
Lazy Regular Sensing

Orna Kupferman1(B) and Asaf Petruschka2

1 School of Engineering and Computer Science, The Hebrew University,
Jerusalem, Israel

orna@cs.huji.ac.il
2 Department of Mathematics and Computer Science,
The Weizmann Institute of Science, Rehovot, Israel

asaf.petruschka@weizmann.ac.il

Abstract. A complexity measure for regular languages based on the
sensing required to recognize them was recently introduced by Almagor,
Kuperberg, and Kupferman. Intuitively, the sensing cost quantifies the
detail in which a random input word has to be read in order to decide
its membership in the language, when the input letters composing the
word are truth assignments to a finite set of signals. We introduce the
notion of lazy sensing, where the signals are not sensed simultaneously.
Rather, the signals are ordered, and a signal is sensed only if the values
of the signals sensed so far have not determined the successor state. We
study four classes of lazy sensing, induced by distinguishing between
the cases where the order of the signals is static or dynamic (that is,
fixed in advance or depends on the values of the signals sensed so far),
and the cases where the order is global or local (that is, the same for
all states of the automaton, or not). We examine the different classes
of lazy sensing and the saving they enable, with respect to each other
and with respect to (non-lazy) sensing. We also examine the trade offs
between sensing cost and size. Our results show that the good properties
of sensing are preserved in the lazy setting. In particular, saving sensing
does not conflict with saving size: in all four classes, the lazy-sensing
cost of a regular language can be attained in the minimal automaton
recognizing the language.

1 Introduction

The classical complexity measure for regular languages is the size of a mini-
mal deterministic automaton that recognizes the language. In [1], the authors
introduced a new complexity measure, namely the sensing cost of the language.
Intuitively, the sensing cost of a language measures the detail with which a ran-
dom input word needs to be read in order to decide membership in the language.
The study is motivated by the use of finite-state automata in reasoning about
on-going behaviors of reactive systems. In particular, when monitoring a com-
putation, we seek a monitor that minimizes the activation of sensors used in the

Work partially supported by the Israel Science Foundation, ISF grant agreement no
2357/19.
c© IFIP International Federation for Information Processing 2022
Published by Springer Nature Switzerland AG 2022
Y.-S. Han and G. Vaszil (Eds.): DCFS 2022, LNCS 13439, pp. 155–169, 2022.
https://doi.org/10.1007/978-3-031-13257-5_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13257-5_12&domain=pdf
https://doi.org/10.1007/978-3-031-13257-5_12

156 O. Kupferman and A. Petruschka

monitoring process, and when synthesizing a system, we prefer I/O-transducers
that satisfy a given specification while minimizing the activation of sensors (of
input signals) [1]. Sensing has been studied in several other computer-science
contexts. In theoretical computer science, in methodologies such as PCP and
property testing, we are allowed to sample or query only part of the input [5].
In more practical applications, mathematical tools in signal processing are used
to reconstruct information based on compressed sensing [3], and in the context
of data streaming, one cannot store in memory the entire input, and therefore
has to approximate its properties according to partial “sketches” [8].

The automata used in formal methods are over alphabets of the form 2P ,
for a finite set P of signals. Consider a deterministic automaton (DFA) A over
an alphabet 2P . For a state q of A, we say that a signal p ∈ P is sensed in
q if at least one transition taken from q depends on the truth value of p. The
sensing cost of q is the number of signals it senses, and the sensing cost of a
run is the average sensing cost of states visited along the run. The definition is
extended to DFAs by defining the sensing cost of A as the limit of the expected
sensing of runs over words of increasing length, assuming a uniform distribution
of the letters in 2P , thus each signal p ∈ P holds in each moment in time with
probability 1

2 . It is easy to extend the setting to a non-uniform distribution on
the letters, given by a Markov chain. The sensing cost of a language L ⊆ (2P)∗

is then the infimum of the sensing costs of DFAs for L.
In this work, we refine the notion of regular sensing from [1], which we call

naive sensing, to a new notion called lazy sensing. Intuitively, in naive sensing,
the signals in P are sensed simultaneously. Consequently, if a signal p is defined
to be sensed in a state q, then a sensor for p must indeed be activated whenever
a run of the DFA is in state q and needs to determine the successor state.
In lazy sensing, the signals are not sensed simultaneously. Instead, they can
be activated “on demand”, one after the other, and we may reach a decision
about the successor state before they are all sensed. This is demonstrated in the
following simple example.

Example 1. Let P = {a, b}, and consider a state q0 with three successor states
q1, q2, and q3, and transitions as shown on the right. According to the definition
in [1], both a and b are sensed in q0. Indeed, in naive sensing, when the signals
are sensed simultaneously, both a and b must be sensed in order to determine
the successor state.

In lazy sensing, we can start by sensing only the
signal a. If a is True, then we know that the suc-
cessor state is q1, and there is no need to sense b.
Accordingly, if we assume that a has probability 1

2
to be True, the number of sensors we are expected
to activate in state q0 is only 11

2 , rather than 2. ��

q0

q2

q3

q1
{a}, {a, b}

{b}

{ }

The underlying idea of lazy sensing is simple and is similar to short-circuit
evaluation in programming languages. There, the second argument of a Boolean
operator is executed or evaluated only if the first argument does not suffice
to determine the value of the expression [7]. Our study examines such a lazy
evaluation in the context of DFAs.

