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Abstract. Several canonical forms of finite automata have been intro-
duced over the decades. In particular, if one considers the minimal
deterministic finite automaton (DFA), the canonical residual finite state
automaton (RFSA), and the átomaton of a language, then the átomaton
can be seen as the dual automaton of the minimal DFA, but no such
dual has been presented for the canonical RFSA so far. We fill this gap
by introducing a new canonical automaton that we call the maximized
prime átomaton, and study its properties. We also describe how these
four automata can be extracted from suitable observation tables used in
the automata learning context.
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1 Introduction

It is well known that every regular language has a unique minimal deterministic
finite automaton (DFA) accepting the language. However, this nice property
does not hold for the class of nondeterministic finite automata (NFAs), because
a language may have several non-isomorphic NFAs with a minimum number
of states. Nevertheless, several canonical forms of NFAs have been introduced
over the decades: the universal automaton [9], the canonical residual finite state
automaton (canonical RFSA) [6] (also known as jiromaton [10]), the átomaton
[5], and the maximized átomaton [12] (same as distromaton [10]). We note that
none of these NFAs are necessarily minimal NFAs.

While the states of the minimal DFA of a language L correspond to the (left)
quotients of L, the canonical RFSA of L may have less states, since it is based
on the prime quotients [6] of L, that is, non-empty quotients that are not unions
of other quotients. The states of the átomaton of L correspond to the atoms [5]
of L, which are non-empty intersections of complemented and uncomplemented
quotients. Also, the notion of a prime atom was defined in [14], however, no
automaton based on prime atoms has been presented so far.
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We fill this gap by introducing a new canonical NFA that we call the maxi-
mized prime átomaton, because it is a subautomaton of the maximized átomaton
and its states correspond to the prime atoms of a language. While the átomaton
of L is isomorphic to the reverse NFA of the minimal DFA of LR [5], we show that
the maximized prime átomaton of L is the reverse of the canonical RFSA of LR.
An informal description of the relationship between these automata is presented
in the picture below. By applying saturation and reduction operations [6] to the
minimal DFA, the canonical RFSA is obtained. By applying corresponding dual
operations to the átomaton, we get the maximized prime átomaton.

minimal DFA

sat - red

��

�� rev �� átomaton

dual sat - dual red

��

canonical RFSA �� rev �� maximized prime átomaton

Another way to construct a canonical RFSA is by using a modified subset
construction operation C [6,12]. We define a dual operation of C and show how
to use this operation to obtain the maximized prime átomaton.

We also describe how the four automata in the above picture can be extracted
from suitable observation tables used in the automata learning context [1]. If an
observation table is closed and consistent both for rows and columns (Defini-
tion 7), then its proper part forms the quotient-atom matrix [8,13] of the lan-
guage. We believe that it can be helpful to think of these automata in terms of
such matrices where the row and column indices are the right and left congruence
classes of the language, respectively.

2 Automata, Quotients, and Atoms of Regular Languages

A nondeterministic finite automaton (NFA) is a quintuple N = (Q,Σ, δ, I, F ),
where Q is a finite, non-empty set of states, Σ is a finite non-empty alphabet,
δ : Q × Σ → 2Q is the transition function, I ⊆ Q is the set of initial states, and
F ⊆ Q is the set of final states. We extend the transition function to functions
δ′ : Q × Σ∗ → 2Q and δ′′ : 2Q × Σ∗ → 2Q, using δ for all these functions. The
left language of a state q of N is LI,q(N ) = {w ∈ Σ∗ | q ∈ δ(I, w)}, and the
right language of q is Lq,F (N ) = {w ∈ Σ∗ | δ(q, w) ∩ F �= ∅}. A state q of N is
reachable if LI,q(N ) �= ∅, and it is empty if Lq,F (N ) = ∅. The language accepted
by an NFA N is L(N ) = {w ∈ Σ∗ | δ(I, w)∩F �= ∅}. Two NFAs are equivalent if
they accept the same language. An NFA is minimal if it has a minimum number
of states among all equivalent NFAs. The reverse of an NFA N = (Q,Σ, δ, I, F )
is the NFA NR = (Q,Σ, δR, F, I), where q ∈ δR(p, a) if and only if p ∈ δ(q, a)
for p, q ∈ Q and a ∈ Σ.

