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Abstract. Union-free expressions are used in union normal form to
decompose any regular language to a finite union of union-free languages.
Based on the automata characterisation of the union-free languages, by
restricting the 1CFPAs not to have transitions by the empty word, or to
be deterministic, the n-union-free and the deterministic union-free lan-
guages are defined. Union-complexity as a measure of descriptional com-
plexity of regular languages was introduced recently. By the minimum
number of union-free/n-union-free/deterministic union-free languages
needed to get a regular language as their union, its union-complexity/n-
union-complexity/d-union-complexity is defined. It is already known that
union-complexity and n-union-complexity are finite for every regular
language, however there are regular languages with infinite d-union-
complexity. Operational union-complexity, that is, to predict the union-
complexity of a language obtained by a language operation from lan-
guages with known union-complexity is an important and interesting
question belonging to the field of descriptional complexity of formal sys-
tems. In the present paper, the Kleene plus, the positive Kleene closure
operator is studied. As the Kleene star and plus operations have very
different effects on the union-free languages, it is an interesting prob-
lem to investigate how the union-complexities may change under this
operation. In particular, we show that the union-complexity of a regular
language is not growing when this operation is being applied on it. On
the other hand, the n-union-complexity of the Kleene plus of an n-union-
free language remains 1, but the n-union-complexity of the Kleene plus
of other regular languages may grow. Further, the deterministic union-
complexity may jump to an infinite value even if the original language
had a relatively small deterministic union-complexity, e.g., 4.

Keywords: union-complexity · union-free languages · regular
expressions · Kleene closure

1 Introduction

Various classes of subregular languages are important from various points of
view, see, e.g., [5,9]. The union-free languages are defined by regular expres-
sions without the union, they are the star-dot regular languages [2]. Automata
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theoretical characterisation [11] allowed to define the deterministic counter-
part: the deterministic union-free languages [3,7,8] and by the nondetermin-
istic λ-transition-free automata, the n-union-free languages. The classes of the
union-free, n-union-free and d-union-free languages form a proper hierarchy [14]
and they were studied in [2,4,7,11], [14] and [3,8], respectively. Based on pos-
sible decomposition of regular languages to finite unions of those languages,
the union-complexity, n-union-complexity and d-union-complexity are defined
[1,10,12,13,15] (note that this latter could be infinite according to [8] even if
the language is regular). The operational union-complexity is studied in details
under various operations in [15], except, e.g. Kleene plus. On the other hand, the
class of union-free languages is closed under concatenation, Kleene plus and also
under Kleene star. Moreover, for any regular language, its Kleene star is union-
free, but a similar statement does not hold for Kleene plus. Further, this class is
not closed under union and this gives the possibility to define the union normal
form and union-complexity of regular languages. Since Kleene plus and Kleene
star behave in different ways from our point of view, it is worth to study Kleene
plus and we concentrate on this issue in this paper. Closure, or indeed, more
precisely, anti-closure properties of n-union-free and d-union-free languages were
studied in [8,14], respectively. The non trivial closure properties of the classes
of n-union-free and d-union-free languages also give the challenge to analyse
the analogous union-complexity measures under various operations. Here as we
already mentioned, the Kleene plus is in our focus.

While another usual measure of descriptional complexity of regular languages
is connected to the minimal number of states of the accepting finite automata,
the union-complexity is closely connected to the union normal form and thus to
the regular expressions describing the language [10,12,13].

2 Preliminaries

In this section, first we recall the definition of the union-free languages and the
corresponding class of finite automata. We assume that the reader is familiar with
the basic concepts of formal languages and automata, thus for each unexplained
concepts she/he is referred to any standard textbook on the topic, e.g., to [6]
or to the Handbook chapter [17]. Here we show only specific notions closely
related to the topic of this paper. The empty word is denoted by λ; Σ is a
finite alphabet, while ∪, ·, ∗,+ denote the usual operations on languages, i.e., the
union, the concatenation, the Kleene star and the Kleene plus. Now we recall
some (formal) concepts, definitions and notions from earlier mentioned studies.

