
State Complexity of Binary Coded
Regular Languages

Viliam Geffert(B), Dominika Palǐśınová, and Alexander Szabari

Department of Computer Science, P. J. Šafárik University,
Jesenná 5, 04154 Košice, Slovakia

{viliam.geffert,alexander.szabari}@upjs.sk,
dominika.palisinova@student.upjs.sk

Abstract. For the given non-unary input alphabet Σ, a maximal pre-
fix code h mapping strings over Σ to binary strings, and an optimal
deterministic finite automaton (DFA) A with n states recognizing a lan-
guage L over Σ, we consider the problem of how many states we need
for an automaton A′ that decides membership in h(L), the binary coded
version of L. Namely, A′ accepts binary inputs belonging to h(L) and
rejects binary inputs belonging to h(LC), where LC is the complement
of L. The outcome on inputs that are not valid binary codes for any string
in Σ∗ can be arbitrary: A′ may accept, reject, or halt in a “don’t care”
state. We show that any optimal deterministic don’t care finite automa-
ton (dcDFA) A′ solving this promise problem uses at most (‖Σ‖ − 1)·n
states but at least n states. We also show that, for each non-unary input
alphabet Σ, there exists a maximal binary prefix code h such that, for
each n ≥ 2 and for each N in range from n to (‖Σ‖−1)·n, there exists a
language L over Σ such that the optimal DFA recognizing L uses exactly
n states and any optimal dcDFA for solving the above promise problem
uses exactly N states. Thus, we have the complete state hierarchy for
deciding membership in the binary coded version of L, with no magic
numbers in between the lower and upper bounds.

Keywords: state complexity · finite automata · don’t care automata ·
prefix codes · promise problems

1 Introduction

One of the earliest results in automata theory is the subset construction [16]:
every n-state nondeterministic finite automaton (NFA) can be replaced by an
equivalent deterministic finite automaton (DFA) using at most 2n states. This
raised later the question of whether it is possible, for a given number n, to find
some N ∈ {n, . . . , 2n} such that there is no optimal DFA with exactly N states,
equivalent to some optimal NFA with exactly n states [10]; such numbers were
named “magic”. The problem was solved in [11], showing that there are no magic
numbers for ternary languages, contrary to the unary languages [5]. Since then,

Supported by the Slovak grant contract VEGA 1/0177/21.

c© IFIP International Federation for Information Processing 2022
Published by Springer Nature Switzerland AG 2022
Y.-S. Han and G. Vaszil (Eds.): DCFS 2022, LNCS 13439, pp. 72–84, 2022.
https://doi.org/10.1007/978-3-031-13257-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13257-5_6&domain=pdf
https://doi.org/10.1007/978-3-031-13257-5_6

Binary Coded Regular Languages 73

the magic numbers were studied for language operations, e.g., in [9], it was shown
that, for the intersection of two languages, given by two DFAs with n and m
states, we have no magic numbers in {1, . . . , n·m}. Such state hierarchies were
studied for other operations as well [4,7,9,11].

From a different starting point, we are going to land in yet another complete
state hierarchy with no magic numbers. Our initial motivation was the fact
that most present-day computers store data in a binary coded form. This raises
the following natural question: given a standard DFA A with n states for a
regular language L over an input alphabet Σ, how many states we need to
recognize h(L), the binary coded version of L? Clearly, the answer depends also
on h : Σ∗→{0, 1}∗, the binary code in use. In most cases, we can work with the
assumption that the code is a homomorphism, such that h(α1) = h(α2) implies
α1 = α2, so that each encoded string can be unambiguously decoded back. Since
it is well known that regular languages are closed under any homomorphism
(not necessarily a code—see e.g. [8, Sect. 4.2.3]), the situation seems clear at
first glance:1 construct an optimal DFA for h(L).

However, if the automaton for h(L) receives only inputs that are valid binary
images of strings in Σ∗, the outcome on inputs that are not valid images can be
quite arbitrary, which allows us to save some states. This brings us to a modified
problem: given a code h : Σ∗→{0, 1}∗ and a standard DFA A with n states for
L ⊆ Σ∗, how many states we need for an automaton A′ that accepts each
β ∈ h(L) and rejects each β ∈ h(LC)? Here LC denotes the complement of L.

This approach is not completely new: in general, we are given a pair of disjoint
languages 〈L⊕,L�〉 over the same alphabet Σ, called a promise problem, and we
decide whether w ∈ L⊕ or w ∈ L� by the use of a don’t care deterministic finite
automaton (dcDFA) which, besides accepting and rejecting states, may also use
neutral or “don’t care” states, otherwise it behaves like a standard DFA (see
e.g. [6,13]). In our settings, L⊕ = h(L) and L� = h(LC), where h : Σ∗→{0, 1}∗ is
a code. We shall concentrate on the most common binary codes used in practice,
that allow decoding by one-way deterministic finite-state transducers in real
time and minimize

∑
a∈Σ |h(a)|, the sum of lengths of codewords. Such codes

are called maximal prefix codes in literature [1,3]. (See Definition 1.)
This paper shows that, for each maximal prefix code h : Σ∗→{0, 1}∗ and

each optimal DFA A with n states recognizing some L over the alphabet Σ,
the binary promise problem 〈h(L), h(LC)〉 can be solved by a dcDFA A′ using
at most (‖Σ‖ − 1)·n states, but at least n states.2 We also show that, for each
non-unary input alphabet Σ, there exists a maximal binary prefix code h such
that, for each n ≥ 2 and each N ∈ {n, . . . , (‖Σ‖ − 1)·n}, there exists a language
L ⊆ Σ∗ such that the optimal DFA recognizing L uses exactly n states and any
optimal dcDFA for solving 〈h(L), h(LC)〉 uses exactly N states.

1 State complexity of homomorphisms depends on the length of the images of symbols
and is somewhat difficult to define in the general case. Perhaps the only existing
related result is the state complexity of projections (that is, homomorphisms map-
ping each symbol either to itself or to ε), which was determined to be 3/4·2n − 1
in [12].

