
Reset Complexity and Completely
Reachable Automata with Simple

Idempotents

Stefan Hoffmann(B)

Informatikwissenschaften, FB IV, Universität Trier, Trier, Germany

hoffmanns@informatik.uni-trier.de

Abstract. Every regular ideal language is the set of synchronizing words
of some automaton. The reset complexity of a regular ideal language is
the size of such an automaton with the minimal number of states. The
state complexity is the size of a minimal automaton recognizing a regular
language in the usual sense. There exist regular ideal languages whose
state complexity is exponentially larger than its reset complexity. We
call an automaton sync-maximal, if the reset complexity of the ideal
language induced by its set of synchronizing words equals the number of
states of the automaton and the gap between the reset complexity and
the state complexity of this language is maximal possible. An automaton
is completely reachable, if we can map the whole state set to any non-
empty subset of states (for synchronizing automata, it is only required
that the whole state set can be mapped to a singleton set). We first
state a general structural result for sync-maximal automata. This shows
that sync-maximal automata are closely related to completely reachable
automata. We then investigate automata with simple idempotents and
show that for these automata complete reachability and sync-maximality
are equivalent. Lastly, we find that for automata with simple idempotents
over a binary alphabet, subset reachability problems that are PSPACE-
complete in general are solvable in polynomial time.

Keywords: finite automata · synchronization · set of synchronizing
words · automata with simple idempotents · completely reachable
automata · sync-maximal automata

1 Introduction

Let Σ be a finite set of symbols and Σ˚ be the free monoid with neutral element
ε (called the empty word). Languages are subsets of Σ˚. A language I Ď Σ˚ is
an ideal language if x, y P Σ˚ and u P I imply xuy P I. A (semi-)automaton is a
triple A “ (Q,Σ, δ) where Q is finite set of states and δ : Q ˆ Σ Ñ Q a (totally
defined) transition function. Here, we simplify our notation by not mentioning δ
explicitly, i.e., we write q.a when applying the transition function δ to the state
q P Q and letter a P Σ and we write an automaton as a 2-tuple A “ (Q,Σ).

c© IFIP International Federation for Information Processing 2022
Published by Springer Nature Switzerland AG 2022
Y.-S. Han and G. Vaszil (Eds.): DCFS 2022, LNCS 13439, pp. 85–99, 2022.
https://doi.org/10.1007/978-3-031-13257-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13257-5_7&domain=pdf
http://orcid.org/0000-0002-7866-075X
https://doi.org/10.1007/978-3-031-13257-5_7

86 S. Hoffmann

The transition function is extended to a function Q ˆ Σ˚ Ñ Q (denoted
by the dot notation as well) by setting q.ε “ q and q.ua “ (q.u).a for u P Σ˚,
a P Σ and q P Q. Furthermore, we extend it to subsets S Ď Q by setting
S.u “ {q.u | q P S} for u P Σ˚.

A language L Ď Σ˚ is a regular language if there exists an automaton A “
(Q,Σ) and q0 P Q and F Ď Q such that L “ {u P Σ˚ : q0.u P F}. We say
the automaton A accepts (or recognizes) the language L. For a regular language
L Ď Σ˚ we denote by sc(L) “ min{|Q| : A “ (Q,Σ) accepts L} the state
complexity of L.

Set Syn(A) “ {u P Σ˚ | |Q.u| “ 1}, the set of synchronizing words of A

(which is an ideal language). If Syn(A) ‰ H, the automaton is called synchro-
nizing. For every n-state automaton A we have sc(Syn(A)) ď 2n ´ n [15]. We
call A sync-maximal if sc(Syn(A)) equals 2n ´ n. If I Ď Σ˚ is a regular ideal
language, then it is precisely the set of synchronizing words of the automaton
with the least number of states accepting it [9,15]. The reset complexity of I is

rc(I) “ min{|Q| : A “ (Q,Σ) with I “ Syn(A)},

i.e., the least number of states such that I is realized as the set of synchronizing
word of an automaton. We have rc(I) ď sc(I). There are known families of ideal
languages In associated to synchronizing automata such that sc(In) “ 2n ´ n
but rc(In) “ n [15]. For example, the set of synchronizing words of the Černý
family of automata Cn “ (Qn, {a, b}) defined by Černý [6] for n ą 1 by

i.a “
{

i if i ă n,

1 if i “ n;
i.b “

{
i ` 1 if i ă n,

1 if i “ n.

The automaton Cn is shown in Fig. 1.
Hence, describing regular ideal languages as the set of synchronizing words

can be exponentially more succinct than the usual notion of acceptance by
automata.

For L Ď Σ˚, let ||L|| “ min{|u| | u P L} be the length of a shortest word
in L. In combinatorial automata theory (and also in related applications, see [19]
for a survey in the context of model-based testing), the question on the length
of shortest synchronizing words arises. The Černý conjecture states that for an
n-state automaton A we have || Syn(A)|| ď (n´1)2. For the n-state automata Cn

from Fig. 1 we have || Syn(Cn)|| “ (n´1)2. The best general upper bound proven
so far is cubic in the number of states [21]. For more information and further
references, see the recent survey [22]. Investigating the length of shortest words
in regular ideal languages yields a natural approach to the Černý conjecture,
more precisely it is equivalent to the statement that rc(I) ě √||I|| ` 1 for every
regular ideal language I Ď Σ˚.

