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Abstract. Unlabelled Necklaces are an equivalence class of cyclic words
under both the rotation (cyclic shift) and the relabelling operations. The
relabelling of a word is a bijective mapping from the alphabet to itself.
The main result of the paper is the first polynomial-time algorithm for
ranking unlabelled necklaces of a binary alphabet. The time-complexity
of the algorithm is O(n6 log2 n), where n is the length of the considered
necklaces. The key part of the algorithm is to compute the rank of any
word with respect to the set of unlabelled necklaces by finding three other
ranks: the rank over all necklaces, the rank over symmetric unlabelled
necklaces, and the rank over necklaces with an enclosing labelling. The
last two concepts are introduced in this paper.

1 Introduction

For classes of words under lexicographic (or dictionary) order, a unique integer
can be assigned to every word corresponding to the number of words smaller
than it. Such an integer is called the rank of a word. The ranking problem asks
to compute the rank of a given word. Ranking has been studied for various
objects including partitions [13], permutations [9,10], combinations [12], etc.

The ranking problem is straightforward for the set of all words over a finite
alphabet (assuming the standard lexicographic order), however this ceases to be
the case once additional symmetry is introduced. One such example is combina-
torial necklaces [6]. A necklace, also known as a cyclic word, is an equivalence
class of all words under the cyclic rotation operation, also known as a cyclic
shift. Necklaces are classical combinatorial objects and they remain an object of
study in other contexts such as total search problems [4] or circular splicing sys-
tems [3]. The first class of cyclic words to be ranked were Lyndon words - fixed
length aperiodic cyclic words - by Kociumaka et al. [7] who provided an O(n3)
time algorithm, where n is the length of the word. An algorithm for ranking
necklaces - fixed length cyclic words - was given by Kopparty et al. [8], without
tight bounds on the complexity. A quadratic algorithm for ranking necklaces was
provided by Sawada et al. [11]. More recently algorithms have been presented
for ranking multidimensional necklaces [1] and bracelets [2].

Our Results. This paper presents the first polynomial time algorithm for rank-
ing binary unlabelled necklaces. Informally, binary unlabelled necklaces can be
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though of as necklaces over a binary alphabet with the additional symmetry over
the relabelling operation, a bijection from the set of symbols to itself. Considered
in terms of binary values, the words 0001 and 1110 are equivalent under the rela-
belling operation, however 1010 and 1100 are not. We provide an O(n6 log2 n)
time algorithm for ranking an unlabelled binary necklace within the set of unla-
belled binary necklaces of length n.

2 Preliminaries

Let Σ be a finite alphabet. For the remainder of this work we assume Σ to be
{0, 1} where 0 < 1. We denote by Σ∗ the set of all words over Σ and by Σn

the set of all words of length n. The notation w̄ is used to clearly denote that
the variable w̄ is a word. The length of a word w̄ ∈ Σ∗ is denoted by |w̄|. We
use w̄i, for any i ∈ {1, . . . , |w̄|} to denote the ith symbol of w̄. Given two words
w̄, ū ∈ Σ∗, the concatenation operation is denoted by w̄ : ū, returning the word
of length |w̄| + |ū| where (w̄ : ū)i equals either w̄i, if i ≤ |w̄| or ūi−|w̄| if i > |w̄|.
The tth power of a word w̄, denoted by w̄t, equals w̄ repeated t times.

Let [n] be the ordered sequence of integers from 1 to n inclusive and let
[i, j] be the ordered sequence of integers from i to j inclusive. Given two words
ū, v̄ ∈ Σ∗, ū = v̄ if and only if |ū| = |v̄| and ūi = v̄i for every i ∈ [|ū|]. A
word ū is lexicographically smaller than v̄ if there exists an i ∈ [|ū|] such that
ū1ū2 . . . ūi−1 = v̄1v̄2 . . . v̄i−1 and ūi < v̄i. Given two words v̄, w̄ ∈ Σ∗ where
|v̄| �= |w̄|, v̄ is smaller than w̄ if v̄|w̄| < w̄|v̄| or v̄|w̄| = w̄|v̄| and |v̄| < |w̄|. For a
given set of words S, the rank of v̄ with respect to S is the number of words in
S that are smaller than v̄.

The subword of a cyclic word w̄ ∈ Σn denoted w̄[i,j] is the word ū of length
n + j − i + 1 mod n such that ūa = w̄i+a mod n, i.e. the word such that the ath

symbol of ū corresponds to the symbol at position i + a mod n of w̄. The value
of the tth symbol of w̄[i,j] is the value of the symbol at position i + t − 1 of w̄.
By this definition, given ū = w̄[i,j], the value of ūt is the i + t − 1th symbol of w̄
and the length of ū is |ū| = j − i + 1. The notation ū � w̄ denotes that ū is a
subword of w̄. Further, ū �i w̄ denotes that ū is a subword of w̄ of length i.

The rotation of a word w̄ ∈ Σn by r ∈ [0, n − 1] returns the word w̄[r+1,n] :
w̄[1,r], and is denoted by 〈w̄〉r, i.e. 〈w̄1w̄2 . . . w̄n〉r = w̄r+1 . . . w̄nw̄1 . . . w̄r. Under
the rotation operation, the word ū is equivalent to the word v̄ if v̄ = 〈ū〉r for
some r. A word w̄ is periodic if there is a subword ū � w̄ and integer t ≥ 2
such that ūt = w̄. Equivalently, word w̄ is periodic if there exists some rotation
0 < r < |w̄| where w̄ = 〈w̄〉r. A word is aperiodic if it is not periodic. The period
of a word w̄ is the aperiodic word ū such that w̄ = ūt.

