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Abstract. The Medvedev’s Theorem (MT) characterizes a regular language as the
projection of a local, i.e., a strictly-locally-testable language of order k = 2 (2-slt),
over an alphabet larger than the terminal one by a factor depending on the state
complexityof thefiniteautomaton(FA).MTwas latergeneralized toother language
domains that instead of words contain trees or rectangular pictures, namely the
regular tree languages and the tiling-system recognizable (TS-rec) languages. For
trees and pictures the notion of local testability based on the occurrence of digram
(2-factors) in a word, is changed into a suitable neighborhood of size 2, resp. a
tree of height one, or a two-by-two tile, to be generically called 2-grams- A more
recent MT extension goes in the direction of enlarging the neighborhood using as
generators the languages, characterized by the k-grams, k > 2, and called k-slt;
of course the k-gram types are different for words, trees and pictures. For all three
domains a remarkably similar Extended Medvedev’s Theorem (EMT) holds: a
word/tree/picture language R over a terminal alphabet Σ is regular/regular/TS-rec
if there exists a k-slt language L over an alphabet Λ of size double of Σ, and a
letter-to-letter homomorphism from Σ to Λ such that R is the image of L; the
value of k is inO(lg(n)), n being the state set size of an automaton recognizing the
word/tree language R (the tiling system alphabet size for pictures). The alphabetic
ratio |Λ|/|Σ| of EMT is thus two, against the value n of MT. For some languages
the value two of the ratio is the minimal possible. We present a new simplified
proof of EMT for words and hints to the similar proofs for trees and for pictures.
The central idea, say for words, is to sample a run of the FA so that the states
traversed every k transition steps are evidenced; then each state is encoded by
means of a comma-free binary code-word of length k; such an encoding is known
to be a 2k-slt language. For trees the same idea requires to lay the code-word bits
over the root-to-leaf tree paths. For pictures 2D comma-free codes are needed. The
possibility of further generalizations of EMT is raised at the end.

1 Introduction

Of the several approaches available to define formal language families, the homomor-
phic characterization of interest here essentially says that a language belongs to a certain
family, if, and only if, it is the homomorphic image of a language belonging to a sim-
pler sub-family. Since it would be difficult to be more precise without fixing a language
family, we start with a classic case: Medvedev’s theorem [15,18] (MT) for regular word
languages. The theorem says that a language R over a terminal alphabet Σ is regular if,
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and only if, there exists a local language L over another alphabet Λ and a letter-to-letter
homomorphism ϑ : Σ∗ → Λ∗ such that R = ϑ(L). Therefore each word x ∈ R is the
image ϑ(y) of a word y in Λ, also called a pre-image of x.

We recall that a local language is a strictly locally testable [14] (slt) language of
testability order k = 2, in short a 2-slt language; the k-slt families form a strict hier-
archy with respect to inclusion. The notion of local testability is the pivot of all the
developments reported here, also for tree languages and for picture languages. For an
slt language the validity of a word can be decided by a series of local tests: by moving
on the word a sliding window of width k and collecting the window contents, i.e., the
k-factors present in the word, and then by checking that they are included in a given set
called a test set, where also the prefixes and suffixes are specified as such.

For the other two families, the k-factors, become respectively certain finite pieces
of trees and of pictures, that we may call k-grams (k-tiles for pictures).

The local alphabet in the proof [18] of MT is Λ = Σ × Q, where Q is the state
set of a finite-state automaton (FA) recognizing language R. We prefer to say that the
alphabetic ratio |Λ|

|Σ| of MT is |Q|, to evidence how the local alphabet size depends on
the state complexity of the language.

It is known that homomorphic characterizations à la Medvedev exist also for lan-
guages comprising entities more complex than words, when a suitable definition of
locality and strict local testability is possible. This is the case of the regular tree lan-
guages (e.g. in [3,9]) and of the picture languages defined by the tiling systems [10,11]
(TS-rec), for brevity simply called tree languages and picture languages.

The question addressed in a series of studies concerns the reduction of the alphabetic
ratio that can be achieved in a Medvedev’s theorem if the local language is replaced by
a k-slt language, where k ≥ 2. The series started with a result [5] for regular word
languages, further developed in [6], then similar results where obtained for the regular
tree languages [7], and lastly for the picture languages defined by the tiling systems [4].
In all such cases a similar Extended Medvedev’s Theorem (EMT) with alphabetic ratio
2 was proved.

The EMT instance for words says that a word language is regular if, and only if,
it is the image of a k-slt language of alphabetic ratio 2. Moreover the value of k is in
O(lg(|Q|)) where Q is the state set of a finite-state automaton (FA) recognizing the
language. The value two is the minimal possible for some regular languages, no matter
how large a k is taken. Such an EMT is a new property that carries over from regular
word languages to tree languages and to picture languages.