In fact, the connection between regular ideal languages and synchronizing
automata is even deeper. It can be shown that every regular ideal language
equals the set of synchronizing word of a strongly connected automaton [16].

Reset Complexity and Automata with Simple Idempotents 87

Automata with simple idempotents have been introduced in [18] and it has
been shown that a shortest synchronizing word has at most quadratic length for
these automata.

Overview and Contribution. In Sect. 2 we introduce automata with simple idem-
potents and further notation that was not already introduced in the introduction.
Then we make the conditions for sync-maximality more precise. Example 1 gives
an automaton that is completely reachable, but not sync-maximal.

Section 3 discusses completely reachable automata.
In Sect. 4 we determine the structure of sync-maximal automata. Our results

show that both notions are closely connected, as every sync-maximal automaton
contains a completely reachable subautomaton. In Example 2 we give automata
that are sync-maximal but not completely reachable.

Then in Sect. 5 we investigate automata with simple idempotents. Hence, this
chapter is concerned with the reset complexity of ideal languages induced by
automata with simple idempotents. However, we do not mention ideal languages
anymore, but rather express our result directly with automata (ideal languages
were introduced in the introduction to give a broader context of our results). We
show that an automaton with simple idempotents that is completely reachable is
sync-maximal. Note that Example 2 and Example 3 give automata with simple
idempotents that are sync-maximal, but not completely reachable. However, for
strongly connected automata with simple idempotents, it follows that complete
reachability and sync-maximality are equivalent.

Fig. 1. The automaton Cn

2 Some More Notation and Preliminary Results

Let f : X Ñ Y be a function. Here, function application is written on the
right, i.e., xf or (x)f denotes the function f applied to x. The same applies
to the extension to subsets, i.e., if S Ď X, then (S)f and Sf denote the set
{xf | x P S}. In this respect, if g : Y Ñ Z is another function, the function

88 S. Hoffmann

composition fg is the function x(fg) “ (xf)g, i.e. f is applied first. This “right
action notation” deviates from the more usual “left action notation” f(x) used
in formal language theory. We chose this notation as, in our opinion, it makes
certain algebraic manipulations in Sect. 5 easier to read, as it conforms better
with the way function composition is defined and read from left to right. This
notation1 is actually quite common in more algebraic approaches, for example,
in [1].

For n ě 0, we set [0] “ H and [n] “ {1, . . . , n} if n ą 0. If f : [n] Ñ [n] is a
permutation, i.e., a bijective mapping, then f´1 : [n] Ñ [n] denotes the inverse
mapping with xff´1 “ xf´1f “ x for all x P [n].

For algebraic notions as semigroup, monoid, generating set etc., we refer
to the literature, e.g., the textbook [14]. By Tn we denote the transformation
monoid of all mappings on a finite set of cardinality n.

Sets with precisely k elements are called k-sets, and 1-sets are also called
singleton sets.

For f : X Ñ Y with X,Y finite, the defect is |X\{xf | x P X}|.
A mapping f : X Ñ X on a finite set X is a simple idempotent (mapping)

if it has defect one and for each x P X we have xff “ xf . Note that a simple
idempotent mapping is completely specified by the two points x P X and xf
with xf ‰ x. In Sect. 5 we need the following “cancellation property” of simple
idempotent mappings.

Lemma 1. Let f : [n] Ñ [n] be a simple idempotent mapping and A,B Ď [n]
with |A| “ |B|. If Af “ Bf and there exist x P A, y P B such that xf ‰ x and
yf ‰ y, then A “ B and x “ y.

Remark 1. Let f : {1, 2} Ñ {1, 2} with (1)f “ (2)f “ 2. Then {1}f “ {1, 2}f
and {1}f “ {2}f . The former equation shows that the assumption |A| “ |B|
is necessary in Lemma 1, the latter equation shows the assumption that the
element that is moved by f is contained in both sets is necessary.

Let A “ (Q,Σ) be an automaton. The defect of a letter a P Σ is the defect
of the induced function q �→ q.a for q P Q. A simple idempotent letter is a letter
that induces a simple idempotent mapping on the states, and a permutational
letter is a letter that induces a permutation on the state set. The automaton A

is an automaton with simple idempotents if every letter is either a permutational
letter or a simple idempotent letter. A subset S Ď Q defines (or induces) a
subautomaton if s.a P S for each s P S and a P Σ. In this case, the set S
together with the transition function restricted to S in the arguments and the
image gives a totally defined function, i.e., we can regard it as an automaton on
its own.

The transformation monoid of the automaton A is the monoid generated by
the mappings q �→ q.a for q P Q induced by each letter a P Σ on the state set.

1 Note that we actually mix both notations, as we write certain operators (which are
never composed here), for example Syn(A), in the other convention. But this is also
done in the literature, for example [1], and should pose no problem.

Reset Complexity and Automata with Simple Idempotents 89

A state t P Q is reachable from another state s P Q if there exists u P Σ˚ such
s.u “ t. A strongly connected component is a maximal subset of states such that
for every two states in this subset are reachable from each other. The automaton
A is strongly connected if Q is a strongly connected component.