2 Throughout the paper, ‖X‖ denotes the cardinality of the set X.

74 V. Geffert et al.

h h̃

a5 a2

a0 a0

a1

a2

a3

a4 a1

0 0
0 0

0 0
0

0 0

1 1
1

1
1 1

1 1

Fig. 1. Examples of homomorphisms establishing some binary prefix codes. Each homo-
morphism is displayed as a tree in which each leaf represents some ai, a letter of the
original input alphabet; the edges are labeled so that the path from the root to ai

gives the corresponding string h(ai). Internal nodes of the tree are related to prefixes
of strings in {h(a) : a ∈ Σ}. The code h (left), defined by h(a0) = 1, h(a1) = 01,
h(a2) = 001, h(a3) = 0001, h(a4) = 00001, and h(a5) = 00000, is maximal, while the
code h̃ (right), with h̃(a0) = 1, h̃(a1) = 00011, and h̃(a2) = 00010, is not—it can be
extended, e.g., by defining h̃(a3) = 01.

2 Preliminaries

Here we shall fix some basic definitions, notation, and preliminary properties.
For more details, we refer the reader to [6,8], or any other standard textbooks.

Definition 1. A homomorphism between strings over two alphabets is a map-
ping h : Σ∗

1→Σ∗
2 preserving concatenation, i.e., h(α1·α2) = h(α1)·h(α2), for each

α1, α2 ∈ Σ∗
1 . The image of a language L ⊆ Σ∗

1 is h(L) = {h(α) : α ∈ L} ⊆ Σ∗
2 .

If h(α1) = h(α2) implies that α1 = α2, then h is called a code.
h is a prefix code, if no string in h(Σ1) = {h(a) : a ∈ Σ1} is a proper prefix

of another one. The code h is maximal, if there is no other code h′ : Σ′
1
∗ →Σ∗

2

(for some Σ′
1 ⊇ Σ1) such that h′(Σ′

1) is a proper superset of h(Σ1).

Each homomorphism h is completely determined by the strings in h(Σ1), since
h(a1· · ·a�) = h(a1)· · ·h(a�), for each a1, . . . , a� ∈ Σ1. In addition, if h is a code,
each β ∈ h(Σ∗

1) has a unique factorization into β = β1· · ·β�, where � ≥ 0 and
β1, . . . , β� ∈ h(Σ1). For examples of codes, see Fig. 1.

Prefix codes allow easy decoding by a one-way deterministic finite-state
machine such that, for the given β ∈ h(Σ∗

1), it computes the factorization of β
into h(a1)· · ·h(a�) and prints a1· · ·a� on the output in real time [1, Prop. 5.1.6].

Maximal codes minimize
∑

a∈Σ |h(a)| and do not have “gaps” in images: each
β ∈ Σ∗

2 can be extended to an image of some α ∈ Σ∗
1 , that is, to β·β′ = h(α),

for some β′ ∈ Σ∗
2 and some α ∈ Σ∗

1 , not excluding β′ = ε.
Since we shall deal with binary codes only, we are going to simplify notation

and write Σ instead of Σ1 and fix Σ2 = {0, 1}.

Definition 2. A don’t care deterministic finite automaton (dcDFA) is a 6-tuple
A = 〈Q,Σ, qI, f, F ⊕, F �〉, in which Q is a finite set of states; Σ is a finite input
alphabet; qI ∈ Q is the initial state; f : Q × Σ → Q is a transition function;
F ⊕ ⊆ Q is the set of accepting states; and F � ⊆ Q the set of rejecting states,
F ⊕ ∩ F � = Ø. The remaining states are called neutral or “don’t care” states.

Binary Coded Regular Languages 75

A (standard) deterministic finite automaton (DFA) is a 5-tuple A =
〈Q,Σ, qI, f, F 〉, with F ⊆ Q denoting the set of accepting states and Q\F the set
of rejecting states; the remaining components have the same meaning as above.

The transition function f can be extended to f∗ : Q × Σ∗ → Q in a natural
way, taking by definition f∗(q, ε) = q and f∗(q, αa) = f(f∗(q, α), a), for each
q ∈ Q, α ∈ Σ∗, and a ∈ Σ. To simplify notation, f∗(q, α) = q′ shall sometimes
be displayed in a more compact form q α−→ q′.

A promise problem (see e.g. [6]) is a pair of disjoint languages 〈L⊕,L�〉 over
the same alphabet Σ. The promise problem is solved by a dcDFA A, if A accepts
each w ∈ L⊕ (that is, f∗(qI, w) ∈ F ⊕) and rejects each w ∈ L� (f∗(qI, w) ∈ F �).
We do not have to worry about the outcome on inputs belonging neither to L⊕

nor to L�: on such inputs, A may accept, reject, or halt in a neutral state.
A is optimal for 〈L⊕,L�〉, if it solves 〈L⊕,L�〉 and there is no dcDFA A′

that solves 〈L⊕,L�〉 with fewer states than does A.
If L⊕ ∪ L� = Σ∗, then A has no neutral reachable states and can be viewed

as a standard DFA; we have the standard language recognition and say that
L⊕ is recognized by A. The language L⊕ is then usually denoted by L(A) and its
complement L� by L(A)C. In this case, the concept of optimal dcDFA coincide
with the concept of minimal DFA for L⊕.

Note that if a promise problem 〈L⊕,L�〉 can be solved by a dcDFA A with
n states, it can also be solved by a standard dcDFA A′ with n states, none of
which is neutral: any neutral state could be set as accepting or rejecting, without
affecting 〈L⊕,L�〉. This leaves us some degree of freedom, leading to different
machines. Namely, if A uses k neutral reachable states, we obtain 2k different
automata solving the same promise problem, all of them of size at most n.
These automata do not agree in acceptance/rejection on inputs not belonging to
L⊕ ∪ L�. Thus, the given dcDFA can also be viewed as a more concise template
representing these 2k DFAs.

This is related to the following separation problem: given DFAs A⊕ and A�

for two disjoint languages L⊕ and L�, find a DFA A′ with minimal number
of states, such that L⊕ ⊆ L(A′) and L� ⊆ L(A′)C. In general, this problem
is NP-complete [13, Thm. 9]. This was shown by a simple application of NP-
completeness for a slightly different computational model (in which some tran-
sitions f(q, a) may be undefined), presented in [14,15].