A necklace is an equivalence class of words under the rotation operation. The
notation w̃ is used to denote that the variable w̃ is a necklace. Given a necklace
w̃, the canonical representation of w̃ is the lexicographically smallest element of
the set of words in the equivalence class w̃. The canonical representation of w̃ is
denoted by 〈w̃〉, and the rth shift of the canonical representation is denoted by
〈w̃〉r. Given a word w̄, 〈w̄〉 denotes the canonical representation of the necklace
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containing w̄, i.e. the canonical representation of the necklace ũ where w̄ ∈ ũ.
The set of necklaces of length n over an alphabet of size q is denoted by Nn

q .
Let w̄ ∈ Nn

q denote that the word w̄ is the canonical representation of some
necklace w̃ ∈ Nn

q . An aperiodic necklace, known as a Lyndon word, is a necklace
representing the equivalence class of some aperiodic word. Note that if a word is
aperiodic, then every rotation of the word is also aperiodic. The set of Lyndon
words of length n over an alphabet of size q is denoted by Ln

q .
As both necklaces and Lyndon words are classical objects, there are many

fundamental results regarding each objects. The first results for these objects
were equations determining the number of necklaces or Lyndon words of a
given length. The number of (1D) necklaces is given by the equation |Nn

q | =
1
n

∑

d|n
φ

(
n
d

)
qd where φ(n) is Euler’s totient function [6]. Similarly the number of

Lyndon words is given with the equation |Ln
q | =

∑

d|n
μ

(
n
d

) |N d
q |, where μ(x) is the

Möbius function [6]. The rank of a word w̄ in the set of necklaces Nn
q is the

number of necklaces with a canonical representation smaller than w̄.

2.1 Unlabelled Necklaces

An unlabelled necklace is a generalisation of the set of necklaces. At a high level,
two words v̄, ū ∈ Σn belong to the same unlabelled necklace class w̃ if there
exists some labelling function ψ(x) : Σ 	→ Σ and rotation r ∈ [n] such that
(〈v̄〉r)i = ψ(ūi) for every i ∈ [n]. More formally, let ψ(x) be a bijection from
Σ into Σ, i.e. a function taking as input some symbol in Σ and returning a
symbol in Σ such that {ψ(x)|∀x ∈ Σ} = Σ. For notation ψ(w̄) is used to denote
the word constructed by applying ψ(x) to every symbol in w̄ in order, formally
ψ(w̄) = ψ(w̄1)ψ(w̄2) . . . ψ(w̄n). Similarly, the notation ψ(w̃) is used to denote the
necklace class constructed by applying ψ(w̄) to every word w̄ ∈ w̃. Further, let
Ψ(Σ) be the set of all such functions. The unlabelled necklace w̃ with a canonical
representation w̄ contains every word v̄ ∈ Σn where ψ(〈v̄〉r) = w̄ for some
ψ(x) ∈ Ψ(Σ) and r ∈ [n]. As in the labelled case, the canonical representation
of an unlabelled necklace w̃, denoted 〈w̃〉, is the lexicographically smallest word
in the equivalence class. The set of unlabelled q-arry necklaces of length n is
denoted N̂n

q , and the set of q-arry Lyndon words of length n L̂n
q .

In this paper we study binary unlabelled necklaces, in other words unlabelled
necklaces restricted to a binary alphabet. In this case Σ = {0, 1} and Ψ(Σ)
contains the identity function I(x), where I(x) = x, and the swapping function

S(x) where S(x) =

{
0 x = 1
1 x = 0

. Gilbert and Riordan [5] provide the following

equations for computing the sizes of N̂n
2 and L̂n

2 :
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|N̂n
2 | =

∑
odd d|n

φ(d)2n/d

|L̂n
2 | =

∑
odd d|n

μ(d)2n/d

In this paper we introduce two subclasses of unlabelled necklaces, the class of
symmetric unlabelled necklaces and the class of enclosing unlabelled necklaces for
some given word w̄. Observe that a binary unlabelled necklace w̃ may correspond
to either one or two (labelled) necklaces. Informally, a symmetric unlabelled
necklaces is such an unlabelled necklaces that corresponds to only a single neck-
lace. An enclosing unlabelled necklace relative to a word w̄ is a non-symteric
unlabelled necklace corresponding to a pair of necklaces ṽ and ũ such that
ṽ < w̄ < ũ. Any Lyndon word that is a symmetric unlabelled necklace is a sym-
metric unlabelled Lyndon word, and any unlabelled Lyndon word that encloses
a word w̄ is an enclosing unlabelled Lyndon word of w̄.

Definition 1 (Symmetric Necklaces). A binary necklace w̃ is symmetric if
and only if w̃ = S(w̃).

Definition 2 (Enclosing Unlabelled Necklaces). An unlabelled necklace ũ
encloses a word w̄ if 〈ũ〉 < w̄ < 〈S(ũ)〉. An unlabelled necklace ũ is an enclosing
unlabelled necklace of w̄ if ũ encloses w̄.

2.2 Bounding Subwords

One important tool that is used in the ranking of unlabelled necklaces are bound-
ing subwords, introduced in [2]. Informally, bounding subwords of length l ≤ n
provide a means to partition Σl into n + 2 sets based on the subwords of some
w̄ ∈ Σn of length l. Given two subwords v̄, ū �l w̄ such that v̄ < ū the set
S(v̄, ū) contains all words in Σl that are between the value of v̄ and ū, formally
S(v̄, ū) = {x̄ ∈ Σl|v̄ ≤ x̄ < ū}. In this paper we are only interested in sets
between pairs v̄, ū �l w̄ where there exists no s̄ �l w̄ such that v̄ < s̄ < ū. As
such, we define a subword of w̄ as bounding some word v̄ if it is the lexicograph-
ically largest subword of w̄ that is smaller than v̄.

Definition 3 (Bounding Subwords). Let w̄, v̄ ∈ Σ∗ where |w̄| ≤ |v̄|. The
word w̄ is bounded (resp. strictly bounded) by s̄ �|w̄| v̄ if s̄ ≤ w̄ (resp. s̄ < w̄)
and there is no ū �|w̄| v̄ such that s̄ < ū ≤ w̄.

Proposition 1 ([2]). Let v̄ ∈ Σn. The array WX[s̄ � v̄, x ∈ Σ], such that
WX[s̄, x] strictly bounds w̄ : x for every w̄ strictly bounded by s̄, can be computed
in O(k · n3 · log(n)) time where |Σ| = k.

For the remainder of this paper, we can assume that the array WX has been
precomputed for every s̄ � v̄, x ∈ Σ. Note that in our case k = 2, therefore the
process of computing WX requires only O(n3 · log(n)) time.
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3 Ranking

In this section we present our ranking algorithm. For the remainder of this
section, we assume that we are ranking the word w̄ that is the canonical repre-
sentation of the binary unlabelled necklace w̃. We first provide an overview of
the main idea behind our ranking algorithm.

