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Abstract. Resting state brain networks have reached a strong popularity in recent
scientific endeavors due to their feasibility to characterize the metabolic mecha-
nisms at the basis of neural control when the brain is not engaged in any task. The
evaluation of these states, consisting in complex physiological processes employ-
ing a large amount of energy, is carried out from diagnostic images acquired
through resting-state functionalmagnetic resonance (RS-fMRI) on different popu-
lations of subjects. In the present study, RS-fMRI signals from theWU-MinnHCP
1200 Subjects Data Release of the Human Connectome Project were studied with
the aim of investigating the high order organizational structure of the brain func-
tion in resting conditions. Image data were post-processed through Independent
Component Analysis to extract the so-called Intrinsic Component Networks, and
a recently proposed framework for assessing high-order interactions in network
data through the so-called O-Information measure was exploited. The framework
allows an information-theoretic evaluation of pairwise and higher-order interac-
tions, and was here extended to the analysis of vector variables, to allow inves-
tigating interactions among multiple Independent Component Networks (ICNs)
each composed by several brain regions. Moreover, surrogate data analysis was
used to validate statistically the detected pairwise and high-order networks. Our
results indicate that RSNs are dominated by redundant interactions among ICN
subnetworks, with levels of redundancy that increasemonotonically with the order
of the interactions analyzed. The ICNs mostly involved in the interactions of any
order were the Default Mode and the Cognitive Control networks, suggesting a
key role of these areas in mediating brain interactions during the resting state.
Future works should assess the alterations of these patterns of functional brain
connectivity during task-induced activity and in pathological states.
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1 Introduction

Since its discovery, functional magnetic resonance imaging (fMRI) has been funda-
mental in understanding the complex processes underlying the time-varying metabolic
activation of particular areas of the human brain, in different physio-pathological states
and experimental conditions, both in response to tasks and in resting conditions (the so-
called resting state fMRI, RS-fMRI) [1, 2]. This technique is widely applied especially
when it is not possible to directly interact with or let the patient perform the task, such
as with pediatric, sedated and/or neurologically compromised patients [3–5]. In fact,
recent studies have shown how the brain is essentially driven by intrinsic activity, not
related to mental task-, sensory- or motor-induced stimulation and consuming the most
of brain energy demand, and that external stimulus can only modulate but not determine
its trend. RS-fMRI functional brain connectivity patterns have been investigated also
in clinical settings to provide an assessment for diagnosis, prognosis, and treatment of
individual patients.

The functional behavior ofmultiple resting state networks (RSN)has been assessed in
the context of end-stage organ disease patients compared to healthy controls and surgical
neuro-oncology planning, using the tools of graph theory, seed-based analysis and basic
measures of functional connectivity such as Pearson correlation [5, 6] or other techniques
such as dynamic causal model for assessing effective connectivity [7, 8]. Specifically, the
Pearson correlation coefficient quantifies the strength of the linear pairwise interactions
between two variables or groups of variables, e.g. two subsets of voxels in the case of
fMRI data. The correlation coefficient has been often employed to assess the degree
of interdependency between different areas of the brain in the context of functional
connectivity [5, 6]. On the other hand, the directionality of pairwise interactions has been
assessed through effective connectivity approaches which investigate the direction of the
information flow exchanged between two different brain areas [7, 8]. In this context, RS-
fMRI has allowed to identify specific spontaneous activity patterns or modifications that
can be associated with the changing of neurologic deficits due to organ diseases or after
surgery. Such activity patterns are often described and graphically displayed by a circular
graph named “connectome”, consisting of a set of nodes representing brain areas and
edges depicting their multiple interconnections [9, 10].