A deterministic finite automaton (DFA) is a quintuple D = (Q,Σ, δ, q0, F ),
where Q, Σ, and F are as in an NFA, δ : Q × Σ → Q is the transition function,
and q0 is the initial state. The left quotient, or simply quotient, of a language
L by a word w ∈ Σ∗ is the language w−1L = {x ∈ Σ∗ | wx ∈ L}. It is well
known that the left quotients of L are the right languages of the states of the
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minimal DFA of L. Any NFA N can be determinized by the well-known subset
construction, yielding a DFA ND that has only reachable states.

Let L be a non-empty regular language with quotients K0, . . . ,Kn−1. An
atom of L is any non-empty language of the form ˜K0 ∩ · · · ∩ ˜Kn−1, where ˜Ki

is either Ki or Ki, and Ki is the complement of Ki with respect to Σ∗ [5]. An
atom is initial if it has L (rather than L) as a term; it is final if it contains ε.
There is exactly one final atom, the atom ̂K0 ∩ · · · ∩ ̂Kn−1, where ̂Ki = Ki

if ε ∈ Ki, and ̂Ki = Ki otherwise. If K0 ∩ · · · ∩ Kn−1 is an atom, then it is
called the negative atom, all the other atoms are positive. Thus atoms of L are
pairwise disjoint languages uniquely determined by L; they define a partition
of Σ∗. Every quotient Ki (including L) is a (possibly empty) union of atoms.
An NFA N is atomic if the right languages of its states are unions of atoms of
L(N ).

It is well known that quotients of L are in a one-one correspondence with
the equivalence classes of the Nerode right congruence ≡L of L [11] defined as
follows: for x, y ∈ Σ∗, x ≡L y if for every v ∈ Σ∗, xv ∈ L if and only if yv ∈ L.
Atoms of L are the classes of the left congruence L≡ of L: for x, y ∈ Σ∗, x L≡ y
if for every u ∈ Σ∗, ux ∈ L if and only if uy ∈ L [7].

Let A = {A0, A1, . . . , Am−1} be the set of atoms of L, let AI be the set of
initial atoms, and let Am−1 be the final atom.

The átomaton of L is the NFA A = (SA, Σ, α, IA, {sm−1}) where SA =
{s0, s1, . . . , sm−1}, IA = {si ∈ SA | Ai ∈ AI}, and sj ∈ α(si, a) if and only if
Aj ⊆ a−1Ai, for all i, j ∈ {0, . . . , m − 1} and a ∈ Σ. It was shown in [5] that the
atoms of L are the right languages of the states of the átomaton, and that the
reverse NFA of the átomaton is the minimal DFA of the reverse language LR.

The next theorem is a slightly modified version of the result by Brzozowski [4]:

Theorem 1. If an NFA N has no empty states and NR is deterministic, then
ND is minimal.

By Theorem 1, for any NFA N , the DFA NRDRD is the minimal DFA equiv-
alent to N . This result is known as Brzozowski’s double-reversal method for
DFA minimization. In [5], a generalization of Theorem 1 was presented, provid-
ing a characterization of the class of NFAs for which applying determinization
procedure produces a minimal DFA:

Theorem 2. For any NFA N , the DFA ND is minimal if and only if NR is
atomic.

3 Residual Finite State Automata

Residual finite state automata (RFSAs) were introduced by Denis, Lemay, and
Terlutte in [6]. In this section, we state some basic properties of RFSAs. However,
we note here that we usually prefer to use the term “quotient” over “residual”.

An NFA N = (Q,Σ, δ, I, F ) is a residual finite state automaton (RFSA) if
for every state q ∈ Q, Lq,F (N ) is a quotient of L(N ). Clearly, any DFA having
only reachable states, is an RFSA.



Yet Another Canonical Nondeterministic Automaton 187

Let L be a regular language over Σ. A non-empty quotient of L is prime if it
is not a union of other quotients. Let K ′ = {K0, . . . ,Kn′−1} be the set of prime
quotients of L.