Theorem 1. Let RankAN(w̄,m) be the rank of the word w̄ ∈ Σn within the
set of non-symmetric unlabelled necklaces of length n that do not enclose w̄,
let RankSN(w̄,m) be the rank of w̄ within the set of symmetric necklaces of
length m and let RankEN(w̄,m) be the rank of w̄ within the set of necklaces
of length m that enclose w̄. The rank of any necklace w̃ represented by the
word w̄ within the set of binary unlabelled necklaces of length m is given by
RankAN(w̄,m) + RankSN(w̄,m) + RankEN(w̄,m). Further the rank can be
found in O(n6 log2 n) time for any m ≤ n.

Proof. Observe that every unlabelled necklace must be one of the above classes.
Therefore the rank of w̄ within the set of all binary unlabelled necklaces of length
m is given by RankAN(w̄,m) + RankSN(w̄,m) + RankEN(w̄,m). Lemma 1
shows that the rank of w̄ within the set of non-symmetric unlabelled necklaces
of length m that do not enclose w̄ can be found in O(n6 log2(n)) time. Theorem
2 shows that the rank of w̄ within the set of symmetric necklaces can be found
in O(n6 log2 n) time. Theorem 3 shows that the rank of w̄ within the set of
necklaces enclosing w̄ can be found in O(n6 log n) time.

Lemma 1. Let RankAN(w̄,m) be the rank of w̄ within the set of non-
symmetric unlabelled necklaces of length m that do not enclose w̄, and let
RankN(w̄,m) be the rank of w̄ within the set of all necklaces of length m. Then
RankAN(w̄,m) = (RankN(w̄,m)−RankSN(w̄,m)−RankEN(w̄,m))/2. Fur-
ther, this rank can be found in O(n6 log2 n) time for any m ≤ n.

Proof. Note that any asymmetric unlabelled necklace appears exactly twice
in the set of necklaces smaller than w̄. Further, any enclosing or symmetric
necklace appears exactly once in the same set. Therefore RankAN(w̄,m) =
RankN(w̄,m)−RankSN(w̄,m)−RankEN(w̄,m)

2 . As the value of RankN(w̄,m) can be
found in O(n2) time using the algorithm due to Sawada and Williams [11], the
value of RankSN(w̄,m) found in O(n6 log2 n) time from Theorem 2, and the
of RankEN(w̄,m) found in O(n6 log n) time from Theorem 3, the total time
complexity is O(n6 log2 n).

4 Symmetric Necklaces

In this section we show how to rank a word w̄ within the set of symmetric neck-
laces of length m. Before presenting our computational tools, we first introduce
the key theoretical results that form the basis for our ranking approach. The key
observation is that any symmetric necklace ṽ must have a period of length 2 · r
where r is the smallest rotation such that 〈ṽ〉r = S(〈ṽ〉). This is formally proven
in Proposition 2, and restated in Observation 1 in terms of Lyndon words.
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Proposition 2. A necklace w̃ represented by the word w̄ ∈ Σn is symmetric if
and only if there exists some r ∈ [n] s.t. w̄i = S(w̄i+r mod n) for every i ∈ [n].
Further, the period of w̄ equals 2 · r where r ∈ [n] is the smallest rotation such
that 〈w̄〉r = S(w̄).

Proof. As w̃ is symmetric, S(w̄) must belong to the necklace class w̃. There-
fore, there must be some rotation r such that 〈w̄〉r = S(w̄). We now claim
that r ≤ n

2 . Assume for the sake of contradiction that r > n
2 . Then w̄i =

S(w̄i+r mod n) = w̄i+2r mod n = . . . = w̄i+2·k·r mod n = S(w̄i+(2·k+1)r mod n). As
r > n

2 this sequence must imply that either w̄i = S(w̄i), an obvious contra-
diction, or that there exists some smaller value p = GCD(n, r) ≤ n

2 such that
w̄i = S(w̄i+p mod n). Further, w̄ must have a period of at most 2 · r.

Assume now that r is the smallest rotation such that 〈w̄〉r = S(w̄) and
for the sake of contradiction further assume that the period of w̄ is p < r.
Then, as w̄i = w̄i+p mod n for every i ∈ [n], w̄i+r mod n = w̄i+r−p mod n, hence
w̄i = S(w̄i+r−p mod n), contradicting the initial assumption. The period can not
be equal to the value of r as by definition w̄i = S(w̄i+r mod n). Assume now
that the period p of w̄ is between r and 2 · r. As w̄i = w̄i+c·p+2k·r mod n for
every c, k ∈ N and i ∈ [n]. Further both r and p must be less than n

2 . Therefore
w̄i = w̄i+((n/p)−1)p+2·r mod n = ¯i + 2 · r − p mod n and hence w̄ is periodic in
2 · r − p. As p > r, 2 · r − p < r, however as no such period can exist, this leads
to a contradiction. Therefore, 2 · r is the smallest period of w̄.

Lemma 2. Let RA(w̄,m, S, r) contain the set of words belonging to an sym-
metric necklace smaller than w̄ such that v̄i = S(v̄i+r mod m) for every v̄ ∈
RA(w̄,m, S, r). Further let RB(w̄,m, S, r) ⊆ RA(w̄,m, S, r) contain the set of
words belonging to an symmetric Lyndon word smaller than w̄ such that r is the
smallest value for which v̄i = S(v̄i+r mod m) for every v̄ ∈ RB(w̄,m, S, r). The
size of RB(w̄,m, S, r) is given by:

|RB(w̄,m, S, r)| =
∑
p|r

μ

(
m

p

)
|RA(w̄,m, S, p)|

Proof. Observe that every word in RA(w̄,m, S, r) must have a unique period
which is a factor of 2 · r. Therefore, the size of RA(w̄,m, S, r) can be expressed
as

∑
d|r

|RB(w̄,m, S, r)|. Applying the Möbius inversion formula to this equation

gives |RB(w̄,m, S, r)| =
∑
p|r

μ
(

m
p

)
|RA(w̄,m, S, p)|.

Observation 1. Observe that any symmetric Lyndon word ṽ must have length
2 · r, where r is the smallest rotation such that 〈v̄〉r = S(〈v̄〉).
Lemma 3. Let RankSL(w̄, 2 · r) be the rank of w̄ within the set of sym-
metric Lyndon words of length 2 · r. The value of RankSL(w̄, r) is given by
|RB(w̄,2·r,S,r)|

2·r .
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Proof. Observe that any symmetric Lyndon word has exactly 2 · r unique trans-
lations. Further, as any word in RB(w̄, 2·r, S, r) must correspond to an aperiodic
word, following Observation 1, the size of RB(w̄, 2 · r, S, r) can be used to find
RankSL(w̄, 2ṙ) by dividing the cardinality of RB(w̄, 2 · r, S, r) by 2 · r.