Since it would be too long to cover the word, tree and picture cases at the same
level of detail, we concentrate on the basic case of words for which we provide a new
simpler proof. The other two cases cannot be discussed here and their specific aspects
are intuitively presented in a later section.

EMT for Words. It may be surprising at first that the EMT property holds for three very
different language domains, but a deep justification comes from the common approach
used in all the three proofs. We explain it, referring to the regular word languages over
an alphabet Σ. The chief aspects present in the proof are:

(1) The focus in the MT proof [18] on the recognizing runs performed by an FA, rep-
resented as state-labeled paths over the local alphabet Λ = Σ × Q. The projection
on Σ are the recognized words.
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(2) The encoding of the states on the run by means of comma-free code-words [2,12].
Actually not all the states are encoded but only those that occur k − 1 transition
steps apart from each other. This means that the states are taken with a fixed sam-
pling rate k ≥ 2. The value of k determines the code-word length, hence the code
dictionary numerosity that must suffice to encode the states.

(3) The self-synchronization property of comma-free codes permits to decode such an
encoded run using a 2k-slt machine, which is the same as saying that the successful
encoded runs belong to an slt language of order 2k. The known results on the
numerosity of binary comma-free codes of length k permit to prove that k is in
O(lg(|Q|)).

We raise a technical point that has to do with the words (and also with trees and
pictures) which are (i) smaller than k or (ii) of a size that is not multiple of k. Case (i)
is easily dismissed as in the classic theory of k-slt word languages, by stipulating that
any words shorter than k belonging to the language are simply united to the language
defined by the k-slt test. On the other hand, in case (ii) a language may comprise an
infinite number of words that cannot be encoded (as in item (2) above) with a uniform
comma-free code X ⊂ {0, 1}k since X just contains code-words of fixed-length k. The
solution we adopt here transforms the language into a padded version by appending to
every word not in (Σk)+ up to k−1 new symbols ($) so that all words have the required
length for encoding. EMT is proved initially for the padded language, obtaining the k-
slt test set. The test set is then pruned from the $’s and adjusted to construct the final
test set.

Paper Organization. Section 2 contains the basic definitions for word languages and
for comma-free codes, and some preliminary properties. Section 3 contains a result on
the minimal alphabetic ratio, the proof of EMT for the regular word languages, and a
complete example. Section 4 briefly describes the cases of tree languages and picture
languages by comparing them with the case of words. The Conclusion Sect. 5 indicates
a possible generalization.

2 Basic Definitions and Properties

2.1 Regular and Strictly Locally Testable Word Languages

For brevity, we omit the classical definitions for language and automata theory and just
list our notations. The empty word is denoted ε. The Greek upper-case letters Γ,Δ,Θ,Λ
and Σ denote finite terminal alphabets.

The i-th letter of a word x is x(i), 1 ≤ i ≤ |x|, i.e., x = x(1)x(2) . . . x(|x|). The
character # is not present in the alphabets, and is used as word delimiter to mark the
start and end of a word, but it is not counted as true input symbol. A homomorphism
ξ : Λ∗ → Σ∗ is letter-to-letter if for every b ∈ Λ, ξ(b) is in Σ; we only use letter-to-
letter homomorphisms.

A finite automaton (FA) A is defined by a 5-tuple (Σ,Q,→, I, F ) where Q is the
set of states, → is the state-transition relation (or graph) →⊆ Q × Σ × Q; I and F are
resp. the nonempty subsets of Q comprising the initial and final states. If (q, a, q′) ∈ →,
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we write q
a−−→ q′. The transitive closure of → is defined as usual, e.g., we also write

q
x−−→ q′ with x ∈ Σ+ with obvious meaning. If q ∈ I and q′ ∈ F , then the word x is

recognized by A.

Strictly Locally Testable Languages. There are different yet asymptotically equivalent
definitions of the family of strictly locally testable (slt) languages [14]; the following
definition is based on delimited words. Notice also that in the definition and throughout
the paper we disregard for simplicity a finite number of short words that may be present
in the language. The next notation is useful: given an alphabet Λ and for all k ≥ 2, let
Λk
# = #Λk−1 ∪ Λk ∪ Λk−1#. Thus the set Λk

# includes all the words of length k over
Λ and all the words of length k − 1 bordered on the left or on the right by #. For all
words x, |x| ≥ k, let Fk(x) ⊆ Λk

# be the set of factors of length k (k-factors) present
in #x#. The definition of Fk is extended to languages as usual.

Definition 1 (Strict local testability). A language L ⊆ Γ ∗ is k-strictly locally testable
(k-slt), if there exist a set Mk ⊆ Γ k

# such that, for every word x ∈ Γ ∗, x is in L if, and
only if, Fk(x) ⊆ Mk. Then, we write L = L(Mk), and we call Mk the test set of L.
A language is slt if it is k-slt for some value k, which is called the testability order. A
forbidden factor of Mk is a word in Γ k

# − Mk.

The order k = 2 yields the family of local languages. The k-slt languages form an
infinite hierarchy under inclusion, ordered by k.