The next theorem will play the same role for don’t care automata as the
fooling set technique [2] for standard automata:

Theorem 1. Let L⊕, L� be two disjoint languages over the same alphabet Σ.
Suppose there exist m-tuple X = 〈xe〉m

e=1 and
(
m
2

)
-tuple Y = 〈ye,ẽ〉m

e,ẽ=1, e<ẽ

consisting of strings in Σ∗ such that, for each e, ẽ ∈ {1, . . . ,m}, e < ẽ,

(I) both xe·ye,ẽ and xẽ·ye,ẽ are in L⊕ ∪ L�,
(II) xe·ye,ẽ ∈ L⊕ if and only if xẽ·ye,ẽ ∈ L�.

Then any dcDFA solving the promise problem 〈L⊕,L�〉 uses at least m states.

76 V. Geffert et al.

Proof. Let A = 〈Q,Σ, qI, f, F ⊕, F �〉, satisfying F ⊕ ∩ F � = Ø , be an arbitrary
dcDFA for solving 〈L⊕,L�〉. Suppose that A uses less than m states.

Now, for the given m-tuple X = 〈x1, x2, . . . , xm〉, let q1, q2, . . . , qm denote
the respective states reached by A on these inputs, that is, qI

xe−→ qe, for each
e ∈ {1, . . . ,m}. But then, using a pigeonhole argument, some state must be
repeated, i.e., we have qe = qẽ, for some 1 ≤ e < ẽ ≤ m. This implies that the
computations on inputs xe·ye,ẽ and xẽ·ye,ẽ must end in the same state, denoted
here by r. That is, we have the following computations: qI

xe−→ qe
ye,ẽ−−−−→ r and

qI
xẽ−→ qẽ = qe

ye,ẽ−−−−→ r. There are now two possibilities:
First, let xe·ye,ẽ ∈ L⊕. Then, using (II), we also have that xẽ·ye,ẽ ∈ L�. This

implies that the computation on xe·ye,ẽ ends in r ∈ F ⊕ and, at the same time,
the computation on xẽ·ye,ẽ in r ∈ F �. But this is a contradiction: F ⊕ ∩F � = Ø .

Second, let xe·ye,ẽ /∈ L⊕. Then, using (II), we have xẽ·ye,ẽ /∈ L�. Now, by (I),
we see that xe·ye,ẽ ∈ L� and xẽ·ye,ẽ ∈ L⊕. This leads to the same kind of
contradiction as above, swapping the roles of xe·ye,ẽ and xẽ·ye,ẽ. �

Note that, apart from providing the lower bound on the number of states,
the statement of the above theorem does not deal with states in any dcDFA
solving 〈L⊕,L�〉 but, rather, with strings in Σ∗. However, if there does exist
a dcDFA A with m states for 〈L⊕,L�〉, that is, if the lower bound provided
by Theorem 1 matches the upper bound, then one can establish a one-to-one
correspondence between states in A and strings in X = 〈x1, x2, . . . , xm〉, with
Y = 〈ye,ẽ〉m

e,ẽ=1, e<ẽ giving the pairwise distinguishability of states in A. The
standard fooling set technique (for DFAs) uses ye,ẽ1 = ye,ẽ2 = . . . , with the
condition (I) satisfied automatically.

3 Upper and Lower Bounds

We are now going to show that (‖Σ‖ − 1)·n states are sufficient but n states
necessary for a dcDFA that decides whether the given binary input is in h(L) or
in h(LC), that is, for a dcDFA solving 〈h(L), h(LC)〉, the binary promise-problem
version of L. Here h : Σ∗→{0, 1}∗ is a maximal prefix code and A is an optimal
DFA with n states, recognizing a language L over a non-unary alphabet Σ.

For the given code h, let us begin by fixing some additional notation for the
images of letters and proper prefixes:

H = {h(a) : a ∈ Σ},
P = {π : π·β ∈ H, for some β ∈ {0, 1}+}.

(1)

Recall that h is a maximal prefix code. Thus, P includes the empty string ε, but
no string from H. Next, if π ∈ P , then π·0, π·1 ∈ P ∪ H (see also Fig. 1). The
next two theorems provide the upper and lower bounds.

Theorem 2. Let h : Σ∗→{0, 1}∗ be a maximal binary prefix code and let L be a
language over the non-unary alphabet Σ. Then, if L can be recognized by a DFA
A = 〈Q,Σ, qI, f, F 〉 with n states, the binary promise problem 〈h(L), h(LC)〉 can
be solved by a dcDFA A′ with at most n′ ≤ (‖Σ‖ − 1)·n states.

Binary Coded Regular Languages 77

Proof (a sketch). The idea of the construction is to remember q ∈ Q, the current
state of A at the moment when A has read a1· · ·a� ∈ Σ∗, and π ∈ P , the prefix
of a code for the next input symbol a�+1, not completed yet. This leads to
Q′ = Q×P , with q′

I = 〈qI, ε〉, F ⊕ = F×{ε}, and F � = (Q\F)×{ε}. Transitions
in A′ are defined as follows, for each q ∈ Q, π ∈ P , and b ∈ {0, 1}:

(I) f ′(〈q, π〉, b) = 〈q, πb〉, provided that π·b ∈ P ,
(II) f ′(〈q, π〉, b) = 〈f(q, a), ε〉, provided that, for some a ∈ Σ, π·b = h(a) ∈ H.

�
The above construction can be updated so that it works for prefix codes that

are not maximal. Then π ∈ P does not imply that π·b is in P ∪H. In such cases,
we can define f ′(〈q, π〉, b) = q′

E, where q′
E is an additional trap state, in which

we scan the rest of the input—the input can no longer be extended to a string
in h(Σ∗

1) = h(H∗). However, for such codes, ‖P‖ is not bounded by ‖Σ‖ − 1.

