
Clusters of Repetition Roots Forming
Prefix Chains
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Abstract. We investigate lower bounds on the size of clusters (sets of
starting positions of occurrences) of common prefixes shared by repeti-
tion roots. Such lower bounds in terms of the constituent roots in the sets
provide upper bounds on the number of distinct repetitions. In the case
of distinct square roots which are totally ordered by the prefix relation
it has been shown that there must be more occurrences of the common
prefix than the number of roots. Here we develop the theory further by
presenting the tools to extend the bounds to exponents higher than 2 and
we show that they are optimal in the sense that any sequence of cluster
sizes satisfying the lower bounds can be realized. We also take the next
step towards the bounds on arbitrary (only partially prefix-ordered) sets
of roots by proving a lower bound on unbordered prefixes shared by two
overlapping prefix chains of roots.

1 Introduction

Repetitions in words are one of the most studied topic in word combinatorics [17],
partly due to their various applications in string matching [5], molecular biol-
ogy [11], or text compression [19]. The most basic repetition is xx, where x is a
non-empty string. Such strings are also called, due to the form xx = x2, squares.

A string is said to be square-free or repetition-free if it contains no squares.
Combinatorics on words arguably started with the work of Thue [21,22] who
showed that there exist square-free strings over ternary alphabets and cube-free
ones over two letters. Over two letters, trivially every string of length at least 4
contains a square and it has also been shown that any sufficiently long binary
string must contain at least three distinct squares [9].

A string of length n can have Θ(n2) squares (just take a unary sequence).
If the root x of each square xx must be primitive (not a repetition), one can
still have at most Θ(n log n) squares [5]. When the roots of the squares must be
distinct, then the maximal number becomes linear in the length of the string.
Fraenkel and Simpson proved [10] that the maximum number of distinct squares
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in a string is not more than twice the length of the string and they conjectured
that the bound can be significantly improved:

Conjecture 1. The number of distinct squares in a length n word is less than n.

They also constructed lower bounds which asymptotically match the conjec-
tured upper bound except for a sublinear term. We will use another simple lower
bound construction by Jonoska, Manea and Seki [15] as our starting point for
discussing optimality later on.

There have been several developments in the last 25 years on the topic. Some
alternative and simple proofs of the 2n upper bound were found [12,13], after
which the bound was improved to 2n−Θ(log n) [14]. Deza, Franek and Thierry [6]
proved the best (peer-reviewed) bound as of now, 11n/6, by a deep investigation
of left aligned last occurrences of distinct squares. There was a claim of further
improvement to 3n/2 very recently [20], but it has not appeared in peer-reviewed
publication to the best of our knowledge.

Regarding exponents larger than 2 it was shown [3] that for fixed integers
� > 2, there can be no more than n

�−2 powers of exponent � in a word of length
n. For cubes, that is, � = 3 the bound was improved to 4n/5 [4]. The study of
repetitions of higher fixed exponents was inspired by the importance of counting
runs, i.e., repetitions whose exponent is at least 2 and which cannot be extended
in either direction without increasing the period. The bound on this number was
conjectured to be less than the word’s length [16] (not much after Fraenkel and
Simpson’s square conjecture was published) and recently proved to be so by a
very elegant and simple argument [1].

There were other developments relevant to the question even though they
did not necessarily improve upper bounds. By using square density increasing
mappings it was shown that binary strings can achieve maximum density if the
conjectured upper bound holds [18]. In the case of partial words (strings with
holes) tight upper bounds have been proved depending on the number of holes [2].
Another recent paper [8] proposed a framework to integrate existing results and
facilitate new ones in the analysis of distinguished positions of squares.

