program code in the implementation of
the educational system PRISCILLA. The rules are defined in the admin interface, and the user
views only a simple window after evaluation

were collected not anonymously to find dependency between students results and
their perception of the educational process. The questionnaire was focused compre-
hensively, the coverage of the topics of lessons by micro-content and automatically
evaluated programs was identified. A series of similar questions focused on percep-
tion by students was devoted to individual elements of the environment.

The questionnaire respondents were students of the first year of the study pro-
gram of applied informatics aged 20–23 years.

Table 2 presents the perceptions of micro-lessons by students. The course con-
tent was created to evenly cover all the topics covered in the introductory course of
programming. The perception of the compliance of the content of micro-lessons and
lectures realised in 2020 in online form expresses mastery and understanding of
content by students. If students perceive that the taught and the practised content are
the same, they are likely to understand the context or at least paid sufficient atten-
tion to the content. The first question in the questionnaire finds out this fact.

The second group of questions focuses on identifying the role of micro-content
through the Likert scale. The role of micro-content is expressed in questions at dif-
ferent levels:

• Micro-content and micro-questions helped students understand the curriculum.
• Micro-content and micro-questions helped students practice previously under-

stood curriculum content.

Microlearning and Automated Assessment – A Framework Implementation…

18

Fig. 11 Functions implemented in interactive (a) and programming (b) activities. There are
shared functions on the header toolbar – get help, buy the correct answer and in the program activ-
ity: show/hide the compiler message and show/hide the execution information. The footer of each
activity contains icons for rating assignments, bug reports, and discussion views

• Micro-content helped students with a comprehensive mastery of the curricu-
lum – the student used it as a primary source of learning.

It can be observed that majority of students perceived microlearning positively to
very positively.

Table 3 presents the perceptions of automated assessment by students. The most
important characteristics of educational content are students understanding and the
teacher’s (or course creator’s) ability to assign a task clearly and accurately. The first
question focuses on identifying the unambiguity and comprehensibility of the
assignment.

J. Skalka

19

Fig. 12 Monitoring of student activities in teacher defined groups

Table 3 Perceptions of automated assessment by students in the winter semester of 2020/2021

Question 1 (disagree) 2 3 4 5 6 7 (agree)

Clarity and accuracy of assignments 4 2 8 15 18 18 10
Help to understand 3 1 6 9 16 17 23
Practice understood content 4 0 2 10 13 22 24

Table 2 Perceptions of micro-lessons by students in the winter semester of 2020/2021

Question 1 (disagree) 2 3 4 5 6 7 (agree)

Compliance of micro-lessons and lectures 4 0 2 9 8 27 25
Help to understand 3 0 7 11 13 21 20
Practice understood content 3 2 4 8 11 23 24
Primary source of learning 2 4 5 17 16 17 14

The following questions focus on identifying the role of automated assessment
through the Likert scale again. The roles of automated assessment were expressed
at two levels:

• The automated assessment helped students understand the curriculum.
• The automated assessment helped students practice previously understood

content.

The majority of respondents perceived automated assessment positively.
The results of two continuous tests aimed at identifying students’ ability to write

entire programs independently were used to inspect the relationship between stu-
dents’ answers and their learning outcomes. The maximum score of this pair of tests
was 1000 points (500 per test). The histogram in Fig. 13 presents the distribution of

Microlearning and Automated Assessment – A Framework Implementation…

20

the results. Questionnaire respondents who were evaluated in a different way (exter-
nal study) were omitted from the sample.

The correlations between students’ results and the answers to the questionnaire
questions are presented in Table 4. The dependence was identified using the Pearson
correlation coefficient.

The dependence between characteristics is proven in the case of a value greater
than 0.4. The evaluation results demonstrate that there is no dependence between
the results of students and their perception of individual types of educational objects.

5 Discussion

The answers to the research questions can be summarised as follows

• RQ1: What is the effective software architecture covering the needs of the frame-
work defined for learning and teaching programming in introductory courses.

The software architecture was designed to be able to cover the needs of the frame-
work defined in (Skalka & Drlik, 2018a, b) and at the same time bring a user and
research design that is better than its implementation presented in (Skalka et al.,
2021). The essential feature of the system is open to any front-end implementations
covering the creation of the web, mobile and desktop applications on the same back-
end kernel.