Theorem 3. Let h : Σ∗→{0, 1}∗ be a binary prefix code (not necessarily maxi-
mal) and let L be a language over the alphabet Σ (not necessarily non-unary).
Then, if the binary promise problem 〈h(L), h(LC)〉 can be solved by a dcDFA
A′ = 〈Q′, {0, 1}, q′

I, f
′, F ⊕, F �〉 with n′ states, the language L can be recognized

by a standard DFA A = 〈Q,Σ, qI, f, F 〉 with at most n ≤ n′ states.

Proof. If, for some q, q′ ∈ Q′ and a ∈ Σ, the original A′ has a path beginning
in q, ending in q′, and reading from the input the string h(a) ∈ H (introduced
by (1)), we shall add the transition q a−→ q′ to A. Recall that A′ is deterministic
and h(a) = b1· · ·bm is unique for each a ∈ Σ. But then q′ = f ′∗(q, h(a)) is also
unique for each q ∈ Q′ and each a ∈ Σ, and hence A will be deterministic.

In addition, we can restrict the set of finite control states in A to states that
can be reached from q′

I by reading some β ∈ h(Σ∗) = H∗, that is, to

R = {f ′∗(q′
I, β) : β ∈ H∗}. (2)

Thus, Q = R, qI = q′
I, and F = R ∩ F ⊕. Clearly, R ⊆ F ⊕ ∪ F �, since no A′

solving 〈h(L), h(LC)〉 halts in a neutral state on any h(α) ∈ h(Σ∗). Finally, let

f(q, a) = f ′∗(q, h(a)), for each q ∈ R and each a ∈ Σ.

It is easy to see, for each q, q′ ∈ R and each a ∈ Σ, that A has a transition
from q to q′ reading the symbol a ∈ Σ if and only if A′ has a path connecting
the same states and reading the string h(a) ∈ H. By a straightforward induction
on the length of α ∈ Σ∗, we have q α−→ q′ in A if and only if q h(α)−−−−→ q′ in A′.

Thus, if α ∈ L, then h(α) ∈ h(L) must be accepted by dcDFA A′, which
gives q′

I
h(α)−−−−→ q′ for some q′ ∈ F ⊕. Moreover, since h(α) ∈ H∗, q′ must also

belong to R. But then, for A, we have qI = q′
I

α−→ q′ with q′ ∈ R ∩ F ⊕ = F , and
hence α is accepted by A. Similarly, if α /∈ L, then A′ has a path q′

I
h(α)−−−−→ q′

ending in q′ ∈ R ∩ F �. For A, this gives qI = q′
I

α−→ q′ ending in q′ ∈ R\F ⊕ =
R\(R ∩ F ⊕) = Q\F , and hence α is rejected by A.

Summing up, A is a standard DFA recognizing L, with n ≤ n′ states. �

78 V. Geffert et al.

By combining Theorems 2 and 3, we get:

Theorem 4. Let h : Σ∗→{0, 1}∗ be a maximal binary prefix code and let L be a
language over the non-unary alphabet Σ. Then, if the optimal DFA A recogniz-
ing L uses n states, any optimal dcDFA A′ solving the binary promise problem
〈h(L), h(LC)〉 uses at least n states and at most (‖Σ‖ − 1)·n states.

Proof. The upper bound is a direct consequence of Theorem 2: this theorem
does not necessarily produce a dcDFA that is optimal, however, it does guarantee
(‖Σ‖−1)·n states for A′. The lower bound follows from Theorem 3: suppose that
〈h(L), h(LC)〉 can be solved by A′ with n′ < n states. But then, by this theorem,
we could obtain a standard DFA recognizing L with fewer states than n, which
is a contradiction, since A is optimal. �

4 The Hierarchy

We are now ready to establish the complete state hierarchy and provide a witness
language for each N between n and (‖Σ‖ − 1)·n. First, for the given

Σ = {a0, a1, . . . , ad}, where d = ‖Σ‖ − 1 ≥ 2,

define a maximal binary prefix code hΣ : Σ∗→{0, 1}∗ as follows:

hΣ(aj) = 0j1, for j ∈ {0, . . . , d − 1},
hΣ(ad) = 0d.

(3)

Second, for the given Σ and any given

n ≥ 2, g ∈ {0, . . . , n}, k ∈ {0, . . . , d − 2}, (4)

define a DFA AΣ,n,g,k = 〈Q,Σ, qI, f, F 〉 with the state set Q = {0, . . . , n − 1},
qI = 0, F = {0}, and the following transitions:

f(i, a) = (i + 1) mod n, if i < g and a ∈ Σ,
f(g, a) = (g + 1) mod n, if g ≤ n − 2 and a ∈ {a0, . . . , ak} ∪ {ad},

= (g + 2) mod n, if g ≤ n − 2 and a ∈ {ak+1, . . . , ad−1},
f(i, a) = (i + 1) mod n, if i > g and a ∈ Σ\{ad},

= i, if i > g and a = ad.

(5)

There are two special cases. The first one is g = n − 1, with no states i ∈ Q
satisfying i > g. Moreover, this case differs in one value, namely, in f(g, ad):

f(g, a) = (g + 1) mod n = 0, if g = n − 1 and a ∈ {a0, . . . , ak},
= (g + 2) mod n = 1, if g = n − 1 and a ∈ {ak+1, . . . , ad}.

(6)

The second special case is g = n, with no states i ∈ Q satisfying i > g or i = g.
Thus, the condition i < g is satisfied automatically for each i ∈ Q, which reduces
(5)–(6) above to f(i, a) = (i + 1) mod n for each i ∈ Q and each a ∈ Σ.

Binary Coded Regular Languages 79

Fig. 2. Examples of a DFA AΣ,n,g,k (bottom) and the corresponding dcDFA A′
Σ,n,g,k

(top), if Σ = {a0, . . . , a5}, d = 5, n = 7, g = 3, and k = 2. Accepting states are tagged
by “+”, rejecting states by “−”, and neutral don’t care states by no sign. To simplify
notation for A′

Σ,n,g,k, the ordered pairs “〈i, j〉” are displayed here in the form “ij”.