Lazy Regular Sensing 157

In order to perform lazy sensing, each state of the DFA should be equipped
with a data structure that directs it which signal to sense next. We examine
four different classes of lazy sensing, induced by the following two parameters:
(1) Is ordering of signals sensed dynamic or static: in the dynamic classes, the
order may depend on the truth value of signals sensed earlier. That is, the data
structure supports policies like “if a is True, then next sense b, and if a is False,
then next sense c”. In the static classes, the data structure is a linear order on
the signals – the order in which they are going to be sensed, regardless of the
result. (2) Is the sensing policy local or global: in the local classes, each state
may have its own data structure. In the global ones, the same data structure is
used for all the states. Note that both parameters are irrelevant in short-circuit
evaluation in programming languages. Indeed, lazy evaluation concerns Boolean
expressions, each evaluated independently, and the control flow is induced by
the structure of the expression.

The difference between the dynamic and static classes can be viewed as fol-
lows. Consider a DFA with state space Q, and consider a state q ∈ Q. The data
structure maintaining the transitions from q is a sensing tree: a decision tree
in which each vertex is labeled by a signal in p ∈ P and has two successors,
corresponding to the two truth values that p may have. Each path in the tree
corresponds to a set of assignments to the signals in P – assignments that are
consistent with the truth values that the path assigns to signals that appear
in it. Accordingly, if we label the leaves of the tree by states in Q, then each
sensing tree maintains a function f : 2P → Q. In the static classes, all paths in
the sensing tree follow the same fixed order of the signals in P . Thus, the sensing
tree is related to a multiple-valued decision diagram [2,6]. On the other hand,
in the dynamic classes, the order of the signals in each path of the sensing tree
may be different.

For all the four classes, the lazy sensing cost of a state q ∈ Q is the expected
number of signals sensed when a transition from q is taken and sensing is per-
formed according to the sensing tree. Then, the lazy sensing cost of a DFA is the
limit of expected sensing of runs overs words of increasing length, with the best
possible choice of the allowed data structure. For example, in the static-global
class, this best possible choice is a single vector of the signals in P , maintaining
a linear order that is used by all states of the DFA. Finally, the sensing cost of
a regular language L is the infimum of sensing costs of a DFA for L.

We examine the different classes of lazy sensing and the saving they enable,
with respect to each other and with respect to naive sensing. We also examine
the trade offs between sensing cost and size. Our results show that the good
properties of naive sensing are preserved in lazy sensing. In particular, the lazy
sensing cost of a DFA can be calculated by using the stationary distribution of
its induced Markov chain. Also, saving sensing does not conflict with saving size:
in all four classes, the lazy sensing cost of a regular language can be attained in
the minimal automaton recognizing the language.

Due to the lack of space, some proofs are omitted and can be found in the
full version, in the authors’ URLs.

158 O. Kupferman and A. Petruschka

2 Defining Lazy Sensing

2.1 Deterministic Finite Automata

A deterministic automaton on finite words (DFA, for short) is A = 〈Σ,Q, q0,
δ, α〉, where Σ is a finite alphabet, Q is a finite set of states, q0 ∈ Q is an
initial state, δ : Q × Σ → Q is a transition function, and α ⊆ Q is a set of
accepting states. A run of A on a word w = σ1 · σ2 · · · σm ∈ Σ∗ is the sequence
of states q0, q1, . . . , qm such that qi+1 = δ(qi, σi+1) for all i ≥ 0. The run is
accepting if qm ∈ α. A word w ∈ Σ∗ is accepted by A if the run of A on w is
accepting. For i ≥ 0, we use w[1, i] to denote the prefix σ1 · σ2 · · · σi of w, and
use δ(w[1, i]) to denote the state qi that A visits after reading the prefix w[1, i].
Note that w[1, 0] = ε. The language of A, denoted L(A), is the set of words that
A accepts. For a state q ∈ Q, we use Aq to denote A with initial state q.

2.2 Potentially Sensed Signals

We study languages over an alphabet Σ = 2P , for a finite set P of signals. A letter
σ ∈ Σ corresponds to a truth assignment to the signals. When we define lan-
guages over Σ, we use predicates on P in order to denote sets of letters. For exam-
ple, if P = {a, b, c}, then the expression (True)∗ ·a ·b ·(True)∗ describes all words
over 2P that contain a subword σa · σb with σa ∈ {{a}, {a, b}, {a, c}, {a, b, c}}
and σb ∈ {{b}, {a, b}, {b, c}, {a, b, c}}.

Consider a DFA A = 〈2P , Q, q0, δ, α〉. For a state q ∈ Q and a signal p ∈ P ,
we say that p is potentially sensed in q if there exists a set S ⊆ P such that
δ(q, S\{p})
= δ(q, S ∪ {p}). Intuitively, a signal is potentially sensed in q if
knowing its value may affect the destination of at least one transition from q.
We use psensed(q) to denote the set of signals potentially sensed in q.