Fig. 13 Histogram of student test results

J. Skalka

21

Table 4 Correlations between student results and questionnaire questions

Activity/questions Pearson correlation coefficient

Compliance of micro-lessons and lectures 0.22
Micro-lessons helped to understand 0.17
Micro-lessons helped to practice the understood content 0.12
Micro-lessons were a primary source of learning 0.01
Clarity and accuracy of assignments in automated assessment 0.26
The automated assessment helped to understand 0.35
The automated assessment helped practice understood content 0.26

The functionality of the backend kernel ensures the control of responses and the
evaluation of source codes. This approach is standard, implemented in several simi-
lar systems (Chen et al., 2018; Silva et al., 2017) and, thanks to its isolation from
user activities on the front end, also relatively secure (Liebenberg & Jarke, 2020).

Based on conceptual framework ideas, the presented system covers an educa-
tional concept implemented as an essential tool for teaching programming at five
European universities. The educational system is used to cover the first framework
phases defined for building knowledge and skills. Priscilla provides an environment
to offer content availability, instant feedback in all types of assignments, the ability
to communicate between users, and the support of a full-time study of learning
programming.

It covers many activities needed to educate programmers at novice levels. There
are 24 courses in 8 languages implemented to cover Java, Python, C, HTML, CSS,
JavaScript, PHP and SQL. Every course is localised into English, Spanish, Slovak,
Czech and Polish languages.

Currently, the system has about 1500 unique active users, so it can be concluded
that the proposed concept is functional and successful.

• RQ2: How do students perceive the methods of microlearning, and how, accord-
ing to them, does it contribute to the improvement of their programming skills
and knowledge.

• RQ3: How do students perceive the method of automated assessment, and how,
according to them, does it contribute to the improvement of their programming
skills and knowledge.

A pair of research questions were answered through a questionnaire with the fol-
lowing results based on the evaluation of the feedback obtained after the end of the
semester on a sample of 75 first-year students. It can be stated that:

• micro-lessons help students understand new content and are sufficient for 72%
of students as a basic source of information, 13% disagree with this statement,

• 77% of respondents say that microlearning helped them practice educational
content, and 12% are negative about the claim,

• 63% of students can accept micro-lessons as the primary source of information
when learning programming, 15% disagree with the statement,

Microlearning and Automated Assessment – A Framework Implementation…

22

• automated assessments help students understand new content for 75% of stu-
dents, 13% disagree with this statement,

• automated assessments help students practice content and are sufficient for 79%
of students, 8% disagree with this statement,

The dependence between students’ educational results and their perception of
micro-content and automated assessment has not been proven. This finding is quite
important because it does not favour micro-lessons or automated assessment only
for a selected group of students. Statistically, students with better and students with
weaker results perceive it in the same way.

6 Conclusion and Future Work

The next phases of students’ education focus on developing advanced skills and
knowledge use the education system as an environment whose content and modules
can students develop. As part of the verification of the framework concept, the fol-
lowing activities will be implemented in the next part of their study:

• Students will be involved in creating new questions and tasks after completing
the introductory courses. Creating new assignments expands the educational
content provided by the system. Discussion and analysis of new content will cre-
ate an area for students better to understand the relationships between elements
of their acquired knowledge. Self-expression skills and skills for building code
and writing test classes or scripts will also be improved. This activity will be
covered by students’ obligation to create new tasks and provide tools for their
verification within the advanced subjects dedicated to application development.
Feedback and quality evaluation of the new elements will be provided on two
levels. The first level will be covered by user evaluation, which is a part of all
micro-units. It will be a subjective part of the evaluation. The evaluation‘s objec-
tive aspect will be realised by learning analytics tools, which can identify outliers
from students’ average results for individual types of tasks. If students’ success
in newly added assignments is significantly higher or significantly lower than the
average of works of the same type and level, the assignment will be replaced or
removed from the system.

• Involving advanced students in discussions on tasks in introductory program-
ming courses will be a versatile benefit. First, it relieves teachers of the tedious
work of answering elementary questions and allows them to tackle more com-
plex tasks. It will bring advanced students new experience from working with
less experienced colleagues and ensure their communication skills and patience.
Simultaneously, advanced students will learn to accept criticism in case of incon-
sistent or inaccurate answers. We also anticipate developing relationships
between groups of students, which may be used later in study or work for team
building. Finally, the benefit for novices will be to get the answer to the question

J. Skalka

23

faster, often in a language that is closer to that of the students’ generation than to
the teachers’ generation.