The analysis of the human connectome based on RS-fMRI measurements is a con-
solidated but also evolving research field, where several methodological issues still
need to be addressed. A main question is which type of measure to adopt to quantify
connectivity and how to assess the significance of the measured connections. Several
studies report the use of thresholding methods applied to bivariate correlation mea-
sures to select only the most relevant connections within these complex networks, but
in the literature an unequivocal way to set the optimal threshold has still not been iden-
tified [11, 12]. Moreover, it has been shown that the threshold selection may strongly
depend on the algorithms used to identify intrinsic component networks (ICN) and on
the size of the whole analyzed network. ICNs are groups of independent components
(IC), extracted from RS-fMRI images through independent component analysis (ICA)
[13], and are indicative of different areas of the brain which can be anatomically sepa-
rated but are activated synchronously (i.e., they are temporally coherent), following the
same oscillation patterns in resting-state conditions. Another emerging issue is the need
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to use connectivity measures which go beyond the framework of pairwise interactions.
Approaches such as the Pearson correlation or dynamic causal modeling are, indeed,
confined to a bivariate framework which does not take into account higher-order inter-
actions, i.e. interactions involving more than two variables or groups of variables. It is
indeed increasingly evident that complex brain networks such as those probed by RS-
fMRI recordings display emergent behaviors which cannot be described solely in terms
of the interaction between pairs of network nodes. To address such complex high-order
interactions, new measures typically devised within the frame of information theory, are
being defined and increasingly used in multivariate biomedical datasets [14–16].

In this work, starting from the consolidated concept of mutual information (MI),
which quantifies the amount of information shared between groups of random variables,
we have applied recently defined measures of static interdependence (i.e., interdepen-
dence between equal-time points in two time series) for assessing high-order redundant
and synergistic contributions brought by adding a target ICN to a source system already
composed of a given number of ICNs [14–16]. Specifically, in broad terms, while syn-
ergy arises from statistical interactions that can be found collectively in a network but
not in parts of it considered separately, redundancy refers to group interactions that can
be explained by the communication of sub-groups of scalar or vector variables. In this
way, we are able to assess and describe brain interactions occurring at higher orders,
i.e. between more than two brain areas, thus overcoming the limitations of the above-
indicated approaches that instead operate mostly pairwise. Mostly redundant connectiv-
ity patterns were identified in our analyses and their statistical significance was assessed
through surrogate data testing, without the need for applying arbitrary thresholding
procedures.

2 Materials and Methods

2.1 Dataset

In this study, we used a subset of the public database WU-Minn HCP 1200 Subjects
Data Release from Human Connectome Project (HCP), that includes high-resolution 3T
MR scans from young healthy adult twins and non-twin siblings (ages 22–35) using four
imaging modalities: structural images (T1w and T2w), RS-fMRI, task-fMRI (t-fMRI),
and high angular resolution diffusion imaging (d-MRI). RS-fMRI scans were acquired
in a darkened room for approximately 15 min, for a total of about 1200 frames per run.

Subjects were asked to stay with eyes open relaxingly fixating on a projected white
crosshair on a dark background. Images were collected using the acquisition parameters
indicated in Table 1. For further details we refer the reader to [17].
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Table 1. RS-fMRI acquisition settings [17].

Parameter Value

Sequence Gradient-echo EPI

Repetition time (TR) 720 ms

Time to echo (TE) 33.1 ms

Flip angle 52°

FOV 208 × 180 mm (RO × PE)

Matrix 104 × 90 (RO × PE)

Slice thickness 2.0 mm; 72 slices; 2.0 mm isotropic voxels

Multiband factor 8

Echo spacing 0.58 ms

BW 2290 Hz/Px

2.2 Data Processing and Independent Component Analysis

The dataset was processed first with the minimal preprocessing pipelines for the Human
Connectome Project [18], and then with a smoothing algorithm using a Gaussian kernel
of 6 mm Full Width at Half Maximum (FWHM). After this preprocessing pipeline, RS-
fMRI data were decomposed using the common technique of independent component
analysis (ICA). Group ICA of fMRI Toolbox (GIFT, http://icatb.sourceforge.net) [13,
19, 20], performed using the Infomax algorithm [21],was used to computeC= 100 spa-
tially independent components (ICs). After spatial reconstruction and visual inspection
of the 100 components, C′ = 53 components-of-interest, with anatomical distribution
schematized in Table 2, were selected for this work.

Table 2. ICN decomposition of the RS-fMRI.

