
On the Descriptional Complexity
of the Direct Product of Finite Automata

Markus Holzer(B) and Christian Rauch

Institut für Informatik, Universität Giessen, Arndtstr. 2, 35392 Giessen, Germany
{holzer,christian.rauch}@informatik.uni-giessen.de

Abstract. In [4] the descriptional complexity of certain automata prod-
ucts of two finite state devices, for reset, permutation, permutation-reset,
and finite automata was investigated. Although an almost complete pic-
ture emerged for the magic number problem, there were several open
problems related to the direct product, also called cross product, of finite
automata, in particular for permutation and permutation-reset devices.
We solve these left open problems and show (i) that for two permutation-
reset automata of n- and m-states the whole range [1, nm] of state com-
plexities is obtainable for the direct product, if the automata have at
least a quaternary input alphabet, while (ii) for binary input alphabet
this is not the case, and (iii) for the direct product of a permutation
and a permutation-reset automaton the number α = 2 is always magic
if n and m fulfill some property, i.e., cannot be obtained by the direct
product of any automata of this kind. Moreover, our results can be seen
as a generalization of previous results in [7] for the intersection operation
on automata.

1 Introduction

The direct or cross product of automata is well known from the intersection
and union construction from automata theory. It is only a special case of more
complex automata operations, which were recently studied from a descriptional
complexity perspective in [4]. In general, a product of automata is obtained by
series (cascading), parallel, and/or feedback composition of automata. In the
direct product there is no communication between the component automata,
while for instance, in the cascade product that is yet another well known prod-
uct of automata, the second automaton receives along with the input letter also
the state of the first automaton. For the hierarchy of automata products of
increasing feedback dependencies the magic number problem was almost com-
pletely classified for all meaningful product types of two automata on the classes
of reset (RFA), permutation (PFA), permutation-reset (PRFA), and determin-
istic finite state automata in general (DFA)—see Table 1 for the results on the
direct product. Let us explain how to interpret the “yes” and “no” entries within
the table: a “no” means that there are no magic numbers, i.e., the whole range
[1, nm] of state complexities can be reached by m- and n-state automata of the
appropriate type not including reset automata if the input alphabet is at least

c© IFIP International Federation for Information Processing 2022
Published by Springer Nature Switzerland AG 2022
Y.-S. Han and G. Vaszil (Eds.): DCFS 2022, LNCS 13439, pp. 100–111, 2022.
https://doi.org/10.1007/978-3-031-13257-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13257-5_8&domain=pdf
https://doi.org/10.1007/978-3-031-13257-5_8

On the Descriptional Complexity of the Direct Product of Finite Automata 101

Table 1. The magic number problem for the direct product of different types of
automata. A “no” entry indicates that there are no magic numbers and the whole
induced interval of state complexities can be reached, while a “yes” entry gives rise
to at least one state complexity that cannot be reached, i.e., a magic number. If not
specified elsewhere all automata have an input alphabet of size at least two.

Direct product RFA PFA PRFA DFA

RFA no no no no

PFA yes yes no

PRFA
no, if |Σ| ≥ 4

no
yes, if |Σ| = 2

DFA no

binary. For instance, the “no” entry for the direct product of DFAs is due to [7]
and all other “no” entries are from [4]. On the other hand, a “yes” entry indicates
that at least one magic number α exists under the same condition on the input
alphabet as mentioned above, i.e., it cannot be reached by a direct product of
appropriate automata of m- and n-states, respectively. The “yes” entry in the
PFA-PFA cell is due to [4].

The gray shaded entries in Table 1 are the results that are presented here.
Previously in [4] magic numbers for these cases were announced, which where
found by exhaustive computer programs for small values of m, n, and α. To be
more precise,

– α = 2 is magic, for n = m = 3 and alphabets of size at most three for the
direct product of a PFA and PRFA, and

– α = 8 is magic, for n = m = 3 and at most binary alphabets1 for the direct
product of two PRFAs.