The final part of the framework is focused on mastering the development environ-
ments used by employers and building soft skills in general.

• The most challenging task in the advanced phases defined by the framework is to
create new types of activities in the system. A prerequisite for implementing new
tasks is a mastery of the technologies by which the system is built. Therefore,
students will not create new activities at the beginning of specialised courses but
later -- after completing a set of school tasks and at least one complex project. It
is assumed that students who complete their education in an educational environ-
ment and create content for younger colleagues know the system appropriately.
Knowledge of the system functionalities is the first condition for the possibility
of its development. In parallel, the possibility of using students’ creativity in
designing completely new types of activities will be utilised not only for pro-
gramming but also for other areas forming IT professionals’ skills and knowl-
edge (mathematics, artificial intelligence, etc.).

• Developing new applications or upgrading applications to new, more modern
environments that will gain a foothold in the application development market in
the future is a complex task that requires the involvement of development teams.
As part of IT specialists training, courses devoted to team cooperation and com-
munication or leadership skills are usually part of the study. These courses con-
tent will be updated and extended by tasks supporting the implemented system’s
upgrade and development. The tasks will be focused on advancing the existing
functionalities to a newer environment or building partial applications using the
deployed system’s backend infrastructure (e.g., C language lessons, 30 days with
Java language). Mobile, web or desktop applications can be created – communi-
cation with the backend via the API interface will enable any technology com-
municating via the HTTP protocol. An alternative design of mobile and web
applications has great potential in educational activities in developing new types
of activities. Students gain knowledge and practical skills in developing applica-
tions in the real world with immediate feedback from users.

Implementing the model and the system described creates a space for further
research and verification of many educational theories focused on and verified only
within the isolated teaching programming problems. It can be assumed that success-
ful implementation will increase the quality of training of IT specialists.

One of the most important educational system goals is identifying problem stu-
dents and the early detection of the risk of early course (or study) termination.
Therefore, a goal in the near future is to implement algorithms that can detect this
group of students and then implement functions and modules that will allow them
to overcome the unfavourable situation.

Integration with other education systems and collecting data through other edu-
cation systems to gain a more accurate and detailed view of the student have been
developed and described in (Drlík et al., 2017; Skalka et al., 2020b).

Microlearning and Automated Assessment – A Framework Implementation…

24

Some ideas for future research based on natural language processing (NLP)
focused on automation and artificial intelligence functions have been published in
(Skalka, 2018). A valuable technique for preparing new lessons from complex con-
tent (e.g., book, articles) is a summary that analyses the content and chooses essen-
tial information. The summary techniques can extract whole sentences or unit
information from the text, which will become the basis of microlessons or ques-
tions. Elements of NLP will create coherent sentences, enabling the generation of
meaningful content.

Another logical direction from the collected content is feedback generation for
program errors (syntactic and semantic). It is possible to categorise the mistakes and
identify the reasons for errors using machine learning methods (Keuning et al.,
2018). The data for categorisation is obtained from the submitted correct and incor-
rect source codes. Submitted source code with errors can be classified, and the sys-
tem will guide students in correcting the code.

Another exciting element is implementing question-answering methods enabling
answer generation based on the educational content, via, for example, questions
posted to the student’s discussion.

Integrating these ideas requires developing additional software modules based
on artificial intelligence tools and prepared and optimised content.

Acknowledgements This research was funded by European Commission under the ERASMUS+
Programme 2018, KA2, grant number: 2018-1-SK01-KA203-046382 “Work-Based Learning in
Future IT Professionals Education”, Ministry of Education of Slovakia, grant number
004UKF-2-1/2021 “Preparation and development of teaching courses in English with a focus on
artificial intelligence in the form of blended-learning”, and Ministry of Education of Slovakia,
grant number: 2020/8148:34-A1101 “Support for the development of practical skills of UKF stu-
dents in Nitra”.

