
On the Power of Recursive
Word-Functions Without Concatenation

Jérôme Durand-Lose(B)

Univ. Orléans, INSA Centre Val de Loire, LIFO, EA 4022, 45067 Orléans, France
jerome.durand-lose@univ-orleans.fr

Abstract. Primitive recursion can be defined on words instead of natu-
ral numbers. Up to usual encoding, primitive recursive functions coincide.
Working with words allows to address words directly and not through
some integer encoding (of exponential size). Considering alphabets with
at least two symbols allows to relate simply and naturally to complexity
theory. Indeed, the polynomial-time complexity class (as well as NP and
exponential time) corresponds to delayed and dynamical evaluation with
a polynomial bound on the size of the trace of the computation as a
direct acyclic graph.

Primitive recursion in the absence of concatenation (or successor for
numbers) is investigated. Since only suffixes of an input can be out-
put, computation is very limited; e.g. pairing and unary encoding are
impossible. Yet non-trivial relations and languages can be decided. Some
algebraic (anbn, palindromes) and non-algebraic (anbncn) languages
are decidable. It is also possible to check arithmetical constrains like
anbmcP (n,m) with P polynomial with positive coefficients in two (or
more) variables. Every regular language is decidable if recursion can be
defined on multiple functions at once.

Keywords: Primitive recursion · Recursion on words · String
recursion · Word-Functions

1 Introduction

Primitive recursion and general recursion (or μ-recursion) are well-known and
addressed in every textbook on computability. They are based on Peano’s
axiomatisation of natural numbers and form a neat definition of computable
functions over numbers. They have been studied for a century and are the topic
of innumerable articles. Nowadays, computability is not anymore considered to
be just about numbers but to be about any kind of information that can be rep-
resented and manipulated through textual/symbolic representations. In recent
decades, the term recursive has been shifting to be replaced by computable [10] to
reflect the preeminence of the computer age and to stress on operational models
rather than conceptual definitions.

The present paper advocates an alternative definition of primitive recursion
grounded on sequences of symbols, i.e. words, instead of numbers. Although the

c© IFIP International Federation for Information Processing 2022
Published by Springer Nature Switzerland AG 2022
Y.-S. Han and G. Vaszil (Eds.): DCFS 2022, LNCS 13439, pp. 30–42, 2022.
https://doi.org/10.1007/978-3-031-13257-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13257-5_3&domain=pdf
https://doi.org/10.1007/978-3-031-13257-5_3

On the Power of Recursive Word-Functions Without Concatenation 31

definition is natural with more than one successor, it has not been much studied.
Or rather it has been proved that all the main properties coincide, so that there
is little interest in a less refined design.

We feel otherwise for at least two epistemological reasons. The first one is
that many articles addressing recursion on words first provide an encoding of
words as numbers then work on numbers. It certainly proves that words can be
represented as numbers and worked upon this way (at the cost of complexity).
Shouldn’t it be the other way round? Numbers are represented by words and
all our basic arithmetical algorithms (e.g. multiplication) are taught for decimal
representation and implemented with binary-based representations. The second
reason is meeting colleagues not keen on proving by induction, and instead, they
introduce some numerical measure (e.g. depth of a formula) and then make a
(numerical) recursion. When dealing with words, we should use induction to
manipulate them (and numbers and recursion when we need counting)1.

There are also more practical reasons for word recursion: connections to com-
plexity theory with a natural measure of evaluations and to language theory. The
first point is to note that the time complexity naturally corresponds to the size
of trace of the evaluations when nothing is reevaluated (dynamic programming)
and evaluated only if needed (delayed evaluation).

The connection with language theory is developed in the paper by consid-
ering recursion without concatenation/successor (preventing encoding between
numbers and words as well as pairing). It already exhibits the ability to decide
some non-algebraic languages and do some arithmetic checking. In the rest of the
introduction, we present a brief state of the art on recursion on words, then, the
complexity connection, some results on language decision without concatenation,
and finally, the outline of the paper.

In the literature, the topic is referred to as recursion on string, recursion
on word, recursive word/string-functions or recursion on representation. The
last denomination often means a representation of natural numbers by words
enumerated in shortlex/military order (length then alphabetically) leading to a
non-trivial successor word-function. The literature is rather ancient (for com-
puter science) with a peak in the 1960’s. Most of the literature deal with hier-
archies and, like almost everything in the field in those days, is number-centric.
We concentrate on overviews and more recent and accessible papers (and in
English).

The transcription by B. Kapron of notes on a course of S. Cook in Berkeley
in 1967 [5] contains the m-adic notation of numbers (digits does not include 0)
and relations on weak classes (including polynomial time functions, FP, from
[4]). This paper does not exactly use word-functions: it has primitives {n �→
10n+ i}0≤i≤9 emulating concatenation on words together with number ordering.