A complete understanding of the magic number problem for both cases is missing
in [4]. We partially close this gap and show the following results: (i) α = 2 is
magic for m and n both odd and at least three for binary input alphabets in case
of the direct product of a PFA and a PRFA. For larger alphabets the value α
remains magic, but we can only prove it for fixed n = 3 and odd m at least three.
(ii) For the direct product of two PRFAs we first show that no magic numbers
exist if the input alphabet is at least four. Whether this result is optimal w.r.t.
the input alphabet size is left open, but we can narrow the search for the answer
to a small interval of numbers for the outcome of the direct product for two given
permutation-reset input automata. In passing we show that the above mentioned
result for α = 8 is best possible w.r.t. the input alphabet size, because with three
letters this number is obtainable for n = m = 3—see Example 1. In the light
of [7] and the previously obtained results of the authors on automata products
the existence of magic numbers is expected, because if several restrictions are

1 In [4] there is a misprint on the alphabet size, which was said to be at most three.

102 M. Holzer and C. Rauch

being imposed on automata, then, sooner or later, some values of the state
complexity become unreachable. However these results solve the main open issues
from [4] and thus complete the overall picture of automata products on finite
automata. Nevertheless, certain fine grain details on the question whether a
particular value α is magic or not for the direct product of the automata under
consideration are still open and await solution.

The paper is organized as follows: next we introduce the necessary notations
on automata and the direct product. Then we start our investigation and first
give an overview on the previously obtained results on the direct product of
automata w.r.t. the magic number problem. Then we prove our new results and
finally we conclude with an open problem and topics for further investigations.

2 Preliminaries

We recall some definitions on finite automata as contained in [3]. A deterministic
finite automaton (DFA) is a quintuple A = (Q,Σ, · , q0, F), where Q is the finite
set of states, Σ is the finite set of input symbols, q0 ∈ Q is the initial state, F ⊆ Q
is the set of accepting states, and the transition function · maps Q×Σ to Q. The
language accepted by the DFA A is defined as L(A) = {w ∈ Σ∗ | q0 · w ∈ F },
where the transition function is recursively extended to a mapping Q×Σ∗ → Q
in the usual way. Obviously, every letter a ∈ Σ induces a mapping from the state
set Q to Q by q �→ q ·a, for every q ∈ Q. A DFA is unary if the input alphabet Σ
is a singleton set, that is, Σ = {a}, for some input symbol a. Moreover, a DFA is
said to be a permutation-reset automaton (PRFA) if every input letter induces
either a permutation or a constant mapping on the state set. If every letter of the
automaton induces only permutations on the state set, then we simply speak of
a permutation automaton (PFA). Finally, a DFA is said to be a reset automaton
(RFA) if every letter induces either the identity or a constant mapping on the
state set. The class of reset, permutation, permutation-reset, and deterministic
automata in general are referred to as RFA, PFA, PRFA, and FA, respectively.
It is obvious that the inclusions XFA ⊆ PRFA ⊆ FA, where X ∈ {P,R}, hold.
Moreover, it is not hard to see that the classes RFA and PFA are incomparable.

The direct product of two DFAs, also known as the cross product, A =
(QA, Σ, ·A , q0,A, FA) and B = (QB , QA × Σ, ·B , q0,B , FB), denoted by A × B,
is defined as the automaton2

A × B = (QA × QB , Σ, · , (q0,A, q0,B), FA × FB),

where the transition function is given by

(q, p) · a = (q ·A a, p ·B a),

for q ∈ QA, p ∈ QB , and a ∈ Σ. Observe, that the transitions of A and B depend
only on Σ. We say that A is the first automaton and B the second automaton
2 In [4] the direct product was referred to as ν0-product and with ◦ν0 notated. This

naming originates from the hierarchy of automata products studied in automata
networks, see, e.g., [2].