A regular expression is a union-free expression if only the operators con-
catenation and Kleene star are used in its description. A regular language is a
union-free language if there is a union-free expression that defines it.

We note here that in the literature sometimes a wider class of languages are
called union-free, those which have a description by operations concatenation,
Kleene star and complement [9], somewhat similarly as the description of star-
free languages goes by concatenation, union and complement [17].
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Now we briefly recall the concept of finite automata and fix some notations.
A 5-tuple A = (Q,S,Σ, δ, F ) is a non-deterministic finite automaton, with

the finite set of states Q. Further, S ∈ Q is the initial state, Σ is the (input)
alphabet and F ⊂ Q is the set of final (or accepting) states. The function
δ : Q × (Σ ∪ {λ}) → 2Q is the transition function.

A path Q0a1Q1a2Q2 . . . an−1Qn−1anQn where Qi+1 ∈ δ(Qi, ai+1) for every
0 ≤ i < n (with n > 0) is called a cycle if Q0 = Qn. A path without any repeated
state is called a cycle-free path.

A path is called an accepting path, if it ends in a final state. Fur-
ther, it is an accepting path of a word w if it is written as (S =
Q0)a1Q1a2Q2...an−1Qn−1anQn with Qn ∈ F and w = a1a2...an (ai ∈ Σ ∪ {λ}),
i.e., it is an accepting path starting at the initial state. A word is accepted by
the finite automata if it has an accepting path.

Definition 1 (1CFPA, n-1CFPA, d-1CFPA). A nondeterministic finite
automaton A is a 1 cycle-free path automaton, a 1CFPA, for short, if there
is a unique cycle-free accepting path from each of its states. Moreover, if the
automaton A does not have any λ-transitions, then it is an n-1CFPA, and if A
is deterministic, then it is a d-1CFPA.

In this paper, we use only automata with the following property: for each
state Qi of the automaton there is a word such that it has an accepting path that
contains Qi. Consequently, there is no useless or sink state and the automaton
may not be fully determined, i.e., it may happen that for a state Qi and an input
letter a the transition function assigns the empty set.

As a consequence of the definition above, a 1CFPA has exactly one final state.
From now on F will refer not only to the set of final states, but to its unique
element, as well, in case of a 1CFPA. One of the main results of [11] states that
the family of languages which are described by union-free expressions and the
family of languages recognized by 1CFPAs are exactly the same. Based on this
relation, two further classes of union-free languages are defined as follows:

Definition 2 (d-union-free and n-union-free languages). A language is
deterministic union-free if there is a deterministic 1CFPA which accepts it [8,13].
The short form d-union-free will also be used for these languages. Further, the n-
union-free languages are exactly those union-free languages that can be accepted
by n-1CFPA [14].

Observe that by definition, in a 1CFPA, a transition between two distinct
states cannot be part of the unique cycle-free path from any state to the final
state, if there is a parallel transition between the same two states. The issue
with parallel transitions can be resolved by a construction duplicating some
parts of the automaton. Based on this, every x-union-free language (x ∈ {λ,
n, d}) is accepted by an x-1CFPA such that for any two distinct states P,R
there is at most one letter such that there is a transition from P to R with that
letter.Therefore, in various constructions and proofs, w.l.o.g., we may assume
that there is no transition with two different letters between two distinct states
of the automaton.
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Since in a 1CFPA, from every state R, there is exactly one transition that
goes to the direction of F (without cycle), the word which transfers the state R
to F in a cycle-free path is unique for each state. We recall that the backbone of
the automaton is the cycle-free path from the initial state (S) to the final state
(F ). The word accepted by the backbone is called the backbone word.

The following facts are known about union-free languages [11]:

– An x-union-free (x ∈ {λ, n, d}) language is either infinite or contains at most
one word.

– The shortest word of a union-free language L is unique and it is the backbone
word. In a union-free language each word contains the backbone word (maybe
in a scattered way).