Lemma 4. Let RankSN(w̄,m, r) be the rank of w̄ within the set of symmet-
ric necklaces of length m such that for each such necklace ṽ, r is the smallest
rotation such that 〈ṽ〉r = S(〈ṽ〉). The value of RankSN(w̄,m, r) is given by∑
d|2r

RankSL(w̄, d).

Proof. Following the same arguments as in Lemma 2, observe that every neck-
lace counted by RankSN(w̄,m, r) must have a period that is a factor of 2 · r.
Therefore, the value of RankSN(w̄,m, r) is given by

∑
d|2r

RankSL(w̄, d).

Lemma 5. Let RankSN(w̄,m) be the rank of w̄ within the set of symmetric
necklaces of length m and let RankSN(w̄,m, r) be the rank of w̄ within the set
of symmetric necklaces of length m such that for each such necklace ṽ, r is the
smallest rotation such that 〈ṽ〉r = S(〈ṽ〉). The value of RankSN(w̄,m) is given
by

∑
r|(m/2)

RankSN(w̄,m, r).

Proof. Observe that every necklace counted by RankSN(w̄,m) must have a
unique translation that is the minimal translation under which it is symmetric.
Further this translation must be a factor of m

2 . Therefore RankSN(w̄,m) =∑
r|(m/2)

RankSN(w̄,m, r).

Following Lemmas 2, 3, 4, and 5 the main challenge in computing
RankSN(w̄,m) is computing the size of RA(w̄,m, S, r). In order to do so,
RA(w̄,m, S, r) is partitioned into two sets, α(w̄, r, j) and β(w̄, r, j) where j ∈ [r].
Let v̄ be some arbitrary word in the set RA(w̄,m, S, r). The set α(w̄, r, j) con-
tains the word v̄ if j is the smallest rotation under which 〈v̄〉j ≤ w̄. The set
β(w̄, r, j) contains v̄ if j is the smallest rotation under which 〈v̄〉j ≤ w̄ and
〈v̄〉t > w̄ for every t ∈ [r + 1, 2 · r]. Note that by this definition, β(w̄, r, j) ⊆
α(w̄, r, j).

Observation 2. Given any word v̄ ∈ RA(w̄,m, S, r) such that v̄ /∈ α(w̄, r, j)
for any j ∈ [r], there exists some j′ ∈ [r] for which 〈v̄〉r ∈ β(w̄, r, j′).

Proof. As v̄ ∈ RA(w̄,m, S, r), there must be some rotation t such that 〈v̄〉t < w̄.
As v̄ /∈ α(w̄, r, j), t must be greater than r. Therefore, 〈v̄〉r must belong to
β(w̄, r, t − r) confirming the observation.

Observation 3. For any v̄ ∈ β(w̄, r, j), 〈v̄〉r /∈ α(w̄, r, j′) for any j′ ∈ [r].

Proof. As v̄ ∈ β(w̄, r, j), for any rotation t > r, 〈v̄〉t > w̄. Therefore 〈v̄〉t /∈
α(w̄, r, j′) for any j′ ∈ [r].
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Combining Observations 2 and 3, the size of RA(w̄,m, S, r) can be given in terms
of the sets α(w̄, r, j) and β(w̄, r, j) as

∑
j∈[r]

|α(w̄, r, j)|+|β(w̄, r, j)|. The remainder

of this section is laid out as follows. We first provide a high level overview of
how to compute the size of α(w̄, r, j). Then we provide a high level overview
on computing the size of β(w̄, r, j). Finally, we state Theorem 2, summarising
the main contribution of this section and showing that RankSN(w̄,m) can be
computed in at most O(n6 log2 n) time.

Computing the size of α(w̄, r, j). We begin with a formal definition of α(w̄, r, j).
Let α(w̄, r, j) ⊆ RA(w̄,m, S, r) be the subset of words in RA(w̄,m, S, r)
such that for every word v̄ ∈ α(w̄, r, j), j is the smallest rotation for which
〈v̄〉j ≤ w̄. Note that if j is the smallest rotation such that 〈v̄〉j ≤ w̄, the
first j symbols of v̄ must be such that for every j′ ∈ [j − 1], v̄[j′,2r] > w̄. Let
A(w̄, p, B̄, i, j, r) ⊆ α(w̄, r, j) be the set of words of length 2 · r such that every
word v̄ ∈ A(w̄, p, B̄, i, j, r):

1. 〈v̄〉s > w̄ for every s ∈ [j − 1].
2. 〈v̄〉j < w̄.
3. v̄[1,r] = S(v̄[r+1,2·r]).
4. The subword v̄[r+1,r+i] is strictly bound by B̄ �i w̄.
5. The subword v̄[i−p,i] = w̄[1,p].

Rather than computing the size of A(w̄, p, B̄, i, j, r) directly, we are instead
interested in the number of unique suffixes of length r − i of the words
in A(w̄, p, B̄, i, j, r). Note that as every word in A(w̄, p, B̄, i, j, r) belongs to
a symmetric necklace, the number of possible suffixes on length r − i of
words in A(w̄, p, B̄, i, j, r) equals the number of unique subwords of words in
A(w̄, p, B̄, i, j, r) between position i + 1 and r. Let SA(w̄, p, B̄, i, j, r) be a func-
tion returning the number of unique suffixes of length r − i of the words within
A(w̄, p, B̄, i, j, r). The value of SA(w̄, p, B̄, i, j, r) is computed in a dynamic man-
ner relaying on a key structural proposition regarding A(A(w̄, p, B̄, i, j, r)).

Proposition 3. Given v̄ ∈ A(w̄, p, B̄, i, j, r), such that v̄[i−s,i+1] ≥ w̄[1,s] for
every s ∈ [i], v̄ also belongs to A(w̄, p′,WX[B̄, v̄i+1], i + 1, j, r) where p′ = p + 1
if v̄i+1 = w̄p+1 and 0 otherwise.