Recall the situation in Example 1. For S = ∅, we have δ(q0, S ∪ {a}) = q1
and δ(q0, S\{a}) = q3, so a is potentially sensed in q0. Also, δ(q0, S ∪ {b}) = q2
and δ(q0, S\{b}) = q3, so b is also potentially sensed in q0.

In the naive sensing setting, studied in [1], sensing of input signals happens
simultaneously; that is, we sense together all of the signals whose truth value
might affect the decision to which state to proceed. Accordingly, the notions
of a sensed signal in [1] and our definition above of a potentially sensed signal
coincide. In the following sections, we formalize the notion of lazy sensing, where
sensing need not be simultaneous.

2.3 Sensing Trees

The main feature of lazy sensing is a data structure termed sensing tree, which
directs the order in which signals are sensed. A sensing tree is a labeled tree
T = 〈V,E, τ〉, where V is a set of vertices, E ⊆ V × {True, False} × V is a
set of directed labeled edges, and τ : V → P ∪ Q is a labelling function. Each
vertex v ∈ V is either internal, in which case it has exactly two children, vleft
and vright , with 〈v, False, vleft〉 and 〈v, True, vright〉, or is a leaf, in which case

Lazy Regular Sensing 159

a

b b

c c c c

q1 q2 q3 q3 q2 q1 q4 q1

f t

f t f t

f t f t f t f t

Fig. 1. The sensing tree T .

a

b b

c q3 c c

q1 q2 q2 q1 q4 q1

f t

f t f t

f t f t f t

Fig. 2. Reducing the tree T .

it has no children. Let Int(T) and Leaves(T) denote the sets of internal vertices
and leaves of T , respectively. We assume that T has a single root – a vertex with
no incoming edges.

The labelling function τ labels internal vertices by signals in P and labels
leaves by states in Q. The function τ is such that for each signal p ∈ P and leaf
� ∈ V , the single path from the root to � includes at most one vertex labeled
p. Accordingly, each subset S ∈ 2P corresponds to a single leaf, namely the leaf
reached by following the path that corresponds to the assignment S. Formally,
reading an input S ∈ 2P , we start from the root of the tree, and then in each step,
we sense the signal p that labels the current vertex. If it is True (i.e., p ∈ S), we
proceed to the right child. If it is False (i.e., p /∈ S), we proceed to the left child.
By the requirement on τ , we encounter each signal at most once. In particular,
as some signals may not appear in the traversed path, the above process may
reach a leaf before all signals have been sensed. Let fT : 2P → Leaves(T) map
each S ∈ 2P to the leaf that corresponds to S. We sometimes refer to a sensing
tree also as a function T : 2P → Q, where for every S ∈ 2P , we have that
T (S) = τ(fT (S)), thus each assignment is mapped to the label of the leaf that
corresponds to S. Also, for S ∈ 2P , we use sensed(T, S) for the set of signals
sensed in the process of finding T (S). Note that |sensed(T, S)| is the length of
the path from the root to fT (S).

Example 2. Let P = {a, b, c} and Q = {q1, q2, q3, q4}. The tree T appearing
in Fig. 1 represents the function f with f(∅) = f({a, c}) = f({a, b, c}) = q1,
f({c}) = f({a}) = q2, f({b}) = f({b, c}) = q3, and f({a, b}) = q4. ��

We assume that sensing trees are reduced: they do not include redundant
tests, namely internal vertices whose two children root identical subtrees. A
sensing tree may be reduced in polynomial time by repeatedly replacing an
internal vertex with two identical children by one of its children. It is not hard
to see that the order in which such replacements are applied is not important.1

1 Note that the above definition of a reduced tree is syntactic, in the sense it examines
whether subtrees are identical. An alternative semantic definition removes a vertex
if its two children root subtrees that represent the same function. Since the order of
the signals along different paths may be different, two subtrees that represent the
same function need not be identical, even if both are reduced. Thus, the semantic
definition may result in smaller sensing trees. However, reducing trees according to

160 O. Kupferman and A. Petruschka

Example 3. Consider the sensing tree T from Fig. 1. The vertex reached with the
assignment a = False and b = True has two identical successors. By reducing
T , we obtain the sensing tree T ′ in Fig. 2. ��

A layout is a sensing tree L = 〈V,E, τ〉 in which τ is not defined for the leaves.
Accordingly, a layout cannot be reduced, and all its paths include vertices that
label all signals in P . A sensing tree T follows a layout L if T is obtained from L
by reducing the sensing tree obtained by extending τ to the leaves. Intuitively, L
directs the required sensing in T , but some tests that exist in L can be skipped
in T .