The usual expression tree concept can be used to represent regular expres-
sions. To each leaf of the tree a letter of the alphabet or the empty word is
assigned. To each other vertex the sign of a regular operation is assigned such
that a vertex with assigned ∪ or · has exactly two children in tree, while a vertex
with assigned ∗ or + has exactly one child. Let L be a union-free language. Note
that λ ∈ L if and only if the backbone word is the empty word. This implies that
every letter is under a Kleene star in the tree of the regular expression. Under
these circumstances the language can be accepted by a 1CFPA with backbone
word λ. If L is n-union-free and λ ∈ L, then S = F in the corresponding
n-1CFPA. Since every 1CFPA (and thus d-1CFPA) has exactly one accepting
state, languages which cannot be accepted by deterministic finite automata with
only one final state are not d-union-free languages.

It is known (see, [8,11]) that the family of union-free languages is closed
under the operations concatenation, Kleene star and Kleene plus. The family
of n-union-free languages is not closed under union and concatenation, but it
is closed under Kleene plus [14]. Furthermore, the class of unary n-union-free
languages is closed under concatenation, Kleene star, Kleene plus. On the other
hand, we have only anti-closure properties for the d-union-free languages: e.g.,
their class is not closed under union, concatenation, Kleene star, [8] and Kleene
plus [14].

In fact, all d-union-free languages are n-union-free languages and all n-union-
free languages are union-free. The language a∗b∗ is union-free. However, it is not
n-union-free [14]. The language a(b∪ba)∗ is n-union-free, but not d-union-free [8].
Thus, there is a proper hierarchy among the three mentioned union-free classes.

By the decomposition result mentioned in [2,10,16], the union-complexity of
regular languages is defined in [10,12]. As one of the main results of [14] states,
every regular language is a union of finitely many n-union-free languages. Based
on these analogies, we present the definition in a general way (based also on [15]).
However, it should be noted that while every regular language can be expressed
as a union of a finite number of union-free and also as a union of a finite number
of n-union-free languages, similar statement does not hold in general for the d-
union-free languages (as proven in [8]), therefore, the d-union-complexity may be
infinite although the studied language is regular. The following definition gives
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back the original definition by the choice x = λ; gives the n-union-complexity
with x = n; moreover it also gives the d-union-complexity with x = d.

Definition 3 (Union-complexity, n-union-complexity and d-union-

complexity). Let x ∈ {λ, n, d}. The form L =
k⋃

i=1

Li is a minimal x-decom-

position of the language L if each Li is an x-union-free language and there is no

m < k such that L =
m⋃

i=1

Ki, where each Ki is x-union-free. Then, k is called

the x-union-complexity of the language L. However, in the case that L cannot be

written in the form
k⋃

i=1

Li with any natural number k for deterministic union-free

languages Li (1 ≤ i ≤ k), then L has an infinite deterministic union-complexity.

The class of union-free languages is an interesting class including several
languages since for each regular language L, the language L∗ is union-free reg-
ular. We can summarise some others of the simplest known results about the
union-complexities (see, e.g., [14]):

– The x-union-complexity of an x-union-free languages is at most 1 (x ∈ {λ,
n, d}); it is 0 for the empty language and 1 for every nonempty x-union-free
language.

– For every finite language, its x-union-complexity is exactly the cardinality of
the language.

– A language is regular if and only if its union-complexity is finite.
– A language is regular if and only if its n-union-complexity is finite.

As we already mentioned, the d-union-complexity could be infinite, as, e.g.,
one of the main results of [8] states:

Proposition 1. The language defined by the regular expression ((a∪ b)(a∪ b))∗

cannot be expressed as a union of a finitely many deterministic union-free lan-
guages.

In [1] it has been proven that the union-complexity of regular languages
is computable. However, the method is very complex and cannot be used in
practical applications. Some bounds may be computed much faster, e.g., an x-
decomposition (may also be called x-union normal form) of a regular language
defines an upper bound for its x-union-complexity.

Before continuing with further more technical concepts, we are already at
the stage that all the necessary concepts are shown to understand an example
that could highlight the non-trivial nature of the problem we investigate here.