Proof. By definition, if v̄ ∈ A(w̄, p, B̄, i, j, r) then there must exists some p′ ∈
[i + 1], and B̄ �i w̄ such that v̄ ∈ A(w̄, p′, B̄′, i, j, r). From Proposition 1, the
value of B̄′ = WX[B̄, S(v̄i+1)]. Further v̄i+1 ≥ w̄p+1 as otherwise v̄[i−p,i+1] <
w̄[1,p+1], contradicting the original assumption. If v̄i+1 = w̄p+1 then p′ = p + 1
by definition. Otherwise p′ = 0 as v̄[i−s,i+1] > w̄[1,s+1].

Corollary 1. Let v̄, ū ∈ A(w̄, p, B̄, i, j, r) be a pair of words and let v̄′ = ū[1,i] :
v̄[i+1,r] : S(v̄[1,i] : ū[i+1,r]). Then v̄′ ∈ A(w̄, p′,WX[B̄, v̄i+1], i+1, j, r) if and only
if v̄ ∈ A(w̄, p′,WX[B̄, v̄i+1], i + 1, j, r).
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Proposition 3 and Corollary 1 provide the basis for computing the value of
SA(w̄, p, B̄, i, j, r). This is done by considering 4 cases based on the value of i
relative to the values of j and r which we will sketch bellow. The key observation
behind this partition is that the value of the symbol at position i+1 is restricted
differently depending on the values of i, j, r and p.

If i < j, then v̄i+1 must be greater than or equal to w̄p+1 for every
v ∈ A(w̄, p, B̄, i, j, r), to avoid a contradiction caused by there being a rotation
smaller than j for which v̄ is smaller than w̄. This gives two cases. If w̄p = 1 then
the only possible value of v̄i+1 is 1 and therefore the value of SA(w̄, p, B̄, i, j, r) is
equal to the value SA(w̄, p + 1,WX[B̄, 0], i + 1, j, r). Alternatively, if w̄p+1 = 0,
then v̄i+1 can be either 0 or 1. The number of suffixes of length r − i of words
in A(w̄, p, B̄, i, j, r) where the symbol at position i + 1 is 0 equals the value of
SA(w̄, p+1,WX[B̄, 1], i+1, j, r). The number of suffixes of length r− i of words
in A(w̄, p, B̄, i, j, r) where the symbol at position i + 1 is 1 equals the value of
SA(w̄, 0,WX[B̄, 0], i + 1, j, r). Therefore, if i < j and w̄p+1 = 0, the value of
SA(w̄, p, B̄, i, j, r) is SA(w̄, p + 1,WX[B̄, 1], i + 1, j, r) + SA(w̄, 0,WX[B̄, 0], i +
1, j, r).

If i = j then the value of v̄i+1 depends on the value of p for every v̄ ∈
A(w̄, p, B̄, i, j, r). In order for j to be the smallest rotation for which v̄ is smaller
than w̄, the value of p must be 0, as otherwise the rotation by j − p would be a
smaller rotation for which v̄ is smaller than w̄. Hence, if p > 0,A(w̄, p, B̄, i, j, r) =
∅ and by extension SA(w̄, p, B̄, i, j, r) = 0. If p = 0 and i = j, then the value of
v̄i+1 must be 0, as otherwise the rotation by r leads to a word that is greater
than w̄. Therefore, when p = 0 and i = r, the value of SA(w̄, p, B̄, i, j, r) is
exactly equal to the value SA(w̄, 1,WX[B̄, 1], i + 1, j, r) of length r − i − 1.

If j < i < r and p < i − j, then the rotation of v̄ ∈ A(w̄, p, B̄, i, j, r)
by j leads to a word smaller than w̄ regardless of the value of v̄i+1, and hence
SA(w̄, p, B̄, i, j, r) = 2r−i, corresponding to the set of all possible words of length
i − r over the binary alphabet. If j < i < r and p = i − j, then the symbol
at position i + 1 must be less than or equal to w̄p+1, therefore the value of
SA(w̄, p, B̄, i, j, r) of length r − i is determined by the value of w̄p+1. If w̄p+1 =
0 then the value of v̄i+1 must be 0 to avoid a contradiction, and hence the
value of SA(w̄, p, B̄, i, j, r) equals the value of SA(w̄, p+1,WX[B̄, 1], i+1, j, r).
Otherwise, if w̄p+1 = 1 then the value of v̄i+1 can be either 0 or 1. Any word in
A(w̄, p, B̄, i, j, r) where the symbol at position i + 1 is 0 will be smaller than w̄
after being rotated by j regardless of the value of the symbols at position i+2 to
r. Therefore, the number of suffixes of length r − i of words in A(w̄, p, B̄, i, j, r)
where the symbol at position i+1 is 0 is 2r−i−2. Further, the number of suffixes
of length r − i of words in A(w̄, p, B̄, i, j, r) where the symbol at position i + 1
is 1 is equal to the value of SA(w̄, p + 1,WX[B̄, 0], i + 1, j, r).

Finally, if i = r then the number of unique zero length suffixes of words in
A(w̄, p, B̄, i, j, r) is determined by the value of p and B̄. If p < i − j, then for
every v̄ ∈ A(w̄, p, B̄, i, j, r), the rotation of v̄ by j is less than w̄ regardless of
the value of B̄. Therefore the number of possible suffixes of length 0 of words
in A(w̄, p, B̄, i, j, r) is 1, representing the empty word. On the other hand, if
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p = i − j, then the number of possible suffixes of length 0 can be determined
by the value of B̄. Note that the rotation of any word in A(w̄, p, B̄, i, j, r) by
j is less than w̄ if and only if w̄[1,p] : B̄ < w̄[1,p+r]. Therefore the value of
SA(w̄, p, B̄, i, j, r) is either 1, if w̄[1,p] : B̄ < w̄[1,p+r], or 0 otherwise.

Lemma 6. The value of SA(w̄, p, B̄, i, j, r) can be computed in O(n3) time.

Proof (Sketch). Following the outline given above, the value of SA(w̄, p, B̄, i, j, r)
is computed in a dynamic manner, starting with i = r as a base case,
and progressing in descending value of i. For each value of i, the value of
SA(w̄, p, B̄, i, j, r) is computed for every B̄ �i w̄, and p ∈ [1, i] if i ≤ j, or
p = i − j if i > j. For i = r, the value of SA(w̄, i − j, B̄, i, j, r) can be computed
in O(n) time for every B̄ �i w̄. For i < r the value of SA(w̄, p, B̄, i, j, r) can be
computed in O(1) time provided the value of SA(w̄, p′, B̄′, i + 1, j, r) has been
precomputed for every p′ ∈ {p+1, 0} and B̄′ �i+1 w̄. As there are only n values
of B̄ �r w̄ to consider in the base case, and at most O(n3) total possible value
of i, p ∈ [r], B̄ �i w̄, the total complexity of this process is O(n3).