2.4 The Sensing Cost of a Sensing Tree

Consider a sensing tree T = 〈V,E, τ〉. The sensing cost of T is the expected
number of signals that are sensed when evaluating an assignment S ∈ 2P . Recall
that we assume that each signal is valid with probability 1

2 . Thus, the probability
of each assignment is 1

2|P | . Accordingly, the sensing cost of T , denoted scost(T),
is scost(T) = 1

2|P |
∑

S∈2P |sensed(T, S)|.
An equivalent definition of scost(T) is based on a discounted sum of the

vertices in T . For v ∈ V , let depth(v) denote the length of the path from the
root to v. Thus, the depth of the root is 0, the depth of its children is 1, and so on.
Since the probability to reach the internal vertex v when reading an assignment
S ∈ 2P that is chosen uniformly at random, is 2−depth(v), we have the following.

Lemma 1. ForeverysensingtreeT ,wehavethatscost(T) =
∑

v∈Int(T) 2−depth(v).

Example 4. The sensing cost of the tree T ′ from Fig. 2 is 1
8 · (3 + 3 + 2 + 2 + 3 +

3 + 3 + 3) = 23
4 . Using discounted sum, we get 1 + 2 · 1

2 + 3 · 1
4 = 23

4 . ��

2.5 Static vs. Dynamic Sensing Trees

The sensing tree T ′ from Fig. 2 is such that the labelling function τ follows the
same order of the signals in P in all its branches. Indeed, all branches first sense
a, then b, and then c, possibly skipping some of the signals (specifically, skipping
c after reading a = False and b = True). This corresponds to situations where
the order of signals sensed is decided in advance and is static. In contrast, the
order of signals sensed may be dynamic and depends on the valuation of signals
sensed earlier.

Example 5. Consider the function f represented by the sensing tree T ′ from
Fig. 2. The two sensing trees appearing in Fig. 3 represent f too. Both are
reduced. The tree on the left is static, and it follows the order c < b < a. It
is reduced, and still its sensing cost is 3, as all tree signals are read in all assign-
ments. The tree on the right is dynamic: When a = False, the next signal to
sense is b. When a = True, the next signal to sense is c. Its sensing cost is 2 1

2 ,
which is in fact the minimal sensing cost required for evaluating f . ��

Lazy Regular Sensing 161

c

b b

a a a a

q1 q2 q3 q4 q2 q1 q3 q1

f t

f t f t

f t f t f t f t

a

b c

c q3 b q1

q1 q2 q2 q4

f t

f t f t

f t f t

Fig. 3. A static (left) and a dynamic (right) sensing tree for f .

Note that, like a sensing tree, a layout may be static or dynamic. In particular,
a static layout corresponds to a permutation on P . Indeed, such a layout is a
sensing tree in which the vertices along all paths from the root to a leaf are
labeled by all signals in P , with all paths follow the same ordering.

2.6 The Sensing Cost of a DFA and a Regular Language

Consider a DFA A = 〈2P , Q, q0, δ, α〉. Essentially, the sensing cost of A is the
expected number of signals that A needs to sense in each transition when it
runs on a random long word. Defining the sensing cost of A, we first have to
define the expected number of signals that A needs to sense in each state q ∈ Q.
In [1], this is the number of potentially sensed signals in q. Defining the lazy
sensing cost of A, we allow the states to maintain sensing trees that represent
the transition function. Indeed, the function δ : Q × 2P → Q induces, for each
state q ∈ Q, a function δq : 2P → Q, where for every assignment S ∈ 2P , we
have that δq(S) = δ(q, S). We distinguish between four classess, induced by the
following two parameters.

– Static vs. Dynamic. That is, whether the sensing trees for δq are static or
dynamic.

– Global vs. Local. That is, whether the sensing trees of the different states
follow the same layout.

We denote the four classes by SG, SL, DG, and DL.
Let T be the set of all sensing trees (over P and Q, which we omit from the

notation). A legal choice of sensing trees for the DFA A is a function γ : Q → T ,
such that for every state q ∈ Q, the sensing tree γ(q) represents the function
δq, and the following hold. Note that we can view γ as a mapping of states to
layouts, which are then reduced to sensing trees. In particular, note that there is
a unique way to reduce a layout to a sensing tree for a given function f : 2P → Q.

– In the LD class, there are no restrictions on γ.
– In the LS class, the image of γ contains only static sensing trees.
– In the GD class, all the sensing trees in the image of γ follow the same layout.

the semantic definition is more complex. All our results apply also to the semantic
definition.

162 O. Kupferman and A. Petruschka

– In the GS class, all the sensing trees in the image of γ follow the same layout,
which is static.

Consider a DFA A. Let γ be a choice of sensing trees for A. For a word
w = w1 · · · wm ∈ (2P)∗, the sensing cost of w by A with respect γ is

scostA,γ(w) =
1
m

m−1∑

i=0

|sensed(γ(δ(w[1, i]), wi+1))|.

That is, scostA,γ(w) is the average number of signals that a state in the run of A
on w senses when it reads w using the sensing trees chosen by γ. Note that the
definition does not take into account the last state in the run, namely δ(w[1,m]),
as indeed no letter is read in it.