2.2 Comma-Free Codes

A finite set or dictionary X ⊂ Δ+ is a code [2] if every word in Δ+ has at most one
factorization (i.e., decoding) in words of X , also known as code-words. We assume that
Δ is the binary alphabet {0, 1}. We use a code X to represent a finite alphabet Γ by
means of a one-to-one homomorphism, denoted by � �X : Γ ∗ → Δ∗, called encoding,
such that �α�X ∈ X for every α ∈ Γ .

The family of codes we use is named comma-free [2,12] because the code-words
in a text are not separated by a reserved character (the “comma”). Let k ≥ 1. A code
dictionary X ⊂ Δk is comma-free [12], if, intuitively, no code-word overlaps the con-
catenation of two code-words, more precisely:

X2 ∩ Δ+XΔ+ = ∅ i.e., ∀t, u, v, w ∈ Δ∗ if tu, uv, vw ∈ X then

{
u = w = ε∨
t = v = ε

.

(1)
An example of comma-free code dictionary is X = {0010, 0011, 1110}.

Numerosity of Comma-Free Code Dictionaries

Proposition 1. For every m ≥ 2, there exist k ≥ 2 and a comma-free code X ⊂ Δk

such that |X| ≥ m, with k ∈ O(lgm).

Proof. Assume without loss of generality that m is a power of 2, i.e., m = 2h for
some h ≥ 1. Let k be any prime number between 2h and 4h, which always exists
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by Bertrand-Chebyshev theorem; hence, k is in O(lgm). From [8] (as a special case
of Theorem 2 pag. 267) it is known that for every prime integer k > 1 there is a
comma-free code of length k with 2k−2

k code-words, whence the following inequality:
2k−2

k ≥ 22h−2
2h ≥ 22h−1

2h . Then, this value is at least as large as m if 22h−1

2h ≥ 2h, i.e., if
2h−1 ≥ 2h which is true for every h ≥ 2. 
�

Comma-Free Codes and slt Languages. To prepare for later proofs, we state a funda-
mental relation between comma-free codes and slt languages. Given an alphabet Λ and
a comma-free dictionary X that encodes the symbols of Λ, let L ⊆ Λ∗ be a local lan-
guage. Then the encoding of L, i.e., the language �L�X ⊆ (Δk)∗ is slt. Such result is
known and derives from early studies on local parsability [13,17].

Theorem 1 (preservation of slt by encoding). Let L ⊆ Γ+ be the 2-slt language
L(M2) defined by a test set M2 ⊆ Γ 2

#. The encoding of L by means of a comma-free
code X of length k, i.e., the language �L�X ⊆ (Δk)∗, is a 2k-slt language.

In the special case when L = Γ Γ+ the encoding XX+ is the (2k)-slt language defined
by the set F2k(XX+) of the factors of length 2k of #X X+#.

3 The Extended Medvedev’s Theorem for Words

Theorem 2 (Medvedev’s Theor. for words (see e.g. [18])). A language R ⊆ Σ∗ is
regular if, and only if, there exist a local language L ⊆ Λ∗ and a letter-to-letter homo-
morphism ϑ : Λ∗ → Σ∗ such that R = ϑ(L). If R is recognized by an FA with state set
Q the alphabet is Λ = Σ × Q.

Thus, each element of Λ can be written as
a→ q, intuitively meaning that from some

state an a labeled arc goes to state q. We call alphabetic ratio the quotient |Λ|
|Σ| . Thus the

alphabetic ratio of the MT statement is |Q|. A natural question is whether, by relaxing
the condition that language L is local and permitting it to be k-slt with k > 2, the
alphabetic ratio of such an extended Medvedev’s statement may be reduced and how
much. First, we prove with a simple witness that in general, no matter how large k, the
alphabetic ratio cannot be smaller than two.

Theorem 3 (minimality of alphabetic ratio two [5]). For every alphabet Σ, there
exists a regular language R ⊆ Σ+ such that for every k ≥ 2, R is not the homomorphic
image of a k-slt language L ⊆ Λ, with |Λ| = (2 · |Σ| − 1).

Proof. Let R =
⋃

a∈Σ (aa)∗. By contradiction, assume that there exist k ≥ 2 and a

local alphabet Λ of cardinality 2|̇Σ| − 1, a mapping π : Λ → Σ and a k-slt language
L ⊆ Λ+ such that π(L) = R. Since |Λ| = 2 · |Σ| − 1, there exists at least one element
of Σ, say, a, such that there is only one symbol b ∈ Λ with π(b) = a. Since a2k ∈ R,
there exists x ∈ L such that π(x) = a2k. By definition of π and of Λ, x = b2k. Consider
the word xb = b2k+1. Clearly, π(xb) = a2k+1, which is not in R, since all words in R
have even length. Hence, xb �∈ L. But the k-factors of #x# coincide with the k-factors
of #xb# therefore xb is in L, a contradiction. 
�
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In other words, some regular languages cannot be generated as images of an slt lan-
guage, if the alphabetic ratio is too small. The remaining question whether an alphabetic
ratio of two is sufficient was positively settled in [5].1 The proof presented here is sim-
pler than the original one and is based on the use of comma-free codes (as already in [6]
where local functions are used instead of homomrphisms), combined with a convenient
padding technique, already in [4] for picture languages.