On the Descriptional Complexity of the Direct Product of Finite Automata 103

in the product. Observe, that although the statements to come on the direct
product explicitly refer to first and second automaton of a certain type, these
types can be obviously commuted, since in the direct product the order of the
operand automata is not relevant to the product automaton (up to isomorphism).
For the choice of the final set of states of the direct product automaton we follow
the lines of [1] and the forerunner papers [4–6]. One observes, that the device
A × B accepts the intersection of the language accepted by A and B.

We give a small example.

Example 1. Consider the PRFA A = ({q0, q1, q2}, {a, b, c, d}, ·A , q0, {q0, q2}),
where

q0 ·A a = q0,

q0 ·A b = q0,

q0 ·A c = q2,

q0 ·A d = q0,

q1 ·A a = q1,

q1 ·A b = q1,

q1 ·A c = q2,

q1 ·A d = q2,

q2 ·A a = q2,

q2 ·A b = q2,

q2 ·A c = q2,

q2 ·A d = q1.

Then let
B = ({p0, p1, p2}, {a, b, c, d}, ·B , p0, {p0, p2}),

be the PRFA, where

p0 ·B a = p2,

p0 ·B b = p0,

p0 ·B c = p1,

p0 ·B d = p0,

p1 ·B a = p2,

p1 ·B b = p1,

p1 ·B c = p0,

p1 ·B d = p1,

p2 ·B a = p2,

p2 ·B b = p2,

p2 ·B c = p2,

p2 ·B d = p2.

The automata A and B are depicted in Fig. 1 on the top and lower right, respec-
tively. It is easy to see that both automata are minimal.

By construction the ν0-product of A and B is given by

A × B = ({q0, q1, q2} × {p0, p1, p2}, {a, b, c, d}, · , (q0, p0), {q0, q2} × {p0, p2}),

where the transitions of the initially reachable states

(q0, p0), (q0, p2), (q1, p0), (q1, p1), (q1, p2), (q2, p0), (q2, p1), (q2, p2),

can be deduced from Fig. 1, too, on the lower left. By inspection no initially
reachable states in A × B are equivalent and (q0, p1) is not reachable. Hence,
the minimal DFA accepting L(A × B) has α = 8 states. One may have noticed
that the letter b induces the identity mapping on all involved automata. The
transitions of the letters a, b, c, and d are chosen such that in A×B the letter a
maps every state onto the last row, the letter b induces a cycle in the first column
of specific length (here one), the letters b and c map the states in the last column
without (qn−1, pm−1) transitively onto each other and the letter d forms row-wise
cycles of a specific length (here two) beginning in the last column. ��

104 M. Holzer and C. Rauch

q0 q1 q2

(q0, p0) (q1, p0) (q2, p0)

(q2, p1)

(q2, p2)

(q0, p1) (q1, p1)

(q0, p2) (q1, p2)

p0

p1

p2

c

c
d

a

a

ca a

a

a

a

c
c

c c

c c

d

d

d

Fig. 1. The example automata A and B both with input alphabet {a, b, c, d} on the
top and lower right, respectively. For a better representability not all transitions of
the automata are shown. In particular, this is the case for the automaton A × B,
where only the transitions of the initially reachable states are shown. Additionally no
self-loops are shown. For instance, letter a acts as the identity on the state set of A.
The direct-product A × B is depicted on the lower left.

When considering the descriptional complexity of the product of two
automata, we limit ourselves to the case where the involved automata are non-
trivial, i.e., they have more than one state. Thus, in the following we only con-
sider non-trivial automata. It is easy to see that n · m states are sufficient for
any product of an n-state and m-state automaton.

3 Results

First let us recall what is known from the literature for the magic number prob-
lem of the direct product, which is the following question: which numbers of
states of the minimal DFA for the direct product of two minimal automata of
state size n and m are reachable? Whenever a number is not obtainable, it is
called “magic”. Obviously the answer to this question depends on the types of
the involved input automata. The following results are known:

1. In [7] it was shown that if the input automata are arbitrary deterministic
finite automata the whole range [1, nm] can be reached (DFA-DFA case),
and

2. all combinations of RFAs, PFAs, PRFAs, and DFAs were considered in [4],
where the following results were shown:

On the Descriptional Complexity of the Direct Product of Finite Automata 105

(a) Whenever a RFA is involved in the direct product (RFA-RFA, RFA-
PFA, RFA-PRFA, and RFA-DFA case) no magic numbers exist and the
whole interval can be reached. Note that minimal RFAs have state size
at most two.