The sensing cost of A with respect to γ is then defined as the expected
sensing cost of words of length tending to infinity, when the letters in 2P are
uniformly distributed. Formally,

scost(A, γ) = lim
m→∞

|2P |−m
∑

w∈(2P)m

scostA,γ(w).

That is, scost(A, γ) is the expected sensing cost of words of length tending to
infinity, when the letters in 2P are uniformly distributed.

Now, the sensing cost of A is the sensing cost of A using an opti-
mal legal choice γ : Q → T of sensing trees. Formally, for every class
ζ ∈ {LD,LS,GD,GS}, we define ζscost(A) as min{ζscost(A, γ) : γ ∈
QT is legal in ζ}.

Finally, the sensing cost of a regular language L ⊆ (2P)∗ is the infi-
mum of the sensing costs of DFAs that recognize L. That is, for every class
ζ ∈ {LD,LS,GD,GS}, we have that ζscost(L) = inf{ζscost(A) : L(A) = L}.
We use infimum in the definition since the number of DFAs recognizing L is
unbounded. In fact, a-priori, there is no guarantee that ζscost(L) is attained by
a DFA.

3 Probability-Based Definition of Lazy-Sensing Cost

The definition of sensing cost of a DFA in Sect. 2.6 is not effective, in the sense
it does not suggest a way to calculate the sensing cost of a DFA. In this section
we describe an alternative definition, which does suggest such a way. Essentially,
while the definition in Sect. 2.6 refers to the sensing cost of words of increas-
ing length, our definition here refers to the sensing costs of states visited by
random walks on the DFA. We first need some definitions and notations about
probability.

A Markov chain M = 〈S, P 〉 consists of a finite state space S and a stochas-
tic transition matrix P : S × S → [0, 1]. That is, for all s ∈ S, we have∑

s′∈S P (s, s′) = 1.

Lazy Regular Sensing 163

Consider a directed graph G = 〈V,E〉. A strongly connected component
(SCC) of G is a maximal (with respect to containment) set C ⊆ V such that for
all x, y ∈ C, there is a path from x to y. An SCC (or state) is ergodic if no other
SCC is reachable from it, and is transient otherwise.

An automaton A = 〈Σ,Q, q0, δ, α〉 induces a directed graph GA = 〈Q,E〉
in which 〈q, q′〉 ∈ E iff there is a letter σ such that q′ = δ(q, σ). When we talk
about the SCCs of A, we refer to those of GA. Recall that we assume that the
letters in Σ are uniformly distributed, thus A also corresponds to a Markov
chain MA in which the probability of a transition from state q to state q′ is
pq,q′ = 1

|Σ| |{σ ∈ Σ : δ(q, σ) = q′}|. Let C be the set of A’s SCC, and Ce ⊆ C be
the set of its ergodic SCC’s.

Consider an ergodic SCC C ∈ Ce. Let PC be the matrix describing the
probability of transitions in C. Thus, the rows and columns of PC are associated
with states, and the value in coordinate q, q′ is pq,q′ . By [4], there is a unique
probability vector πC ∈ [0, 1]C such that πCPC = πC . This vector describes the
stationary distribution of C: for all q ∈ C it holds that πC(q) = limm→∞

EC
m(q)
m ,

where EC
m(q) is the average number of occurrences of q in a run of MA of length

m that starts anywhere in C [4]. Thus, intuitively, πC(q) is the probability that
a long run that starts in C ends in q. In order to extend the distribution to
the entire Markov chain of A, we have to take into account the probability of
reaching each of the ergodic components. The SCC-reachability distribution of
A is the function ρ : Ce → [0, 1] that maps each ergodic SCC C of A to the
probability that MA eventually reaches C, starting from the initial state. The
limiting distribution π : Q → [0, 1] is now defined by π(q) = 0, if q is transient,
and π(1) = πC(q) ·ρ(C), if q is in some C ∈ Ce. By [4], the limiting distributions
can be computed in polynomial time by solving a system of linear equations.

Intuitively, the limiting distribution of state q describes the probability of
a run on a random and long input word to end in q. Formally, we have the
following lemma.

Lemma 2 [1]. Let Em(q) be the expected number of occurrences of a state q in
a run of length m of MA that starts in q0. Then, π(q) = limm→∞

Em(q)
m .

The alternative definition is based on the following lemma, see proof in the
full version.

Lemma 3. Let A = 〈2P , Q, q0, δ, α〉 be a DFA, and let γ be a choice of sensing
trees for A. Then,

scost(A, γ) = lim
m→∞

|2P |−m
∑

w∈(2P)m

1
m

m−1∑

i=0

scost(γ(δ(w[1, i])).

Lemma 3 enables us to follow the exact same considerations in [1], thus
computing the lazy-sensing cost of a DFA by examining its induced Markov
chain. Formally, we have the following.

164 O. Kupferman and A. Petruschka

Theorem 1. Let A be a DFA with alphabet 2P , state space Q, and limiting
distribution π : Q → [0, 1]. Then, for every choice γ of sensing trees for A, we
have that scost(A, γ) =

∑
q∈Q π(q) · scost(γ(q)).