Sampled Runs. Referring to Theorem 2, given k ≥ 2, reorganize each computation as
follows. Starting in the initial state, group together every k consecutive steps, until the
computation ends in a final state or h < k residual steps are left before the end; in the
second case, group together all the h steps. Such a representation is called a run with
sampling rate k schematized as:

y1→ qi1
y2→ qi2 . . .

yn−1→ qin−1

z→ qin , yi ∈ Σk, z ∈ Σh, (1 ≤ h ≤ k), q ∈ Q, qin ∈ F.

Now, interpret each symbol such as
y2→ qi2 in the run as an element of a finite set called

sampling alphabet, Λk = Σk × Q ∪ Σh × F (1 ≤ h ≤ k) where F ⊆ Q are the
final states. Thus, a sampled run is a word over Λk. To illustrate, consider for the FA in

Example 1 the sampled run recognizing a5b:
aaaa→ q0· ab→ q2

From Theorem 2 the following is obvious: (i) the projection on alphabet Σ of a
sampled run is exactly the word recognized by the corresponding run of FA A; and (ii)
the language of sampled runs is local.

Padding to a Multiple of the Sampling Rate. To prove EMT we will encode the states
visible in the sampled run, using binary comma-free code-words of length k. In Exam-
ple 1 see at item 3. the encoding of the states by code-words of length 4. Thus the
concatenation of the code-words �q1� �q0� is a an 8 bit string, against an input word
aaaaab of length just 6, too short to assign one bit per input character when encoding
the states visible in the run. Since it would be complicated to use code-words of variable

length, we prefer to stretch the last symbol of a sampled run, in the example
ab→ q2. We

append to it as many symbols $ (assumed not in Σ) as needed to obtain a length equal
to the sampling rate. We call padded such modified sampled runs and from now on we

only deal with them. In our case the padded sampled run is
aaaa→ q0

ab$$→ q2.

Definition 2 (sampled runs). The sampling alphabet (with padding) is Λk$ ⊆ Σk ×
Q ∪ (

Σh · $k−h
) × F where 1 ≤ h < k. A sampled run is

y1→ qi1
y2→ qi2 . . .

yn−1→ qin−1

z→ qin where

⎧⎨
⎩

q0
y1→ qi1 ,

yi ∈ Σk, z ∈ Σh · $k−h,
all q ∈ Q and qin ∈ F.

(2)

The following proposition is immediate.

1 A similar construction in [19] (proof of Theorem 5.2) is used to logically characterize regular
languages; it may provide an alternative proof that the alphabetic ratio of EMT is two, though
with the k ∈ O(|Q|) bound.
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Proposition 2 (language of sampled runs). Let R ⊆ Σ∗ be the language recognized
by an FA A. Let k ≥ 2 be the sampling rate and Λk$ the sampling alphabet with
padding. A word x is in R if, and only if, A has a sampled run y ∈ Λk$

+ such that the
projection of y on Σ is equal to x. The language of sampled runs L ⊆ (Λk$)+ is local.

Merged Comma-Free Code-Words. It is convenient to introduce a binary operator that
merges two words of identical length into one of the same length on the Cartesian
product of the alphabets. Define the operator ⊗ : Δ+ × Σ+ → (Δ × Σ)+ for any two
words y ∈ Σ+, u ∈ Δ+, with |y| = |u|, as: y ⊗u = (y(1), u(1), ) . . . (y(|y|, u(|y|))).
E.g., if y = aabb and u = 0101 then y ⊗ u = (a, 0)(a, 1)(b, 0)(b, 1). The operator can
be extended in the usual way to a pair of languages. We also need the projections, resp.
denoted by [ ]Σ and [ ]Δ onto the alphabets Σ and Δ i.e., [u ⊗ y]Σ = y, [u ⊗ y]Δ = u.

Proposition 3 (merged comma-free code). If X ⊂ Δk is a comma-free code of length
k, then every subset Z ⊆ Σk ⊗ X is also a comma-free code of length k.

Proof. We prove that Z satisfies the definition of comma-free code in Sect. 2.2, Eq. (1).
Let t, u, v, w ∈ (Σ×Δ)∗ be such that tu, uv, vw ∈ Z. By definition of Z, [tu]Δ, [uv]Δ,
[vw]Δ ∈ X , with [u]Δ = [w]Δ = ε or [t]Δ = [v]Δ = ε since X is a comma-free code;
by definition of ⊗, it must be that also u = w = ε or t = v = ε. 
�

The EMT for words (Theorem 8 of [5]) is now straightforward to prove.