(b) For the PFA-PFA case the answer to the magic number problem is “yes”,
because magic numbers were already identified for the more complex
cascade product of permutation automata.

(c) For the cases PFA-PRFA and PRFA-PRFA magic numbers were iden-
tified only by exhaustive computer programs for small cases of m, n,
and α. In particular, for the direct product of a PFA and a PRFA the
value α = 2 is magic for n = m = 3 and alphabets of size at most three.

(d) Finally, no magic numbers exist for the PFA-DFA case and thus for the
more general PRFA-DFA case.

Thus, only the PFA-PRFA and PRFA-PRFA lack a complete theoretical under-
standing, since in this case only computer determined evidence for magic num-
bers were given. In the forthcoming we close this gap in the affirmative of the
magic number problem. We start our investigation with the PFA-PRFA case.
As mentioned above α = 2 was identified magic for n = m = 3 and alphabets
of size at most three by a computer program.3 Already in [4] it was conjectured
that α = 2 is magic whenever m and n are odd and at least three. The next
lemma shows that this is actually the case for binary alphabets.

Lemma 2. Let n,m ≥ 3 be both odd. Then there exists no minimal binary n-
state PRFA A and no minimal binary m-state PFA B such that the minimal
DFA for the language L(A × B) has 2 states.

Proof. We prove the statement by contradiction. Therefore assume to the con-
trary that there is a minimal n-state PRFA A and a minimal m-state PFA B
such that the minimal DFA for the language L(A × B) has two states.

First we prove that A is neither a RFA nor a PFA. In case A is a RFA, i.e.,
all input letters are resets, we obtain a contradiction on the minimality of A,
because every minimal RFA has at most two states [6], but A is a minimal device
with at least 3 states. Hence, not all letters of the input alphabet of A are resets.
Next assume that A is a PFA. In [6] it was shown that for every α in [2, nm] that
is coprime to n, there does not exist a minimal n-state PFA A and a minimal m-
state PFA B such that the minimal DFA accepting the language of the cascade
product of A and B has α states. Since the direct product is a special case of the
cascade product this result also holds if the direct product ν0 is considered. Thus,
one letter, say a, of the input alphabet of A induces a reset on the state set QA

of A and the other letter, say b, induces a permutation on QA. For convenience
let QB refer to the state set of B. Thus, the input alphabet of A and also B,
since we consider the direct product, is equal to Σ = {a, b}.

3 Surprisingly the computer program also reveals that every other number in the
range [1, nm] = [1, 9] is reachable.

106 M. Holzer and C. Rauch

Next we define the state sets

QA,1 :={q0 · w | w ∈ Σ∗ for w inducing a permutation on QA},

and
QA,2 :={q0 · w | w ∈ aΣ∗},

for q0 being the initial state of A. Clearly this results in the properties

QA,1 · a = {q0 · a} ⊆ QA,2, QA,2 · a = {q0 · a} ⊆ QA,2,

QA,1 · b = QA,1, QA,2 · b = QA,2,

and
QA = QA,1 ∪ QA,2,

where the union is not necessarily disjoint. Observe, that QA,2 contains at least
one state, since a is the reset letter. Moreover, note that for every word w ∈ Σ∗

which induces a permutation there is a word w−1 ∈ Σ∗ which induces the inverse
permutation on the state set of A. Therefore either QA,1 is a subset of QA,2 or
the two sets are disjoint. Since n is at least equal to three the first case can
only appear for |QA,2| ≥ 3. Nevertheless the argumentation to come for the
case |QA,2| ≥ 3 does not require QA,1 and QA,2 to be disjoint. We want to
mention that in all cases b permutes the states of QA,2 transitively because A
is a binary device. Now we are ready to consider the following cases for QA,2,
where we will conclude a contradiction in each case:

1. Case |QA,2| = 1. Let QA,2 = {q}, for some state q in QA. We first assume
that q is an accepting state. So the set {q} × QB induces a PFA which is
isomorphic to B up to the initial state. Since B is minimal the states in {q}×
QB cannot contain any equivalent states which contradicts α = 2. Thus q has
to be non-accepting which implies that all states in {q} × QB are equivalent.
This implies the existence of an accepting state in the set QA,1 × QB which
is initially reachable. Since there is at least one reachable state in A × B for
each state q′ in QA,1, which has q′ as its first component the assumption
that only one state of QA,1 × QB is reachable implies that QA,1 consists of
one state. Indeed this gives us that |QA,1 ∪ QA,2| = 1 + 1 = 2, which is
a contradiction to 2 < n = |QA|. Therefore there are at least two states
of QA,1 × QB reachable. But on the other hand the states in QA,1 have
to contain an accepting and a non-accepting state. Therefore an accepting
state and a non-accepting state in QA,1 × QB is reachable. Since there is a
word w ∈ Σ∗ which maps the non-accepting state in QA,1 × QB onto an
accepting state the reachable states in QA,1 × QB cannot contain a state
equivalent to the reachable states of {q} × QB . Therefore the minimal DFA
for the language A×B has at least three states which is a contradiction to α
equal to two.

2. Case |QA,2| = 2. Clearly QA,2 contains one accepting and one non-accepting
state, because otherwise the above described closure properties of QA,2 con-
tradicts the minimality of A.

On the Descriptional Complexity of the Direct Product of Finite Automata 107

We claim that each state in QA,2 × QB is reachable in A × B. Since B is a
PFA for each pair of states p and p′ there is a word w in Σ∗a which maps p
onto p′. Let q′ be the image of the reset induced by a in A. Therefore every
state (q, p) is mapped onto (q′, p′) for q being a state of A. Clearly this implies
that all states in {q′}×QB are reachable in A×B. Since every letter induces
a permutation on QB and since for every state q in QA,2 there is a word which
maps q′ onto q the claim follows.
The b-cycles of the state set QA,2 × QB can be interpreted as unary cyclic
PFAs P0, P1, . . . , Pk, for some k ≥ 0. Recall that a cyclic automaton con-
sists of one cycle. Observe, that there is an accepting state in one of the
PFAs P0, P1, . . . , Pk, say this is Pi. Additionally there must also be a non-
accepting state in Pi which has the non-accepting state of QA,2 as its first
component.
In [6] it was shown that for every (non-)minimal PFA there exists a number x
such that every of its states is equivalent to x states. Therefore this also holds
for each of the PFAs P0, P1, . . . , Pk. Since all accepting states of a PFA Pi and
all non-accepting states are equivalent this implies that the number of accept-
ing and non-accepting states has to be equal in Pi. On the other hand all of
the non-accepting states of all the PFAs are equivalent which implies that all
PFAs must contain an accepting state and a non-accepting state. This holds
because if Pi contains only non-accepting states and Pj contains an accept-
ing state there is a word w ∈ b∗ which maps a non-accepting state of Pi onto
a non-accepting state Pi and a non-accepting state of Pj onto an accepting
state of Pj . In conclusion this means that for each of the PFAs P0, P1, . . . , Pk

the number of accepting and non-accepting states has to be equal. Because
the union of their state sets is equal to QA,2 ×QB we observe that QA,2 ×QB

contains |QA,2 × QB |/2 accepting states.
This is a contradiction to the fact that only the half of the states in QA,2,
i.e., only one, is accepting and QB contains at least one non-accepting state4

which implies that the number of accepting states in QA,2 × QB is strictly
less than |QA,2 ×QB |/2. We want to mention that this causes a contradiction
in all cases since there cannot be a single PFA P0, for k = 0, with two states
because |QA,2 × QB | = 2 · |QB | is at least equal to six.