Our Contribution. Finally, the basis of our current work proposed another
angle of attack using clusters of repetition roots [7]. The techniques used there
extract global properties of occurrences of repetitions in a word from local ones
and we continue that line of investigation. We group the repetitions by the par-
tial order imposed on their roots by the prefix ordering. All repetitions whose
roots share a common prefix are in one group and our aim is to show that there
are ‘many’ occurrences of this common prefix forced by the occurrences of the
repetitions. We are working toward proving the conjecture on the lower bound
on the number of those prefixes which would imply Fraenkel and Simpson’s. We
will introduce notation and the line of attack in the next section. In Sect. 3 we
generalize the lower bound technique used recently for prefix chains of squares,
to the case of higher exponents. More specifically, we show that if two �-powers
are aligned at the end of their second or further root occurrence, then the shorter
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root must be non-primitive. In our previous work this was used to assign unique
positions to primitively rooted squares, followed by a different assignment proce-
dure for non-primitively rooted ones, so it forms the basis of lower bound results
for prefix chains of repetition roots. Afterwards we discuss the optimality of the
bounds obtained for squares. As opposed to the other bounds mentioned in the
introduction, ours are tight in the sense that for each sequence of cluster sizes sat-
isfying the bounds we can find a word and repetition roots in it which have those
exact cluster sizes. We present a simple construction to achieve those bounds.
We also show that a counting argument of similar flavor can be applied to runs
whose suffixes of length equal to the run’s period form a prefix chain. In Sect. 4
we develop the technique further by designating special occurrences of a shared
unbordered prefix of roots in two overlapping prefix chains. The main result in
that section is a counterpart of the theorem in Sect. 3: alignment of repetitions
at their suitably defined anchor means that the shorter one is non-primitive. The
challenge is that the anchor has to be defined differently in the case of root sets
which are not linearly ordered by the prefix relation. We present a solution in
the case when such a set is the union of two prefix chains with minimal elements
that are unbordered.

2 Preliminaries

A word or string is a concatenation of letters from a finite alphabet Σ. The empty
word ε is the word of length 0. For a word w = xyz, we call x a prefix (denoted
by x ≤p w, or x <p w if x �= w) and z a suffix of w, while each of x, y, z are
called factors of w. The word y is an inside factor of w if neither x nor z are
empty. A factor is proper if it is non-empty and not equal to w. If x = z, then
x is also a border of w. If two words u and v are not comparable by the prefix
relation, we write u <>p v. The longest common prefix of two words u = xau′

and v = xbv′ is lcp(u, v) = x if either au′ or bv′ is empty or otherwise a �= b.
We call p a period of w if the letters repeat every p positions apart in w. The

minimal period is given by the smallest such p. By |w|x we denote the number
of times x occurs as a factor of w (including overlaps).

A repetition represents consecutive concatenations of the same word. An
�-power (�-repetition) represents � such repetitions of the same factor. If a word
is not a repetition, then it is called primitive. Moreover, if w = u� is an �-
repetition we say that u is a root of w, and call u the primitive root of w when
u is primitive.

For a word u and a prefix u′ of u, all words u�u′ with integer exponent � ≥ 0
have period |u|. A word can have multiple periods, e.g., ababa has periods 2
and 4, since ababa = (ab)2a = (abab)1a. While repetitions are defined in terms
of integer powers, rational powers are also possible. Namely, u = tk for some
rational k, if |u| = k|t| and |t| is a period of u. For instance, the word abcabca is
a fractional power of abc since abcabca = (abc)

7
3 . A run is given by the positions

in the word that contain a maximal repetitive factor with period at most half
as long as the length of the factor (a repetition is maximal, if taking a previous
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or following position changes the period). In other words, a run is a factor that
has an exponent at least 2, and which cannot be extended to either left or right.
Finally, by tω we denote the infinite word consisting in consecutive repetitions
of t.

We also recall the following well-known results about primitivity of words
and multiple periods.

Lemma 1. [17] A word w is primitive if and only if it occurs only twice in ww.

Theorem 1 (Fine and Wilf). [17] If a word w has periods p and q and |w| ≥
p + q − gcd(p, q), then gcd(p, q) is also a period of w.

2.1 Clusters of Repetition Roots

In this subsection we introduce clusters of repetition roots and explain the con-
jecture which is the final goal of our study.

When wanting to count all distinct �-powers for a fixed �, we denote by
clustw(u), for each factor u� of w, the set that contains the starting position of
all suffixes having u as a prefix. We will call this set the cluster of u. Clearly, if
an �-repetition u� is a factor of a word, then the cluster of u is of size at least �.
As every word, and therefore every suffix starting with v also has u as prefix
when u <p v, the next observation is straightforward.

Observation 1. For any two factors u and v of a word w, we have u ≤p v ⇔
clustw(v) ⊆ clustw(u) ⇔ clustw(u) ∩ clustw(v) �= ∅ and |u| ≤ |v|.

In this paper we attempt to get closer to the following conjecture, which, if
true, would give a general upper bound for integer exponent distinct repetitions:

Conjecture 2. [7] For any word w, any positive integer � > 1, and any set of
words S = {u1, u2, . . . , un} such that, for all i ∈ {1, . . . , n}, u�

i is a factor of w
and u1 ≤p ui, we have |S| < 1

�−1 |w|u1 .