An automaton A is minimal [13] for {u P Σ˚ | q0.u P F} with q0 P Q and
F Ď Q if and only if every state is reachable from q0 and every pair of distinct
state q, q′ P Q is distinguishable, which means that there exists u P Σ˚ such that
precisely one of the two states q.u and q′.u is final, i.e., the following holds true:
q.u P F if and only if q′.u R F .

The power automaton is PA “ ({S | H ‰ S Ď Q}, Σ) where the transi-
tion function of PA is the transition function of A extended to subsets. The
automaton A is completely reachable, if every non-empty subset is reachable
from the state Q in the power automaton of A. Setting F “ {{q} | q P Q},
as Syn(A) “ {u P Σ˚ | Q.u P F}, the power automaton accepts Syn(A). The
states in F can be merged into a single state to get another automaton accepting
Syn(A). Hence, sc(Syn(A)) ď 2n ´ n.

Translating the condition of minimality of an automaton to the specific lan-
guage Syn(A) and the power automaton, we find that the sync-maximality of A
is equivalent to the following two conditions:

1. Every non-empty subset with at least two states is reachable in PA and at
least one singleton subset is reachable in PA.

2. For any two non-empty and distinct subsets S, T Ď Q with min{|S|, |T |} ě 2
there exists a word u P Σ˚ such that precisely one of the two subsets T.u and
S.u is a singleton subsets, i.e., both subset are distinguishable (in PA).

In [10, Lemma 3.1] (and a little more general in [12, Theorem 7]) it was
shown that distinguishability of states in the power automaton with respect to
Syn(A) can be simplified by only considering 2-sets.

Proposition 2. Let A “ (Q,Σ). Then all states in the power automaton PA

are distinguishable if and only if all 2-sets are distinguishable in PA.

Example 1. The automaton (see Fig. 2) with the state set Q “ {1, 2, 3}, input
letters a[1], a[2], a[3], a[1,2] and transition function given by

i.a[1] “
{

2 if i “ 1, 2,

3 if i “ 3;
i.a[2] “

{
1 if i “ 1, 2,

3 if i “ 3;

i.a[3] “
{

1 if i “ 1, 2,

2 if i “ 3;
i.a[1,2] “ 3 for all i “ 1, 2, 3.

is taken from [3, Example 2] as an example of a completely reachable automaton.
However, it is not sync-maximal as the two 2-sets {1, 3} and {2, 3} are not
distinguishable.

Next, we introduce two decision problems that have been investigated
in [2,3,17]. Subsets as in the latter problem were called totally extensible in [2],

90 S. Hoffmann

and in [17] the problem was called the global inclusion problem for non-initial
automata.
Definition 3. Reachable Subset
Input: A “ (Q,Σ) and H ‰ S Ď Q.
Question: Exists w P Σ˚ with Q.w “ S?

Definition 4. Sync-Into-Subset
Input: A “ (Q,Σ) and S Ď Q.
Question: Exists w P Σ˚ with Q.w Ď S?

Fig. 2. Left: A completely reachable automaton (taken from [3, Example 2]) that is
not sync-maximal. Right: A minimal automaton for the set of synchronizing words.

Lastly, we mention the following easy facts [10] that will be used without
special mentioning.

Lemma 5. A strongly connected sync-maximal automaton is completely reach-
able. A completely reachable automaton is strongly connected.

3 Completely Reachable Automata

The notion of a completely reachable automaton was introduced in [3], based on
a sufficient condition for the reachability of all subsets in circular automata [7].
This sufficient condition was generalized in this very first work [3], and later
extended to a characterization with more general constructions in [4]. An
extended version of [3,4] (and with further results) is under submission and a
preliminary version available on arXiv [5]. Complete reachability has been used
in [10] to characterize primitive permutation groups.

Given a finite automaton and two subsets of states, it is complete for deter-
ministic polynomial space to check if there exists a word mapping one subset
onto the other, see [3,17]. This implies that complete reachability can be checked
in non-deterministic polynomial space by checking if a given automaton is not
completely reachable in the following way: non-deterministically guess a non-
empty subset and check if it is reachable from the whole state set, if not, then
the automaton is not completely reachable. By Savitch’s theorem [20] this prob-
lem is solvable in deterministic polynomial space as well, which implies that

Reset Complexity and Automata with Simple Idempotents 91

complete reachability is decidable in deterministic polynomial space. However,
the precise computational complexity of deciding complete reachability is an
open problem [3–5].

With Proposition 2, which yields a polynomial time procedure to check dis-
tinguishability of all non-empty subset [10, Corollary 3.2], we get the next result.

Proposition 6. Deciding if a given automaton is sync-maximal can be done in
polynomial space.

In [8] a completely reachable automaton with letters of defect one was given
for which the sufficient condition from [3] is not fulfilled, which was meant to
be a counter-example to a conjecture from [3]. However, with another result
from [8, Theorem 20] it can be deduced that complete reachability is decidable
in polynomial time for automata with simple idempotents.

Theorem 7. For automata A “ (Q,Σ) with simple idempotents it is decidable
in polynomial time if they are completely reachable.