Examples of hΣ, AΣ,n,g,k, and subsequent A′
Σ,n,g,k are displayed in

Fig. 1 (left), Fig. 2 (bottom), and Fig. 2 (top), respectively, for d = 5, n = 7,
g = 3, and k = 2. The special case of g = n − 1 is illustrated by Fig. 3.

Finally, for the given Σ,n, g, k satisfying (4), consider a dcDFA A′
Σ,n,g,k =

〈Q′, {0, 1}, q′
I, f

′, F ⊕, F �〉, not constructed for AΣ,n,g,k by the use of Theorem 2,
but defined as follows. First, let Q′ = Q0 ∪ . . . ∪ Qn−1, where

Qi = {〈i, 0〉, . . . , 〈i, d − 1〉}, for i ∈ {0, . . . , g − 1},
Qg = {〈g, 0〉, . . . , 〈g, k〉},
Qi = {〈i, 0〉}, for i ∈ {g + 1, . . . , n − 1}.

(7)

There are no sections Qi with i > g, if g = n − 1, and no section Qg, if g = n,
in accordance with the two special cases for AΣ,n,g,k.

Now, let q′
I = 〈0, 0〉, F ⊕ = {〈0, 0〉}, and F � = {〈1, 0〉, 〈2, 0〉, . . . , 〈n − 1, 0〉}.

Transitions are defined as follows:

f ′(〈i, j〉, 1) = 〈(i + 1) mod n, 0〉, for each 〈i, j〉 ∈ Q′,
f ′(〈i, j〉, 0) = 〈i, j + 1〉, if i < g and j < d − 1,

= 〈(i + 1) mod n, 0〉, if i < g and j = d − 1,
f ′(〈g, j〉, 0) = 〈g, j + 1〉, if j < k,

= 〈(g + 1) mod n, 0〉 = 〈g + 1, 0〉, if g ≤ n − 2 and j = k,
= 〈(g + 1) mod n, j + 1〉 = 〈0, k + 1〉, if g = n − 1 and j = k,

f ′(〈i, 0〉, 0) = 〈i, 0〉, if i > g.

(8)

Note that also here the case of g = n − 1 is different. (See also Fig. 3).

Lemma 1. Let hΣ, AΣ,n,g,k, and A′
Σ,n,g,k be the binary code, DFA, and

dcDFA defined above. Then A′
Σ,n,g,k solves the binary promise problem

〈hΣ(L(AΣ,n,g,k)), hΣ(L(AΣ,n,g,k)C)〉.

80 V. Geffert et al.

Fig. 3. Examples of AΣ,n,g,k and A′
Σ,n,g,k for the special case of g = n − 1, namely,

for Σ = {a0, . . . , a5}, d = 5, n = 7, g = n − 1 = 6, and k = 2 (graph rotated, so that
the state g = n − 1 is not displayed at the right end).

Proof. First, it is not too hard to see that if AΣ,n,g,k has a transition i a−→ i′,
then A′

Σ,n,g,k has the corresponding computation path 〈i, 0〉 hΣ(a)−−−−→〈i′, 0〉. This
can be shown by consulting (3) and by comparing all transitions presented by
(5), (6), and (8), for each i ∈ Q and each a ∈ Σ:

– f(i, a) = (i + 1) mod n, if i < g and a ∈ Σ (which covers the case of g = n):
• 〈i, 0〉 0j−→〈i, j〉 1−→〈(i+1) mod n, 0〉, for hΣ(a) = 0j1, j ∈ {0, . . . , d−1},
• 〈i, 0〉 0d−1−−−−→〈i, d − 1〉 0−→〈(i + 1) mod n, 0〉, for hΣ(a) = 0d.

– f(g, a) = (g + 1) mod n, if g ≤ n − 2 and a ∈ {a0, . . . , ak} ∪ {ad}:
• 〈g, 0〉 0j−→〈g, j〉 1−→ 〈(g + 1) mod n, 0〉, for hΣ(a) = 0j1, j ∈ {0, . . . , k},
• 〈g, 0〉 0k−→〈g, k〉 0−→ 〈g + 1, 0〉 0d−k−1−−−−→ 〈g + 1, 0〉 = 〈(g + 1) mod n, 0〉,

for hΣ(a) = 0d.
– f(g, a) = (g + 2) mod n, if g ≤ n − 2 and a ∈ {ak+1, . . . , ad−1}:

• 〈g, 0〉 0k−→〈g, k〉 0−→ 〈g + 1, 0〉 0j−k−1−−−−→ 〈g + 1, 0〉 1−→〈(g + 2) mod n, 0〉,
for hΣ(a) = 0j1, j ∈ {k + 1, . . . , d − 1}.

– f(i, a) = (i + 1) mod n, if i > g and a ∈ Σ\{ad}:
• 〈i, 0〉 0j−→〈i, 0〉 1−→〈(i+1) mod n, 0〉, for hΣ(a) = 0j1, j ∈ {0, . . . , d−1}.

– f(i, a) = i, if i > g and a = ad:
• 〈i, 0〉 0d−→〈i, 0〉, for hΣ(a) = 0d.

The same can be seen for different transitions in the case of g = n − 1:

– f(g, a) = (g + 1) mod n = 0, if g = n − 1 and a ∈ {a0, . . . , ak}:
• 〈g, 0〉 0j−→〈g, j〉 1−→ 〈(g + 1) mod n, 0〉, for hΣ(a) = 0j1, j ∈ {0, . . . , k}.

– f(g, a) = (g + 2) mod n = 1, if g = n − 1 and a ∈ {ak+1, . . . , ad}:
• 〈g, 0〉 0k−→〈g, k〉 0−→ 〈0, k+1〉 0j−k−1−−−−→ 〈0, j〉 1−→ 〈1, 0〉 = 〈(g+2) mod n, 0〉,

for hΣ(a) = 0j1, j ∈ {k + 1, . . . , d − 1},
• 〈g, 0〉 0k−→〈g, k〉 0−→ 〈0, k + 1〉 0d−k−2−−−−→ 〈0, d − 1〉 0−→〈1, 0〉 =

〈(g + 2) mod n, 0〉, for hΣ(a) = 0d.