The canonical RFSA of L is the NFA R = (QK′ , Σ, δ, IK′ , FK′), where QK′ =
{q0, . . . , qn′−1}, IK′ = {qi ∈ QK′ | Ki ⊆ L}, FK′ = {qi ∈ QK′ | ε ∈ Ki}, and
δ(qi, a) = {qj ∈ QK′ | Kj ⊆ a−1Ki} for every qi ∈ QK′ and a ∈ Σ.

The canonical RFSA is a state-minimal RFSA with a maximal number of
transitions. One way to build a canonical RFSA is to use the saturation and
reduction operations defined in the following.

Let N = (Q,Σ, δ, I, F ) be an NFA. The saturation operation S, applied
to N , produces the NFA NS = (Q,Σ, δS , IS , F ), where δS(q, a) = {q′ ∈ Q |
aLq′,F (N ) ⊆ Lq,F (N )} for all q ∈ Q and a ∈ Σ, and IS = {q ∈ Q | Lq,F (N ) ⊆
L(N )}. An NFA N is saturated if NS = N . Saturation may add transitions and
initial states to an NFA, without changing its language. If N is an RFSA, then
NS is an RFSA.

For any state q of N , let R(q) be the set {q′ ∈ Q\{q} | Lq′,F (N ) ⊆ Lq,F (N )}.
A state q is erasable if Lq,F (N ) =

⋃

q′∈R(q) Lq′,F (N ). If q is erasable, a reduction
operator φ is defined as follows: φ(N , q) = (Q′, Σ, δ′, I ′, F ′) where Q′ = Q\{q},
I ′ = I if q /∈ I, and I ′ = (I\{q})∪R(q) otherwise, F ′ = F ∩Q′, δ′(q′, a) = δ(q′, a)
if q /∈ δ(q′, a), and δ′(q′, a) = (δ(q′, a)\{q}) ∪ R(q) otherwise, for every q′ ∈ Q′

and every a ∈ Σ. If q is not erasable, let φ(N , q) = N .
If N is saturated and if q is an erasable state of N , then φ(N , q) is obtained

by deleting q and its associated transitions from N . An NFA N is reduced if
there is no erasable state in N . Applying φ to N does not change its language.
If N is an RFSA, then φ(N , q) is an RFSA. The following proposition is from [6]:

Proposition 1. If an NFA N is a reduced saturated RFSA of L, then N is the
canonical RFSA for L.

The canonical RFSA can be obtained from a DFA having only reachable
states, by using saturation and reduction operations.

Next we will discuss another method to compute the canonical RFSA, sug-
gested in [6]. In Sect. 2, we recalled the result that for any NFA N , the DFA
NRDRD is the minimal DFA equivalent to N . In [6], a similar double-reversal
method is proposed to obtain a canonical RFSA from a given NFA, using a
modified subset construction operation C to be applied to an NFA as follows:

Definition 1. Let N = (Q,Σ, δ, I, F ) be an NFA. Let QD be the set of states
of the determinized version ND of N . A state s ∈ QD is coverable if there
is a set Qs ⊆ QD\{s} such that s =

⋃

s′∈Qs
s′. The NFA NC is defined as

(QC , Σ, δC , IC , FC), where QC = {s ∈ QD | s is not coverable }, IC = {s ∈ QC |
s ⊆ I}, FC = {s ∈ QC | s ∩ F �= ∅}, and δC(s, a) = {s′ ∈ QC | s′ ⊆ δ(s, a)} for
any s ∈ QC and a ∈ Σ.

Applying the operation C to any NFA N produces an RFSA NC . Denis et
al. [6] have the following result:
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Theorem 3. If an NFA N has no empty states and NR is an RFSA, then NC

is the canonical RFSA.

By Theorem 3, for any NFA N , the RFSA NRCRC is the canonical RFSA
equivalent to N . Hence, the operation C has a similar role for RFSAs as deter-
minization has for DFAs.