In [6], the authors provide a survey on counterparts on words of classical
results for primitive number recursion (Ackermann function, limited recursion,
Grzegorczyk and loop hierarchies). They prove that everything coincides.

1 We restrain from coining the primitive induction term to avoid any misunderstanding
with close fields of research.

32 J. Durand-Lose

There exists research on infinite alphabet (not the case here) like [11]. Up to
some encoding with numbers, it corresponds to computation over finite sequences
of numbers encoded by numbers.

Variations on base functions and operators exist in mentioned papers (e.g.
limited recursion for Grzegorczyk hierarchy) as well as others. A restriction to
unitary word-functions is considered in [1,3,9]. To mention a more recent work,
the nowhere defined function is added to primitive recursive word-functions in
[7].

As expected, as soon as a class is powerful enough to provide functions to
encode and decode from one setting to another, the hierarchies correspond with
the number setting. This is a motivation to investigate restrained classes. As far
as we know, recursion without concatenation was not investigated.

Comparing to primitive recursion on numbers, the successor function is
replaced by left concatenation for every symbol and the recursion operator has
to consider every possible first symbol. Various examples of word-functions are
provided, some have no counterpart in the number setting like reverting a word
or testing whether a word is a palindrome. An encoding of tuples of words on any
alphabet as a word in a 2-symbol alphabet is provided; thus multiple recursion
is not adding any power to primitive recursion and the number of symbols does
not change the hierarchies and complexity classes when there are at least two
symbols.

The numbers in Peanos’s axiomatisation are identified with words of a 1-
symbol alphabet, and so are the functions. Proving that primitive recursive
functions on integers coincide is quite straightforward with the following encod-
ing. Let Σ = {a1, a2, · · · , ar} be the alphabet, the r-adic encoding function
of words into natural numbers: 〈ε〉 = 0 and ak · w, 〈ak · w〉 = k + r · 〈w〉. This
encoding is onto and corresponds to the ranking number (starting from 0) of the
reverse of w in the shortlex order2. For example 〈ai+1 · w〉 = 〈ai · w〉 + 1 and
〈ajai+1 · w〉 = 〈ajai · w〉 + r.

The natural evaluation scheme of primitive recursion functions is not very
efficient (especially for numbers in unary notations), so a different scheme is used
to show the proximity with the Turing machine model. The delayed dynamic eval-
uation scheme of word-functions is when the functions are called by name (not
value) and only the needed expressions are evaluated (delayed) and all the evalu-
ation results are stored so that nothing is re-evaluated (dynamic programming).
An evaluation is represented by a direct acyclic graph (DAG) whose nodes are
calls to function evaluations. Each node is labelled with the call: expressions
of the function and of the arguments and its value (if computed). The DAG-
complexity of an evaluation of a function is the number of nodes in the DAG.
The size of the input is defined by the sum of the lengths of the input words.
Given the expression of the initial function, the out-degrees of the nodes are
bounded by present arities; the number of edges is thus linearly bounded in
the number of nodes. Nodes are atomic operations, the length of any value is

2 The usual definition is on the reversed word, but we define it in coherence with the
restriction to left concatenation.

On the Power of Recursive Word-Functions Without Concatenation 33

bounded by the input size and the DAG depth. The whole description of the
labelled DAG is bounded by a polynomial in the size of its complexity.

The class of polynomial-time functions (from classical complexity theory)
corresponds to the class of word-functions such that the DAG-complexity of any
evaluation is bounded by a polynomial in the input size. One way, given the
expression of the function, it is possible to generate an algorithm that, for any
input, builds the DAG and outputs the result in polynomial time. The other
way, consider a Turing machine implantation of any polynomial-time algorithm
together with a polynomial that bounds its execution time. It is possible to
evaluate the entry size and then the polynomial, to get the result in unary and
then to do a recursion on the TM simulation. The DAG-complexity is linear
in the polynomial value that bounds the iteration time of the Turing machine.
Although we are using unary representation, it is still polynomial in the size of
the input.

This proof can be adapted to NP (with polynomial-size certificates) and to
exponential time. Please note that there also exists syntactic characterisation of
FP in the number setting [2].

The paper focuses on primitive recursion without concatenation. Recursion
can be used to chop off initial symbols and only suffix of the input can be output
preventing the existence of any pairing or encoding function. As functions, they
look rather bland; but, as language deciders (as pre-images of the empty word)
they prove quite rich. Some algebraic (anbn, palindromes) and non-algebraic
(anbncn) languages are decidable. It is also possible to check arithmetical con-
strains like anbmcP (n,m) with P polynomial with positive coefficients in two (or
more) variables. As a side results, this provides non-trivial examples of unary
languages.