Proof (sketch). In [3] a sufficient (graph-theoretical) condition for complete
reachability was stated, and in [8] it was shown that this sufficient condition
can be checked in polynomial time. Furthermore [8, Theorem 20] states that the
following implies the mentioned sufficient condition: For every proper non-empty
S Ď Q there exists w P Σ˚ with S “ Q.w and w1, w2 P Σ˚ with w “ w1w2 such
that |Q.w| `1 “ |Q.w1| and w2 has defect one. Now, it can be shown that this is
fulfilled for completely reachable automata with simple idempotents. Combining
these facts yields the claim. ��

4 The Structure of Sync-Maximal Automata

Here, we determine the structure of sync-maximal automata. We show that they
are either completely reachable or consist of precisely two strongly connected
components, where one contains only a single “dangling state” and the other
component forms a completely reachable subautomaton.

Theorem 8. Let A “ (Σ,Q) be an n-state semi-automaton with n ě 3. If A is
sync-maximal, i.e., the smallest recognizing automaton for Syn(A) has 2n ´ n
states, then either A is completely reachable or all of the the following statements
hold true:

1. |Σ| ě 3,
2. we have two strongly connected components {q}, q P Q, and S “ Q\{q},
3. there exists a P Σ with2 q.a P S and such that q′.a ‰ q.a for at least one state

q′ P S,
4. there exists b P Σ having defect one and c P Σ\{b} with q.b “ q.c “ q,
5. if |Σ| “ 3 and n ě 4, then the letter b cyclically permutes S.
2 Observe that as {q} and S are strongly connected components, the condition q.a P S

implies that the state q is not reachable from any state in S and so Q.u ‰ {q} for
all u P Σ˚.

92 S. Hoffmann

Proof. As Syn(A) ‰ H, there must exist a state s P Q and a synchronizing word
w P Σ˚ such that Q.w “ {s}. Let S Ď Q be the strongly connected component
containing s. As q.w “ s for every q P Q, this strongly connected component
is uniquely determined for any choice of a state s such that there exists a word
w P Σ˚ with Q.w “ {s}. Furthermore, it has the property that, once entered, we
cannot leave S, i.e., S.u Ď S for all u P Σ˚. However, this implies S∩Q.u ‰ H for
every u P Σ˚. Hence, no non-empty subset of Q\S is reachable. As by assumption
every non-empty subset with at least two elements is reachable, we find |S| “ |Q|
or |S| “ |Q| ´ 1.

In the first case, A is strongly connected. This implies that if at least one
singleton subset is reachable, then all singleton subsets are reachable and so A

is completely reachable.
In the second case, we can write Q “ S Y {q} with q R S. Note that in this

case A is not completely reachable, as {q} is not reachable. As Q.w P S, there
exists at least one letter mapping q into S.

Let s, t P S be two arbitrary distinct states. Consider the states {q, s} and
{q, t} in the power automaton. They must be distinguishable, i.e., there must
exist a word u P Σ˚ mapping precisely one, say {q, s}, to a singleton set but not
the other. Then S.u Ď S and we can write u “ u′au′′ with u′, u′′ P Σ˚ and a P Σ
such that q.ua P S and q.u “ q and so q.a P S. We must have |{q, t}.ua| “ 2,
which implies t.a ‰ q.a.

Now, suppose n ě 3. Then we must have at least two distinct letters b, c P Σ
such that q.b “ q.c “ q. To see this, consider a non-empty subset T Ď S with
|T | “ n ´ 2. The subset T Y {q} must be reachable. This is only possible if there
exists a letter b P Σ with q.b “ q (recall q R S.u for each u P Σ˚) having defect
one, for if every letter fixing q permutes the states or has defect at least two,
then no subset of the form T Y {q} with |T | “ n ´ 2 is reachable.

Next, consider a subset T ′ Y {q} with |T ′| “ n ´ 2 such that T ′ Y {q} ‰ Q.b.
We cannot use the letter a to reach the subset T ′ Y {q} as q R Q.a. Let i ě 2.
Then |Q.bi| ď n ´ 1 and |Q.bi| “ n ´ 1 implies, as Q.bi Ď Q.b, that Q.bb “ Q.b.
So, there must exist a third letter c P Σ\{a, b} with q.c “ q to reach the subset
T ′ Y {q}.

Lastly, suppose Σ “ {a, b, c}. Then a is the only letter such that q.a P S.
Furthermore, for each q′ P S the subset {q} Y S\{q′} must be reachable. If Q.ub
contains q and has size n ´ 1, then, as Q.ub Ď Q.b, we must have Q.ub “ Q.b. If
|Q.c| ď n and n ě 3, then Q.c must be a subset of size n ´ 1 to reach another
subset not equal to Q.b of size n´1. However, as shown before for the letter b, if
Q.cc has size n´1, then Q.cc “ Q.c. So, if n ě 4 there exists a subset of size n´1
that is not reachable and hence in this case we must have |Q.c| “ n. Putting all
the arguments together, every subset of size n´1 containing q must be reachable
by a word of the form bci for some i ě 0. Let q′ P S such that Q.b “ Q\{q′}
and choose q′′ P S. Then there exists i ě 0 such that Q.bci “ Q\{q′′}. As c
permutes the states, this implies q′.c “ q′′. However, a single permutation that
maps all states in S onto each other is only possible if this permutation induces
a single cycle on these states and we conclude that c cyclically permutes the
states in S. ��

Reset Complexity and Automata with Simple Idempotents 93

In case a sync-maximal automaton is not completely reachable, then we can
show that one strongly connected component forms a completely reachable sub-
automaton.

