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Abstract. We study the nondeterministic state complexity of basic reg-
ular operations on subregular language families. In particular, we focus
on the classes of combinational, finitely generated left ideal, group, star,
comet, two-sided comet, ordered, and power-separating languages, and
consider the operations of intersection, union, concatenation, power,
Kleene star, reversal, and complementation. We get the exact complex-
ity in all cases, except for complementation of group languages where we
only have an exponential lower bound. The complexity of all operations
on combinational languages is given by a constant function, except for
the k-th power where it is k+1. For all considered operations, the known
upper bounds for left ideals are met by finitely generated left ideal lan-
guages. The nondeterministic state complexity of the k-th power, star,
and reversal on star languages is n. In all the remaining cases, the non-
deterministic state complexity of all considered operations is the same as
in the regular case, although sometimes we need to use a larger alphabet
to describe the corresponding witnesses.

1 Introduction

The fields of study at the intersection of mathematics and computer science,
known as formal language theory and automata theory, contain a rich history
of publications interesting both from a practical and theoretical point of view.
One of the primary investigated language classes in the field, regular languages,
have a number of combinatorial, algebraic, and computational properties still
prominently investigated today. The topic of interest in this publication are the
notions of nondeterministic finite automata (NFA) accepting some subregular
languages and operational state complexity.

The definition of NFAs originates from the seminal paper by Rabin and
Scott [15]. A conversion procedure to deterministic finite automata (DFA) called
“subset construction” was provided as well, showing that an NFA with n states
can be simulated by a DFA with at most 2n states. This model is connected to
the measure of nondeterministic state complexity of a given language L, which
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represents the number of states of the smallest NFA accepting L. The nonde-
terministic state complexity of a given regular operation is the nondeterministic
state complexity of the language resulting from this operation, considered as a
function of the sizes of NFAs for operands. A more rigorous investigation of this
measure comes from Holzer and Kutrib [8] for the Boolean operations, concate-
nation, iteration, and reversal.

By restricting the operands to certain subclasses of regular languages, it
turns out that the resulting nondeterministic state complexities of these oper-
ations might differ from the general case to various degrees. This observation
motivated several publications focusing on specific subregular language classes.
Han et al. [5,6] considered the complexities of some of the mentioned basic oper-
ations for prefix-free and suffix-free languages. Additional results were provided
for star-free languages by Holzer et al. [9], for union-free languages by Jirásková
and Masopust [14], and recently Hospodár et al. [12] examined various subclasses
of convex languages.

In this paper, we continue with such investigations focusing on the operations
of intersection, union, concatenation, power, Kleene star, reversal, and comple-
mentation. We consider the language classes mainly from [2], more specifically
combinational languages, finitely generated left ideals, group languages, stars,
comets, two-sided comets, ordered languages, and power-separating languages.

We get the exact complexity for each pair of operation and class except for
complementation on group languages where we obtain only a lower bound. For
combinational languages, the complexity does not depend on the size of input
NFAs. In most other cases, the complexity is the same as for regular languages,
except for finitely generated left ideals where the complexity of all operations is
the same as for general left ideals [12]. To get lower bounds, instead of commonly
used fooling sets for regular languages, we rather use fooling sets for MNFAs
consisting of pairs of a reachable and a co-reachable set for each state. Then, we
only test the emptiness of intersection of finite sets instead of deciding whether
or not a string is in a language.

2 Preliminaries

We assume that the reader is familiar with the standard notation and defini-
tions in formal language and automata theory. For details and a more thorough
introduction, refer to [10].

We denote the set of positive integers by N. Let Σ be a non-empty alphabet
of symbols. Then Σ∗ denotes the set of all strings over Σ, including the empty
string ε. A language over Σ is any subset of Σ∗.

The reversal of a string w over Σ denoted wR is defined as εR = ε if w = ε,
and wR = anan−1 · · · a2a1 if w = a1a2 · · · an−1an with ai ∈ Σ. The reversal
of a language L is the language LR = {wR | w ∈ L}. The complement of a
language L over Σ is the language Lc = Σ∗ \L. The intersection of languages K
and L is the language K ∩ L = {w | w ∈ K and w ∈ L}, while the union of K
and L is K ∪ L = {w | w ∈ K or w ∈ L}. The concatenation of languages K
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and L is the language KL = {uv | u ∈ K and v ∈ L}. For a given positive
integer k, the k-th power of a language L is the language Lk = LLk−1 with
L0 = {ε}. The positive closure of a given language L is L+ =

⋃
k≥1 Lk, while the

Kleene star of L is defined as L∗ =
⋃

k≥0 Lk and it is equal to {ε} ∪ L+. We use
the notation of regular expressions over Σ in a standard way with ∅ (empty set),
ε, and each σ ∈ Σ being regular expressions; furthermore if r and s are regular
expressions, then rs (concatenation), r+s (union), and r∗ (star) are also regular
expressions. For a regular expression r, the expression rk denotes the k-th power
of the language of r, and r≤k denotes the expression r0 + r1 + · · · rk.