In the paper proposing the conjecture, it was proved for the case where � = 2
and u1 ≤p · · · ≤p un, that is, S is a set of roots of distinct squares, totally ordered
by the prefix relation. Such a collection of square roots is called a (prefix) chain
and with that, the result can be stated as

Theorem 2. [7] For a word w and a prefix chain S = {u1, u2, . . . , un} of square
roots of w, with ui ≤p ui+1 for all i ∈ {1, . . . , n − 1}, we have |S| < |w|u1 .

In the next section we generalize the results necessary to prove Conjecture 2
for prefix chains of roots in the case of repetitions of arbitrary exponents. Due
to the page limit we do not present the reassignment procedure, which allocates
distinct positions to the non-primitively rooted repetitions. Compared to the
results in [6,10,14,15], the bound in Theorem 2 is different because it is in a
sense optimal, as we will argue at the end of Sect. 3. Furthermore, while the
bounds on distinct repetitions would be direct corollaries of Conjecture 2, the
converse does not hold.
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3 Single Chains

In this section we show that the non-primitivity conditions on the roots of col-
liding powers used to prove Conjecture 2 in the special case of single chains of
square roots, are valid for arbitrary exponent K. These are conceptually simple
proofs following the argument of their counterparts for squares (Lemma 5 and
Corollary 2 in [7]). Afterwards we discuss the optimality of the bound w.r.t. the
existence of words w, u1, . . . , un for every possibility of cluster sizes satisfying
the bound. Finally we show that prefix chains of square roots at the end of runs
can help find alternative techniques for counting maximal repetitions, too.

For a prefix x ≤p u and natural number � ∈ {2, . . . , K}, we say that the
(�, x)-representative ((�, x)-rep) of uK is the longest prefix of u� which ends in x.
Note that this x-rep is of length at least (� − 1)|u| + |x|. Formally, the (�, x)-rep
of uK is u�−1u′x ≤p uK such that for all y we have that u�−1yx ≤p u� implies
|y| ≤ |u′|.

Let w be a word which contains uK as a factor. For the leftmost occurrence
in w of the (�, x)-rep u�−1u′x of the K-power uK , let us be its starting position
and um = us + (� − 1)|u|.

We define the (�, x)-anchor of uK in w as the starting position of the right-
most occurrence of x in the first occurrence of the (�, x)-rep of the power uK in
w. This (�, x)-anchor is denoted by Ψw(u�, x). If the (�, x)-rep of uK is u�−1u′x,
then Ψw(u�, x) = us + (� − 1)|u| + |u′|.

For example, in the word w below

a b a a b c a b a a b a a b c a b a a b a a b a
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

we have the cube (3-power) u = (aba)3 starting at position 16. The (2, aaa)-rep of
u3 is abaabaaa = u2, first occurring at 7, so Ψw(u2, a) = 7 + |abaab| = 12. The
(2, ababab)-rep of u3 is abaababab, first occurring at 1, therefore Ψw(u2, ab) = 1+|aba| = 4.
The (3, ababab)-rep of u3 is (aba)2ababab whose only occurrence is at 16, meaning that
Ψw(u3, ab) = 16 + |(aba)2| = 22.

While the (�, x) anchors are not exactly at the right edge of the repetitions
u�, as we will see, when two repetitions are aligned by their anchors it has a
similar consequence as if they were aligned at their right edge: the shorter one
is non-primitive. We show that this is true for all pairs of coinciding anchors.

Lemma 2. Let w be an arbitrary word with two K-powers uK , vK such that
u <p v, and let x be a common prefix of u and v. If there are �, �′ ∈ {2, . . . , K}
such that Ψw(u�, x) = Ψw(v�′

, x), then u = tk for some primitive word t with
|t| < |x| and k ≥ 2. Moreover, tu′x ≤p v, where u′x is the longest prefix of u
bordered by x.

Proof. Assume Ψw(u�, x) = Ψw(v�′
, x). We distinguish three cases based on

the relative positions of us, um and vm, and will derive contradictions in all of
them, except in the last case, when u is non-primitive with its root shorter than
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Fig. 1. The cases analyzed in Lemma 2.

x. Note that vm ≤ um always holds, since u ≤p v implies Ψw(u�, x) − um ≤
Ψw(v�′

, x) − vm. In what follows, let the (�, x)-rep of uK be u�−1u′x.
(1) vm ≤ us, see Fig. 1(1). In this case the (�, x)-rep of uK is a factor of v,
therefore it also occurs at us − |v|, a contradiction.
(2) vm = um, see Fig. 1(2). This means that u is a suffix of v and since |v| > |u|,
we have v = yu, for some non-empty word y. From Ψw(u�, x) = Ψw(v�′