Example 1. Let us consider the language L defined by (a∗b ∪ dc∗). On the one
hand, the language has 2 shortest words, b and d, and thus it is not union-
free. On the other hand, Fig. 1 shows the two d-1CFPAs that accept a∗b and
dc∗, respectively proving that L has union-complexity, n-union-complexity and
d-union-complexity 2.
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Fig. 1. Two deterministic 1-cycle-free-path-automata: the accepted languages, a∗b
(left) and dc∗ (right) are d-union-free.

Let us consider now L+, i.e., (a∗b∪dc∗)+. As it has again 2 shortest words, b
and d, this is neither union-free. On the one hand, one can easily check that L+ is
the union of the two languages accepted by 1CFPAs of Fig. 2, as the 1CFPA on
the left accepts exactly those words of L+ which start with a∗b and the 1CFPA
on the right accepts exactly those which start with d. On the other hand, both of
the 1CFPAs use λ-transitions, i.e., they are not n-1CFPAs and not d-1CFPAs.

Fig. 2. Two nondeterministic 1-cycle-free-path-automata with λ-transitions such that
the union of their accepted languages is exactly (a∗b ∪ dc∗)+.

Furthermore, we show that the n-union-complexity of L+ is greater than 2.
The proof is by contradiction, thus assume that there are 2 n-1CFPAs such that
the union of their accepted languages is exactly L+. As there are two shortest
words in L+, the backbone of one of the n-1CFPAs, let us say, A, must be SAbFA

and the backbone of the other, let us say, B, must be SBdFB . The word db is also
in L+, thus one of the 1CFPAs A or B must accept it. The n-1CFPA accepts
db, must use the above described backbone transition, and another transition to
process the other letter, thus this other transition must be a self-loop transition.
Thus, in the former case, there is a cycle in A as SAdSA, while in the latter
case there is a cycle in B as FBbFB . Now, on the one hand, ab ∈ L+, and this
must be accepted by A which implies the cycle SAaSA in A. However, if A has
also the cycle with letter d on its initial state (as we assumed in the first case),
then A would also accept the word adb which is clearly not in L+. Thus the first
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case cannot hold, db cannot be accepted by A. Now, on the other hand, we have
that dc ∈ L+, and this word must be accepted by B. However, it implies the
cycle FBcFB in B. But, now, B would also accept dbc �∈ L+, which provides the
contradiction and the proof that L+ has a larger n-union-complexity than 2.

Fig. 3. Three n-1CPAs such that the union of their accepted languages is exactly
(a∗b ∪ dc∗)+.

Now, to prove that L+ has n-union-complexity 3, consider the union of the
languages accepted by n-1CFPAs shown in Fig. 3. In fact the automaton on the
left accepts the words of L+ that start with a∗b, the n-1CFPA in the middle
accepts those which start with d, but not with dc+, while the n-1CFPA on the
right is accepting the words that start with a word of dc+.

Observing that the 1CFPAs we used in the previous descriptions are highly
not deterministic, i.e., in many of them there are more than one transition from
some states by the same letter, the d-union-complexity of the language L+ could
be even much higher than 3. We may conjecture it here, without any other
explanations, that it is infinite.

Now, we also give new concepts, the tail (and tail-cycles) of the 1CFPAs and
another technical concept, the branching (states and transitions).

Definition 4 (branching, head, tail). A state P �= F of a 1CFPA is called a
branching state if there are at least two different transitions from this state, i.e.,
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there is a transition which does not follow the only cycle-free accepting path from
P , these transitions are called branching transitions. The final state F is called
a branching state if there is a transition from it, moreover, all of the transitions
from F are branching transitions (as none of them is part of the empty path F ,
i.e., the shortest cycle-free path from F to F ).

If the initial state is a branching state, then the cycle(s) in one of the following
forms are called head-cycles:

– either it contains exactly one transition step of the form SaS with a letter
a ∈ Σ; or

– it starts with a branching transition step SaR and continues with the cycle-
free accepting path from R till S is reached again.