In Sect. 2, we recalled Theorem 2 from [5], a generalization of Theorem 1,
characterizing the class of NFAs to which applying the determinization procedure
produces a minimal DFA. Theorem 3 was generalized in [12] in a similar way:

Theorem 4. For any NFA N of L, NC is a canonical RFSA if and only if the
left languages of N are unions of left languages of the canonical RFSA of L.

4 Maximized Átomaton

Let L be a non-empty regular language, K = {K0, . . . ,Kn−1} be the set of
quotients, and A = {A0, . . . , Am−1} be the set of atoms of L, with the set of
initial atoms AI ⊆ A, and the final atom Am−1.

In [12], the notions of a maximized atom and the maximized átomaton of a
regular language L were introduced. For every atom Ai of L, the corresponding
maximized atom Mi is the union of all the atoms which occur in every quotient
containing Ai:

Definition 2. The maximized atom Mi of an atom Ai is the union of atoms
Mi =

⋃

{Ah | Ah ⊆
⋂

Ai⊆Kk
Kk}.

Clearly, since atoms are pairwise disjoint, and every quotient is a union of
atoms, Mi =

⋂

Ai⊆Kk
Kk. In [12], the following properties of maximized atoms

were shown:

Proposition 2. Let Ai and Aj be some atoms of L. The following properties
hold:
1. Ai ⊆ Mi.
2. If Ai �= Aj, then Mi �= Mj.
3. Ai ⊆ Mj if and only if Mi ⊆ Mj.
4. Aj ⊆ a−1Mi if and only if Mj ⊆ a−1Mi.

Let M = {M0, . . . ,Mm−1} be the set of the maximized atoms of L. The
maximized átomaton was defined in [12] as follows:

Definition 3. The maximized átomaton of L is the NFA defined as M =
(QM , Σ, μ, IM , FM ), where QM = {q0, q1, . . . , qm−1}, IM = {qi ∈ QM | Ai ∈
AI}, FM = {qi ∈ QM | Am−1 ⊆ Mi}, and qj ∈ μ(qi, a) if and only if
Mj ⊆ a−1Mi, for all i, j ∈ {0, . . . , m − 1} and a ∈ Σ.

It was shown in [12] that the maximized átomaton M of L is isomorphic to
the reverse NFA of the saturated version of the minimal DFA of LR.

Using results from [13] and Proposition 2, we can see that the right language
of any state of the maximized átomaton is the corresponding maximized atom:

Proposition 3. For every state qi ∈ QM of the maximized átomaton M =
(QM , Σ, μ, IM , FM ) of L, the equality Lqi,FM

(M) = Mi holds.
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5 Maximized Prime Átomaton

We recall that a non-empty quotient is prime if it is not a union of other quo-
tients.

The notion of a prime atom was defined in [14] as follows: any positive atom
Ai =

⋂

j∈Si
Kj ∩

⋂

j∈Si
Kj , where Si ⊆ {0, . . . , n−1} and Si = {0, . . . , n−1}\Si,

is prime if the set {Kj | j ∈ Si} of uncomplemented quotients in the intersection
of Ai is not a union of such sets of quotients corresponding to other atoms.

By results in [5], it is known that the reverse of the átomaton A of L is the
minimal DFA of LR. Since the right language of any state of A is some atom
of L, and the right language of any state of AR is some quotient of LR, there
is a natural one-one-correspondence between the set of atoms of L and the set
of quotients of LR, based on the state set of A (and AR). Also, there is a one-
one correspondence between the set of prime atoms of L and the set of prime
quotients of LR:

Proposition 4. The right language of any state of the átomaton A of L is a
prime atom of L if and only if the right language of the same state of AR is a
prime quotient of LR.

Now, let A′ ⊆ A be the set of prime atoms of L, and let M ′ ⊆ M be the
corresponding set of maximized prime atoms. We define the maximized prime
átomaton of L as follows:

Definition 4. The maximized prime átomaton of L is the NFA defined by M′ =
(QM ′ , Σ, μ, IM ′ , FM ′), where QM ′ = {qi | Mi is prime}, IM ′ = QM ′ ∩ IM ,
FM ′ = QM ′ ∩FM , and qj ∈ μ(qi, a) if and only if Mj ⊆ a−1Mi, for qi, qj ∈ QM ′

and a ∈ Σ.