, x), we
get that the x-rep of vK is v�′−1u′x. However, yu′x ≤p v which means that the
rightmost x occurrence in v is at least |yu′| positions from its start, so

Ψw(v�′
, x) ≥ vs + (�′ − 1)|v| + |yu′| > vs + (�′ − 1)|v| + |u′| = Ψw(v�′

, x),

a contradiction.
(3) us < vm < um. Let the (�′, x)-rep of vK be v�′−1zu′x, where z is the non-
empty word starting at vm and ending at um − 1. Both zu′x and u are prefixes
of v, so they are prefixes of each other. If zu′x ≤p u, then

Ψw(u�, x) ≥ us + (� − 1)|u| + |zu′| > us + (� − 1)|u| + |u′| = Ψw(u�, x),

which is a contradiction. The only remaining possibility is if u ≤p zu′x. Then,
there is an occurrence of u at vm and by Lemma 1 this means that u is not
primitive. (see Fig. 1(3.1)).

Now let u = tk, with t primitive and k ≥ 2. If |uu′| ≥ |v| then a conjugate
of v is a prefix of uu′, because uu′ is a factor of v2. From here, v has period |t|
and the fact that tk is its prefix and t is its suffix means that v = tm for some
m > k. This, in turn, means that u� and hence the (�, x)-rep of uK occurs at
position vs, so the occurrence at us is not the leftmost, another contradiction.

We are left with the case |uu′| < |v|. We have an occurrence of x at um −|u|.
If that x finishes before position vm, that is, vm − |x| ≥ um − |u|, then there
should be an occurrence of x located |v| positions further to the right in vK .
That would give Ψw(v�′

, x) ≥ um − |u| + |v| > um − |u| + |uu′| = Ψw(u�, x),
contradicting Ψw(v�′

, x) = Ψw(u�, x). Hence, we get that vm − (um − |u|) < |x|,
which means |t| < |x|. (see Fig. 1(3.2)).
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As x is a prefix of u = tk, it has the form x = trt′ for some r < k and t′ ≤p t.
The longest prefix of u = tk bordered by x is tk−1t′ = u′x. As um > vm, we get
that ttk−1t′ = tu′x ≤p v. 
�
Corollary 1. Let uK

1 , . . . , uK
n and vK

1 , . . . , vK
n be powers in some word w with

their roots all from the same chain and let x be a common prefix of those roots,
such that for all i ∈ {1, . . . , n} there are �i, �

′
i ∈ {2, . . . , K} with Ψw(u�i

i , x) =
Ψw(v�′

i
i , x). Then, there exists some primitive word t shorter than x, such that

ui = tki with ki ≥ 2, for all i ∈ {1, . . . , n}.
Proof. From Lemma 2, whenever the (�i, x)-anchor of uK

i and the (�′
i, x)-anchor

of vK
i coincide, there is some primitive ti with |ti| < |x| such that ui = tki

i with
ki ≥ 2 and tix is a prefix of vi. Given that the roots of these powers form a prefix
chain, we get that the words tix also form a prefix chain, that is, for all i, j ∈
{1, . . . , n} either tix ≤p tjx or tjx ≤p tix. Furthermore, since x is a common
prefix of all the powers, we have x ≤p tix, so x has period |ti|, and therefore,
trivially, so does tix. For any pair ti, tj , with |ti| ≤ |tj |, we know that tix ≤p tjx,
so tix also has period |tj |. Since |tix| > |ti| + |tj | > |ti| + |tj | − gcd(|ti|, |tj |), we
can apply Theorem 1 and get that ti and tj have a common primitive root t. We
already know that ti and tj are primitive, so ti = tj = t. 
�

Not surprisingly, the same anchor assignment procedure does not produce
the desired conclusion if we apply it to powers whose roots are not linearly
ordered by the prefix relation. The reason is that what we exploit in the proofs
above is that aligning the right edge of powers whose roots are prefixes of each
other results in (at least the shorter one of) them being non-primitive. However,
right-aligning powers which merely share some prefix does not provide the same
strict conclusion.

An alternative way of anchoring which might work for powers in two prefix
chains with an overlapping part is to assign the symmetric difference of the
chains by their longest common prefix, and anchoring the intersection by the
shortest root as before. Further on we show a scheme which works in a special
case when the shortest root is unbordered. Before moving on to that, however,
we first discuss the sharpness of the bounds implied by our conjecture.