Theorem 4 (Extended Medvedev’s theorem for words). For any regular language
R ⊆ Σ∗, there exist an slt language L ⊆ Λ∗, where Λ is an alphabet of size |Λ| = 2|Σ|,
and a letter-to letter homomorphism ϑ : Λ∗ → Σ∗, such that R = ϑ(L).
If R is recognized by an FA with |Q| states, the language L is k-slt with k in O(lg(|Q|)).
Proof. Let R = L(A) where A = (Σ,Q,→, q0, F ). Let k ∈ O(lg |Q|) be a value
such that by Proposition 1 there is a comma-free dictionary X with |X| = |Q|. With
reference to Definition 2, let L ⊆ Λ+

k$ be the 2-slt language of the sampled (padded)
runs of A. Define the comma-free code Z = Λk$ ⊗ X , and apply this encoding to
L, obtaining the language �L�Z . Notice that it exclusively contains (padded) words of
length multiple of k. The language �L�Z is 2k-slt by Theorem 1. Denote with M2k the
test set such that �L�Z = L(M2k).
The next transformation of M2k eliminates or modifies the 2k-factors containing one
or more $’s in order to clean �L�Z from the padding symbols.

(1) Remove from set M2k any 2k-factor that contains as substring ($, β)($, γ) or
($, β)#, β, γ ∈ {0, 1}.

(2) At last, replace any occurrence of ($, β) with # (dropping the bit β).

Let M ′
2k be the resulting set. Clearly, L(M ′

2k) ⊆ L(M2k). Since it is obvious that
[L(M ′

2k)]Σ ⊆ R, it remains to prove [L(M ′
2k)]Σ ⊇ R.

By contradiction, assume that a sampled run α of A is such that �α�Z is not in
L(M ′

2k).
Let x be the projection of α on Σ. If |x| is a multiple of k, all the 2k-factors

of �α�Z are free from $ symbols, therefore they are all preserved in M ′
2k since they
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are untouched by the steps 1. and 2. above. If |x| is not a multiple of k, α termi-

nates with a symbol of Λk$ having the form
u($)k−h

→ q with q ∈ F and u ∈ Σh,

1 ≤ h < k. For brevity we discuss the case α = . . .
y→ q′ c($)k−1

→ q where
y = a1a2 . . . ak ∈ Σk and c ∈ Σ. The encoded run �α�Z has therefore the form
. . . a1β1 a2β2 . . . akβk cγ1 $γ2 . . . $γk−1 where each Greek letter stands for a bit. The
2k-factor a2β3 . . . akβk cγ1 $γ2 occurs in �α�Z , it is in M2k and after step (2) above
becomes a2β3 . . . akβk cγ1 # ∈ M ′

2k. Since all dollar-less 2k-factors are untouched,
�α�Z ∈ L(M ′

2k). 
�
Example 1. The example illustrates the constructions used in the proof of EMT applied
to a case simple enough to fit in the paper.

1. Finite automaton: q0 q1 q2A =→ →a
a

b R = a(aa)∗b

2. Sampled padded runs with sampling rate k = 4 (see Definition 2)

– Alphabet Λ4$ =
{

aaaa→ q0,
aaab→ q2,

ab$$→ q2

}
and two sampled runs:

word sampled run

a5b
aaaa→ q0· ab$$→ q2

a11b
aaaa→ q0· aaaa→ q0· ab$$→ q2

(3)

– The language L of sampled runs is local (Proposition 2) and defined by the test
set:

M2 =

⎧⎪⎨
⎪⎩

# aaaa→ q0, #
aaab→ q2, #

ab$$→ q2,
aaaa→ q0

aaaa→ q0,
aaaa→ q0

aaab→ q2,
aaaa→ q0

ab$$→ q2,
aaab→ q2 #,

ab$$→ q2 #

⎫⎪⎬
⎪⎭

3. Comma-free dictionary X and encoding of FA states:
�q0�X �q1�X �q2�X

0001 0011 0111
4. The merged comma-free dictionary Z = Λ4

4$ ⊗ X of Proposition 3 is:
aaaa ⊗ �q0�X aaab ⊗ �q2�X ab$$ ⊗ �q2�X

a0 · a0 · a0 · 1a a0 · a1 · 1a · b1 a0 · b1 · $1 · $1
5. Apply the encoding �. . .�Z : (Λ4$)+ → Z+ to the sampled runs, obtaining the

language �L�Z , which is 8-slt by Theorem 1. It is defined by a test set M8 that
contains the 8-factors occurring in the runs at line (3):

# a0 a0 a0 a1 a0 a0 a0 a1 a0 a1 a1 b1 #
# a0 a0 a0 a1 a0 b1 $1 $1 #

6. To obtain the final test set M ′
8, transform the set M8 as follows:

– The 8-factors a0 a0 a0 a1 a0 b1 $1 $1 and a0 a0 a1 a0 b1 $1 $1 # contain
two $ and are canceled.