Theorem 9. Let A “ (Q,Σ) be a sync-maximal automaton that is not com-
pletely reachable. Suppose q P Q is the “dangling state” that exists according
to Theorem 8. Then the states in Q\{q} form a strongly connected, completely
reachable and sync-maximal subautomaton.

We can use sync-maximal and completely reachable automata to construct
sync-maximal automata that are not completely reachable by adding a dangling
state, as done in the next example.

0
1

n 2

n 1 3

a, b

b

b

b

a, c

a, c

a, c

a, c

a, b

c

c

. . .

Fig. 3. The automaton An from Example 2

Example 2. We derive from the Černý family a new family of automata by
adjoining an additional state and a new letter (see Fig. 3) that give sync-maximal,
but not completely reachable (as they are not strongly connected) automata. Let
An “ ({0, 1, . . . , n}, {a, b, c}) with

i.a “
{

i if i ă n,

1 if i “ n;
i.b “

⎧⎪⎨
⎪⎩

0 if i “ 0,

i ` 1 if 0 ă i ă n,

1 if i “ n.

i.c “
{

1 if i “ 0,

i if i ‰ 0.

Observe that the automaton induced on the states {1, . . . , n} and by the letters
{a, b} is precisely the Černy automaton Cn. The Černy automata are completely
reachable and sync-maximal (which is implied by results from [11], but also by
Theorem 12 of the present work). Hence, all non-empty subsets of {1, . . . , n}
are distinguishable. If S, T Ď {0, 1, . . . , n} are non-empty and distinct, and at
least one, say S, contains the state 0, we can distinguish them the following way:
(1) If 0 R T , then choosing any word from {a, b}˚ that maps T to a singleton
distinguishes S and T , as it maps S to a 2-set. (2) If 0 P T , then write S “ {0, s}

94 S. Hoffmann

and T “ {0, t}. By assumption s ‰ t. There exists m ą 0 such that s.bm “ 1.
Then t.bm ‰ 1. Hence S.bmc “ {1} and T.bma “ {1, t.bm} is a 2-set. So, S and
T are distinguishable.

5 Automata with Simple Idempotents

A strongly connected sync-maximal automaton is also completely reachable [10,
Lemma 3.3]. Here, we show that if an automaton with simple idempotents is
completely reachable, then it is sync-maximal. Hence, for strongly connected
automata with simple idempotents, complete reachability and sync-maximality
are equivalent.

Let f : [n] Ñ [n] be a mapping and g : [n] Ñ [n] be a permutation, then the
conjugate of f by g, written fg, is the mapping given by fg “ g´1fg. Note that
if f is a simple idempotent mapping with a ‰ b and af “ b, then fg is a simple
idempotent mapping ag to bg.

Crucial for our result are the following two Lemmata 10 and 11 formulated
in the language of transformation semigroups. The first lemma says that for
reachability of subsets, it is sufficient to consider products of simple idempotents.

Lemma 10. Let T ď Tn be a transformation semigroup generated by permu-
tations and simple idempotents and S Ď [n]. If there exists t P T such that
S “ ([n])t, then there exists a product t′ P T of conjugates of the generators that
are simple idempotents by permutations in T such that S “ ([n])t′. In particular,
t′ is a product of simple idempotents from T .

Proof. Write t “ g1f1g2f2g3 · · · fn´1gnfngn`1 where the fi are the simple idem-
potents from the generating set and the gi are permutations generated by the
permutations in the generating set. Then (this relation was already observed
in [1])

t “ g1f1g2f2g3 · · · fn´1gngn`1f
gn`1
n “ g1f1g2f2g3 · · · gn´1gngn`1f

gngn`1
n´1 fgn`1

n

“ . . . “ g1g2 · · · gn`1f
g2g3···gngn`1
1 fg3···gngn`1

2 · · · fgngn`1
n´1 fgn`1

n .

Now, as g1g2 · · · gn`1 is a permutation, we have ([n])(g1g2 · · · gn`1) “ [n]. Hence,
if we set t′ “ fg2g3···gngn`1

1 fg3···gngn`1
2 · · · fgngn`1

n´1 fgn`1
n we have S “ ([n])t′. Each

conjugate fg
i where g is a permutation is simple idempotent. Observe that the

number of simple idempotent in the resulting product of t′ is the same as the
number of simple idempotents used in t. ��

Next, we give a sufficient condition for the distinguishability of 2-sets.

Lemma 11. Let T ď Tn be a transformation semigroup generated by permu-
tations and simple idempotents and containing a constant map. Then for every
two distinct 2-sets there exists an element in T mapping precisely one 2-set to a
singleton but not the other.

Reset Complexity and Automata with Simple Idempotents 95

Proof. Let {a, b}, {c, d} Ď [n] be distinct 2-sets. By assumption and Lemma 10,
there exists a product of simple idempotents f P T such that |{a, b}f | “ 1 or
|{c, d}f | “ 1. Choose the element f that is expressible as a shortest possible
product of simple idempotents, i.e. f “ f1 · · · fm with m is minimal, the fi are
simple idempotent mappings and |{a, b}f | “ 1 or |{c, d}f | “ 1.