A nondeterministic finite automaton with multiple initial states (MNFA) is a
quintuple M = (Q,Σ, ·, I, F ) where Q is a finite non-empty set of states, Σ is a
finite set of input symbols (i.e., input alphabet), I ⊆ Q is the set of initial states,
F ⊆ Q is the set of final (accepting) states, and · : Q × Σ → 2Q is the transition
function which can be naturally extended to the domain 2Q ×Σ∗. The language
accepted by the MNFA M is L(M) = {w ∈ Σ∗ | I · w ∩ F �= ∅}. If R and S are
two sets of states of M , then R

σ−→ S denotes that R · σ = S.
An MNFA whose set of initial states is a singleton is called a nondeterministic

finite automaton (NFA). An NFA is a (complete) deterministic finite automaton
(DFA) if |q ·σ| = 1 for each q ∈ Q and each σ ∈ Σ; in such a case, · is a mapping
from Q × Σ to Q. A non-final state q with transitions (q, σ, q) for each σ in Σ is
called a dead state.

A given language L is called regular if and only if there exists an MNFA M for
which L = L(M). Two MNFAs A and B are equivalent if they accept the same
language. Every MNFA M = (Q,Σ, ·, I, F ) can be converted into an equivalent
complete DFA D(M) = (2Q, Σ, ·, I, {S ∈ 2Q | S ∩ F �= ∅}), by the subset
construction [10] where · is the extension of the transition function of M to the
domain 2Q × Σ. The DFA D(M) is referred to as the subset automaton.

The reverse of an MNFA M , denoted MR, is the MNFA obtained from M
by reversing all transitions and by swapping the roles of initial and final states.
A subset S of states of M for which exists a string w such that I ·w = S is called
reachable in M . If a set is reachable in MR, we say it is co-reachable in M .

Sometimes we allow an MNFA to have ε-transitions, and then a set S is
reached from a set R on a symbol σ if S = E({q · σ | q ∈ R}) where E(P ) is the
set of states reachable from a state in the set P via ε-transitions.

The nondeterministic state complexity of a regular language L, denoted by
nsc(L), is the smallest number of states in any NFA for L. The nondeterministic
state complexity of a unary regular operation ◦ is a mapping from N to N defined
as

n 	→ max{nsc(L◦) | L is accepted by an n-state NFA}.

The nondeterministic state complexity of a binary regular operation ◦ is a map-
ping from N

2 to N defined as

(m,n) 	→ max{nsc(K ◦L) | K,L accepted by m-state and n -state NFAs, resp.}.

In order to obtain lower bounds on the nondeterministic state complexity
of regular languages, the so-called fooling set method is usually used. A set of
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pairs of strings {(xi, yi) | 1 ≤ i ≤ n} is called a fooling set for some given
language L if (1) xiyi ∈ L for each i, and (2) if i �= j, then xiyj /∈ L or xjyi /∈ L.
It is well known that if F is a fooling set for the given regular language L,
then nsc(L) ≥ |F| [1, Lemma, p. 188].

To describe fooling sets for languages can be tedious and checking whether
or not a string xiyj is in L may be hard. To avoid such difficulties, we use the
technique of fooling sets for MNFAs where to each state of a given MNFA M ,
we assign a pair of subsets of the state set of M .

Definition 1. Let M = (Q,Σ, ·, I, F ) be an MNFA. A set {(Rq, Cq) | q ∈ Q},
where Rq and Cq are subsets of Q, is a fooling set for the MNFA M if for all
states p, q,

(1) Rq is reachable and Cq is co-reachable in M ,
(2) q ∈ Rq ∩ Cq,
(3) if p �= q, then Rp ∩ Cq = ∅ or Rq ∩ Cp = ∅.

Notice that by the definition above, a fooling set for L(M) exists if and only
if a fooling set for M of the same size exists; if each set Rq is reached by xq and
each set Cq is co-reached by yq, then {(xq, y

R
q ) | q ∈ Q} is a fooling set for L(M),

and vice versa. Therefore, we immediately get the following observation.

Lemma 2 ([11, Lemma 4], [12, Lemma 4]). Let M = (Q,Σ, ·, I, F ) be an
MNFA such that at least one of the following conditions holds:

(a) there exists a fooling set {(Rq, Cq) | q ∈ Q},
(b) each singleton subset of Q is reachable and co-reachable in M .