Binary Coded Regular Languages 81

Now, by induction on the length of α = ai1· · ·ai�
∈ Σ∗, we easily obtain

that the computation path i α−→ i′ in AΣ,n,g,k implies the existence of the corre-
sponding path 〈i, 0〉 hΣ(α)−−−−→〈i′, 0〉 for A′

Σ,n,g,k, for each i, i′ ∈ Q and each α ∈ Σ.
Thus, if AΣ,n,g,k has a path qI = 0 α−→ 0 ∈ F , then A′

Σ,n,g,k has the cor-
responding path q′

I = 〈0, 0〉 hΣ(α)−−−−→ 〈0, 0〉 ∈ F ⊕, and hence hΣ(α) is accepted
by A′

Σ,n,g,k, if α ∈ L(AΣ,n,g,k). On the other hand, if this path in AΣ,n,g,k halts
in some i′ �= 0, that is, in some i′ ∈ Q\F , the corresponding path in A′

Σ,n,g,k will
halt in 〈i′, 0〉 ∈ F �, and hence hΣ(α) is rejected by A′

Σ,n,g,k, if α ∈ L(AΣ,n,g,k)C.
Therefore, A′

Σ,n,g,k is a valid dcDFA for solving the binary promise problem
〈hΣ(L(AΣ,n,g,k)), hΣ(L(AΣ,n,g,k)C)〉. �

A′
Σ,n,g,k uses fewer states than dcDFA obtained by the use of Theorem 2,

but it may accept/reject some binary inputs that are not images of any α ∈ Σ∗.
That is, it does not necessarily halt in a neutral state on such inputs.

Lemma 2. Let AΣ,n,g,k be the DFA defined above. Then AΣ,n,g,k is optimal and
uses exactly n states.

Proof. Using (5) and (6), we see that f(i, a0) = (i + 1) mod n, for each i ∈ Q =
{0, . . . , n−1}, not excluding the special cases of g = n−1 or g = n. Since qI = 0
and F = {0}, ae

0 ∈ L(AΣ,n,g,k) if and only if e is an integer multiple of n.
This implies that AΣ,n,g,k cannot be replaced by an equivalent DFA

using fewer states: such DFA would accept an
0 by a computation path

r0
a0−→ r1

a0−→ r2
a0−→ · · · a0−→ rn along which some state would be repeated,

which gives a valid accepting computation path for some ae
0 with 0 < e < n, a

contradiction. �
Lemma 3. Let hΣ, AΣ,n,g,k, and A′

Σ,n,g,k be the binary code, DFA, and dcDFA
defined above. Then A′

Σ,n,g,k is optimal for solving the binary promise problem
〈hΣ(L(AΣ,n,g,k)), hΣ(L(AΣ,n,g,k)C)〉 and uses exactly m = (‖Σ‖ − 1)·g + (k +
1)+(n−g −1) states, if g ≤ n−1, but exactly m = (‖Σ‖−1)·n states, if g = n.

Proof. By Lemma 1, A′
Σ,n,g,k solves the given promise problem and, by (7), it

uses m = d·g+(k+1)+(n−g−1) states, if g ≤ n−1. For g = n, all sections Qi

are of equal size d in (7), which gives m = d·n. Since d = ‖Σ‖ − 1, the upper
bound for m = ‖Q′‖ follows.

We only have to show that this bound cannot be reduced. Let 〈i, j〉, 〈̃ı, j̃〉
represent two arbitrary—but different—states in Q′, that is, either i < ı̃, or
i = ı̃ but j < j̃. For i = ı̃ we have two subcases, depending on whether i < g or
i = g. (There are no pairs of different states with i = ı̃ > g; this condition implies
j = j̃ = 0, by (7). We do not consider i > ı̃, or i = ı̃ with j > j̃ either—the roles
of 〈i, j〉, 〈̃ı, j̃〉 can be swapped). Let us now define the following binary strings:

x〈i,j〉 = 1i·0j , for each 〈i, j〉 ∈ Q′,
y〈i,j〉〈ı̃,j̃〉 = 1·1n−i−1, if 0 ≤ i < ı̃ ≤ n − 1,
y〈i,j〉〈i,j̃〉 = 0d−j̃1·1n−i−1, if 0 ≤ i < g and 0 ≤ j < j̃ ≤ d − 1,
y〈g,j〉〈g,j̃〉 = 0k+1−j̃1·1n−g−1, if g ≤ n − 1 and 0 ≤ j < j̃ ≤ k.

(9)

82 V. Geffert et al.

It can be seen from (8) that each state 〈i, j〉 ∈ Q′ is reached by reading x〈i,j〉
from the input: q′

I = 〈0, 0〉 1i−→〈i mod n, 0〉 = 〈i, 0〉 0j−→〈i, j〉.
If g = n − 1, we get y〈g,j〉〈g,j̃〉 = 0k+1−j̃1, if g = n, we do not define y〈g,j〉〈g,j̃〉.
We are now going to show that (i) both x〈i,j〉·y〈i,j〉〈ı̃,j̃〉 and x〈ı̃,j̃〉·y〈i,j〉〈ı̃,j̃〉 are

valid binary images of some strings in Σ∗, i.e., both of them are in hΣ(Σ∗), and
that (ii) the computation of A′

Σ,n,g,k on x〈i,j〉·y〈i,j〉〈ı̃,j̃〉 starts in q′
I = 〈0, 0〉 and

ends in 〈0, 0〉 ∈ F ⊕, while the computation on x〈ı̃,j̃〉·y〈i,j〉〈ı̃,j̃〉 starts in q′
I = 〈0, 0〉

and ends in some 〈i′, 0〉 ∈ F �, with i′ �= 0. Taking into account (i), this gives that
x〈i,j〉·y〈i,j〉〈ı̃,j̃〉 ∈ hΣ(L(AΣ,n,g,k)) and x〈ı̃,j̃〉·y〈i,j〉〈ı̃,j̃〉 ∈ hΣ(L(AΣ,n,g,k)C). These
statements can be shown by analyzing all cases, using (9), (3), and (8) (see also
Figs. 2 and 3):