A cycle starting from the final state F is called a tail-cycle of the 1CFPA if
it is in one of the following forms:

– either it contains exactly one transition step of the form FaF with a letter
a ∈ Σ; or

– it starts with a transition step FaR (R �= F ) and continues with the cycle-free
accepting path from R.

If a 1CFPA does not have any tail-cycles, we say that it is tail-cycle-free or
tailless (or without a tail).

The following facts are due to the structure of 1CFPAs.

– Any self-loop transition is a branching transition.
– If there is a branching transition from a state P on the backbone to another

state R in the backbone, then R has a longer cycle-free accepting path than
P has.

– If there is a branching transition from a state P on the backbone and its
transition goes to the state R that is not on the backbone, then the cycle-free
accepting path from R reaches the backbone before or on P , i.e., maybe some
of the last steps of the cycle starting from P with the branching transition is
already on the backbone to reach P again.

– If there is a branching transition from a state P �= F in a tail-cycle to another
state R, then R has a longer cycle-free accepting path than P has, moreover,
this cycle-free path arrives back to the tail-cycle before or in P (i.e., on one
of the states that the cycle already touched after F by reaching P ).

– A tail-cycle may reach the backbone in any of its states P and then, it must
follow the backbone till reaching F . (In a special case, it may contain only F
from the backbone.)

– A branching transition from a state P going to R always implies that all
accepting paths from R will reach P again.

– The number of tail-cycles of a 1CFPA is the number of the (branching) tran-
sitions from F .
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Now we also define another new concept, the set of substates:

Definition 5. A state R �= P is a substate of P if there is a branching transition
from P to R. Moreover, the states which are not in the shortest (i.e., cycle-
free) path from S to P , but are in the cycle-free accepting path from R are also
substates of P , the set of these states is denoted as sub(PR). Further, the set
of states of the cycle starting with the branching transition from P to R and
then following the cycle-free accepting path till P is reached again is denoted by
sub◦(PR).

We have the following:

– The states on the backbone are not substates of any state of the 1CFPA.
– Each state of an 1CFPA is either on the backbone or it is a substate of another

state.
– A tail-cycle contains F , some of the substates of F (if there are more tail-

cycles) and maybe some other states of the backbone.

The language ∅ is a very special language, its union-complexity is 0, as well
as its n-union-complexity and d-union-complexity are also 0, since we need 0
languages to unite them to obtain it. On the other hand, the Kleene plus of ∅ is
itself, that is, ∅+ = ∅. There is not so much about to say this special languages,
and thus, in the rest of the paper we may assume that the language we consider
is not the empty one.

We recall some of the main results of [15], the operational union-complexity
of the three regular operations, union, concatenation and Kleene star.

Proposition 2. Let L1 and L2 be two regular languages with union-complexities
n and m, respectively. Then the union of them, i.e., L = L1 ∪ L2 could have the
union-complexity at most n + m. Moreover, this bound is tight, i.e., for any two
positive integers n,m, there are languages L1 and L2 with union-complexities n
and m, such that their union has union-complexity exactly n + m.

Proposition 3. Let L1 and L2 be two regular languages with union-complexities
n and m, respectively. Then the concatenation of them, i.e., L = L1 · L2, could
have the union-complexity at most n · m, and this bound is tight.

Proposition 4. Let L be a regular language with union-complexity n. Then the
language L∗ has the union-complexity exactly 1 independently of the value of n.

Now, we are ready to present our main results concerning the union-com-
plexity of languages created by Kleene plus operation.

3 Operational Union-Complexity of the Kleene Plus
Operation

First, we present the case of the general union-complexity, and then in subsec-
tions we show the cases of the n-union-complexity and the d-union-complexity.
One of our main result, complementing the results shown in [15] is as follows.
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Theorem 1. Let L be a regular language with union-complexity n. Then the
language L+, the Kleene plus of L has a union-complexity of at most n.

Proof. Obviously L+ = L ·L∗. From Propositions 3 and 4 and one may establish
the upper bound as n · 1 = n.