3.1 Optimality

Consider a chain of square roots u1 <p · · · <p un as before. From Theorem 2 we
already know that |clust(ui)| ≥ n − i + 2, for all i ∈ {1, . . . , n}, and trivially,
|clust(ui−1)| ≥ |clust(ui)|, but it is natural to ask whether the bounds are
optimal, that is, whether all possible combinations of cluster sizes satisfying
those conditions can actually be realized in some string w. Using the lower bound
construction in [15], we can easily illustrate the extremal cases. We are only
interested in the situations where |clustw(u1)| = n + 1 because we can trivially
add further occurrences of all roots at the end of w to accommodate the other
cases. When |clustw(ui)| = n − i + 2, that is, the topmost cluster has size 2 and
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then each subsequent cluster is one larger than the previous, take ui = abi−1 and
the word w = u1u2 · · · unun. The case |clustw(u1)| = |clustw(un)| = n + 1 is
realized by the roots ui = an−1bai−1 and again a word of the form u1u2 · · · unun.

From this starting point we can develop an algorithm to realize any combi-
nation of cluster sizes. The idea is to start from the case when all clusters are
equal and then reduce the relevant clusters by adding further as to the end of
their roots. We start out with ui = an−1bai−1 as before and the word in which
we realize the clusters will be the concatenation of all the ui. At this point all
clusters are equal to n + 1 and we set ri = i − 1 for all i ∈ {1, . . . , n}. We will
refine iteratively the values ri and in the end will set ui = an−1bari . To remove
the occurrence immediately preceding the k-th b from the clusters of each root
ui with i ≥ j we add rk + n − rj many as to each such ri. After updating the ri

in question, we keep repeating the removal as many times as necessary. To see
whether the construction is correct, note that increasing ri does not affect the
cluster of any of the uj with j < i. By adding rk + n − rj to rj we get that the
unary a-tail of uj is of length rk + n which is more than the distance between
the k-th and (k +1)-th b in the word, removing all occurrences of uj (and hence
all longer roots, as well) starting before the k-th b.

For example, let the clusters of u1, . . . , u6 be of length 7, 7, 5, 5, 3, 3, respec-
tively. This means n = 6, so initially we set u1 = a5b, u2 = a5ba, u3 = a5ba2,
u4 = a5ba3, u5 = a5ba4 and u6 = a5ba5 and ri = i − 1. First we need to remove
the first occurrence of the clusters of u3, . . . , u6, so we get k = 1 and j = 3. This
means adding rk + n − rj = 0 + 6 − 2 = 4 to each ri with i ≥ 3. Now the ri

values are 0, 1, 6, 7, 8, 9. Next we need to remove the occurrences preceding the
second b from the same cluster so k = 2 and j = 3, and hence we need to add
rk + n − rj = 1 + 6 − 6 = 1 to each of those r values, resulting in 0, 1, 7, 8, 9, 10.
Removing the next two occurrences, k = 3 and 4, respectively, from the clusters
of u5 and u6 is by first adding 7 + 6 − 9 = 4 to them and then 8 + 6 − 13 = 1,
respectively. The end result is 0, 1, 7, 8, 14, 15, so the clusters are realized by the
occurrences of u1 = a5b, u2 = a5ba, u3 = a5ba7, u4 = a5ba8, u5 = a5ba14 and
u6 = a5ba15 in the word u1 · · · u6u6.

This construction is not optimal in the sense that in most cases there exist
much shorter words w and u1, . . . , un which have a chain of clusters satisfying the
same conditions. We expect that investigating the shortest words which realize a
combination of cluster sizes could lead to improvements in both lower and upper
bounds on distinct repetitions.

3.2 Single Chains of Run Ending Squares

A related direction for expanding the theory of clusters is to find a proof of
the upper bound on runs in terms of clusters. We present a brief argument for
a simple bound for runs whose “ending squares” form a prefix chain. We can-
not readily apply the technique used for distinct squares, because here multiple
occurrences of a repetition have to be taken into account.

Consider a run (a1 · · · an)
k
n in a word w, where ai ∈ Σ, k ≥ 2n, and a1 · · · an

is primitive. Let this run begin at some position i in w. The run ending square is
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the square starting at position i+k −2n and ending at i+k −1. For example, if
w = aababaa and we consider the run (ab)