Then nsc(L(M)) ≥ |Q|. �

To describe a fooling set for the complement of a language may be cumber-
some, cf. [13, Theorem 5]. The condition in the following lemma guarantees the
existence of such a fooling set.

Lemma 3 ([12, Proposition 6]). Let L be a language accepted by an NFA in
which k subsets of the state set are reachable and each of their complements is
co-reachable. Then nsc(Lc) ≥ k. �

So if we prove that each subset of states of an NFA A is both reachable and
co-reachable, then nsc(L(A)c) = 2n. Notice that the reachability of all subsets in
the NFA M from [13, Theorem 5] can be easily shown, and since M is isomorphic
to its reverse, so can be the co-reachability. This immediately gives a lower
bound 2n for the complement of L(M).

The union of two NFAs of m and n states is accepted by an (m + n)-state
MNFA. To get an NFA for union, one more state may be needed. However, we
cannot construct a fooling set for union of size m + n + 1 since we already have
an MNFA of size m + n. A similar observation works for reversal as well. In [14,
Lemma 4], a modified fooling set method has been described. Now we present it
using the reachable and co-reachable sets instead of strings.
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Lemma 4 (ST -Lemma, cf. [11, Lemma 8]). Let Q be a set of states. Let S
and T be disjoint sets of pairs of subsets of Q and let U and V be two subsets
of Q such that S ∪ T , S ∪ {(I, U)}, and T ∪ {(I, V )} are fooling sets for the
MNFA M = (Q,Σ, ·, I, F ). Then nsc(L(M)) ≥ |S| + |T | + 1. �

Next, we introduce the language classes considered in this paper. These lan-
guages were already examined to some extent in [2], with the exception of group
languages which were investigated in [7]. A language L is

• combinational (class abbreviation CB): if L = Σ∗H for H ⊆ Σ;
• finitely generated left ideal (FGLID): if L = Σ∗H for some finite language H

(in [2] called noninitial definite);
• left ideal (LID): if L = Σ∗L (in [2] called ultimate definite);
• group language (GRP): if it is accepted by a permutation DFA (equivalently,

if the minimal DFA for L is a permutation one);
• star (STAR): if L = G∗ for a regular language G [3] (equivalently, L = L∗);
• comet (COM): if L=G∗H for some regular languages G,H with G/∈{∅, {ε}};
• two-sided comet (2COM): if L=EG∗H for regular E,G,H with G/∈{∅, {ε}};
• ordered (ORD): if it is accepted by a (possibly non-minimal) DFA with

ordered states such that p � q implies p · σ � q · σ for each symbol σ [17];
• star-free (SFREE): if L is constructable from finite languages, concatenation,

union, and complementation (equivalently, if L has an aperiodic DFA) [16];
• power-separating (PSEP): if for every x in Σ∗ there exists an integer m such

that
⋃

i≥m{xi} ⊆ L or
⋃

i≥m{xi} ⊆ Lc [18].

We have CB � FGLID � LID, STAR � COM � 2COM, and ORD � STFR �

PSEP [2]; the only star language that is not a comet is {ε}.

3 Results

In this section, we gradually present our obtained results by lemmas individually
focusing on the considered operations and language classes. They are grouped
together based on their proof structure, with summarizing tables included in
the Conclusions section. We proceed with the proposition considering all oper-
ations on the class of combinational languages. This class is special since every
combinational language has nondeterministic state complexity at most two.

Proposition 5. Let m,n ≥ 2. Let K and L be combinational languages over Σ
accepted by m-state and n-state NFAs. Then

(1) nsc(K),nsc(L) ≤ 2,
(2) nsc(K ∩ L),nsc(K ∪ L),nsc(LR) ≤ 2, and this bound is tight if |Σ| ≥ 1,
(3) nsc(L∗),nsc(Lc) ≤ 2, and this bound is tight if |Σ| ≥ 2,
(4) nsc(KL) ≤ 3 and nsc(Lk) ≤ k + 1, and these bounds are tight if |Σ| ≥ 1.

The next two lemmas consider intersection and union on finitely generated
left ideal languages.
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Lemma 6. Let m,n ≥ 3 and Σ = {a1, a2, . . . , am−1, b1, b2, . . . , bn−1, c, d, e}.
Let A, B, C, and D be the NFAs from Fig. 1. Then L(A), L(B), L(C), and L(D)
are finitely generated left ideal languages such that nsc(L(A) ∩ L(B)) = mn
and nsc(L(C) ∪ L(D)) = m + n − 1.