Multiple recursion allows to define various functions in one recursion. Usually,
this operator is synthesised from single recursion using some pairing function,
but no such function is available without concatenation. If multiple recursion is
available, any regular language can be decided. Basically, each function corre-
sponds to a state of a finite deterministic automaton.

A rough companion python3 library was developed to manipulate primitive
recursive word-functions and check our constructions. It is available at
https://www.univ-orleans.fr/lifo/Members/Jerome.Durand-Lose/Recherche/Co
mpanion/2022_DCFS.tgz.

Section 2 collects all the definitions while Sect. 3 provides the expression of
various usual functions. Section 4 investigates the concatenation-less primitive
recursion functions as language deciders. Section 5 shows that adding multiple
recursion to the concatenation-less primitive recursion functions allows to decide
all the recursive languages. Concluding remarks and perspectives are gathered
in Sect. 6.

2 Definitions

An alphabet, Σ, is a non-empty finite set: {a1, a2, · · · , ar} where r is its size.
Unless otherwise specified, its size is least 2; The set of words are defined by

https://www.univ-orleans.fr/lifo/Members/Jerome.Durand-Lose/Recherche/Companion/2022_DCFS.tgz
https://www.univ-orleans.fr/lifo/Members/Jerome.Durand-Lose/Recherche/Companion/2022_DCFS.tgz

34 J. Durand-Lose

the free monoid Σ∗. Let · denote the concatenation operator and ε denote the
empty word. Teletype fonts are used to denote symbols from Σ and math fonts
to denote words. To ease notation, the concatenation symbol is often omitted,
e.g. aaa stands for a · a · a.

For any number k, a k-ary (word-)function is a function from (Σ∗)k to Σ∗.
The projection of the ith component of a tuple of size n (1 ≤ i ≤ n) is denoted

πi
n. The identity function is denoted id (=π1

1). The constant ε function is denoted
ε̂ (formally there is one of arity 1, others are generated with compositions and
projections). For any symbol a, the 1-ary left concatenation function associated
with a, is defined by: a · (w) = a · w = aw. The notation �x denotes a vector of
arguments. Sans serif fonts are used to denote functions (in lower case) and
operators (capitalised).

Numbers correspond to a 1-symbol alphabet (0 corresponds to ε). The suc-
cessor of n is denoted S(n) (the only available left concatenation).

Composition Operator. Let j, k be positive numbers. Let g be a k-ary function
and (hi)1≤i≤k be j-ary functions. The j-ary function f = Comp(g, (hi)1≤i≤k) is
uniquely defined by:

f(�x) = g (h1(�x), · · · , hk(�x))

where �x represents j arguments.

(Single) Recursion Operator on Σ. Let k be a positive number. Let g be a k-ary
function and, for each a of Σ, ha be a k+2-ary function. The k+1-ary function
f = Rec(g, (ha)a∈Σ) is uniquely defined by:

f(ε, �y) = g(�y) and
∀a ∈ Σ, f(a · w, �y) = ha(w, f(w, �y), �y)

where �y represents k arguments and w is any word in Σ∗.
To increase readability, vertical displays of function vectors are often used

for composition and recursion.
The set of primitive recursive functions is the smallest set of functions con-

taining the empty-word function, left concatenation for every symbol, all the
projections, and closed for the composition and the recursion operators.

From functions, relations are defined as the pre-image of the ε. A unary
relation represents a subset of Σ∗, i.e., a language.

3 First Constructions

In the spirit of the next section, concatenations are avoided as much as possible.
Expressions are provided for an alphabet of size 3 (or 2 when the expression is
large). The generalisation to larger alphabets is straightforward.

A test is a function that returns ε if and only if the condition is satisfied. It
is a membership test for languages and relations.

On the Power of Recursive Word-Functions Without Concatenation 35

3.1 Word Manipulations

By composition, it is possible to get any function concatenating a fixed word on
the left, e.g. a1a2a3 · = Comp(a1 ·, (Comp(a2 ·, (a3 ·)))). By composing with constant
empty-word function, it is possible to get any constant function, e.g. â1a2a3 =
Comp(a1 ·, (Comp(a2 ·, (Comp(a3 ·, (ε̂)))))).

Basic operations on words are straightforward. The 2-ary concatenation oper-
ator can be generated from composition and recursion:

· = Rec
(

id, (Comp
(

a1 ·, (π2
3)

)

,Comp
(

a2 ·, (π2
3)

)

,Comp
(

a3 ·, (π2
3)

)

)
)

.