References

Ala-Mutka, K. M. (2005). A survey of automated assessment approaches for programming assign-
ments. Computer Science Education, 15(2). https://doi.org/10.1080/08993400500150747

Baldwin, S. J., & Ching, Y. H. (2020). Guidelines for designing online courses for mobile devices.
TechTrends, 64(3). https://doi.org/10.1007/s11528- 019- 00463- 6

Bartolomé, A., Castañeda, L., & Adell, J. (2018). Personalisation in educational technology: The
absence of underlying pedagogies. International Journal of Educational Technology in Higher
Education, 15(1). https://doi.org/10.1186/s41239- 018- 0095- 0

Blažeska-Tabakovska, N., Ivanović, M., Klašnja-Milićević, A., & Ivković, J. (2017). Comparison
of E-learning personalization systems: Protus and PLeMSys. International Journal of Emerging
Technologies in Learning, 12(1). https://doi.org/10.3991/ijet.v12i01.6085

Brosig, F., Huber, N., & Kounev, S. (2014). Architecture-level software performance abstrac-
tions for online performance prediction. Science of Computer Programming, 90. https://doi.
org/10.1016/j.scico.2013.06.004

Brusilovsky, P., Malmi, L., Hosseini, R., Guerra, J., Sirkiä, T., & Pollari-Malmi, K. (2018).
An integrated practice system for learning programming in python: Design and evaluation.

J. Skalka

https://doi.org/10.1080/08993400500150747
https://doi.org/10.1007/s11528-019-00463-6
https://doi.org/10.1186/s41239-018-0095-0
https://doi.org/10.3991/ijet.v12i01.6085
https://doi.org/10.1016/j.scico.2013.06.004
https://doi.org/10.1016/j.scico.2013.06.004

25

Research and Practice in Technology Enhanced Learning, 13(1). https://doi.org/10.1186/
s41039- 018- 0085- 9

Buffardi, K., & Edwards, S. H. (2014). Introducing CodeWorkout. https://doi.
org/10.1145/2538862.2544317.

Carlon, M. K. J., Keerativoranan, N., & Cross, J. S. (2020). Content type distribution and readabil-
ity of MOOCs. In L@S 2020 – Proceedings of the 7th ACM conference on learning @ Scale.
Retrieved from https://doi.org/10.1145/3386527.3405950.

Çetin, M., & Demircan, H. Ö. (2020). Empowering technology and engineering for STEM educa-
tion through programming robots: A systematic literature review. Early Child Development
and Care. https://doi.org/10.1080/03004430.2018.1534844

Chauhan, A. (2014). Massive Open Online Courses (MOOCS): Emerging trends in assessment and
accreditation. Digital Education Review. https://doi.org/10.1344/der.2014.25.7- 17

Chen, H. M., Chen, W. H., & Lee, C. C. (2018). An automated assessment system for analysis
of coding convention violations in Java programming assignments*. Journal of Information
Science and Engineering, 34(5). https://doi.org/10.6688/JISE.201809_34(5).0006

Crow, T., Luxton-Reilly, A., & Wuensche, B. (2018). Intelligent tutoring systems for programming
education: A systematic review. In ACM International conference proceeding series. Retrieved
from https://doi.org/10.1145/3160489.3160492.

Drlik, M., & Munk, M. (2019). Understanding time-based trends in stakeholders’ choice of
learning activity type using predictive models. IEEE. Access, 7. https://doi.org/10.1109/
ACCESS.2018.2887057

Drlík, M., Švec, P., Kapusta, J., Munk, M., Noskova, T., Pavlova, T., et al. (2017). Identification
of differences in university e-environment between selected EU and non-EU countries using
knowledge mining methods: Project IRNet case study. International Journal of Web Based
Communities, 13(2). https://doi.org/10.1504/IJWBC.2017.084416

Fernández Alemán, J. L. (2011). Automated assessment in a programming tools course. IEEE
Transactions on Education, 54(4). https://doi.org/10.1109/TE.2010.2098442

Ferretti, L., Marchetti, M., & Colajanni, M. (2017). Verifiable delegated authorization for user-
centric architectures and an OAuth2 implementation. In Proceedings – International com-
puter software and applications conference (Vol. 2). Retrieved from https://doi.org/10.1109/
COMPSAC.2017.260.

Halvoník, D., & Kapusta, J. (2019). Identifying problematic e-courses content based on students
behaviour. In Lecture notes in electrical engineering (Vol. 489). Retrieved from https://doi.
org/10.1007/978- 3- 319- 75605- 9_27.