Proof. First we consider intersection. We can get an NFA accepting a finite
generator of L(A) from A by removing loops in the initial state, adding final

states m + 1,m + 2, . . . , 2m connected through transitions m + 1
bj−→ m + 2

bj−→
· · · bj−→ 2m for each j, and adding transitions (q, σ,m + 1) for each transition
(q, σ,m) in A. A similar construction can be done for B. Hence L(A) and L(B)
are finitely generated left ideals. Consider the product automaton A × B for
L(A) ∩ L(B). For each (i, j) in {1, 2, . . . ,m} × {1, 2, . . . , n}, define the following
sets:

[i, j] = {1, 2, . . . , i} × {1, 2, . . . , j} if 1 ≤ i ≤ m − 1 and 1 ≤ j ≤ n − 1;
�i, n� = {1, 2, . . . , i} × {1, n} if 1 ≤ i ≤ m − 1;
�m, j� = {1,m} × {1, 2, . . . , j} if 1 ≤ j ≤ n − 1;
�m,n� = {1,m} × {1, 2, . . . , n}.

To each state (i, j) in A × B, we assign a pair of sets Ri,j and Ci,j as follows:

(Ri,j , Ci,j) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

([i, j], {(i, j)}), if 1 ≤ i ≤ m−1 and 1 ≤ j ≤ n−1;
(�i, n�, {(i, n−1), (i, n)}), if 1 ≤ i ≤ m−1 and j = n;
(�m, j�, {(m−1, j), (m, j)}), if i = m and 1 ≤ j ≤ n−1;
(�m,n�, {(m,n)}), if i = m and j = n.

It can be shown that the set {(Ri,j , Ci,j) | 1 ≤ i ≤ m and 1 ≤ j ≤ n} is a
fooling set for A × B of size mn. Hence nsc(K ∩ L) = mn by Lemma 2(a).

Now we consider union. We have L(C) = (a + b + c + d)∗a(a + b)m−2a∗ =
(a + b + c + d)∗a(a + b)m−2a≤m−1, so L(C) is a finitely generated left ideal. By
a similar argument, the language L(D) is a finitely generated left ideal as well.
Construct the NFA N for L(C)∪L(D) from automata C and D by omitting the
state 0 and by adding the transition (1, c,m+1). For each state of N , define the
following pairs of sets:

(Ri, Ci) =

{
({1, i}, {i}), if 1 ≤ i ≤ m + n − 2and i �= m;
({1, i}, {i − 1, i}), if i ∈ {m,m + n − 1}.

Then {(Ri, Ci) | 1 ≤ i ≤ m+n−1} is a fooling set for the NFA N of size m+n−1.
Hence nsc(L(C) ∪ L(D)) = m + n − 1 by Lemma 2(a). �

The next lemma considers intersection, union, and concatenation on the class
of group languages; notice that we use the same witnesses for all three operations.

Lemma 7. Let m,n ≥ 2. Let A and B be the NFAs from Fig. 2. Then L(A)
and L(B) are group languages, and nsc(L(A)∩L(B)) = mn, nsc(L(A)∪L(B)) =
m + n + 1, and nsc(L(A)L(B)) = m + n.
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Fig. 1. Finitely generated left ideal witnesses for intersection and for union.

Proof. In the product automaton for L(A)∩L(B), each singleton set is reachable
and co-reachable, so nsc(L(A) ∩ L(B)) = mn by Lemma 2(b).

In the case of union, we may assume that m ≤ n. Construct the MNFA M
for L(A) ∪ L(B) in the standard way. In M , each set {pi, qj} is reachable and
co-reachable. For each state q of M , we define the pair of sets (Rq, Cq) as follows:

(Rpi
, Cpi

) = ({pi, q(i−1) mod m}, {pi, q(i−2) mod m}),
(Rqj , Cqj ) = ({qj , p(j+2) mod m}, {qj , p(j+1) mod m}).

Then S = {(Rpi
, Cpi

) | i = 0, 1, . . . ,m−1}, T = {(Rqj , Cqj ) | j = 0, 1, . . . , n−1},
I = {p0, q0}, U = {q0, p1}, and V = {p0, qm−2} satisfy the conditions of
Lemma 4, so nsc(L(A) ∪ L(B)) = m + n + 1.

To get an NFA N for L(A)L(B) from NFAs A and B, add the transi-
tion (pm−1, ε, q0), and make the state pm−1 non-final and the state q0 non-initial.
Then the set {({pi}, {pi, qn−1}) | 0 ≤ i ≤ m−2}∪{({pm−1, q0}, {pm−1, qn−1})}∪
{({p0, q0}, {pm−1, q0})} ∪ {({p0, qj}, {qj}) | 1 ≤ j ≤ n − 1} is a fooling set for N
of size m + n, so nsc(L(A)L(B)) by Lemma 2(a). �

Fig. 2. Binary group witnesses for intersection, union, and concatenation.