– The8-factora1 a0 a0 a0 a1 a0 b1 $1 is replacedbya1 a0 a0 a0 a1 a0 b1 #.

The test set is M ′
8 =

⎧⎪⎪⎨
⎪⎪⎩

# a0 a0 a0 a1 a0 a0 a0, a0 a0 a0 a1 a0 a0 a0 a1,
a0 a0 a1 a0 a0 a0 a1 a0, a0 a1 a0 a0 a0 a1 a0 a1,
a1 a0 a0 a0 a1 a0 a1 a1, a0 a0 a0 a1 a0 a1 a1 b1,
a0 a0 a1 a0 a1 a1 b1 #, # a0 a0 a0 a1 a0 b1 #

⎫⎪⎪⎬
⎪⎪⎭

.
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7. The projection of language L(M ′
8) on Σ is R − {ab, aaab}.

Notice that this language admits a more economical ad hoc EMT statement with alpha-
betic ratio 3

2 , represented by the projection on {a, b} of the 2-slt language a(a′ a)∗b.

4 The Extended Medvedev’s Theorem for Trees and Pictures

For comparability sake, the same presentation scheme is used in both cases: (i) the def-
inition of the language family, (ii) the notion of k-gram, (iii) the Medvedev’s theorem,
(iv) the extended Medvedev’s theorem.

4.1 Tree Languages

The ranked tree languages are recognized by nondeterministic root-to-leaves tree
automata [3,9] (TA), assumed to be familiar to the reader. Given a tree with inter-
nal nodes labeled over the ranked alphabet Σ, and leaves labeled over Σ0 ⊂ Σ, the
machine starts in an initial state in the root, then it computes in one step the states of
the sibling nodes. Then recursively it does the same for each sibling subtree, until the
computation reaches a leaf. The state must be a final one in all leaves for the tree to
be recognized. Thus the effect of the computation run is to label each node with a state
from the state set Q.

The analogy with the runs of an FA on words is manifest; the difference is that
an FA run traverses a linear graph whereas a TA run traverses a tree graph along all
the root-to-leaf paths. The result is a state-labeled tree, isomorphic to the original one,
where nodes are labeled over the alphabet Σ × Q.

The notion of k-gram, k ≥ 2, requires some preliminary concepts. A tree domain
D is a finite, non empty, prefix-closed subset of N

∗
>0 satisfying the following condition:

if xi ∈ D for x ∈ N
∗
>0 and i ∈ N>0, then xj ∈ D for all j with 1 ≤ j ≤ i. A tree

t over a finite alphabet Σ is a mapping t : domt → Σ, where domt is a tree domain.
A node of t is an element x of domt. The root of t is the node ε. The successors of a
node x are all the nodes of the form xi, with xi ∈ domt, i ∈ N>0. The yield or frontier
of a tree is the word of leaf labels read from left to right. A path is a sequence of nodes
x1 . . . xm, such that xi+1 is a successor of xi. The label of a path x1 . . . xm is the word
t(x1) · · · t(xm), i.e., the concatenation of the labels of nodes x1, . . . , xm.

Given a node x ∈ domt, the portion of the tree rooted at x is denoted as t|x and
called the subtree of t at node x, i.e., t|x is the subset of nodes of domt having the
form xy, y ∈ N

∗
>0. A subtree t|x is not formally a tree but it can be made into a tree

t′ by removing the prefix x from every node of t|x, by positing t′(y) = t|x(xy) for all
y ∈ N

∗
>0; in this case, the subtree is said to be normalized.

Tree Languages Defined by Local Tests

Definition 3 (k-gram). Let k ≥ 2, let t ∈ TΔ and x a node of t. The k-gram2 of t
at node x ∈ domt is the subset of nodes of the normalized subtree t|x at downwards

2 The meaning of digram is a sequence of 2 letters or symbols; or also of patterns such as the
colors in a flag. For non-textual languages the term k-gram is preferable to k-factor. Other
terms are in use, e.g., our definition of k-gram corresponds to the (k − 1)-type of [16].
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distance less than k from x. When x = ε (i.e., the root of t) the k-gram is called a root
k-gram. The set of k-grams of t is denoted by ⟪t⟫h.

Note: the yield of a k-gram, unlike the one of a tree, may include symbols in Σ − Σ0.