In [12], it was shown that the maximized átomaton M of L is isomorphic
to ESR, where E is the minimal DFA of LR. That is, MR is isomorphic to ES .
Now, the canonical RFSA of LR is the reduced version of ES , where those states
of ES corresponding to non-prime quotients of LR, have been removed. Since by
Proposition 4, the states of E corresponding to prime quotients of LR are exactly
those states of ER corresponding to prime atoms of L, the canonical RFSA of LR

is isomorphic to the subautomaton of MR, where the states corresponding to
non-prime atoms, together with their in- and out-transitions, have been removed.
We have the following result:

Proposition 5. The maximized prime átomaton M′ of L is isomorphic to the
reverse NFA of the canonical RFSA of LR.

There is a one-one correspondence between the set M ′ of maximized prime
atoms and the state set QM ′ of the maximized prime átomaton of L. However,
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the right language of a state qi of M′ is not necessarily equal to the corresponding
maximized prime atom Mi. By a result in [12], for the left language Li of a state
qi of the canonical RFSA of LR, the inclusions AR

i ⊆ Li ⊆ MR
i hold, where Ai

and Mi are respectively the corresponding atom and the maximized atom of L.
Since the right language of any state of the maximized prime átomaton of L is
the reverse of the left language of the corresponding state of the canonical RFSA
of LR, we can state the following:

Proposition 6. For any state qi of the maximized prime átomaton M′ of L,
the inclusions Ai ⊆ Lqi,FM′ (M′) ⊆ Mi hold.

By Proposition 5, we are able to obtain the maximized prime átomaton of L
by finding the canonical RFSA of LR, and then reversing it. Since by Theorem 3,
for any NFA N , the RFSA NRCRC is the canonical RFSA equivalent to N , it
is clear that NCRCR is the maximized prime átomaton of L.

We define an operation coC to be applied to an NFA as follows:

Definition 5. Let N = (Q,Σ, δ, I, F ) be an NFA. Let QcoD be the set of
states of the determinized version NRD of NR. A state s ∈ QcoD is cov-
erable if there is a set Qs ⊆ QcoD\{s} such that s =

⋃

s′∈Qs
s′. The NFA

N coC = (QcoC , Σ, δcoC , IcoC , FcoC) is defined as follows: QcoC = {s ∈ QcoD | s
is not coverable}, IcoC = {s ∈ QcoC | s ∩ I �= ∅}, FcoC = {s ∈ QcoC | s ⊆ F},
and for any s, s′ ∈ QC and a ∈ Σ, s′ ∈ δcoC(s, a) if and only if for every q ∈ s
there is some q′ ∈ s′ such that q′ ∈ δ(q, a).

Clearly, N coC is isomorphic to NRCR. Hence, given any NFA N of L, the
maximized prime átomaton of L can be obtained by applying first the operation
C to N , yielding NC , and then applying coC to NC , resulting in the automaton
NC(coC). Also, the NFA N (coC)C is the canonical RFSA of L. The following
theorem holds:

Theorem 5. For any NFA N of L, the NFA N coC is the maximized prime
átomaton of L if and only if the right language of every state of N is a union of
right languages of the maximized prime átomaton of L.

Example 1. We consider a modification of an example from [6], and define a
family of NFAs Bn = (Q,Σ, δ, I, F ), n � 1, where Q = {q0, . . . , qn−1}, Σ =
{a, b}, I = {qi | 0 � i < n/2}, F = {q0}, and δ(qi, a) = {q(i+1) mod n} for
i = 0, . . . , n − 1, and δ(q0, b) = {q0, q1}, δ(q1, b) = {qn−1}, and δ(qi, b) = {qi−1}
for 1 < i < n. The NFA B4 is shown in Fig. 1 and its reverse BR