4 Lazy-Sensing Cost vs. Size

In this section we examine the trade-off between the size of a DFA and its sensing
cost in the four lazy classes of sensing. It is shown in [1] that in the naive setting
of sensing, namely when all signals are read simultaneously, minimizing the size
of a DFA goes hand in hand with minimizing its sensing cost. Thus, minimal
naive sensing is attained in a minimal-size DFA. In this section, we show that
this good news is carried over to lazy sensing.

Consider a language L ⊆ Σ∗. For two finite words u1 and u2, we say that u1

and u2 are right L-indistinguishable, denoted u1 ∼L u2, if for every z ∈ Σ∗, we
have that u1 ·z ∈ L iff u2 ·z ∈ L. Thus, ∼L is the Myhill-Nerode right congruence
used for minimizing automata. For u ∈ Σ∗, let [u] denote the equivalence class
of u in ∼L and let 〈L〉 denote the set of all equivalence classes. Each class
[u] ∈ 〈L〉 is associated with the residual language u−1L = {w : uw ∈ L}. When
L is regular, the set 〈L〉 is finite, and induces the residual automaton of L, defined
by RL = 〈Σ, 〈L〉, δL, [ε], α〉, with δL([u], a) = [u · a], for all [u] ∈ 〈L〉 and a ∈ Σ.
Also, α contains all classes [u] with u ∈ L. The DFA RL is well defined and is
the unique minimal DFA for L.

Lemma 4. Consider a regular language L ⊆ Σ∗. For every DFA A with L(A) =
L and lazy-sensing class ζ ∈ {LD,LS,GD,GS}, it holds that ζscost(RL) ≤
ζscost(A).

Proof: Let A = 〈2P , Q, q0, δ, α〉 be a DFA such that L(A) = L. Consider a
reachable state q ∈ Q. Let u ∈ (2P)∗ be a word such that A reaches the q
after reading u, thus q = δ∗(q0, u). Recall that RL reaches the state [u] after
reading u. We claim that for every layout T of a sensing tree over P , we have
that scost(T[u]) ≤ scost(Tq), where T[u] is the sensing tree obtained from T by
reducing it according to the transitions of RL from [u], and Tq is the sensing
tree obtained from T by reducing it according to the transitions of A from q.

By Lemma 1, for every sensing tree T , we have scost(T) =∑
v∈Int(T) 2−depth(v). Accordingly, it suffices to prove that for all letters σ, σ′ ∈

2P if δ(q, σ) = δ(σ′), then δL([u], σ) = δL([u], σ′). Indeed, this would guarantee
that every vertex that is deleted from the layout T when it is reduced to Tq is
also deleted when T is reduced to T[u]. In the full version, we prove this claim.
��

Since L(RL) = L, then for every class ζ ∈ {LD,LS,GD,GS}, we have that
ζscost(L) ≤ ζscost(RL). Thus, together with Lemma 4, we can conclude with
the following.

Theorem 2. For every regular language L ⊆ (2P)∗ and lazy-sensing class ζ ∈
{LD,LS,GD,GS}, we have that ζscost(L) = ζscost(RL).

Lazy Regular Sensing 165

5 Comparing the Different Sensing Classes

In this section we examine the saving of sensing that the lazy classes enable.
We start by comparing the lazy classes with the setting in [1], where all signals
are sensed simultaneously, and continue to examine the relations among the four
lazy classes.

5.1 Lazy vs. Naive Sensing

Recall that in the setting of [1], which we refer to as naive sensing, the sensing
cost of a DFA A is defined as follows (we use the prefix N for naive).

Nscost(A) = lim
m→∞

|2P |−m
∑

w∈(2P)m

1
m

m−1∑

i=0

|psensed(δ(w[1, i]))|,

as all the potentially sensed signals must in fact be sensed. The sensing cost of
a regular language in the naive sensing setting is then defined as Nscost(L) =
inf{Nscost(A) : L(A) = L}. We first show that, as expected, the sensing cost in
all lazy classes is never higher than the naive one.

Theorem 3. For every DFA A over an alphabet 2P and for every lazy-sensing
class ζ ∈ {LD,LS,GD,GS}, we have that ζscost(A) ≤ Nscost(A).

Proof: We prove the theorem for the static classes LS and GS. Since every
choice function γ that is legal in these classes is legal also in the corresponding
dynamic class, the result for LD and GD follows. Let A = 〈2P , Q, q0, δ, α〉, and
let γ be a choice of sensing trees for the DFA A that is legal with respect to
ζ ∈ {LS,GS}. We claim that for every state q ∈ Q, if p /∈ psensed(q), then there
is no internal vertex with the label p in γ(q). Since this holds for all choices
function γ, in particular these that attain ζscost(A), the theorem follows.

In order to prove the claim, consider a state q and let γ(q) = 〈V,E, τ〉.
Consider an internal vertex v ∈ V such that τ(v) = p. If p /∈ psensed(q), then for
every S ∈ 2P , we have that δ(q, S\{p}) = δ(q, S ∪ {p}). Therefore, regardless of
ζ, the subtrees of 〈V,E, τ〉 with roots vleft and vright calculate the same function.
Since ζ is static, this implies that vleft and vright root identical subtrees, and so
we can reduce 〈V,E, τ〉 by redirecting the edge that enters v to vleft . ��

Corollary 1. For every regular language L ⊆ (2P)∗ and lazy-sensing class ζ ∈
{LD,LS,GD,GS}, we have that ζscost(L) ≤ Nscost(L).