Right concatenation functions can be generated as in:

·a1 = Rec
(

â1, (Comp
(

a1 ·, (π2
2)

)

,Comp
(

a2 ·, (π2
2)

)

,Comp
(

a3 ·, (π2
2)

)

)
)

.

It is possible to manipulate a word as a stack/list with functions to extract
the first symbol and the rest of a word:

head = Rec(ε̂, (â1, â2, â3)) and tail = Rec(ε̂, (π1
2 , π

1
2 , π

1
2))

Please note that for head, the first symbol is consumed by the recursion so that
it has to be generated again using a concatenation. This phenomenon makes
more involving if not prevent the expression of functions without concatenation.
In the following, we avoid constant functions (to avoid concatenation), so that
needed constants have to be provided as arguments.

The following functions act depending on the presence of a1 at the beginning
of the first argument. The first function returns the rest of the first argument if
present, the second argument otherwise. The second function returns its argu-
ment with leading a1 removed (if any).

suppresselsea1 = Rec
(

id,
(

π1
3 , π

3
3 , π

3
3

))

,

suppressa1? = Comp(suppresselsea1 , (id,id)).

The usual test for equality over numbers does not yield a test for equality
but a test to decide whether one word is the reverse of the other. This is because
computation in the recursion is done after the recursive call. This is invisible
with numbers since in unary notation all words are palindrome.

testreverse = Comp

⎛

⎜

⎜

⎝

Rec

⎛

⎜

⎜

⎝

π2
1

∣

∣

∣

∣

∣

∣

∣

∣

Comp
(

Rec
(

id
∣

∣

∣

∣

π1
3

π3
3

) ∣

∣

∣

∣

π2
4

π4
4

)

Comp
(

Rec
(

id
∣

∣

∣

∣

π3
3

π1
3

) ∣

∣

∣

∣

π2
4

π4
4

)

⎞

⎟

⎟

⎠

∣

∣

∣

∣

∣

∣

∣

∣

π1
2

π2
2

π1
2

⎞

⎟

⎟

⎠

.

This can be used to test if a word is a palindrome:

testpalindrome = Comp
(

testreverse

∣

∣

∣

∣

id
id

)

.

36 J. Durand-Lose

It is possible to reverse a word and then test for equality:

reverse = Rec

⎛

⎜

⎜

⎝

ε̂

∣

∣

∣

∣

∣

∣

∣

∣

Comp
(

Rec
(

â1

∣

∣

∣

∣

Comp
(

a1 · ∣

∣π2
2

)

Comp
(

a2 · ∣

∣π2
2

)

)∣

∣

∣

∣

π2
2

)

Comp
(

Rec
(

â2

∣

∣

∣

∣

Comp
(

a1 · ∣

∣π2
2

)

Comp
(

a2 · ∣

∣π2
2

)

)∣

∣

∣

∣

π2
2

)

⎞

⎟

⎟

⎠

,

testequality = Comp
(

testreverse

∣

∣

∣

∣

π1
2

Comp
(

reverse
∣

∣π2
2

)

)

.

3.2 Logical Functions

Each of these if functions works like a ternary operator with a condition/test on
the first argument returning the second argument if the test succeeds, otherwise
the third argument. A test succeeds if it evaluates to the empty word. The
most basic function just tests whether the first argument is the empty word
(ifε(ε, y, z) = y, and ∀x 	= ε, ifε(x, y, z) = z). It is defined by:

ifε = Rec
(

π1
2 , (π

4
4 , π

4
4)

)

.

Conjunction and disjunction operators are defined as 2-ary functions:

andε = Comp
(

ifε, (π1
2 , π

2
2 , π

1
2)

)

and orε = Comp
(

ifε, (π1
2 , ε̂, π

2
2)

)

.

If a non-ε constant is provided, the negation function can be defined by
Comp

(

ifε, (π1
2 , π

2
2 , ε̂)

)

. This function has arity 2 (for the constant).
The following functions use the conditions: to start with a1, to belong to the

regular language a∗
1, and to the language a+1 :

ifa1Σ∗ = Rec
(

π2
2 , (π

3
4 , π

4
4 , π

4
4)

)

,

ifa∗
1
= Rec

(

π1
2 , (π

2
4 , π

4
4 , π

4
4)

)

, and

ifa+1 = Rec
(

π2
2 , (Comp

(

ifa∗
1
, (π1

4 , π
3
4 , π

4
4)

)

, π4
4 , π

4
4)

)

.

3.3 Encoding and Pairing

Any word on any finite alphabet can be encoded on 2-symbol alphabet by:

ε �→ a1a1, and
ai1 · ai2 · · · · · aik �→ a1ai1

2 a1ai2
2 a1 · · · aik

2 a1.