Assume |({a, b})f | “ |({c, d})f | “ 1.
The function fm has defect one. Hence the two elements mapped to a single

element are unique. By the choice of f as a minimal product and as fm is applied
at the end, we can conclude that |{a, b}(f1 · · · fm´1)| “ |{c, d}(f1 · · · fm´1)| “ 2
and {a, b}(f1 · · · fm´1) “ {c, d}(f1 · · · fm´1).

Let i P {1, . . . , m ´ 1}. Set hi “ f1 · · · fi and let h0 denote the identity
transformation. Assume {a, b}hi “ {a, b}hi`1, then |{a, b}(hifi`2 · · · fm)| “ 1
and f can be written as a product of m ´ 1 simple idempotents, contradicting
the minimal length of the product. Similarly, we must have {c, d}hi ‰ {c, d}hi`1.
Hence, for every i P {0, 1, . . . ,m ´ 1} we have

{a, b}hi ‰ {a, b}hi`1 and {c, d}hi ‰ {c, d}hi`1. (1)

Now, for i P {1, . . . , m ´ 1}, suppose {a, b}hi “ {c, d}hi. Set A “ {a, b}hi´1 and
B “ {c, d}hi´1. By Eq. (1), we have A ‰ Af and B ‰ Bf . So there exist x P A,
y P B such that xfi ‰ x and yfi ‰ y. By Lemma 1 we can conclude A “ B. So,
inductively, as {a, b}hm´1 “ {c, d}hm´1, we find {a, b} “ {c, d}. However, this
contradicts our assumption that both 2-sets are distinct and so we cannot have
that both are mapped to a singleton. ��

If we consider the transformation monoid of a given automaton with simple
idempotents, Proposition 2 and Lemma 11 directly give the main result of this
section.

Theorem 12. Let A “ (Q,Σ) be an automaton with simple idempotents. Then
if A is completely reachable, then it is sync-maximal.

As every strongly connected sync-maximal automaton is completely reach-
able, we get the next corollary.

Corollary 13. Let A “ (Q,Σ) be a strongly connected automaton with simple
idempotents. Then A is completely reachable if and only if it is sync-maximal.

By Theorem 8, every sync-maximal automaton over a binary alphabet is
completely reachable, which implies that the automaton is strongly connected.
This yields the next corollary.

Corollary 14. Let A be an automaton with simple idempotents over a binary
alphabet. Then A is completely reachable if and only if it is sync-maximal.

The equivalence between complete reachability and sync-maximality holds
only for strongly connected automata with simple idempotents and for automata
over a binary alphabet. Example 2 gives automata with simple idempotents over
a ternary alphabet that are sync-maximal but not completely reachable. Next,
we give a different example.

96 S. Hoffmann

Example 3. Here, we give further examples an automata with simple idempo-
tents that are sync-maximal but not completely reachable. Let the automaton
A “ ({0, 1, . . . , n}, {a, b, c, d}) be such that

i.a “
{

1 if i “ 0,

i if i ą 0;
i.b “

{
1 if i “ 2,

i if i ‰ 1;

i.c “
⎧⎪⎨
⎪⎩

1 if i “ 2,

2 if i “ 1,

i if i R {1, 2};
i.d “

⎧⎪⎨
⎪⎩

i ` 1 if i R {0, n},

0 if i “ 0,

1 if i “ n.

Then A is an automaton with simple idempotents. As A is not strongly con-
nected, it is not completely reachable. However, it is sync-maximal. This follows
as the letters d and c generate the full symmetric group on {1, 2, . . . , n}. Let
{q1, q2}, {p1, p2} be two distinct 2-sets. If {q1, q2}, {p1, p2} Ď {1, 2, . . . , n}, then
there exists a word u P {c, d}˚ such that {q1, q2}.u “ {1, 2} and {p1, p2}.u ‰
{1, 2} and the word ub maps {1, 2} to {2} and {p1, p2} to another 2-set. Other-
wise, at least one subset contains 0, say, without loss of generality, 0 P {q1, q2}
and q1 “ 0. Let u P {c, d}˚ be a word such that q2.u “ 1. Then {q1, q2}.ua “ {1}
as {q1, q2}.u “ {0, 1}. Furthermore, {p1, p2}.ua is a 2-set. If 0 R {p1, p2}, this
is clear as ua permutes the states {1, . . . , n}. If 0 P {p1, p2}, then q2 R {p1, p2},
which implies {0, 1} “ {p1, p2}.u ‰ {q1, q2}.u and hence |{q1, q2}.u| “ 2.

Example 4. Here, we give an infinite family of synchronizing automata with
simple idempotents over a binary alphabet that are neither sync-maximal nor
completely reachable. Let A “ ({0, 1, . . . , n}, {a, b}) with

i.a “
{

n if i “ n ´ 1,

i if i ‰ n ´ 1;
i.b “

{
n if i “ n,

i ` 1 mod n if i P {0, . . . , n ´ 1};

The word a(ba)n´2 synchronizes A. However, A is not completely reachable as
it is not strongly connected, which implies, by Theorem 8, as it is over a binary
alphabet, that it is not sync-maximal.