Halvoník, D., & Kapusta, J. (2020). Framework for E-learning materials optimization.
International Journal of Emerging Technologies in Learning, 15(11). https://doi.org/10.3991/
IJET.V15I11.12721

Hug, T. (2005). Microlearning: A new pedagogical challenge. In Proceedings of microlearning
conference 2005.

Johnston, T. (2015). Lessons from Moocs: Video lectures and peer assessment. Academy of
Educational Leadership Journal, 19(2).

Kabathova, J., & Drlik, M. (2021). Towards predicting student’s dropout in university courses
using different machine learning techniques. Applied Sciences (Switzerland), 11(7). https://doi.
org/10.3390/app11073130

Keuning, H., Jeuring, J., & Heeren, B. (2018). A systematic literature review of automated feed-
back generation for programming exercises. ACM Transactions on Computing Education,
19(1). https://doi.org/10.1145/3231711

Liebenberg, M., & Jarke, M. (2020). Information systems engineering with digital shadows:
Concept and case studies: An exploratory paper. In Lecture notes in computer science (includ-
ing subseries lecture notes in artificial intelligence and lecture notes in bioinformatics) (Vol.
12127 LNCS). Retrieved from https://doi.org/10.1007/978- 3- 030- 49435- 3_5.

Microlearning and Automated Assessment – A Framework Implementation…

https://doi.org/10.1186/s41039-018-0085-9
https://doi.org/10.1186/s41039-018-0085-9
https://doi.org/10.1145/2538862.2544317
https://doi.org/10.1145/2538862.2544317
https://doi.org/10.1145/3386527.3405950
https://doi.org/10.1080/03004430.2018.1534844
https://doi.org/10.1344/der.2014.25.7-17
https://doi.org/10.6688/JISE.201809_34(5).0006
https://doi.org/10.1145/3160489.3160492
https://doi.org/10.1109/ACCESS.2018.2887057
https://doi.org/10.1109/ACCESS.2018.2887057
https://doi.org/10.1504/IJWBC.2017.084416
https://doi.org/10.1109/TE.2010.2098442
https://doi.org/10.1109/COMPSAC.2017.260
https://doi.org/10.1109/COMPSAC.2017.260
https://doi.org/10.1007/978-3-319-75605-9_27
https://doi.org/10.1007/978-3-319-75605-9_27
https://doi.org/10.3991/IJET.V15I11.12721
https://doi.org/10.3991/IJET.V15I11.12721
https://doi.org/10.3390/app11073130
https://doi.org/10.3390/app11073130
https://doi.org/10.1145/3231711
https://doi.org/10.1007/978-3-030-49435-3_5

26

Moon, J., Do, J., Lee, D., & Choi, G. W. (2020). A conceptual framework for teaching com-
putational thinking in personalized OERs. Smart Learning Environments, 7(1). https://doi.
org/10.1186/s40561- 019- 0108- z

Morze, N., Varchenko-Trotsenko, L., Terletska, T., & Smyrnova-Trybulska, E. (2021).
Implementation of adaptive learning at higher education institutions by means of Moodle
LMS. In Journal of physics: Conference series (Vol. 1840). Retrieved from https://doi.
org/10.1088/1742- 6596/1840/1/012062.

Rodríguez-del-Pino, J. C., Rubio-Royo, E., & Hernández-Figueroa, Z. (2012). A virtual program-
ming lab for moodle with automatic assessment and anti-plagiarism features. Conference on
E-Learning, E-Business, entreprise information systems, & E-Government.

Sharma, R., Banati, H., & Bedi, P. (2012). Adaptive content sequencing for E-learning courses
using ant colony optimization. In Advances in intelligent and soft computing (Vol. 131 AISC).
Retrieved from https://doi.org/10.1007/978- 81- 322- 0491- 6_53.

Silva, T. R., Hak, J. L., & Winckler, M. (2017). A behavior-based ontology for supporting auto-
mated assessment of interactive systems. In Proceedings – IEEE 11th international conference
on semantic computing, ICSC 2017. Retrieved from https://doi.org/10.1109/ICSC.2017.73.

Skalka, J. (2018). Data processing methods in the development of the microlearning-based
framework for teaching programming languages. Divai 2018: 12th international scientific
conference on distance learning in applied informatics. Retrieved from https://publons.com/
publon/18895954.