– If 0 ≤ i < ı̃ ≤ n − 1, and hence 0 < ı̃ − i ≤ n − 1, with j, j̃ ∈ {0, . . . , d − 1}:
• x〈i,j〉·y〈i,j〉〈ı̃,j̃〉 = 1i·0j ·1·1n−i−1 = hΣ(ai

0·aj ·an−i−1
0),

〈0, 0〉 1i0j−→〈i, j〉 1−→〈(i + 1) mod n, 0〉 1n−i−1−−−−→ 〈0, 0〉,
• x〈ı̃,j̃〉·y〈i,j〉〈ı̃,j̃〉 = 1ı̃·0j̃·1·1n−i−1 = hΣ(aı̃

0·aj̃·an−i−1
0),

〈0, 0〉 1ı̃0j̃−→ 〈̃ı, j̃〉 1−→ 〈(̃ı + 1) mod n, 0〉 1n−i−1−−−−→ 〈̃ı − i, 0〉 �= 〈0, 0〉.
– If 0 ≤ i < g and 0 ≤ j < j̃ ≤ d − 1, and hence 1 ≤ j + d − j̃ ≤ d − 1:

• x〈i,j〉·y〈i,j〉〈i,j̃〉 = 1i·0j ·0d−j̃1·1n−i−1 = hΣ(ai
0·aj+d−j̃·an−i−1

0),
〈0, 0〉 1i0j−→〈i, j〉 0d−j̃−−−−→〈i, j + d − j̃〉 1−→〈(i + 1) mod n, 0〉 1n−i−1−−−−→ 〈0, 0〉,

• x〈i,j̃〉·y〈i,j〉〈i,j̃〉 = 1i·0j̃·0d−j̃1·1n−i−1 = hΣ(ai
0·ad·an−i

0),
〈0, 0〉 1i0j̃−→〈i, j̃〉 0d−1−j̃−−−−→〈i, d − 1〉 0−→〈(i + 1) mod n, 0〉 1n−i−−−−→ 〈1, 0〉.

– If g ≤ n − 1 and 0 ≤ j < j̃ ≤ k, and hence 1 ≤ j + k + 1 − j̃ ≤ k:
• x〈g,j〉·y〈g,j〉〈g,j̃〉 = 1g·0j ·0k+1−j̃1·1n−g−1 = hΣ(ag

0·aj+k+1−j̃·an−g−1
0),

〈0, 0〉 1g0j−→〈g, j〉 0k+1−j̃−−−−→〈g, j+k+1−j̃〉 1−→〈(g+1) mod n, 0〉 1n−g−1−−−−→ 〈0, 0〉,
• x〈g,j̃〉·y〈g,j〉〈g,j̃〉 = 1g·0j̃·0k+1−j̃1·1n−g−1 = hΣ(ag

0·ak+1·an−g−1
0),

〈0, 0〉 1g0j̃−→〈g, j̃〉 0k−j̃−−−−→〈g, k〉, with two different ways to continue:
if g ≤ n − 2, then 〈g, k〉 0−→〈g + 1, 0〉 1n−g−−−−→〈(n + 1) mod n, 0〉 = 〈1, 0〉,
if g = n − 1, then 〈g, k〉 0−→〈0, k + 1〉 1n−g−−−−→ 〈(n − g) mod n, 0〉 = 〈1, 0〉.

Summing up, we have constructed m-tuple X = 〈x〈i,j〉〉〈i,j〉∈Q′ and
(
m
2

)
-tuple

Y = 〈y〈i,j〉〈ı̃,j̃〉〉〈i,j〉,〈ı̃,j̃〉∈Q′, 〈i,j〉�=〈ı̃,j̃〉, where m = ‖Q′‖, consisting of binary strings
such that, for each pair 〈i, j〉 �= 〈̃ı, j̃〉,
– both x〈i,j〉·y〈i,j〉〈ı̃,j̃〉 and x〈ı̃,j̃〉·y〈i,j〉〈ı̃,j̃〉 are in

hΣ(Σ∗) = hΣ(L(AΣ,n,g,k)) ∪ hΣ(L(AΣ,n,g,k)C),
– x〈i,j〉·y〈i,j〉〈ı̃,j̃〉 ∈ hΣ(L(AΣ,n,g,k)) and x〈ı̃,j̃〉·y〈i,j〉〈ı̃,j̃〉 ∈ hΣ(L(AΣ,n,g,k)C).

But then, by Theorem 1, any dcDFA solving the binary promise problem
〈hΣ(L(AΣ,n,g,k)), hΣ(L(AΣ,n,g,k)C)〉 must use at least m = ‖Q′‖ states, which
gives that A′

Σ,n,g,k is optimal. �
Theorem 5. For each non-unary input alphabet Σ, there exists a maximal
binary prefix code h : Σ∗→{0, 1}∗ such that, for each n ≥ 2 and each value
N ∈ {n, . . . , (‖Σ‖ − 1)·n}, there exists a language L ⊆ Σ∗ such that the opti-
mal DFA recognizing L uses exactly n states and any optimal dcDFA for solving
〈h(L), h(LC)〉, the binary promise-problem version of L, uses exactly N states.

Binary Coded Regular Languages 83

Proof. Let us handle the pathological case of Σ = {a0, a1} first. There are only
two maximal prefix codes in this case, both of them are bijections from {a0, a1}
to {0, 1}, and none of them can change the state complexity of any language.
This corresponds to the fact that here N ∈ {n, . . . , (‖Σ‖ − 1)·n} = {n}.

Now, for the given Σ, with ‖Σ‖ ≥ 3, let us fix h = hΣ, as introduced by (3).
Next, the witness language L depends on Σ and on the given values n and N :

First, if N ≤ (‖Σ‖ − 1)·n − 1 = d·n − 1, we can take L = L(AΣ,n,g,k), using
the following parameters:

g = �(N − n)/(d − 1)�, k = (N − n) mod (d − 1).