3. Case |QA,2| ≥ 3. We use the notation as in the previous case, in particular
the b-cycle PFAs P0, P1, . . . , Pk, and argue along similar lines up to the con-
tradiction in the last paragraph. Recall that each of the PFAs P0, P1, . . . , Pk

contains an accepting and a non-accepting state.
Since all accepting (non-accepting, respectively) states are equivalent it is
easy to understand that this is only possible if the finality of the states in
each cycle alternates. The first components appear in the states of Pi in the
same ordering as in QA,2. The ordering of QA,2 may occur multiple times
in Pi but this will not matter for our reasoning. Indeed this implies that
without loss of generality every state which is on an even position in QA,2 is
accepting. There have to be also accepting states on odd positions in QA,2

4 This is due to the fact that B is minimal and |QB | is at least three.

108 M. Holzer and C. Rauch

or |QA,2| because otherwise all accepting and all non-accepting states in QA,2

would be equivalent which would contradict the minimality of A. In both
cases there are consecutive states in QA,2 which are accepting.
We show that the finality of the states in each b-cycle of B alternates, too. It
is already known that every state in QA,2 × QB is reachable. If p and p′ are
non-accepting states of B such that p · b = p′ we obtain that for q · b = q′ the
states (q, p) and (q′, p′) are also non-accepting and that (q, p) · b = (q′, p′).
Indeed this would contradict the fact that the finality of the states in each Pi

alternates. If p and p′ are accepting states of B such that p · b = p′ we obtain
that for q · b = q′ the states (q, p) and (q′, p′) are also accepting if q and q′ are
accepting5 and that (q, p) · b = (q′, p′). Again this would contradict the fact
that the finality of the states in each Pi alternates.
Additionally we observe that each b-cycle of B has at least two states because
otherwise there would be a PFA Pi which is either isomorphic to the PFA
induced by QA,2 up to the initial state or which is a cycle of length |QA,2|
of non-accepting states. The first case contradicts the fact that all accepting
states are equivalent in Pi and we proved already that the latter case is ruled
out.
It is not hard to see that the ordering of QA,2 is the same ordering as for the
first components of the states in each of the PFAs P0, P1, . . . , Pk. Recall that
there is an accepting state q in QA,2 which is followed by an accepting state.
Since we have shown that every state in QA,2 × QB is initially reachable we
know that there is a reachable state (q, p) that is accepting. Since the finality
of the states in all b-cycles of B alternates we obtain that the cycle of (q, p)
contains two consecutive non-accepting states which is a contradiction to the
fact that the finality of the states in each of the PFAs P0, P1, . . . , Pk alter-
nates. ��
By a careful inspection of the statement of the previous lemma we show that

it can be improved to alphabets of arbitrary size restricting one automaton to
three states. We have to leave open whether a more general improvement is
possible.

Theorem 3. Let n = 3 and m be odd with m ≥ 3. Then there does not exist a
minimal n-state PRFA A and no minimal m-state PFA B such that the minimal
DFA for the language L(A × B) has 2 states.

Proof. We prove this statement by showing that for n = 3 the reasoning of the
proof of Lemma 2 is also valid for arbitrary alphabet size greater or equal to
two. Therefore we use the same notation as in the previous proof which was
mainly guided by the size of the state set QA,2, a subset of QA, the state set of
the PRFA A.