Definition 4 (strictly locally testable tree language). Let k ≥ 2. A language T ⊆ TΣ

is k-strictly locally testable (k-slt) if there exist two sets Γk and Θk of k-grams, called
the test sets, with Θk ⊆ Γk, such that the membership of a tree in T can be decided
just by considering its k-grams, namely, for all t ∈ TΣ: t ∈ T if, and only if, ⟪t⟫k ⊆
Γk and the root k-gram of t is in Θk. Then we write T = T (Γk, Θk).The value k is
called the order of T . A language is strictly locally testable (slt) if it is k-slt for some
k ≥ 2; if k = 2 it is also called local.

Two examples of local language are: the state-labeled trees, denoted by T̂ (M), of a
language T (M) ⊆ TΣ , and the syntax trees of a context-free grammar.

Medvedev’s Theorem and Its Extension The next well-known proposition (e.g., in [9],
Sect. 2.8) is a Medvedev-like characterization of tree languages.

Theorem 5 (MT for trees). A tree language T ⊆ TΣ is regular if, and only if, there
exists a ranked alphabet Λ, a local (i.e. 2-slt) tree language T ′ ⊆ TΛ and a projection
η : Λ → Σ such that T = η(T ′). Moreover, if a tree automaton recognizing T has the
state set Q, then the alphabetic ratio is |Λ|

|Σ| ≤ |Q|.
The proof of the theorem is based on the observation that the set of all state-labeled trees
of a TA M is a local tree language, since a transition of M operates on the neighborhood
of a node consisting of its children.

The EMT (Theorem 4) for words and the minimality of the alphabetic ratio 2 (The-
orem 3) have been recently proved for tree languages [7]; the mimality result simply
comes from the fact that a word is also a linear tree. therefore the same witness holds in
both cases.

Theorem 6 (EMT for trees (theorem 1 of [7])). For every ranked alphabet Σ, there
exist a ranked alphabet Λ, with alphabetic ratio |Λ|

|Σ| ≤ 2, and a projection η : TΛ →
TΣ , such that for every regular tree language T ⊆ TΣ there exist k ≥ 2 and a 2k-slt
tree language T̃ ⊆ TΛ such that T = η(T̃ ).

To explain the proof of EMT for trees, we look at a state-labeled tree, and we consider
each root-to-leaf path. On each path we encode, with binary comma-free code-words
of length k, the states that are located at nodes at distance 0, k, 2k, . . . from the root.
Notice that, for any internal node at a distance multiple of k from the root, the same
code-word is placed on all the downward paths originating from it. Paths too short to
contain a whole code-word, will contain just a prefix. Having placed the binary code-
words on the path, we cancel all state labels that where present in the state-labeled tree.
The result is a tree isomorphic to the state-labeled one, aptly called an encoding tree.
As said, its node labels are over the alphabet Σ × {0, 1}. Analogously with Theorem 1
about the preservation of the slt property by encoding, it is possible to prove that the
language of encoded trees is 2k-slt, and its projection on Σ coincides with language T .
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4.2 Picture Languages

The case of TS-rec pictures sets itself apart from the cases of words and trees since the
primary definition of the tiling-system recognizable picture languages is not based on
an automaton (or on a regular expression) but on Medvedev’s theorem.

Assuming some familiarity with the subject, we list a few essential definitions
(see [10,11]). A picture p is a rectangular array with |p|row rows and |p|col columns,
each cell containing a symbol (or pixel) from an alphabet Σ. The set of all pictures of
size m,n is Σm,n and the set of all pictures is Σ++. A picture contained in another
one is a subpicture. A (square) picture in Σk,k, k ≥ 2, is called k-tile and simply tile
if k = 2: k-tiles play the role of k-factors for words and k-grams for trees. The bor-
dered version p̂ of p is the picture of size (|p|row + 2, |p|col+2 that surrounds p with a
rectangular frame containing the reserved symbol #.

Definition 5 (strictly locally testable picture languages). A picture language, L ⊆
(Σ ∪ {#})++ is k-strictly-locally testable (k-slt) if there is a set Tk ⊆ (Σ ∪ {#})k,k

of k-tiles, called the test set such that p ∈ L if, and only if, the k-tiles occurring in p̂ as
subpictures are included in Tk. Then we write L = L(Tk). A pictures language is slt if
it is k-slt for some k.

The k-slt, k ≥ 2, family is an infinite strict hierarchy, for every non-unary alphabet.
As said, the definition of TS-rec is an MT statement.

Theorem 7 (MT for pictures). A picture language R ⊆ Σ++ is tiling-system recog-
nizable (TS-rec) if it is the projection of a 2-slt (i.e., local) language L ⊆ Λ++, i.e.,
defined by a test set T2 ⊆ (Σ ∪{#})2,2. In formula, R = π(L(T2)) where π : Λ → Σ.
The quadruple (Σ,Λ, T2, π) is called a tiling system.

Tradeoff Between Alphabet Cardinality and Tile Size. The definition of tiling system
has been extended towards the k-tiling system. It uses a set Tk ⊆ Γ k,k of k-tiles, k ≥ 2
instead of 2-tiles. The alphabetic ratio of a k-tiling system is the quotient |Γ |

|Σ| .