Clearly, g ≤ �(d·n − 1 − n)/(d − 1)� = �n − 1
d−1� = n − 1 and k ≤ d − 2. By

Lemma 2, AΣ,n,g,k is the optimal DFA for recognizing L, using exactly n states.
Similarly, by Lemma 3, A′

Σ,n,g,k is optimal dcDFA for solving 〈hΣ(L), hΣ(LC)〉
and uses exactly m = d·g + (k + 1) + (n − g − 1) states. This gives m =
d·g + (k + 1) + (n − g − 1) = (d − 1)·g + k + n = (d−1)·�(N − n)/(d − 1)� +
(N − n) mod (d − 1) + n = (N − n) + n = N states, using the fact that
a·�b/a� + b mod a = b.

Second, if N = (‖Σ‖ − 1)·n, take L = L(AΣ,n,g,k) with g = n and k = 0.
(Here AΣ,n,g,k does not actually depend on k.) Again, by Lemma 2, AΣ,n,g,k is
optimal and uses exactly n states and, by Lemma 3, A′

Σ,n,g,k is optimal for
solving 〈hΣ(L), hΣ(LC)〉, this time with exactly m = (‖Σ‖ − 1)·n = N states. �

5 Concluding Remarks

By a more careful analysis of the construction in Theorem 3, we see that it does
not increase the number of accepting or rejecting states. As a direct consequence,
if the optimal DFA A recognizing L uses n⊕ accepting and n� rejecting states
(neither of these values can be reduced, since the optimal A is unique), then any
optimal dcDFA A′ solving the binary promise problem 〈h(L), h(LC)〉 must use
at least n⊕ accepting and at least n� rejecting states. But all states in A′ that
cannot be reached from q′

I by reading some β ∈ h(Σ∗) can be made neutral (see
also (2) in the proof of Theorem 3). This will only change acceptance/rejection
to “don’t care” answers on some inputs not belonging to h(Σ∗).

This allows to establish some kind of pseudo-isomorphism between A and A′.
(Proof omitted here due to space constraints, to appear in a journal version.)
Namely, there exists a bijective function t : Q→F ⊕∪F � that maps qI to q′

I,
F to F ⊕, and Q\F to F �, preserving the machine’s transitions, i.e., t(f(q, a)) =
f ′∗(t(q), h(a)), for each q ∈ Q and a ∈ Σ. However, such pseudo-isomorphism
does not exclude, for some transition q a−→ q′ in A, passing through some state
t(q′′) ∈ F ⊕∪F � along the corresponding path t(q) h(a)−−−−→ t(q′) in A′—even more
than once in the meantime.3

3 This phenomenon can be seen in Fig. 2, where we have “3” a4−→ “5” for AΣ,n,g,k.
Since h(a4) = “00001”, this corresponds to t(“3”) = “30” 00001−−−−→ “50” = t(“5”) for
A′

Σ,n,g,k, passing twice through t(“4”) = “40”.

84 V. Geffert et al.

There are more open questions in the related area than the known answers.
As an example, we do not know the cost of binary coded intersection; the same
holds for other basic operations with regular languages. It can be expected that
answers may depend also on the code h in use, and we expect some anomalies
for prefix codes that are not maximal.

References

1. Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata. Cambridge University
Press, Cambridge (2010)

2. Birget, J.-C.: Intersection and union of regular languages and state complexity.
Inform. Process. Lett. 43, 185–190 (1992)

3. Bruyère, V.: Maximal codes with bounded deciphering delay. Theoret. Comput.
Sci. 84, 53–76 (1991)

4. Čevorová, K.: Kleene star on unary regular languages. In: Jurgensen, H., Reis,
R. (eds.) DCFS 2013. LNCS, vol. 8031, pp. 277–288. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-39310-5 26

5. Geffert, V.: Magic numbers in the state hierarchy of finite automata. Inform. Com-
put. 205, 1652–1670 (2007)

6. Goldreich, O.: On promise problems: a survey. In: Goldreich, O., Rosenberg, A.L.,
Selman, A.L. (eds.) Theoretical Computer Science. LNCS, vol. 3895, pp. 254–290.
Springer, Heidelberg (2006). https://doi.org/10.1007/11685654 12

7. Holzer, M., Rauch, C.: The range of state complexities of languages resulting from
the cascade product—the unary case (extended abstract). In: Maneth, S. (ed.)
CIAA 2021. LNCS, vol. 12803, pp. 90–101. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-79121-6 8

8. Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, Boston (2001)

9. Hricko, M., Jirásková, G., Szabari, A.: Union and intersection of regular languages
and descriptional complexity. In: Proceedings of Descriptional Complexity of For-
mal Systems, pp. 170–181. IFIP & University, Milano (2005)

10. Iwama, K., Kambayashi, Y., Takaki, K.: Tight bounds on the number of states of
DFA’s that are equivalent to n-state NFA’s. Theoret. Comput. Sci. 237, 485–494
(2000)

11. Jirásková, G.: Magic numbers and ternary alphabet. Internat. J. Found. Comput.
Sci. 22, 331–344 (2011)

12. Jirásková, G., Masopust, T.: On a structural property in the state complexity of
projected regular languages. Theoret. Comput. Sci. 449, 93–105 (2012)

13. Moreira, N., Pighizzini, G., Reis, R.: Optimal state reductions of automata with
partially specified behaviors. Theoret. Comput. Sci. 658, 235–245 (2017)

14. Paull, M.C., Unger, S.H.: Minimizing the number of states in incompletely specified
sequential switching functions. IRE Trans. Electron. Comput. 3, 356–367 (1959)

15. Pfleeger, C.P.: State reduction in incompletely specified finite-state machines. IEEE
Trans. Comput. C–22, 1099–1102 (1973)

16. Rabin, M., Scott, D.: Finite automata and their decision problems. IBM J. Res.
Develop. 3, 114–125 (1959)

https://doi.org/10.1007/978-3-642-39310-5_26
https://doi.org/10.1007/11685654_12
https://doi.org/10.1007/978-3-030-79121-6_8
https://doi.org/10.1007/978-3-030-79121-6_8

	State Complexity of Binary Coded Regular Languages
	1 Introduction
	2 Preliminaries
	3 Upper and Lower Bounds
	4 The Hierarchy
	5 Concluding Remarks
	References