4 is in Fig. 2.
We claim that the NFA BR

n is a canonical RFSA of L(Bn)R. Indeed, BR
n is an

RFSA, because the right languages of BR
n are quotients of L(BR

n ): Lq0,F (BR
n ) =

ε−1L(BR
n ) and Lqi,F (BR

n ) = (an−i)−1L(BR
n ), for i = 1, . . . , n− 1. Denoting Ki =

(a(n−i) mod n)−1L(BR
n ) and noticing that a(i−�n/2�+1) mod n, . . . , ai mod n ∈ Ki,

and a(i+1) mod n, . . . , a(i+	n/2
) mod n /∈ Ki, for i = 0, . . . , n− 1, it is easy to see
that Ki’s are pairwise incomparable. Therefore, BRC

n is isomorphic to BR
n , and

it is clear that BR
n is a canonical RFSA of L(Bn)R.
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Hence, by Proposition 5, Bn is the maximized prime átomaton of L(Bn).
Also, by Theorem 3, BC

n is the canonical RFSA of L(Bn). The automaton BC
n

has
(

n
�n/2�

)

states, because any candidate state of BC
n with more than 
n/2�

elements can be covered by those with exactly 
n/2� elements. Thus, for n � 4,
Bn is smaller than the canonical RFSA for L(Bn), and the difference between
the sizes of these two NFAs grows with n. Moreover, Bn is a minimal NFA
for L(Bn), as can be seen by the fooling set method [2] using the fooling set
{(ε, an), (a, an−1), . . . , (an−1, a)} of size n.

Fig. 1. The automaton B4. Fig. 2. The automaton BR
4 .

6 Observation Tables

We now turn to observation tables known from the L∗ learning algorithm [1] and
how to read out various canonical automata from suitable observation tables.
These tables can be seen as submatrices of the quotient-atom matrix [13] of
a language, which is used, for example, in finding a minimal NFA of the lan-
guage [8,13].

The L∗ algorithm works by performing membership (whether a word belongs
to the unknown language) and equivalence (whether a hypothesis is equivalent
to the unknown language) queries. Informally, an observation table is used in
the L∗ algorithm to collect the observations that have been made so far and also
to organize the observations in such a manner that it can be determined which
observations need to be performed next. The membership queries are always
performed for words composed from a prefix s and a suffix e. If the result of the
membership query for the word se is positive, then the entry in the table at row
s and column e is set to 1, otherwise it is set to 0.

Definition 6. An observation table is a triple T = (S,E, T ) where S ⊆ Σ∗

is a prefix-closed set of words, E ⊆ Σ∗ is a suffix-closed set of words and T :
Σ∗ → 2 is a finite function. The proper part of the table consists of S rows and
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E columns. The row extensions of the table consist of the rows S · Σ\S. The
column extensions of the table consist of the columns Σ · E\E. The entry in the
table at row s and column e is T (se).

A row of T = (S,E, T ) is an E-indexed vector consisting of the corresponding
entries of the table. That is, for s ∈ S and e ∈ E, row(s)(e) = T (se). A column
of T is an S-indexed vector. That is, for e ∈ E and s ∈ S, col(e)(s) = T (se).
Note that row(sa)(e) = row(s)(ae) = col(ae)(s) = col(e)(sa).

Definition 7. An observation table T = (S,E, T ) is called

– row-closed when, for every s ∈ (S · Σ)\S, there exists s′ ∈ S such that
row(s) = row(s′);

– column-closed when, for every e ∈ (Σ · E)\E, there exists e′ ∈ E such that
col(e) = col(e′);

– row-consistent when, for every s, s′ ∈ S, if row(s) = row(s′), then, for every
a ∈ Σ, row(sa) = row(s′a).

– column-consistent when, for every e, e′ ∈ E, if col(e) = col(e′), then, for
every a ∈ Σ, col(ae) = col(ae′).

Note that what are called closed and consistent in [1] are respectively called
row-closed and row-consistent in our setting.

We also use row(S) to denote the set {row(s) | s ∈ S} and col(E) for
{col(e) | e ∈ E}. Two indices s1 and s2 are equivalent when row(s1) = row(s2).
This partitions S and we write [s] for the equivalence class of s as well as its rep-
resentative. Similarly, we have an equivalence relation on E and we write [e] for
the equivalence class of e and its representative. We can use the lexicographically
minimal element as the representative.