Theorem 8. Given a k-slt language L ⊆ Σ++ defined as L = L(Tk) where Tk ⊆
(Σ ∪{#})k,k, there exists an alphabet Γ , a local language L′ ⊆ Γ++ and a projection
π : Γ → Σ s.t. L = π(L′). Hence the family of k-TS recognizable languages coincides
with TS-rec.

The proof in [10] has the alphabet size |Γ | = |Σ| · |Tk|.

Extended Medvedev’s Theorem. The EMT (Theorem 4) for words and the minimality
of the alphabetic ratio 2 (Theorem 3) have been recently proved for TS-rec pictures [4];
the minimality simply follows from the fact that a word is also a one-row picture.

Theorem 9 (EMT for pictures). For any R ⊆ Σ++ in TS-rec there exist k ≥ 2 and a
2k-tiling system with alphabetic ratio 2, recognizing R. Moreover, if n is the size of the
local alphabet of a tiling system recognizing R then the value of k is O(lg(n)).

The proof follows the one for words in Sect. 3 with some important differences.
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1. If the number of rows or columns is not multiple of k, the picture has to be padded
(as we did for words in Sect. 3) on the east and south sides with $ symbols, so that
the padded picture can be tessellated with k-tiles, that fit in a mesh of a k × k grid.

2. A comma-free picture (i.e., 2D) code is, intuitively, a set of k-tiles (code-pictures)
such that, for any picture tessellated with such tiles, none of the k × k subpictures at
positions misaligned with respect to the grid, can be a code-picture. The slt proper-
ties of such 2D codes and for code-words are similar.
The property of code-words that XX+ is 2k-slt (special case of Theorem 1)
becomes: let X ⊆ Λk,k be a comma-free code, then the language X++ is 2k-slt.
Instead of Theorem 1, the statement is: let T ⊆ Γ 2,2 be a set of tiles defining the
local language L(T ) and let X ⊆ Δk,k be a comma-free 2D code with numerosity
|X| = |Γ |. The encoding �L(T )�X is a 2k-slt language.
Although a general formula for the numerosity of 2D comma-free codes is lacking,
in [1] a useful lower bound for a family of codes that cannot overlap is given; the
non-overlapping condition is stronger than the comma-free one.

3. The major difference is that for pictures we cannot rely on an automaton analogous
to FA for words and TA for trees.

Therefore the technique in Sect. 3 of sampled
computations labeled with the states traversed has
to be replaced by another approach. The frame
f(p) of a picture p ∈ Γ k,k is the square ring com-
posed by the four sides (np, ep, sp, wp) each one
being a word of length k; each corner is shared by
two words. A bordered picture of size (2k, 2k) tes-
sellated with four k-tiles each one with its frame,
is shown.

# . . . . . .# # . . . . . .#
# a nx ny b #
. . . . . .

wx u ex wy v ey

. . . . . .
# sx sy #
# nz nt #
. . . . . .

wz w ez wt z et

. . . . . .
# c sz st d #
# . . . . . .# # . . . . . .#

4. A comma-free code-picture encodes each frame, i.e., a quadruple (np, ep, sp, wp);
code-pictures are schematized by u, v, w, z in the figure. The frame contains 4k sym-
bols of Γ and can be encoded by a code-picture in X , which contains k2 bits, since
for k large enough, the numerosity of the family of non-overlapping 2D codes [1]
suffices to encode all possible frames.

5. In each pixel the original terminal symbol from Σ is accompanied by a bit of the
code-picture, so that the alphabetic ratio is |Σ|·|{0,1}|

|Σ| = 2.
6. The language of encoded pictures is 2k-slt, hence language R is 2k-TS recognizable

with alphabetic ratio 2. The proof is more combinatorial than for words.

5 Conclusion

For words, trees and pictures we have evidenced the similarity between the statements
and proofs of the Extended Medvedev’s Theorem. At closer reflection, we may attribute
such similarity to the fact that in all cases a recognizing computation sweeps over a
discrete structure, a directed graph whose nodes are labeled with terminal symbols and
states. The graph is respectively a total order, a tree order, and an acyclic graph with
square meshes. The computation never returns to an already visited node. The sampling
technique with sampling rate k clusters the computation into k-grams. Such k-grams
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are then taken as symbols of a new alphabet and the correct adjacencies between k-
grams are specified by a 2-slt language. Then the encoding of each k-gram symbol by
means of a binary comma-free code transforms the 2-slt language into a 2k-slt language
over the doubled alphabet Σ × {0, 1}.

An open question is whether the EMT property holds for other language domains
beyond the three considered, as for instance the directed-acyclic-graph automata that
from time to time have been proposed in the literature.

Acknowledgment. The present simpler proof of EMT for words has been worked out jointly
with P. San Pietro and incorporates an original idea of A. Restivo about padding.
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