We now show that, on the one hand, there are cases where lazy sensing is not
helpful (Theorem 4), and, on the other hand, there are cases where the saving
that lazy sensing enables is unbounded (Theorem 5).

Theorem 4. For every finite set P of signals, there is a regular language L ⊆
(2P)∗ such that for every lazy-sensing class ζ ∈ {LD,LS,GD,GS}, we have that
ζscost(L) = Nscost(L).

166 O. Kupferman and A. Petruschka

Proof: Let L = {w1 · · · wm ∈ (2P)∗ : m ≥ 1 and |wm| is even} be the language
of all words in (2P)∗ that end with a letter that consists of an even number of
signals. A DFA A for L must sense all the signals in P in all states. Indeed, the
DFA A has to identify, in all states, whether the current input letter consists of
an even number of signals. Thus, for every state of q of A and choice function
γ, we have that scost(γ(q)) = |P |. By Theorem 1 and the definition of the naive
sensing cost of a DFA, we conclude that ζscost(A) = Nscost(A) = |P |. Since
the above holds for every DFA A recognizing L, the result follows. ��

Theorem 5. For every n ≥ 1, there is a regular language Ln over
2{p1,...,pn} such that Nscost(Ln) = n, yet for every lazy-sensing class ζ ∈
{LD,LS,GD,GS}, we have that ζscost(Ln) < 2.

Proof: Let Pn = {p1, ..., pn} be a set of n signals, let σ = Pn, and let Ln be
the language of all words with an even number of occurrences of the letter σ. A
minimal DFA An that recognizes Ln consists of two states, keeping track of the
parity of occurrences of σ, see Fig. 4 below.

An

q0 q1

p1 ∧ p2 ∧ · · · ∧ pn

p1 ∧ p2 ∧ · · · ∧ pn

(¬p1) ∨ (¬p2) ∨ · · · ∨ (¬pn)(¬p1) ∨ (¬p2) ∨ · · · ∨ (¬pn)

Fig. 4. Lazy sensing is better than naive sensing.

It is easy to see that psensed(q0) = psensed(q1) = Pn. Indeed, for every
pi ∈ Pn we have δ(q0, Pn∪{pi}) = q1
= q0 = δ(q0, Pn\{pi}) and δ(q1, Pn∪{pi}) =
q0
= q1 = δ(q1, Pn\{pi}). Since q0 and q1 are the only states of An, it follows that
Nscost(An) = n. Also, as the naive sensing cost of a regular language is attained
in the minimal DFA recognizing the language [1], it follows that Nscost(Ln) = n.

We now consider the lazy sensing cost of Ln. By Theorem 2, here too we can
consider the DFA An. It is easy to see that a sensing tree T of minimal sensing
cost for each of the states qi, with i ∈ {0, 1}, consists of n internal vertices,
one in each height from 0 to n − 1, labeled by all of
the signals in Pn in some arbitrary order.

For each such internal vertex, its left child is a leaf
labeled qi. If the vertex is in height different from n−1,
its right child is another internal vertex. If it is in
height n − 1, its right child is a leaf labeled with q1−i.
The figure on the right shows such a minimal sensing
tree for the state q0.

It is not hard to see that the suggested sensing tree is legal in all classes ζ.
Indeed, the same layout is used for q0 and q1, and the tree follows an order on

Lazy Regular Sensing 167

P that is independent of the values read. By Lemma 1, we have that scost(T) =
∑

v∈Int(T) 2−depth(v) =
∑n−1

i=0 2−i = 2 − 1
2n−1 . Thus, by Theorems 2 and 1, for

all classes ζ ∈ {LD,LS,GD,GS}, we have that ζscost(Ln) = scost(An) =
2 − 1

2n−1 < 2. ��

5.2 Comparison of the Different Lazy-Sensing Classes

In this section, we compare the sensing costs in the different lazy sensing classes.
First, since every choice function that is legal in the global classes is legal in the
local ones, and every choice function that is legal in the static classes is legal in
the dynamic ones, we immediately have the following.

Theorem 6. For every regular language L ⊆ (2P)∗, the following holds

(i) LDscost(L) ≤ GDscost(L), (ii) LSscost(L) ≤ GSscost(L),
(iii) LDscost(L) ≤ LSscost(L), (iv) GDscost(L) ≤ GSscost(L).

Theorem 4 implies that there are languages for which the sensing costs in the
four classes coincide. In the following, we describe cases where the inequalities
in Theorem 6 are strict. In addition, we show that the local-static class and the
global-dynamic class are incomparable: there is a language L with LSscost(L) <
GDscost(L) and also a language L with LSscost(L) > GDscost(L).