To get star witnesses, construct the NFAs A′ and B′ from A and B in Fig. 2
by making the initial state final and all other states non-final. Then L(A′)
and L(B′) are star languages. Moreover, all the sets from the proof above
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are still reachable and co-reachable, so we have nsc(L(A′) ∩ L(B′)) = mn
and nsc(L(A′)∪L(B′)) = m+n+1. The concatenation of star languages (am)∗

and (bn)∗ has nondeterministic state complexity m + n, as shown in [8, The-
orem 7]. The next lemma considers intersection, union, and concatenation on
ordered languages.

Lemma 8. Let m,n ≥ 2, K = (b∗a)m−1b∗, and L = (a∗b)n−1a∗. Then K and L
are ordered languages accepted by m-state and n-state NFAs, nsc(K ∩ L) = mn,
nsc(K ∪ L) = m + n + 1, and nsc(KL) = m + n.

Proof. The languages K and L are accepted by DFAs A and B from Fig. 3. In
the product automaton A × B for K ∩ L, each singleton set is reachable and
co-reachable. This gives the tight lower bound mn by Lemma 2(b).

Let M be the MNFA containing all states and transitions of A and B.
Then L(M) = K ∪ L. In the MNFA M , the initial set is {p1, q1}, and each
singleton set is both reachable and co-reachable by a string in a∗b∗ or in b∗a∗.
Let S = {({pi}, {pi}) | 1 ≤ i ≤ m}, T = {({qj}, {qj}) | 1 ≤ j ≤ n}. I = {p1, q1},
U = {q1}, and V = {p1}. Then the sets S ∪ T , S ∪ {(I, U)}, and T ∪ {(I, V )}
are fooling sets for A ∪ B. Hence nsc(K ∪ L) = m + n + 1 by Lemma 4.

Construct the NFA N from M by adding the transition (pm, ε, q1), mak-
ing the state q1 non-initial, and making the state pm non-final. Then L(N) =
KL, and the set {({pi}, {pi}) | 1 ≤ i ≤ m − 1} ∪ {({pm, q1}, {pm})} ∪
{({q1}, {pm, q1})} ∪ {({qj}, {qj}) | 2 ≤ j ≤ n} is a fooling set for N . Hence
nsc(KL) = m + n. �

Fig. 3. Binary ordered witnesses for intersection, union, and concatenation.

In what follows, we consider the unary operations of the k-th power, star,
reversal, and complementation. We start with the class of star languages.

Lemma 9. Let L be a star language. Then Lk = L∗ = L and nsc(LR) = nsc(L).

Proof. We have Lk ⊆ L∗ = L by definition. To show that L ⊆ Lk, let w ∈ L.
Since L = L∗, we have ε ∈ L. Set u1 = w and u2 = u3 = · · · = uk = ε.
Then w = u1u2 · · · uk with ui ∈ L, so w ∈ Lk. Thus Lk = L∗ = L.

For reversal, notice that each star language is accepted by an NFA A with a
single final state which is the initial state. Then LR is accepted by the NFA AR

which has the same number of states and the same initial and final state. Hence
nsc(LR) ≤ nsc(L). Since (LR)R = L, we have nsc(LR) = nsc(L). �
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The language (an−1b)∗an−1 is a comet and ordered language and it meets
the upper bound kn on the complexity of the k-th power if n ≥ 2 [4, Theorem 3].
Now we consider the k-th power on the class of group languages and we show
that the complexity in this class is kn as well.

Lemma 10. Let k ≥ 2 and n ≥ 3. Let A be the binary NFA from Fig. 4.
Then L(A) is a group language and nsc(L(A)k) = kn.

Proof. Construct the NFA N for L(A)k from k copies of A in the standard way;
assume that the copies are numbered from 1 to k and the state j in the i-th copy
is denoted (i, j). For each state (i, j) with j �= n − 1, set

Ri,j = {(i, j)} ∪ {(i − �, (j − �) mod (n − 1)) | 1 ≤ � ≤ i − 1},

that is, in Ri,j we have states (i, j), (i − 1, j − 1), (i − 2, j − 2), . . . where the
second component is modulo n − 1. Next, set

Ri,n−1 ={(p, q) | q ≤ n − 3 and (p, q) ∈ Ri,n−2}∪
{(p, n − 1) | (p, n − 2) ∈ Ri,n−2} ∪ {(i + 1, 0)},

that is, to get Ri,n−1, we move each state of Ri,n−2 in column n − 2 to the
corresponding state in column n − 1, and we add the state (i + 1, 0), so we have
Ri,n−2

b−→ Ri,n−1. Moreover Ri,n−1
b−→ Ri,n−2 ∪ {(i + 1, 0)} = Ri+1,0.