To prove that this bound is tight, let us start with a language over an n-
ary alphabet Σn. Let Ln = Σn = {a1, . . . , an}. Then, L+

n = Σ+
n has clearly n

shortest words, i.e., the letters of the alphabet as words showing that its union-
complexity cannot be less than n.

However, this construction uses a larger and larger alphabet with growing
value of n. After this initial result on the tightness, let us consider the binary
alphabet Σ2 = {0, 1}. Let us encode n different letters with a binary block
code. More precisely, let L2 = {10k, 10k−11, . . . , 1wi, . . . , 1wn−1}, where wi is
the binary representation of number i with k digits. (The value of k should be
at least 	log2(n)
 to make this possible.)

Clearly, L2 is a finite language with n words, thus its union-complexity is n.
Now, the union-complexity of L+

2 can be estimated from below by the number
of its shortest words which is n and gives the proof of the tightness already for
the case of a binary alphabet. ��

The unary alphabet plays some special importance and it is also interesting
since already some of the closure properties of the union-free languages works
in a different manner for this special case, consider, e.g., the closure under con-
catenation [14].

Although over the unary alphabet, the properties of the Kleene star and
the Kleene plus are usually very similar, we intend to show that they work in a
different way when the union-complexity is studied. It is well-known, and we have
already mentioned, that L∗ of any regular language has the union-complexity 1.
Now we show that this is not the case with L+ even if the regular language is
over a unary alphabet.

Theorem 2. The regular language L described by a4(a9)∗ ∪ a7(a5)∗ has the
union-complexity 2. Further its Kleene plus, L+ has also union-complexity 2.

Proof. As 4 and 9 are co-primes, the language L1 defined by (a4(a9)∗)+ is co-
finite, i.e., there are only finitely many natural numbers � such that a� is not
in the language L1, and thus, the difference of a∗ and L1 is a finite language.
A similar statement is true for (a7(a5)∗)+. In the former, the following positive
lengths are missing: 1, 2, 3, 5, 6, 7, 9, 10, 11, 14, 15, 18, 19, 23, 27. As usual over
the unary alphabet, the words can be identified by their lengths. By a theorem
of Frobenius (actually, Sylvester has published in the 1880’s its solution for the
case we need), the longest word that cannot be given in the form 4k1 + 9k2
by nonnegative integer values of k1 and k2 is 4 × 9 − (4 + 9) = 36 − 13 = 23,
however, we have the condition k1 ≥ 1 which shifts this limit a little bit. In fact,
(a4(a9)∗)+ has all the words of length 4k1 with k1 ≥ 1, all the words of length
4k1 + 9, 4k1 + 18 and 4k1 + 27. These for sets of integers contain all the integers
� > 27.
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For the following lengths of the above list, a word with length exists in the
language L+:

7 : 7, 11 : 4 + 7,
14 : 7 + 7, 15 : 4 + 4 + 7,
18 : 4 + 7 + 7, 19 : 7 + 7 + 5,
23 : 4 + 7 + 7 + 5, 27 : 4 + 4 + 7 + 7 + 5.
The co-finite language L+ does not have the lengths 1, 2, 3, 5, 6, 9 and 10,

i.e., L+ = {a4, a7, a8} ∪ {ak | k > 10}. Now, we show that L+ is not union-free.
If it would be, then the backbone word must be aaaa, as it is the shortest word
of L+. Further the 1CFPA must also accept a7 meaning that there is a cycle
accessible from the backbone by pumping 3 as into the word. However, then by
doing this pumping cycle again, the word a10 would be obtained and accepted.
This is contradicting to the fact that a10 is not in L+. Thus, this language is
not union-free, it has a union-complexity of at least 2. By applying Theorem 1,
since L has union-complexity 2, it cannot be more than 2. Therefore, it has been
proven that L+ has union-complexity 2. ��

The precise investigation of the unary case is left for the future:
Open Problem 1. Whether the result stated in Theorem 1 is also tight in the
case of the unary alphabet for larger union-complexities, is left open.