We start with the advantage of the local classes over the global ones:

Lemma 5. There exists a regular language L ⊆ (2P)∗ such that LDscost(L) =
LSscost(L) < GDscost(L) = GSscost(L).

Proof: Let P = {a, b} and consider the DFA A with alphabet 2P shown in
Fig. 5.

q0 q1

q2

¬a ∧ b

a

¬a ∧ ¬b ¬a ∧ ¬b

a

b

a ∧ ¬b
¬a

Fig. 5. Local lazy sensing is better than global one.

It can be easily verified that A is a minimal DFA, for example using
the standard DFA minimization algorithm. In the full version, we prove that
LDscost(A) = LSscost(A) < GDscost(A) = GSscost(A), which, by Theorem 2,
implies that L(A) satisfies the conditions in the lemma. ��

168 O. Kupferman and A. Petruschka

We continue with the advantage of the dynamic classes over the static ones:

Lemma 6. There exists a regular language L ⊆ (2P)∗ such that LDscost(L) =
GDscost(L) < LSscost(L) = GSscost(L).

Proof: Let P = {a, b, c} and consider the DFA A with alphabet 2P shown in
Fig. 6.

Fig. 6. Dynamic lazy sensing is better than static one.

Again, it can be verified that A is minimal, thus it is left to prove that
LDscost(A) = GDscost(A) < LSscost(A) = GSscost(A), which we do in the full
version. ��

6 Directions for Future Research

We introduced lazy sensing for deterministic finite automata. We studied the
basic problems about the setting, namely a study of four natural classes of
lazy sensing, their comparison with naive sensing, and the trade-off between
minimizing the sensing cost of a DFA and minimizing its size. We left open
several interesting problems, which we discuss below.

Computing Lazy Sensing Cost: In [1], it is shown that the naive sensing
cost of a DFA can be calculated in polynomial time using standard Markov
chain algorithms. Accordingly, the naive sensing cost of a regular language can
also be calculated in polynomial time using the classical minimization algorithm
for DFA. In order to compute the sensing cost in lazy-sensing classes, one also
needs to find the optimal sensing trees for a given DFA.

The involved questions now depend on the lazy-sensing class. For the SL class,
the problem is strongly related to the problem of finding an optimal ordering for
the variables in a BDD, and the complexity depends on the way the transition
function of the DFA is given. In the GS class, there is the extra requirement
that the same order is used in the transition functions of all states. Then, in

Lazy Regular Sensing 169

the dynamic classes, the layouts we may use need not follow an ordering for the
variables, and techniques from the theory of BDDs are less relevant.

Random Lazy Sensing: While dynamic and local lazy sensing may save more
than static and global lazy sensing, they require the maintenance of more com-
plex data structures. In addition to studying lazy sensing classes with some
bounded level of dynamics or locality, it is interesting to examine a stochastic
approach, where the signal to be sensed next is chosen randomly. It is not hard
to see that our results in Sects. 4 and 5.1 apply also to the random lazy setting,
when we examine the expected sensing cost of a DFA, with expectation now
referring to both the input words and the order in which signals are sampled.

References

1. Almagor, S., Kuperberg, D., Kupferman, O.: Regular sensing. In: Proceedings of
34th Conference on Foundations of Software Technology and Theoretical Computer
Science. LIPIcs, vol. 29, pp. 161–173. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik, Germany (2014)

2. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 1020 states and beyond. Inf. Comput. 98(2), 142–170 (1992)

3. Donoho, D.L.: Compressed sensing. IEEE Trans. Inform. Theory 52, 1289–1306
(2006)

4. Grinstead, C., Laurie Snell, J.: 11: Markov chains. In: Introduction to Probability.
American Mathematical Society (1997)

5. Kindler, G.: Property testing, PCP, and Juntas. Ph.D. thesis, Tel Aviv University
University (2002)

6. Miller, D.M., Drechsler, R.: On the construction of multiple-valued decision dia-
grams. In: 32nd IEEE International Symposium on Multiple-Valued Logic, pp. 245–
253. IEEE Computer Society (2002)

7. Minker, J., Minker, R.G.: Optimization of Boolean expressions-historical develop-
ments. IEEE Ann. Hist. Comput. 2(3), 227–238 (1980)

8. Muthukrishnan, S.: Theory of data stream computing: where to go. In: Proceedings
of 30th Symposium on Principles of Database Systems, pp. 317–319 (2011)

	Lazy Regular Sensing
	1 Introduction
	2 Defining Lazy Sensing
	2.1 Deterministic Finite Automata
	2.2 Potentially Sensed Signals
	2.3 Sensing Trees
	2.4 The Sensing Cost of a Sensing Tree
	2.5 Static vs. Dynamic Sensing Trees
	2.6 The Sensing Cost of a DFA and a Regular Language

	3 Probability-Based Definition of Lazy-Sensing Cost
	4 Lazy-Sensing Cost vs. Size
	5 Comparing the Different Sensing Classes
	5.1 Lazy vs. Naive Sensing
	5.2 Comparison of the Different Lazy-Sensing Classes

	6 Directions for Future Research
	References