Denote by �i, j� the set {(i, j), (i+2, j), . . . , (i+2p, j)} where i+2p is either
k − 1 or k, that is, the set containing the state j in copies i, i + 2, . . . , i + 2p. Set

Ci,j =

⎧
⎪⎨

⎪⎩

�i, j� ∪ �i + 1, n − 1�, if 1 ≤ j ≤ n − 2 or (i, j) = (1, 0);
�i, n − 1� ∪ �i + 1, n − 2�, if j = n − 1;
�i, 0� ∪ �i − 1, n − 1�, if j = 0 and i �= 1.

The set {(Ri,j , Ci,j) | 1 ≤ i ≤ k and 0 ≤ j ≤ n − 1} is a fooling set for N of
size kn. Hence nsc(L(A)k) = kn by Lemma 2(a). �

It was shown in [8, Theorem 9] that for the language L = (an)∗an−1, we
have nsc(L∗) = n + 1. Since L is a group and comet language, L+ is ordered,
and (L+)∗ = L∗, the nondeterministic state complexity of star in the classes of
group, comet, and ordered languages is n + 1. The next lemma shows that the
complexity of star on finitely generated left ideal languages is n + 1 as well.

Lemma 11. Let n ≥ 4. Let K = (a + b)∗an−2(a + b)a∗. Then K is a finitely
generated left ideal language accepted by an n-state NFA, and nsc(K∗) = n + 1.

Fig. 4. A binary group witness for power meeting the upper bound kn.
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Proof. Since we have (a + b)∗an−2(a + b)a∗ = (a + b)∗an−2(a + b)a≤n−1, the
language K is a finitely generated left ideal accepted by the NFA A from Fig. 5.
Construct the MNFA A∗ for L(A)∗ by adding a new initial and final state 0 and
the transitions (n− 1, a, 1), (n− 1, b, 1), (n, a, 1). To each state i of A∗, we assign
the following pair of sets:

(Ri, Ci) =

⎧
⎪⎨

⎪⎩

({0, 1}, {0, n}), if i = 0;
({1, 2, . . . , i}, {i}), if 1 ≤ i ≤ n − 1;
({1, n}, {n − 1, n}), if i = n.

Then {(Ri, Ci) | 0 ≤ i ≤ n} is a fooling set for A∗. Hence nsc(L(A)∗) = n + 1. �

Fig. 5. A binary finitely generated left ideal witness for star meeting the bound n+1.

The following two lemmas consider the reversal on classes of finitely generated
left ideal and group languages.

Lemma 12. Let n ≥ 4. Consider the NFAs A and B from Fig. 6 and the lan-
guage L = (an−1b)∗a≤n−1. Then L(A) is a finitely generated left ideal language,
L(B) is a group language, L is a comet and ordered language accepted by an
n-state NFA, and we have nsc(L(A)R) = nsc(L(B)R) = nsc(LR) = n + 1.

Proof. In the lemma statement, we consider three witness languages. We present
the proofs gradually, starting with L(A) = (a+b+c)∗(c+(cc+an−3(a+b))a∗) =
(a + b + c)∗(c + (cc + an−3(a + b))a≤n−2

)
, so L(A) is a finitely generated left

ideal. For each state i of AR, define the sets

Ri =

{
{i}, if 1 ≤ i ≤ n − 1;
{n − 1, n}, if i = n,

Ci =

{
{1, 3, 4, . . . , i}, if 3 ≤ i ≤ n − 1,

{1} ∪ {i}, if i ∈ {1, 2, n}.

Next, let S = {(Ri, Ci) | 1 ≤ i ≤ 2}, T = {(Ri, Ci) | 3 ≤ i ≤ n}, I = {2, n},
U = {1, n}, and V = {1, 2}. Then S ∪ T , S ∪ {(I, U)}, and T ∪ {(I, V )} satisfy
the conditions of Lemma 4, so nsc(L(A)R) = n + 1.

Now let us consider the witness for reversal on group languages, i.e., NFA B,
which is actually a DFA. Since the symbols a and b perform permutations on the
state set of B, the language L(B) is a group language. Consider the following
pairs of subsets of states of B:

(Ri, Ci) =

{
({i, i + 1}, {i}), if 1 ≤ i ≤ n − 1;
({n, 2}, {n}), if i = n,
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and set S = {(Ri, Ci) | i = 1, 2, . . . , n−1}, T = {(Rn, Cn)}, I = {n, 1}, U = {n},
and V = {1}. Then S ∪ T , S ∪ {(I, U)}, and T ∪ {(I, V )} satisfy the conditions
of Lemma 4, so nsc(L(B)R) = n + 1.