6.1 Row Automaton

Let T = (S,E, T ) be a row-closed and row-consistent observation table. Define
a function suc : row(S) × Σ → row(S) as suc(r, a) = row([r]a). The co-domain
is row(S) as for any r ∈ row(S), we have [r] ∈ S and by being row-closed, there
is an s ∈ S such that row([r]a) = row(s). Since the table is consistent, this
function respects the equivalence classes.

Definition 8. The row automaton of T , denoted by Arow (T ), is the automaton
(Q,Σ, δ, q0, F ) where Q = row(S), δ(q, a) = suc(q, a), q0 = row(ε) and F =
{q ∈ Q | q(ε) = 1}. The transition function δ extends to words by δ(q, ε) = q
and δ(q, ua) = δ(δ(q, u), a). The language of the automaton is L(Arow (T )) =
{u ∈ Σ∗ | δ(q0, u) ∈ F}.
Proposition 7. If T is row-closed and row-consistent, then Arow (T ) is the min-
imal DFA accepting L(Arow (T )).

Since Arow (T ) is minimal, the left language of a state row(s) is a right
congruence class of L(Arow (T )) and we denote it by [s]row . Furthermore, this
congruence class contains the equivalence class [s] of S. This is the automaton
constructed by the L∗ algorithm.
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6.2 Column Automaton

Let T = (S,E, T ) be a column-closed and column-consistent observation table.
Define a function pre : Σ × col(E) → col(E) as pre(a, c) = col(a[c]). The co-
domain is col(E) as for any c ∈ col(E), we have [c] ∈ E and by being column-
closed, there is an e ∈ E such that col(a[c]) = col(e). Since the table is consistent,
this function respects the equivalence classes.

Definition 9. The column automaton of T , denoted by Acol(T ), is the automa-
ton (Q,Σ, δ, I, f) where Q = col(E), δ(q, a) = {q′ ∈ Q | q = pre(a, q′)},
I = {q ∈ Q | q(ε) = 1} and f = col(ε). The transition function extends to
sets of states and words in the usual way: δ(K, a) =

⋃

{δ(k, a) | k ∈ K} and
δ(K, ε) = K and δ(K,ua) = δ(δ(K,u), a). The language of the automaton is
L(Acol (T )) = {u ∈ Σ∗ | f ∈ δ(I, u)}.

Proposition 8. If T is column-closed and column-consistent, then Acol (T ) is
the átomaton of L(Acol (T )).

Since Acol(T ) is the átomaton, the right language of a state col(e) is an
atom and thus a left congruence class of L(Acol (T )) which we denote by [e]col .
Furthermore, this congruence class contains the equivalence class [e] of E. This
automaton can be learned by a column-oriented variant of L∗. Recall that the
reverse of the átomaton is the minimal DFA of the reverse language.

6.3 Rows and Columns

Let T = (S,E, T ) be an observation table that is closed and consistent both for
rows and columns. We have Arow (T ) and Acol(T ) associated with T .

Proposition 9. For any u, v ∈ Σ∗, we have uv ∈ L(Arow (T )) if and only if
row([u]row )([v]col ) = 1.

We thus see that the right language of the state of the row automaton corre-
sponding to u (that is row([u]row )) consists of those words v for which the entry
at row [u]row and column [v]col is 1.

Proposition 10. For any u, v ∈ Σ∗, we have uv ∈ L(Acol (T )) if and only if
col([v]col )([u]row ) = 1.

Similarly, we see that the left language of the state of the column automaton
corresponding to v (that is col([v]col)) consists of those words u for which the
entry at column [v]col and row [u]row is 1. Since row(s)(e) = col(e)(s), we can
state the following:

Proposition 11. For any observation table T that is closed and consistent both
for rows and columns, the equality L(Arow (T )) = L(Acol (T )) holds.
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6.4 Primes

Rows and columns are vectors of Booleans. We partially order such vectors by
extending the order 0 � 1 to vectors as the product order. For any s, s′ ∈ S, we
say row(s) � row(s′) when, for every e ∈ E, row(s)(e) � row(s′)(e). The join
of two rows is given pointwise: (row(s) ∨ row(s′))(e) = row(s)(e) ∨ row(s′)(e).
Column vectors are treated similarly.