This function is primitive recursive like its decoding function as constructed
below. The special value for ε has to be taken into account both in coding and
decoding. The encoding is constructed by concatenating all a1ai

2 to a final a1.

On the Power of Recursive Word-Functions Without Concatenation 37

encode = Comp

⎛

⎜

⎜

⎜

⎜

⎝

ifε

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

id
â1a2

Rec

⎛

⎝â1

∣

∣

∣

∣

∣

∣

Comp
(

a1a2 · ∣

∣π2
2

)

Comp
(

a1a22
· ∣

∣π2
2

)

Comp
(

a1a32
· ∣

∣π2
2

)

⎞

⎠

⎞

⎟

⎟

⎟

⎟

⎠

.

For decoding, a new a|Σ| to be rotated is concatenated on the left for each
a1 but the first. For each a2 the function rotfirst rotates the first symbol of its
argument.

ε �→ ε
ak · w �→ ak mod r+1 · w

and rotfirst = Rec

⎛

⎝ε̂

∣

∣

∣

∣

∣

∣

Comp
(

a2 · ∣

∣π1
2

)

Comp
(

a3 · ∣

∣π1
2

)

Comp
(

a1 · ∣

∣π1
2

)

⎞

⎠ .

decode = Comp

⎛

⎜

⎜

⎜

⎜

⎝

ifε

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Comp (tail |tail)
ε̂

Comp

⎛

⎝Rec

⎛

⎝ε̂

∣

∣

∣

∣

∣

∣

Comp
(

a3 · ∣

∣π2
2

)

Comp
(

rotfirst
∣

∣π2
2

)

ε̂

⎞

⎠

∣

∣

∣

∣

∣

∣

tail

⎞

⎠

⎞

⎟

⎟

⎟

⎟

⎠

.

The special value for ε allows a simple pairing by concatenation.

pair = Comp
(

·
∣

∣

∣

∣

Comp
(

encode
∣

∣π1
2

)

Comp
(

encode
∣

∣π2
2

)

)

.

To recover the first and second values of the pair, the middle a1a1 should be
found while potential leading or ending a1a1 encoding ε are treated correctly.
To recover the first value, the first a1 is discarded and a1a1 is searched for,
preserving only what is crossed.

pairfirst = Comp

⎛

⎜

⎜

⎜

⎜

⎝

decode

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Rec

⎛

⎜

⎜

⎜

⎜

⎝

ε̂

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Comp

⎛

⎝ifa1Σ∗

∣

∣

∣

∣

∣

∣

π1
2

â1
Comp

(

a1 · ∣

∣π2
2

)

⎞

⎠

Comp
(

a2 · ∣

∣π2
2

)

Comp
(

a3 · ∣

∣π2
2

)

⎞

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎠

.

To recover the second value, the first a1 is discarded and a1a1 is searched
for, discarding what is crossed.

pairsecond = Comp

⎛
⎜⎜⎜⎜⎝
Rec

⎛
⎜⎜⎜⎜⎝

ε̂

∣∣∣∣∣∣∣∣∣∣

Comp

⎛
⎝ifa1Σ∗

∣∣∣∣∣∣
π1
2

Comp
(
pairfirst

∣∣π1
2

)
π2
2

⎞
⎠

π2
2

π2
2

⎞
⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣
suppressa1?

⎞
⎟⎟⎟⎟⎠

.

This paring scheme extends straightforwardly to encode any tuple.

38 J. Durand-Lose

4 Primitive Recursion Without Concatenation

Let Σ-CL-PRec be the smallest set of functions containing the empty-word func-
tion, all the projections, and closed by the composition and the primitive recur-
sion operators on Σ∗. A direct induction shows that:

Lemma 1. The output of any word-function in Σ-CL-PRec must be a suffix of
a word in the input.

In particular, if the input is composed only of ε, then the output is ε. This
limits the computing power and even constrains language recognition: unless a
non-ε constant is provided, ε is accepted. This means that if ε is not in the
language, a non-empty constant has to be provided in the input.

Since logical operators do not use concatenation, the set of decidable lan-
guages/relations is closed under union, intersection and complement (with a
constant).

4.1 Some Algebraic Languages Decided in Σ-CL-PRec

Palindromes. Test for palindrome p. 6 does not use concatenation. This lan-
guage is algebraic, non-ambiguous but not deterministic (it cannot be recognised
by deterministic push-down automata, DPDA: it has to guess when the middle
of the w is read).

Language an
1 a

n
2 . Function testan1 an2 first considers the case of input ε (accepted).