Name ICs Area/domain

ICN_AD (1) 66, 76 Auditory domain

ICN_CB (2) 48, 77, 26, 88 Cerebellum

ICN_CC (3) 71, 65, 42, 93, 53, 83, 75, 31, 90, 78, 81, 95, 73, 70, 54, 96,
27

Cognitive control

ICN_DM (4) 20, 35, 29, 52, 34, 24, 85 Default mode

ICN_SC (5) 30, 41, 99, 45, 50 Subcortical

ICN_SM (6) 2, 5, 8, 4, 23, 97, 74, 79, 69 Sensorimotor

ICN_VS (7) 6, 1, 25, 13, 14, 43, 19, 7, 98 Visual

http://icatb.sourceforge.net
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2.3 Static O-Information

This section presents the framework to measure static interactions among Q stationary
random variables X = {

X1, . . . ,XQ
}
, grouped in M blocks Y = {Y1, . . . ,YM }. The ith

block has dimension Mi, so that Q = ∑M
i=1Mi. The activity of the complex network

formed by the M interacting systems can be described by the mutual information (MI)
between blocks, here denoted as IYi;Yj when computed for the two vector variables Yi
and Yj. Higher-order interactions are assessed by means of the O-Information (OI), a
novel measure which generalizes the MI to groups of variables [14–16]. The OI of N
random vectors taken from the set Y = {Y1, . . . ,YM } is defined as:

�YN = �YN−j
+ �YN−j;Yj , (1)

where YN = {
Yi1 , . . . ,YiN

}
, i1, . . . , iN ∈ {1, . . . ,M },N ≤ M , is the analyzed group

of random vectors, YN−j = YN\Yj is the subset of random vectors where Yj is removed
(j ∈ {i1, . . . , iN }), and where the quantity

�YN−j;Yj = (2 − N )IYN−j;Yj +
∑N

m�=1
m�=j

IYN−mj;Yj (2)

is the variation of the OI obtained with the addition of Yj to YN−j, being YN−mj =
YN\{Yj,Ym}. In this framework, if the sign of the OI increment is positive (�YN−j;Yj > 0)

the information brought by Yj to YN−j is redundant, while a negative OI increment means

that the influence of YN−j on Yj is dominated by synergy. In other words, if OI > 0
the system is redundancy-dominated, while OI < 0 means that the system is synergy-
dominated; if OI = 0, synergy and redundancy are balanced in the analyzed network.
Note that, since �Y 2 = 0 for any pair of variables, when N = 3 random vectors are
considered, i.e. Y = {

Yi,Yk ,Yj
}
, the OI in (1) reduces to the OI increment:

�Yi,Yk ;Yj = −I
(
Yj;Yi,Yk

) + I
(
Yj;Yi

) + I
(
Yj;Yk

)
, (3)

In this case, the OI increment in (3) coincides with the well-known interaction infor-
mation,measuring the difference between synergy and redundancywhen a target variable
is added to a bivariate source vector process [22].

The calculation of the measures (1) and (2) requires an approach to compute the MI
between vector random variables. In this work, assuming that the observed variables
have a joint Gaussian distribution, we exploit the linear parametric representation to
compute MI [23]. Specifically, we consider two generic zero-mean vector variables Z1
andZ2 containing respectively n andm randomvariableswith a number t of observations,
assuming that Z1 and Z2 take the role of Yj and YN−mj in (2). The two variables are related
by the following linear regression model:

Z1 = AZ2 + U , (4)

where variable Z1 is predicted using an n × m coefficient matrix A which weights the
regressors Z2, and U is a vector of n zero-mean white noises (prediction errors). In this
context, the MI between the two variables, which is defined as [24]:

IZ1;Z2 = H (Z1) − H (Z1|Z2), (5)
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can be estimated exploiting the relation between entropy and variance valid for Gaus-
sian variables, i.e. expressing the entropy of the predicted variable as H (Z1) =
1
2 log

(
(2πe)n

∣∣�Z1

∣∣) and the conditional entropy of the predicted variables given the
predictor as H (Z1|Z2) = 1

2 log
(
(2πe)n|�U |) , where �Z1 is the n × n covariance of the

predicted variable and where �U is the n × n covariance of the prediction errors [25].

2.4 Data Analysis and Statistical Analysis

Static interactions among Q = 53 stationary random variables of length t = 1195
observations, which are realizations of the 53 selected ICs, grouped in M = 7 blocks
representing the 7 identified ICNsY1, . . . ,Y7 (Table 2),were investigated. The functional
connectivity between groups of ICNs, from order N = 2 to order N = M = 7,
was assessed through exploitation of the MI and of the novel OI measure defined in
Sect. 2.3. We performed ordinary least squares identification of the linear regression
models defined as in (4) to assess the pairwise interaction (N = 2) between two ICNs
through the MI measure, as well as to assess higher-order interactions through the OI
measure computed for orders N from 3 to 7 considering all possible combinations of
ICNs, herein referred to as “multiplets”. Specifically, we analyzed the following number
of multiplets: 35 of order N = 3; 35 of order N = 4; 21 of order N = 5; 7 of order
N = 6; 1 of order N = M = 7.