By inspecting of the case |QA,2| = 1 of the previous proof we obtain that it
only requires the input alphabet to contain the letters a and b which implies

5 As mentioned before the existence of these states is guaranteed by the minimality
of A.

On the Descriptional Complexity of the Direct Product of Finite Automata 109

that there can be arbitrary many other letters in the input alphabet. The
cases |QA,2| = 2 and |QA,2| ≥ 3 rely on the fact that there is letter b which
induces a permutation and acts transitively on the set QA,2, e.g., it forms a
cycle on QA,2. We prove now that the argument is also true for all alphabets
with at least two elements if n = 3. To this end we consider two cases depending
on the size of QA,2:

1. Case |QA,2| = 2. The proof that there is a letter that permutes the states
of QA,2 non-trivially is shown by contradiction. Assume to the contrary that
all letters which induce a permutation act on QA,2 trivially. Since n = 3
and |QA,2| = 2 we know that |QA,1| = 1 and QA,1 = QA\QA,2. Due to
the definition of QA,1 we know that every permutation fixes the sole state
in QA,1. This implies that every permutation induces the identity on QA =
QA,1 ∪ QA,2. So A is a RFA which is a contradiction to the fact that A is
minimal and has three states.

2. Case |QA,2| ≥ 3. We distinguish three subcases with respect of the size
of QA,1; note that in fact |QA,2| = 3, since n = 3:
(a) Subcase |QA,1| = 1. We observe that the arguments used in the case

|QA,2| = 2 of the proof of Lemma 2 imply for the case |QA,2| = 3 under
consideration that all states of A×B are initially reachable because n = 3.
One finds that there are three states of A×B which have the single state
of QA,1 as their first component. These may contain zero, one, or two
accepting states depending on the finality of the sole state in QA,1 and the
number of accepting states of B. These three states are either transitively
mapped onto each other which makes them inequivalent if at least one
of them is accepting or one of these states, say q, is only mapped onto
itself by permutations. We will show the contradiction for the second case
because if all three states are transitively permuted and non-accepting
they are equivalent while they are inequivalent to every non-accepting
state that is mapped onto an accepting state by a permutation. Indeed
this causes a contradiction in a similar fashion like it will for the case
that q is only mapped onto itself. So q is not mapped onto either an
accepting or a non-accepting state. Since A is not an RFA there must be a
permutation c which acts non-trivially on the state set of A. Furthermore,
letter c has to permute two states of different finalities to preserve the
minimality of A. Thus, one of the cycles induced by c in A × B contains
a non-accepting and an accepting state while q is a fixpoint of c. These
three states cannot be equivalent because there is a word in c∗ which
maps them onto states of different finality. This implies that the minimal
DFA accepting L(A×B) has at least three states which is a contradiction.

(b) Subcase |QA,1| = 2. It is not hard to see that the arguments in the
previous subcase can also be used for |QA,1| = 2, if we exchange q in the
reasoning above by the state q̃ in QA\QA,1 and by observing that q̃ is
also mapped onto itself by every permutation.

(c) Subcase |QA,1| ≥ 3—By a similar reasoning as for the size of QA,2

together with n = 3 we are actually in the case |QA,1| = 3. Since |QA,1| =

110 M. Holzer and C. Rauch

3 either there is a permutation that permutes QA,1 = QA,2 transitively or
there are at least two non-trivial unequal permutations on that set. Due
to the fact that they are non-trivial each of them must permute at least
two elements while each of them permutes less than |QA,2| = 3 elements.
Obviously they have order two, e.g., they are transpositions. Addition-
ally they have one element in common since they permute QA,2 which
has only three elements. So the composition of the two transposition has
order three and therefore permutes QA,2 transitively.

Therefore all possible cases lead to a contradiction. ��
Next we consider the PRFA-PRFA case. Here also at least one magic number

was announced in [4] with the help of a computer program. This number is
α = 8 = nm − 1, for n = m = 3 and alphabet of size at most two. In fact, if
the alphabet size is large enough, we show that no magic number in the PRFA-
PRFA case exists. Due to the lack of space the proof of the following statement
has to be omitted.

Theorem 4. Let n,m ≥ 2. Then for every α with 1 ≤ α ≤ nm, there exists a
quaternary minimal n-state PRFA A and a quaternary minimal PRFA B such
that the minimal DFA for the language L(A × B) has α states.