3.1 On n-Union-Complexity

In this subsection, the n-union-complexity is studied. As we already mentioned,
for each regular language, its n-union-complexity is a finite number. On the one
hand, the closure of the class of the n-union-free languages under Kleene plus
([14]) gives the immediate corollary:

Corollary 1. Let L be a language with n-union-complexity 1. Then, the n-
union-complexity of the language L+ is also 1.

On the other hand, as we have seen in Example 1, the union-complexity
and the n-union-complexity may behave in a different manner. Moreover, the
constructions in the proofs of Propositions 3 and 4 were based on language
operations (like regular expressions) [15], which can be translated to automata
only with intensive usage of λ-transitions: remember that the class of n-union-
free languages is not closed under concatenation. Thus, we may need to find new
constructions to estimate the n-union-complexity.

Theorem 3. Let a regular language L be given with an n-union-complexity k.

Further, let L1, . . . , Lk be some n-union-free languages such that L =
k⋃

i=1

Li. Let

Ai be an n-1CFPA accepting Li for each 1 ≤ i ≤ k. Let the number of tail-cycles

of Ai be ti. Then, the n-union-complexity of L+ is at most m = k +
k∑

i=1

ti.
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Proof. The proof is a construction to show that L+ is the union of m n-union-
free languages. Based on the condition given in the theorem, let A1, . . . ,Ak, be

k n-1CFPAs that accept the languages L1, . . . , Lk such that L =
k⋃

i=1

Li.

Let the structure of each Ai be given with its backbone states and the sets
of the substates including the substates of the tail-cycles (if any). See Fig. 4, top
left.

Now, let us have ti + 1 copies of each Ai, a copy Bi that is similar to
the original, but does not include any of the tail-cycles of Ai (see Fig. 4, top
right); and a copy C�

i for each tail-cycle which are expanded variants of Ai

as it is explained below (� is the numbering of the tail-cycles of the automaton,
1 ≤ � ≤ ti). Let the backbone of C�

i be S�
i a

�
i . . . F �

i b�
iR

�

i . . . F
�

i where S�
i a

�
i . . . F �

i is
a copy of the backbone of Ai and F �

i b�
i . . . F

�

i is a copy of the �-th tail-cycle, that is
starting with the copy of the branching transition F �

i b�
iR

�
i . Thus, the backbone

of C�
i contains a copy of each backbone state of Ai and also an (additional)

overlined copy of the states of sub◦(F �
i R�

i
). Let now all the cycles of Ai be

added by adding the substates of each not overlined state, and their substates
iteratively by their transitions including all tail-cycles from the state F �

i . The
substates and the cycles of each overlined state should also be added, but the
copy F

�

i of the final state (that actually is the final state of C�
i , but in this way,

it will not be part of any cycles in C�
i . (See the second line of Fig. 4.)

So far, by our constructions, each 1CFPA Bi accepts exactly those words of
the language Li that are accepted without using any transitions of the final state
(i.e., without using any of the tail-cycles); and each 1CFPA C�

i accepts exactly
those words of Li which are accepted in such a way that from the final state the
last used branching transition defines the tail-cycle � in Ai. Now let us take copies
of each of these automata, from each one more as the number of its head-cycles
(i.e., the number of branching transitions of the initial state), let these copies be
Bj

i and C�,j
i , where j is a nonnegative integer not more than hi, the number of

head-cycles of Ai. Let all B0
i and C�,0

i be identical to Bi and C�
i , respectively,

but without any head-cycles (the transitions and the states of the head-cycles
and their substates are simply removed, see the third line of Fig. 4). Further, let
Bj

i and C�,j
i with j > 0 be defined as follows. (In the next part we use � = 0 to

index the states of Bj
i , while � > 0 for the states of C�,j

i .) Let the backbone of
these automata be S̃�,j

i b�,j
i,1 . . . S�,j

i a�
i,1 . . . F �,j

i where the part S̃�,j
i b�,j

i,1 . . . S�,j
i is a

copy of the j-th head-cycle that starts with branching transition from S�,j
i in Ai

and in this way it is becoming not a cycle, but part of the backbone in the new
1CFPA from S̃�,j

i with letter b�,j
i,1; and the rest of the backbone, S�,j

i a�
i,1 . . . F �,j

i ,
is the original backbone of Bi or C�

i . Further, all states of the 1CFPA Bi or
C�

i are kept, respectively, with their transitions. Also all the substates of the
states of the j-th head-cycle (but the initial state) are copied and reached from
the states of the first part S̃�,j

i b�,j
i,1 . . . S�,j

i of the backbone, with their transitions
(between pairs of copied states). Moreover, all head-cycles and their substates
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Fig. 4. Some parts of the construction in the proof of Theorem 3.