5
2 starting at i = 2 in w, then the run

ending square is baba, which starts at i + k − 2n = 3 and ends at i + k − 1 = 6.
Each run has a run ending square, so an upper bound on their number is

implicitly an upper bound on the number of runs. The crucial property of run
ending squares uu is that the letter following uu in the word is different from
the first letter of u. Consider roots of run ending squares u <p v ∈ Σ∗, with a
being their first letter. Although uu may occur followed by a, but in those cases
it is not the suffix of a run with period |u|. An occurrence of uu in w is a run
ending square if it is followed by some b �= a or if it is a suffix of w. Let the
run ending occurrences of u2 start at positions i1 < · · · < ik. This means that
{i1, i1+|u|, . . . , ik, ik+|u|} ⊆ clust(u). However, for all j ∈ {1, . . . , k−1} we have
w[ij+|u|] �= w[ij+2·|u|], and w[ik+|u|] �= w[ik+2·|u|] or ik+2·|u| = |w|+1. From
here, for each j ∈ {1, . . . , k}, at least one of the two positions ij and ij +|u| is not
in clust(v), so |clust(u)|−|clust(v)| ≥ k. Applying this argument to consecutive
roots in a prefix chain u1 <p · · · <p un, we get that clust(ui) is larger than the
number of all runs with run ending square u2

j , j ≥ i. However, similarly to the
case of distinct powers, this argument does not extend easily to overlapping
chains of run ending squares, so one either has to define roots differently for a
run or figure out how to treat the case of run ending squares u2, v2, w2 where u
is a common prefix of v and w, but the latter two are incomparable.

4 Two Overlapping Chains

Using the anchor positions seen before one can prove the hypothesis for single
chains in the general case. As a first extension of the bounds to multiple chains,
we will prove a special case when two overlapping chains share an unbordered
prefix, in terms of whose occurrences we can upper-bound the number of distinct
roots in the two chains combined. Here we will use a type of argument relying
on the fact that the prefixes in question are unbordered. First we look at some
simple bounds for single chains which, although already obsolete because of
Theorem 2, serve as simple demonstrations of the benefits afforded by considering
unbordered prefixes.

We will need the following simple lemma establishing restrictions on the
relative positions of the rightmost occurrences of two squares whose roots have
the same cluster.

Lemma 3. [7] Let u2 �= v2 be two squares in some word w with u ≤p v and
clustw(u) = clustw(v). If their corresponding rightmost occurrences start at
positions us and vs, respectively, then |us − vs| ≥ |u|.

We call S a grounded chain if the shortest u which is the root of a square
occurring in w and is a common prefix of all elements of S, is also in S. For some
ui, uj ∈ S, we call u2

i covered by uj if ui <p uj ≤p u2
i or u2

i ≤p uj . The shortest
square root of a grounded chain S is denoted by ssr(S) and represents the
shortest element in S. Note that ssr(S) is not bordered. If it were, say ssr(S) =
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pqp, for some p �= ε, then ssr(S)2 = pqppqp, contains p2, so p ∈ S, which
contradicts ssr(S) being the shortest element in S. Finally, for two different
square roots x and u with x <p u denote diff(x, u) = |clust(x)| − |clust(u)|.
Lemma 4. For a grounded chain S, let m be the number of covered squares with
roots in S and let x = ssr(S). Then, |un|x ≥ m.

Proof. If a square u2
i is covered by some uj , then x occurs at position |ui| in uj

and in all uk, with k > j, because uj ≤p uk. In fact, x occurs at position |ui|
even in u�, for i < � < j, as ui ≤p u� ≤p uj . 
�
Lemma 5. For a grounded chain of square roots S = {u1, . . . , un}, with x =
ssr(S), we have diff(x, ui) + |ui|x < diff(x, ui+1) + |ui+1|x.

Proof. Since ui ≤p ui+1, we have |ui|x ≤ |ui+1|x, while clust(ui+1) ⊆ clust(ui)
gives diff(x, ui) ≤ diff(x, ui+1), so both terms in the sum are non-decreasing.
Moreover, at least one of them increases in each step: if ui+1 covers u2

i , then
|ui|x < |ui+1|x, while if it does not, then |clust(ui+1)| < |clust(ui)|). 
�
Corollary 2. For a grounded chain of square roots S = {u1, . . . , un} with x =
ssr(S) we have n < 3|clust(x)|

2 − 1.

Proof. Since u1 = x we have diff(x, x) = 0 and |u1|x = 1. By Lemma 5, for
each i ∈ {1, . . . , n}, the sum diff(ui, x) + |ui|x is strictly increasing, so n <
diff(x, un) + |un|x. Since |clust(un)| ≥ 2, we have diff(un, x) = |clust(x)| −
|clust(un)| ≤ |clust(x)| − 2. Also, since u2

n occurs, the size of clust(x) is at
least 2|un|x, that is, |un|x ≤ clust(x)

2 . Adding the two gives us the statement. 
�
By the above we have that, for a chain S, the number of clusters is bounded

by 3n/2, where n = |clust(ssr(S))|. Using Lemma 3 we can further refine this.