Otherwise, the input is not ε and is stored as a fail value. The first symbol has
to be a1 (otherwise fail) and then for each discarded a1, a function that removes
one a2 (or fail) is used on the output.

Technical detail: testfail
an1 a

n+1
2

consumes the first a2 to know when an
2 starts;

to keep balance testan1 an2 consumes the first a1 before handling the rest of the
word to testfail

an1 a
n+1
2

. The label fail in the name means that a fail value has to be
provided as second argument. It differs from the meaning of else since the fail
value might not be used to indicate failure.

testfailan1 a
n+1
2

= Rec

⎛

⎜

⎜

⎝

id

∣

∣

∣

∣

∣

∣

∣

∣

Comp
(

suppresselsea2

∣

∣

∣

∣

π2
3

π3
3

)

π1
3

π3
3

⎞

⎟

⎟

⎠

,

testan1 an2 = Comp

⎛

⎜

⎜

⎝

Rec

⎛

⎜

⎜

⎝

ε̂

∣

∣

∣

∣

∣

∣

∣

∣

Comp(testfail
an1 a

n+1
2

∣

∣

∣

∣

π1
3

π3
3

)

π3
3

π3
3

⎞

⎟

⎟

⎠

∣

∣

∣

∣

∣

∣

∣

∣

id
id

⎞

⎟

⎟

⎠

.

If the word is not in an
1a

n
2 , then either the fail value is used or a an

1a
n
2 prefix

is removed leaving a non-ε word.
This language is deterministic algebraic (can be recognised by DPDA).

On the Power of Recursive Word-Functions Without Concatenation 39

Language an
1 a

n
2 a

m
1 ∪ an

1 a
m
2 am

1 . On a word from an
1a

n
2a

m
1 , testan1 an2 should return

am
1 . So that the end of the test is carried out by removing remaining a1. Removing

leading a∗
1 is done with suppressa∗

1
. To avoid consuming one extra symbol (the

first a�=1), one suppressa1? is stacked for each a1 and then the composition is used
on a copy of the input.

suppressa∗
1
= Comp

⎛

⎝Rec

⎛

⎝ε̂

∣

∣

∣

∣

∣

∣

Comp
(

suppressa1?
∣

∣π2
3

)

π3
3

π3
3

⎞

⎠

∣

∣

∣

∣

∣

∣

id
id

⎞

⎠ ,

testan1 an2 am1 = Comp
(

suppressa∗
1

∣

∣testan1 an2
)

.

The language an
1a

m
2 am

1 is decided by removing all leading a1 and then using
previous test (swapping a1 and a2): testan1 am2 am1 = Comp

(

testan1 an2
∣

∣ suppressa∗
1

)

.
Since union of decidable languages is decidable, the algebraic language

an
1a

n
2a

m
1 ∪ an

1a
m
2 am

1 is decidable. This language is ambiguous.

4.2 Some Non-algebraic Languages Decided in Σ-CL-PRec

Languages an
1 a

n
2 a

n
1 . Since intersection of decidable languages is decidable, the

language an
1a

n
2a

n
1 = an

1a
n
2a

m
1 ∩ an

1a
m
2 am

1 is decidable. This language is not alge-
braic. Similarly, it is possible to prove that the languages an

1a
n
2a

n
1 · · · an

1 are all
decidable.

Languages an
1 a

P (n)
2 with P Polynomial with Positive Coefficients. The

idea is to deal with functions that discard (or fail) the right amount of a2 accord-
ing to the number of a1 for each monomial. So that the result is empty only if
the sum matches.

For each monomial, a ternary function is defined. The first argument starts
with an

1a�=1 to provide the value for n. The second argument is the one to remove
the a2 from. The third argument is returned if removing is not possible.

For constant monomial 3, the function is

removeelsea32
= Comp

⎛

⎝suppresselsea2

∣

∣

∣

∣

∣

∣

Comp
(

suppresselsea2

∣

∣

∣

∣

suppresselsea2
π2
2

)

π2
2

⎞

⎠

removea32 = Comp
(

removeelsea32

∣

∣

∣

∣

π2
3

π3
3

)

.

For the monomial 3x, this is done x times:

remove3ax2 = Comp

⎛

⎜

⎜

⎝

Rec

⎛

⎜

⎜

⎝

π2
3

∣

∣

∣

∣

∣

∣

∣

∣

Comp
(

removeelsea32

∣

∣

∣

∣

π2
5

π5
5

)

π4
5

π4
5

⎞

⎟

⎟

⎠

∣

∣

∣

∣

∣

∣

∣

∣

π1
3

π1
3

π2
3

π3
3

⎞

⎟

⎟

⎠

.