Lemma 7. The size of α(w̄, j, r) can be computed in O(n4) time.

Proof. From Lemma 6, the value of SA(w̄, p, B̄, i, j, r) can be computed in O(n3)
time for any value of i, p ∈ [n] and B̄ �i w̄. Note that SA(w̄, 0, ∅, 0, j, r) allows
us to count the number of words v̄ ∈ α(w̄, j, r) where v̄[r+1,r+i] �� w̄ for every
i ∈ [r], or equivalently, where S(v̄[1,i]) �� w̄. To compute the remaining words,
let ū �i−1 w̄ and let x ∈ {0, 1} be a symbol such that ū : x �� w̄. Further let
B̄ �i w̄ be the subword of w̄ strictly bounding ū : x and let p be the length
of the longest suffix of S(ū : x) that is a prefix of w̄, i.e. the largest value such
that S(ū : x)[i−p:i] = w̄[1,p]. Observe that S(ū : x)[1,p] is the prefix of some word
v̄ ∈ α(w̄, j, r) if and only if one of the following holds:

– if i < r then (ū : x)[i−s,i] > w̄[1,s] for every s ∈ [p + 1, i].
– if i = r then p = 0.
– if i > r then p = i − r.

As each condition can be checked in at most O(n) time, and there are at most
O(n2) subwords of w̄, it is possible to check for every such subword if it is a
prefix of some word in A(w̄, p, B̄, i, j, r) in O(n3) time. Following Corollary 1,
the number of suffixes of each word in A(w̄, p, B̄, i, j, r) is equal to the value of
SA(w̄, p, B̄, i, j, r). By precomputing SA(w̄, p, B̄, i, j, r), the number of words in
α(w̄, j, r) with ū : x as a prefix can be computed in O(1) time. Therefore the
total complexity of computing the size of α(w̄, j, r) is O(n3).

Computing the Size of β(w̄, r, j). We start by subdividing β(w̄, r, j) into the
subsets B(w̄, pf , pb, B̄f , B̄b, i, j, r). Let B(w̄, pf , pb, B̄f , B̄b, i, j, r) ⊆ β(w̄, r, j) be
the subset of β(w̄, r, j) containing every word v̄ ∈ β(w̄, r, j) where v̄ satisfies:

1. v̄[1,r] = S(v̄[r+1,2·r]).
2. The first i symbols of v̄ are strictly bound by B̄f �i w̄ (B̄f standing for

bounding the front).
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3. The subword v̄[r+1,r+i] is strictly bound by B̄b �i w̄ (B̄b standing for
bounding the back).

4. The subword v̄[i−pf ,i] = w̄[pf ] (pf standing for the front prefix).
5. the subword v̄[r+i−pb,r+i] = w̄[pb] (pb standing for the back prefix).

Proposition 4. Given v̄ ∈ B(w̄, pf , pb, B̄f , B̄b, i, j, r), where v̄[i−s,i+1] ≥ w̄[1,s]

for every s ∈ [i], v̄ also belongs to B(w̄, p′
f , p′

b,XW [B̄f , v̄i+1],XW [B̄b,
S(v̄i+1)], i, j, r) where p′

f = pf +1 if v̄i+1 = wpf+1 or 0 otherwise, and p′
b = pb+1

if S(v̄i+1) = w̄pb+1, and 0 otherwise.

Proof. Following the same arguments as Proposition 3, observe that v̄[1,i+1] is
bound by XW [B̄f , v̄i+1] and S(v̄[1,i+1]) is bound by XW [B̄b, S(v̄i+1)]. Similarly,
the value of p′

f is pf + 1 if and only if v̄i+1 = w̄pf+1, and must be 0 otherwise.
Further the value of p′

b is pb + 1 if and only if S(v̄i+1) = w̄pb+1, and 0 otherwise.

Corollary 2. Let v̄, ū ∈ B(w̄, pf , pb, B̄f , B̄b, i, j, r) be a pair of words and let
v̄′ = ū[1,i] : v̄[i+1,r] : S(v̄[1,i] : ū[i+1,r]). Then v̄′ ∈ B(w̄, p′

f , p′
b, B̄f

′
, B̄b

′
, i, j, r) if

and only if v̄ ∈ B(w̄, p′
f , p′

b, B̄f
′
, B̄b

′
, i, j, r).

Proposition 4 and Corollary 2 are used in an analogous manner the
Proposition 3. As before, the goal is not to directly compute the size of
B(w̄, pf , pb, B̄f , B̄b, i, j, r), but rather to compute the number of suffixes of length
r−i of the words therein. To that end, let SB(w̄, pf , pb, B̄f , B̄b, i, j, r) be the num-
ber of unique suffixes of length r − i of words in B(w̄, pf , pb, B̄f , B̄b, i, j, r). Note
that the number of suffixes of length r − i of words in B(w̄, pf , pb, B̄f , B̄b, i, j, r)
equals the number of unique subwords between positions i+1 and r of the words
B(w̄, pf , pb, B̄f , B̄b, i, j, r). Additionally, note that following Corollary 2, the size
of B(w̄, pf , pb, B̄f , B̄b, i, j, r) can be computed by taking the product of the num-
ber of unique prefixes of words in B(w̄, pf , pb, B̄f , B̄b, i, j, r), and the number of
unique suffixes of words in B(w̄, pf , pb, B̄f , B̄b, i, j, r). The process of computing
the number of such suffixes is divided into four cases based on the values of i, j
and r.

When i < j, for every word v̄ ∈ B(w̄, pf , pb, B̄f , B̄b, i, j, r), vi+1 must be
greater than or equal to w̄pf+1 to avoid there being a rotation less than j for
which v̄ is less than w̄. Further, the value of the relabelling of v̄i+1 must be
greater than or equal to w̄pb+1 to avoid any rotation in [r + 1, 2 · r] being less
than w̄. Therefore, the symbol at position i + 1 can be 0 if and only if w̄pf+1 =
0, and can be 1 if and only if w̄pb+1 = 0. The number of suffixes of length
r − i of words in B(w̄, pf , pb, B̄f , B̄b, i, j, r) where the symbol at position i + 1
is 0 is equal to the value of SB(w̄, p′

f , p′
b,XW [B̄f , 0],XW [B̄b, 1], i, j, r), and the

number of suffixes where the symbol at position i + 1 is 1 is equal to the value
of SB(w̄, p′

f , p′
b,XW [B̄f , 1],XW [B̄b, 0], i, j, r).