Proposition 1. For a grounded chain of square roots S = {u1, . . . , un} with
x = ssr(S) we have n < 4|clust(x)|/3.

Proof. Let us look at the topmost level where two clusters are equal, that is,
suppose clust(u) = clust(v) for u <p v and for all y with v <p y there exists
no z with clust(y) = clust(z).

Since clust(u) = clust(v), by Lemma 3 we have that |clust(u)| ≥ 3 and there
are at least three non-overlapping occurrences of u. From here, if x = ssr(S), we
get that |u|x ≤ |clust(x)|

3 , but the consecutive clusters above v are never equal,
hence the number of clusters is at most |clust(x)| plus the number of times when
two consecutive cluster are equal. The latter is at most |u|x, hence we get that
the number of clusters is at most 4·|clust(x)|

3 . 
�
As the main focus of this section we present an adaptation of the technique

we used for the upper bound on single chains, for showing that the combined
size of two overlapping prefix chains of roots cannot be larger than the number
of occurrences of their common prefix, when that prefix is unbordered. The latter
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qualification is an important one, even though we believe that this is a promising
direction towards the full solution of the conjecture. The requirement that the
prefix is unbordered not only means that we cannot deduce our conjecture for
arbitrary base clusters, but also that we cannot generalize the result to multiple
overlaps between multiple chains in a straightforward manner. This, in turn,
means that a piece of the puzzle is still missing for the proof of Conjecture 2.

For easy referencing we will denote by different letters the roots which are
in the shared part of the two chains and the differing parts of the chains,
respectively. Let X = {x1 <p · · · <p xk} be the common part. The chains
U = {u1 <p · · · <p um} and V = {v1 <p · · · <p vn} are the differing parts, so
we have u1 <>p v1, and of course, as the xi are the common part, xk <p u1

and xk <p v1. Since the result in this section does not yield a full proof of the
conjecture yet anyway, we will only treat the case of squares instead of general
K-powers, to simplify the exposition.

First we show a slightly stronger version of Lemma 1, where we do not
necessarily need the whole word to occur three times in its square to imply
its non-primitivity.

Lemma 6. Let t1, . . . , tn with n ≥ 2 be arbitrary words and let x be any unbor-
dered word such that |ti|x = 0, for all i ∈ {1, . . . , n}. Let Pi denote the product
xt1xt2 · · · xti. If

|P 2
n |Pn−1x > 2

then Pn is non-primitive.

Proof. Since x is unbordered and is not contained in ti, we can reformulate
the statement into an equivalent one over the alphabet containing the letters ti,
i ∈ {1, . . . , n} as follows: |(t1 · · · tn)2|t1···tn−1 > 2 implies that the word t1 · · · tn of
length n is non-primitive. Since Pi−1x occurs at least 3 times in P 2

i , we get that
t1 · · · tn−1 occurs at least three times in (t1 · · · tn)2. Let the second occurrence
of t1 · · · tn−1 start at the ith letter (with i > 1) of the square (t1 · · · tn)2. This
means that t1 · · · tn has period i − 1 and therefore r = t1 · · · ti−1t1 · · · tn−1 also
has period i − 1. At the same time r is the prefix of the square (t1 · · · tn)2, so it
also has period n, moreover, its length is n − 1 + (i − 1) = n + (i − 1) − 1. From
here by the Fine and Wilf theorem r has period gcd(i − 1, n) and we get that
t1 · · · tn is not primitive which implies the statement. 
�

To describe the assignment of positions to squares we need some definitions
first. For a given x, the �-level x-prefix ((�, x)-prefix) of a word z is a word z′

such that

– z′ <p z, and
– |z′|x = �.

Further, the �-level x-representative ((�, x)-rep) of a square z2 is the longest
prefix of z2 bordered by the (�, x)-prefix of z2. The assignment will differ for ui

and vj depending on the number of occurrences of x in them. Let us partition
the roots in U based on whether they have more x’s than lcp(u1, v1) or not, so
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U = U= ∪ U> with U= = {u ∈ U | |u|x = |lcp(u1, v1)|x} and U> = U \ U=.
We partition V similarly into V= and V>. Now we are ready to describe the
assignment of anchors as follows:

– For all x2
i and also for all u2

i , v2
j with ui ∈ U= and vj ∈ V=, we set the x-rep

as in the single chain case, i.e., the longest prefix of the square ending in x
and start of the last x in the leftmost x-rep as the anchor.

– For the other ui and vj , we set the start of the last x in their leftmost occurring
(�, x)-rep as the anchor, where � = |lcp(u1, v1)|x + 1.