For the monomial 3x2, it is done x times again. The function remove
3ax2

2
is:

40 J. Durand-Lose

Comp

⎛
⎜⎜⎜⎜⎜⎜⎝
Rec

⎛
⎜⎜⎜⎜⎜⎜⎝

π2
3

∣∣∣∣∣∣∣∣∣∣∣∣

Comp

⎛
⎜⎜⎝Rec

⎛
⎜⎜⎝π2

3

∣∣∣∣∣∣∣∣

Comp
(
removeelsea32

∣∣∣∣
π5
2

π5
5

)

π4
5

π4
5

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣

π3
5

π3
5

π2
5

π5
5

⎞
⎟⎟⎠

π4
5

π4
5

⎞
⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣

π1
3

π1
3

π2
3

π3
3

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Even though the definition looks involving, these are just nested for loops.
It is possible to design concatenation-less functions that yield each maxi-

mal suffixes of a+1 a
+
2 a

+
3 · · · a+m of the form a+k · · · a+m. Hence, all the languages

a+1 a
+
2 · · · an

i · · · aP (n)
j · · · a+m (for given i 	= j and P) are all decidable.

Using the same tools, it is also possible to test such languages as an
1a

m
2 aP (n,m)

2

with P polynomial in 2 variables with positive coefficients. More than two vari-
ables is similarly possible.

5 Regular Languages are Decidable in Σ-CL-PRec
with Multiple Recursion

The multiple recursion operator is usually synthesised with the use of a pairing
function, i.e. a one-to-one function from Σ∗ × Σ∗ to Σ∗. Yet, no such function
is available without concatenation since any pairing function would have to map
{(ai

1, a
j
1)}0≤i,j<2 to four distinct values, but the only possible outputs are in

{ε, a1} (the suffixes). (Adding constants would no work for {(ai
1, a

j
1)}0≤i,j<k for

every k.)

Lemma 2. There is no pairing function in Σ-CL-PRec.

Multiple Recursion Operator on Σ. Let m and k be any positive numbers. Let
(gi)1≤i≤m be k-ary functions and, for each a of Σ, (ha,i)1≤i≤m be (k+m+1)-ary
functions. The (k+1)-ary functions

(fi)1≤i≤m = Recm
(

(gi)1≤i≤m, (ha,i)a∈Σ,1≤i≤m

)

are uniquely defined by ∀i, 1 ≤ i ≤ m:

fi(ε, �y) = gi(�y) and
∀a ∈ Σ, fi(a · w, �y) = ha,i(w, f1(w, �y), · · · , fm(w, �y), �y)

where �y represents k arguments.
The set Σ-CL-PRec∗ is defined like Σ-CL-PRec, but with the addition of

the closure by the recursion operators of every arity. Lemma 1 extends to
Σ-CL-PRec∗: the output has to be a suffix of an input.

Regular Languages are Decidable in Σ-CL-PRec∗. Let L be a regular lan-
guage. It is decided by some deterministic finite automaton (Q, δ, q0, A) where

On the Power of Recursive Word-Functions Without Concatenation 41

Q is finite set of state, δ is the transition table, q0 is the initial state, and A is
the set of accepting states. We suppose that ε ∈ L (otherwise add a constant to
the input and complement).

Let the 2-ary functions (fq)q∈Q be defined by multiple recursion from pro-
jections by:

∀∀q ∈ A, fq(ε, w1) = ε̂(w1) = ε

∀q ∈ Q\A, fq(ε, w1) = π1
1(w1) = w1

∀q ∈ Q, ∀a ∈ Σ, fq(a · w,w1) = πi
|Q|+2

(

w, (fs(w,w1))s∈Q, w1

)

= fr(w,w1)
where δ(q, a) = r and i suitably chosen

The transition table is encoded in the recursion. The following function decides
L.

testL = Comp
(

fq0 , (π
1
1 , π

1
1)

)

6 Conclusion

Word-recursion is a rich context allowing to address words directly and to
relate to complexity theory. Although forbidding concatenation seems limiting, it
allows to decide non trivial languages. It is open whether all algebraic languages
are decidable, and if not, which of them are not and why. More generally, a con-
dition for a function to be (un)computable without concatenation that would
rule out functions (e.g., equality) and languages is to be found.

Without concatenation it is still possible to check constrains expressed with a
polynomial with positive coefficients. Although we advocate recursion on words,
the range of integer languages decidable is also wide; e.g. by testing all possible
splitting in two terms, the language {n + n2|n ∈ N} can be decided.

We conjecture that even though this class is restricted, there should be some
undecidable properties. For example, emptiness of accepted language might be
undecidable (using diophantine equations [8]).