with their transitions are also copied with a branching transition from S�,j
i . (See

the bottom of Fig. 4.)
In this way, each 1CFPA B0

i accepts all words of Li that can be accepted by a
path neither containing any branching transition from the initial state of Ai, nor
from its final state. Further, each 1CFPA Bj

i accepts exactly those words of Li

that are accepted by a path starting by the j-th branching transition (identifying
the j-th head-cycle) from the initial state of Ai and do not use any branching
transitions from the final state of Ai. Also, each C�,0

i accepts those words of Li

that are accepted by using none of the head-cycles of Ai, but the �-th tail-cycle
was used in the end of the word (the last used branching transition from the
final state of Ai used the branching transition defining the tail-cycle �). Finally,
each C�,j

i accepts exactly those words of Li that have an accepting path in Ai
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that starts with the j-th head-cycle that is defined by a branching transition at
the initial state of Ai and the last branching transition at the final state used
in the accepting path defining the tail-cycle �.

We continue the construction by modifying every Bi and C�
i in a very similar

way. Thus, let us consider one, let us say X of the 1CFPAs Bi or C�
i , let its

initial state be denoted by S and its final state be denoted by F . It is clear by
the construction, that none of those 1CFPAs has tail-cycles, i.e., all of them are
tailless. Now, consider all Bj

i (1 ≤ i ≤ k, 0 ≤ j ≤ hi) and C�,j
i (1 ≤ i ≤ k,

1 ≤ � ≤ ti, and 0 ≤ j ≤ hi). For each of these 1CFPAs, let us say Y, we
expand the 1CFPA X as follows. For the final state F , let us put a branching
transition for each Y copying all states and transitions of Y into X such that
all the transitions from the initial state of Y are coming from F in X, moreover
all the transitions reaching the final state of Y are going to F instead in X.

Clearly, each of the constructed automata accepts only words of the language
L+. Moreover, any word of L+ is accepted by at least one of the previously
constructed automata, actually, depending on the structure of the first word
that is used to compose the given word from the words of the languages Li. ��

Based on the fact that over a unary alphabet any union-free language is also
an n-union-free language [14], we can restate and reformulate Theorem 2.

Corollary 2. There is a regular language such that its Kleene plus has n-union-
complexity greater than 1. For example, considering L = {ak | k = 4+9n or k =
7 + 5n for all n ≥ 0}, both the n-union-complexities of L and L+ are 2.

3.2 On Deterministic Union-Complexity

Now we give our result about deterministic union-complexity.

Theorem 4. There is a regular language L with finite d-union-complexity such
that L+ has infinite d-union-complexity.

Proof. Consider the language L = {aa, ab, ba, bb}, clearly its d-union-complexity
is a 4. Now, let us consider L+ = (aa ∪ ab ∪ ba ∪ bb)+, which actually contains
all nonempty words over Σ = {a, b} with even lengths. Moreover, every word
of Σ∗ is a prefix of some words of L+, thus based on an analogous proof of
Proposition 1, L+ cannot be written as a finite union of deterministic union-free
languages [8].

Open Problem 2. Is there any language L with smaller d-union-complexity
than 4 such that its Kleene plus, L+ has already infinite d-union-complexity?
May, e.g., the language of Example 1 have this property?

Since the class of deterministic union-free languages is not closed under any
of the usual language operations (union, complement, concatenation, Kleene star
etc., see [8,13]), it seems to be a non-trivial task, to find operational d-union-
complexity of languages.
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