Lemma 7. Let u, v ∈ X ∪ U ∪ V be two distinct square roots. If the anchors of
u2 and v2 coincide then the shorter between u and v is non-primitive.

Proof. We have to check what happens when squares collide for each pairing of
X,U=, U>, V= and V>. These potentially 25 pairings reduce to 15 as the order
does not matter, and can be treated in 7 groups, as we will see below. Like before,
the starting position of the x-rep of an arbitrary square z2 will be denoted by
zs and we set zm = zs + |z|.

1. u ∈ U> and v ∈ V>: impossible, because in the x-rep of u2 at the �th x
before the anchor we have the (�, x)-prefix starting, whereas in the x-rep of
v2 we would have the (�, x)-prefix of v at the same position, but the two are
incomparable by the prefix relation as they are longer than lcp(u1, v1).

2. u ∈ U> and v ∈ U> (analogous to pairing (V>, V>)): possible; the (�, x)-prefix
of u and v are the same, say y. In this case we can apply Lemma 2 as the y-
anchors of u and v coincide, giving the non-primitivity of the shorter between
the two with a primitive root of length less than u1.

3. u ∈ U> and v ∈ V= (analogous to the pairing (V>, U=)): possible; in this
case we have us < vs. If um ≤ vs, then the x-rep of v2 occurs earlier, a
contradiction. If us < vs < um, then we can apply Lemma 6 and we get that
v is non-primitive.

4. u ∈ U> and v ∈ U= (analogous to the pairings (V>, V=), (U>,X), (V>,X)):
possible; here the anchor of u is defined as the last x occurrence in a copy
of its (�, x)-prefix u′x, whereas the anchor of v is the last occurrence of x in
its x-rep vv′x. As u contains more occurrences of x than v does, which has
exactly as many as the lcp of u1 and v1, we get that v′x <p u′x. Now we can
apply Lemma 6 and conclude that v is non-primitive.

5. u ∈ U= and v ∈ V=: impossible because the fact that |u|x = |v|x implies
um = vm which, in turn, also means us = vs. However, at us we have an
occurrence of u1 and at vs an occurrence of v1, which are incomparable.

6. u ∈ U= and v ∈ U= (analogous to (V=, V=)): impossible, by an argument
similar to the previous point. Since u and v have the same number of x
occurrences, we get um = vm and then us = vs which implies u = v.

7. u ∈ U= and v ∈ X (analogous to pairings (V=,X), (X,X)): possible; this is
again a case where Lemma 2 applies as the anchors are all x-anchors, giving
non-primitivity of v with root shorter than x.
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All 15 cases have been listed above and all are either impossible or result in
the non-primitivity of the shorter root. 
�

We obtained that the collision of anchors results in non-primitive shorter root.
A reallocation of the non-primitively rooted squares is likely possible following
the logic used for squares ([7] proof of Theorem 2). However, it is probably more
technically involved in this overlapping case, and since we do not know how
to generalize Lemma 7 to more chains with complex overlapping structure, it
seems of limited use at the moment and we decided not to pursue it here due to
the space restrictions. However, some manner of separately anchoring the chains
based on their lcp with neighboring incomparable chains seems a promising way
towards a final solution, so we expect that the analysis above will prove useful.
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16. Kolpakov, R., Kucherov, G.: Finding maximal repetitions in a word in linear time.
In: Proceedings of 40th FOCS, pp. 596–604. IEEE Computer Society Press (1999)

17. Lothaire, M.: Combinatorics on Words. Cambridge University Press, Cambridge
(1997)

18. Manea, F., Seki, S.: Square-density increasing mappings. In: Manea, F., Nowotka,
D. (eds.) WORDS 2015. LNCS, vol. 9304, pp. 160–169. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-23660-5 14

19. Storer, J.A.: Data Compression: Methods and Theory. Computer Science Press,
Inc. (1988)

20. Thierry, A.: A proof that a word of length n has less than 1.5n distinct squares
(2020). https://arxiv.org/abs/2001.02996
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22. Thue, A.: Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Kra.
Vidensk. Selsk. Skrifter. I Mat. Nat. Kl. 1 (1912)

https://doi.org/10.1007/978-3-319-23660-5_14
https://arxiv.org/abs/2001.02996

	Clusters of Repetition Roots Forming Prefix Chains
	1 Introduction
	2 Preliminaries
	2.1 Clusters of Repetition Roots

	3 Single Chains
	3.1 Optimality
	3.2 Single Chains of Run Ending Squares

	4 Two Overlapping Chains
	References