Surrogate data analysis was carried out to evaluate the number of subjects whose MI
and OI values were statistically significant. Specifically, 20 surrogates were generated
according to a circular shift procedure which randomly shifts in time the ICs data for
each given subject. For each ICN, the lag of the shifted samples (k) was chosen ran-
domly between 10 and 1010 in order to ensure a larger variability of the shift, and this k
was chosen the same for each IC belonging to the ICN. This choice was done to main-
tain within-network interdependencies (i.e., interactions among the scalar components
of the vector variable Yi), while destroying dependencies between different networks
(i.e., interactions between any pair of variables taken from Yi and Yi, i, j = 1, . . . , 7).
The resulting surrogates are realizations of independent identically distributed random
variables with the same marginal probability distribution as the original variables under
analysis, but with destroyed correlation structure [26]. When the maximum value of the
considered measure (MI or |OI|) among all the surrogates computed for a given subject
was less than the same measure computed on the original time series for the same sub-
ject, we considered this measure as significant and added the subject to the total number
of significant ones.

To investigate statistical differences between different multiplets within the same
order, we carried out a Student t-test for paired data and corrected for multiple compar-
isons using the Bonferroni-Holm correction. Since the number of paired combinations
was found to be extremely high, especially for low orders where the number of multi-
plets was higher, we focused the analysis only on a subset of multiplets. Specifically,
triplets (multiplets of order N = 3) were chosen where the Default Mode (DM) was
present, while higher-order multiplets (orders from the 4th to the 6th; the 7th order was
not considered as constituted by a single multiplet) were selected as those combinations
whose roots of 3th, 4th and 5th order contained the DM component [27, 28]. In this
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way, we identified 15, 19, 12 and 3 multiplets for orders 3th, 4th, 5th and 6th to analyze,
respectively.

3 Results and Discussion

Figure 1(a) and 1(b) display two connectograms, whose edges map functional connec-
tions between different ICNs in terms of MI values (Fig. 1(a)) or number of subjects
who showed statistically significant MI values (Fig. 1(b)). The application of surrogate
data analysis led us to statistically validate our measures. With reference to Fig. 1(b), we
found a significant percentage of MI values for pairs of ICNs in the interval [90–100]
%. Despite results regarding significant subjects in OI measures are not shown here for
brevity, significant percentages between 50% and 100% were reported for multiplets of
order 3, while percentages between 95% and 100% were found for multiplets of order
4. Full significance (100%) was detected for multiplets of higher order.

Fig. 1. Connectomic map. Edges represent functional connections between different ICNs in
terms of MI values averaged on the whole set of subjects (panel a)) or number of significant
subjects (panel (b)), while the 7 nodes represent the ICNs identified through ICA.

This finding shows that higher-order interdependencies, characterized by higher
redundancies as shown in Fig. 2, are much more significant than lower order connec-
tivity patterns. The reason for this increase may be related to the increasingly stronger
connectivity which characterize the structure of higher order network interdependencies.
Figure 1(a) depicts that links between DM and CC (i.e. Cognitive Control) networks,
between CC and SM (i.e. Sensorimotor) networks and between CC and VS (i.e. Visual)
networks are characterized by the highest MI values. With reference to Table 2 and
Fig. 3, these networks, described by the index 3 for CC, 4 for DM, 6 for SM and 7 for
VS, are mostly connected with redundant pathways.

The distribution of the O-Information index as a function of the order of the inter-
action is depicted in Fig. 2, where each grey dot represents the value of the interaction
averaged on all the 823 subjects for each multiplet. Increasing the interaction order
leads to find an increase in redundancy within the considered network. Indeed, the type
of information brought by an ICN when it is added to a lower-order network seems to

https://doi.org/10.1007/978-3-031-13321-3_2
https://doi.org/10.1007/978-3-031-13321-3_2
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become more and more redundant with increasing numbers of analyzed ICNs, suggest-
ing that high order group interactions can be better explained by the communication of
sub-groups.