Now the question arises whether the above theorem is best possible w.r.t. the
input alphabet size. For alphabet size two α = 8 is magic as mentioned above for
n = m = 3. Unfortunately, this is not true anymore if we consider alphabets of
size at least three, which is shown next for the more general case of α = nm − 1
for large enough m and n.

Lemma 5. Let n,m ≥ 3. Then for α = nm − 1, there exists a ternary minimal
n-state PRFA A and a ternary minimal PRFA B such that the minimal DFA for
the language L(A×B) has α states. This results holds true even if one automaton
is a PFA.

Proof. Define the PRFA

A = ({q0, q1, . . . , qn−1}, {a, b, c}, ·A , q0, {q0, qn−1})

with

qn−1 ·A a = qn−2,

qn−2 ·A a = qn−1,

qi ·A b = q1, for 0 ≤ i ≤ n − 1
qi ·A c = qi+1, for 1 ≤ i ≤ n − 3

qn−2 ·A c = q1,

where all not explicitly mentioned transitions are self-loops. Moreover, let

B = ({p0, p1, . . . , pm−1}, {a, b, c}, ·B , p0, {p0, pm−1}),

On the Descriptional Complexity of the Direct Product of Finite Automata 111

be the PRFA, where

pm−2 ·A b = pm−1,

pm−1 ·A b = pm−2,

pi ·A c = pi+1 mod (m−1), for 0 ≤ i ≤ m − 2

where all not explicitly mentioned transitions are self-loops. The minimality of
both automata are immediate. Observe, that B is even a permutation automa-
ton. The argumentation that the minimal automata that accepts the language
L(A × B) requires exactly α = nm − 1 states is left to the interested reader. ��

The previous lemma does not answer the question whether Theorem 4 is
best possible for the stated alphabet size. A careful inspection of the proof
of Theorem 4 together with the previous lemma and results in [4] reveal that
optimality is given if there is a number in the interval

[max{n + 2m − 1,m + 2n − 1}, nm − 2]

that is magic for the PRFA-PRFA case for ternary alphabet size. Hopefully
further research will give an answer to this question.

References

1. Ae, T.: Direct or cascade product of pushdown automata. J. Comput. Syst. Sci.
14(2), 257–263 (1977)

2. Dömösi, P., Nehaniv, C.L.: Algebraic Theory of Automata Networks: An Introduc-
tion. SIAM (2005)

3. Harrison, M.A.: Introduction to Formal Language Theory. Addison-Wesley, Boston
(1978)

4. Holzer, M., Rauch, C.: More on the descriptional complexity of products of finite
automata. In: Han, Y.S., Ko, S.K. (eds.) DCFS 2021. LNCS, vol. 13037, pp. 76–87.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-93489-7 7

5. Holzer, M., Rauch, C.: The range of state complexities of languages resulting from
the cascade product—the general case (extended abstract). In: Moreira, N., Reis, R.
(eds.) DLT 2021. LNCS, vol. 12811, pp. 229–241. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-81508-0 19

6. Holzer, M., Rauch, C.: The range of state complexities of languages resulting from
the cascade product—the unary case (extended abstract). In: Maneth, S. (ed.) CIAA
2021. LNCS, vol. 12803, pp. 90–101. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-79121-6 8

7. Hricko, M., Jirásková, G., Szabari, A.: Union and intersection of regular lan-
guages and descriptional complexity. In: Mereghetti, C., Palano, B., Pighizzini, G.,
Wotschke, D. (eds.) Proceedings of the 7th Workshop on Descriptional Complexity
of Formal Systems, pp. 170–181. Universita degli Studi di Milano, Como (2005)

https://doi.org/10.1007/978-3-030-93489-7_7
https://doi.org/10.1007/978-3-030-81508-0_19
https://doi.org/10.1007/978-3-030-81508-0_19
https://doi.org/10.1007/978-3-030-79121-6_8
https://doi.org/10.1007/978-3-030-79121-6_8

	On the Descriptional Complexity of the Direct Product of Finite Automata
	1 Introduction
	2 Preliminaries
	3 Results
	References