We say that a vector v is covered by {v1, . . . , vn} when v = v1 ∨ . . . ∨ vn. We
say that a vector v is prime wrt. a set of vectors V = {v1, . . . , vn} if v is not zero
and no subset V ′ ⊆ V covers v. The set of prime vectors of a set V , denoted
by primes(V ), consists of those v ∈ V that are prime wrt. V \v. Every v ∈ V is
covered by the vectors below it in primes(V ). The primes are also referred to as
the join-irreducible elements [10].

6.5 Prime Row Automaton

From the prime rows of an observation table we can construct an NFA that
accepts the same language as the row automaton.

Definition 10. Let T = (S,E, T ) be closed and consistent for rows and
columns. The prime row automaton of T , denoted by Arow ′(T ), is the automaton
given by (Q,Σ,Δ, I, F ) where Q = primes(row(S)), I = {q ∈ Q | q � row(ε)},
F = {q ∈ Q | q(ε) = 1}, Δ(q, a) = {q′ ∈ Q | q′ � δ(q, a)} and δ is the transition
function of Arow (T ).

Recall that the right language of a state row(s) in the Arow (T ) consists of
those left congruence classes (atoms) for which the corresponding entry in the
vector row(s) is 1. Thus a prime row corresponds to a state whose right language
is prime, i.e., it is not a union of right languages of other states. Furthermore,
the right language of a state row(s) in Arow ′(T ) is the same as in Arow (T ).

Proposition 12. If T is closed and consistent for rows and columns, then
Arow ′(T ) is the canonical RFSA of L(Arow (T )).

The canonical RFSA can be learned with the NL∗ algorithm [3] which, how-
ever, has different conditions on consistency and closedness of the table than the
construction given here.

6.6 Prime Column Automaton

From the prime columns of an observation table we can construct an NFA that
accepts the same language as the column automaton.

Definition 11. Let T = (S,E, T ) be closed and consistent for rows and
columns. The prime column automaton of T , denoted by Acol′(T ), is the
automaton given by (Q,Σ,Δ, I, F ) where Q = primes(col(E)), I = {q ∈ Q |
q(ε) = 1}, F = {q ∈ Q | q � col(ε)}, Δ(q, a) = {q′ | ∃q′′. q′ ∈ δ(q′′, a) ∧ q � q′′}
and δ is the transition function of Acol(T ).
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Recall that the left language of a state col(e) in the column automaton con-
sists of those right congruence classes for which the corresponding entry in the
vector col(e) is 1. Thus, a prime column corresponds to a state whose left lan-
guage is prime, i.e., it is not a union of left languages of other states. Furthermore,
the left language of a state col(e) in Acol ′(T ) is the same as in Acol(T ).

Proposition 13. If T is closed and consistent for rows and columns, then
Acol ′(T ) is the maximized prime átomaton of L(Acol (T )).

The maximized prime átomaton can be learned with a column-oriented vari-
ant of NL∗, but, again, the conditions on consistency and closedness of the table
would be different than the construction given here.

6.7 Learning NFAs

An observation table that is closed and consistent for rows and columns can be
obtained from a table that is closed and consistent only for rows or only for
columns. For example, when L∗ terminates, then we have a minimal DFA and
an observation table that is row-closed and -consistent. We can then use the
learned automaton to fill in the missing parts of the table to make it closed and
consistent also for columns. From such a table we can construct the átomaton
and also calculate the prime elements to construct the canonical RFSA and the
maximized prime átomaton.

7 Conclusions

We introduced a new canonical NFA for regular languages, the maximized prime
átomaton, and studied its properties. Being the dual automaton of the canonical
RFSA, the maximized prime átomaton can be considered as a candidate for a
small NFA representation of a language.

We described how four canonical automata – the minimal DFA, the canonical
RFSA, the átomaton, and the maximized prime átomaton – can be obtained
from suitable observation tables used in automata learning algorithms. We also
believe that interpreting these observation tables in terms of quotients and atoms
of a language can provide new insights on automata learning problems.
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