Any function defined without concatenation, f , satisfies |f(x1, · · · , xk)| ≤
max(|x1|, · · · , |xk|), so that this class is included in the level E0 of the Grze-
gorczyk hierarchy (see [6] for definitions). Relatively to the relations/languages
theses classes defined, we lack an example to show that the inclusion is strict.
We conjecture that the height of recursion in the function definition provides a
proper hierarchy inside the class.

Some of provided constructions rely on duplicating the input. We are won-
dering whether forbidding duplication leads to a non-trivial class. Otherwise,
how can it be characterised?

We would like to close this article by addressing minimisation. The few oper-
ators for words in the literature are usually number representation based (related
to the shortlex order) in settings where the successor is not a base function but a

42 J. Durand-Lose

non-trivial word-function. We want to avoid the influence of numbers and refuse
to impose a non-trivial order on words. In the number setting, one can consider
the successor function to be just a function to provide from the current one the
next value to test. We propose to take that point of view: that the minimisation
operator requires another word-function to generate from the current one the
next word to try (starting from the empty word), without any constraint on this
function (does not have to onto, one-to-one or total, as long as it is in the class).
Although it seems more complex, it corresponds to the update of variables in
while loops.

References

1. Asser, G.: Primitive recursive word-functions of one variable. In: Börger, E. (ed.)
Computation Theory and Logic. LNCS, vol. 270, pp. 14–19. Springer, Heidelberg
(1987). https://doi.org/10.1007/3-540-18170-9_150

2. Bellantoni, S.J., Cook, S.A.: A new recursion-theoretic characterization of the
polytime functions. Comput. Complex. 2, 97–110 (1992). https://doi.org/10.1007/
BF01201998

3. Calude, C., Sântean, L.: On a theorem of günter asser. Math. Log. Q. 36(2), 143–
147 (1990)

4. Cobham, A.: The intrinsic computational difficulty of functions. In: Bar-Hillel, Y.
(ed.) Studies in Logic and the Foundations of Mathematics. In: Proceedings of the
1964 International Congress, North-Holland, pp. 24–30 (1965)

5. Cook, S.A., Kapron, B.M.: A survey of classes of primitive recursive functions.
Electron. Colloquium Comput. Complex. 1 (2017). https://eccc.weizmann.ac.il/
report/2017/001

6. von Henke, F.W., Rose, G., Indermark, K., Weihrauch, K.: On primitive recur-
sive wordfunctions. Computing 15(3), 217–234 (1975). https://doi.org/10.1007/
BF02242369

7. Khachatryan, M.H.: On generalized primitive recursive string functions. Math.
Probl. Comput. Sci. 43, 42–46 (2015)

8. Matiyasevich, Y.: Hilbert’s tenth problem and paradigms of computation. In:
Cooper, S.B., Löwe, B., Torenvliet, L. (eds.) CiE 2005. LNCS, vol. 3526, pp. 310–
321. Springer, Heidelberg (2005). https://doi.org/10.1007/11494645_39

9. Santean, L.: A hierarchy of unary primitive recursive string-functions. In: Das-
sow, J., Kelemen, J. (eds.) IMYCS 1990. LNCS, vol. 464, pp. 225–233. Springer,
Heidelberg (1990). https://doi.org/10.1007/3-540-53414-8_45

10. Soare, R.I.: Computability and incomputability. In: Cooper, S.B., Löwe, B., Sorbi,
A. (eds.) CiE 2007. LNCS, vol. 4497, pp. 705–715. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-73001-9_75

11. Vučkovi, V.: Recursive word-functions over infinite alphabets. Math. Log. Q. 13(2),
123–138 (1970)

https://doi.org/10.1007/3-540-18170-9_150
https://doi.org/10.1007/BF01201998
https://doi.org/10.1007/BF01201998
https://eccc.weizmann.ac.il/report/2017/001
https://eccc.weizmann.ac.il/report/2017/001
https://doi.org/10.1007/BF02242369
https://doi.org/10.1007/BF02242369
https://doi.org/10.1007/11494645_39
https://doi.org/10.1007/3-540-53414-8_45
https://doi.org/10.1007/978-3-540-73001-9_75

	On the Power of Recursive Word-Functions Without Concatenation
	1 Introduction
	2 Definitions
	3 First Constructions
	3.1 Word Manipulations
	3.2 Logical Functions
	3.3 Encoding and Pairing

	4 Primitive Recursion Without Concatenation
	4.1 Some Algebraic Languages Decided in
	4.2 Some Non-algebraic Languages Decided in

	5 Regular Languages are Decidable in with Multiple Recursion
	6 Conclusion
	References