Finally, consider the comet language L = (an−1b)∗a≤n−1. It is accepted by
the NFA C shown in Fig. 6. To get an ordered DFA for L from C, add the dead
states 0 and n+1 and the transitions (n, a, n+1) and (i, b, 0) for i = 1, 2, . . . , n−1.
Hence L is ordered. In C, each singleton set {i} is reachable by ai−1, and in CR,
the initial set is I = {1, 2, . . . , n} and each singleton set {i} is reachable by
ban−i. Set S = {({1}, {1})}, T = {({i}, {i}) | 2 ≤ i ≤ n}, U = {2}, and V = {1}.
Then S ∪ T , S ∪ {(I, U)}, and T ∪ {(I, V )} are fooling sets for CR. It follows
that nsc(LR) = n + 1 by Lemma 4. �

Fig. 6. A finitely generated left ideal, group, and ordered witnesses for reversal.

In the last two lemmas, we consider complementation. The upper bound on
left ideals is known to be 2n−1 [12, Theorem 37(1)] and we provide a finitely gen-
erated witness for this bound. For stars and ordered languages, the complexity
is 2n, and for group language, we have a hyperpolynomial lower bound

(
n−1

�n/2	
)
.

Lemma 13. Let n ≥ 3. Let A,B,C be the NFAs from Fig. 7; ai..j denotes
the transitions on ai, ai+1, . . . , aj. Then L(A) is a finitely generated left ideal,
L(B) is a star language, L(C) is ordered, and we have nsc(L(A)c) = 2n−1

and nsc(L(B)c) = nsc(L(C)c) = 2n.

Proof. We provide a proof only for the ordered witness L(C). In the subset
automaton D(C), let us assign the value pS = 2i1 + 2i2 + · · · + 2ik to a set S =
{i1, i2, . . . , ik} with n−1 ≥ i1 > i2 > · · · > ik ≥ 0. It follows from the transitions
defined in the NFA C that in D(C), we have pS

a−→ �pS/2�, pS
b−→ 0 if pS ∈ {0, 1}

and pS
b−→ 2n−1 + �pS/2� otherwise, and pS

cj−→ pS if j /∈ S or 0 ∈ S, and pS
cj−→

pS + 1 otherwise. Since all these transformations preserve the order of states
in D(C) given by their corresponding values, the language L(C) is ordered.
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Fig. 7. Finitely generated left ideal, star, and ordered witnesses for complementation.

In C, the empty set and each singleton set is reachable by a string in a∗. Each
set {n − 1} ∪ S of size k is reached from the set {i + 1 | i ∈ S} of size k − 1
by b, and each set S with n − 1 /∈ S of size k is reached from a set of size k
containing n − 1 by a string in a∗. This proves the reachability of all subsets
in C by induction. To get co-reachability, we use the symbols cj . The empty set
and each singleton set is co-reachable by a string in a∗. Each set S with 0 ∈ S
and max S = j is co-reached from S \ {j} by cj . Each set S with 0 /∈ S is co-
reached from a set of the same size containing 0 by a string in a∗. It follows that
all sets are co-reachable. Hence by Lemma 3, we have nsc(L(C)c) = 2n. �

Lemma 14. Let n ≥ 4. Let M be the binary MNFA from Fig. 8 with k = �n/2�.
Then L(M) is a group language with nsc(L(M)) ≤ n and nsc(L(M)c) =

(
n−1

k

)
.

Proof. Since in M , the symbols a and b form a generator of all permutations on
states from 1 to n − 1, each subset of {1, 2, . . . , n − 1} of size k is reachable and
each subset of {1, 2, . . . , n − 1} of size n − 1 − k is co-reachable in M . In total
we have

(
n−1

k

)
=

(
n−1

�n/2	
)

reachable sets and their co-reachable complements.
This gives the lower bound for nsc(L(M)c) by Lemma 3. To get an equivalent
n-state NFA A from M , add the initial state 0, make all other states non-
initial, and add transitions (0, b, i) and (0, a, i + 1) for each i = 1, 2, . . . , k. Then
nsc(L(A)c) = nsc(L(M)c) ≥

(
n−1

�n/2	
)
. �

Fig. 8. A binary group language meeting the lower bound
(

n−1
�n/2�

)
for complementation.
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4 Conclusions

Our results are summarized in the following two theorems and tables. Recall
CB � FGLID � LID, STAR � COM � 2COM, ORD � STFR � PSEP [2].