When i = j, then the value of SB(w̄, pf , pb, B̄f , B̄b, i, j, r) depends pri-
marily on the value of pf . If pf > 0, then as 〈v〉j < w̄ for every v ∈
B(w̄, pf , pb, B̄f , B̄b, i, j, r), 〈v〉j−pf

< w̄, contradicting the assumption that j
is the smallest rotation for which v̄ is smaller than w̄. Hence, if pf > 0, then the
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set B(w̄, pf , pb, B̄f , B̄b, i, j, r) must be empty and by extension have no suffixes
of length r− i. If pf = 0 then as w̄1 = 0, the symbol v̄i+1 must be 0 for every v̄ ∈
B(w̄, pf , pb, B̄f , B̄b, i, j, r). Therefore, the value of SB(w̄, pf , pb, B̄f , B̄b, i, j, r) is
exactly equal to the value of SB(w̄, 1, p′

b, ,XW [B̄f , 0],WX[B̄b, 1], i + 1, j, r) of
length r − i − 1.

To count the number of suffixes of length r − i when i > j, an auxiliary,
technical set Y(w̄, i, pb, B̄f ) is introduced. Informally, Y(w̄, i, pb, B̄f ) contains
the set of words of length i such that every pair of words ū ∈ Y(w̄, r − i, pb, B̄f )
and v̄ ∈ B(w̄, pf , pb, B̄f , B̄b, r−i, j, r), every suffix of the word S(v̄[1,r−i] : u) : B̄f

of length at least r is greater than the prefix of w̄ of the same length. In other
words, Y(w̄, i, pb, B̄f ) contains the set of words that can be appended to prefixes
of B(w̄, pf , pb, B̄f , B̄b, r−i, j, r) while maintaining the condition that any rotation
by more than r results in a word strictly greater than w̄. Treating the method of
counting Y(w̄, i, pb, B̄f ) as a black box, the number of suffixes of length i − r in
B(w̄, pf , pb, B̄f , B̄b, i, j, r) when pf < i−j is exactly the size of Y(w̄, i, pb, B̄f ). If
pf = i− j, then the observe that every word v̄ ∈ B(w̄, pf , pb, B̄f , B̄b, i, j, r) must
satisfy the conditions that v̄i+1 ≤ w̄pf+1 and S(v̄i+1) ≥ w̄pb+1. If w̄pf+1 = 1 and
w̄pb+1 = 1 then v̄i+1 must be 0, giving a total of |Y(w̄, r−i−1, pb+1,WX[B̄f , 0])|
suffixes of length r − i. If w̄pf+1 = 1 and w̄pb+1 = 0 then there are |Y(w̄, r −
i − 1, 0,WX[B̄f , 0])| suffixes of length r − i where the first symbol is 0, and
the number of r − i length suffixes where the first symbol equals 1 is equal to
the value of SB(w̄, pf + 1, pb + 1,WX[B̄f , 1],WX[B̄b, 0], i + 1, j, r). If w̄pf+1 =
0 then v̄i+1 must be 0, and hence the value of SB(w̄, pf , pb, B̄f , B̄b, i, j, r) is
SB(w̄, pf + 1, p′

b,WX[B̄f , 0],WX[B̄b, 1], i + 1, j, r).
When i = r, the number of zero length suffixes of B(w̄, pf , pb, B̄f , B̄b, i, j, r)

is either 0, if w̄[1,pf ] : B̄f ≥ w̄[1,pf+r], or 1 otherwise.

Lemma 8. The size of β(w̄, j, r) can be computed in O(n5) time.

Proof (Sketch). The size of β(w̄, j, r) is computed in an analogous manner to
the size of α(w̄, j, t) as shown in Lemma 7. This is done by computing the size
value of SB(w̄, pf , pb, B̄f , B̄b, i, j, r) using the layout given above.

The value of SB(w̄, pf , pb, B̄f , B̄b, i, j, r) can be computed in O(n) time if
i = r, and O(1) time if i < r and the size of SB(w̄, p′

f , p′
b, B̄f

′
, B̄b

′
, i+1, j, r) has

been precomputed for every p′
f ∈ {0, pf + 1}, pb ∈ {0, pb + 1} and B̄b

′
, B̄f

′ �i w̄.
As there are at most O(n4) possible values of pf , pb ∈ [r] and B̄b, B̄f �r w̄, the
value of SB(w̄, pf , pb, B̄f , B̄b, r, j, r) can be computed for every pf , pb ∈ [r] and
B̄b, B̄f �r w̄ in O(n5) time. Similarly, as there are at most O(n5) possible values
of i ∈ [r], pf , pb ∈ [i] and B̄b, B̄f �i w̄, the value of SB(w̄, pf , pb, B̄f , B̄b, i, j, r)
can be computed in O(n5) time for every value of i ∈ [r], pf , pb ∈ [i] and
B̄b, B̄f �i w̄.

Note that the set B(w̄, pf , pb, B̄f , B̄b, i, j, r) does not include the words in
β(w̄, r, j) with a prefix that is a subword of w̄. The number of such words can
be computed in a brute force manner by finding the length of the longest prefix
that is a subword of w̄, and determining the number of possible suffixes. The
number of such suffixes are counted in using SB(w̄, pf , pb, B̄f , B̄b, i, j, r) in a



Ranking Binary Unlabelled Necklaces in Polynomial Time 27

manner analogous to the way SA(w̄, p, i, j, r) is used in Lemma 7, to count the
number of words in α(w̄, j, r) with a prefix that is a subword of w̄.

Theorem 2. The value of RankSN(w̄,m) can be computed in O(n6 log2 n) time
for any m ≤ n.