Lastly, we state that the problems Sync-Into-Subset and Reachable
Subset are solvable in polynomial time for automata with simple idempotents
over a binary alphabet. This is based on the following lemma about the structure
of the reachable subsets in automata with simple idempotents.

Lemma 15. Let Σ “ {a, b} and A “ (Q,Σ) be an automaton with Q “
{0, 1, . . . , n ´ 1} and q.b “ (q ` 1) mod n and a P Σ be a simple idempotent
letter with a state q P Q such that δ(q, a) ‰ q. Let d ą 0 be the greatest common
divisor of n and the number3 0 ă r ď n with q.a “ q.br. Then for S Ď Q we
have Q.u “ S for some u P Σ˚ if and only if S “ A0 Y . . . Y Ad´1 for non-empty
subsets Ai Ď Q such that s P Ai implies s ” i (mod d).
3 The case r “ n is a borderline case as it essentially implies that a acts as the identity.

However, the statement entails it with S “ Q being the only reachable subset.

Reset Complexity and Automata with Simple Idempotents 97

Proposition 16. For automata with simple idempotents over a binary alpha-
bet, the problems Sync-Into-Subset and Reachable Subset are solvable in
polynomial time.

6 Conclusion

We have introduced the sync-maximal automata and determined their structure.
They are closely connected to completely reachable automata in the sense that
they are either completely reachable or contain a completely reachable subau-
tomaton. Furthermore, in a sync-maximal automaton all subsets with at least
two states are reachable.

A natural question is how sync-maximality relates to the length of shortest
synchronizing words. Intuitively, it means the set of synchronizing words is a
“complicated” set, and one might expect that this might yield lower bounds
on shortest possible paths in the power automaton. However, we can clearly
construct automata with very short synchronizing words that are sync-maximal
by adding to an existing automaton that is sync-maximal a single letter that
maps everything to a single state, as the property of sync-maximality is retained
when adding letters. But such a construction feels rather artificial, and a natural
question is then what happens if we do not have arbitrary many letters at hand
or the letters have to fulfill a certain property (like being idempotent or only
having a certain defect). What can we say about lower bounds for shortest
synchronizing words for automata over a binary alphabet, or only having the
least number of letters of a certain type yielding a sync-maximal automaton
on the given state set? For an upper bound, note that for completely reachable
automata over a binary alphabet, the Černý conjecture has been confirmed in [5].
As sync-maximal automata over a binary alphabet are completely reachable by
Theorem 8, sync-maximal automata over a binary alphabet also fulfill Černý’s
conjecture.

Furthermore, we have shown that a completely reachable automaton with
simple idempotents must be sync-maximal. Hence, for strongly connected
automata over simple idempotents being completely reachable is equivalent to
sync-maximality. It is known that as soon as the transformation monoid of an
automaton contains a primitive permutation group, it is both completely reach-
able and sync-maximal [10]. But what properties on the letters do we need to
retain this equivalence (or simply that complete reachability already implies
sync-maximality) that are more general than being either a permutation or
a simple idempotent? In our method of proof, we used the idempotency (i.e.,
q.aa “ q.a for each state q P Q) and the fact that the letters have defect one.
But what when letters of defect more than one are involved? What about letters
that instead of being idempotent fulfill the property Q.aa “ Q.a, i.e., the image
Q.a is permuted by a?

98 S. Hoffmann

Acknowledgement. I thank the anonymous reviewers for careful reading, spotting
typos and unclear formulations, and pointers to the literature. In particular, I thank
one reviewer for spotting an error in the original formulation and proof of Theorem 8,
which has been fixed, and another reviewer for giving a very easy argument related to
checking complete reachability.

References

1. Araújo, J., Bentz, W., Cameron, P.J.: Groups synchronizing a transformation of
non-uniform kernel. Theor. Comput. Sci. 498, 1–9 (2013). https://doi.org/10.1016/
j.tcs.2013.06.016

2. Berlinkov, M.V., Ferens, R., Szykula, M.: Preimage problems for deterministic
finite automata. J. Comput. Syst. Sci. 115, 214–234 (2021). https://doi.org/10.
1016/j.jcss.2020.08.002

3. Bondar, E.A., Volkov, M.V.: Completely reachable automata. In: Câmpeanu, C.,
Manea, F., Shallit, J. (eds.) DCFS 2016. LNCS, vol. 9777, pp. 1–17. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-41114-9 1

4. Bondar, E.A., Volkov, M.V.: A characterization of completely reachable automata.
In: Hoshi, M., Seki, S. (eds.) DLT 2018. LNCS, vol. 11088, pp. 145–155. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-98654-8 12

5. Bondar, E.A., Casas, D., Volkov, M.V.: Completely reachable automata: an inter-
play between automata, graphs, and trees. CoRR abs/2201.05075 (2022). https://
arxiv.org/abs/2201.05075

6. Černý, J.: Poznámka k. homogénnym experimentom s konecnými automatmi. Mat.
fyz. čas SAV 14, 208–215 (1964)