Theorem 15. The nondeterministic state complexity of intersection, union,
and concatenation on some subclasses of regular languages is given by Table 1.

Proof. The results for combinational languages follow from Proposition 5.
For the remaining classes, first we handle intersection. The upper bounds

are the same as for regular languages. Finitely generated left ideal witnesses are
described in Lemma 6. Group witnesses are given in Lemma 7; notice that if we
modify them such that only the initial state is final, they are star (so also comet
and two-sided comet) witness languages. Ordered (so also power-separating)
witnesses are provided in Lemma 8.

Now consider union. The finitely generated left ideals from Lemma 6 meet
the upper bound for left ideals. In the remaining classes, the upper bounds are
the same as in the regular case. Group witnesses that can be modified to star (so
also comet and two-sided comet) languages are described in Lemma 7. Ordered
(so also power-separating) witnesses are given by Lemma 8.

Finally we discuss concatenation. The result for finitely generated left ideals
follows from [12, Theorem 16] where it is shown that the upper bound for left
ideals is m + n − 1; the unary witnesses a∗am−1 and a∗an−1 described in this
theorem are finitely generated left ideals. In all the remaining cases, we have the
regular upper bounds. The group witnesses are given in Lemma 7. A proof using
the same fooling set as for the group languages works also for the star (so also
comet and two-sided comet) witnesses (am)∗ and (bn)∗, cf. [8, Theorem 7]. The
ordered (so also power-separating) witnesses are defined in Lemma 8. �

Table 1. Results for binary operations; � means the witness from above can be used.

K ∩ L |Σ| K ∪ L |Σ| KL |Σ|
CB 2 1 2 1 3 1

FGLID mn m + n + 1 m + n − 1 4 m + n − 1 1

LID [12] mn 2 m + n − 1 2 �
GRP mn 2 m + n + 1 2 m + n 2

STAR mn 2 m + n + 1 2 m + n 2

COM � � �
2COM � � �
ORD mn 2 m + n + 1 2 m + n 2

STFR [9] � � �
PSEP � � �
REG [8] mn 2 m + n + 1 2 m + n 2
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Theorem 16. The nondeterministic state complexity of power, star, reversal,
and complementation on some subclasses of regular languages is given by Table 2.

Proof. The results for combinational languages follow from Proposition 5. Now
let us examine the remaining classes.

First we consider the k-th power. The upper bound k(n−1)+1 for left ideals
is met by the unary finitely generated left ideal a∗an−1 [11, Theorem 12(c)]. The
tight upper bound for star languages is n by Lemma 9. The general upper bound
kn is met by the group language described in Lemma 10. The ordered language
(an−1b)∗an−1 is also a comet (and two-sided comet) language and it meets the
upper bound kn as shown in [4, Theorem 3].

The complexity of the star and reversal operations on star languages is n
by Lemma 9. For the other classes, the upper bound n + 1 for star is met by
binary finitely generated left ideal language from Lemma 11 which is also a comet
and two-sided comet language, by unary group and comet language (an)∗an−1,
and by unary ordered (so also power-separating) language (an−1 + an)∗an−1,
as shown in [8, Theorem 9]. This upper bound for reversal is met by a ternary
finitely generated left ideal language, a binary group language, and the binary
comet and ordered language (an−1b)∗a≤n−1, as shown in Lemma 12.

The upper bound 2n−1 for complement on left ideals from [12, Theorem 37(1)]
is met by the finitely generated left ideal over an alphabet of size n − 1 from
Lemma 13. The regular upper bound 2n is met by a binary star (so also comet
and two-sided comet) language and by ordered language over an alphabet of
size n + 1, as shown in Lemma 13, and by the binary star-free (so also power-
separating) language from [9, Theorem 5]. Finally, a binary group language meet-
ing the lower bound

(
n−1

�n/2	
)

for complementation is described in Lemma 14. �

Table 2. Results for unary operations;� means the witness from above can be used.

Lk |Σ| L∗ |Σ| LR |Σ| Lc |Σ|
CB k + 1 1 2 2 2 1 2 2

FGLID k(n − 1) + 1 1 n + 1 2 n + 1 3 2n−1 n − 1

LID [12] � � n + 1 2 2n−1 2

GRP kn 2 n + 1 1 n + 1 2 ≥ (
n−1

�n/2�
)

2

STAR n 1 n 1 n 1 2n 2

COM kn 2 n + 1 1 n + 1 2 �
2COM � � � �
ORD kn 2 n + 1 1 n + 1 2 2n n + 1

STFR [9] � � � 2n 2

PSEP � � � �
REG kn [4] 2 n + 1 [8] 1 n + 1 [13] 2 2n [13] 2
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