Fig. 2. Distributions and individual values (averaged over 823 subjects) of the O-Information
computed for each multiplet as a function of the interaction order N. Each point represents a
given multiplet intended as a combination of ICNs. Darker and light blue areas represent 1 stan-
dard deviation and 95% confidence interval, respectively, while red line is the mean value of the
distribution.

Figure 3a), b), (c) and (d) show the distributions of the O-Information values of
order 3, 4, 5 and 6, respectively, for all the multiplets specified in Sect. 2.4, and results of
statistical analyses. The t-test revealed the presence of significant differences between
the OI values of most pairs of multiplets, while only a few pairs of combinations were
found to have mean OI values not significantly different between each other; these pairs
are connected in the figure with red dashed lines. While it remains clear that increasing
the order interaction leads to higher redundancy, the interpretation of the differences
between OI values obtained from different combinations of ICNs is not straightforward.
The addition of a given ICNs to pre-existing networks may cause diverse redundancy
fluctuations in the same subjects. In other words, starting from a given combination of
ICNs, an additional ICN inserted among those remaining generates a specific redundancy
increment which is peculiar to that ICN and is different from the one that would be
produced inserting another ICN. Such behavior suggests that high-order interactions
between cerebral areas are very complex and strongly depend on the brain connections
under analysis.

Specifically, our results show that higher redundant contributions were found for
multiplets containing as “root” system the ICNs CC and DM, with addition of ICNs SC
(Subcortical), SM (Sensorimotor) and VS (Visual) as also demonstrated in Fig. 1,where
the highest values of MI were found between these networks. Then, the complex and
high order communications between these subsets of ICNs seem to be responsible for
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most of the redundancy patterns found in our analyses. A main limitation of our analysis
consists in the difficult interpretation of the results from a physiological point of view
and the inability of generalization of the results, given the absence of a control condition
to refer to.

Fig. 3. Distributions and individual OI values for different multiplets of order 3 (a), 4 (b), 5 (c)
and 6 (d). Darker and light blue areas represent 1 standard deviation and 95% confidence interval,
respectively, while red line is the mean value of the distribution. With reference to Table 2, each
ICN is indicated by a number as follows: (1) AD; (2) CB; (3) CC; (4) DM; (5) SC; (6) SM; (7)
VS. Pairwise t-tests showed statistical differences for most pairs of distributions, except for those
highlighted by red dashed lines.

4 Conclusion

In this work we computed measures of high-order interaction between vector-valued
variables for the evaluation of the information shared between several pairs of RSNs
in the brain. With respect to the common methodologies found in the literature, mostly
based on the use of Pearson correlation and on thresholding approaches for the selec-
tion of the most significant connectivity links [6, 11, 12], our tools allow to detect
redundancy and synergy in complex systems starting from the well-known measure of
mutual information [14–16]. In this context, O-Information measures provide additional
information if compared to the Pearson correlation index and other pairwise functional
connectivity measures. In our work, calculation of the O-Information has allowed us to
investigate the complex higher-order structures consisting not only in just single pairs of
voxel subsets, but instead multiplets of voxel subsets which share multivariate informa-
tion. The assessment of the statistical significance of the interactions of any order was
performed through surrogate data testing in place of selecting an adequate threshold, a
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procedure which strongly depends on the methodology used to extract ICNs and lacks
standardization.

We found that RSNs are dominated by redundant interdependencies which tend to
increase in strength as the order of the analyzed interaction grows. In particular, multi-
plets containing CC, DM, SM and VS networks show highest values of MI and mostly
redundant trends over all the orders of OI measures. Physiological interpretations of the
obtained findings are not straightforward, especially because the underlyingmechanisms
constitute the basis of the human brain activity, and such a clearer enlightenment could
come from the comparisons between different experimental conditions (resting-state,
task-induced states) and populations of subjects (healthy controls, diseased patients).
Indeed, further utilizations of our proposed methodological approach should consider
more heterogeneous datasets and different clinical settings. Moreover, future studies
should focus on the proper selection of the most relevant networks in resting state, i.e.,
the ones which interact more between each other in redundant or synergistic ways. The
proposed framework could also be applied to different fMRI data (e.g., task-induced
states) or used to analyze multiplets where signals belonging to different organs are
included, in order to assess for instance brain-heart interactions according and to inves-
tigate the role on brain activity of peripheral physiological oscillations on brain activity
[29].
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