Skalka, J., & Drlik, M. (2018a). Conceptual framework of microlearning-based training mobile
application for improving programming skills. Advances in Intelligent systems and computing
(Vol. 725). Retrieved from https://doi.org/10.1007/978- 3- 319- 75175- 7_22.

Skalka, J., & Drlik, M. (2018b). Priscilla – Proposal of system architecture for programming learn-
ing and teaching environment. IEEE international conference on application of information
and communication technologies. Retrieved from https://publons.com/publon/27387754.

Skalka, J., & Drlik, M. (2020). Automated assessment and microlearning units as predictors of
at-risk students and students’ outcomes in the introductory programming courses. Applied
Sciences (Switzerland), 10(13). https://doi.org/10.3390/app10134566

Skalka, J., Drlik, M., & Obonya, J. (2019). Automated assessment in learning and teaching pro-
gramming languages using virtual learning environment. Proceedings of ieee global engi-
neering education conference (EDUCON2017). Retrieved from https://doi.org/10.1109/
EDUCON.2019.8725127.

Skalka, J., Benko, Ľ., Boryczka, M., Landa, J., & Rodríguez-del-Pino, J. C. (2020a). Java funda-
mental. Retrieved from https://doi.org/10.17846/2020- java1.

Skalka, J., Drlik, M., Obonya, J., & Capay, M. (2020b). Architecture proposal for micro- learning
application for learning and teaching programming courses. In IEEE global engineering
education conference, EDUCON (Vol. 2020–April). Retrieved from https://doi.org/10.1109/
EDUCON45650.2020.9125407.

Skalka, J., Drlik, M., Benko, L., Kapusta, J., Del Pino, J. C. R., Smyrnova-Trybulska, E., et al.
(2021). Conceptual framework for programming skills development based on microlearn-
ing and automated source code evaluation in virtual learning environment. Sustainability
(Switzerland), 13(6). https://doi.org/10.3390/su13063293

Smyrnova-Trybulska, E., Morze, N., Kommers, P., Zuziak, W., & Gladun, M. (2017). Selected
aspects and conditions of the use of robots in STEM education for young learners as viewed
by teachers and students. Interactive Technology and Smart Education, 14(4). https://doi.
org/10.1108/ITSE- 04- 2017- 0024

Vesin, B., Mangaroska, K., & Giannakos, M. (2018). Learning in smart environments: User-
centered design and analytics of an adaptive learning system. Smart learning. Environments,
5(1). https://doi.org/10.1186/s40561- 018- 0071- 0

J. Skalka

https://doi.org/10.1186/s40561-019-0108-z
https://doi.org/10.1186/s40561-019-0108-z
https://doi.org/10.1088/1742-6596/1840/1/012062
https://doi.org/10.1088/1742-6596/1840/1/012062
https://doi.org/10.1007/978-81-322-0491-6_53
https://doi.org/10.1109/ICSC.2017.73
https://publons.com/publon/18895954
https://publons.com/publon/18895954
https://doi.org/10.1007/978-3-319-75175-7_22
https://publons.com/publon/27387754
https://doi.org/10.3390/app10134566
https://doi.org/10.1109/EDUCON.2019.8725127
https://doi.org/10.1109/EDUCON.2019.8725127
https://doi.org/10.17846/2020-java1
https://doi.org/10.1109/EDUCON45650.2020.9125407
https://doi.org/10.1109/EDUCON45650.2020.9125407
https://doi.org/10.3390/su13063293
https://doi.org/10.1108/ITSE-04-2017-0024
https://doi.org/10.1108/ITSE-04-2017-0024
https://doi.org/10.1186/s40561-018-0071-0

	Microlearning and Automated Assessment – A Framework Implementation of Dissimilar Elements to Achieve Better Educational Outcomes
	1 Introduction
	2 Introductory Programming Learning Environments
	3 Learning Environment Concept
	3.1 Framework Architecture
	3.2 Backend Implementation
	3.3 The Front-end Implementation
	3.3.1 Content Structure
	3.3.2 Automatic Source Code Evaluation
	3.3.3 Learning and Teaching Support

	4 Students’ Perception of the Elements of the Priscilla System
	5 Discussion
	6 Conclusion and Future Work
	References