7. Don, H.: The Černý conjecture and 1-contracting automata. Electron. J. Comb.
23(3), P3.12 (2016)

8. Gonze, F., Jungers, R.M.: Hardly reachable subsets and completely reachable
automata with 1-deficient words. J. Autom. Lang. Comb. 24(2–4), 321–342 (2019).
https://doi.org/10.25596/jalc-2019-321

9. Gusev, V.V., Maslennikova, M.I., Pribavkina, E.V.: Finitely generated ideal lan-
guages and synchronizing automata. In: Karhumäki, J., Lepistö, A., Zamboni, L.
(eds.) WORDS 2013. LNCS, vol. 8079, pp. 143–153. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40579-2 16

10. Hoffmann, S.: Completely reachable automata, primitive groups and the state com-
plexity of the set of synchronizing words. In: Leporati, A., Mart́ın-Vide, C., Shapira,
D., Zandron, C. (eds.) LATA 2021. LNCS, vol. 12638, pp. 305–317. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-68195-1 24

11. Hoffmann, S.: State complexity of the set of synchronizing words for circular
automata and automata over binary alphabets. In: Leporati, A., Mart́ın-Vide,
C., Shapira, D., Zandron, C. (eds.) LATA 2021. LNCS, vol. 12638, pp. 318–330.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68195-1 25

12. Hoffmann, S.: Sync-maximal permutation groups equal primitive permutation
groups. In: Han, Y., Ko, S. (eds.) DCFS 2021. LNCS, vol. 13037, pp. 38–50.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-93489-7 4

13. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley Publishing Company, Boston (1979)

14. Howie, J.M.: Fundamentals of Semigroup Theory. Oxford University Press, Oxford
(1996)

https://doi.org/10.1016/j.tcs.2013.06.016
https://doi.org/10.1016/j.tcs.2013.06.016
https://doi.org/10.1016/j.jcss.2020.08.002
https://doi.org/10.1016/j.jcss.2020.08.002
https://doi.org/10.1007/978-3-319-41114-9_1
https://doi.org/10.1007/978-3-319-98654-8_12
https://arxiv.org/abs/2201.05075
https://arxiv.org/abs/2201.05075
https://doi.org/10.25596/jalc-2019-321
https://doi.org/10.1007/978-3-642-40579-2_16
https://doi.org/10.1007/978-3-030-68195-1_24
https://doi.org/10.1007/978-3-030-68195-1_25
https://doi.org/10.1007/978-3-030-93489-7_4

Reset Complexity and Automata with Simple Idempotents 99

15. Maslennikova, M.I.: Reset complexity of ideal languages over a binary alphabet.
Int. J. Found. Comput. Sci. 30(6–7), 1177–1196 (2019). https://doi.org/10.1142/
S0129054119400343

16. Reis, R., Rodaro, E.: Ideal regular languages and strongly connected synchronizing
automata. Theor. Comput. Sci. 653, 97–107 (2016). https://doi.org/10.1016/j.tcs.
2016.09.026

17. Rystsov, I.K.: Polynomial complete problems in automata theory. Inf. Process.
Lett. 16(3), 147–151 (1983). https://doi.org/10.1016/0020-0190(83)90067-4

18. Rystsov, I.K.: Estimation of the length of reset words for automata with simple
idempotents. Cybern. Syst. Anal. 36(3), 339–344 (2000). https://doi.org/10.1007/
BF02732984

19. Sandberg, S.: 1 homing and synchronizing sequences. In: Broy, M., Jonsson, B.,
Katoen, J.-P., Leucker, M., Pretschner, A. (eds.) Model-Based Testing of Reactive
Systems. LNCS, vol. 3472, pp. 5–33. Springer, Heidelberg (2005). https://doi.org/
10.1007/11498490 2

20. Savitch, W.J.: Relationships between nondeterministic and deterministic tape com-
plexities. J. Comput. Syst. Sci. 4(2), 177–192 (1970). https://doi.org/10.1016/
S0022-0000(70)80006-X

21. Shitov, Y.: An improvement to a recent upper bound for synchronizing words of
finite automata. J. Autom. Lang. Combin. 24(2–4), 367–373 (2019). https://doi.
org/10.25596/jalc-2019-367

22. Volkov, M.V., Kari, J.: Černý’s conjecture and the road colouring problem. In:
Éric Pin, J. (ed.) Handbook of Automata Theory, vol. I, pp. 525–565. European
Mathematical Society Publishing House (2021)

https://doi.org/10.1142/S0129054119400343
https://doi.org/10.1142/S0129054119400343
https://doi.org/10.1016/j.tcs.2016.09.026
https://doi.org/10.1016/j.tcs.2016.09.026
https://doi.org/10.1016/0020-0190(83)90067-4
https://doi.org/10.1007/BF02732984
https://doi.org/10.1007/BF02732984
https://doi.org/10.1007/11498490_2
https://doi.org/10.1007/11498490_2
https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/10.25596/jalc-2019-367
https://doi.org/10.25596/jalc-2019-367

	Reset Complexity and Completely Reachable Automata with Simple Idempotents
	1 Introduction
	2 Some More Notation and Preliminary Results
	3 Completely Reachable Automata
	4 The Structure of Sync-Maximal Automata
	5 Automata with Simple Idempotents
	6 Conclusion
	References