Proof. Following Lemmas 2, 3, and 4, the value of RankSN(w̄,m, r) is:

RankSN(w̄,m, r) =
∑
d|r

⎛
⎝ 1

2 · r

∑
p|d

μ

(
d

p

)
|RA(w̄,m, S, p)|

⎞
⎠

From Observations 3 and 2 , the size of RA(w̄,m, S, r) equals
∑

j∈[m]

|α(w̄, r, j)|+
|β(w̄, r, j)|. Following Lemma 7, the size of α(w̄, r, j) can be computed in O(n3)
time. Following Lemma 8, the size of β(w̄, r, j) can be computed in O(n5) time.
As there are at most O(n) values of j, the total time complexity for determining
the size of RA(w̄,m, S, r) is O(n6). As there are at most O(log n) possible divi-
sors of r, the size of RA(w̄,m, S, p) needs to be evaluated at most O(log n) times,
giving a total time complexity of O(n6 log n). The value of RankSN(w̄,m, r) can
then be computed in at most O(log2 n) time once the size of RA(w̄,m, S, p) has
been precomputed for every factor p of r. Finally, following Lemma 5, the value
of RankSN(w̄,m) can be computed from the value of RankSN(w̄,m, r) for at
most O(log n) values of r. Therefore the total time complexity of computing
RankSN(w̄,m) is O(n6 log2 n).

5 Enclosing Necklaces

This section shows how to rank a word w̄ within the set of binary unlabelled
necklaces enclosing w̄. Note that the rank of w̄ within this set is equivalent to
the number of binary unlabelled necklaces enclosing w̄. As with the ranking
approach to symmetric necklaces, we start with the key theoretical results that
inform our approach.

Lemma 9. Let RankEN(w̄,m) be the rank of w̄ within the set of necklaces of
length m that enclose w̄ and let RankEL(w̄,m) be the rank of w̄ within the set of
Lyndon words of length m that enclose w̄. RankEN(w̄,m) =

∑
d|m

RankEL(w̄, d).

Proof. Observe that every necklace counted by RankEN(w̄,m) must have a
unique period that is a factor of m, hence RankEN(w̄,m) =

∑
d|m

RankEL(w̄, d).

Lemma 10. Let EL(w̄,m) be the set of words of length m belonging to a Lyndon
word that encloses w̄. RankEL(w̄,m) = |EL(w̄,m))

m .

Proof. Following the same arguments as in Lemma 3, every aperiodic necklace
counted by RankEL(w̄,m) must have exactly m words in EL(w̄,m) representing
it. Therefore RankEL(w̄,m) = |EL(w̄,m))

m .
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Lemma 11. Let EL(w̄,m) be the set of words of length m belonging to a Lyndon
word that encloses w̄ and let EN(w̄,m) be the set of words of length m belonging
to a necklace that encloses w̄. The size of EL(w̄,m) equals

∑
d|m

μ
(
m
d

) |EN(w̄, d)|.

Proof. Following the same arguments as in Lemma 9, the size of EN(w̄,m)
can be expressed in terms of the size of EL(w̄, d) for every factor d of m as
|EN(w̄,m)| =

∑
d|m

|EL(w̄, d)|. Applying the Möbius inversion formula to this

equation gives |EL(w̄,m)| =
∑
d|m

μ
(
m
d

) |EN(w̄, d)|.

As in the Symmetric case, we partition the set of necklaces into a series of
subsets for ease of computation. Let γ(w̄,m, r) denote the set of words belonging
to a necklace which encloses w̄ such that r is the smallest rotation for which
v̄ ∈ γ(w̄,m, r) is smaller than w̄, i.e. the smallest value where 〈v̄〉r < w̄. We
further introduce the set C(w̄, i, r, B̄f , B̄b, pf , pb) ⊆ γ(w̄,m, r) as the set of words
where every v̄ ∈ C(w̄, i, r, B̄f , B̄b, pf , pb) satisfies the following conditions:

1. 〈v̄〉s > w̄ for every s ∈ [r − 1].
2. 〈S(v̄)〉s > w̄ for every s ∈ [m].
3. 〈v̄〉r < w̄.
4. v̄[1,i] is bound by B̄f �i w̄.
5. S(v̄[1,i]) is bound by B̄b �i w̄.
6. pf is the length of the longest suffix of v̄[1,i] that is a prefix of w̄, i.e. the

largest value such that v̄[i−pf ,i] = w̄[1,pf ].
7. pb is the length of the longest suffix of S(v̄[1,i]) that is a prefix w̄, i.e. the

largest value such that S(v̄[i−pb,i]) = w̄[1,pb].

Note that Conditions 1, 2, and 3 are the necessary conditions for v̄ to be in
γ(w̄,m, r). As before, we break our dynamic programming based approach into
several sub cases based on the value of i relative to r. As in the symmetric case,
we relay upon a technical proposition.

Proposition 5. Given v̄ ∈ C(w̄, i, r, B̄f , B̄b, pf , pb), v̄ also belongs to C(w̄, i +
1, r,WX[B̄f , v̄i+1],WX[B̄b, v̄i+1], p′

f , p′
b)

Corollary 3. Given a pair of words v̄, ū ∈ C(w̄, i, r, B̄f , B̄b, pf , pb) let v̄′ =
v̄[1,i] : ū[i+1,m]. Then v̄′ ∈ C(w̄, i+1, r, B̄f

′
, B̄b

′
, p′

f , p′
b) if and only if v̄ ∈ C(w̄, i+

1, r, B̄f
′
, B̄b

′
, p′

f , p′
b).

Theorem 3. Let RankEN(w̄,m) be the rank of w̄ within the set of necklaces of
length m which enclose w̄ ∈ Σn. The value of RankEN(w̄, n) can be computed
in O(n6 log n) time for any m ≤ n.

Proof (Sketch). The high level idea is to compute the size of C(w̄, i, r, B̄f ,
B̄b, pf , pb) in a dynamic manner analogous to the computation of the size of
A(w̄, p, B̄, i, j, r). Starting with i = m as the base case and progressing in
descending value of i, the size of C(w̄, i, r, B̄f , B̄b, pf , pb) is computed for every
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B̄f , B̄b �i w̄, pf , pb ∈ [i]. By showing that the size of C(w̄, i, r, B̄f , B̄b, pf , pb) can
be computed in O(1) time for any i < m, and O(n) time when i = m, the size
of C(w̄, i, r, B̄f , B̄b, pf , pb) for every i, j ∈ [m], B̄f , B̄b �i w̄, and pf , pb ∈ [i] is
computed in O(n6) time. The additional complexity is due to number of lengths
that need to be computed following Lemmas 9, 10 and 11.
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